WO2021131411A1 - 核酸配列計測装置、核酸配列計測方法、及びコンピュータ読み取り可能な非一時的記録媒体 - Google Patents

核酸配列計測装置、核酸配列計測方法、及びコンピュータ読み取り可能な非一時的記録媒体 Download PDF

Info

Publication number
WO2021131411A1
WO2021131411A1 PCT/JP2020/042910 JP2020042910W WO2021131411A1 WO 2021131411 A1 WO2021131411 A1 WO 2021131411A1 JP 2020042910 W JP2020042910 W JP 2020042910W WO 2021131411 A1 WO2021131411 A1 WO 2021131411A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
nucleic acid
acid sequence
light amount
measurement
Prior art date
Application number
PCT/JP2020/042910
Other languages
English (en)
French (fr)
Inventor
祐樹 宮内
崇 蓼沼
朋之 田口
Original Assignee
横河電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横河電機株式会社 filed Critical 横河電機株式会社
Priority to US17/780,833 priority Critical patent/US20230002813A1/en
Priority to EP20907095.2A priority patent/EP4083179A4/en
Priority to CN202080089112.2A priority patent/CN114846132A/zh
Publication of WO2021131411A1 publication Critical patent/WO2021131411A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0118Apparatus with remote processing
    • G01N2021/0125Apparatus with remote processing with stored program or instructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0181Memory or computer-assisted visual determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks

Definitions

  • the present invention relates to a nucleic acid sequence measuring device, a nucleic acid sequence measuring method, and a computer-readable non-temporary recording medium.
  • a method for measuring a target having a specific nucleic acid sequence contained in a sample a method using a DNA chip (a detection probe having a complementary sequence of the specific nucleic acid sequence provided on a solid surface such as a substrate) is widely used.
  • This method is a method of measuring a target by utilizing the property that the target contained in the sample added to the DNA chip is collected by the detection probe of the DNA chip by hybridization. In this method, the amount of the target contained in the sample can be measured in addition to whether or not the target is contained in the sample.
  • Patent Document 1 as the above-mentioned detection probe, a device for measuring a nucleic acid sequence provided with a fluorescent probe to which a fluorescent molecule is added and a quenching probe to which a quenching molecule for quenching the fluorescence of the fluorescent molecule is added ( A method of measuring a target using a DNA chip) is disclosed. In this method, it is possible to measure the target without adding fluorescent molecules to the target and washing the DNA chip (washing for removing uncollected targets and the like).
  • the present invention has been made in view of the above circumstances, and is a nucleic acid sequence measuring device, a nucleic acid sequence measuring method, and a computer capable of improving the measurement accuracy of a target having a specific nucleic acid sequence contained in a sample. It is an object of the present invention to provide a readable non-temporary recording medium.
  • the nucleic acid sequence measuring apparatus is an addition of the target in the nucleic acid sequence measuring apparatus (1) for measuring a target (TG) having a specific nucleic acid sequence contained in a sample.
  • a target TG
  • the nucleic acid sequence measurement device Before or after the addition of the sample to the nucleic acid sequence measurement device based on the detection unit (12) for detecting the fluorescence emitted from the nucleic acid sequence measurement device (DV) that emits fluorescence by the detection unit and the detection result of the detection unit.
  • the first light amount indicating the amount of fluorescence emitted from the predetermined measurement region (SP) of the nucleic acid sequence measurement device and the addition of the sample to the nucleic acid sequence measurement device are defined in advance.
  • the detection unit includes an image acquisition unit (12a) for acquiring an image of at least the image acquisition region (BK) including the measurement region, and the calculation unit includes the calculation unit.
  • the first image which is an image of the image acquisition region acquired at the first time point
  • the second image which is an image of the image acquisition area acquired at the second time point
  • the amount of light and the amount of the second light are obtained, respectively.
  • the calculation unit uses the average gradation value of the pixels forming the image of the measurement region included in the first image as the first light amount as the image processing.
  • the process of obtaining (S13) and the process of obtaining the average gradation value of the pixels forming the image of the measurement region included in the second image as the second light amount (S14) are performed.
  • the calculation unit uses pixels in which the difference in gradation value for each pixel between the first image and the second image exceeds a predetermined first threshold value.
  • the calculation unit obtains the standard deviation of the gradation value of the pixels forming the image of the measurement region included in the first image, and is based on the standard deviation.
  • the first threshold is set.
  • the calculation unit performs the image processing with the gradation values of the pixels forming the image of the measurement region included in the first image and the second.
  • a process (S33) is performed in which the difference between the gradation values of the pixels forming the image of the measurement region included in the image and the gradation values of the pixels is obtained as the difference between the first light amount and the second light amount.
  • the calculation unit extracts pixels in which the difference between the first light amount and the second light amount exceeds a predetermined second threshold value, and the extracted pixels The target is measured based on the number.
  • the calculation unit obtains the standard deviation of the gradation values of the pixels forming the image in the region other than the measurement region included in the first image, and the standard deviation is obtained.
  • the second threshold value is set based on.
  • the image acquisition unit acquires an image of the image acquisition region with different resolutions.
  • the nucleic acid sequence measuring method is a nucleic acid sequence measuring method executed by a nucleic acid sequence measuring device for measuring a target (TG) having a specific nucleic acid sequence contained in a sample, and is obtained by adding the target.
  • TG target
  • a first amount of light indicating the amount of fluorescence emitted from a predetermined measurement region of the device for measuring nucleic acid sequence at a first time point before or immediately after the addition of the sample to the device for measuring a nucleic acid sequence that emits fluorescence, and the above.
  • the difference from the second light amount indicating the amount of fluorescence emitted from the measurement region was obtained (S15, S28, S33), the target is measured based on the difference between the first light amount and the second light amount (S16, S29, S36).
  • the nucleic acid sequence measurement method acquires an image of at least the image acquisition region including the measurement region, and obtains a first image which is an image of the image acquisition region acquired at the first time point.
  • Image processing of the second image which is an image of the image acquisition region acquired at the second time point, is performed to obtain the first light amount and the second light amount, respectively.
  • the image processing a process of obtaining the average gradation value of the pixels forming the image of the measurement region included in the first image as the first light amount (S13). And the process (S14) of obtaining the average gradation value of the pixels forming the image of the measurement area included in the second image as the second light amount.
  • pixels in which the difference in gradation value for each pixel between the first image and the second image exceeds a predetermined first threshold value are extracted, and the first image is described.
  • the standard deviation of the gradation value of the pixels forming the image of the measurement region included in the first image is obtained, and the first threshold value is set based on the standard deviation. Set.
  • the gradation value of each of the pixels forming the image of the measurement region included in the first image and the gradation value included in the second image are described.
  • a process (S33) is performed in which the difference between the gradation values of the pixels forming the image in the measurement area and the gradation value is obtained as the difference between the first light amount and the second light amount.
  • pixels in which the difference between the first light amount and the second light amount exceeds a predetermined second threshold value are extracted, and the pixels are extracted based on the number of extracted pixels. Measure the target.
  • the standard deviation of the gradation value of the pixels forming the image in the region other than the measurement region included in the first image is obtained, and the standard deviation is based on the standard deviation. 2 Set the threshold.
  • nucleic acid sequence measurement method acquires images in the image acquisition region with different resolutions.
  • a computer-readable non-temporary recording medium is a computer-readable device that stores a program executed by a nucleic acid sequence measuring device that measures a target (TG) having a specific nucleic acid sequence contained in a sample.
  • the program comprises the nucleic acid at the first time point before or immediately after the addition of the sample to the nucleic acid sequence measuring device that fluoresces due to the addition of the target to the nucleic acid sequence measuring device.
  • the first light amount indicating the amount of fluorescence emitted from the predetermined measurement region of the sequence measurement device and the second time point after the predetermined time has elapsed from the addition of the sample to the nucleic acid sequence measurement device.
  • the difference from the second light amount indicating the amount of fluorescence emitted from the measurement region is obtained (S15, S28, S33), and the target is measured based on the difference between the first light amount and the second light amount (S15, S28, S33). S16, S29, S36).
  • the program causes the nucleic acid sequence measuring apparatus to acquire an image of an image acquisition region including at least the measurement region, and the acquisition at the first time point.
  • Image processing of the first image which is an image of the image acquisition region and the second image which is an image of the image acquisition region acquired at the second time point is performed to obtain the first light amount and the second light amount, respectively. ..
  • the present invention there is an effect that the measurement accuracy of the target having a specific nucleic acid sequence contained in the sample can be improved as compared with the conventional case.
  • nucleic acid sequence measuring apparatus the nucleic acid sequence measuring method, and the computer-readable non-temporary recording medium according to the embodiment of the present invention will be described in detail with reference to the drawings.
  • the outline of the embodiment of the present invention will be described first, and then the details of the embodiment of the present invention will be described.
  • An embodiment of the present invention is intended to improve the measurement accuracy of a target having a specific nucleic acid sequence contained in a sample as compared with the conventional case.
  • an embodiment of the present invention enables measurement of a target even if the target contained in the sample is very small.
  • the embodiment of the present invention eliminates the effects of weak fluorescence (offset light) emitted from the nucleic acid sequence measurement device and uneven fluorescence (variation in the amount of light) as much as possible even when no sample is added. By doing so, high measurement accuracy is realized.
  • the device for measuring a nucleic acid sequence disclosed in Patent Document 1 described above has a fluorescent probe to which a fluorescent molecule is added and a quenching probe to which a quenching molecule is added, and the fluorescence of the fluorescent molecule is extinguished by the quenching molecule. As described above, the fluorescent probe and the quenching probe are combined. In this device for measuring a nucleic acid sequence, when a target to be measured is added, the binding between the fluorescent probe and the quenching probe is broken by hybridization so that fluorescence is emitted.
  • the fluorescence of the fluorescent molecule added to the fluorescent probe is extinguished by the quenching molecule added to the quenching probe, so that the device for measuring the nucleic acid sequence fluoresces. Should not be issued.
  • the quenching of the fluorescence by the quenching molecule is incomplete, offset light is emitted from the device for measuring the nucleic acid sequence. Since such offset light becomes noise, the measurement accuracy is deteriorated. For example, when the number of targets is small, the fluorescence emitted from the nucleic acid sequence measuring device is also weak, and if the weak fluorescence is buried in the offset light, the target cannot be measured.
  • a process of comparing the amount of fluorescence emitted from the nucleic acid sequence measuring device is performed before and after hybridization. That is, a process is performed in which the amount of offset light emitted from the nucleic acid sequence measuring device before hybridization is compared with the amount of fluorescence emitted from the nucleic acid sequence measuring device after hybridization.
  • a nucleic acid sequence measurement device having a block (second block) to which a sample not containing a target is added in addition to a block (first block) to which a sample containing a target is added has been used.
  • the amount of fluorescence (offset light) emitted from the second block is compared with the amount of fluorescence (fluorescence emitted after hybridization) emitted from the first block.
  • the above processing was performed using a nucleic acid sequence measurement device to which a sample containing a target is added and a nucleic acid sequence measurement device to which a sample not containing a target is added. That is, the amount of fluorescence (offset light) emitted from the latter device for measuring nucleic acid sequences is compared with the amount of fluorescence (fluorescence emitted after hybridization) emitted from the former device for measuring nucleic acid sequences. ..
  • the amount of offset light varies between blocks and between nucleic acid sequence measurement devices due to manufacturing variations of nucleic acid sequence measurement devices. Therefore, if the amount of light of the offset light is relatively small, the target can be measured, but if the amount of light of the offset light is relatively large, it may not be possible to measure the target. As described above, the measurement accuracy deteriorates depending on the magnitude of the variation in the amount of offset light between the blocks and the device for measuring the nucleic acid sequence.
  • the amount of light of fluorescence emitted from the predetermined measurement region of the nucleic acid sequence measurement device is shown at the first time point before or immediately after the addition of the sample to the nucleic acid sequence measurement device.
  • the difference between the amount of light and the amount of second light indicating the amount of fluorescence emitted from the measurement region at the second time point after a predetermined time has elapsed from the addition of the sample to the device for measuring the nucleic acid sequence is determined.
  • the target is measured based on the difference between the first light amount and the second light amount.
  • the difference between the first light amount of fluorescence emitted from a certain measurement region at the first time point and the second light amount of fluorescence emitted from the same measurement area as described above at the second time point Seeking. Then, the target is measured based on the difference between the first light amount and the second light amount. Therefore, the measurement accuracy of the target having a specific nucleic acid sequence contained in the sample can be improved as compared with the conventional case.
  • a device for measuring a nucleic acid sequence used for measuring a nucleic acid sequence will be described.
  • a nucleic acid sequence measuring device for measuring a nucleic acid sequence using the nucleic acid sequence measuring device and a nucleic acid sequence measuring method will be described in order.
  • FIG. 1 is a perspective view schematically showing the appearance of the device for measuring a nucleic acid sequence used in the embodiment of the present invention.
  • the nucleic acid sequence measurement device DV is, for example, a device in which a plurality of spot SPs (measurement regions) are formed on a substrate SB.
  • the substrate SB for example, plate-shaped glass having a rectangular shape in a plan view, single crystals such as silicon, calcium fluoride and sapphire, ceramics, and a resin material can be used.
  • the resin material examples include COP (cycloolefin polymer) having excellent optical properties, chemical and thermal stability, COC (cyclic olefin copolymer), polycarbonate, acrylic resin, polyethylene resin and the like.
  • the plan view shape of the substrate SB may be any shape.
  • the spot SP is an area where the detection probe used to detect the target to be measured is fixed.
  • This spot SP is divided into blocks BK in units of a predetermined number. Addition of the sample to the nucleic acid sequence measurement device DV is performed for each block BK. In addition, image acquisition of the nucleic acid sequence measurement device DV is often performed for each block BK. That is, it can be said that the block BK is an image acquisition area.
  • FIG. 2 is a diagram schematically showing a detection probe of the device for measuring a nucleic acid sequence used in the embodiment of the present invention.
  • the detection probe includes a fluorescent probe PB1 fixed on the substrate SB and a quenching probe PB2.
  • the fluorescent probe PB1 is obtained by adding the fluorescent molecule FM to the complementary sequence of the target TG to be measured.
  • the quenching probe PB2 is a sequence in which the quenching molecule QM is added to a sequence that is at least partially complementary to the above-mentioned complementary sequence of the fluorescent probe PB1.
  • the fluorescent probe PB1 and the quenching probe PB2 are bound so that the fluorescence of the fluorescent molecule FM is extinguished by the quenching molecule QM.
  • the fluorescent probe PB1 and the quenching probe PB2 are bound by the coupling portion CN.
  • the fluorescence of the fluorescent molecule FM is extinguished by the quenching molecule QM by the principle of quenching by the fluorescence resonance energy transfer.
  • the fluorescent probe PB1 and the quenching probe PB2 are bound by the binding portion CN, and the fluorescent molecule FM and the quenching molecule QM are in close contact with each other. In this state, even if the excitation light is irradiated, the fluorescence of the fluorescent molecule FM is extinguished by the quenching molecule QM, so that the fluorescence is not emitted.
  • the fluorescent probe PB1 having a complementary sequence of the target TG dissociates from the quenching probe PB2 and binds to the target TG.
  • the binding between the fluorescent probe PB1 and the quenching probe PB2 is released, and the fluorescent molecule FM and the quenching molecule QM are separated from each other. In this state, fluorescence is emitted from the fluorescent molecule FM by irradiation with excitation light.
  • the complementary sequence of the target TG may be provided on the quenching probe PB2. That is, the quenching probe PB2 is obtained by adding the quenching molecule QM to the complementary sequence of the target TG, and the fluorescent probe PB1 adds the fluorescent molecule FM to the sequence that is at least partially complementary to the above complementary sequence of the quenching probe PB2. It may be the one that has been used.
  • FIG. 3 is a block diagram showing a main configuration of a nucleic acid sequence measuring device according to an embodiment of the present invention.
  • the nucleic acid sequence measuring device 1 includes a detection device 10 and an arithmetic unit 20, and uses the nucleic acid sequence measuring device DV described with reference to FIGS. 1 and 2 to prepare a sample. Measure the included targets.
  • the detection device 10 includes a temperature control stage 11 and a detection unit 12, and detects fluorescence emitted from the nucleic acid sequence measurement device DV.
  • the temperature control stage 11 is configured so that the device DV for measuring the nucleic acid sequence can be mounted, and adjusts the temperature of the mounted device DV for measuring the nucleic acid sequence.
  • the temperature control stage 11 is provided to adjust the temperature of the nucleic acid sequence measurement device DV to room temperature. This is because the amount of light of the fluorescent molecule FM may change depending on the temperature. It is desirable that the temperature control stage 11 is configured so that the sample can be agitated by vibrating or rotating the nucleic acid sequence measuring device DV in order to promote the hybridization reaction.
  • the detection unit 12 irradiates the nucleic acid sequence measurement device DV with excitation light to detect the fluorescence emitted from the nucleic acid sequence measurement device DV.
  • the detection unit 12 includes an excitation light source (not shown) and an image acquisition unit 12a.
  • An excitation light source (not shown) emits excitation light to irradiate the nucleic acid sequence measuring device DV.
  • the excitation light emitted from the excitation light source is irradiated for each block BK shown in FIG. 1, for example.
  • excitation light source examples include a laser light source that emits single-wavelength laser light or its expanded light, an LED (Light Emitting Diode), a lamp that emits white light, and a combination of an LED and a wavelength filter.
  • a light source or the like can be used.
  • the image acquisition unit 12a includes a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and is an image of a device DV for measuring a nucleic acid sequence. (Two-dimensional image) is acquired.
  • the image acquisition unit 12a acquires an image for each block BK shown in FIG. 1, for example.
  • the arithmetic unit 20 measures the target TG based on the detection result of the detection device 10. Specifically, the arithmetic unit 20 measures the amount of the target contained in the sample in addition to whether or not the sample added to the nucleic acid sequence measuring device DV contains the target TG.
  • the arithmetic unit 20 includes an operation unit 21, a display unit 22, an input / output unit 23, a storage unit 24, and an arithmetic unit 25.
  • the operation unit 21 is provided with an input device such as a keyboard or a pointing device, and outputs an instruction (instruction to the arithmetic unit 20) according to the operation of the user who uses the arithmetic unit 20 to the arithmetic unit 25.
  • the display unit 22 includes a display device such as a liquid crystal display device, and displays various information output from the calculation unit 25.
  • the operation unit 21 and the display unit 22 may be physically separated, and may be physically integrated like a touch panel type liquid crystal display device having both a display function and an operation function. There may be.
  • the input / output unit 23 is connected to the detection unit 12 of the detection device 10 and inputs / outputs various data to / from the detection unit 12. For example, the input / output unit 23 outputs control data for emitting excitation light from an excitation light source (not shown) to the detection unit 12. Further, the detection device 10 inputs the detection result of the detection unit 12 (image data acquired by the image acquisition unit 12a) to the input / output unit 23. After that, the input / output unit 23 outputs the detection result of the detection unit 12 to the calculation unit 25.
  • the input / output unit 23 may be connected to the temperature control stage 11 so that the arithmetic unit 20 controls the temperature of the nucleic acid sequence measurement device DV.
  • the storage unit 24 is provided with an auxiliary storage device such as an HDD (hard disk drive) or SSD (solid state drive), and stores various data.
  • the storage unit 24 stores image data output from the detection unit 12, various data required for the calculation of the calculation unit 25, data indicating the calculation result of the calculation unit 25, and other data.
  • the storage unit 24 may store, for example, a program that realizes the functions of the calculation unit 25.
  • the calculation unit 25 stores the image data output from the input / output unit 23 in the storage unit 24. Further, the calculation unit 25 reads out the image data stored in the storage unit 24, performs image processing on the image data, and measures the target TG included in the sample added to the nucleic acid sequence measurement device DV. Specifically, the calculation unit 25 measures the target TG before and after hybridization based on the amount of change in the amount of fluorescence emitted from the same spot SP. Further, the calculation unit 25 outputs control data for the detection unit 12 (for example, control data for emitting excitation light from an excitation light source (not shown)) to the input / output unit 23. The details of the processing performed by the calculation unit 25 will be described later.
  • the function of the arithmetic unit 25 is realized by software, for example, by a CPU (Central Processing Unit) or an MPU (Micro Processing Unit) reading and executing a program stored in the storage unit 24. It may be something that is done.
  • the function of the arithmetic unit 25 is realized by using hardware such as FPGA (Field Programmable Gate Array), LSI (Large Scale Integration), and ASIC (Application Specific Integrated Circuit). May be done.
  • first nucleic acid sequence measurement method a measurement method that does not consider the uneven fluorescence (variation in the amount of light) in the spot SP
  • second nucleic acid sequence measurement method two measurement methods (hereinafter, each referred to as a "second nucleic acid sequence measurement method” and a “third nucleic acid sequence measurement method") in consideration of fluorescence unevenness (variation in light intensity) in the spot SP.
  • FIG. 4 is a flowchart showing the first nucleic acid sequence measurement method.
  • the sample including the target TG is adjusted.
  • the work of preparing the nucleic acid sequence measuring device DV described with reference to FIGS. 1 and 2 in the temperature control stage 11 of the nucleic acid sequence measuring device 1 is performed.
  • a sample is added to one of a plurality of block BKs (hereinafter, referred to as “target block BK0”) of the nucleic acid sequence measurement device DV.
  • the detection unit 12 When a sample is added to the nucleic acid sequence measurement device DV, the detection unit 12 first acquires an image (first image) at a time point (first time point) immediately after the sample addition (step S11). In this process, the control data output from the arithmetic unit 25 of the arithmetic unit 20 is input to the detection unit 12 via the input / output unit 23. As a result, excitation light is emitted from an excitation light source (not shown) provided in the detection unit 12, and the target block BK0 is irradiated with the excitation light. Then, the image acquisition unit 12a acquires an image of the target block BK0 irradiated with the excitation light.
  • this period is a period in which the amount of fluorescence emitted from the nucleic acid sequence measuring device DV hardly changes even if the sample is added. This period varies depending on the properties of the nucleic acid sequence measurement device DV (property of the fluorescent probe PB1 and the quenching probe PB2) and the amount of the target TG contained in the sample. Therefore, it is desirable that the timing of acquiring the first image is as close as possible to the time of sample addition.
  • the detection unit 12 acquires an image (second image) at a time point (second time point) after a lapse of a predetermined time from the sample addition (step S12). Specifically, after the temperature of the nucleic acid sequence measurement device DV is raised by the temperature control stage 11 and a time that is considered to have sufficiently progressed hybridization has elapsed, the image acquisition unit 12a captures the image of the target block BK0. get.
  • the time during which hybridization is considered to have progressed sufficiently varies depending on the properties of the nucleic acid sequence measurement device DV (property of the fluorescent probe PB1 and the quenching probe PB2) and the amount of the target TG contained in the sample. Therefore, for example, it is desirable to conduct an experiment in advance and set the above time in advance.
  • the images acquired in steps S11 and S12 are output from the detection unit 12 to the arithmetic unit 20.
  • the detection unit 12 may individually output the images acquired in steps S11 and S12 to the arithmetic unit 20 each time each step is completed.
  • the detection unit 12 may temporarily store the image acquired in step S11 and output it to the arithmetic unit 20 together with the image acquired in step S12 after the end of step S12.
  • the image output from the detection unit 12 to the arithmetic unit 20 is stored in the storage unit 24 of the arithmetic unit 20.
  • the arithmetic unit 25 of the arithmetic unit 20 reads out the first image stored in the storage unit 24, performs image processing, and calculates the amount of fluorescence light (first light amount) emitted from each of the spot SPs (step S13). .. Specifically, the calculation unit 25 performs image processing on the image acquired in step S11 (the image of the target block BK0) and extracts the spot area (the area estimated to be the image of the spot SP). To do. Then, the calculation unit 25 obtains the average gradation value of each pixel forming the image of the spot SP as the first light amount for each of the extracted spot regions.
  • the arithmetic unit 25 of the arithmetic unit 20 reads out the second image stored in the storage unit 24 and performs image processing to calculate the amount of fluorescence light (second light amount) emitted from each of the spot SPs (step S14). Specifically, the calculation unit 25 performs image processing on the image (image of the target block BK0) acquired in step S12 to extract a spot area. Then, the calculation unit 25 obtains the average gradation value of each pixel forming the image of the spot SP as the second light amount for each of the extracted spot regions.
  • the calculation unit 25 has a light amount that is the difference (light amount change amount) between the average gradation value (first light amount) calculated in step S13 and the average gradation value (second light amount) calculated in step S14.
  • the amount of change is calculated (step S15). That is, the calculation unit 25 calculates the amount of change in the amount of fluorescence emitted from the same spot SP before and after hybridization.
  • the arithmetic unit 25 of the arithmetic unit 20 measures the target TG included in the sample (step S16). Specifically, the calculation unit 25 determines whether or not the target TG is contained in the sample added to the nucleic acid sequence measurement device DV. Further, the calculation unit 25 measures the amount of the target included in the sample. In this way, the target TG included in the sample is measured.
  • FIG. 5 is a diagram showing an example of an image acquired by the first nucleic acid sequence measurement method.
  • FIG. 5A is, for example, an image of the target block BK0 before hybridization (first image)
  • FIG. 5B is, for example, an image of the target block BK0 after hybridization (second image).
  • the circular regions arranged two-dimensionally in FIGS. 5A and 5B indicate an image (spot region) of the spot SP provided in the target block BK0.
  • the color of this spot region has a smaller gradation value (closer to black) as the amount of fluorescence emitted from the spot SP is smaller, and a larger gradation value (whiter) as the amount of fluorescence emitted from the spot SP is larger. Closer).
  • each color of the spot region is gray. This means that offset light is emitted from each of the spots SP due to the incompleteness of quenching by the quenching molecule QM provided on the quenching probe PB2.
  • the color of the spot region in the region R surrounded by the broken line is white. This means that at the spot SP in the region R, the target TG was collected by the detection probe and emitted strong fluorescence.
  • the calculation unit 25 calculates the average gradation value as the first light quantity for each of the spot regions shown in FIG. 5A. In the process of step S14 described above, the calculation unit 25 calculates the average gradation value as the second light amount for each of the spot regions shown in FIG. 5B. Then, in the process of step S15 described above, the calculation unit 25 calculates the amount of change in the amount of light, which is the difference between the amount of the first light and the amount of the second light, for each of the spot regions.
  • the calculation unit 25 measures the target TG included in the sample by using the amount of change in the amount of light in the 10 spot regions in the region R.
  • the first nucleic acid sequence measurement method the first amount of fluorescence emitted from a certain spot SP at the time immediately after the sample addition (first time point) and the time point after a predetermined time from the sample addition (second time point). Therefore, the difference from the second light amount of fluorescence emitted from the same spot SP as described above is obtained. Then, the target is measured based on the difference between the first light amount and the second light amount. As a result, the influence of offset light can be effectively eliminated, so that the measurement accuracy of the target having a specific nucleic acid sequence contained in the sample can be improved as compared with the conventional case.
  • FIG. 6 is a flowchart showing a second nucleic acid sequence measurement method.
  • the same reference numerals are given to the steps similar to the steps shown in FIG. Also in this measurement method, the sample including the target TG is adjusted before the processing of the flowchart shown in FIG. 6 is started, and then the sample is added to the target block BK0.
  • the detection unit 12 When a sample is added to the nucleic acid sequence measurement device DV, the detection unit 12 first acquires an image (first image) at a time point (first time point) immediately after the sample addition (step S11). Next, the detection unit 12 acquires an image (second image) at a time point (second time point) after a lapse of a predetermined time from the sample addition (step S12). Since the processes of steps S11 and S12 are the same as the processes described with reference to FIG. 4, detailed description thereof will be omitted.
  • the calculation unit 25 performs image processing on the first image and the second image, and extracts a spot region from each of the first image and the second image (step S21). Subsequently, the calculation unit 25 calculates the gradation value standard deviation for each of the spot regions extracted from the first image (step S22). Specifically, the calculation unit 25 calculates the standard deviation of the gradation values of the pixels forming the image of the spot SP for each spot region extracted from the first image. Then, the calculation unit 25 sets each confidence interval (first threshold value) of the spot region using the gradation value standard deviation calculated in step S22 (step S23).
  • step S22 is performed in order to determine how much fluorescence unevenness (variation in the amount of light) occurs in each of the spot regions.
  • the processing of step S23 is performed in order to extract pixels having a certain amount of change in the amount of light before and after hybridization (pixels having a large difference in gradation value) for each of the spot regions in the processing of step S25 described later.
  • the method of setting the confidence interval is arbitrary, but for example, a confidence interval having a confidence coefficient of 0.95 can be set.
  • the calculation unit 25 calculates the amount of change in the gradation value of each pixel forming the image of the spot SP for each spot region extracted in the process of step S21 (step S24). Then, the calculation unit 25 extracts pixels having a gradation value change equal to or greater than the confidence interval set in step S23 for each spot region extracted in the process of step S21 (step S25).
  • the calculation unit 25 determines the average gradation value (first light amount) and gradation of the pixels extracted in the processing of step S25 for each spot region extracted from the first image in the processing of step S21.
  • the value standard deviation is calculated (step S26).
  • the calculation unit 25 calculates the average gradation value (second light amount) and the gradation value standard deviation of the pixels extracted in the process of step S25 for each spot region extracted from the second image in the process of step S21. Calculate (step S27).
  • the calculation unit 25 tests the difference (light amount change amount) between the average gradation value (first light amount) calculated in step S26 and the average gradation value (second light amount) calculated in step S27. (Step S28). Specifically, the calculation unit 25 uses the gradation value standard deviation calculated in steps S26 and S27 to test the difference (light amount change amount) of the above average gradation values. Finally, the calculation unit 25 measures the target TG included in the sample based on the test result in step S28 (step S29). In this way, the target TG included in the sample is measured.
  • FIG. 7 is a diagram showing an example of an image acquired by the second nucleic acid sequence measurement method.
  • FIG. 7A is, for example, a part of an image (first image) of the target block BK0 acquired before hybridization.
  • FIG. 7B is an enlarged view of one spot region of the images (first image, second image) acquired before and after hybridization.
  • the image G1 is an image before hybridization
  • the image G2 is an image after hybridization.
  • the image G2 is generally whitish (larger gradation value) than the image G1. This means that the overall amount of light is higher after hybridization than before hybridization. Further, referring to FIG. 7B, all of the images G1 and G2 have not the same gradation value but a mottled pattern. From this, it can be seen that the variation in the amount of fluorescence light in the spot region occurs not only before hybridization but also after hybridization.
  • FIG. 8 is a diagram showing an example of the variation distribution of the gradation values of the pixels in the spot region before and after hybridization.
  • FIG. 8A is a histogram showing the variation distribution of the gradation values for the images G1 and G2 shown in FIG. 7B.
  • FIG. 8B is a histogram showing the variation distribution of the gradation values of the pixels (pixels having a large amount of gradation change) extracted from the images G1 and G2 shown in FIG. 7B. That is, FIG. 8B is a graph showing the variation distribution of the gradation values in a histogram after the processing of step S25 shown in FIG. 6 is performed.
  • the distribution of the gradation values of the pixels is around “20,000” before hybridization, and the distribution of the gradation values of the pixels is around “40000” after hybridization. .. Further, when comparing FIG. 8A and FIG. 8B, it can be seen that the variation is smaller and the average gradation value is larger in FIG. 8B than in FIG. 8A.
  • FIG. 9 is a diagram showing an example of the average gradation value and standard deviation of the pixels in the spot region before and after hybridization.
  • no pixel extraction is the average gradation value and standard deviation of the images G1 and G2 shown in FIG. 7B.
  • those marked with “pixel extraction” are the average gradation value and standard deviation of the pixels (pixels having a large amount of gradation change) extracted from the images G1 and G2 shown in FIG. 7B. Is.
  • the average gradation value is shown by a bar graph, and the standard deviation is shown by an error bar.
  • the average gradation value of the one with "pixel extraction” is added as “without pixel extraction” regardless of whether it is before or after hybridization. It can be seen that it is larger than the average gradation value.
  • the standard deviation of those marked with “pixel extraction” is one-third of the standard deviation of those marked “without pixel extraction” regardless of whether before or after hybridization. It can be seen that it has decreased to about one.
  • step S28 shown in FIG. 6 the calculation unit 25 determines the amount of change in the amount of light, which is the difference between the average gradation value before hybridization and the average gradation value after hybridization, and the standard deviation before and after hybridization. Tested using.
  • the standard deviation can be reduced to about one-third, so that the measurement accuracy of the target can be improved.
  • a confidence interval is set from the gradation value standard deviation of the spot region extracted from the first image, and pixels having a gradation value change equal to or greater than the confidence interval are extracted. There is.
  • the average gradation value (first light amount) of the extracted pixels is obtained for each spot area of the first image, and the average gradation value (second light amount) of the extracted pixels is obtained for each spot area of the first image. Is obtained, and the amount of change in the amount of light, which is the difference between them, is tested. Then, the target is measured based on the test result. As a result, the influence of uneven light intensity in the spot region can be effectively eliminated, so that the measurement accuracy of the target having a specific nucleic acid sequence contained in the sample can be improved as compared with the conventional case.
  • FIG. 10 is a flowchart showing a third nucleic acid sequence measurement method.
  • the same reference numerals are given to the steps similar to the steps shown in FIGS. 4 and 6.
  • the sample including the target TG is adjusted before the processing of the flowchart shown in FIG. 10 is started, and then the sample is added to the target block BK0.
  • the detection unit 12 When a sample is added to the nucleic acid sequence measurement device DV, the detection unit 12 first acquires an image (first image) at a time point (first time point) immediately after the sample addition (step S11). Next, the detection unit 12 acquires an image (second image) at a time point (second time point) after a lapse of a predetermined time from the sample addition (step S12). Next, the calculation unit 25 performs image processing on the first image and the second image, and extracts a spot region from each of the first image and the second image (step S21).
  • the calculation unit 25 calculates the gradation value standard deviation outside the spot region extracted from the first image (step S31). Specifically, the calculation unit 25 calculates the standard deviation of the gradation values of the pixels forming the image in an arbitrary region other than the spot region extracted from the first image. Then, the calculation unit 25 sets the confidence interval (second threshold value) using the gradation value standard deviation calculated in step S31 (step S32).
  • step S31 is performed, for example, to what extent the amount of light varies due to noise caused by the characteristics of the nucleic acid sequence measuring device DV and noise caused by the solid-state image sensor provided in the image acquisition unit 12a. This is to find out if it is occurring.
  • the processing of step S32 is performed in order to extract pixels in which the amount of change in the amount of light before and after hybridization is large to some extent (pixels having a large difference in gradation value) for each of the spot regions in the processing of step S34 described later.
  • the method of setting the confidence interval is arbitrary, but for example, a confidence interval having a confidence coefficient of 0.95 can be set.
  • the calculation unit 25 calculates the amount of change in the gradation value of each pixel forming the image of the spot SP for each spot region extracted in the process of step S21 (step S33). Then, the calculation unit 25 extracts pixels having a gradation value change equal to or greater than the confidence interval set in step S32 for each spot region extracted in the process of step S21 (step S34).
  • the calculation unit 25 counts the number of extracted pixels for each spot area extracted in the processing of step S21 (step S35). Finally, the calculation unit 25 measures the target TG included in the sample based on the counting result in step S35 (step S36). In this way, the target TG included in the sample is measured.
  • FIG. 11 is a diagram showing an example of an image acquired by the third nucleic acid sequence measurement method. Note that FIG. 3 shows images of spots before and after hybridization obtained when three samples having different target TG concentrations were added to the nucleic acid sequence measurement device DV. First, when the density of the target TG is low, the change in the gradation value of the image is slight before and after hybridization. Therefore, there are almost no pixels extracted by the process of step S34 in FIG.
  • the number of pixels extracted by the process of step S34 in FIG. 10 increases as the density of the target TG increases. By counting the number of extracted pixels in this way, the target TG contained in the sample can be measured.
  • the confidence interval is set from the gradation value standard deviation outside the spot region extracted from the first image.
  • the amount of change in gradation value of each pixel is calculated for each extracted spot region, and pixels having a change in gradation value equal to or greater than the confidence interval are extracted.
  • the number of extracted pixels is counted for each extracted spot area, and the target is measured based on the counting result.
  • the nucleic acid sequence measuring device 1 may be able to acquire an image (an image of a block BK or a spot SP) of the nucleic acid sequence measuring device DV at different resolutions.
  • an optical system capable of changing the optical magnification may be provided between the image acquisition unit 12a shown in FIG. 3 and the temperature control stage 11 (nucleic acid sequence measurement device DV).
  • a plurality of solid-state image pickup elements having different numbers of pixels may be provided in the image acquisition unit 12a shown in FIG. 3 so that the solid-state image pickup elements can be switched according to the resolution. This is done in order to further improve the measurement accuracy of the target by photographing the spot SP with a high resolution.
  • the diameter of the spot SP is 100 [ ⁇ m]
  • the size of one pixel of the solid-state image sensor is 10 [ ⁇ m] square (10 ⁇ 10 [ ⁇ m]).
  • the number of pixels that capture the spot SP is only about 78.5 pixels (5 ⁇ 5 ⁇ ⁇ pixels).
  • the image of the spot SP is magnified 10 times by the above optical system, the range captured by one pixel is 1 [ ⁇ m] square (1 ⁇ 1 [ ⁇ m]). Then, the number of pixels in which the spot SP is photographed becomes about 7850 pixels (50 ⁇ 50 ⁇ ⁇ pixels), and the resolution is the square of the magnification. In this way, by making it possible to acquire images of the nucleic acid sequence measurement device DV at high resolutions other than low resolution (equal magnification), it is possible to more accurately capture variations in gradation values within the spot area. Become.
  • FIG. 12 is a diagram showing an example of an image acquired by the nucleic acid sequence measuring device according to the modified example.
  • FIG. 12A is an image acquired when a certain spot SP is photographed at the same magnification.
  • FIG. 12B is an image acquired when the same spot SP as in FIG. 12A is photographed at a magnification of 10 times, and
  • FIG. 12C is an image acquired when the same spot SP as in FIG. 12A is photographed at a magnification of 40 times. It is an image to be made.
  • FIG. 12A it can be seen that an image with a coarse mosaic can be obtained when the image is taken at the same magnification.
  • FIG. 12B it can be seen that when the image is taken at a magnification of 10 times, the coarseness of the eyes is smaller than that of the image shown in FIG. 12A, but an image that looks like a mosaic is still obtained. ..
  • FIG. 12C it can be seen that an image in which the gradation value changes smoothly can be obtained.
  • FIG. 13 is a diagram showing an example of the variation distribution of the gradation values of the pixels in the spot region before and after hybridization when the image is taken at high resolution. Comparing FIG. 13 and FIG. 8A, it can be seen that the variation distribution of the gradation values can be accurately obtained when the image is taken at a high resolution.
  • the present invention is not limited to the above embodiment and can be freely changed within the scope of the present invention.
  • the image acquisition unit 12a described in the above-described embodiment may acquire a monochrome two-dimensional image or a color two-dimensional image.
  • the image acquisition unit 12a may include a highly sensitive EMCCD (Electron Multiplying CCD) or a digital CMOS.
  • the detection unit 12 may include a photodiode arranged one-to-one with the spot SP instead of the image acquisition unit 12a (or together with the image acquisition unit 12a).
  • an example of acquiring an image immediately after sample addition (an image of the target block BK0) as a first image has been described.
  • the image before adding the sample (the image of the target block BK0) may be acquired as the first image. That is, the first image may be acquired before or immediately after the addition of the sample.
  • the difference between the amount of light obtained before adding the sample and the amount of light obtained after the sample containing no target is added is obtained in advance. , It is necessary to give the difference to the amount of light in the first image.
  • an image to which the sample not including the target is added (the image of the target block BK0) may be acquired as the first image.
  • first, the first image and the second image are collectively acquired, and then the images of the first image and the second image are obtained.
  • An example of performing processing and the like has been described.
  • image processing of the first image or the like may be performed between the acquisition of the first image and the acquisition of the second image.
  • the method for setting the confidence interval in the above-mentioned third nucleic acid sequence measurement method may be used in the above-mentioned second nucleic acid sequence measurement method, and conversely, the method for setting the confidence interval in the above-mentioned second nucleic acid sequence measurement method may be used. It may be used in the third nucleic acid sequence measurement method described above. Specifically, the processes of steps S22 and S23 of FIG. 6 may be replaced with the processes of steps S31 and S32 of FIG. 10, and the processes of steps S31 and S32 of FIG. 10 may be replaced with the processes of steps S22 and S23 of FIG. You may replace it.
  • the nucleic acid sequence measuring device and the nucleic acid sequence measuring method according to the embodiment of the present invention shall be used for dry image measurement in fluorescent molecular light intensity measurement, in-liquid observation of fluorescent molecular light intensity of biochip, real-time observation in continuous reaction, and the like. Can be done.
  • the nucleic acid sequence measuring device and the nucleic acid sequence measuring method according to the embodiment of the present invention are used, for example, for bacterial species discrimination by gene / polymer analysis, oncogene, animal and plant discrimination, examination of intestinal bacteria, and the like. Can be done.
  • nucleic acid sequence measuring apparatus and the nucleic acid sequence measuring method according to the embodiment of the present invention are also applied to the following solid phase methods such as the labeled antibody method used for clinical examinations and the like.
  • solid phase methods such as the labeled antibody method used for clinical examinations and the like.
  • FISH method fluorescence in situ hybridization
  • application to various methods such as the following can be mentioned as an example.
  • the FIA method fluorescence immunoassay for measuring an antigen-antibody reaction using a fluorescent luminescent substance such as europium as a label
  • the IFA method indirect for measuring a serum (antibody) reaction in which a fluorescent substance is labeled with a pathogen as an antigen. Fluorescent antibody method).
  • the word “composed” is configured to perform the function of the present invention, or is used to refer to the configuration, elements, or parts of a device.
  • unit is used to refer to a component, unit, hardware or piece of software programmed to perform a desired function. Typical examples of hardware are devices and circuits, but are not limited to these.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

核酸配列計測装置(1)は、サンプルに含まれる特定の核酸配列を有するターゲット(TG)を計測する。核酸配列計測装置(1)は、ターゲット(TG)の添加によって蛍光を発する核酸配列計測用デバイス(DV)から発せられる蛍光を検出する検出部(12)と、検出部(12)の検出結果に基づいて、核酸配列計測用デバイス(DV)に対するサンプルの添加前又は添加直後の第1時点で、核酸配列計測用デバイス(DV)の予め規定された計測領域から発せられる蛍光の光量を示す第1光量と、核酸配列計測用デバイス(DV)に対するサンプルの添加から予め規定された時間が経過した後の第2時点で、同じ計測領域から発せられる蛍光の光量を示す第2光量との差に基づいてターゲットを計測する演算部(25)と、を備える。

Description

核酸配列計測装置、核酸配列計測方法、及びコンピュータ読み取り可能な非一時的記録媒体
 本発明は、核酸配列計測装置、核酸配列計測方法、及びコンピュータ読み取り可能な非一時的記録媒体に関する。
 サンプルに含まれる特定の核酸配列を有するターゲットを計測する方法として、DNAチップ(上記特定の核酸配列の相補配列を有する検出プローブが基板等の固相面に設けられたもの)を用いる方法が広く知られている。この方法は、DNAチップに添加されたサンプルに含まれるターゲットが、ハイブリダイゼーションによりDNAチップの検出プローブに捕集される性質を利用してターゲットを計測する方法である。この方法では、ターゲットがサンプルに含まれるか否かに加えて、サンプルに含まれるターゲットの量を計測することができる。
 以下の特許文献1には、上記の検出プローブとして、蛍光分子が付加された蛍光プローブと、蛍光分子の蛍光を消光する消光分子が付加された消光プローブとが設けられた核酸配列計測用デバイス(DNAチップ)を用いてターゲットを計測する方法が開示されている。この方法では、ターゲットに対する蛍光分子の付加、及びDNAチップの洗浄(捕集されていないターゲット等を除去するための洗浄)を行うことなくターゲットを計測することが可能である。
特開2015-43702号公報
 ところで、上述した特許文献1に開示された核酸配列計測用デバイスを用いてターゲットを計測する方法では、消光分子による消光の不完全性や、蛍光のムラ(光量バラツキ)等が原因で、計測精度が悪化するという問題がある。
 本発明は、上記事情に鑑みてなされたものであり、サンプルに含まれる特定の核酸配列を有するターゲットの計測精度を従来よりも向上させることができる核酸配列計測装置、核酸配列計測方法、及びコンピュータ読み取り可能な非一時的記録媒体を提供することを目的とする。
 上記課題を解決するために、本発明の一態様による核酸配列計測装置は、サンプルに含まれる特定の核酸配列を有するターゲット(TG)を計測する核酸配列計測装置(1)において、前記ターゲットの添加によって蛍光を発する核酸配列計測用デバイス(DV)から発せられる蛍光を検出する検出部(12)と、前記検出部の検出結果に基づいて、前記核酸配列計測用デバイスに対する前記サンプルの添加前又は添加直後の第1時点で、前記核酸配列計測用デバイスの予め規定された計測領域(SP)から発せられる蛍光の光量を示す第1光量と、前記核酸配列計測用デバイスに対する前記サンプルの添加から予め規定された時間が経過した後の第2時点で、前記計測領域から発せられる蛍光の光量を示す第2光量との差に基づいて前記ターゲットを計測する演算部(25)と、を備える。
 また、本発明の一態様による核酸配列計測装置は、前記検出部が、少なくとも前記計測領域が含まれる画像取得領域(BK)の画像を取得する画像取得部(12a)を備え、前記演算部が、前記第1時点で取得された前記画像取得領域の画像である第1画像及び前記第2時点で取得された前記画像取得領域の画像である第2画像の画像処理を行って、前記第1光量及び前記第2光量をそれぞれ求める。
 また、本発明の一態様による核酸配列計測装置は、前記演算部が、前記画像処理として、前記第1画像に含まれる前記計測領域の画像をなす画素の平均階調値を前記第1光量として求める処理(S13)と、前記第2画像に含まれる前記計測領域の画像をなす画素の平均階調値を前記第2光量として求める処理(S14)とを行う。
 また、本発明の一態様による核酸配列計測装置は、前記演算部が、前記第1画像と前記第2画像との画素毎の階調値の差が予め規定された第1閾値を超える画素を抽出し、前記第1画像の抽出した画素の平均階調値を前記第1光量として求める処理(S26)と、前記第2画像の抽出した画素の平均階調値を前記第2光量として求める処理(S27)とを行う。
 また、本発明の一態様による核酸配列計測装置は、前記演算部が、前記第1画像に含まれる前記計測領域の画像をなす画素の階調値の標準偏差を求め、前記標準偏差に基づいて前記第1閾値を設定する。
 また、本発明の一態様による核酸配列計測装置は、前記演算部が、前記画像処理として、前記第1画像に含まれる前記計測領域の画像をなす画素の各々の階調値と、前記第2画像に含まれる前記計測領域の画像をなす画素の各々の階調値との差を、前記第1光量と前記第2光量との差として求める処理(S33)を行う。
 また、本発明の一態様による核酸配列計測装置は、前記演算部が、前記第1光量と前記第2光量との差が予め規定された第2閾値を超える画素を抽出し、抽出した画素の数に基づいて前記ターゲットを計測する。
 また、本発明の一態様による核酸配列計測装置は、前記演算部が、前記第1画像に含まれる前記計測領域以外の領域の画像をなす画素の階調値の標準偏差を求め、前記標準偏差に基づいて前記第2閾値を設定する。
 また、本発明の一態様による核酸配列計測装置は、前記画像取得部が、前記画像取得領域の画像を、異なる解像度で取得する。
 本発明の一態様による核酸配列計測方法は、サンプルに含まれる特定の核酸配列を有するターゲット(TG)を計測する核酸配列計測装置によって実行される核酸配列計測方法であって、前記ターゲットの添加によって蛍光を発する核酸配列計測用デバイスに対する前記サンプルの添加前又は添加直後の第1時点で、前記核酸配列計測用デバイスの予め規定された計測領域から発せられる蛍光の光量を示す第1光量と、前記核酸配列計測用デバイスに対する前記サンプルの添加から予め規定された時間が経過した後の第2時点で、前記計測領域から発せられる蛍光の光量を示す第2光量との差を求め(S15、S28、S33)、前記第1光量と前記第2光量との差に基づいて前記ターゲットを計測する(S16、S29、S36)。
 また、本発明の一態様による核酸配列計測方法は、少なくとも前記計測領域が含まれる画像取得領域の画像を取得し、前記第1時点で取得された前記画像取得領域の画像である第1画像及び前記第2時点で取得された前記画像取得領域の画像である第2画像の画像処理を行って、前記第1光量及び前記第2光量をそれぞれ求める。
 また、本発明の一態様による核酸配列計測方法は、前記画像処理として、前記第1画像に含まれる前記計測領域の画像をなす画素の平均階調値を前記第1光量として求める処理(S13)と、前記第2画像に含まれる前記計測領域の画像をなす画素の平均階調値を前記第2光量として求める処理(S14)とを行う。
 また、本発明の一態様による核酸配列計測方法は、前記第1画像と前記第2画像との画素毎の階調値の差が予め規定された第1閾値を超える画素を抽出し、前記第1画像の抽出した画素の平均階調値を前記第1光量として求める処理(S26)と、前記第2画像の抽出した画素の平均階調値を前記第2光量として求める処理(S27)とを行う。
 また、本発明の一態様による核酸配列計測方法は、前記第1画像に含まれる前記計測領域の画像をなす画素の階調値の標準偏差を求め、前記標準偏差に基づいて前記第1閾値を設定する。
 また、本発明の一態様による核酸配列計測方法は、前記画像処理として、前記第1画像に含まれる前記計測領域の画像をなす画素の各々の階調値と、前記第2画像に含まれる前記計測領域の画像をなす画素の各々の階調値との差を、前記第1光量と前記第2光量との差として求める処理(S33)を行う。
 また、本発明の一態様による核酸配列計測方法は、前記第1光量と前記第2光量との差が予め規定された第2閾値を超える画素を抽出し、抽出した画素の数に基づいて前記ターゲットを計測する。
 また、本発明の一態様による核酸配列計測方法は、前記第1画像に含まれる前記計測領域以外の領域の画像をなす画素の階調値の標準偏差を求め、前記標準偏差に基づいて前記第2閾値を設定する。
 また、本発明の一態様による核酸配列計測方法は、前記画像取得領域の画像を、異なる解像度で取得する。
 本発明の一態様によるコンピュータ読み取り可能な非一時的記録媒体は、サンプルに含まれる特定の核酸配列を有するターゲット(TG)を計測する核酸配列計測装置によって実行されるプログラムを記憶するコンピュータ読み取り可能な非一時的記録媒体であって、前記プログラムは、前記核酸配列計測装置に、前記ターゲットの添加によって蛍光を発する核酸配列計測用デバイスに対する前記サンプルの添加前又は添加直後の第1時点で、前記核酸配列計測用デバイスの予め規定された計測領域から発せられる蛍光の光量を示す第1光量と、前記核酸配列計測用デバイスに対する前記サンプルの添加から予め規定された時間が経過した後の第2時点で、前記計測領域から発せられる蛍光の光量を示す第2光量との差を求めさせ(S15、S28、S33)、前記第1光量と前記第2光量との差に基づいて前記ターゲットを計測させる(S16、S29、S36)。
 また、本発明の一態様による核酸配列計測方法において、前記プログラムは、前記核酸配列計測装置に、少なくとも前記計測領域が含まれる画像取得領域の画像を取得させ、前記第1時点で取得された前記画像取得領域の画像である第1画像及び前記第2時点で取得された前記画像取得領域の画像である第2画像の画像処理を行って、前記第1光量及び前記第2光量をそれぞれ求めさせる。
 本発明の更なる特徴及び態様は、添付図面を参照し、以下に述べる実施形態の詳細な説明から明らかとなるであろう。
 本発明によれば、サンプルに含まれる特定の核酸配列を有するターゲットの計測精度を従来よりも向上させることができる、という効果がある。
本発明の実施形態で用いられる核酸配列計測用デバイスの外観を模式的に示す斜視図である。 本発明の実施形態で用いられる核酸配列計測用デバイスの検出プローブを模式的に示す図である。 本発明の実施形態による核酸配列計測装置の要部構成を示すブロック図である。 第1核酸配列計測方法を示すフローチャートである。 第1核酸配列計測方法で取得される画像の一例を示す図である。 第1核酸配列計測方法で取得される画像の一例を示す図である。 第2核酸配列計測方法を示すフローチャートである。 第2核酸配列計測方法で取得される画像の一例を示す図である。 第2核酸配列計測方法で取得される画像の一例を示す図である。 ハイブリダイゼーション前後におけるスポット領域内の画素の階調値のバラツキ分布の一例を示す図である。 ハイブリダイゼーション前後におけるスポット領域内の画素の階調値のバラツキ分布の一例を示す図である。 ハイブリダイゼーション前後におけるスポット領域内の画素の平均階調値及び標準偏差の一例を示す図である。 第3核酸配列計測方法を示すフローチャートである。 第3核酸配列計測方法で取得される画像の一例を示す図である。 変形例に係る核酸配列計測装置で取得される画像の一例を示す図である。 変形例に係る核酸配列計測装置で取得される画像の一例を示す図である。 変形例に係る核酸配列計測装置で取得される画像の一例を示す図である。 高解像度で撮影した場合の、ハイブリダイゼーション前後におけるスポット領域内の画素の階調値のバラツキ分布の一例を示す図である。
 以下、図面を参照して本発明の実施形態による核酸配列計測装置、核酸配列計測方法、及びコンピュータ読み取り可能な非一時的記録媒体について詳細に説明する。以下では、まず本発明の実施形態の概要について説明し、続いて本発明の実施形態の詳細について説明する。
〔概要〕
 本発明の実施形態は、サンプルに含まれる特定の核酸配列を有するターゲットの計測精度を従来よりも向上させるようにするものである。例えば、本発明の実施形態は、サンプルに含まれるターゲットがごく僅かであっても、ターゲットの計測を可能にするものである。具体的には、本発明の実施形態は、サンプルが添加されてない場合でも核酸配列計測用デバイスから発せられる微弱な蛍光(オフセット光)や、蛍光のムラ(光量バラツキ)等の影響を極力排除することによって、高い計測精度を実現するものである。
 上述の特許文献1に開示された核酸配列計測用デバイスは、蛍光分子が付加された蛍光プローブと、消光分子が付加された消光プローブとを有し、蛍光分子の蛍光が消光分子によって消光されるように蛍光プローブと消光プローブとが結合されたものである。この核酸配列計測用デバイスは、計測対象であるターゲットが添加されると、ハイブリダイゼーションにより、蛍光プローブと消光プローブとの結合が解消されて蛍光が発せられるようにされている。
 このため、ターゲットが核酸配列計測用デバイスに添加されなければ、蛍光プローブに付加された蛍光分子の蛍光が、消光プローブに付加された消光分子によって消光されるため、核酸配列計測用デバイスからは蛍光が発せられない筈である。しかしながら、消光分子による蛍光の消光が不完全な場合には、核酸配列計測用デバイスからオフセット光が発せられてしまう。このようなオフセット光は、ノイズとなることから計測精度を悪化させてしまう。例えば、ターゲットが僅かである場合には、核酸配列計測用デバイスから発せられる蛍光も微弱なものとなるため、この微弱な蛍光が、オフセット光に埋もれてしまうとターゲットの計測を行うことができない。
 また、核酸配列計測用デバイスを用いてターゲットを計測する場合には、ハイブリダイゼーション前後において核酸配列計測用デバイスから発せられる蛍光の光量を比較する処理が行われる。つまり、ハイブリダイゼーション前に核酸配列計測用デバイスから発せられるオフセット光の光量と、ハイブリダイゼーション後に核酸配列計測用デバイスから発せられる蛍光の光量とを比較する処理が行われる。
 従来は、ターゲットが含まれるサンプルが添加されるブロック(第1ブロック)以外に、ターゲットが含まれないサンプルが添加されるブロック(第2ブロック)が用意された核酸配列計測用デバイスを用いて上記の処理を行っていた。つまり、第2ブロックから発せられる蛍光(オフセット光)の光量と、第1ブロックから発せられる蛍光(ハイブリダイゼーション後に発せられる蛍光)の光量とを比較するようにしていた。
 或いは、ターゲットが含まれるサンプルが添加される核酸配列計測用デバイスと、ターゲットが含まれないサンプルが添加される核酸配列計測用デバイスとを用いて上記の処理を行っていた。つまり、後者の核酸配列計測用デバイスから発せられる蛍光(オフセット光)の光量と、前者の核酸配列計測用デバイスから発せられる蛍光(ハイブリダイゼーション後に発せられる蛍光)の光量とを比較するようにしていた。
 しかしながら、核酸配列計測用デバイスの製造バラツキ等が原因で、オフセット光の光量は、ブロック間、核酸配列計測用デバイス間でバラツキがある。このため、オフセット光の光量が相対的に少なければターゲットを計測することができるが、オフセット光の光量が相対的に大きくなるとターゲットを計測することができなくなるといったことが起こり得る。このように、ブロック間、核酸配列計測用デバイス間でのオフセット光の光量バラツキの大きさに応じて計測精度が悪化してしまう。
 また、上述の特許文献1に開示された核酸配列計測用デバイスでは、スポット(上述した結合状態にある蛍光プローブ及び消光プローブが基板上に固定されている領域)から発せられる蛍光の光量バラツキもある。これは、スポット内におけるプローブの固定量や反応のムラ等が原因である。このようなスポット内における光量バラツキも、計測精度を悪化させる原因となる。
 本発明の実施形態では、まず、核酸配列計測用デバイスに対するサンプルの添加前又は添加直後の第1時点で、核酸配列計測用デバイスの予め規定された計測領域から発せられる蛍光の光量を示す第1光量と、核酸配列計測用デバイスに対するサンプルの添加から予め規定された時間が経過した後の第2時点で、計測領域から発せられる蛍光の光量を示す第2光量との差を求める。そして、第1光量と第2光量との差に基づいてターゲットを計測するようにしている。
 このように、本発明の実施形態では、第1時点で、ある計測領域から発せられる蛍光の第1光量と、第2時点で、上記と同じ計測領域から発せられる蛍光の第2光量との差を求めている。そして、第1光量と第2光量との差に基づいてターゲットを計測するようにしている。このため、サンプルに含まれる特定の核酸配列を有するターゲットの計測精度を従来よりも向上させることができる。
〔実施形態〕
 以下では、まず、核酸配列の計測に用いられる核酸配列計測用デバイスについて説明する。続いて、上記核酸配列計測用デバイスを用いて核酸配列を計測する核酸配列計測装置及び核酸配列計測方法について順に説明する。
 〈核酸配列計測用デバイス〉
 図1は、本発明の実施形態で用いられる核酸配列計測用デバイスの外観を模式的に示す斜視図である。図1に示す通り、核酸配列計測用デバイスDVは、例えば、基板SB上に複数のスポットSP(計測領域)が形成されたものである。基板SBとしては、例えば、平面視形状が矩形形状に形成された板状のガラス、シリコン、フッ化カルシウム及びサファイア等の単結晶、セラミックス、及び樹脂材料等を用いることができる。樹脂材料としては、光学的特性、化学的及び熱的安定性に優れたCOP(シクロオレフィンポリマー)をはじめ、COC(環状オレフィンコポリマー)、ポリカーボネイト、アクリル系樹脂、ポリエチレン樹脂等が挙げられる。尚、基板SBの平面視形状は任意の形状であって良い。
 スポットSPは、計測対象であるターゲットの検出に用いられる検出プローブが固定されている領域である。このスポットSPは、予め規定された数を単位としたブロックBK毎に区分けされている。核酸配列計測用デバイスDVに対するサンプルの添加は、ブロックBK毎に行われる。また、核酸配列計測用デバイスDVの画像取得は、ブロックBK毎に行われることが多い。つまり、ブロックBKは、画像取得領域であるということができる。
 図2は、本発明の実施形態で用いられる核酸配列計測用デバイスの検出プローブを模式的に示す図である。図2に示す通り、検出プローブは、基板SB上に固定された蛍光プローブPB1と消光プローブPB2とからなる。蛍光プローブPB1は、計測対象であるターゲットTGの相補配列に蛍光分子FMを付加したものである。消光プローブPB2は、蛍光プローブPB1の上記相補配列と少なくとも一部が相補的な配列に消光分子QMを付加したものである。
 蛍光プローブPB1と消光プローブPB2とは、蛍光分子FMの蛍光が、消光分子QMによって消光されるように結合されている。図2に示す例では、蛍光プローブPB1と消光プローブPB2とは、結合部CNで結合されている。ここで、蛍光分子FMの蛍光は、蛍光共鳴エネルギー転移による消光の原理により、消光分子QMによって消光される。
 ターゲットTGが存在しない場合には、蛍光プローブPB1と消光プローブPB2とは結合部CNで結合されており、蛍光分子FMと消光分子QMとは接近した状態にある。この状態では、励起光が照射されても蛍光分子FMの蛍光が消光分子QMによって消光されるため、蛍光は発せられない。
 これに対し、ターゲットTGが存在する場合には、図2に示す通り、ターゲットTGの相補配列を有する蛍光プローブPB1は、消光プローブPB2と解離し、ターゲットTGと結合する。ターゲットTGが蛍光プローブPB1と結合すると、蛍光プローブPB1と消光プローブPB2の結合が解消されて、蛍光分子FMと消光分子QMとが離間した状態になる。この状態になると、励起光の照射によって蛍光分子FMから蛍光が発せられることになる。
 尚、ターゲットTGの相補配列は、消光プローブPB2に設けられていても良い。つまり、消光プローブPB2は、ターゲットTGの相補配列に消光分子QMを付加したものであり、蛍光プローブPB1は、消光プローブPB2の上記相補配列と少なくとも一部が相補的な配列に蛍光分子FMを付加したものであっても良い。
 〈核酸配列計測装置〉
 図3は、本発明の実施形態による核酸配列計測装置の要部構成を示すブロック図である。図3に示す通り、本実施形態による核酸配列計測装置1は、検出装置10及び演算装置20を備えており、図1,2を用いて説明した核酸配列計測用デバイスDVを用いて、サンプルに含まれるターゲットの計測を行う。
 検出装置10は、温調ステージ11及び検出部12を備えており、核酸配列計測用デバイスDVから発せられる蛍光を検出する。温調ステージ11は、核酸配列計測用デバイスDVを載置可能に構成されており、載置された核酸配列計測用デバイスDVの温度調整を行う。この温調ステージ11は、核酸配列計測用デバイスDVの温度を常温に調整するために設けられる。これは、温度によって蛍光分子FMの光量が変わることがあるためである。尚、温調ステージ11は、ハイブリゼーション反応を促進するために、核酸配列計測用デバイスDVを振動又は回転等させることで、サンプルの撹拌が可能に構成されているのが望ましい。
 検出部12は、核酸配列計測用デバイスDVに励起光を照射して、核酸配列計測用デバイスDVから発せられる蛍光を検出する。この検出部12は、励起光源(図示省略)と画像取得部12aとを備える。不図示の励起光源は、核酸配列計測用デバイスDVに照射する励起光を射出する。励起光源から射出される励起光は、例えば、図1に示すブロックBK毎に照射される。不図示の励起光源としては、例えば、単波長のレーザ光又はそのエキスパンド光を射出するレーザ光源、LED(Light Emitting Diode:発光ダイオード)、白色光を放出するランプ、LEDと波長フィルタとの組合せからなる光源等を用いることができる。
 画像取得部12aは、例えばCCD(Charge Coupled Device:電荷結合素子)やCMOS(Complementary Metal Oxide Semiconductor:相補型金属酸化膜半導体)等の固体撮像素子を備えており、核酸配列計測用デバイスDVの画像(二次元画像)を取得する。画像取得部12aは、例えば、図1に示すブロックBK毎に画像を取得する。
 演算装置20は、検出装置10の検出結果に基づいて、ターゲットTGの計測を行う。具体的に、演算装置20は、核酸配列計測用デバイスDVに添加されたサンプルにターゲットTGが含まれるか否かに加えて、サンプルに含まれるターゲットの量を計測する。この演算装置20は、操作部21、表示部22、入出力部23、格納部24、及び演算部25を備える。
 操作部21は、例えばキーボードやポインティングデバイス等の入力装置を備えており、演算装置20を使用するユーザの操作に応じた指示(演算装置20に対する指示)を演算部25に出力する。表示部22は、例えば液晶表示装置等の表示装置を備えており、演算部25から出力される各種情報を表示する。尚、操作部21及び表示部22は、物理的に分離されたものであっても良く、表示機能と操作機能とを兼ね備えるタッチパネル式の液晶表示装置のように物理的に一体化されたものであっても良い。
 入出力部23は、検出装置10の検出部12に接続されており、検出部12との間で各種データの入出力を行う。例えば、入出力部23は、検出部12に対して、不図示の励起光源から励起光を射出させるための制御データを出力する。また、検出装置10は、検出部12の検出結果(画像取得部12aで取得された画像のデータ)を入出力部23に入力する。その後、入出力部23は、検出部12の検出結果を演算部25に出力する。尚、入出力部23を温調ステージ11に接続し、核酸配列計測用デバイスDVの温度調節を演算装置20が行うようにしても良い。
 格納部24は、例えばHDD(ハードディスクドライブ)やSSD(ソリッドステートドライブ)等の補助記憶装置を備えており、各種データを格納する。例えば、格納部24は、検出部12から出力された画像データ、演算部25の演算で必要となる各種データ、演算部25の演算結果を示すデータ、その他のデータを格納する。尚、格納部24は、例えば演算部25の機能を実現するプログラムを格納しても良い。
 演算部25は、入出力部23から出力される画像データを格納部24に格納させる。また、演算部25は、格納部24に格納した画像データを読み出し、画像データの画像処理を行って、核酸配列計測用デバイスDVに添加されたサンプルに含まれるターゲットTGの計測を行う。具体的に、演算部25は、ハイブリダイゼーション前後において、同じスポットSPから発せられる蛍光の光量変化量に基づいて、ターゲットTGの計測を行う。また、演算部25は、検出部12に対する制御データ(例えば、不図示の励起光源から励起光を射出させるための制御データ)を入出力部23に出力する。尚、演算部25で行われる処理の詳細は後述する。
 演算部25の機能は、例えば、CPU(Central Processing Unit:中央処理装置)又はMPU(Micro Processing Unit:マイクロプロセッサ)が、格納部24に格納されたプログラムを読み出して実行することによりソフトウェア的に実現されるものであっても良い。或いは、演算部25の機能は、FPGA(Field Programmable Gate Array)、LSI(Large Scale Integration:大規模集積回路)、ASIC(Application Specific Integrated Circuit:特定用途向け集積回路)等のハードウェアを用いて実現されてもよい。
 〈核酸配列計測方法〉
 次に、本発明の実施形態による核酸配列計測方法について説明する。以下では、まず、スポットSP内の蛍光のムラ(光量バラツキ)を考慮しない計測方法(以下、「第1核酸配列計測方法」という)について説明する。次に、スポットSP内の蛍光のムラ(光量バラツキ)を考慮する2つの計測方法(以下、各々を「第2核酸配列計測方法」,「第3核酸配列計測方法」という)について説明する。
 《第1核酸配列計測方法》
 図4は、第1核酸配列計測方法を示すフローチャートである。尚、図4に示すフローチャートの処理が開始される前に、ターゲットTGが含まれるサンプルの調整が行われる。また、図1,2を用いて説明した核酸配列計測用デバイスDVを、核酸配列計測装置1の温調ステージ11に準備する作業が行われる。以上の調整及び作業が終了すると、例えば、核酸配列計測用デバイスDVの複数のブロックBKのうちの1つ(以下、「対象ブロックBK0」という)にサンプルが添加される。
 核酸配列計測用デバイスDVにサンプルが添加されると、まず、検出部12は、サンプル添加直後の時点(第1時点)の画像(第1画像)を取得する(ステップS11)。この処理では、演算装置20の演算部25から出力された制御データが、入出力部23を介して検出部12に入力される。これにより、検出部12に設けられた不図示の励起光源から励起光が射出され、対象ブロックBK0に照射される。そして、画像取得部12aは、励起光が照射されている対象ブロックBK0の画像を取得する。
 ここで、サンプル添加直後とは、サンプルが添加されてからハイブリダイゼーションが殆ど進行していないとみなすことができる期間をいう。この期間は、サンプルが添加されても、核酸配列計測用デバイスDVから発せられる蛍光の光量が殆ど変化しない期間であるということもできる。尚、この期間は、核酸配列計測用デバイスDVの性質(蛍光プローブPB1及び消光プローブPB2の性質)やサンプルに含まれるターゲットTGの量に応じて変化する。このため、第1画像を取得するタイミングは、サンプル添加時点に極力近づけた時点であることが望ましい。
 次に、検出部12は、サンプル添加から所定時間経過後の時点(第2時点)の画像(第2画像)を取得する(ステップS12)。具体的には、温調ステージ11によって核酸配列計測用デバイスDVの温度を上昇させてから、ハイブリダイゼーションが十分進行したと考えられる時間が経過した後に、画像取得部12aが対象ブロックBK0の画像を取得する。
 ここで、ハイブリダイゼーションが十分進行したと考えられる時間は、核酸配列計測用デバイスDVの性質(蛍光プローブPB1及び消光プローブPB2の性質)やサンプルに含まれるターゲットTGの量に応じて変化する。このため、例えば、予め実験を行って上記の時間を予め定めておくのが望ましい。
 ステップS11,S12で取得された画像は、検出部12から演算装置20に出力される。尚、検出部12は、ステップS11,S12で取得された画像を、各ステップが終了する度に個別に、演算装置20に出力するようにしても良い。或いは、検出部12は、ステップS11で取得された画像を一時的に記憶しておき、ステップS12の終了後に、ステップS12で取得された画像とともに演算装置20に出力するようにしても良い。検出部12から演算装置20に出力された画像は、演算装置20の格納部24に格納される。
 次いで、演算装置20の演算部25は、格納部24に格納された第1画像を読み出して画像処理し、スポットSPの各々から発せられる蛍光の光量(第1光量)を算出する(ステップS13)。具体的には、演算部25は、ステップS11で取得された画像(対象ブロックBK0の画像)に対して画像処理を行って、スポット領域(スポットSPの画像であると推定される領域)を抽出する。そして、演算部25は、抽出したスポット領域の各々について、スポットSPの画像をなす各画素の平均階調値を第1光量として求める。
 続いて、演算装置20の演算部25は、格納部24に格納された第2画像を読み出して画像処理し、スポットSPの各々から発せられる蛍光の光量(第2光量)を算出する(ステップS14)。具体的には、演算部25は、ステップS12で取得された画像(対象ブロックBK0の画像)に対して画像処理を行って、スポット領域を抽出する。そして、演算部25は、抽出したスポット領域の各々について、スポットSPの画像をなす各画素の平均階調値を第2光量として求める。
 そして、演算部25は、ステップS13で算出された平均階調値(第1光量)と、ステップS14で算出された平均階調値(第2光量)との差(光量変化量)である光量変化量を算出する(ステップS15)。つまり、演算部25は、ハイブリダイゼーション前後において、同じスポットSPから発せられる蛍光の光量変化量を算出する。
 以上の処理が終了すると、演算装置20の演算部25は、サンプルに含まれるターゲットTGを計測する(ステップS16)。具体的には、演算部25は、核酸配列計測用デバイスDVに添加されたサンプルにターゲットTGが含まれるか否かを判定する。また、演算部25は、サンプルに含まれるターゲットの量を計測する。このようにして、サンプルに含まれるターゲットTGの計測が行われる。
 図5は、第1核酸配列計測方法で取得される画像の一例を示す図である。図5Aは、例えば、ハイブリダイゼーション前における対象ブロックBK0の画像(第1画像)であり、図5Bは、例えば、ハイブリダイゼーション後における対象ブロックBK0の画像(第2画像)である。
 図5A及び図5Bにおいて二次元状に配列されている円形領域は、対象ブロックBK0内に設けられたスポットSPの画像(スポット領域)を示している。このスポット領域の色は、スポットSPから発せられる蛍光の光量が少ないほど階調値が小さくなり(黒色に近くなり)、スポットSPから発せられる蛍光の光量が多いほど階調値が大きく(白色に近くなる)。
 図5Aに示す通り、ハイブリダイゼーション前においては、スポット領域の各々の色はグレーになっている。これは、消光プローブPB2に設けられた消光分子QMによる消光の不完全性が原因で、スポットSPの各々からオフセット光が発せられていることを意味する。図5Bに示す通り、ハイブリダイゼーション後においては、破線で囲まれた領域R内におけるスポット領域の色が白色になっている。これは、領域R内におけるスポットSPでは、ターゲットTGが検出プローブによって捕集されて強い蛍光が発せられたことを意味する。
 前述したステップS13の処理において、演算部25は、図5Aに示すスポット領域の各々について、平均階調値を第1光量として算出する。前述したステップS14の処理において、演算部25は、図5Bに示すスポット領域の各々について平均階調値を第2光量として算出する。そして、前述したステップS15の処理において、演算部25は、スポット領域の各々について、第1光量と第2光量との差である光量変化量を算出する。
 図5A及び図5Bに示す例において、領域R内には、縦2列横5列に配列された計10個のスポット領域が存在しているが、これら10個のスポット領域の光量変化量は、他のスポット領域の光量変化量に比べて大きい。このため、前述したステップS16の処理において、演算部25は、領域R内の10個のスポット領域における光量変化量を用いて、サンプルに含まれるターゲットTGを計測する。
 以上の通り、第1核酸配列計測方法では、サンプル添加直後の時点(第1時点)で、あるスポットSPから発せられる蛍光の第1光量と、サンプル添加から所定時間後の時点(第2時点)で、上記と同じスポットSPから発せられる蛍光の第2光量との差を求めている。そして、第1光量と第2光量との差に基づいてターゲットを計測するようにしている。これにより、オフセット光の影響を効果的に排除することができることから、サンプルに含まれる特定の核酸配列を有するターゲットの計測精度を従来よりも向上させることができる。
 《第2核酸配列計測方法》
 図6は、第2核酸配列計測方法を示すフローチャートである。尚、図6においては、図4中に示したステップと同様のステップについては、同じ符号を付してある。尚、本計測方法においても、図6に示すフローチャートの処理が開始される前に、ターゲットTGが含まれるサンプルの調整等が行われ、その後に、対象ブロックBK0にサンプルが添加される。
 核酸配列計測用デバイスDVにサンプルが添加されると、まず、検出部12は、サンプル添加直後の時点(第1時点)の画像(第1画像)を取得する(ステップS11)。次に、検出部12は、サンプル添加から所定時間経過後の時点(第2時点)の画像(第2画像)を取得する(ステップS12)。尚、ステップS11,S12の処理は、図4を用いて説明した処理と同様であるため、詳細な説明は省略する。
 次いで、演算部25は、第1画像及び第2画像を画像処理し、第1画像及び第2画像の各々からスポット領域を抽出する(ステップS21)。続いて、演算部25は、第1画像から抽出したスポット領域の各々について、階調値標準偏差を算出する(ステップS22)。具体的には、演算部25は、第1画像から抽出したスポット領域毎に、スポットSPの画像をなす画素の階調値の標準偏差を算出する。そして、演算部25は、ステップS22で算出された階調値標準偏差を用いて、スポット領域の各々の信頼区間(第1閾値)を設定する(ステップS23)。
 ここで、ステップS22の処理を行うのは、スポット領域の各々において、蛍光のムラ(光量のバラツキ)がどの程度生じているかを求めるためである。ステップS23の処理を行うのは、後述するステップS25の処理において、スポット領域の各々について、ハイブリダイゼーション前後の光量変化量がある程度大きな画素(階調値の差がある程度大きな画素)の抽出を行うためである。尚、信頼区間の設定の仕方は任意であるが、例えば、信頼係数が0.95の信頼区間を設定することができる。
 続いて、演算部25は、ステップS21の処理で抽出したスポット領域毎に、スポットSPの画像をなす各画素の階調値変化量を算出する(ステップS24)。そして、演算部25は、ステップS21の処理で抽出したスポット領域毎に、ステップS23で設定された信頼区間以上の階調値変化がある画素を抽出する(ステップS25)。
 以上の処理が終了すると、演算部25は、ステップS21の処理で第1画像から抽出されたスポット領域毎に、ステップS25の処理で抽出した画素の平均階調値(第1光量)及び階調値標準偏差を算出する(ステップS26)。同様に、演算部25は、ステップS21の処理で第2画像から抽出されたスポット領域毎に、ステップS25の処理で抽出した画素の平均階調値(第2光量)及び階調値標準偏差を算出する(ステップS27)。
 続いて、演算部25は、ステップS26で算出された平均階調値(第1光量)と、ステップS27で算出された平均階調値(第2光量)との差(光量変化量)を検定する(ステップS28)。具体的には、演算部25は、ステップS26,S27で算出された階調値標準偏差を用いて、上記の平均階調値の差(光量変化量)を検定する。最後に、演算部25は、ステップS28の検定結果に基づいて、サンプルに含まれるターゲットTGを計測する(ステップS29)。このようにして、サンプルに含まれるターゲットTGの計測が行われる。
 図7は、第2核酸配列計測方法で取得される画像の一例を示す図である。図7Aは、例えば、ハイブリダイゼーション前に取得された対象ブロックBK0の画像(第1画像)の一部である。図7Bは、ハイブリダイゼーション前後において取得された画像(第1画像、第2画像)の1つのスポット領域を拡大した図である。尚、図7Bにおいて、画像G1は、ハイブリダイゼーション前の画像であり、画像G2は、ハイブリダイゼーション後の画像である。
 図7Aを参照すると、3つのスポット領域が示されている。これら3つのスポット領域の内部は、階調値が同一ではなく斑模様となっている。また、これら3つのスポット領域の斑模様は、同じではなく互いに異なっている。これにより、オフセット光の光量バラツキは、スポット領域内のみならず、スポット領域間においてもあることが分かる。
 図7Bを参照すると、画像G1よりも画像G2の方が全体的に白っぽい(階調値が大きい)ことが分かる。これは、ハイブリダイゼーション後の方がハイブリダイゼーション前よりも全体的な光量が増していることを意味する。また、図7Bを参照すると、画像G1,G2の何れも、階調値が同一ではなく斑模様になっている。これにより、スポット領域内における蛍光の光量バラツキは、ハイブリダイゼーション前のみならず、ハイブリダイゼーション後においても生ずることが分かる。
 図8は、ハイブリダイゼーション前後におけるスポット領域内の画素の階調値のバラツキ分布の一例を示す図である。図8Aは、図7Bに示す画像G1,G2についての階調値のバラツキ分布を示すヒストグラムである。これに対し、図8Bは、図7Bに示す画像G1,G2から抽出された画素(階調変化量の大きな画素)の階調値のバラツキ分布を示すヒストグラムである。つまり、図8Bは、図6に示すステップS25の処理が行われた後のものについて、階調値のバラツキ分布をヒストグラムで示したグラフである。
 図8を参照すると、ハイブリダイゼーション前においては、画素の階調値の分布は「20000」付近であり、ハイブリダイゼーション後においては、画素の階調値の分布は「40000」付近であることが分かる。また、図8Aと図8Bとを比較すると、図8Aに比べて図8Bの方が、バラツキが小さく平均的な階調値が大きくなることが分かる。
 図9は、ハイブリダイゼーション前後におけるスポット領域内の画素の平均階調値及び標準偏差の一例を示す図である。図9において、「画素の抽出無し」と付記されているものは、図7Bに示す画像G1,G2についての平均階調値及び標準偏差である。一方、図9において、「画素の抽出あり」と付記されているものは、図7Bに示す画像G1,G2から抽出された画素(階調変化量の大きな画素)の平均階調値及び標準偏差である。図9では、平均階調値を棒グラフで示しており、標準偏差をエラーバーで示している。
 図9を参照すると、ハイブリダイゼーション前であっても、ハイブリダイゼーション後であっても、「画素の抽出あり」と付記されたものの平均階調値が、「画素の抽出無し」と付記されたものの平均階調値よりも大きくなっていることが分かる。また、ハイブリダイゼーション前であっても、ハイブリダイゼーション後であっても、「画素の抽出あり」と付記されたものの標準偏差は、「画素の抽出無し」と付記されたものの標準偏差の三分の一程度に減少していることが分かる。
 図6に示すステップS28の処理では、演算部25は、ハイブリダイゼーション前の平均階調値と、ハイブリダイゼーション後の平均階調値との差である光量変化量を、ハイブリダイゼーション前後の標準偏差を用いて検定している。図6に示すステップS25の処理を行うことで、標準偏差を三分の一程度に減少することができるため、ターゲットの計測精度を向上させることができる。
 以上の通り、第2核酸配列計測方法では、まず、第1画像から抽出したスポット領域の階調値標準偏差から信頼区間を設定し、信頼区間以上の階調値変化がある画素を抽出している。次に、第1画像のスポット領域毎に、抽出した画素の平均階調値(第1光量)を求め、第1画像のスポット領域毎に、抽出した画素の平均階調値(第2光量)を求め、これらの差である光量変化量を検定している。そして、検定結果に基づいてターゲットを計測するようにしている。これにより、スポット領域内の光量ムラの影響を効果的に排除することができることから、サンプルに含まれる特定の核酸配列を有するターゲットの計測精度を従来よりも向上させることができる。
 《第3核酸配列計測方法》
 図10は、第3核酸配列計測方法を示すフローチャートである。尚、図10においては、図4,図6中に示したステップと同様のステップについては、同じ符号を付してある。尚、本計測方法においても、図10に示すフローチャートの処理が開始される前に、ターゲットTGが含まれるサンプルの調整等が行われ、その後に、対象ブロックBK0にサンプルが添加される。
 核酸配列計測用デバイスDVにサンプルが添加されると、まず、検出部12は、サンプル添加直後の時点(第1時点)の画像(第1画像)を取得する(ステップS11)。次に、検出部12は、サンプル添加から所定時間経過後の時点(第2時点)の画像(第2画像)を取得する(ステップS12)。次いで、演算部25は、第1画像及び第2画像を画像処理し、第1画像及び第2画像の各々からスポット領域を抽出する(ステップS21)。
 続いて、演算部25は、第1画像から抽出したスポット領域外の階調値標準偏差を算出する(ステップS31)。具体的には、演算部25は、第1画像から抽出したスポット領域以外の任意の領域における画像をなす画素の階調値の標準偏差を算出する。そして、演算部25は、ステップS31で算出された階調値標準偏差を用いて、信頼区間(第2閾値)を設定する(ステップS32)。
 ここで、ステップS31の処理を行うのは、例えば、核酸配列計測用デバイスDVの特性に起因するノイズや、画像取得部12aに設けられた固体撮像素子に起因するノイズによる光量のバラツキがどの程度生じているかを求めるためである。ステップS32の処理を行うのは、後述するステップS34の処理において、スポット領域の各々について、ハイブリダイゼーション前後の光量変化量がある程度大きな画素(階調値の差がある程度大きな画素)の抽出を行うためである。尚、信頼区間の設定の仕方は任意であるが、例えば、信頼係数が0.95の信頼区間を設定することができる。
 続いて、演算部25は、ステップS21の処理で抽出したスポット領域毎に、スポットSPの画像をなす各画素の階調値変化量を算出する(ステップS33)。そして、演算部25は、ステップS21の処理で抽出したスポット領域毎に、ステップS32で設定された信頼区間以上の階調値変化がある画素を抽出する(ステップS34)。
 以上の処理が終了すると、演算部25は、ステップS21の処理で抽出したスポット領域毎に、抽出した画素の数を計数する(ステップS35)。最後に、演算部25は、ステップS35の計数結果に基づいて、サンプルに含まれるターゲットTGが計測される(ステップS36)。このようにして、サンプルに含まれるターゲットTGの計測が行われる。
 図11は、第3核酸配列計測方法で取得される画像の一例を示す図である。尚、図3では、ターゲットTGの濃度が異なる3つのサンプルを核酸配列計測用デバイスDVに添加した場合に取得されるハイブリダイゼーション前後のスポットの画像を示している。まず、ターゲットTGの濃度が低い場合には、ハイブリダイゼーション前後において、画像の階調値変化は僅かである。このため、図10のステップS34の処理で抽出される画素は殆ど無い。
 次に、ターゲットTGの濃度が高くなるにつれて、ハイブリダイゼーション前後において、大きな階調値変化を示す画素の数は増えていく。このため、図10のステップS34の処理で抽出される画素は、ターゲットTGの濃度が高くなるにつれて増えていく。このようにして、抽出された画素の数を計数することによって、サンプルに含まれるターゲットTGを計測することができる。
 以上の通り、第3核酸配列計測方法では、まず、第1画像から抽出したスポット領域外の階調値標準偏差から信頼区間を設定している。次に、抽出したスポット領域毎に各画素の階調値変化量を算出し、信頼区間以上の階調値変化がある画素を抽出している。そして、抽出したスポット領域毎に、抽出した画素の数を計数し、その計数結果に基づいてターゲットを計測するようにしている。これにより、スポット領域内の光量ムラの影響を効果的に排除することができることから、サンプルに含まれる特定の核酸配列を有するターゲットの計測精度を従来よりも向上させることができる。
 〈変形例〉
 本発明の実施形態による核酸配列計測装置1は、核酸配列計測用デバイスDVの画像(ブロックBK又はスポットSPの画像)を、異なる解像度で取得可能にしても良い。例えば、図3に示す画像取得部12aと温調ステージ11(核酸配列計測用デバイスDV)との間に、光学倍率を変えることができる光学系を設けた構成にしても良い。或いは、画素数が異なる複数の固体撮像素子を図3に示す画像取得部12aに設け、解像度に応じて固体撮像素子を切り替え可能に構成しても良い。このようにするのは、スポットSPを高解像度で撮影することにより、ターゲットの計測精度を更に向上させるためである。
 例えば、スポットSPの直径が100[μm]であるとし、固体撮像素子の1画素の大きさが10[μm]四方(10×10[μm])であるとする。固体撮像素子が等倍でスポットSPを撮影する場合には、スポットSPを撮影している画素は78.5画素(5×5×π画素)程度しかない。
 これに対し、例えば、上記の光学系によってスポットSPの像が10倍に拡大されたとすると、1画素が撮影する範囲は1[μm]四方(1×1[μm])となる。すると、スポットSPを撮影している画素は、7850画素(50×50×π画素)程度になり拡大倍率の二乗の解像度となる。このように、核酸配列計測用デバイスDVの画像を、低解像度(等倍)以外に高解像度で取得可能にすることで、スポット領域内の階調値のバラツキをより正確に捉えることが可能になる。
 図12は、変形例に係る核酸配列計測装置で取得される画像の一例を示す図である。図12Aは、あるスポットSPを等倍で撮影した場合に取得される画像である。図12Bは、図12Aと同一のスポットSPを10倍の倍率で撮影した場合に取得される画像であり、図12Cは、図12Aと同一のスポットSPを40倍の倍率で撮影した場合に取得される画像である。
 図12Aを参照すると、等倍で撮影した場合には、目の粗いモザイクをかけたような画像が得られることが分かる。図12Bを参照すると、10倍の倍率で撮影した場合には、図12Aに示す画像に比べると目の粗さは小さくなっているものの、やはりモザイクをかけたような画像が得られることが分かる。これに対し、図12Cを参照すると、階調値が滑らかに変化している画像が得られることが分かる。
 図13は、高解像度で撮影した場合の、ハイブリダイゼーション前後におけるスポット領域内の画素の階調値のバラツキ分布の一例を示す図である。図13と図8Aとを比較すると、高解像度で撮影した場合には、階調値のバラツキ分布を正確に得ることができることが分かる。
 以上、本発明の実施形態による核酸配列計測装置及び核酸配列計測方法について説明したが、本発明は上記実施形態に制限されることなく、本発明の範囲内で自由に変更が可能である。例えば、上述した実施形態で説明した画像取得部12aは、モノクロの二次元画像を取得するものであっても良く、カラーの二次元画像を取得するものであっても良い。
 また、画像取得部12aは、CCD、COMS以外に、感度が高いEMCCD(Electron Multiplying CCD:電子増倍CCD)やディジタルCMOSを備えていても良い。また、検出部12は、画像取得部12aに代えて(又は、画像取得部12aとともに)、スポットSPと1対1で配置されるフォトダイオードを備えていても良い。
 また、上述した実施形態では、サンプル添加直後の画像(対象ブロックBK0の画像)を第1画像として取得する例について説明した。しかしながら、サンプル添加前の画像(対象ブロックBK0の画像)を第1画像として取得しても良い。つまり、第1画像は、サンプルの添加前又は添加直後の第1時点で取得すれば良い。但し、サンプル添加前の画像を第1画像として取得する場合には、サンプル添加前に得られる光量と、ターゲットが含まれていなサンプルが添加された後に得られる光量との差を予め求めておき、その差を第1画像の光量に与える必要がある。また、ターゲットが含まれているサンプルを添加する前に、ターゲットが含まれてないサンプルが添加された画像(対象ブロックBK0の画像)を第1画像として取得しても良い。
 また、上述した第1~第3核酸配列計測方法では、説明を簡単にするために、最初にまとめて第1画像及び第2画像を取得し、その後に、第1画像及び第2画像の画像処理等を行う例について説明した。しかしながら、第1画像を取得してから第2画像を取得するまでの間に、第1画像の画像処理等を行っても良い。
 また、上述した第3核酸配列計測方法における信頼区間の設定方法を上述した第2核酸配列計測方法で用いても良く、逆に、上述した第2核酸配列計測方法における信頼区間の設定方法を上述した第3核酸配列計測方法で用いても良い。具体的には、図6のステップS22,S23の処理を図10のステップS31,S32の処理に置き換えても良く、図10のステップS31,S32の処理を図6のステップS22,S23の処理に置き換えても良い。
 また、本発明の実施形態による核酸配列計測装置及び核酸配列計測方法は、蛍光分子光量計測におけるドライ画像測定、バイオチップの蛍光分子光量の液中観察、及び連続反応におけるリアルタイム観察等に使用することができる。具体的には、本発明の実施形態による核酸配列計測装置及び核酸配列計測方法は、例えば、遺伝子・高分子分析による菌種判別、がん遺伝子、動植物判別、腸内細菌の検査等に用いることができる。
 また、本発明の実施形態による核酸配列計測装置及び核酸配列計測方法は、臨床検査等に使用される標識抗体法等の次のような固相法にも応用される。例えば、組織や細胞内の特定の染色体や遺伝子の発現を、蛍光物質を用いて蛍光測定するFISH法(蛍光 in situ ハイブリダイゼーション)が一例として挙げられる。この他にも、以下のような各種の手法への応用が一例として挙げられる。即ち、ユーロピウム等の蛍光発光物質を標識として抗原抗体反応を測定するFIA法(蛍光免疫測定法)や、抗原となる病原体等に蛍光物質をラベルした血清(抗体)反応を測定するIFA法(間接蛍光抗体法)が挙げられる。
 本明細書において「前、後ろ、上、下、右、左、垂直、水平、縦、横、行および列」などの方向を示す言葉は、本発明の装置におけるこれらの方向について言及する。従って、本発明の明細書におけるこれらの言葉は、本発明の装置において相対的に解釈されるべきである。
 「構成される」という言葉は、本発明の機能を実行するために構成され、または装置の構成、要素、部分を示すために使われる。
 さらに、クレームにおいて「ミーンズ・プラス・ファンクション」として表現されている言葉は、本発明に含まれる機能を実行するために利用することができるあらゆる構造を含むべきものである。
 「ユニット」という言葉は、構成要素、ユニット、ハードウェアや所望の機能を実行するためにプログラミングされたソフトウェアの一部分を示すために用いられる。ハードウェアの典型例はデバイスや回路であるが、これらに限られない。
 以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
 1    核酸配列計測装置
 12   検出部
 12a  画像取得部
 25   演算部
 BK   ブロック
 DV   核酸配列計測用デバイス
 SP   スポット
 TG   ターゲット

Claims (20)

  1.  サンプルに含まれる特定の核酸配列を有するターゲットを計測する核酸配列計測装置において、
     前記ターゲットの添加によって蛍光を発する核酸配列計測用デバイスから発せられる蛍光を検出する検出部と、
     前記検出部の検出結果に基づいて、前記核酸配列計測用デバイスに対する前記サンプルの添加前又は添加直後の第1時点で、前記核酸配列計測用デバイスの予め規定された計測領域から発せられる蛍光の光量を示す第1光量と、前記核酸配列計測用デバイスに対する前記サンプルの添加から予め規定された時間が経過した後の第2時点で、前記計測領域から発せられる蛍光の光量を示す第2光量との差に基づいて前記ターゲットを計測する演算部と、
     を備える核酸配列計測装置。
  2.  前記検出部は、少なくとも前記計測領域が含まれる画像取得領域の画像を取得する画像取得部を備え、
     前記演算部は、前記第1時点で取得された前記画像取得領域の画像である第1画像及び前記第2時点で取得された前記画像取得領域の画像である第2画像の画像処理を行って、前記第1光量及び前記第2光量をそれぞれ求める、
     請求項1記載の核酸配列計測装置。
  3.  前記演算部は、前記画像処理として、前記第1画像に含まれる前記計測領域の画像をなす画素の平均階調値を前記第1光量として求める処理と、前記第2画像に含まれる前記計測領域の画像をなす画素の平均階調値を前記第2光量として求める処理とを行う、請求項2記載の核酸配列計測装置。
  4.  前記演算部は、前記第1画像と前記第2画像との画素毎の階調値の差が予め規定された第1閾値を超える画素を抽出し、前記第1画像の抽出した画素の平均階調値を前記第1光量として求める処理と、前記第2画像の抽出した画素の平均階調値を前記第2光量として求める処理とを行う、請求項3記載の核酸配列計測装置。
  5.  前記演算部は、前記第1画像に含まれる前記計測領域の画像をなす画素の階調値の標準偏差を求め、前記標準偏差に基づいて前記第1閾値を設定する、請求項4記載の核酸配列計測装置。
  6.  前記演算部は、前記画像処理として、前記第1画像に含まれる前記計測領域の画像をなす画素の各々の階調値と、前記第2画像に含まれる前記計測領域の画像をなす画素の各々の階調値との差を、前記第1光量と前記第2光量との差として求める処理を行う、請求項2記載の核酸配列計測装置。
  7.  前記演算部は、前記第1光量と前記第2光量との差が予め規定された第2閾値を超える画素を抽出し、抽出した画素の数に基づいて前記ターゲットを計測する、請求項6記載の核酸配列計測装置。
  8.  前記演算部は、前記第1画像に含まれる前記計測領域以外の領域の画像をなす画素の階調値の標準偏差を求め、前記標準偏差に基づいて前記第2閾値を設定する、請求項7記載の核酸配列計測装置。
  9.  前記画像取得部は、前記画像取得領域の画像を、異なる解像度で取得する、請求項2から請求項8の何れか一項に記載の核酸配列計測装置。
  10.  サンプルに含まれる特定の核酸配列を有するターゲットを計測する核酸配列計測装置によって実行される核酸配列計測方法であって、
     前記ターゲットの添加によって蛍光を発する核酸配列計測用デバイスに対する前記サンプルの添加前又は添加直後の第1時点で、前記核酸配列計測用デバイスの予め規定された計測領域から発せられる蛍光の光量を示す第1光量と、前記核酸配列計測用デバイスに対する前記サンプルの添加から予め規定された時間が経過した後の第2時点で、前記計測領域から発せられる蛍光の光量を示す第2光量との差を求め、
     前記第1光量と前記第2光量との差に基づいて前記ターゲットを計測する、
     核酸配列計測方法。
  11.  少なくとも前記計測領域が含まれる画像取得領域の画像を取得し、
     前記第1時点で取得された前記画像取得領域の画像である第1画像及び前記第2時点で取得された前記画像取得領域の画像である第2画像の画像処理を行って、前記第1光量及び前記第2光量をそれぞれ求める、
     請求項10記載の核酸配列計測方法。
  12.  前記画像処理として、前記第1画像に含まれる前記計測領域の画像をなす画素の平均階調値を前記第1光量として求める処理と、前記第2画像に含まれる前記計測領域の画像をなす画素の平均階調値を前記第2光量として求める処理とを行う、請求項11記載の核酸配列計測方法。
  13.  前記第1画像と前記第2画像との画素毎の階調値の差が予め規定された第1閾値を超える画素を抽出し、前記第1画像の抽出した画素の平均階調値を前記第1光量として求める処理と、前記第2画像の抽出した画素の平均階調値を前記第2光量として求める処理とを行う、請求項12記載の核酸配列計測方法。
  14.  前記第1画像に含まれる前記計測領域の画像をなす画素の階調値の標準偏差を求め、前記標準偏差に基づいて前記第1閾値を設定する、請求項13記載の核酸配列計測方法。
  15.  前記画像処理として、前記第1画像に含まれる前記計測領域の画像をなす画素の各々の階調値と、前記第2画像に含まれる前記計測領域の画像をなす画素の各々の階調値との差を、前記第1光量と前記第2光量との差として求める処理を行う、請求項11記載の核酸配列計測方法。
  16.  前記第1光量と前記第2光量との差が予め規定された第2閾値を超える画素を抽出し、抽出した画素の数に基づいて前記ターゲットを計測する、請求項15記載の核酸配列計測方法。
  17.  前記第1画像に含まれる前記計測領域以外の領域の画像をなす画素の階調値の標準偏差を求め、前記標準偏差に基づいて前記第2閾値を設定する、請求項16記載の核酸配列計測方法。
  18.  前記画像取得領域の画像を、異なる解像度で取得する、請求項11から請求項17の何れか一項に記載の核酸配列計測方法。
  19.  サンプルに含まれる特定の核酸配列を有するターゲットを計測する核酸配列計測装置によって実行されるプログラムを記憶するコンピュータ読み取り可能な非一時的記録媒体であって、
     前記プログラムは、前記核酸配列計測装置に、
     前記ターゲットの添加によって蛍光を発する核酸配列計測用デバイスに対する前記サンプルの添加前又は添加直後の第1時点で、前記核酸配列計測用デバイスの予め規定された計測領域から発せられる蛍光の光量を示す第1光量と、前記核酸配列計測用デバイスに対する前記サンプルの添加から予め規定された時間が経過した後の第2時点で、前記計測領域から発せられる蛍光の光量を示す第2光量との差を求めさせ、
     前記第1光量と前記第2光量との差に基づいて前記ターゲットを計測させる、
     コンピュータ読み取り可能な非一時的記録媒体。
  20.  前記プログラムは、前記核酸配列計測装置に、
     少なくとも前記計測領域が含まれる画像取得領域の画像を取得させ、
     前記第1時点で取得された前記画像取得領域の画像である第1画像及び前記第2時点で取得された前記画像取得領域の画像である第2画像の画像処理を行って、前記第1光量及び前記第2光量をそれぞれ求めさせる、
     請求項19記載のコンピュータ読み取り可能な非一時的記録媒体。
PCT/JP2020/042910 2019-12-23 2020-11-18 核酸配列計測装置、核酸配列計測方法、及びコンピュータ読み取り可能な非一時的記録媒体 WO2021131411A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/780,833 US20230002813A1 (en) 2019-12-23 2020-11-18 Nucleic acid sequence measuring apparatus, nucleic acid sequence measuring method, and non-transitory recording medium
EP20907095.2A EP4083179A4 (en) 2019-12-23 2020-11-18 DEVICE FOR MEASURING NUCLEIC ACID SEQUENCES, METHOD FOR MEASURING NUCLEIC ACID SEQUENCES AND COMPUTER-READABLE NON-TEMPORARY STORAGE MEDIUM
CN202080089112.2A CN114846132A (zh) 2019-12-23 2020-11-18 核酸序列测定装置、核酸序列测定方法以及计算机可读取的非临时性记录介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019231995A JP2021097648A (ja) 2019-12-23 2019-12-23 核酸配列計測装置及び核酸配列計測方法
JP2019-231995 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021131411A1 true WO2021131411A1 (ja) 2021-07-01

Family

ID=76540548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042910 WO2021131411A1 (ja) 2019-12-23 2020-11-18 核酸配列計測装置、核酸配列計測方法、及びコンピュータ読み取り可能な非一時的記録媒体

Country Status (5)

Country Link
US (1) US20230002813A1 (ja)
EP (1) EP4083179A4 (ja)
JP (1) JP2021097648A (ja)
CN (1) CN114846132A (ja)
WO (1) WO2021131411A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008271A1 (ja) * 2021-07-30 2023-02-02 横河電機株式会社 核酸計測デバイス、その設計方法、製造方法及び計測方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506656A (ja) * 1998-03-18 2002-03-05 ノヴェンバー・アクティエンゲゼルシャフト・ゲゼルシャフト・フューア・モレクラーレ・メディツィン タグの同定方法及び同定装置
JP2012118051A (ja) * 2010-11-11 2012-06-21 Sony Corp 核酸の検出方法及びサンプルの光学観察方法並びに蛍光体
JP2012249804A (ja) * 2011-06-02 2012-12-20 Olympus Corp 蛍光観察装置
JP2015043702A (ja) 2013-08-27 2015-03-12 横河電機株式会社 核酸配列計測方法、核酸配列計測用デバイス、核酸配列計測用デバイスの製造方法および核酸配列計測装置
US20180320223A1 (en) * 2015-03-19 2018-11-08 Quandx Inc. Ided double-stranded probes for detection of nucleic acid and uses of same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070059693A1 (en) * 2003-01-02 2007-03-15 University Of Rochester Hybridization-based biosensor containing hairpin probes and use thereof
WO2005047545A2 (en) * 2003-11-04 2005-05-26 Applera Corporation Microarray controls
US11525156B2 (en) * 2006-07-28 2022-12-13 California Institute Of Technology Multiplex Q-PCR arrays
CN106414772B (zh) * 2014-04-08 2021-02-19 华盛顿大学商业中心 用于使用多分散小滴执行数字检定的方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506656A (ja) * 1998-03-18 2002-03-05 ノヴェンバー・アクティエンゲゼルシャフト・ゲゼルシャフト・フューア・モレクラーレ・メディツィン タグの同定方法及び同定装置
JP2012118051A (ja) * 2010-11-11 2012-06-21 Sony Corp 核酸の検出方法及びサンプルの光学観察方法並びに蛍光体
JP2012249804A (ja) * 2011-06-02 2012-12-20 Olympus Corp 蛍光観察装置
JP2015043702A (ja) 2013-08-27 2015-03-12 横河電機株式会社 核酸配列計測方法、核酸配列計測用デバイス、核酸配列計測用デバイスの製造方法および核酸配列計測装置
US20180320223A1 (en) * 2015-03-19 2018-11-08 Quandx Inc. Ided double-stranded probes for detection of nucleic acid and uses of same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TADENUMA TAKASHI, TAGUCHI TOMOYUKI: "Development of a Nucleic Acid Detection System for Rapid Microbial Tests", YOKOGAWA TECHNICAL REPORT, vol. 60, no. 1, 1 January 2017 (2017-01-01), pages 7 - 12, XP055928497 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008271A1 (ja) * 2021-07-30 2023-02-02 横河電機株式会社 核酸計測デバイス、その設計方法、製造方法及び計測方法
JP2023019876A (ja) * 2021-07-30 2023-02-09 横河電機株式会社 核酸計測デバイス、その設計方法、製造方法及び計測方法
JP7409354B2 (ja) 2021-07-30 2024-01-09 横河電機株式会社 核酸計測デバイス、その設計方法、製造方法及び計測方法

Also Published As

Publication number Publication date
US20230002813A1 (en) 2023-01-05
JP2021097648A (ja) 2021-07-01
EP4083179A4 (en) 2024-01-24
CN114846132A (zh) 2022-08-02
EP4083179A1 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
US7608840B2 (en) System and method employing photokinetic techniques in cell biology imaging applications
JP4826586B2 (ja) スペクトル画像処理方法、コンピュータ実行可能なスペクトル画像処理プログラム、スペクトルイメージングシステム
US20060170918A1 (en) Detection Apparatus and Detection Method for Plasmon Resonance and Fluorescence
KR101513602B1 (ko) 바이오칩 스캐닝 방법
EP2255338A2 (en) Correction of spot area in measuring brightness of sample in biosensing device
JP6490337B2 (ja) 物体の最大解像度カラー撮像
US8306317B2 (en) Image processing apparatus, method and computer program product
JP2010268723A (ja) 細胞スクリーニング方法、その方法に用いる制御ソフトウェア、細胞スクリーニング装置、及び画像解析装置、並びに細胞スクリーニングシステム
JP2018529947A (ja) 生物学的試料の多重分析におけるクロストークの修正
WO2021131411A1 (ja) 核酸配列計測装置、核酸配列計測方法、及びコンピュータ読み取り可能な非一時的記録媒体
JP2024534332A (ja) 周期的にパターン化された表面のためのシーケンサ焦点品質メトリック及び焦点追跡
JP4089916B2 (ja) 多細胞応答同時測定法
US20190195777A1 (en) Captured image evaluation apparatus, captured image evaluation method, and captured image evaluation program
JP2006275771A (ja) 細胞画像解析装置
WO2012176775A1 (ja) 光測定装置、光測定方法、及び光測定プログラム
JP4603591B2 (ja) 核酸分析装置
JP6897665B2 (ja) 画像処理装置、観察装置、及びプログラム
JP2021512346A (ja) 衝撃再走査システム
JP2004184379A (ja) マイクロアレイの読取方法
US8963105B2 (en) Image obtaining apparatus, image obtaining method, and image obtaining program
JP7077992B2 (ja) 核酸配列計測用デバイス、核酸配列計測方法、および核酸配列計測装置
Charlot Automation in image cytometry: continuous HCS and kinetic image cytometry
JP2009074937A (ja) 画像処理装置および画像処理プログラム
WO2021005904A1 (ja) 情報処理装置およびプログラム
CN117859086A (zh) 用于周期性图案化表面的测序仪聚焦质量度量和聚焦跟踪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020907095

Country of ref document: EP

Effective date: 20220725