WO2021132381A1 - タンクシステム、船舶 - Google Patents

タンクシステム、船舶 Download PDF

Info

Publication number
WO2021132381A1
WO2021132381A1 PCT/JP2020/048258 JP2020048258W WO2021132381A1 WO 2021132381 A1 WO2021132381 A1 WO 2021132381A1 JP 2020048258 W JP2020048258 W JP 2020048258W WO 2021132381 A1 WO2021132381 A1 WO 2021132381A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
pressure
tank
carbon dioxide
liquefied carbon
Prior art date
Application number
PCT/JP2020/048258
Other languages
English (en)
French (fr)
Inventor
石田 聡成
俊夫 小形
晋介 森本
Original Assignee
三菱造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱造船株式会社 filed Critical 三菱造船株式会社
Priority to KR1020227020783A priority Critical patent/KR20220101177A/ko
Priority to FIEP20905462.6T priority patent/FI4059828T3/fi
Priority to CN202080088605.4A priority patent/CN114846265B/zh
Priority to EP20905462.6A priority patent/EP4059828B1/en
Priority to AU2020415040A priority patent/AU2020415040B2/en
Publication of WO2021132381A1 publication Critical patent/WO2021132381A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/14Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed pressurised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/30Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures
    • B63B27/34Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures using pipe-lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B2025/087Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid comprising self-contained tanks installed in the ship structure as separate units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/0126One vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0192Three-phase, e.g. CO2 at triple point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0192Three-phase, e.g. CO2 at triple point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/04Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
    • F17C2225/042Localisation of the filling point
    • F17C2225/046Localisation of the filling point in the liquid
    • F17C2225/047Localisation of the filling point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0689Methods for controlling or regulating
    • F17C2250/0694Methods for controlling or regulating with calculations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships

Definitions

  • Patent Document 1 discloses that liquefied gas such as LNG (Liquefied Natural Gas) is loaded into a tank through a gas loading piping system.
  • LNG Liquified Natural Gas
  • triple point pressure the triple point pressure at which the gas phase, liquid phase, and solid phase coexist (hereinafter referred to as triple point pressure) is higher than the triple point pressure of LNG or LPG. Therefore, the triple point pressure becomes close to the operating pressure of the tank.
  • the liquefied carbon dioxide may solidify to generate dry ice for the following reasons.
  • the lower end of the loading pipe that opens in the tank may be arranged at the lower part in the tank.
  • the vicinity of the opening of the loading pipe is pressurized as the number of liquid heads increases. Therefore, it is possible to suppress flash evaporation of the liquefied gas released from the opening of the loading pipe.
  • the pressure of the liquefied carbon dioxide inside corresponds to the height difference between the bottom of the pipe and the top of the pipe with respect to the pressure of the liquefied carbon dioxide at the bottom of the pipe. It will be lower by the amount.
  • the pressure of the liquefied carbon dioxide becomes less than the triple point pressure at the top of the loading pipe where the pressure of the liquefied carbon dioxide is the lowest, and the liquefied carbon dioxide evaporates, and the latent heat of evaporation occurs.
  • the temperature of the liquefied carbon dioxide remaining without evaporating may drop, and the liquefied carbon dioxide may solidify to produce dry ice. If dry ice is generated in the loading pipe in this way, the flow of liquefied carbon dioxide in the loading pipe may be obstructed, which may affect the operation of the tank.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a tank system and a ship capable of suppressing the generation of dry ice in the loading pipe and smoothly operating the tank. To do.
  • the tank system includes a tank, a loading pipe, and a pipe pressure resistance unit.
  • the tank contains liquefied carbon dioxide.
  • the loading pipe extends in the vertical direction and the lower end opens in the tank.
  • the loading pipe releases liquefied carbon dioxide supplied from the outside into the tank from the lower end.
  • the pipe pressure resistance portion is provided on the lower end side with respect to the pipe top located at the highest position in the loading pipe. The pipe pressure resistance portion causes a pressure loss in the liquefied carbon dioxide flowing through the loading pipe.
  • the ship according to the present disclosure includes a hull and a tank system as described above provided on the hull.
  • the ship 1A of the embodiment of the present disclosure carries liquid carbon dioxide or various liquefied gases including liquefied carbon dioxide.
  • the ship 1A includes at least a hull 2 and a tank system 20A.
  • the hull 2 has a pair of side sides 3A and 3B forming its outer shell, a ship bottom (not shown), and an upper deck 5.
  • the side 3A and 3B are provided with a pair of side outer plates forming the left and right side respectively.
  • the bottom of the ship (not shown) includes a bottom outer plate connecting these side 3A and 3B. Due to these pair of side 3A and 3B and the bottom of the ship (not shown), the outer shell of the hull 2 has a U shape in a cross section orthogonal to the stern and tail direction Da.
  • the upper deck 5 is an all-deck exposed to the outside.
  • an upper structure 7 having a living area is formed on the upper deck 5 on the stern 2b side.
  • the hull 2 has a tank system storage compartment (hold) 8 formed on the bow 2a side of the superstructure (living compartment) 7.
  • the tank system storage compartment 8 is a closed compartment that is recessed toward the bottom of the ship (not shown) below the upper deck 5 and projects upward, or has the upper deck 5 as the ceiling.
  • the tank system 20A includes a tank 21, a loading pipe 25, and a pipe pressure resistance portion 30A.
  • each tank 21 has, for example, a cylindrical shape extending in the horizontal direction (specifically, the stern direction).
  • the tank 21 contains liquefied carbon dioxide L inside.
  • the tank 21 is not limited to a cylindrical shape, and the tank 21 may be spherical or the like.
  • the loading pipe 25 loads the liquefied carbon dioxide L supplied from the outside such as a liquefied carbon dioxide supply facility on land or a bunker ship into the tank 21.
  • the loading pipe 25 in this embodiment is inserted into the tank 21 from the outside of the tank 21 through the upper part of the tank 21.
  • the loading pipe 25 extends in the vertical direction Dv in the tank 21.
  • the lower end 25b of the loading pipe 25 is open in the tank 21.
  • the loading pipe 25 releases the liquefied carbon dioxide L supplied from the outside into the tank 21 from the lower end 25b.
  • the pipe top 25t located at the highest position in the loading pipe 25 is arranged outside the tank 21.
  • the lower end 25b of the loading pipe 25 is arranged near the bottom of the tank 21.
  • the vicinity of the bottom is a position closer to the bottom than the center of the tank 21 in the vertical direction Dv.
  • FIG. 2 illustrates a situation in which the lower end 25b of the loading pipe 25 is submerged in the liquefied carbon dioxide L stored in the tank 21. Further, in FIG. 2, the lower end 25b is opened downward, but the opening direction is not limited to the downward direction.
  • the pipe pressure resistance portion 30A acts as a pipe pressure resistance on the liquefied carbon dioxide L flowing through the loading pipe 25.
  • the pipe pressure resistance portion 30A is provided on the lower end 25b side with respect to the pipe top 25t, which is the highest position in the loading pipe 25.
  • the pipe pressure resistance portion 30A is provided at the lower end 25b of the loading pipe 25, but is not limited to the lower end 25b.
  • the pipe pressure resistance portion 30A has a distribution opening 30a through which liquefied carbon dioxide L flows.
  • the distribution opening 30a has an opening area A2 smaller than the flow path cross-sectional area A1 in the loading pipe 25.
  • the pipe pressure resistance portion 30A is configured by using the orifice 31.
  • the orifice 31 is attached to the lower end 25b of the loading pipe 25.
  • the orifice 31 includes a plate portion 31a provided so as to close the opening of the lower end 25b of the loading pipe 25, and a through hole 31b formed in the plate portion 31a.
  • the through hole 31b forms the distribution opening 30a.
  • the through hole 31b is formed so as to penetrate the plate portion 31a in the plate thickness direction (the pipe axis direction at the lower end 25b of the loading pipe 25). In this embodiment, only one through hole 31b is formed in the central portion of the plate portion 31a.
  • the pressure Pc at the pipe top 25t of the liquefied carbon dioxide L flowing through the loading pipe 25 provided with the pipe pressure resistance part 30A at the lower end 25b is the tank operating pressure Pt plus the pressure loss ⁇ P generated in the pipe pressure resistance part.
  • the value is obtained by subtracting the pressure corresponding to the height difference between the liquid level of the liquefied carbon dioxide L in the tank 21 and the pipe top 25t, but the dynamic pressure of the liquefied carbon dioxide L flowing through the loading pipe 25 is significant. If this is the case, it is necessary to consider the effect.
  • the pressure Pc of the liquefied carbon dioxide L at the pipe top 25t is set in advance. It is necessary to exceed the set pressure lower limit value Ps of the liquefied carbon dioxide L as shown in the following equation (1).
  • the set pressure lower limit value Ps can be the triple point pressure value of the liquefied carbon dioxide L plus a safety margin value.
  • the flow opening 30a so as to satisfy the condition represented by the above equation (1) by utilizing the fact that the generated pressure loss ⁇ P increases the pressure Pc at the pipe top 25t.
  • the opening area A2 of is set.
  • the operating pressure of the tank 21 580 [kPa (G)]
  • the density of the liquefied carbon dioxide L ⁇ 1150 [kg / m 3 ]
  • the liquid level height H1 of the liquefied carbon dioxide L in the tank 21.
  • the height is 0 [m]
  • the height H2 30 [m] from the bottom surface 21b of the tank at the top 25t of the loading pipe 25.
  • the pressure of the liquefied carbon dioxide L in the pipe top 25t in the loading pipe 25 without the pipe pressure resistance portion 30A becomes 242 [kPa (G)].
  • the pressure of the liquefied carbon dioxide L at the pipe top 25t of the loading pipe 25 is the triple point in the state where the pipe pressure resistance portion 30A is not provided. Below pressure, dry ice may be produced.
  • a pressure loss ⁇ P occurs in the pipe pressure resistance portion 30A so as to satisfy the above equation (1), and the liquefied carbon dioxide L at the pipe top 25t is generated.
  • the pressure Pc always exceeds the set lower limit value Ps, and the triple point pressure can be sufficiently exceeded.
  • the tank system 20A of the first embodiment includes a tank 21, a loading pipe 25, and a pipe pressure resistance portion 30A.
  • the pipe pressure resistance portion 30A is provided on the lower end 25b side with respect to the pipe top 25t located at the highest position in the loading pipe 25.
  • the pipe pressure resistance portion 30A increases the pressure of the liquefied carbon dioxide L flowing through the loading pipe 25 by the amount of the pressure loss ⁇ P, and suppresses the pressure Pc of the liquefied carbon dioxide L from approaching the triple point pressure. As a result, it is possible to prevent the liquefied carbon dioxide L from solidifying in the loading pipe 25 to generate dry ice. As a result, when the liquefied carbon dioxide L is stored in the tank 21, it is possible to suppress the generation of dry ice in the loading pipe 25 and smoothly operate the tank 21.
  • the piping pressure resistance portion 30A generates a pressure loss ⁇ P satisfying the above equation (1). Therefore, according to the tank system 20A of the embodiment, an appropriate pressure loss ⁇ P corresponding to the height H2 of the pipe top 25t of the loading pipe 25 is generated in the pipe pressure resistance portion 30A to increase the pressure of the liquefied carbon dioxide L. be able to. As a result, the pressure of the liquefied carbon dioxide L becomes equal to or higher than the set pressure lower limit value Ps set according to the triple point pressure of the liquefied carbon dioxide L in the entire area in the loading pipe 25. As a result, it is possible to prevent dry ice from being generated in the loading pipe 25.
  • the pipe pressure resistance portion 30A is provided at the lower end 25b of the loading pipe 25. Therefore, according to the tank system 20A of the embodiment, the pipe pressure resistance portion 30A provided at the lower end 25b of the loading pipe 25 suppresses the generation of dry ice in the loading pipe 25. Further, the pipe pressure resistance portion 30A can be additionally added to the lower end 25b of the loading pipe 25 of the existing tank system 20A.
  • the pipe pressure resistance portion 30A (orifice 31) has an opening area A2 smaller than the flow path cross-sectional area A1 in the loading pipe 25, and liquefied carbon dioxide L flows through the tank system 20A. It has a distribution opening 30a.
  • Such a pipe pressure resistance portion 30A has a simple configuration having a distribution opening 30a, and can suppress the formation of dry ice in the liquefied carbon dioxide L at low cost.
  • the ship 1A of the first embodiment includes a hull 2 and a tank system 20A provided on the hull 2. Therefore, according to the ship 1A of the embodiment, when the liquefied carbon dioxide L is contained in the tank 21, dry ice is suppressed from being generated in the loading pipe 25, and the tank 21 is operated smoothly. It is possible to provide a ship 1A equipped with a tank system 20A capable of producing carbon dioxide.
  • the orifice 31 is provided as the pipe pressure resistance portion 30A, but the present invention is not limited to this.
  • a perforated plate 32 may be provided as the pipe pressure resistance portion 30A.
  • the perforated plate 32 is attached to the lower end 25b of the loading pipe 25.
  • the perforated plate 32 includes a plate portion 32a provided so as to close the opening of the lower end 25b of the loading pipe 25, and a plurality (many) through holes 32b formed in the plate portion 32a.
  • Each through hole 32b penetrates the plate portion 32a in the plate thickness direction.
  • the distribution opening 30a is formed by the plurality of through holes 32b.
  • the total opening area A3 of the plurality of through holes 32b is smaller than the flow path cross-sectional area A1 in the loading pipe 25.
  • the pipe pressure resistance portion 30A using such a perforated plate 32 can increase the pressure of the liquefied carbon dioxide L flowing through the loading pipe 25 by the amount of the pressure loss ⁇ P.
  • a flap 33 may be provided as the pipe pressure resistance portion 30A.
  • the flap 33 is attached to the inside of the lower end 25b of the loading pipe 25.
  • the flap 33 has a plate shape and is provided so as to be inclined with respect to a plane orthogonal to the pipe axial direction Dp at the lower end 25b of the loading pipe 25.
  • the flap 33 is provided so as to leave a gap 33b between the outer peripheral edge 33a and the inner peripheral surface 25f of the lower end 25b of the loading pipe 25.
  • the gap 33b between the outer peripheral edge 33a of the flap 33 and the inner peripheral surface 25f of the loading pipe 25 forms the distribution opening 30a.
  • the opening area A4 of the gap 33b forming the distribution opening 30a is smaller than the flow path cross-sectional area A1 in the loading pipe 25.
  • the pipe pressure resistance portion 30A using such a flap 33 can increase the pressure of the liquefied carbon dioxide L flowing through the loading pipe 25 by the amount of the pressure loss ⁇ P.
  • the tank system and the ship according to the second embodiment of the present disclosure will be described with reference to FIG.
  • the ship 1B of this embodiment carries liquefied carbon dioxide or various liquefied gases including liquefied carbon dioxide.
  • the ship 1B includes at least a hull 2 and a tank system 20B.
  • the tank system 20B includes a tank 21, a loading pipe 25, and a pipe pressure resistance portion 30B.
  • the pipe pressure resistance portion 30B can increase the pressure of the liquefied carbon dioxide L flowing through the loading pipe 25 by the amount of the pressure loss.
  • the pipe pressure resistance portion 30B is provided on the lower end 25b side with respect to the pipe top 25t located at the highest position in the loading pipe 25. In this second embodiment, the pipe pressure resistance portion 30B is provided between the pipe top 25t and the bottom end 25b of the loading pipe 25. The pipe pressure resistance portion 30B is provided at a position higher than the lower end 25b of the loading pipe 25.
  • the pipe pressure resistance portion 30B is formed by using one of the orifice 31 (see FIG. 3), the perforated plate 32 (see FIG. 4), and the flap 33 (see FIG. 5) shown in the first embodiment. There is.
  • the pipe pressure resistance portion 30B is provided so that the generated pressure loss ⁇ P satisfies the condition represented by the above equation (1).
  • the pipe pressure resistance portion 30B when the pipe pressure resistance portion 30B is provided at a position higher than the lower end 25b of the loading pipe 25, the liquefied carbon dioxide that has passed through the pipe pressure resistance portion 30B on the lower side (lower end 25b) of the pipe pressure resistance portion 30B. It is necessary that the pressure of L does not fall below the triple point pressure. Therefore, when the pipe pressure resistance portion 30B is provided at a height H [mm] from the tank bottom surface 21b of the tank 21, the pressure of the liquefied carbon dioxide L at the height H of the pipe pressure resistance portion 30B is the set pressure lower limit. It is necessary to exceed the value Ps.
  • the height H [mm] from the bottom surface 21b of the tank where the pipe pressure resistance portion 30B is installed is such that the pressure of the liquefied carbon dioxide L passing through the pipe pressure resistance portion 30B is H and the liquid level of the liquefied carbon dioxide L in the tank 21. Considering that the pressure decreases according to the height difference from the height H1, the pressure is limited so as not to fall below the triple point pressure.
  • the tank system 20B of the second embodiment includes a tank 21, a loading pipe 25, and a pipe pressure resistance portion 30B.
  • the pipe pressure resistance portion 30B is provided on the lower end 25b side with respect to the pipe top 25t located at the highest position in the loading pipe 25.
  • the pipe pressure resistance portion 30B increases the pressure of the liquefied carbon dioxide L flowing through the loading pipe 25 by the amount of the pressure loss ⁇ P, and prevents the pressure Pc of the liquefied carbon dioxide L from approaching the triple point pressure.
  • the liquefied carbon dioxide L is stored in the tank 21, it is possible to suppress the generation of dry ice in the loading pipe 25 and smoothly operate the tank 21.
  • the pipe pressure resistance portion 30B generates a pressure loss ⁇ P satisfying the above equation (1). Therefore, according to the tank system 20B of the embodiment, an appropriate pressure loss ⁇ P corresponding to the height H2 of the pipe top 25t of the loading pipe 25 is generated in the pipe pressure resistance portion 30B to increase the pressure of the liquefied carbon dioxide L. be able to. As a result, it is possible to prevent the liquefied carbon dioxide L from solidifying in the loading pipe 25 to generate dry ice.
  • the pipe pressure resistance portion 30B is higher than the lower end 25b of the loading pipe 25, and the height H [mm] of the tank 21 from the tank bottom surface 21b is the pipe pressure resistance portion.
  • the pressure of the liquefied carbon dioxide L passing through 30B decreases according to the height difference between the height H from the bottom surface 21b of the tank and the liquid level height H1 of the liquefied carbon dioxide L in the tank 21.
  • the pressure is restricted so that it does not fall below the triple point pressure. Therefore, according to the tank system 20B of the embodiment, the pressure of the liquefied carbon dioxide L is equal to or higher than the set pressure lower limit value Ps below the pipe pressure resistance portion 30B (lower end 25b side). As a result, it is possible to prevent the pressure drop of the liquefied carbon dioxide L that has passed through the pipe pressure resistance portion 30B and the generation of dry ice.
  • the ship 1B of the second embodiment includes a hull 2 and a tank system 20B provided on the hull 2. Therefore, according to the ship 1B of the second embodiment, when the liquefied carbon dioxide L is stored in the tank 21, dry ice is suppressed from being generated in the loading pipe 25, and the operation of the tank 21 is smooth. It is possible to provide a ship 1B equipped with a tank system 20B that can be carried out.
  • the tank system and the ship according to the third embodiment of the present disclosure will be described with reference to FIGS. 7 to 11.
  • the configuration of the piping pressure resistance portion 30C is different from that of the first and second embodiments of the present disclosure.
  • the description will be made with reference to, and duplicate explanations will be omitted.
  • the ship 1C of the third embodiment carries liquefied carbon dioxide or various liquefied gases including liquefied carbon dioxide.
  • the ship 1C includes at least a hull 2 and a tank system 20C.
  • the tank system 20C includes a tank 21, a loading pipe 25, and a pipe pressure resistance portion 30C.
  • the pipe pressure resistance unit 30C can increase the pressure of the liquefied carbon dioxide L flowing through the loading pipe 25 by the amount of the pressure loss.
  • the pipe pressure resistance unit 30C includes a control valve 35 and a control device 60.
  • the control valve 35 of the pipe pressure resistance portion 30C is provided on the lower end 25b side with respect to the pipe top 25t located at the highest position in the loading pipe 25.
  • the control valve 35 is provided at the lower end 25b of the loading pipe 25.
  • the control valve 35 may be provided at a position higher than the lower end 25b of the loading pipe 25, as in the second embodiment.
  • the control valve 35 shown in FIG. 8 has a variable opening area A5 of the distribution opening 30a.
  • the control valve 35 has a valve body 35a rotatably provided in the flow path of the liquefied carbon dioxide L in the loading pipe 25.
  • the valve body 35a opens and closes the flow path in the loading pipe 25 by rotating around the valve shaft.
  • the valve body 35a increases or decreases the gap 35b formed between the valve body 35a and the inner peripheral surface 25f of the loading pipe 25 by adjusting the opening degree around the valve shaft.
  • the gap 35b between the valve body 35a and the inner peripheral surface 25f of the loading pipe 25 forms the distribution opening 30a.
  • the opening area A5 of the gap 35b forming the distribution opening 30a is smaller than the flow path cross-sectional area A1 in the loading pipe 25.
  • control valve 35 it is preferable to use a submerged low temperature resistant valve that can operate even in low temperature liquefied carbon dioxide L.
  • the pipe pressure resistance portion 30C using such a control valve 35 can increase the pressure of the liquid carbon dioxide L flowing through the loading pipe 25 by the amount of the pressure loss ⁇ P.
  • the flow opening 30a is satisfied so as to satisfy the condition represented by the above equation (1) by utilizing the fact that the generated pressure loss ⁇ P increases the pressure Pc at the pipe top 25t.
  • the opening area A4 of is set.
  • the control device 60 adjusts the opening degree of the distribution opening 30a in the control valve 35.
  • the tank system 20C includes a tank internal pressure sensor 51 and a pipe top pressure sensor 52.
  • the tank internal pressure sensor 51 detects the internal pressure of the tank 21.
  • the pipe top pressure sensor 52 detects the pressure Pc of the liquefied carbon dioxide L at the pipe top 25t.
  • the control device 60 is a computer including a CPU 61 (Central Processing Unit), a ROM 62 (Read Only Memory), a RAM 63 (Random Access Memory), an HDD 64 (Hard Disk Drive), and a signal receiving module 65.
  • the signal receiving module 65 receives the detection signal from the tank internal pressure sensor 51 and the pipe top pressure sensor 52.
  • the CPU 61 of the control device 60 executes a program stored in the HDD 64, the ROM 62, or the like in advance to configure each function of the signal receiving unit 71, the opening degree control unit 72, and the command signal output unit 73. Realize.
  • the signal receiving unit 71 transmits the detection signal from the tank internal pressure sensor 51 and the pipe top pressure sensor 52 via the signal receiving module 65, that is, the detected value of the internal pressure of the tank 21 in the tank internal pressure sensor 51, and the liquefied dioxide in the pipe top 25t.
  • the data of the detected value of the pressure Pc of carbon L is received.
  • the opening degree control unit 72 executes control for adjusting the opening degree of the control valve 35 based on the detected value of the pipe top pressure sensor 52.
  • the command signal output unit 73 outputs a command signal for changing the opening degree of the control valve 35 to the control valve 35 under the control of the opening degree control unit 72.
  • the signal receiving unit 71 of the control device 60 receives the internal pressure (operating pressure Pt) of the tank 21 in the tank internal pressure sensor 51 from the tank internal pressure sensor 51 and the pipe top pressure sensor 52 at preset time intervals. ) And the detected value of the pressure Pc of the liquefied carbon dioxide L at the top 25t of the pipe (step S1).
  • the opening degree control unit 72 determines whether or not the pressure Pc of the liquefied carbon dioxide L at the pipe top 25t received in step S1 is less than a preset threshold value (for example, the set pressure lower limit value Ps). (Step S2). As a result, if the pressure Pc of the liquefied carbon dioxide L at the pipe top 25t is not less than the threshold value, the process returns to step S1.
  • a preset threshold value for example, the set pressure lower limit value Ps
  • step S2 when the pressure Pc of the liquefied carbon dioxide L at the pipe top 25t is less than the threshold value, that is, when the pressure Pc of the liquefied carbon dioxide L at the pipe top 25t is less than the set pressure lower limit Ps.
  • the opening degree control unit 72 reduces the opening degree of the control valve 35 (step S3). To this end, the opening degree control unit 72 outputs a command signal for reducing the opening degree of the valve body 35a to the control valve 35 by a predetermined angle via the command signal output unit 73. After outputting the command signal, the control device 60 ends the process and returns to step S1.
  • the tank system 20C of the above embodiment includes a tank 21, a loading pipe 25, and a pipe pressure resistance portion 30C. Further, the pipe pressure resistance portion 30C is provided on the lower end 25b side with respect to the pipe top 25t located at the highest position in the loading pipe 25.
  • the pipe pressure resistance portion 30C By the pipe pressure resistance portion 30C, the pressure of the liquefied carbon dioxide L flowing through the loading pipe 25 is increased by the pressure loss ⁇ P, and the pressure Pc of the liquefied carbon dioxide L is suppressed from approaching the triple point pressure.
  • the liquefied carbon dioxide L is stored in the tank 21, it is possible to suppress the generation of dry ice in the loading pipe 25 and smoothly operate the tank 21.
  • the piping pressure resistance portion 30C generates a pressure loss ⁇ P satisfying the above equation (1). Therefore, according to the tank system 20C of the embodiment, an appropriate pressure loss ⁇ P corresponding to the height H2 of the pipe top 25t of the loading pipe 25 is generated in the pipe pressure resistance portion 30C to increase the pressure of the liquefied carbon dioxide L. be able to. As a result, it is possible to prevent the liquefied carbon dioxide L from solidifying in the loading pipe 25 to generate dry ice.
  • the pipe pressure resistance portion 30C has an opening area A5 smaller than the flow path cross-sectional area A1 in the loading pipe 25, and has a distribution opening 30a through which liquid carbon dioxide L flows. ..
  • Such a pipe pressure resistance portion 30C has a simple configuration having a distribution opening 30a, and can suppress the formation of dry ice in the liquefied carbon dioxide L at low cost.
  • the piping pressure resistance portion 30C includes a control valve 35 that makes the opening area A5 of the flow opening 30a variable, and a control device 60 that adjusts the opening degree of the flow opening 30a in the control valve 35. And. Therefore, according to the tank system 20C of the embodiment, the pressure loss ⁇ P generated in the pipe pressure resistance portion 30C can be adjusted by adjusting the opening degree of the distribution opening 30a in the control valve 35 by the control device 60. it can. This makes it possible to appropriately adjust the pressure loss ⁇ P that increases the pressure of the liquefied carbon dioxide L according to the operating conditions of the tank system 20C and the like.
  • the tank system 20C of the above embodiment further includes a pipe top pressure sensor 52 that detects the pressure Pc of the liquefied carbon dioxide L at the pipe top 25t of the loading pipe 25, and the control device 60 further includes a detection value in the pipe top pressure sensor 52.
  • the opening degree of the control valve 35 is adjusted based on the above. Therefore, according to the tank system 20C of the embodiment, the liquefied pipe 25 is liquefied in the pipe pressure resistance portion 30C according to the pressure Pc of the liquefied carbon dioxide L at the pipe top 25t detected by the pipe top pressure sensor 52.
  • the pressure loss ⁇ P that increases the pressure of the carbon dioxide L can be adjusted. Therefore, it is possible to appropriately adjust the pressure loss ⁇ P that increases the pressure of the liquefied carbon dioxide L so that the pressure of the liquefied carbon dioxide L at the pipe top 25t does not fall below the set pressure lower limit value Ps.
  • the ship 1C of the above embodiment includes a hull 2 and a tank system 20C provided on the hull 2. Therefore, according to the ship 1C of the embodiment, when the liquefied carbon dioxide L is contained in the tank 21, dry ice is suppressed from being generated in the loading pipe 25, and the tank 21 is operated smoothly. It is possible to provide a ship 1C equipped with a tank system 20C capable of producing carbon dioxide.
  • the tank 21 is provided in the tank system storage compartment 8 formed in the hull 2, but the present invention is not limited to this.
  • the tank 21 is provided on the upper deck 5, for example. You may do so.
  • the tank 21 is provided in the ships 1A to 1C, but the present invention is not limited to this.
  • the tank 21 may be installed in a place other than the ships 1A to 1C, for example, on land or in marine equipment. It may be installed in a vehicle such as a tank lorry.
  • the tank 21 in which the liquefied carbon dioxide L is housed and the lower end 25b are opened in the tank 21 extending in the vertical direction Dv.
  • the loading pipe 25 that discharges the liquefied carbon dioxide L supplied from the outside from the lower end 25b into the tank 21 and the lower end 25b side with respect to the pipe top 25t located at the highest position in the loading pipe 25.
  • the liquefied carbon dioxide L flowing through the loading pipe 25 is provided with pipe pressure resistance portions 30A, 30B, and 30C that generate a pressure loss ⁇ P.
  • Examples of the piping pressure resistance portions 30A, 30B, and 30C include an orifice 31, a perforated plate 32, and a flap 33.
  • the pressure of the liquefied carbon dioxide L flowing through the loading pipe 25 is increased by the pressure loss ⁇ P by the pipe pressure resistance portions 30A, 30B, 30C.
  • the pressure Pc of the liquid carbon dioxide L at the pipe top 25t of the loading pipe 25 it is possible to prevent the pressure Pc of the liquefied carbon dioxide L from approaching the triple point pressure.
  • the liquefied carbon dioxide L is stored in the tank 21, it is possible to suppress the generation of dry ice in the loading pipe 25 and smoothly operate the tank 21.
  • the tank systems 20A, 20B, 20C according to the second aspect are the tank systems 20A, 20B, 20C of (1), and the pipe pressure resistance portions 30A, 30B, 30C are the tank operating pressure Pt.
  • the pressure corresponding to the height difference between the liquid level of the liquefied carbon dioxide L in the tank 21 and the height difference of the pipe top 25t was subtracted from the pressure loss ⁇ P generated in the pipe pressure resistance portions 30A, 30B, and 30C.
  • a pressure loss ⁇ P determined so that the value exceeds the set pressure lower limit value Ps obtained by adding the safety margin value to the triple point pressure value of the liquefied carbon dioxide L is generated.
  • an appropriate pressure loss ⁇ P corresponding to the height of the pipe top 25t of the loading pipe 25 can be generated in the pipe pressure resistance portions 30A, 30B, 30C, and the pressure of the liquefied carbon dioxide L can be increased.
  • the pressure Pc of the liquefied carbon dioxide L in the loading pipe 25 becomes equal to or higher than the set pressure lower limit value Ps set according to the triple point pressure of the liquefied carbon dioxide L.
  • the tank systems 20A and 20C according to the third aspect are the tank systems 20A and 20C of (2), and the pipe pressure resistance portions 30A and 30C are provided at the lower end 25b of the loading pipe 25. Has been done.
  • the pipe pressure resistance portions 30A and 30C provided at the lower end 25b of the loading pipe 25 prevent the liquefied carbon dioxide L from solidifying in the loading pipe 25 to generate dry ice. Further, the pipe pressure resistance portions 30A and 30C can be additionally added to the lower end 25b of the loading pipe 25 of the existing tank system.
  • the tank system 20B according to the fourth aspect is the tank system 20B of (2), and the pipe pressure resistance portion 30B is higher than the lower end 25b of the loading pipe 25 and the tank 21.
  • the height H from the bottom surface 21b of the tank is provided so that the pressure of the liquefied carbon dioxide L passing through the pipe pressure resistance portion 30B does not fall below the triple point pressure value.
  • the tank systems 20A, 20B, 20C according to the fifth aspect are the tank systems 20A, 20B, 20C according to any one of (1) to (4), and the piping pressure resistance portions 30A, 30B, 30C has an opening area A2 to A5 smaller than the flow path cross-sectional area A1 in the loading pipe 25, and has a distribution opening 30a through which liquefied carbon dioxide L flows.
  • Such piping pressure resistance portions 30A, 30B, and 30C have a simple configuration having a distribution opening 30a, and can suppress the formation of dry ice in liquefied carbon dioxide L at low cost.
  • the tank system 20C according to the sixth aspect is the tank system 20C of (5), and the pipe pressure resistance portion 30C is a control valve 35 having a variable opening area A5 of the distribution opening 30a.
  • a control device 60 for adjusting the opening degree of the distribution opening 30a in the control valve 35 is provided.
  • the pressure loss ⁇ P generated in the pipe pressure resistance portion 30C can be adjusted by adjusting the opening degree of the distribution opening 30a in the control valve 35 by the control device 60. Therefore, it is possible to appropriately adjust the pressure loss ⁇ P that increases the pressure of the liquefied carbon dioxide L according to the operating conditions of the tank system 20C and the like.
  • the tank system 20C according to the seventh aspect is the tank system 20C of (6), and is a pipe top pressure for detecting the pressure Pc of the liquefied carbon dioxide L at the pipe top 25t of the loading pipe 25.
  • a sensor 52 is further provided, and the control device 60 adjusts the opening degree of the control valve 35 based on the detection value of the pipe top pressure sensor 52.
  • the pressure loss ⁇ P generated in the pipe pressure resistance portion 30C can be adjusted according to the pressure Pc of the liquefied carbon dioxide L at the pipe top 25t detected by the pipe top pressure sensor 52. Therefore, it is possible to appropriately adjust the pressure loss ⁇ P for increasing the pressure of the liquefied carbon dioxide L so that the pressure Pc of the liquefied carbon dioxide L at the pipe top 25t does not fall below the set lower limit value Ps.
  • Vessels 1A to 1C include a hull 2 and tank systems 20A, 20B, 20C provided on the hull 2, any one of (1) to (7). ..
  • the tank systems 20A and 20B can suppress the generation of dry ice in the loading pipe 25 and smoothly operate the tank 21. It is possible to provide vessels 1A to 1C equipped with 20C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

タンクシステムは、タンクと、積込配管と、配管圧力抵抗部と、を備える。タンクは、内部に液化二酸化炭素が収容される。積込配管は、上下方向に延びてタンク内に下端が開口する。積込配管は、外部から供給される液化二酸化炭素を下端からタンク内に放出する。配管圧力抵抗部は、積込配管において最も高い位置に位置する配管頂部に対して下端側に設けられている。配管圧力抵抗部は、積込配管を流通する液化二酸化炭素に圧力損失を発生させる。

Description

タンクシステム、船舶
 本開示は、タンクシステム、船舶に関する。
 本願は、2019年12月23日に日本に出願された特願2019-231720号について優先権を主張し、その内容をここに援用する。
 特許文献1には、ガス積込配管系統を通してLNG(Liquefied Natural Gas)等の液化ガスをタンク内に積み込むことが開示されている。
日本国特許第5769445号公報
 ところで、特許文献1のようなタンクを用いて液化二酸化炭素を運搬することが要望されている。液化二酸化炭素は、気相、液相、固相が共存する三重点の圧力(以下、三重点圧力と称す)が、LNGやLPGの三重点圧力に比較して高い。そのため、三重点圧力がタンクの運用圧力に近くなる。タンク内に液化二酸化炭素を収容する場合、以下のような理由により、液化二酸化炭素が凝固してドライアイスが生成される可能性がある。
 特許文献1のような液化ガスを収容するタンクでは、タンク内で開口する積込配管の下端がタンク内の下部に配置されている場合がある。このような配置とすることで、液ヘッドの増加に伴い積込配管の開口付近が加圧される。そのため、積込配管の開口から放出された液化ガスがフラッシュ蒸発することを抑制できる。しかしながら、積込配管のうち最も高い位置に配置された配管頂部では、内部の液化二酸化炭素の圧力が、配管下端における液化二酸化炭素の圧力に対し、配管下端と配管頂部との高低差に応じた分だけ低くなる。
 その結果、タンク運用圧力によっては、液化二酸化炭素の圧力が最も低くなる積込配管の配管頂部において、液化二酸化炭素の圧力が三重点圧力以下となり、液化二酸化炭素の蒸発が生じて、その蒸発潜熱により、蒸発せずに残った液化二酸化炭素の温度低下が生じて、液化二酸化炭素が凝固してドライアイスが生成される可能性が有る。
 そして、このように、積込配管内でドライアイスが生成されてしまうと、積込配管内における液化二酸化炭素の流れが阻害され、タンクの運用に影響を及ぼす可能性がある。
 本開示は、上記課題を解決するためになされたものであって、積込配管内のドライアイス生成を抑え、タンクの運用を円滑に行うことができるタンクシステム、船舶を提供することを目的とする。
 上記課題を解決するために、本開示に係るタンクシステムは、タンクと、積込配管と、配管圧力抵抗部と、を備える。前記タンクは、内部に液化二酸化炭素が収容される。前記積込配管は、上下方向に延びて前記タンク内に下端が開口する。前記積込配管は、外部から供給される液化二酸化炭素を前記下端から前記タンク内に放出する。前記配管圧力抵抗部は、前記積込配管において最も高い位置に位置する配管頂部に対して前記下端側に設けられている。前記配管圧力抵抗部は、積込配管を流通する液化二酸化炭素に圧力損失を発生させる。
 本開示に係る船舶は、船体と、前記船体に設けられた、上記したようなタンクシステムと、を備える。
 本開示のタンクシステム、船舶によれば、積込配管内のドライアイス生成を抑え、タンクの運用を円滑に行うことができる。
本開示の実施形態における船舶の全体構成を示す平面図である。 本開示の第一実施形態に係る船舶に設けられたタンクシステムの断面図である。 本開示の第一実施形態に係るタンクシステムに設けられた配管圧力抵抗部を示す断面図である。 本開示の第一実施形態の変形例に係る配管圧力抵抗部を示す断面図である。 本開示の第一実施形態の変形例に係る配管圧力抵抗部を示す断面図である。 本開示の第二実施形態に係る船舶に設けられたタンクシステムの断面図である。 本開示の第三実施形態に係る船舶に設けられたタンクシステムの断面図である。 本開示の第三実施形態に係るタンクシステムに設けられた配管圧力抵抗部を示す断面図である。 本開示の第三実施形態に係るタンクシステムに設けられた制御装置のハードウェア構成を示す図である。 本開示の第三実施形態に係るタンクシステムに設けられた制御装置の機能ブロック図である。 本開示の第三実施形態に係るタンクシステムに設けられた制御装置における制御弁の開度調整処理の手順を示すフローチャートである。
<第一実施形態>
 以下、本開示の実施形態に係るタンクシステム、船舶について、図1~図3を参照して説明する。
(船舶の船体構成)
 図1に示すように、本開示の実施形態の船舶1Aは、液体二酸化炭素、あるいは液化二酸化炭素を含む多種の液化ガスを運搬する。この船舶1Aは、船体2と、タンクシステム20Aと、を少なくとも備えている。
(船体の構成)
 船体2は、その外殻をなす、一対の舷側3A,3Bと、船底(図示無し)と、上甲板5と、を有している。舷側3A,3Bは、左右舷側をそれぞれ形成する一対の舷側外板を備える。船底(図示無し)は、これら舷側3A,3Bを接続する船底外板を備える。これら一対の舷側3A,3B及び船底(図示無し)により、船体2の外殻は、船首尾方向Daに直交する断面において、U字状を成している。上甲板5は、外部に露出する全通甲板である。船体2には、船尾2b側の上甲板5上に、居住区を有する上部構造7が形成されている。
 船体2には、上部構造(居住区画)7よりも船首2a側に、タンクシステム格納区画(ホールド)8が形成されている。タンクシステム格納区画8は、上甲板5に対して下方の船底(図示無し)に向けて凹むとともに、上方に突出する、あるいは上甲板5を天井とする閉鎖区画である。
(タンクシステムの構成)
 図2に示すように、タンクシステム20Aは、タンク21と、積込配管25と、配管圧力抵抗部30Aと、を備えている。
(タンクの構成)
 図1に示すように、タンク21は、タンクシステム格納区画8内に複数設けられている。この実施形態におけるタンク21は、タンクシステム格納区画8内に、例えば計7個が配置されている。タンクシステム格納区画8内におけるタンク21のレイアウト、設置数は何ら限定するものではない。この実施形態において、各タンク21は、例えば、水平方向(具体的には、船首尾方向)に延びる円筒状である。タンク21は、その内部に液化二酸化炭素Lが収容される。
 なお、タンク21は、円筒状に限られるものではなく、タンク21は球形等であってもよい。
(積込配管の構成)
 図2に示すように、積込配管25は、陸上の液化二酸化炭素供給施設やバンカー船等、外部から供給される液化二酸化炭素Lをタンク21内に積み込む。この実施形態における積込配管25は、タンク21の外部からタンク21の上部を貫通してタンク21内に挿入されている。積込配管25は、タンク21内で上下方向Dvに延びている。積込配管25の下端25bは、タンク21内で開口している。積込配管25は、外部から供給される液化二酸化炭素Lを、下端25bからタンク21内に放出する。積込配管25において、最も高い位置に位置する配管頂部25tは、タンク21の外部に配置されている。
 積込配管25の下端25bは、タンク21の底部近傍に配置されている。底部近傍とは、上下方向Dvにおけるタンク21の中央よりも底部に近い位置である。なお、図2では、タンク21に貯留される液化二酸化炭素L内に積込配管25の下端25bが液没している状況を例示している。また、図2では、下端25bは、下向きに開口しているが、その開口方向は下向きに限らない。
(配管圧力抵抗部の構成)
 配管圧力抵抗部30Aは、積込配管25を流通する液化二酸化炭素Lに配管圧力抵抗として作用する。配管圧力抵抗部30Aは、積込配管25において最も高い位置となる配管頂部25tに対して下端25b側に設けられている。この実施形態において、配管圧力抵抗部30Aは、積込配管25の下端25bに設けられているが,下端25bに限定されるものではない。図3に示すように、配管圧力抵抗部30Aは、液化二酸化炭素Lが流通する流通開口部30aを有している。流通開口部30aは、積込配管25内の流路断面積A1よりも小さい開口面積A2を有している。
 この実施形態において、配管圧力抵抗部30Aは、オリフィス31を用いて構成されている。オリフィス31は、積込配管25の下端25bに取り付けられている。オリフィス31は、積込配管25の下端25bの開口を閉塞するように設けられたプレート部31aと、プレート部31aに形成された貫通孔31bと、を備えている。貫通孔31bは、上記流通開口部30aを形成する。貫通孔31bは、プレート部31aの板厚方向(積込配管25の下端25bにおける管軸方向)に貫通して形成されている。この実施形態において、貫通孔31bは、プレート部31aの中央部に一つのみが形成されている。
 下端25bに配管圧力抵抗部30Aが設けられた積込配管25を流通する液化二酸化炭素Lの配管頂部25tにおける圧力Pcは、タンク運用圧力Ptに配管圧力抵抗部にて発生する圧力損失ΔPを加えたものから、タンク21内における液化二酸化炭素Lの液面と配管頂部25tの高低差に相当する圧力を差し引いた値となるが,積込配管25を流通する液化二酸化炭素Lの動圧が有意な場合はその影響を考慮する必要がある。
 積込配管25の配管頂部25tにおいて、液化二酸化炭素Lが、液化二酸化炭素Lの三重点圧力を下回らないようにするには、配管頂部25tにおける液化二酸化炭素Lの圧力Pcが、予め設定された液化二酸化炭素Lの設定圧力下限値Psを、次式(1)のように上回る必要がある。
  Pc>Ps ・・・(1)
 ここで、設定圧力下限値Psは、液化二酸化炭素Lの三重点圧力値に、安全マージン値を加えたものとすることができる。
 配管圧力抵抗部30A(オリフィス31)では、発生する圧力損失ΔPが配管頂部25tにおける圧力Pcを高めることを利用して,上式(1)で表される条件を満足するよう、流通開口部30aの開口面積A2が設定されている。
(具体的な検討例)
 ここで、例えば、タンク21の運用圧:580[kPa(G)]、液化二酸化炭素Lの密度ρ:1150[kg/m]、タンク21内における液化二酸化炭素Lの液面高さH1:0[m]、積込配管25の配管頂部25tのタンク底面21bからの高さH2:30[m]とする。すると、配管圧力抵抗部30Aを備えない状態での積込配管25における配管頂部25t内の液化二酸化炭素Lの圧力は、242[kPa(G)]となる。液化二酸化炭素Lの三重点圧力は417[kPa(G)]であるので、配管圧力抵抗部30Aを設けない状態では、積込配管25の配管頂部25tにおける液化二酸化炭素Lの圧力は、三重点圧力以下となり、ドライアイスが生成される可能性がある。
 これに対し、配管圧力抵抗部30Aを備えた積込配管25では、上式(1)を満足するように配管圧力抵抗部30Aで圧力損失ΔPが発生し、配管頂部25tにおける液化二酸化炭素Lの圧力Pcが設定圧力下限値Psを常に上回り、三重点圧力を十分に超えることができる。
(作用効果)
 上記第一実施形態のタンクシステム20Aでは、タンク21と、積込配管25と、配管圧力抵抗部30Aと、を備えている。配管圧力抵抗部30Aは、積込配管25において最も高い位置に位置する配管頂部25tに対して下端25b側に設けられている。配管圧力抵抗部30Aによって、積込配管25を流通する液化二酸化炭素Lの圧力が圧力損失ΔPの分だけ高められ、液化二酸化炭素Lの圧力Pcが三重点圧力に近づくことが抑えられる。これにより、積込配管25内で液化二酸化炭素Lが凝固してドライアイスが生成されることが抑えられる。その結果、タンク21内に液化二酸化炭素Lを収容する場合において、積込配管25内でドライアイスが生成されるのを抑え、タンク21の運用を円滑に行うことが可能となる。
 上記第一実施形態のタンクシステム20Aでは、配管圧力抵抗部30Aは、上式(1)を満たす圧力損失ΔPを発生させる。
 したがって、実施形態のタンクシステム20Aによれば、積込配管25の配管頂部25tの高さH2に応じた適切な圧力損失ΔPを配管圧力抵抗部30Aで発生させ、液化二酸化炭素Lの圧力を高めることができる。これにより、積込配管25内の全域で、液化二酸化炭素Lの圧力が、液化二酸化炭素Lの三重点圧力に応じて設定する設定圧力下限値Ps以上となる。これにより、積込配管25内でドライアイスが生成されることが抑えられる。
 上記第一実施形態のタンクシステム20Aでは、配管圧力抵抗部30Aは、積込配管25の下端25bに設けられている。
 したがって、実施形態のタンクシステム20Aによれば、積込配管25の下端25bに設けた配管圧力抵抗部30Aにより、積込配管25内でドライアイスが生成されることが抑えられる。また、既存のタンクシステム20Aの積込配管25の下端25bに対しても、配管圧力抵抗部30Aを追設することができる。
 上記第一実施形態のタンクシステム20Aでは、配管圧力抵抗部30A(オリフィス31)は、積込配管25内の流路断面積A1よりも小さい開口面積A2を有し、液化二酸化炭素Lが流通する流通開口部30aを有している。
 このような配管圧力抵抗部30Aは、流通開口部30aを有する簡易な構成であり、低コストで液化二酸化炭素Lにおけるドライアイスの生成抑制が実現できる。
 上記第一実施形態の船舶1Aでは、船体2と、船体2に設けられたタンクシステム20Aと、を備えている。
 したがって、実施形態の船舶1Aによれば、タンク21内に液化二酸化炭素Lを収容する場合において、積込配管25内でドライアイスが生成されるのを抑え、タンク21の運用を円滑に行うことができるタンクシステム20Aを備えた船舶1Aを提供することが可能となる。
<変形例>
 上記第一実施形態では、配管圧力抵抗部30Aとして、オリフィス31を設ける構成としたが、これに限られない。
 例えば、図4に示すように、配管圧力抵抗部30Aとして、多孔板32を設けるようにしてもよい。多孔板32は、積込配管25の下端25bに取り付けられている。多孔板32は、積込配管25の下端25bの開口を閉塞するように設けられたプレート部32aと、プレート部32aに形成された複数(多数)の貫通孔32bと、を備えている。各貫通孔32bは、プレート部32aの板厚方向に貫通している。これら複数の貫通孔32bにより、上記流通開口部30aが構成されている。流通開口部30aは、複数の貫通孔32bの合計開口面積A3が、積込配管25内の流路断面積A1よりも小さい。
 このような多孔板32を用いた配管圧力抵抗部30Aは、積込配管25を流通する液化二酸化炭素Lの圧力を圧力損失ΔPの分だけ高めることができる。
 また、図5に示すように、配管圧力抵抗部30Aとして、フラップ33を設けるようにしてもよい。フラップ33は、積込配管25の下端25bの内側に取り付けられている。フラップ33は、板状で、積込配管25の下端25bにおける管軸方向Dpに直交する面に対し、傾斜して設けられている。フラップ33は、その外周縁33aと、積込配管25の下端25bの内周面25fとの間に隙間33bを空けるように設けられている。フラップ33の外周縁33aと積込配管25の内周面25fとの隙間33bが、上記流通開口部30aを形成する。流通開口部30aを形成する隙間33bの開口面積A4は、積込配管25内の流路断面積A1よりも小さい。
 このようなフラップ33を用いた配管圧力抵抗部30Aは、積込配管25を流通する液化二酸化炭素Lの圧力を圧力損失ΔPの分だけ高めることができる。
<第二実施形態>
 次に、本開示の第二実施形態に係るタンクシステム、船舶について、図6を参照して説明する。以下に説明する本開示の第二実施形態においては、本開示の第一実施形態と配管圧力抵抗部30Bの位置のみが異なるので、第一実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
(船舶の船体構成)
 図1に示すように、この実施形態の船舶1Bは、液化二酸化炭素、あるいは液化二酸化炭素を含む多種の液化ガスを運搬する。この船舶1Bは、船体2と、タンクシステム20Bと、を少なくとも備えている。
(タンクシステムの構成)
 図6に示すように、タンクシステム20Bは、タンク21と、積込配管25と、配管圧力抵抗部30Bと、を備えている。
(配管圧力抵抗部の構成)
 配管圧力抵抗部30Bは、積込配管25を流通する液化二酸化炭素Lの圧力を圧力損失分だけ高めることができる。配管圧力抵抗部30Bは、積込配管25において最も高い位置に位置する配管頂部25tに対して下端25b側に設けられている。この第二実施形態において、配管圧力抵抗部30Bは、積込配管25の配管頂部25tと下端25bとの間に設けられている。配管圧力抵抗部30Bは、積込配管25の下端25bよりも高い位置に設けられている。
 配管圧力抵抗部30Bは、上記第一実施形態で示した、オリフィス31(図3参照)、多孔板32(図4参照)、及びフラップ33(図5参照)の一つを用いて形成されている。配管圧力抵抗部30Bは、発生する圧力損失ΔPが上式(1)で表される条件を満足するように設けられている。
 また、配管圧力抵抗部30Bを、積込配管25の下端25bよりも高い位置に設けた場合、配管圧力抵抗部30Bの下方(下端25b)側で、配管圧力抵抗部30Bを通過した液化二酸化炭素Lの圧力が、三重点圧力を下回らないようにする必要がある。
 このため、配管圧力抵抗部30Bを、タンク21のタンク底面21bからの高さH[mm]に設けた場合、配管圧力抵抗部30Bの高さHにおける液化二酸化炭素Lの圧力が、設定圧力下限値Psを上回るようする必要がある。
 配管圧力抵抗部30Bが設置されるタンク底面21bからの高さH[mm]は、配管圧力抵抗部30Bを通過した液化二酸化炭素Lの圧力がHとタンク21内における液化二酸化炭素Lの液面高さH1との高低差に応じて低下することを考慮して、その圧力が三重点圧力を下回らないように制限される。
(作用効果)
 上記第二実施形態のタンクシステム20Bでは、タンク21と、積込配管25と、配管圧力抵抗部30Bと、を備えている。配管圧力抵抗部30Bは、積込配管25において最も高い位置に位置する配管頂部25tに対して下端25b側に設けられている。配管圧力抵抗部30Bによって、積込配管25を流通する液化二酸化炭素Lの圧力は圧力損失ΔPの分だけ高められ、液化二酸化炭素Lの圧力Pcが三重点圧力に近づくことが抑えられる。その結果、タンク21内に液化二酸化炭素Lを収容する場合において、積込配管25内でドライアイスが生成されるのを抑え、タンク21の運用を円滑に行うことが可能となる。
 上記第二実施形態のタンクシステム20Bでは、配管圧力抵抗部30Bは、上式(1)を満たす圧力損失ΔPを発生させる。
 したがって、実施形態のタンクシステム20Bによれば、積込配管25の配管頂部25tの高さH2に応じた適切な圧力損失ΔPを配管圧力抵抗部30Bで発生させ、液化二酸化炭素Lの圧力を高めることができる。これにより、積込配管25内で液化二酸化炭素Lが凝固してドライアイスが生成されることが抑えられる。
 上記第二実施形態のタンクシステム20Bでは、配管圧力抵抗部30Bは、積込配管25の下端25bよりも高く、かつタンク21のタンク底面21bからの高さH[mm]は、配管圧力抵抗部30Bを通過した液化二酸化炭素Lの圧力が、タンク底面21bからの高さHとタンク21内における液化二酸化炭素Lの液面高さH1との高低差に応じて低下することを考慮して、その圧力が三重点圧力を下回らないように制限されている。
 したがって、実施形態のタンクシステム20Bによれば、配管圧力抵抗部30Bよりも下方(下端25b側)で、液化二酸化炭素Lの圧力が、設定圧力下限値Ps以上となる。これにより、配管圧力抵抗部30Bを通過した液化二酸化炭素Lの圧力低下が生じてドライアイスが生成されてしまうことを抑えることができる。
 上記第二実施形態の船舶1Bでは、船体2と、船体2に設けられたタンクシステム20Bと、を備える。
 したがって、第二実施形態の船舶1Bによれば、タンク21内に液化二酸化炭素Lを収容する場合において、積込配管25内でドライアイスが生成されるのを抑え、タンク21の運用を円滑に行うことができるタンクシステム20Bを備えた船舶1Bを提供することが可能となる。
[第三実施形態]
 次に、本開示の第三実施形態に係るタンクシステム、船舶について、図7~図11を参照して説明する。以下に説明する本開示の第三実施形態においては、本開示の第一、第二実施形態と配管圧力抵抗部30Cの構成のみが異なるので、第一、第二実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
(船舶の船体構成)
 図1に示すように、この第三実施形態の船舶1Cは、液化二酸化炭素、あるいは液化二酸化炭素を含む多種の液化ガスを運搬する。この船舶1Cは、船体2と、タンクシステム20Cと、を少なくとも備えている。
(タンクシステムの構成)
 図7に示すように、タンクシステム20Cは、タンク21と、積込配管25と、配管圧力抵抗部30Cと、を備えている。
(配管圧力抵抗部の構成)
 配管圧力抵抗部30Cは、積込配管25を流通する液化二酸化炭素Lの圧力を圧力損失分だけ高めることができる。この実施形態において、配管圧力抵抗部30Cは、制御弁35と、制御装置60と、を備えている。
 配管圧力抵抗部30Cの制御弁35は、積込配管25において最も高い位置に位置する配管頂部25tに対して下端25b側に設けられている。この第三実施形態において、制御弁35は、積込配管25の下端25bに設けられている。制御弁35は、上記第二実施形態と同様に、積込配管25の下端25bよりも高い位置に設けてもよい。
 図8に示す制御弁35は、流通開口部30aの開口面積A5を可変とする。制御弁35は、積込配管25における液化二酸化炭素Lの流路内で回動可能に設けられた弁体35aを有している。弁体35aは、弁軸周りに回動することで、積込配管25内の流路を開閉する。弁体35aは、弁軸周りの開度を調整することで、弁体35aと、積込配管25の内周面25fとの間に形成される隙間35bを増減させる。弁体35aと積込配管25の内周面25fとの隙間35bが、上記流通開口部30aを形成する。流通開口部30aを形成する隙間35bの開口面積A5は、積込配管25内の流路断面積A1よりも小さい。制御弁35には、低温の液化二酸化炭素L中でも作動可能な液没耐低温弁を用いるのが好ましい。
 このような制御弁35を用いた配管圧力抵抗部30Cは、積込配管25を流通する液体二酸化炭素Lの圧力を圧力損失ΔPの分だけ高めることができる。
 配管圧力抵抗部30Cの制御弁35では、発生する圧力損失ΔPが配管頂部25tにおける圧力Pcを高めることを利用して,上式(1)で表される条件を満足するよう、流通開口部30aの開口面積A4が設定されている。
(制御装置の構成)
 制御装置60は、制御弁35における流通開口部30aの開度を調整する。制御装置60で、制御弁35の開度調整を行うため、タンクシステム20Cは、タンク内圧センサー51と、配管頂部圧力センサー52と、を備えている。タンク内圧センサー51は、タンク21の内圧を検出する。配管頂部圧力センサー52は、配管頂部25tにおける液化二酸化炭素Lの圧力Pcを検出する。
(制御装置のハードウェア構成図)
 図9に示すように、制御装置60は、CPU61(Central Processing Unit)、ROM62(Read Only Memory)、RAM63(Random Access Memory)、HDD64(Hard Disk Drive)、信号受信モジュール65を備えるコンピュータである。信号受信モジュール65は、タンク内圧センサー51、配管頂部圧力センサー52からの検出信号を受信する。
(制御装置の機能ブロック図)
 図10に示すように、制御装置60のCPU61は予めHDD64やROM62等に記憶されたプログラムを実行することにより、信号受信部71、開度制御部72、指令信号出力部73の各機能構成を実現する。
 信号受信部71は、信号受信モジュール65を介して、タンク内圧センサー51、配管頂部圧力センサー52からの検出信号、つまりタンク内圧センサー51におけるタンク21の内圧の検出値、及び配管頂部25tにおける液化二酸化炭素Lの圧力Pcの検出値のデータを受信する。
 開度制御部72は、配管頂部圧力センサー52における検出値に基づいて、制御弁35の開度を調整する制御を実行する。
 指令信号出力部73は、開度制御部72における制御により、制御弁35の開度を変更するための指令信号を、制御弁35に出力する。
(処理の手順)
 次に、タンクシステム20Cにおいて、制御装置60により制御弁35の開度を調整する手順について説明する。
 図11に示すように、制御装置60の信号受信部71は、予め設定された時間間隔で、タンク内圧センサー51、配管頂部圧力センサー52から、タンク内圧センサー51におけるタンク21の内圧(運用圧力Pt)の検出値、及び配管頂部25tにおける液化二酸化炭素Lの圧力Pcの検出値のデータを受信する(ステップS1)。
 次いで、開度制御部72が、ステップS1で受信した配管頂部25tにおける液化二酸化炭素Lの圧力Pcが、予め設定された閾値(例えば、設定圧力下限値Ps)未満であるか否かを判定する(ステップS2)。その結果、配管頂部25tにおける液化二酸化炭素Lの圧力Pcが、閾値未満でなければステップS1に戻る。
 ステップS2において、配管頂部25tにおける液化二酸化炭素Lの圧力Pcが、閾値未満であった場合、つまり、配管頂部25tにおける液化二酸化炭素Lの圧力Pcが、設定圧力下限値Ps未満であった場合、開度制御部72は、制御弁35の開度を減少させる(ステップS3)。これには、開度制御部72が、指令信号出力部73を介し、制御弁35に対して弁体35aの開度を所定角度減少させるための指令信号を出力する。指令信号の出力後、制御装置60は、処理を終了し、ステップS1に戻る。
(作用効果)
 上記実施形態のタンクシステム20Cでは、タンク21と、積込配管25と、配管圧力抵抗部30Cと、を備えている。また、配管圧力抵抗部30Cは、積込配管25において最も高い位置に位置する配管頂部25tに対して下端25b側に設けられている。配管圧力抵抗部30Cによって、積込配管25を流通する液化二酸化炭素Lの圧力は圧力損失ΔPの分だけ高められ、液化二酸化炭素Lの圧力Pcが三重点圧力に近づくことが抑えられる。その結果、タンク21内に液化二酸化炭素Lを収容する場合において、積込配管25内でドライアイスが生成されるのを抑え、タンク21の運用を円滑に行うことが可能となる。
 上記実施形態のタンクシステム20Cでは、配管圧力抵抗部30Cは、上式(1)を満たす圧力損失ΔPを発生させる。
 したがって、実施形態のタンクシステム20Cによれば、積込配管25の配管頂部25tの高さH2に応じた適切な圧力損失ΔPを配管圧力抵抗部30Cで発生させ、液化二酸化炭素Lの圧力を高めることができる。これにより、積込配管25内で液化二酸化炭素Lが凝固してドライアイスが生成されることが抑えられる。
 上記実施形態のタンクシステム20Cでは、配管圧力抵抗部30Cは、積込配管25内の流路断面積A1よりも小さい開口面積A5を有し、液体二酸化炭素Lが流通する流通開口部30aを有する。
 このような配管圧力抵抗部30Cは、流通開口部30aを有する簡易な構成であり、低コストで液化二酸化炭素Lにおけるドライアイスの生成抑制が実現できる。
 上記実施形態のタンクシステム20Cでは、配管圧力抵抗部30Cは、流通開口部30aの開口面積A5を可変とする制御弁35と、制御弁35における流通開口部30aの開度を調整する制御装置60と、を備える。
 したがって、実施形態のタンクシステム20Cによれば、制御装置60により、制御弁35における流通開口部30aの開度を調整することで、配管圧力抵抗部30Cで発生する圧力損失ΔPを調整することができる。これにより、タンクシステム20Cの運用条件等に応じて、液化二酸化炭素Lの圧力を高める圧力損失ΔPを適切に調整することが可能となる。
 上記実施形態のタンクシステム20Cでは、積込配管25の配管頂部25tにおける液化二酸化炭素Lの圧力Pcを検出する配管頂部圧力センサー52をさらに備え、制御装置60は、配管頂部圧力センサー52における検出値に基づいて、制御弁35の開度を調整する。
 したがって、実施形態のタンクシステム20Cによれば、配管頂部圧力センサー52で検出された配管頂部25tにおける液化二酸化炭素Lの圧力Pcに応じて、配管圧力抵抗部30Cで積込配管25を流通する液化二酸化炭素Lの圧力を高める圧力損失ΔPを調整することができる。したがって、配管頂部25tにおける液化二酸化炭素Lの圧力が、設定圧力下限値Psを下回らないように、液化二酸化炭素Lの圧力を高める圧力損失ΔPを適切に調整することが可能となる。
 上記実施形態の船舶1Cでは、船体2と、船体2に設けられたタンクシステム20Cと、を備える。
 したがって、実施形態の船舶1Cによれば、タンク21内に液化二酸化炭素Lを収容する場合において、積込配管25内でドライアイスが生成されるのを抑え、タンク21の運用を円滑に行うことができるタンクシステム20Cを備えた船舶1Cを提供することが可能となる。
(その他の実施形態)
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 上記実施形態では、タンク21を、船体2内に形成されたタンクシステム格納区画8内に設ける構成としたが、これに限るものではなく、例えば、タンク21は、例えば、上甲板5上に設けるようにしてもよい。
 また、上記実施形態ではタンク21を船舶1A~1Cに備えるようにしたが、これに限るものではなく、例えばタンク21は、船舶1A~1C以外の場所、例えば陸上や海上設備に設置したり、タンクローリー等の車両に設置したりするようにしてもよい。
<付記>
 実施形態に記載のタンクシステム20A、20B、20C、船舶1A~1Cは、例えば以下のように把握される。
(1)第1の態様に係るタンクシステム20A、20B、20Cは、内部に液化二酸化炭素Lが収容されるタンク21と、上下方向Dvに延びて前記タンク21内に下端25bが開口するとともに、外部から供給される液化二酸化炭素Lを前記下端25bから前記タンク21内に放出する積込配管25と、前記積込配管25において最も高い位置に位置する配管頂部25tに対して前記下端25b側に設けられ、前記積込配管25を流通する前記液化二酸化炭素Lに圧力損失ΔPを発生させる配管圧力抵抗部30A、30B、30Cと、を備える。
 配管圧力抵抗部30A、30B、30Cの例としては、オリフィス31、多孔板32、フラップ33がある。
 このタンクシステム20A、20B、20Cは、配管圧力抵抗部30A、30B、30Cにより、積込配管25を流通する液化二酸化炭素Lの圧力が圧力損失ΔPの分だけ高められる。積込配管25の配管頂部25tにおける液体二酸化炭素Lの圧力Pcが高められることで、液化二酸化炭素Lの圧力Pcが三重点圧力に近づくことが抑えられる。これにより、積込配管25内で液化二酸化炭素Lが凝固してドライアイスが生成されることが抑えられる。その結果、タンク21内に液化二酸化炭素Lを収容する場合において、積込配管25内のドライアイス生成を抑え、タンク21の運用を円滑に行うことが可能となる。
(2)第2の態様に係るタンクシステム20A、20B、20Cは、(1)のタンクシステム20A、20B、20Cであって、前記配管圧力抵抗部30A、30B、30Cは,タンク運用圧力Ptに前記配管圧力抵抗部30A、30B、30Cにて発生する圧力損失ΔPを加えたものから、前記タンク21内における液化二酸化炭素Lの液面と前記配管頂部25tの高低差に相当する圧力を差し引いた値が、液化二酸化炭素Lの三重点圧力値に安全マージン値を加えた設定圧力下限値Psを上回るように決められる圧力損失ΔPを発生させる。
 これにより、積込配管25の配管頂部25tの高さに応じた適切な圧力損失ΔPを配管圧力抵抗部30A、30B、30Cで発生させ、液化二酸化炭素Lの圧力を高めることができる。これにより、積込配管25内の液化二酸化炭素Lの圧力Pcが、液化二酸化炭素Lの三重点圧力に応じて設定する設定圧力下限値Ps以上となる。これにより、積込配管25内で液化二酸化炭素Lが凝固してドライアイスが生成されることが抑えられる。
(3)第3の態様に係るタンクシステム20A、20Cは、(2)のタンクシステム20A、20Cであって、前記配管圧力抵抗部30A、30Cは、前記積込配管25の前記下端25bに設けられている。
 これにより、積込配管25の下端25bに設けた配管圧力抵抗部30A、30Cにより、積込配管25内で液化二酸化炭素Lが凝固してドライアイスが生成されることが抑えられる。また、既存のタンクシステムの積込配管25の下端25bに対しても、配管圧力抵抗部30A、30Cを追設することができる。
(4)第4の態様に係るタンクシステム20Bは、(2)のタンクシステム20Bであって、前記配管圧力抵抗部30Bは、前記積込配管25の前記下端25bよりも高く、かつ前記タンク21のタンク底面21bからの高さHが、前記配管圧力抵抗部30Bを通過した液化二酸化炭素Lの圧力が、前記三重点圧力値を下回らないように設けられている。
 これにより、配管圧力抵抗部30Bを、積込配管25の下端25bよりも高く、配管頂部25tよりも低い位置に設置した場合において、配管圧力抵抗部30Bよりも下方(下端25b側)においても、液化二酸化炭素Lの圧力が設定圧力下限値Ps以上となる。これにより、配管圧力抵抗部30Bよりも下方で、配管圧力抵抗部30Bを通過した液化二酸化炭素Lの圧力低下が生じてドライアイスが生成されてしまうことが抑えられる。
(5)第5の態様に係るタンクシステム20A、20B、20Cは、(1)から(4)の何れか一つタンクシステム20A、20B、20Cであって、前記配管圧力抵抗部30A、30B、30Cは、前記積込配管25内の流路断面積A1よりも小さい開口面積A2~A5を有し、液化二酸化炭素Lが流通する流通開口部30aを有する。
 このような配管圧力抵抗部30A、30B、30Cは、流通開口部30aを有する簡易な構成であり、低コストで液化二酸化炭素Lにおけるドライアイスの生成抑制が実現できる。
(6)第6の態様に係るタンクシステム20Cは、(5)のタンクシステム20Cであって、前記配管圧力抵抗部30Cは、前記流通開口部30aの開口面積A5を可変とする制御弁35と、前記制御弁35における前記流通開口部30aの開度を調整する制御装置60と、を備える。
 これにより、制御装置60により、制御弁35における流通開口部30aの開度を調整することで、配管圧力抵抗部30Cで発生する圧力損失ΔPを調整することができる。したがって、タンクシステム20Cの運用条件等に応じて、液化二酸化炭素Lの圧力を高める圧力損失ΔPを適切に調整することが可能となる。
(7)第7の態様に係るタンクシステム20Cは、(6)のタンクシステム20Cであって、前記積込配管25の前記配管頂部25tにおける前記液化二酸化炭素Lの圧力Pcを検出する配管頂部圧力センサー52をさらに備え、前記制御装置60は、前記配管頂部圧力センサー52における検出値に基づいて、前記制御弁35の開度を調整する。
 これにより、配管頂部圧力センサー52で検出された配管頂部25tにおける液化二酸化炭素Lの圧力Pcに応じて、配管圧力抵抗部30Cで発生する圧力損失ΔPを調整することができる。したがって、配管頂部25tにおける液化二酸化炭素Lの圧力Pcが設定圧力下限値Psを下回らないように、液化二酸化炭素Lの圧力を高める圧力損失ΔPを適切に調整することが可能となる。
(8)第8の態様に係る船舶1A~1Cは、船体2と、前記船体2に設けられた、(1)から(7)の何れか一つタンクシステム20A、20B、20Cと、を備える。
 これにより、タンク21内に液化二酸化炭素Lを収容する場合において、積込配管25内でドライアイスが生成されるのを抑え、タンク21の運用を円滑に行うことができるタンクシステム20A、20B、20Cを備えた船舶1A~1Cを提供することが可能となる。
 本開示によれば、積込配管内のドライアイス生成を抑え、タンクの運用を円滑に行うことができる。
1A、1B、1C…船舶
2…船体
2a…船首
2b…船尾
3A、3B…舷側
5…上甲板
7…上部構造
8…タンクシステム格納区画
20A、20B、20C…タンクシステム
21…タンク
21b…タンク底面
25…積込配管
25b…下端
25f…内周面
25t…配管頂部
30A、30B、30C…配管圧力抵抗部
30a…流通開口部
31…オリフィス
31a…プレート部
31b…貫通孔
32…多孔板
32a…プレート部
32b…貫通孔
33…フラップ
33a…外周縁
33b…隙間
35…制御弁
35a…弁体
35b…隙間
51…タンク内圧センサー
52…配管頂部圧力センサー
60…制御装置
61…CPU
62…ROM
63…RAM
64…HDD
65…信号受信モジュール
71…信号受信部
72…開度制御部
73…指令信号出力部
A1…流路断面積
A2、A3、A4、A5…開口面積
Da…船首尾方向
Dp…管軸方向
Dv…上下方向
H…配管圧力抵抗部のタンク底面からの高さ
H1…タンク内における液化二酸化炭素の液面高さ
H2…積込配管の配管頂部のタンク底面からの高さ
L…液化二酸化炭素
ΔP…圧力損失
Pc…圧力
Ps…設定圧力下限値
Pt…運用圧力

Claims (8)

  1.  内部に液化二酸化炭素が収容されるタンクと、
     上下方向に延びて前記タンク内に下端が開口するとともに、外部から供給される液化二酸化炭素を前記下端から前記タンク内に放出する積込配管と、
     前記積込配管において最も高い位置に位置する配管頂部に対して前記下端側に設けられ、前記積込配管を流通する液化二酸化炭素に圧力損失を発生させる配管圧力抵抗部と、を備えるタンクシステム。
  2.  前記配管圧力抵抗部は、タンク運用圧力に前記配管圧力抵抗部にて発生する圧力損失を加えたものから、前記タンク内における液化二酸化炭素の液面と前記配管頂部との高低差に相当する圧力を差し引いた値が、液化二酸化炭素の三重点圧力値に安全マージン値を加えた設定圧力下限値を上回るように決められる圧力損失を発生させる
    請求項1に記載のタンクシステム。
  3.  前記配管圧力抵抗部は、前記積込配管の前記下端に設けられている
     請求項2に記載のタンクシステム。
  4.  前記配管圧力抵抗部は、前記積込配管の前記下端よりも高く、かつ前記タンクのタンク底面からの高さが、前記配管圧力抵抗部を通過した液化二酸化炭素の圧力が、前記三重点圧力値を下回らないように設けられている
     請求項2に記載のタンクシステム。
  5.  前記配管圧力抵抗部は、前記積込配管内の流路断面積よりも小さい開口面積を有し、液化二酸化炭素が流通する流通開口部を有する
     請求項1から4の何れか一項に記載のタンクシステム。
  6.  前記配管圧力抵抗部は、
      前記流通開口部の開口面積を可変とする制御弁と、
      前記制御弁における前記流通開口部の開度を調整する制御装置と、を備える
     請求項5に記載のタンクシステム。
  7.  前記積込配管の前記配管頂部における前記液化二酸化炭素の圧力を検出する配管頂部圧力センサーをさらに備え、
     前記制御装置は、前記配管頂部圧力センサーにおける検出値に基づいて、前記制御弁の開度を調整する
     請求項6に記載のタンクシステム。
  8.  船体と、
     前記船体に設けられた、請求項1から7の何れか一項に記載のタンクシステムと、
     を備える船舶。
PCT/JP2020/048258 2019-12-23 2020-12-23 タンクシステム、船舶 WO2021132381A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227020783A KR20220101177A (ko) 2019-12-23 2020-12-23 탱크 시스템, 선박
FIEP20905462.6T FI4059828T3 (fi) 2019-12-23 2020-12-23 Tankkijärjestelmä ja laiva
CN202080088605.4A CN114846265B (zh) 2019-12-23 2020-12-23 罐系统、船舶
EP20905462.6A EP4059828B1 (en) 2019-12-23 2020-12-23 Tank system and ship
AU2020415040A AU2020415040B2 (en) 2019-12-23 2020-12-23 Tank system and ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019231720A JP7221856B2 (ja) 2019-12-23 2019-12-23 タンクシステム、船舶
JP2019-231720 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021132381A1 true WO2021132381A1 (ja) 2021-07-01

Family

ID=76541073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048258 WO2021132381A1 (ja) 2019-12-23 2020-12-23 タンクシステム、船舶

Country Status (7)

Country Link
EP (1) EP4059828B1 (ja)
JP (1) JP7221856B2 (ja)
KR (1) KR20220101177A (ja)
CN (1) CN114846265B (ja)
AU (1) AU2020415040B2 (ja)
FI (1) FI4059828T3 (ja)
WO (1) WO2021132381A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7245949B1 (ja) 2022-08-24 2023-03-24 三菱造船株式会社 液化二酸化炭素設備、ドライアイスの生成状況推定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08207989A (ja) * 1995-02-06 1996-08-13 Ishikawajima Harima Heavy Ind Co Ltd 貯槽内垂直受入管の液面調整装置
JPH09142576A (ja) * 1995-11-16 1997-06-03 Ishikawajima Harima Heavy Ind Co Ltd 液化ガス貯槽の導入管
JPH1086995A (ja) * 1996-09-12 1998-04-07 Ishikawajima Harima Heavy Ind Co Ltd 低温液化ガス貯槽の液受入れ構造
JP2005517144A (ja) * 2002-02-07 2005-06-09 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 40バール以上の一定圧力で流体過冷却二酸化炭素の中断されない供給のための方法およびその方法の適用のためのシステム
JP5769445B2 (ja) 2011-02-25 2015-08-26 三菱重工業株式会社 液化天然ガス貯蔵・運搬船及び液化天然ガス貯蔵・運搬船の余剰ガス発生抑制方法
JP2019031720A (ja) 2017-08-09 2019-02-28 株式会社飯沼ゲージ製作所 マスク製造装置及びマスク製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916246A (en) 1997-10-23 1999-06-29 Thermo King Corporation System and method for transferring liquid carbon dioxide from a high pressure storage tank to a lower pressure transportable tank
KR20100125625A (ko) * 2009-05-21 2010-12-01 대우조선해양 주식회사 이산화탄소 저장탱크의 저압 방지방법
JP5605939B2 (ja) * 2010-03-30 2014-10-15 昭和電工ガスプロダクツ株式会社 ドライアイス粒子の噴射装置
US20140158250A1 (en) * 2010-12-16 2014-06-12 Air Products And Chemicals, Inc. Process for filling gas storage container
KR101497420B1 (ko) * 2013-07-05 2015-03-03 삼성중공업 주식회사 증발가스 저감용 액화천연가스 수송장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08207989A (ja) * 1995-02-06 1996-08-13 Ishikawajima Harima Heavy Ind Co Ltd 貯槽内垂直受入管の液面調整装置
JPH09142576A (ja) * 1995-11-16 1997-06-03 Ishikawajima Harima Heavy Ind Co Ltd 液化ガス貯槽の導入管
JPH1086995A (ja) * 1996-09-12 1998-04-07 Ishikawajima Harima Heavy Ind Co Ltd 低温液化ガス貯槽の液受入れ構造
JP2005517144A (ja) * 2002-02-07 2005-06-09 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 40バール以上の一定圧力で流体過冷却二酸化炭素の中断されない供給のための方法およびその方法の適用のためのシステム
JP5769445B2 (ja) 2011-02-25 2015-08-26 三菱重工業株式会社 液化天然ガス貯蔵・運搬船及び液化天然ガス貯蔵・運搬船の余剰ガス発生抑制方法
JP2019031720A (ja) 2017-08-09 2019-02-28 株式会社飯沼ゲージ製作所 マスク製造装置及びマスク製造方法

Also Published As

Publication number Publication date
EP4059828B1 (en) 2024-02-14
CN114846265A (zh) 2022-08-02
JP7221856B2 (ja) 2023-02-14
EP4059828A1 (en) 2022-09-21
CN114846265B (zh) 2023-09-26
JP2021099143A (ja) 2021-07-01
AU2020415040B2 (en) 2024-05-02
EP4059828A4 (en) 2023-01-04
AU2020415040A1 (en) 2022-07-07
KR20220101177A (ko) 2022-07-19
FI4059828T3 (fi) 2024-05-02

Similar Documents

Publication Publication Date Title
WO2021132381A1 (ja) タンクシステム、船舶
KR20190111135A (ko) 선박
JP6737431B2 (ja) 液化ガス運搬船
WO2021124619A1 (ja) 船舶、船舶における液化二酸化炭素の積込方法
WO2022092236A1 (ja) 浮体、液化二酸化炭素の積込方法、液化二酸化炭素の揚荷方法
JP4721169B2 (ja) パラメトリック横揺れ防止用可変周期型減揺水槽装置
KR20160088399A (ko) 콜드-박스 장치 및 콜드-박스 시스템
KR102612424B1 (ko) 컨테이너 선박
WO2021124620A1 (ja) 船舶
WO2022210322A1 (ja) 船舶、船舶におけるタンクの圧力調整方法
JP6554126B2 (ja) 自動車運搬船のガス燃料独立タンク設置構造
WO2023219159A1 (ja) 浮体、液化二酸化炭素の積込方法
KR101411494B1 (ko) 횡동요 저감형 선박
KR20060011771A (ko) 선박
Naziri et al. Multi-Stabilizer Devices for Marine Vessel, Design and Control–A Review
JP7365992B2 (ja) 液化二酸化炭素の移載方法、浮体
KR20190079068A (ko) 안티 힐링 시스템 및 이를 구비하는 선박
JP2022071533A (ja) 浮体
KR20150062310A (ko) 프리-발라스트 선박
Perez Ship Roll Stabilisation
JPH09156587A (ja) 液体積載タンクを設置された船舶の減揺装置
JP2017154628A (ja) 船舶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227020783

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 20905462

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020905462

Country of ref document: EP

Effective date: 20220617

ENP Entry into the national phase

Ref document number: 2020415040

Country of ref document: AU

Date of ref document: 20201223

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE