WO2022199256A1 - 化合物、有机电致发光器件及电子装置 - Google Patents

化合物、有机电致发光器件及电子装置 Download PDF

Info

Publication number
WO2022199256A1
WO2022199256A1 PCT/CN2022/075126 CN2022075126W WO2022199256A1 WO 2022199256 A1 WO2022199256 A1 WO 2022199256A1 CN 2022075126 W CN2022075126 W CN 2022075126W WO 2022199256 A1 WO2022199256 A1 WO 2022199256A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
unsubstituted
substituted
compound
Prior art date
Application number
PCT/CN2022/075126
Other languages
English (en)
French (fr)
Inventor
马天天
郑奕奕
南朋
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Publication of WO2022199256A1 publication Critical patent/WO2022199256A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/16Peri-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • C09K2211/1062Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention claims the priority of the Chinese patent application with application number CN 202110301323.4 submitted on March 22, 2021, and the full content of the disclosure of the above-mentioned Chinese patent application is hereby cited as a part of this application.
  • the entire contents of the above-mentioned Chinese patent application publications are hereby cited as a part of the present application.
  • the invention belongs to the technical field of organic electroluminescent materials, and in particular relates to a compound, an organic electroluminescent device and an electronic device using the same.
  • An organic electroluminescent device such as an organic light emitting diode (OLED) generally includes a cathode and an anode disposed opposite to each other, and a functional layer disposed between the cathode and the anode.
  • the functional layer is composed of multiple organic or inorganic film layers, and generally includes an organic light-emitting layer, a hole transport layer between the organic light-emitting layer and the anode, and an electron transport layer between the organic light-emitting layer and the cathode.
  • the electrons on the cathode side move to the electroluminescent layer, and the holes on the anode side also move to the light-emitting layer, and the electrons and holes combine in the electroluminescent layer.
  • Excitons are formed, and the excitons are in an excited state to release energy to the outside, thereby causing the electroluminescent layer to emit light to the outside.
  • the object of the present invention is to provide an organic electroluminescent material with excellent performance, which can be used as a light-emitting layer in an organic electroluminescent device.
  • the present invention provides a compound, the compound is selected from the structure shown in the following formula 1-1 or formula 1-2:
  • R 1 , R 2 and R 3 are each independently selected from hydrogen, deuterium, cyano, halogen group, aryl group having 6 to 20 carbon atoms, heteroaryl group having 3 to 20 carbon atoms, It is an alkyl group with 1-10 carbon atoms, a deuterated alkyl group with 1-10 carbon atoms, and a halogenated alkyl group with 1-10 carbon atoms;
  • L 1 , L 2 and L are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, and a substituted or unsubstituted heteroarylene group having 3 to 30 carbon atoms;
  • Ar 1 and Ar 2 are each independently selected from hydrogen, deuterium, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, and a substituted or unsubstituted heteroaryl group having 3 to 20 carbon atoms;
  • Het is selected from 6-18-membered electron-deficient nitrogen-containing heteroarylene
  • R 5 , R 6 , R 7 and R 8 are each independently selected from hydrogen, deuterium, cyano, halogen group, aryl group with 6-20 carbon atoms, heteroaryl group with 3-30 carbon atoms, Alkyl having 1-10 carbon atoms, trialkylsilyl group having 3-12 carbon atoms, triarylsilyl group having 18-20 carbon atoms, deuterated alkyl group having 1-10 carbon atoms , halogenated alkyl groups with 1 to 10 carbon atoms, cycloalkyl groups with 3 to 10 carbon atoms, heterocycloalkyl groups with 2 to 10 carbon atoms, alkoxy groups with 1 to 10 carbon atoms, carbon Alkylthio group with 1-10 atoms, aryloxy group with 6-15 carbon atoms, arylthio group with 6-15 carbon atoms, phosphineoxy group with 6-15 carbon atoms;
  • n 5 is selected from 0, 1, 2 or 3;
  • n 6 , n 7 and n 8 are each independently selected from 0, 1, 2, 3 or 4;
  • the substituents in L 1 , L 2 , L, Ar 1 and Ar 2 are the same or different, and are each independently selected from deuterium, cyano, halogen, aryl with 6 to 20 carbon atoms, and Heteroaryl groups of 3 to 20, alkyl groups of 1 to 10 carbon atoms, trialkylsilyl groups of 3 to 12 carbon atoms, triarylsilyl groups of 18 to 20 carbon atoms, and carbon atoms of Deuterated alkyl having 1 to 10 carbon atoms, haloalkyl having 1 to 10 carbon atoms, cycloalkyl having 3 to 10 carbon atoms, alkoxy group having 1 to 10 carbon atoms, and 1 to 10 carbon atoms 10 alkylthio groups, aryloxy groups with 6 to 15 carbon atoms, arylthio groups with 6 to 15 carbon atoms, and phosphineoxy groups with 6 to 15 carbon atoms; optionally, two adjacent The substituents are connected to each other to form
  • an organic electroluminescence device comprises an anode and a cathode disposed oppositely, and a functional layer disposed between the anode and the cathode; the function
  • the layers contain the compounds described above.
  • the functional layer includes a host of the organic electroluminescence layer and a dopant, and the host of the organic electroluminescence layer includes the compound of the present application.
  • an electronic device including the organic electroluminescent device of the present application.
  • the core structure of the compound of the present application is a macrocyclic system composed of an indolocarbazole ring and a 7-membered ring formed by condensing the carbazole ring and 2,2-biphenyl in this group;
  • the conjugation and rigidity of the ions increase the hole mobility and have a high first triplet energy level.
  • the compound also contains a suitable electron infusion group, the whole molecule has a suitable energy level distribution, and can be used as a light-emitting host material in an organic light-emitting device to improve the efficiency performance of the organic light-emitting device.
  • the macrocyclic structure of the molecule is a large planar conjugated structure, which improves the thermal stability of the material.
  • the condensing mode of indole and carbazole in the parent nucleus of the compound is limited to the condensed indole at the 1, 2 or 2, 3 positions of the carbazole ring, and the two nitrogen atoms must be in the same direction, so the condensing mode is one.
  • the parent nucleus has a suitable spatial structure and a larger dipole moment, the molecular polarity is increased, and the hole mobility is better.
  • the steric hindrance between the groups connected to the nitrogen atom is large, which is conducive to the molecule showing better three-dimensional characteristics and better film formation, which can be used in the light-emitting layer of OLED devices to improve The luminous efficiency and lifetime of the device.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescent device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • substituted aryl or heteroaryl refers to the total number of carbon atoms in the aryl or heteroaryl group and its substituents, for example, a substituted aryl group with 18 carbon atoms refers to the total number of carbon atoms in the aryl group and the substituent. 18.
  • 2,4-diphenyl-1,3,5-triazinyl belongs to the substituted heteroaryl group with 15 carbon atoms.
  • each independently is” and “are independently” and “are independently selected from” can be interchanged, and should be understood in a broad sense, which can either refer to In different groups, the specific options expressed between the same symbols do not affect each other, and it can also mean that in the same group, the specific options expressed between the same symbols do not affect each other.
  • each q is independently 0, 1, 2 or 3, and each R "is independently selected from hydrogen, fluorine, chlorine" in the description, its meaning is:
  • formula Q-1 represents that there are q substituents R on the benzene ring ", each R” can be the same or different, and the options of each R" do not affect each other;
  • formula Q-2 indicates that each benzene ring of biphenyl has q substituents R", and the two benzene rings have q substituents R".
  • the number q of R" substituents may be the same or different, and each R" may be the same or different, and the options of each R" do not affect each other.
  • heterocyclic group optionally substituted with an alkyl group means that an alkyl group may, but need not, be present, and the description includes scenarios where the heterocyclic group is substituted with an alkyl group and where the heterocyclic group is not substituted with an alkyl group scene.
  • substituted or unsubstituted means no substituents or substituted with one or more substituents.
  • the substituents include, but are not limited to, deuterium, halogen groups (F, Cl, Br), cyano, alkyl, haloalkyl, aryl, heteroaryl, aryloxy, arylthio, cycloalkyl, Heterocyclyl, trialkylsilyl, alkyl, cycloalkyl, alkoxy, alkylthio.
  • alkyl may include straight or branched chain alkyl groups.
  • An alkyl group can have 1 to 10 carbon atoms, and in this application, a numerical range such as “1 to 10" refers to each integer in the given range; for example, “1 to 10 carbon atoms” means that 1 can be included 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 carbon atoms. In some embodiments, the alkyl group contains 1 to 4 carbon atoms.
  • the alkyl group may be optionally substituted with one or more substituents described herein.
  • alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, and the like. Furthermore, alkyl groups can be substituted or unsubstituted.
  • trialkylsilyl refers to Wherein, R G1 , R G2 and R G3 are independently alkyl groups, and specific examples of trialkylsilyl groups include, but are not limited to, trimethylsilyl, triethylsilyl, tert-butyldimethylsilyl base, propyldimethylsilyl;
  • triarylsilyl refers to Wherein, R G4 , R G5 , and R G6 are independently aryl groups, and specific examples of triarylsilyl groups include, but are not limited to, triphenylsilyl groups, etc., but are not limited thereto.
  • the halogen group as a substituent includes fluorine, chlorine, bromine or iodine.
  • alkoxy means that an alkyl group is attached to the rest of the molecule through an oxygen atom, wherein the alkyl group has the meaning as described herein. Unless otherwise specified, the alkoxy group contains 1 to 10 carbon atoms. In one embodiment, the alkoxy group contains 1 to 6 carbon atoms; in another embodiment, the alkoxy group contains 1 to 4 carbon atoms. Examples of alkoxy groups include, but are not limited to, methoxy, ethoxy, 1-propoxy, 2-propoxy, 1-butoxy, 2-methyl-1-propoxy , 2-butoxy, 2-methyl-2-propoxy and the like.
  • haloalkyl or “haloalkoxy” means an alkyl or alkoxy group substituted with one or more halogen atoms, wherein the alkyl and alkoxy groups have the meaning as described herein , such examples include, but are not limited to, trifluoromethyl, trifluoromethoxy, and the like.
  • cycloalkyl refers to a monocyclic or polycyclic saturated cyclic hydrocarbon group obtained by removing a hydrogen atom, and "cycloalkyl" may have one or more points of attachment to the rest of the molecule.
  • cycloalkyl is a ring system containing 3-10 ring carbon atoms; in other embodiments, cycloalkyl is a ring system containing 5-10 ring carbon atoms; in other embodiments, cycloalkane A radical is a ring system containing 5-7 ring carbon atoms; in other embodiments, a cycloalkyl group is a ring system containing 3-6 ring carbon atoms.
  • cycloalkyl groups may independently be unsubstituted or substituted with one or more substituents described herein.
  • cycloalkyl groups are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.
  • aryl refers to an optional functional group or substituent derived from an aromatic carbocyclic ring.
  • the aryl group can be a monocyclic aryl group or a polycyclic aryl group, in other words, the aryl group can be a monocyclic aryl group, a fused-ring aryl group, two or more monocyclic aryl groups linked by A single-ring aryl group and a fused-ring aryl group linked by carbon-carbon bonds, and two or more fused-ring aryl groups linked by a carbon-carbon bond. That is, two or more aromatic groups linked by carbon-carbon bond conjugation can also be regarded as aryl groups in the present application.
  • fused-ring aryl refers to two or more rings in which two carbon atoms in the ring system are shared by two adjacent rings, wherein at least one of the rings is aromatic, for example, the other rings may be Cycloalkyl, cycloalkenyl, aryl.
  • aryl groups may include, but are not limited to, phenyl, naphthyl, fluorenyl, anthracenyl, phenanthryl, biphenyl, terphenyl, tetraphenyl, pentaphenyl, benzo[9,10] phenanthryl, pyrenyl, benzofluoranthene, Base et al.
  • the number of carbon atoms of the substituted or unsubstituted aryl group may be selected from 6, 10, 12, 13, 14, 15, 16, 17, 18, 20, 25 or 30.
  • the substituted aryl group may be one or two or more hydrogen atoms in the aryl group replaced by a group such as a deuterium atom, a halogen group, a cyano group (-CN), an aryl group, a heteroaryl group, a trialkylsilyl group , alkyl, cycloalkyl, alkoxy, alkylthio, haloalkyl, aryloxy, arylthio, aryl, heterocyclic and other groups.
  • a group such as a deuterium atom, a halogen group, a cyano group (-CN), an aryl group, a heteroaryl group, a trialkylsilyl group , alkyl, cycloalkyl, alkoxy, alkylthio, haloalkyl, aryloxy, arylthio, aryl, heterocyclic and other groups.
  • the number of carbon atoms in a substituted aryl group refers to the total number of carbon atoms in the aryl group and the substituents on the aryl group, for example, a substituted aryl group with a carbon number of 18 refers to the aryl group and its substituents.
  • the total number of carbon atoms of the substituents is 18.
  • the fluorenyl group as an aryl group can be substituted, and the two substituent groups can be combined with each other to form a spiro structure.
  • Specific examples include but are not limited to the following structures:
  • the aryl group as a substituent is, for example, but not limited to, phenyl, biphenyl, naphthyl, phenanthrenyl, anthracenyl, fluorenyl, dimethylfluorenyl, and terphenyl.
  • the arylene group is a divalent or polyvalent group, and other than that, the above-mentioned description about the aryl group can be applied.
  • heteroaryl refers to a monocyclic or Polycyclic ring systems, at least one of which is aromatic.
  • Each ring system in a heteroaryl group contains a ring of 5 to 7 ring atoms with one or more points of attachment to the rest of the molecule.
  • a heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group, in other words, a heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems linked by carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic monocyclic ring or an aromatic fused ring.
  • Fused ring heteroaryl refers to two or more rings in which the two atoms in the ring system are shared by two adjacent rings, wherein at least one of the rings is aromatic, for example the other ring may be a cycloalkane base, aryl.
  • heteroaryl groups can include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, isothiazolyl, oxadiazolyl, triazolyl, oxazolyl, furacyl, pyridyl, Bipyridyl, phenanthridyl, pyrimidinyl, triazinyl, acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, Pyridopyrimidyl, pyridopyrazinyl, pyrazinopyrazinyl, isoquinolinyl, indolyl, carbazolyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzocarb azolyl, benzothi
  • thienyl, furyl, phenanthroline, etc. are heteroaryl groups of a single aromatic ring system type
  • N-arylcarbazolyl and N-heteroarylcarbazolyl are polycarbazolyl groups conjugated through carbon-carbon bonds.
  • Heteroaryl of ring system type is the same as thienyl, furyl, phenanthroline, etc.
  • a substituted heteroaryl group may be a heteroaryl group in which one or more than two hydrogen atoms are replaced by, for example, a deuterium atom, a halogen group, a cyano group, an aryl group, a heteroaryl group, a trialkylsilyl group, an alkane group group, cycloalkyl, alkoxy, alkylthio and other groups.
  • the number of carbon atoms in a substituted heteroaryl group refers to the total number of carbon atoms in the heteroaryl group and the substituents on the heteroaryl group.
  • a substituted heteroaryl group having 14 carbon atoms means that the total carbon number of the heteroaryl group and the substituent is 14.
  • the number of carbon atoms of the substituted or unsubstituted heteroaryl group can be selected from 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 , 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30.
  • Heteroaryl groups as substituents in the present application include, but are not limited to, pyridyl, pyrimidinyl, quinolyl, isoquinolyl, dibenzothienyl, dibenzofuranyl, carbazolyl, quinazolinyl , quinoxalinyl, pyrazinyl, pyridazinyl, etc.
  • the heteroarylene group may be a divalent group or a polyvalent group, and other than that, the above description about the heteroaryl group can be applied.
  • hetero refers to a functional group including at least 1 heteroatom such as B, N, O, S, Se, Si or P and the remaining atoms are carbon and hydrogen .
  • An unsubstituted alkyl group can be a "saturated alkyl group" without any double or triple bonds.
  • a ring system formed by n atoms is an n-membered ring.
  • phenyl is a 6-membered aryl group.
  • the 6-13-membered aromatic ring refers to a benzene ring, an indene ring, and a naphthalene ring.
  • an electron-deficient nitrogen-containing heteroaryl group refers to a heteroaryl group containing at least one sp 2 hybridized nitrogen atom.
  • the lone pair of electrons in the nitrogen atom in such a heteroaryl group does not participate in conjugation, so the overall electron density lower.
  • "6-18-membered electron-deficient nitrogen-containing heteroaryl” is a heteroaromatic ring formed by 6-18 atoms and containing sp 2 hybridized nitrogen atoms.
  • pyridyl pyrimidinyl, triazinyl, pyridazinyl, pyrazinyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, quinolinyl, quinazolinyl, quinoxa pyridinoline, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyrazinyl, isoquinolyl, benzimidazolyl, benzothiazolyl, phenanthroline and the like.
  • the non-positioning connecting bond refers to the single bond extending from the ring system It means that one end of the linking bond can be connected to any position in the ring system through which the bond runs, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positioned linkages running through the bicyclic ring. ) to any possible connection mode shown in formula (f-10).
  • the phenanthrene represented by the formula (X') is connected to other positions of the molecule through a non-positioned link extending from the middle of one side of the benzene ring, and the meaning it represents, Any possible connection modes shown by formula (X'-1) to formula (X'-4) are included.
  • a non-positioned substituent in the present application refers to a substituent attached through a single bond extending from the center of the ring system, which means that the substituent may be attached at any possible position in the ring system.
  • the substituent R group represented by the formula (Y) is connected to the quinoline ring through a non-positioning link, and the meanings it represents include such as formula (Y-1) ⁇ Any possible connection mode shown by formula (Y-7).
  • the application provides a compound, the compound is selected from the structure shown in the following formula 1-1 or formula 1-2:
  • R 1 , R 2 and R 3 are each independently selected from hydrogen, deuterium, cyano, halogen group, aryl group having 6 to 20 carbon atoms, heteroaryl group having 3 to 20 carbon atoms, It is an alkyl group with 1-10 carbon atoms, a deuterated alkyl group with 1-10 carbon atoms, and a halogenated alkyl group with 1-10 carbon atoms;
  • L 1 , L 2 and L are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, and a substituted or unsubstituted heteroarylene group having 3 to 30 carbon atoms;
  • Ar 1 and Ar 2 are each independently selected from hydrogen, deuterium, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, and a substituted or unsubstituted heteroaryl group having 3 to 20 carbon atoms;
  • Het is selected from 6-18-membered electron-deficient nitrogen-containing heteroarylene
  • R 5 , R 6 , R 7 and R 8 are each independently selected from hydrogen, deuterium, cyano, halogen group, aryl group with 6-20 carbon atoms, heteroaryl group with 3-30 carbon atoms, Alkyl having 1-10 carbon atoms, trialkylsilyl group having 3-12 carbon atoms, triarylsilyl group having 18-20 carbon atoms, deuterated alkyl group having 1-10 carbon atoms , halogenated alkyl groups with 1 to 10 carbon atoms, cycloalkyl groups with 3 to 10 carbon atoms, heterocycloalkyl groups with 2 to 10 carbon atoms, alkoxy groups with 1 to 10 carbon atoms, carbon Alkylthio group with 1-10 atoms, aryloxy group with 6-15 carbon atoms, arylthio group with 6-15 carbon atoms, phosphineoxy group with 6-15 carbon atoms;
  • n 5 is selected from 0, 1, 2 or 3; when n 5 is greater than 1, each R 5 is the same or different;
  • n 6 , n 7 and n 8 are each independently selected from 0, 1, 2, 3 or 4; when n 6 is greater than 1, each R 6 is the same or different;
  • each R 7 is the same or different; when n 8 is greater than 1, each R 8 is the same or different;
  • the substituents in L 1 , L 2 , L, Ar 1 and Ar 2 are the same or different, and are each independently selected from deuterium, cyano, halogen, aryl with 6 to 20 carbon atoms, and Heteroaryl groups of 3 to 20, alkyl groups of 1 to 10 carbon atoms, trialkylsilyl groups of 3 to 12 carbon atoms, triarylsilyl groups of 18 to 20 carbon atoms, and carbon atoms of Deuterated alkyl having 1 to 10 carbon atoms, haloalkyl having 1 to 10 carbon atoms, cycloalkyl having 3 to 10 carbon atoms, alkoxy group having 1 to 10 carbon atoms, and 1 to 10 carbon atoms 10 alkylthio groups, aryloxy groups with 6 to 15 carbon atoms, arylthio groups with 6 to 15 carbon atoms, and phosphineoxy groups with 6 to 15 carbon atoms; optionally, two adjacent The substituents are connected to each other to form
  • two adjacent substituents are connected to each other to form a saturated or unsaturated 5- to 13-membered aliphatic ring or a 5- to 13-membered aromatic ring
  • the two substituents may or may not form a ring, that is, It includes the situation where the two are connected to each other to form a saturated or unsaturated 5- to 13-membered aliphatic ring or a 5- to 13-membered aromatic ring, and also includes the situation where the two exist independently of each other.
  • adjacent substituents include both substituents attached to the same atom and two substituents attached to adjacent atoms.
  • the substituents in L 1 , L 2 , L, Ar 1 and Ar 2 are the same or different, each independently selected from deuterium, cyano, fluorine, phenyl, naphthyl, biphenyl base, phenanthryl, fluorenyl, pyridyl, pyrimidinyl, quinolinyl, isoquinolinyl, carbazolyl, dibenzofuranyl, dibenzothienyl, methyl, ethyl, isopropyl, tertiary Butyl, trifluoromethyl, trideuteromethyl, trimethylsilyl, triphenylsilyl, cyclopentyl, cyclohexyl, methoxy, ethoxy, isopropoxy, di Phenylphosphino; optionally, two adjacent substituents are interconnected to form a spiro fluorene ring
  • the R 1 , R 2 and R 3 are each independently hydrogen, deuterium, fluorine or cyano.
  • Het is selected from a nitrogen-containing electron-deficient heteroarylene group (also known as an electron-deficient heteroarylene group), and the sp 2 hybridized nitrogen atom on Het can reduce the overall heteroaryl group
  • the lone pair of electrons on the heteroatom does not participate in the conjugated system, and the heteroatom is due to the strong electronegativity.
  • the electron cloud density of the conjugated system decreases.
  • electron deficient heteroarylenes may include, but are not limited to, triazinylene, pyrimidinylene, quinolinylene, quinoxalylene, quinazolinylene, isoquinolinylene, benzophenylene Imidazolyl, benzothiazolyl, benzoxazolyl, phenanthroline, benzoquinazoline, phenanthroimidazolyl, benzofuranopyrimidinyl, benzothienopyrimidine Base et al.
  • the Het group can form the electron transport core group of the compound, so that the compound can effectively realize electron transport and can effectively balance the transport rate of electrons and holes in the organic electroluminescent layer.
  • the compound can be used as the host material of the bipolar organic electroluminescent layer to simultaneously transport electrons and holes, and can also be used as the host material of the electron-type organic electroluminescent layer in combination with the host material of the hole-type organic light-emitting layer.
  • the Het group is selected from triazinylene, pyrimidinylene, quinolinylene, quinoxalinylene, quinazolinylene, isoquinolinylene , benzimidazolyl, benzothiazolyl, benzoxazolyl, phenanthroline, benzoquinazoline, phenanthrolimidazolyl, benzofuranopyrimidinyl, phenylene thienopyrimidinyl or the following groups:
  • the Het group is selected from the group consisting of:
  • the L 1 , L 2 and L are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6-15 carbon atoms, and a 4-18 carbon atom group. substituted or unsubstituted heteroarylene.
  • each of said L 1 , L 2 and L is independently selected from single bond, substituted or unsubstituted phenylene, substituted or unsubstituted biphenylene, substituted or unsubstituted terphenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted fluorenylene, substituted or unsubstituted phenanthrene, substituted or unsubstituted anthracylene, substituted or unsubstituted pyridylene , substituted or unsubstituted pyrimidinylene, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienylene, substituted or unsubstituted quinolinylene, substituted or unsubstituted One of isoquinolinyl group, substituted or unsubstituted carbazolylide group, or a subunit group formed by
  • the substituents in the L 1 , L 2 and L are the same or different from each other, each independently selected from deuterium, fluorine, chlorine, bromine, cyano, alkyl with 1 to 4 carbon atoms, carbon haloalkyl group having 1 to 4 atoms, deuterated alkyl group having 1 to 4 carbon atoms, trialkylsilyl group having 3 to 9 carbon atoms, cycloalkyl group having 5 to 7 carbon atoms, carbon The group consisting of an aryl group having 6 to 15 atoms and a heteroaryl group having 5 to 12 carbon atoms.
  • the L 1 , L 2 and L are each independently selected from a single bond, a substituted or unsubstituted group W 1 , wherein the unsubstituted group W 1 is selected from the following groups Formed group:
  • the substituents in the group W 1 are each independently selected from deuterium, fluorine, chlorine, cyano, methyl, ethyl, isopropyl, n-propyl, tert-butyl, methoxy, ethoxy, Trifluoromethyl, trideuteromethyl, trimethylsilyl, phenyl, naphthyl, and when the number of substituents on the substituted group W 1 is multiple, any two substituents are the same or different.
  • the L 1 and L 2 are each independently selected from the group consisting of a single bond or the following groups:
  • the L is selected from the group consisting of a single bond or the following groups:
  • Ar 1 and Ar 2 are each independently selected from hydrogen, deuterium, substituted or unsubstituted aryl groups having 6 to 25 carbon atoms, and substituted or unsubstituted aryl groups having 5 to 18 carbon atoms. Substituted heteroaryl.
  • Ar 1 and Ar 2 are each independently selected from hydrogen, substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted terphenyl, substituted or unsubstituted fluorenyl, substituted or unsubstituted phenanthryl, substituted or unsubstituted anthracenyl, substituted or unsubstituted pyridyl, substituted or unsubstituted pyrimidinyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted quinolyl, substituted or unsubstituted isoquinolyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted pyrazinyl, substituted or unsubstituted
  • Ar 1 is selected from hydrogen, substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted terphenyl, Substituted or unsubstituted fluorenyl, substituted or unsubstituted phenanthryl, substituted or unsubstituted anthracenyl, substituted or unsubstituted pyridyl, substituted or unsubstituted pyrimidinyl, substituted or unsubstituted dibenzofuranyl , substituted or unsubstituted dibenzothienyl, substituted or unsubstituted quinolyl, substituted or unsubstituted isoquinolyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted pyrazinyl, substituted or unsubstituted
  • the substituents in Ar 1 and Ar 2 are each independently selected from deuterium, fluorine, chlorine, cyano, alkyl with 1 to 4 carbon atoms, alkoxy with 1 to 4 carbon atoms, A cycloalkyl group having 3 to 7 carbon atoms, an aryl group having 6 to 15 carbon atoms, a heteroaryl group having 5 to 12 carbon atoms, an alkylthio group having 1 to 4 carbon atoms, and an aryl group having 1 to 4 carbon atoms.
  • haloalkyl group of 1 to 4 a deuterated alkyl group of 1 to 4 carbon atoms, and a trialkylsilyl group of 3 to 9 carbon atoms, and any two substituents are the same or different.
  • Ar 1 and Ar 2 are each independently selected from hydrogen, a substituted or unsubstituted group W 2 , wherein the unsubstituted group W 2 is selected from the group consisting of:
  • the substituents in group W 2 are each independently selected from: fluorine, deuterium, cyano, trifluoromethyl, trideuteromethyl, trimethylsilyl, methyl, ethyl, isopropyl, tert-butyl , methoxy, ethoxy, isopropoxy, trifluoromethyl, trideuteromethyl, cyclopentyl, cyclohexyl, phenyl, biphenyl, naphthyl, fluorenyl, pyridine base, pyrimidinyl, quinolyl, isoquinolyl, carbazolyl, dibenzofuranyl, dibenzothienyl; and when the number of substituents on the group W 2 is multiple, any two The substituents are the same or different.
  • Ar 1 and Ar 2 are each independently selected from the group consisting of hydrogen or the following groups:
  • Ar 1 and Ar 2 are not limited to the above-mentioned groups.
  • R 5 , R 6 , R 7 and R 8 are each independently selected from hydrogen, deuterium, cyano, fluoro, trifluoromethyl, trideuteromethyl, trimethylsilyl , methyl, ethyl, isopropyl, tert-butyl, methoxy, ethoxy, isopropoxy, trifluoromethyl, cyclopentyl, cyclohexyl, phenyl, biphenyl, Naphthyl, 9,9-dimethylfluorenyl, pyridyl, quinolyl, isoquinolyl.
  • the compound is selected from the group consisting of:
  • the present application also provides an organic electroluminescence device, the organic electroluminescence device comprises an anode and a cathode disposed opposite to each other, and an organic electroluminescence layer disposed between the anode and the cathode;
  • the light-emitting layer contains the above-mentioned compounds to improve the voltage characteristics, efficiency characteristics and lifetime characteristics of the organic electroluminescent device.
  • the compounds of the present application can be used as one-component host materials or as one of two-component hybrid host materials.
  • the organic electroluminescence device may include an anode 100 , a first hole transport layer 321 , an organic electroluminescence layer 330 , an electron transport layer 340 and a cathode 200 which are stacked in sequence.
  • the compounds provided in the present application can be applied to the organic electroluminescent layer 330 of the organic electroluminescent device to improve the lifespan of the organic electroluminescent device, improve the luminous efficiency of the organic electroluminescent device or reduce the driving voltage of the organic electroluminescent device .
  • the anode 100 includes an anode material, which is optionally a material with a large work function that facilitates hole injection into the functional layer.
  • anode materials include, but are not limited to: metals such as nickel, platinum, vanadium, chromium, copper, zinc and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); combined metals and oxides such as ZnO:Al or SnO2 :Sb; or conducting polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-di] oxy)thiophene] (PEDT), polypyrrole and polyaniline.
  • a transparent electrode comprising indium tin oxide (ITO) as the anode.
  • the first hole transport layer 321 may include one or more hole transport materials, and the hole transport materials may be selected from carbazole polymers, carbazole-linked triarylamine compounds or other types of compounds. There are no special restrictions on the application.
  • the organic electroluminescent layer 330 may include a host material and a guest material, and the holes injected into the organic electroluminescent layer 330 and the electrons injected into the organic electroluminescent layer 330 may recombine in the organic electroluminescent layer 330 to form excitation.
  • the excitons transfer energy to the host material, and the host material transfers energy to the guest material, thereby enabling the guest material to emit light.
  • the host material may consist of the compounds of the present application.
  • Such compounds can simultaneously transport electrons and holes, and can balance the transport efficiency of holes and electrons, so that electrons and holes can be efficiently recombined in the organic electroluminescence layer, thereby improving the luminous efficiency of the organic electroluminescence device.
  • the host material may be a composite material, for example, may include the compound of the present application and the host material of the electronic type organic electroluminescence layer.
  • the compound of the present application can effectively transport holes, so that the hole transport efficiency is balanced with the electron transport efficiency of the organic electroluminescence layer, so that electrons and holes can be efficiently recombined in the organic electroluminescence layer, and the organic electroluminescence layer is improved.
  • Luminous efficiency of light-emitting devices can include compounds of the present application and P-GH.
  • the guest material of the organic electroluminescent layer 330 can be a compound having a condensed aryl ring or a derivative thereof, a compound having a heteroaryl ring or a derivative thereof, an aromatic amine derivative or other materials, which are not described in this application. special restrictions.
  • the guest material of the organic electroluminescent layer 330 may be Ir(piq) 2 (acac) or the like.
  • the guest material of the organic electroluminescent layer 330 is Ir(ppy) 3 or the like.
  • the electron transport layer 340 may be a single-layer structure or a multi-layer structure, which may include one or more electron transport materials, and the electron transport materials may be selected from, but not limited to, benzimidazole derivatives, oxadiazole derivatives, quinoxaline derivatives or other electron transport materials.
  • the cathode 200 may include a cathode material, which is a material with a small work function that facilitates electron injection into the functional layer.
  • cathode materials include, but are not limited to, metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; or multi-layer materials such as LiF/Al , Liq/Al, LiO 2 /Al, LiF/Ca, LiF/Al and BaF 2 /Ca.
  • a metal electrode comprising aluminum as the cathode.
  • the material of the cathode 200 is a magnesium-silver alloy.
  • a hole injection layer 310 may also be disposed between the anode 100 and the hole transport layer 321 to enhance the capability of injecting holes into the first hole transport layer 321 .
  • the hole injection layer 310 can be selected from benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not specifically limited in this application.
  • the hole injection layer 310 may be composed of F4-TCNQ.
  • an electron blocking layer (also referred to as a second hole transport layer) 322 may also be disposed between the first hole transport layer 321 and the organic electroluminescence layer 330 to block electrons
  • the side transport of the first hole transport layer 321 increases the recombination rate of electrons and holes in the organic electroluminescence layer 330 and protects the first hole transport layer 321 from the impact of electrons.
  • the material of the electron blocking layer 322 may be a carbazole polymer, a carbazole-linked triarylamine compound, or other feasible structures.
  • an electron injection layer 350 may also be disposed between the cathode 200 and the electron transport layer 340 to enhance the capability of injecting electrons into the electron transport layer 340 .
  • the electron injection layer 350 may include inorganic materials such as alkali metal sulfide and alkali metal halide, or may include a complex compound of alkali metal and organic matter.
  • the electron injection layer 350 may include Yb.
  • the present application further provides an electronic device 400 , as shown in FIG. 2 , the electronic device 400 includes any organic electroluminescent device described in the foregoing organic electroluminescent device embodiments.
  • the electronic device 400 may be a display device, a lighting device, an optical communication device, or other types of electronic devices, such as but not limited to computer screens, mobile phone screens, televisions, electronic paper, emergency lighting, light modules, and the like. Since the electronic device 400 has any of the organic electroluminescence devices described in the above organic electroluminescence device embodiments, it has the same beneficial effects, and details are not described herein again.
  • the rest of the conventional reagents are from Shantou Xilong Chemical Factory, Guangdong Guanghua Chemical Reagent Factory, Guangzhou Chemical Reagent Factory, Tianjin Haoyuyu Chemical Co., Ltd., Tianjin Fuchen Chemical Reagent Factory, Wuhan Xinhuayuan Technology Development Co., Ltd., Qingdao Tenglong It can be purchased from Chemical Reagent Co., Ltd. and Qingdao Ocean Chemical Factory.
  • the reactions in each synthesis example are generally carried out under a positive pressure of nitrogen or argon. All glassware used was dried.
  • the measurement conditions of low-resolution mass spectrometry (MS) data are: Agilent 6120 quadrupole HPLC-M (column type: Zorbax SB-C18, 2.1 ⁇ 30 mm, 3.5 microns, 6 min, flow rate 0.6 mL/ min.
  • Mobile phase 5%-95% (acetonitrile with 0.1% formic acid) in (water with 0.1% formic acid) using electrospray ionization (ESI) at 210nm/254nm with UV detection.
  • ESI electrospray ionization
  • Hydrogen nuclear magnetic resonance spectrum Bruker 400MHz nuclear magnetic instrument, at room temperature, with CDCl 3 or CD 2 Cl 2 as solvent (in ppm), with TMS (0 ppm) as reference standard. When multiplets are present, the following abbreviations will be used: s (singlet), d (doublet), t (triplet), m (multiplet).
  • Indolo[2,3-A]carbazole (50.0 g, 195.3 mmol), 2-bromo-2'-chloro-1,1'-biphenyl (52.2 g, 196.3 mmol), tris[dibenzylidene acetone]dipalladium (1.8g, 1.9mmol), tri-tert-butylphosphine (3.9ml, 1mol/L), sodium tert-butoxide (41.2g, 429.2mmol), xylene (500mL) were added to the flask, and the temperature was raised to 140 °C, the reaction 4h.
  • 2,4-Dichloro-6-phenyl-1,3,5-triazine (20 g, 88.5 mmoL), quinoline-3-boronic acid (15.6 g, 90.2 mmoL) sodium carbonate (20.6 g, 194.6 mmoL) , tetrabutylammonium bromide TBAB (5.7g, 17.7mmol), solvent toluene (160mL), tetrahydrofuran THF (40mL), water (40mL) were added to the flask, under nitrogen protection, the catalyst tetrakis (triphenylphosphine) palladium was added (1.02 g, 0.88 mmol), fully stirred and slowly heated to 65° C., and reacted at a constant temperature for 8 h.
  • Anodes were prepared by the following process: ITO thickness was The substrate (manufactured by Corning) was cut into a size of 40mm x 40mm x 0.7mm, and a photolithography process was used to prepare it into an experimental substrate with cathode, anode and insulating layer patterns. UV ozone and O 2 : N 2 plasma were used for surface treatment. Treatment to increase the work function of the anode (experimental substrate) and to remove scum.
  • PAPB was vacuum evaporated on the first hole transport layer to form a thickness of the electron blocking layer (ie the second hole transport layer).
  • compound 1:P-GH:Ir(ppy) 3 was co-evaporated in a ratio of 6:4:5% (evaporation rate ratio) to form a thickness of green organic electroluminescent layer (EML).
  • EML green organic electroluminescent layer
  • ET-06 and BimiBphen were mixed at a weight ratio of 1:1 and evaporated to form Thick electron transport layer (ETL), Yb was evaporated on the electron transport layer to form a thickness of The electron injection layer (EIL) of the the cathode.
  • ETL Thick electron transport layer
  • EIL electron injection layer
  • the thickness of the vapor deposition on the above cathode is The CP-05 is formed to form an organic capping layer (CPL), thereby completing the fabrication of the organic light-emitting device.
  • CPL organic capping layer
  • An organic electroluminescent device was fabricated by the same method as in Example 1, except that the compounds shown in Table 10 below were substituted for Compound 1 in forming the organic electroluminescent layer.
  • An organic electroluminescent device was fabricated by the same method as in Example 1, except that Compound A shown in the following Table 9 was substituted for Compound 1 in forming the organic electroluminescent layer.
  • An organic electroluminescent device was fabricated by the same method as in Example 1, except that Compound B shown in Table 9 below was substituted for Compound 1 in forming the organic electroluminescent layer.
  • An organic electroluminescent device was fabricated by the same method as in Example 1, except that Compound C shown in Table 9 below was substituted for Compound 1 in forming the organic electroluminescent layer.
  • An organic electroluminescent device was fabricated by the same method as in Example 1, except that Compound D shown in Table 9 below was substituted for Compound 1 in forming the organic electroluminescent layer.
  • An organic electroluminescent device was fabricated by the same method as in Example 1, except that Compound E shown in the following Table 9 was substituted for Compound 1 in forming the organic electroluminescent layer.
  • An organic electroluminescent device was fabricated by the same method as in Example 1, except that Compound F shown in Table 9 below was substituted for Compound 1 in forming the organic electroluminescent layer.
  • An organic electroluminescent device was fabricated by the same method as in Example 1, except that Compound G shown in the following Table 9 was substituted for Compound 1 in forming the organic electroluminescent layer.
  • the steric hindrance between the groups connected to the two nitrogen atoms is relatively large, which is beneficial to the molecule exhibiting better three-dimensional properties and better film-forming properties.
  • the service life of the device can be improved.
  • the appropriate spatial distance between the two nitrogen atoms when the 2 and 3 positions of the carbazole ring are fused can optimize the carrier mobility of the compound, so the device has higher efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供一种化合物、有机电致发光器件和电子装置,本发明的化合物的化学结构包含大稠合结构,该结构提高了化合物的空穴迁移率,本申请的化合物还包含合适的电子输注基团,整体拥有高的第一三重态能级,且具有合适的HOMO能级分布,可以用作有机发光材料中的发光主体材料。本申请化合物用在电致发光器件中可以改善器件的效率并提高有机电致发光器件的寿命。

Description

化合物、有机电致发光器件及电子装置
相关申请的交叉引用
本发明要求于2021年3月22日递交的、申请号为CN 202110301323.4的中国专利申请的优先权,在此引用上述中国专利申请公开的内容全文以作为本申请的一部分。在此引用上述中国专利申请公开的内容全文以作为本申请的一部分。
技术领域
本发明属于有机电致发光材料技术领域,具体涉及一种化合物、使用其的有机致电发光器件及电子装置。
背景技术
有机电致发光器件,例如有机发光二极管(OLED),通常包括相对设置的阴极和阳极,以及设置于阴极和阳极之间的功能层。该功能层由多层有机或者无机膜层组成,且一般包括有机发光层、位于有机发光层与阳极之间的空穴传输层、位于有机发光层与阴极之间的电子传输层。当阴阳两极施加电压时,两电极产生电场,在电场的作用下,阴极侧的电子向电致发光层移动,阳极侧的空穴也向发光层移动,电子和空穴在电致发光层结合形成激子,激子处于激发态向外释放能量,进而使得电致发光层对外发光。
现有技术中公开了可以在有机电致发光器件中制备发光层的材料。但是目前的有机致电发光材料依然存在发光寿命短、发光效率低的问题。因此,有必要继续研发新型的材料,以进一步提高有机电致发光器件的寿命和效率性能。
发明内容
本发明的目的在于提供一种性能优异的有机电致发光材料,可用作有机电致发光器件中的发光层。
为了实现上述目的,本发明提供一种化合物,所述化合物选自以下式1-1或式1-2所示的结构:
Figure PCTCN2022075126-appb-000001
R 1、R 2和R 3各自独立地选自氢、氘、氰基、卤素基团、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为1~10的烷基、碳原子数为1~10的氘代烷基、碳原子数为1~10的卤代烷基;
L 1、L 2和L各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基;
Ar 1和Ar 2各自独立地选自氢、氘、碳原子数为6~30的取代或未取代的芳基、碳原子数为3~20的取代或未取代的杂芳基;
Het选自6~18元缺电子含氮亚杂芳基;
R 5、R 6、R 7和R 8各自独立地选自氢、氘、氰基、卤素基团、碳原子数为6~20的芳基、碳原 子数为3~30的杂芳基、碳原子数为1~10的烷基、碳原子数为3~12的三烷基硅基、碳原子数为18~20的三芳基硅基、碳原子数为1~10的氘代烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为6~15的芳氧基、碳原子数为6~15的芳硫基、碳原子数为6~15的膦氧基;
n 5选自0、1、2或3;
n 6、n 7和n 8各自独立地选自0、1、2、3或4;
L 1、L 2、L、Ar 1和Ar 2中的取代基相同或不同,各自独立地选自氘、氰基、卤素基团、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基,碳原子数为1~10的烷基、碳原子数为3~12的三烷基硅基、碳原子数为18~20的三芳基硅基、碳原子数为1~10的氘代烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为6~15的芳氧基、碳原子数为6~15的芳硫基、碳原子数为6~15的膦氧基;任选地,两个相邻的取代基相互连接形成饱和或不饱和的5~13元脂肪族环或5~13元芳香环。
根据本申请的第二个方面,提供一种有机电致发光器件,有机电致发光器件包括相对设置的阳极和阴极,以及设置于所述阳极和所述阴极之间的功能层;所述功能层包含上述的化合物。
进一步地,在所述的有机电致发光器件中,功能层包含有机电致发光层主体和掺杂剂,有机电致发光层主体中包含本申请的化合物。
根据本申请的第三个方面,提供一种电子装置,所述电子装置包括有本申请的有机电致发光器件。
在本申请中,对于咔唑环稠合联苯母核中咔唑环上的碳原子位置表述,按照下列结构式中的标号:
Figure PCTCN2022075126-appb-000002
本申请的化合物核心结构是由吲哚并咔唑环和该基团中的咔唑环与2,2-联苯稠合形成的7元环,共同组成的大环体系;该结构具有极大的共轭性和刚性,提高了空穴迁移率,拥有高的第一三重态能级。并且化合物中还包含合适的电子输注基团,分子整体具有合适的能级分布,可以用作有机发光器件中的发光主体材料,改善有机发光器件的效率性能。该分子的大环结构是大平面共轭结构,提高了材料的热稳定性。化合物母核中吲哚与咔唑的稠合方式限定为吲哚稠合在咔唑环的1,2号位或2,3号位,且两个氮原子必须同向,这样稠合方式一方面使母核具有合适的空间结构和较大的偶极矩,分子极性增加,具有更优良的空穴迁移率,母核与合适电子传输基团搭配之后,化合物整体将具有较高的载流子迁移率;另一方面氮原子上所连接基团之间的空间位阻较大,有利于分子展现更好的立体特性,成膜性更好,用于OLED器件的发光层中可以提高器件的发光效率和使用寿命。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1是根据本申请的一种实施方式的有机电致发光器件的结构示意图。
图2是根据本申请的一种实施方式的电子装置的结构示意图。
图中主要器件附图标记说明如下:
100、阳极;200、阴极;310、空穴注入层;321、第一空穴传输层;322、电子阻挡层(第二空穴传输层);330、有机电致发光层;340、电子传输层;350、电子注入层;400、电子装置。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
在本申请中,
Figure PCTCN2022075126-appb-000003
含义一样,均是指与其他取代基或结合位置结合的位置。
在本申请中,L 1、L 2、L、R 1、R 2、R 3、R 5、R 6、R 7、R 8、Ar 1和Ar 2中,取代的芳基或杂芳基的碳原子数,指的是芳基或杂芳基及其上的取代基的碳原子总数,例如碳原子数为18的取代的芳基,指的是芳基和取代基的总碳原子数为18。例如2,4-二苯基-1,3,5-三嗪基就属于碳原子数为15的取代的杂芳基。
在本申请中所采用的描述方式“各……独立地为”与“……分别独立地为”和“……独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。举例而言:在
Figure PCTCN2022075126-appb-000004
其中,各q独立地为0、1、2或3,各R”独立地选自氢、氟、氯”的描述中,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
本申请中,“任选”或者“任选地”意味着随后所描述的事件或者环境可以发生但不必发生,该说明包括该事情或者环境发生或者不发生的情况。例如,“任选被烷基取代的杂环基团”意味着烷基可以存在但不必须存在,该说明包括杂环基团被烷基取代的情景和杂环基团不被烷基取代的情景。
在本申请中,术语“取代或未取代的”是指没有取代基或者被一个或多个取代基取代。所述取代基包括但不限于,氘、卤素基团(F、Cl、Br)、氰基、烷基、卤代烷基、芳基、杂芳基、芳氧基、芳硫基、环烷基、杂环基、三烷基硅基、烷基、环烷基、烷氧基、烷硫基。
在本申请中,“烷基”可以包括直链烷基或支链烷基。烷基可具有1至10个碳原子,在本申请中,诸如“1至10”的数值范围是指给定范围中的各个整数;例如,“1至10个碳原子”是指可包含1个、2个、3个、4个、5个、6个、7个、8个、9个、10个碳原子的烷基。在一些实施方案中,烷基基团含有1~4个碳原子。所述烷基基团可以任选地被一个或多个本发明描述的取代基所取代。烷基基团的实例包含,但并不限于,甲基,乙基,正丙基,异丙基,正丁基,异丁基,仲丁基,叔丁基等。此外,烷基可为取代的或未取代的。
本申请中,三烷基硅基是指
Figure PCTCN2022075126-appb-000005
其中,R G1、R G2、R G3分别独立地为烷基,三烷基硅基的具体实例,包括但不限于,三甲基硅基、三乙基硅基、叔丁基二甲基硅基、丙基二甲基硅基;
本申请中,三芳基硅基是指
Figure PCTCN2022075126-appb-000006
其中,R G4、R G5、R G6分别独立地为芳基,三芳基硅基的具体实例,包括但不限于,三苯基硅基等,但并不限定于此。
本申请中,作为取代基的卤素基团,包含氟、氯、溴或碘。
本申请中,“烷氧基”表示烷基基团通过氧原子与分子其余部分相连,其中烷基基团具有如本发明所述的含义。除非另外详细说明,所述烷氧基基团含有1~10个碳原子。在一实施方案中,烷氧基基团含有1~6个碳原子;在另一实施方案中,烷氧基基团含有1~4个碳原子。烷氧基基团的实例包括,但并不限于,甲氧基、乙氧基、1-丙氧基、2-丙氧基、1-丁氧基、2-甲基-l-丙氧基、2-丁氧基、2-甲基-2-丙氧基等等。
本申请中,“卤代烷基”或“卤代烷氧基”表示烷基或烷氧基基团被一个或多个卤素原子所取代,其中烷基和烷氧基基团具有如本发明所述的含义,这样的实例包含,但并不限于,三氟甲基、三氟甲氧基等。
本申请中,环烷基是指单环或多环饱和环状烃去除氢原子后得到的基团,“环烷基”可以有一个或多个连接点连接到分子的其余部分。在一些实施例中,环烷基是含3~10个环碳原子的环体系;另外一些实施例,环烷基是含5~10个环碳原子的环体系;另外一些实施例,环烷基是含5~7个环碳原子的环体系;另外一些实施例,环烷基是含3~6个环碳原子的环体系。所述环烷基基团可以独立地未被取代或被一个或多个本发明所描述的取代基所取代。作为其非限制性例子,环烷基有环丙基、环丁基、环戊基、环己基等。
在本申请中,芳基指的是衍生自芳香碳环的任选官能团或取代基。芳基可以是单环芳基或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者更多个稠环芳基。即,通过碳碳键共轭连接的两个或者更多个芳香基团也可以视为本申请的芳基。其中,稠环芳基是指环系统中的两个碳原子为两个邻接环所共用的两个或更多个环,其中所述环中的至少一者是芳香族的,例如其它环可以是环烷基、环烯基、芳基。芳基的实例可以包括但不限于,苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、四联苯基、五联苯基、苯并[9,10]菲基、芘基、苯并荧蒽基、
Figure PCTCN2022075126-appb-000007
基等。本说明书中,取代或未取代的芳基的碳原子数可以选自6、10、12、13、14、15、16、17、18、20、25或30。
在本申请中,取代的芳基可以是芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、氰基(-CN)、芳基、杂芳基、三烷基硅基、烷基、环烷基、烷氧基、烷硫基、卤代烷基、芳氧基、芳硫基、芳基、杂环基等基团取代。应当理解地是,取代的芳基的碳原子数,指的是芳基和芳基上的取代基的碳原子总数,例如碳原子数为18的取代的芳基,指的是芳基及其取代基的总碳原子数为18。
在本申请中,作为芳基的芴基可以被取代,两个取代基可以彼此结合形成螺结构,具体施例包括但不限于以下结构:
Figure PCTCN2022075126-appb-000008
本申请中,作为取代基的芳基例如但不限于,苯基、联苯基、萘基、菲基、蒽基、芴基、二甲基芴基、三联苯基。
本申请中,亚芳基为2价或多价基团,除此以外,可以适用上述关于芳基的说明。
在本申请中,杂芳基是指环中包含1、2、3、4、5、6或7个独立地选自O、N、P、Si、 Se、B和S的杂原子的单环或多环体系,且其中至少有一个环体系是芳香族的。杂芳基中每一个环体系包含5~7个环原子组成的环,且有一个或多个附着点与分子其余部分相连。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。稠环杂芳基是指环系统中的两个原子为两个邻接环所共用的两个或更多个环,其中所述环中的至少一者是芳香族的,例如其它环可以是环烷基、芳基。
示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、异噻唑基、噁二唑基、三唑基、唑基、呋吖基、吡啶基、联吡啶基、菲啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、苯并噻唑基、吩噻嗪基、硅芴基、二苯并呋喃基以及N-苯基咔唑基、N-吡啶基咔唑基、N-甲基咔唑基等,而不限于此。其中,噻吩基、呋喃基、菲咯啉基等为单个芳香环体系类型的杂芳基,N-芳基咔唑基、N-杂芳基咔唑基为通过碳碳键共轭连接的多环体系类型的杂芳基。
在本申请中,取代的杂芳基可以是杂芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、氰基、芳基、杂芳基、三烷基硅基、烷基、环烷基、烷氧基、烷硫基等基团取代。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上的取代基的碳原子总数。例如碳原子数为14的取代的杂芳基,指的是杂芳基和取代基的总碳原子数为14。
本申请中,取代或未取代的杂芳基的碳原子数可以选自3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、20、21、22、23、24、25、26、27、28、29或30。
本申请中作为取代基的杂芳基例如但不限于,吡啶基、嘧啶基、喹啉基、异喹啉基、二苯并噻吩基、二苯并呋喃基、咔唑基、喹唑啉基、喹喔啉基、吡嗪基、哒嗪基等。
本申请中,亚杂芳基可以为二价基团或多价基团,除此以外,可以适用上述关于杂芳基的说明。
在本申请中,当没有另外提供具体的定义时,“杂”是指在一个官能团中包括至少1个B、N、O、S、Se、Si或P等杂原子且其余原子为碳和氢。未取代的烷基可以是没有任何双键或三键的“饱和烷基基团”。
在本申请中,n个原子形成的环体系,即为n元环。例如,苯基为6元芳基。6~13元芳环就是指苯环、茚环和萘环等。
本申请中,缺电子含氮杂芳基指的是包含至少一个sp 2杂化氮原子的杂芳基,这类杂芳基中的氮原子中孤对电子不参与共轭,因此整体电子密度较低。“6~18元缺电子含氮杂芳基”就是由6~18个原子形成的含有sp 2杂化氮原子的杂芳环。例如,但不限于吡啶基、嘧啶基、三嗪基、哒嗪基、吡嗪基、苯并噁唑基、苯并咪唑基、苯并噻唑基、喹啉基、喹唑啉基、喹喔啉基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、苯并咪唑基、苯并噻唑基、菲咯啉基等。
本申请中的不定位连接键,是指从环体系中伸出的单键
Figure PCTCN2022075126-appb-000009
其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。例如,下式(f)中所示的,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)~式(f-10)所示出的任一可能的连接方式。
Figure PCTCN2022075126-appb-000010
Figure PCTCN2022075126-appb-000011
例如,下式(X’)中所示的,式(X’)所表示的菲基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X’-1)~式(X’-4)所示出的任一可能的连接方式。
Figure PCTCN2022075126-appb-000012
本申请中的不定位取代基,指的是通过一个从环体系中央伸出的单键连接的取代基,其表示该取代基可以连接在该环体系中的任何可能位置。例如,下式(Y)中所示的,式(Y)所表示的取代基R基通过一个不定位连接键与喹啉环连接,其所表示的含义,包括如式(Y-1)~式(Y-7)所示出的任一可能的连接方式。
Figure PCTCN2022075126-appb-000013
本申请提供一种化合物,所述化合物选自以下式1-1或式1-2所示的结构:
Figure PCTCN2022075126-appb-000014
R 1、R 2和R 3各自独立地选自氢、氘、氰基、卤素基团、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为1~10的烷基、碳原子数为1~10的氘代烷基、碳原子数为1~10的卤代烷基;
L 1、L 2和L各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基;
Ar 1和Ar 2各自独立地选自氢、氘、碳原子数为6~30的取代或未取代的芳基、碳原子数为3~20 的取代或未取代的杂芳基;
Het选自6~18元缺电子含氮亚杂芳基;
R 5、R 6、R 7和R 8各自独立地选自氢、氘、氰基、卤素基团、碳原子数为6~20的芳基、碳原子数为3~30的杂芳基、碳原子数为1~10的烷基、碳原子数为3~12的三烷基硅基、碳原子数为18~20的三芳基硅基、碳原子数为1~10的氘代烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为6~15的芳氧基、碳原子数为6~15的芳硫基、碳原子数为6~15的膦氧基;
n 5选自0、1、2或3;n 5大于1时,各R 5相同或不同;
n 6、n 7和n 8各自独立地选自0、1、2、3或4;n 6大于1时,各R 6相同或不同;
n 7大于1时,各R 7相同或不同;n 8大于1时,各R 8相同或不同;
L 1、L 2、L、Ar 1和Ar 2中的取代基相同或不同,各自独立地选自氘、氰基、卤素基团、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基,碳原子数为1~10的烷基、碳原子数为3~12的三烷基硅基、碳原子数为18~20的三芳基硅基、碳原子数为1~10的氘代烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为6~15的芳氧基、碳原子数为6~15的芳硫基、碳原子数为6~15的膦氧基;任选地,两个相邻的取代基相互连接形成饱和或不饱和的5~13元脂肪族环或5~13元芳香环。
本申请中,“两个相邻的取代基相互连接形成饱和或不饱和的5~13元脂肪族环或5~13元芳香环”意味着两个取代基可以成环也可以不成环,即包括二者相互连接形成饱和或不饱和的5~13元脂肪族环或5~13元芳香环的情景,也包括二者相互独立地存在的情景。其中“相邻取代基”既包含连接于同一个原子上的两个取代基也包含连接在相邻原子上的两个取代基。
在本申请的一些实施方式中,L 1、L 2、L、Ar 1和Ar 2中的取代基相同或不同,各自独立地选自氘、氰基、氟、苯基、萘基、联苯基、菲基、芴基、吡啶基、嘧啶基、喹啉基、异喹啉基、咔唑基、二苯并呋喃基、二苯并噻吩基、甲基、乙基、异丙基、叔丁基、三氟甲基、三氘代甲基、三甲基硅基、三苯基硅基、环戊烷基、环己烷基、甲氧基、乙氧基、异丙氧基、二苯基膦氧基;任选地,两个相邻的取代基相互连接形成螺合的芴环
Figure PCTCN2022075126-appb-000015
在本申请的一些实施方式中,所述R 1、R 2和R 3各自独立地为氢、氘、氟或氰基。
在本申请的一些实施例中,Het选自为含氮的缺电子亚杂芳基(亦称贫电子亚杂芳基),Het上的sp 2杂化氮原子在整体上能够降低杂芳基的共轭体系的电子云密度而不是提高杂芳基的共轭体系的电子云密度,杂原子上的孤对电子不参与到共轭体系中,且杂原子由于较强的电负性而使得共轭体系的电子云密度降低。举例而言,缺电子亚杂芳基可以包括但不限于亚三嗪基、亚嘧啶基、亚喹啉基、亚喹喔啉基、亚喹唑啉基、亚异喹啉基、亚苯并咪唑基、亚苯并噻唑基、亚苯并噁唑基、亚菲咯啉基、亚苯并喹唑啉基、亚菲并咪唑基、亚苯并呋喃并嘧啶基、亚苯并噻吩并嘧啶基等。如此,Het基团可以形成化合物的电子传输核心基团,使得化合物能够有效地实现电子传输,且能够有效地平衡电子和空穴在有机电致发光层的传输速率。如此,该化合物既可以作为双极性有机电致发光层主体材料同时传输电子和空穴,也可以作为电子型有机电致发光层主体材料而与空穴型有机发光层主体材料配合。
在本申请的一些更具体的实施例中,所述Het基团选自亚三嗪基、亚嘧啶基、亚喹啉基、亚喹喔啉基、亚喹唑啉基、亚异喹啉基、亚苯并咪唑基、亚苯并噻唑基、亚苯并噁唑基、亚菲咯啉基、亚苯并喹唑啉基、亚菲并咪唑基、亚苯并呋喃并嘧啶基、亚苯并噻吩并嘧啶基或以下基团:
Figure PCTCN2022075126-appb-000016
在本申请的一些更具体的实施例中,所述Het基团选自以下基团:
Figure PCTCN2022075126-appb-000017
其中,
Figure PCTCN2022075126-appb-000018
代表与L的连接位点,
Figure PCTCN2022075126-appb-000019
代表与L 1和L 2的连接位点;结构式中只包含一个
Figure PCTCN2022075126-appb-000020
的,表示另一个
Figure PCTCN2022075126-appb-000021
所连接的-L 1-Ar 1为氢。
在本申请的一些实施方式中,所述L 1、L 2和L各自独立地选自单键、碳原子数为6~15的取代或未取代的亚芳基、碳原子数为4~18的取代或未取代的亚杂芳基。
在本申请的一些实施方式中,所述L 1、L 2和L各自独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚二联苯基、取代或未取代的亚三联苯基、取代或未取代的亚萘基、取代或未取代的亚芴基、取代或未取代的亚菲基、取代或未取代的亚蒽基、取代或未取代的亚吡啶基、取代或未取代的亚嘧啶基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚喹啉基、取代或未取代的亚异喹啉基、取代或未取代的亚咔唑基中的一种,或者为上述亚基中两者或三者通过单键连接所形成的亚基基团。
可选地,所述L 1、L 2和L中的取代基彼此相同或不同,各自独立地选自氘、氟、氯、溴、氰基、碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为3~9的三烷基硅基、碳原子数为5~7的环烷基、碳原子数为6~15的芳基和碳原子数为5~12的杂芳基所组成的组。
在本申请的一些实施方式中,所述L 1、L 2和L各自独立地选自单键、取代或未取代的基团W 1其中,未取代的基团W 1选自如下基团所组成的组:
Figure PCTCN2022075126-appb-000022
其中,基团W 1中的取代基各自独立地选自氘、氟、氯、氰基、甲基、乙基、异丙基、正丙基、叔丁基、甲氧基、乙氧基、三氟甲基、三氘代甲基、三甲基硅基、苯基、萘基,且当取代的基团W 1上的取代基数量为多个时,任意两个取代基相同或者不同。
在本申请的一些更具体的实施方式中,所述L 1和L 2各自独立地选自单键或如下基团所组成的组:
Figure PCTCN2022075126-appb-000023
在本申请的一些更具体的实施方式中,所述L选自单键或如下基团所组成的组:
Figure PCTCN2022075126-appb-000024
Figure PCTCN2022075126-appb-000025
在本申请的一些实施方式中,Ar 1和Ar 2各自独立地选自氢、氘、碳原子数为6~25的取代或未取代的芳基、碳原子数为5~18的取代或未取代的杂芳基。
在本申请的一些实施方式中,Ar 1和Ar 2各自独立地选自氢、取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的三联苯基基、取代或未取代的芴基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的吡啶基、取代或未取代的嘧啶基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的咔唑基、取代或未取代的吡嗪基、取代或未取代的芘基、取代或未取代的三亚苯基、取代或未取代的螺二芴基。
在本申请的一些实施方式中,Ar 1选自氢、取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的三联苯基基、取代或未取代的芴基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的吡啶基、取代或未取代的嘧啶基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的咔唑基、取代或未取代的吡嗪基、取代或未取代的芘基、取代或未取代的三亚苯基、取代或未取代的螺二芴基;Ar 2选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的三联苯基基、取代或未取代的芴基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的吡啶基、取代或未取代的嘧啶基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的咔唑基、取代或未取代的吡嗪基、取代或未取代的芘基、取代或未取代的三亚苯基、取代或未取代的螺二芴基。
可选地,Ar 1和Ar 2中的取代基各自独立地选自氘、氟、氯、氰基、碳原子数为1~4的烷基、碳原子数为1~4的烷氧基、碳原子数为3~7的环烷基、碳原子数为6~15的芳基、碳原子数为5~12的杂芳基、碳原子数为1~4的烷硫基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为3~9的三烷基硅基,任意两个取代基相同或者不相同。
在本申请的一些实施方式中,Ar 1和Ar 2各自独立地选自氢、取代或未取代的基团W 2,其中,未取代的基团W 2选自如下基团所组成的组:
Figure PCTCN2022075126-appb-000026
基团W 2中的取代基各自独立地选自:氟、氘、氰基、三氟甲基、三氘代甲基、三甲基硅基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、三氟甲基、三氘代甲基、环戊烷基、环己烷基、苯基、联苯基、萘基、芴基、吡啶基、嘧啶基、喹啉基、异喹啉基、咔唑基、二苯并呋 喃基、二苯并噻吩基;且当基团W 2上的取代基的数量为多个时,任意两个取代基之间相同或者不相同。
在本申请的一些更具体的实施方式中,Ar 1和Ar 2各自独立地选自氢或如下基团所组成的组:
Figure PCTCN2022075126-appb-000027
Ar 1和Ar 2不限于上述基团。
在本申请的一些实施方式中,R 5、R 6、R 7和R 8各自独立地选自氢、氘、氰基、氟、三氟甲基、三氘代甲基、三甲基硅基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、三氟甲基、环戊烷基、环己烷基、苯基、联苯基、萘基、9,9-二甲基芴基、吡啶基、喹啉基、异喹啉基。
在本申请的一些实施方式中,式1-1或式1-2中的
Figure PCTCN2022075126-appb-000028
选自以下基团:
Figure PCTCN2022075126-appb-000029
Figure PCTCN2022075126-appb-000030
Figure PCTCN2022075126-appb-000031
可选地,所述化合物选自如下化合物所组成的组:
Figure PCTCN2022075126-appb-000032
Figure PCTCN2022075126-appb-000033
Figure PCTCN2022075126-appb-000034
Figure PCTCN2022075126-appb-000035
Figure PCTCN2022075126-appb-000036
Figure PCTCN2022075126-appb-000037
Figure PCTCN2022075126-appb-000038
Figure PCTCN2022075126-appb-000039
本申请还提供一种有机电致发光器件,有机电致发光器件包括相对设置的阳极和阴极,以及设置于所述阳极和所述阴极之间的有机电致发光层;所述有电致机发光层包含上述的化合物,以改善有机电致发光器件的电压特性、效率特性和寿命特性。
本申请的化合物可以作为单一组分的主体材料或双组分混合型主体材料之一。
举例而言,如图1所示,有机电致发光器件可以包括依次层叠设置的阳极100、第一空穴传输层321、有机电致发光层330、电子传输层340和阴极200。本申请提供的化合物可以应用于有机电致发光器件的有机电致发光层330,以提高有机电致发光器件的寿命、提高有机电致发光器件的发光效率或者降低有机电致发光器件的驱动电压。
可选地,阳极100包括阳极材料,其可选地为有助于空穴注入至功能层中的具有大逸出功(功函数,work function)的材料。阳极材料的具体实例包括但不限于:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO:Al或SnO 2:Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺。可选包括包含氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。
可选地,第一空穴传输层321可以包括一种或者多种空穴传输材料,空穴传输材料可以选自咔唑多聚体、咔唑连接三芳胺类化合物或者其他类型的化合物,本申请对此不做特殊的限定。
可选地,有机电致发光层330可以包括主体材料和客体材料,注入有机电致发光层330的空穴和注入有机电致发光层330的电子可以在有机电致发光层330复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给客体材料,进而使得客体材料能够发光。
在本申请的一种实施方式中,主体材料可以由本申请的化合物组成。该类化合物能够同时传输电子和空穴,且能够平衡空穴和电子的传输效率,因此电子和空穴能够在有机电致发光层内高效复合,提高有机电致发光器件的发光效率。
在本申请的另一种实施方式中,主体材料可以为复合材料,例如可以包括本申请的化合物和电子型有机电致发光层主体材料。本申请的化合物能够有效地传输空穴,使得空穴传输效率与有机电致发光层的电子传输效率相平衡,进而使得电子和空穴能够在有机电致发光层内高效复合,提高有机电致发光器件的发光效率。举例而言,主体材料可以包括本申请的化合物和P-GH。
有机电致发光层330的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机电致发光层330的客体材料可以为Ir(piq) 2(acac)等。在本申请的另一种实施方式中,有机电致发光层330的客体材料为Ir(ppy) 3等。
可选地,电子传输层340可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输材料可以选自但不限于,苯并咪唑衍生物、噁二唑衍生物、喹喔啉衍生物或者其他电子传输材料。
可选地,阴极200可以包括阴极材料,其是有助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例包括但不限于,金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO 2/Al、LiF/Ca、LiF/Al和BaF 2/Ca。可选包括包含铝的金属电极作为阴极。在本申请的一种实施方式中,阴极200的材料为镁银合金。
可选地,如图1所示,在阳极100和空穴传输层321之间还可以设置有空穴注入层310,以增强向第一空穴传输层321注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。例如,空穴注入层310可以由F4-TCNQ组成。
可选地,如图1所示,第一空穴传输层321和有机电致发光层330之间还可以设置有电子阻挡层(也称为第二空穴传输层)322,以阻挡电子向第一空穴传输层321侧传输,提高电子和空穴在有机电致发光层330的复合率并保护第一空穴传输层321免受电子的冲击。电子阻挡层322的材料可以为咔唑多聚体、咔唑连接三芳胺类化合物或者其他可行的结构。
可选地,如图1所示,在阴极200和电子传输层340之间还可以设置有电子注入层350,以增强向电子传输层340注入电子的能力。电子注入层350可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。例如,电子注入层350可以包括Yb。
本申请还提供一种电子装置400,如图2所示,该电子装置400包括上述有机电致发光器件实施方式所描述的任意一种有机电致发光器件。该电子装置400可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。由于该电子装置400具有上述有机电致发光器件实施方式所描述的任意一种有机电致发光器件,因此具有相同的有益效果,本申请在此不再赘述。
合成例:
下面所描述的合成例中,除非另有声明,否则所有的温度的单位为摄氏度。部分试剂购买于商品供应商如Aldrich Chemical Company,Arco Chemical Company and Alfa ChemicalCompany,部分不能直接采购的中间体是通过商购原料经简单反应制备得到,除非另有声明,否则使用时都没有经过进一步纯化。其余的常规试剂从汕头西陇化工厂、广东光华化学试剂厂、广州化学试剂厂、天津好寓宇化学品有限公司、天津市福晨化学试剂厂、武汉鑫华远科技发展有限公司、青岛腾龙化学试剂有限公司和青岛海洋化工厂等处购买得到。各合成例中的反应一般是在氮气或氩气正压下进行的。所用到的各个玻璃器皿都是干燥过的。
在各个合成例中,低分辨率质谱(MS)数据的测定条件是:Agilent 6120四级杆HPLC-M(柱子型号:Zorbax SB-C18,2.1×30mm,3.5微米,6min,流速为0.6mL/min。流动相:5%-95%(含0.1%甲 酸的乙腈)在(含0.1%甲酸的水)中的比例),采用电喷雾电离(ESI),在210nm/254nm下,用UV检测。
核磁共振氢谱:布鲁克(Bruker)400MHz核磁仪,室温条件下,以CDCl 3或CD 2Cl 2为溶剂(以ppm为单位),用TMS(0ppm)作为参照标准。当出现多重峰的时候,将使用下面的缩写:s(singlet,单峰)、d(doublet,双峰)、t(triplet,三重峰)、m(multiplet,多重峰)。
使用以下方法进行本申请的化合物的合成:
制备例
中间体a-1的合成
Figure PCTCN2022075126-appb-000040
将吲哚并[2,3-A]咔唑(50.0g,195.3mmol)、2-溴-2’-氯-1,1’-联苯(52.2g,196.3mmol)、三[二亚苄基丙酮]二钯(1.8g,1.9mmol)、三叔丁基膦(3.9ml,1mol/L)、叔丁醇钠(41.2g,429.2mmol)、二甲苯(500mL)加入烧瓶中,升温至140℃,反应4h。反应结束后,冷却至室温,使用二氯甲烷和水萃取,合并有机相用无水硫酸镁干燥,过滤,有机相浓缩,得到灰黑色粗品;使用二氯甲烷/正庚烷混合溶剂作为流动相对粗品进行硅胶柱色谱提纯,得到固体产物中间体a-1(64.8g;收率:75%)。
使用与合成中间体a-1类似的方法,使用表1中所示的反应物A替代吲哚并[2,3-A]咔唑,合成表1中的中间体a-2。
表1:中间体a-2的合成
Figure PCTCN2022075126-appb-000041
中间体b-1的合成
Figure PCTCN2022075126-appb-000042
将中间体a-1(64g,144.7mmol)、醋酸钯(0.32g,1.44mmol)、三环己基膦氟硼酸盐(1.1g,2.9mmol)、碳酸铯(141g,434.3mmol)、邻二氯苯(640mL)加入反应器中,回流反应5h。反应完成后,用蒸馏水和甲苯进行萃取,有机相用无水硫酸镁干燥,过滤,有机相减压浓缩,得到灰黑色粗品;使用二氯甲烷/正庚烷混合溶剂作为流动相对粗品进行硅胶柱色谱提纯,得到固体产物中间体b-1(47.0g;收率:80%)。
使用与合成中间体b-1类似的方法,使用表2中所示的反应物B替代中间体b-1,合成表2中的中间体b-2。
表2:中间体b-2的合成
Figure PCTCN2022075126-appb-000043
中间体c-1的合成
Figure PCTCN2022075126-appb-000044
将2,4-二氯-6-苯基-1,3,5-三嗪(20g,88.5mmoL)、喹啉-3-硼酸(15.6g,90.2mmoL)碳酸钠(20.6g,194.6mmoL)、四丁基溴化铵TBAB(5.7g,17.7mmoL)、溶剂甲苯(160mL)、四氢呋喃THF(40mL)、水(40mL)加入烧瓶中,氮气保护下,加入催化剂四(三苯基膦)钯(1.02g,0.88mmoL),充分搅拌缓慢升温至65℃,恒温反应8h。反应结束,自然降至室温,使用二氯甲烷和水萃取,有机相干燥后,减压浓缩,得到粗品;使用二氯甲烷/正庚烷混合溶剂作为流动相对粗品进行硅胶柱色谱提纯,得到中间体产物c-1(19.7g;收率:70%)。
使用与合成中间体c-2类似的方法,使用表3中所示的反应物C替代喹啉-3-硼酸,合成表3中的中间体c-2。
表3:中间体c-2的合成
Figure PCTCN2022075126-appb-000045
制备例1化合物1的合成
Figure PCTCN2022075126-appb-000046
将中间体b-1(10g,24.6mmol)、2,4-二苯基-6-氯-1,3,5-三嗪(6.6g,24.6mmol)加入烧瓶中,降温至0℃至-10℃,加入氢化钠(0.65g,27.1mmol),保温反应2h。反应结束后,自然升至室温,使用二氯甲烷和水萃取,有机相干燥后减压浓缩,得到粗品;使用二氯甲烷/正庚烷混合溶剂作为流动相对粗品进行硅胶柱色谱提纯,得到固体产物化合物1(11.0g;收率:70%)。
使用与合成化合物1类似的方法,使用表4中所示的反应物D替代中间体b-1,使用反应物E替代2,4-二苯基-6-氯-1,3,5-三嗪,合成表4所示的化合物。
表4:制备例2至制备例27
Figure PCTCN2022075126-appb-000047
Figure PCTCN2022075126-appb-000048
Figure PCTCN2022075126-appb-000049
Figure PCTCN2022075126-appb-000050
中间体d-1的合成
Figure PCTCN2022075126-appb-000051
将中间体b-2(20g,49.2mmol)、1,4-二溴萘(13.4g,46.7mmol)、三[二亚苄基丙酮]二钯(0.45g,0.49mmol)、三叔丁基磷(0.98ml,1mol/L)、叔丁醇钠(10.4g,108.2mmol)加入烧瓶中,升温至140℃,反应4h。反应结束,冷却至室温,使用二氯甲烷和水萃取,有机相用无水硫酸镁除水,有机相浓缩,得到灰黑色粗品;使用二氯甲烷/正庚烷混合溶剂作为流动相对粗品进行硅胶柱色谱提纯,得到固体产物中间体d-1(21.6g;收率:72%)。
使用与合成中间体d-1类似的方法,使用表5中所示的反应物F替代中间体b-1,用表5中所示的反应物G替代1,4-二溴萘,合成表5中的中间体d-2~中间体d-5。
表5:中间体d-2至d-5的合成
Figure PCTCN2022075126-appb-000052
中间体e-1的合成
Figure PCTCN2022075126-appb-000053
将中间体d-1(20g,32.7mmol)和四氢呋喃(200mL)加入烧瓶中,氮气保护下,降温至-78℃,于搅拌条件下,滴加正丁基锂的四氢呋喃(2.5M)溶液(15.7mL,39.2mmol),滴加完毕后保温搅拌1小时,保持-78℃滴加溶硼酸三甲酯(3.7g,35.9mmol)的四氢呋喃(15mL)溶液,滴加完毕后保温1小时后升至室温,搅拌24小时。然后,向反应液中加入盐酸(12M)(4.9mL,58.8mmol)的水(23mL)溶液,搅拌1小时,分液,有机相使用水洗至中性,加入无水硫酸镁干燥,减压除 去溶剂得到粗品,使用二氯甲烷/正庚烷体系对粗品进行硅胶柱色谱提纯,得到白色固体产物中间体e-1(11.3g,收率60%)。
使用与合成中间体e-1类似的方法,使用表6中所示的反应物H替代中间体d-1,合成中间体e-2~e-5:
表6:中间体e-2至中间体e-5的合成
Figure PCTCN2022075126-appb-000054
制备例38化合物305的合成
Figure PCTCN2022075126-appb-000055
将中间体e-1(10g;17.3mmol)、2-苯基-4-(4-氟苯基)-6-氯-1,3,5-三嗪(4.7g;16.5mmol)、四(三苯基膦)钯(0.19g;0.16mmol)、碳酸钾(5.0g;36.3mmol)、四丁基溴化铵(1.1g;3.3mmol)加入烧瓶中,并加入甲苯(80mL)、乙醇(40mL)和水(20mL)的混合溶剂,氮气保护下,升温至80℃,保持温度搅拌8小时。反应结束后,冷却至室温,停止搅拌,反应液水洗后分离有机相,使用无水硫酸镁干燥,减压除去溶剂,得到粗品;使用正庚烷作为流动相对粗品进行硅胶柱色谱提纯,得到白色固体产物305(10g;收率80%)。
使用与合成化合物305类似的方法,使用表7中反应物I所示的化合物替代中间体e-1,反应物J所示的化合物代替2-苯基-4-(4-氟苯基)-6-氯-1,3,5-三嗪,合成表7所示的化合物。
表7:制备例39至制备例41
Figure PCTCN2022075126-appb-000056
对以上合成产物进行质谱分析,得到数据如下表8所示:
表8:部分化合物的质谱数据
制备例1 化合物1 m/z=638.2[M+H] + 制备例22 化合物69 m/z=611.2[M+H] +
制备例2 化合物2 m/z=714.3[M+H] + 制备例23 化合物312 m/z=727.2[M+H] +
制备例3 化合物8 m/z=728.2[M+H] + 制备例24 化合物313 m/z=715.2[M+H] +
制备例4 化合物14 m/z=744.2[M+H] + 制备例25 化合物309 m/z=611.2[M+H] +
制备例5 化合物49 m/z=790.3[M+H] + 制备例26 化合物219 m/z=689.2[M+H] +
制备例6 化合物22 m/z=764.3[M+H] + 制备例27 化合物79 m/z=585.2[M+H] +
制备例7 化合物98 m/z=688.2[M+H] + 制备例28 化合物315 m/z=661.2[M+H] +
制备例8 化合物101 m/z=714.3[M+H] + 制备例29 化合物71 m/z=651.2[M+H] +
制备例9 化合物103 m/z=728.2[M+H] + 制备例30 化合物316 m/z=687.2[M+H] +
制备例10 化合物109 m/z=744.2[M+H] + 制备例31 化合物74 m/z=661.2[M+H] +
制备例11 化合物111 m/z=754.3[M+H] + 制备例32 化合物317 m/z=663.2[M+H] +
制备例12 化合物186 m/z=714.3[M+H] + 制备例33 化合物318 m/z=711.2[M+H] +
制备例13 化合物190 m/z=728.2[M+H] + 制备例34 化合物314 m/z=820.2[M+H] +
制备例14 化合物191 m/z=744.2[M+H] + 制备例35 化合物319 m/z=656.2[M+H] +
制备例15 化合物202 m/z=738.3[M+H] + 制备例36 化合物322 m/z=661.2[M+H] +
制备例16 化合物209 m/z=818.3[M+H] + 制备例37 化合物323 m/z=651.2[M+H] +
制备例17 化合物228 m/z=661.2[M+H] + 制备例38 化合物305 m/z=782.2[M+H] +
制备例18 化合物237 m/z=666.3[M+H] + 制备例39 化合物311 m/z=820.2[M+H] +
制备例19 化合物246 m/z=744.2[M+H] + 制备例40 化合物320 m/z=727.2[M+H] +
制备例20 化合物256 m/z=790.3[M+H] + 制备例41 化合物321 m/z=839.3[M+H] +
制备例21 化合物245 m/z=728.2[M+H] + 制备例42 化合物324 m/z=714.3[M+H] +
核磁数据补充如下:
制备例1(化合物1): 1HNMR(CD 2Cl 2,400MHz):8.78(d,1H),8.53-8.51(m,4H),8.39(d,1H),8.15-8.01(m,6H),7.88-7.81(m,2H),7.66(t,1H),7.59-7.54(m,6H),7.51-7.45(m,2H),7.41-7.31(m,2H),7.26(d,1H),6.99(d,1H).
制备例12(化合物186): 1HNMR(CD 2Cl 2,400MHz):9.3(s,1H),8.70(s,1H),8.52(d,2H),8.29(t,2H),8.11(d,2H),7.98-7.88(m,4H),7.79-7.74(m,3H),7.70-7.56(m,7H),7.46-7.32(m,8H),6.89(d,1H).
制备例9(化合物103): 1HNMR(CD 2Cl 2,400MHz):8.53-8.49(m,4H),8.40-8.38(m,1H),8.27(t,3H),8.08-8.06(m,2H),7.94(d,3H),7.88(d,1H),7.79-7.73(m,2H),7.68-7.64(m,1H),7.58-7.56(m,3H),7.52-7.45(m,3H),7.40-7.31(m,4H),7.27-7.25(d,1H),6.99(d,1H).
制备例20(化合物256): 1HNMR(CD 2Cl 2,400MHz):8.72(s,2H),8.57(s,1H),8.52(d,2H),8.46(s,1H),8.21(d,1H),8.15-8.09(m,2H),7.98-7.83(m,5H),7.76(d,1H),7.72(d,2H),7.66-7.56(m,7H),7.54-7.47(m,5H),7.45-7.31(m,5H),6.89(d,1H).
有机电致发光器件的制备和性能评估
实施例1:绿色有机电致发光器件
通过以下过程制备阳极:将ITO厚度为
Figure PCTCN2022075126-appb-000057
的基板(康宁制造)切割成40mm×40mm×0.7mm的尺寸,采用光刻工序,将其制备成具有阴极、阳极以及绝缘层图案的实验基板,利用紫外臭氧以及O 2:N 2等离子进行表面处理,以增加阳极(实验基板)的功函数的和清除浮渣。
在实验基板(阳极)上真空蒸镀F4-TCNQ以形成厚度为的厚度为
Figure PCTCN2022075126-appb-000058
的空穴注入层(HIL),并且在空穴注入层蒸镀NPB,形成厚度为
Figure PCTCN2022075126-appb-000059
的第一空穴传输层。
在第一空穴传输层上真空蒸镀PAPB,形成厚度为
Figure PCTCN2022075126-appb-000060
的电子阻挡层(即第二空穴传输层)。
在电子阻挡层上,将化合物1:P-GH:Ir(ppy) 3以6:4:5%(蒸镀速率比)的比例进行共同蒸镀,形成厚度为
Figure PCTCN2022075126-appb-000061
的绿色有机电致发光层(EML)。
将ET-06和BimiBphen以1:1的重量比进行混合并蒸镀形成了
Figure PCTCN2022075126-appb-000062
厚的电子传输层(ETL),将Yb蒸镀在电子传输层上以形成厚度为
Figure PCTCN2022075126-appb-000063
的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1:11的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为
Figure PCTCN2022075126-appb-000064
的阴极。
在上述阴极上蒸镀厚度为
Figure PCTCN2022075126-appb-000065
的CP-05,形成有机覆盖层(CPL),从而完成有机发光器件的制造。
实施例2-实施例42
除了在形成有机电致发光层时,以下表10中所示的化合物替代化合物1以外,利用与实施例1相同的方法制作有机电致发光器件。
比较例1
除了在形成有机电致发光层时,以下表9中所示的化合物A替代化合物1以外,利用与实施 例1相同的方法制作有机电致发光器件。
比较例2
除了在形成有机电致发光层时,以下表9中所示的化合物B替代化合物1以外,利用与实施例1相同的方法制作有机电致发光器件。
比较例3
除了在形成有机电致发光层时,以下表9中所示的化合物C替代化合物1以外,利用与实施例1相同的方法制作有机电致发光器件。
比较例4
除了在形成有机电致发光层时,以下表9中所示的化合物D替代化合物1以外,利用与实施例1相同的方法制作有机电致发光器件。
比较例5
除了在形成有机电致发光层时,以下表9中所示的化合物E替代化合物1以外,利用与实施例1相同的方法制作有机电致发光器件。
比较例6
除了在形成有机电致发光层时,以下表9中所示的化合物F替代化合物1以外,利用与实施例1相同的方法制作有机电致发光器件。
比较例7
除了在形成有机电致发光层时,以下表9中所示的化合物G替代化合物1以外,利用与实施例1相同的方法制作有机电致发光器件。
在实施例1~42和比较例1~7中,所使用的各个材料的结构式如下表9。
表9:器件实施例和比较例中所使用的材料
Figure PCTCN2022075126-appb-000066
Figure PCTCN2022075126-appb-000067
对如上制得的有机电致发光器件,在20mA/cm 2的条件下分析了器件的性能,其结果示于下表10:
表10:器件实施例和比较例测试结果
Figure PCTCN2022075126-appb-000068
Figure PCTCN2022075126-appb-000069
根据上述表10的结果可知,作为发光主体材料的化合物的实施例1~42与比较例1~7相比,本发明中使用的化合物作为有机电致发光层主体材料,制备的上述有机电致发光器件的电流效率(Cd/A)至少提高了16.7%,寿命最少提高了20%。
以上器件实验结果证明了化合物母核中吲哚与咔唑的稠合方式限定为吲哚稠合在咔唑环的1,2号位或2,3号位,且两个氮原子必须同方向,这样的稠合方式使母核具有合适的空间结构和较大的偶极矩,分子极性增加,且使化合物具有更优良的空穴迁移率,母核与合适电子传输基团搭配之后,化合物整体将具有较高的载流子迁移率。进一步地,咔唑环的1,2号位稠合时两个氮原子上所连接基团之间的空间位阻较大,有利于分子展现更好的立体特性,成膜性更好,用于OLED器件的发光层中可以提高器件的使用寿命。咔唑环的2,3号位稠合时两个氮原子之间合适的空间距离使化合物的载流子迁移率达到最优,因此器件具有更高的效率。
以上结合附图详细描述了本申请的可选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。

Claims (14)

  1. 一种化合物,其特征在于,所述化合物选自以下式1-1或式1-2所示的结构:
    Figure PCTCN2022075126-appb-100001
    R 1、R 2和R 3各自独立地选自氢、氘、氰基、卤素基团、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为1~10的烷基、碳原子数为1~10的氘代烷基、碳原子数为1~10的卤代烷基;
    L 1、L 2和L各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基;
    Ar 1和Ar 2各自独立地选自氢、氘、碳原子数为6~30的取代或未取代的芳基、碳原子数为3~20的取代或未取代的杂芳基;
    Het选自6~18元缺电子含氮亚杂芳基;
    R 5、R 6、R 7和R 8各自独立地选自氢、氘、氰基、卤素基团、碳原子数为6~20的芳基、碳原子数为3~30的杂芳基、碳原子数为1~10的烷基、碳原子数为3~12的三烷基硅基、碳原子数为18~20的三芳基硅基、碳原子数为1~10的氘代烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为6~15的芳氧基、碳原子数为6~15的芳硫基、碳原子数为6~15的膦氧基;
    n 5选自0、1、2或3;
    n 6、n 7和n 8各自独立地选自0、1、2、3或4;
    L 1、L 2、L、Ar 1和Ar 2中的取代基相同或不同,各自独立地选自氘、氰基、卤素基团、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基,碳原子数为1~10的烷基、碳原子数为3~12的三烷基硅基、碳原子数为18~20的三芳基硅基、碳原子数为1~10的氘代烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为6~15的芳氧基、碳原子数为6~15的芳硫基、碳原子数为6~15的膦氧基;任选地,两个相邻的取代基相互连接形成饱和或不饱和的5~13元脂肪族环或5~13元芳香环。
  2. 根据权利要求1所述的化合物,其中,所述R 1、R 2和R 3各自独立地为氢、氘、氟或氰基。
  3. 根据权利要求1所述的化合物,其中,所述Het选自亚三嗪基、亚嘧啶基、亚喹啉基、亚喹喔啉基、亚喹唑啉基、亚异喹啉基、亚苯并咪唑基、亚苯并噻唑基、亚苯并噁唑基、亚菲咯啉基、亚苯并喹唑啉基、亚菲并咪唑基、亚苯并呋喃并嘧啶基、亚苯并噻吩并嘧啶基或选自以下基团:
    Figure PCTCN2022075126-appb-100002
    Figure PCTCN2022075126-appb-100003
  4. 根据权利要求1所述的化合物,其中,所述L 1、L 2和L各自独立地选自单键、碳原子数为6~15的取代或未取代的亚芳基、碳原子数为4~18的取代或未取代的亚杂芳基。
  5. 根据权利要求1所述的化合物,其中,所述L 1、L 2和L各自独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚二联苯基、取代或未取代的亚三联苯基、取代或未取代的亚萘基、取代或未取代的亚芴基、取代或未取代的亚菲基、取代或未取代的亚蒽基、取代或未取代的亚吡啶基、取代或未取代的亚嘧啶基、取代或未取代的亚二苯并呋喃亚基、取代或未取代的亚二苯并噻吩亚基、取代或未取代的亚喹啉基、取代或未取代的亚异喹啉基、取代或未取代的亚咔唑基中的一种,或者为上述亚基中两者或三者通过单键连接所形成的亚基基团;
    可选地,所述L 1、L 2、L中的取代基彼此相同或不同,各自独立地选自氘、氟、氯、溴、氰基、碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为3~9的三烷基硅基、碳原子数为5~7的环烷基、碳原子数为6~15的芳基和碳原子数为5~12的杂芳基所组成的组。
  6. 根据权利要求1所述的化合物,其中,所述L 1、L 2和L各自独立地选自单键、取代或未取代的基团W 1其中,未取代的基团W 1选自如下基团所组成的组:
    Figure PCTCN2022075126-appb-100004
    其中,基团W 1中的取代基各自独立地选自氘、氟、氯、氰基、甲基、乙基、异丙基、正丙基、叔丁基、甲氧基、乙氧基、三氟甲基、三氘代甲基、三甲基硅基、苯基、萘基,且当取代的基团W 1上的取代基数量为多个时,任意两个取代基相同或者不同。
  7. 根据权利要求1所述的化合物,其中,Ar 1和Ar 2各自独立地选自氢、氘、碳原子数为6~25的取代或未取代的芳基、碳原子数为5~18的取代或未取代的杂芳基。
  8. 根据权利要求1所述的化合物,其中,Ar 1和Ar 2各自独立地选自氢、取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的三联苯基基、取代或未取代的芴基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的吡啶基、取代或未取代的嘧啶基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的咔唑基、取代或未取代的吡嗪基、取代或未取代的芘基、取代或未取代的三亚苯基、取代或未取代的螺二芴基;
    可选地,Ar 1和Ar 2中的取代基各自独立地选自氘、氟、氯、氰基、碳原子数为1~4的烷基、碳原子数为1~4的烷氧基、碳原子数为3~7的环烷基、碳原子数为6~15的芳基、碳原子数为5~12的杂芳基、碳原子数为1~4的烷硫基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为3~9的三烷基硅基,任意两个取代基相同或者不相同。
  9. 根据权利要求1所述的化合物,其中,Ar 1和Ar 2各自独立地选自氢、取代或未取代的基团W 2,其中,未取代的基团W 2选自如下基团所组成的组:
    Figure PCTCN2022075126-appb-100005
    基团W 2中的取代基各自独立地选自:氟、氘、氰基、三氟甲基、三氘代甲基、三甲基硅基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、三氟甲基、环戊烷基、环己烷基、苯基、联苯基、萘基、芴基、吡啶基、嘧啶基、喹啉基、异喹啉基、咔唑基、二苯并呋喃基、二苯并噻吩基;且当基团W 2上的取代基的数量为多个时,任意两个取代基相同或者不相同。
  10. 根据权利要求1所述的化合物,其中,R 5、R 6、R 7和R 8各自独立地选自氢、氘、氰基、氟、三氟甲基、三氘代甲基、三甲基硅基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、三氟甲基、环戊烷基、环己烷基、苯基、联苯基、萘基、9,9-二甲基芴基、吡啶基、喹啉基、异喹啉基。
  11. 根据权利要求1所述的化合物,其中,所述化合物选自如下化合物所组成的组:
    Figure PCTCN2022075126-appb-100006
    Figure PCTCN2022075126-appb-100007
    Figure PCTCN2022075126-appb-100008
    Figure PCTCN2022075126-appb-100009
    Figure PCTCN2022075126-appb-100010
    Figure PCTCN2022075126-appb-100011
    Figure PCTCN2022075126-appb-100012
    Figure PCTCN2022075126-appb-100013
  12. 一种有机电致发光器件,其特征在于,包括相对设置的阳极和阴极,以及设置于所述阳极 和所述阴极之间的功能层;
    所述功能层包含权利要求1~11中任意一项所述的化合物。
  13. 根据权利要求12所述的有机电致发光器件,其中,所述功能层包括空穴注入层、空穴传输层、有机电致发光层、电子传输层以及电子注入层,所述有机电致发光层含有权利要求1~11中任一项所述的化合物。
  14. 一种电子装置,其特征在于,该电子装置包括权利要求12或13所述的有机电致发光器件。
PCT/CN2022/075126 2021-03-22 2022-01-29 化合物、有机电致发光器件及电子装置 WO2022199256A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110301323.4 2021-03-22
CN202110301323.4A CN114957268B (zh) 2021-03-22 2021-03-22 化合物、有机电致发光器件及电子装置

Publications (1)

Publication Number Publication Date
WO2022199256A1 true WO2022199256A1 (zh) 2022-09-29

Family

ID=82973367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075126 WO2022199256A1 (zh) 2021-03-22 2022-01-29 化合物、有机电致发光器件及电子装置

Country Status (2)

Country Link
CN (1) CN114957268B (zh)
WO (1) WO2022199256A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111018855A (zh) * 2019-12-27 2020-04-17 烟台显华化工科技有限公司 一类有机化合物及其应用
WO2021020799A1 (ko) * 2019-07-30 2021-02-04 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN112430239A (zh) * 2019-08-26 2021-03-02 广州华睿光电材料有限公司 基于七元环结构的化合物、高聚物、混合物、组合物及有机电子器件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102676126B1 (ko) * 2019-08-22 2024-06-18 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020799A1 (ko) * 2019-07-30 2021-02-04 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN112430239A (zh) * 2019-08-26 2021-03-02 广州华睿光电材料有限公司 基于七元环结构的化合物、高聚物、混合物、组合物及有机电子器件
CN111018855A (zh) * 2019-12-27 2020-04-17 烟台显华化工科技有限公司 一类有机化合物及其应用

Also Published As

Publication number Publication date
CN114957268B (zh) 2023-06-09
CN114957268A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2022016898A1 (zh) 化合物、有机电致发光器件及电子装置
CN111454197B (zh) 含氮化合物、有机电致发光器件和电子装置
CN111646983B (zh) 含氮化合物、有机电致发光器件和电子装置
WO2022027992A1 (zh) 含氮化合物、电子元件和电子装置
WO2022206396A1 (zh) 主体材料组合物和有机电致发光器件及电子装置
WO2022007909A1 (zh) 含氮化合物、电子元件和电子装置
TWI655177B (zh) 化合物與包含其之有機電子裝置
WO2022213905A1 (zh) 有机化合物以及使用其的电子元件和电子装置
CN114456174B (zh) 含氮化合物及包含其的电子元件和电子装置
CN113582997B (zh) 含氮化合物及电子元件和电子装置
WO2021203673A1 (zh) 含氮化合物、使用其的有机电致发光器件及电子装置
WO2022222737A1 (zh) 含氮化合物及包含其的电子元件和电子装置
WO2022089093A1 (zh) 含氮化合物、电子元件和电子装置
WO2021135516A1 (zh) 有机化合物、电子元件和电子装置
CN113636944A (zh) 一种有机化合物及包含其的电子元件和电子装置
CN114920750B (zh) 含氮化合物、有机电致发光器件和电子装置
WO2022206389A1 (zh) 含氮化合物及包含其的电子元件和电子装置
CN114230562B (zh) 杂环化合物及包含其的电子元件和电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2021190380A1 (zh) 有机化合物、电子元件和电子装置
CN113735861A (zh) 有机化合物及使用其的电子元件和电子装置
CN115557937B (zh) 含氮化合物及包含其的有机电致发光器件和电子装置
WO2022218112A1 (zh) 有机化合物以及使用其的有机电致发光器件和电子装置
CN113773320B (zh) 含氮化合物以及使用其的电子元件和电子装置
CN115521242A (zh) 有机化合物和电子元件及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22773918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22773918

Country of ref document: EP

Kind code of ref document: A1