WO2021129724A1 - 芳胺化合物和有机电致发光器件 - Google Patents

芳胺化合物和有机电致发光器件 Download PDF

Info

Publication number
WO2021129724A1
WO2021129724A1 PCT/CN2020/138946 CN2020138946W WO2021129724A1 WO 2021129724 A1 WO2021129724 A1 WO 2021129724A1 CN 2020138946 W CN2020138946 W CN 2020138946W WO 2021129724 A1 WO2021129724 A1 WO 2021129724A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
groups
amine compound
Prior art date
Application number
PCT/CN2020/138946
Other languages
English (en)
French (fr)
Inventor
邓高飞
赵宇
陈志伟
王金平
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Priority to US17/787,626 priority Critical patent/US20230118116A1/en
Publication of WO2021129724A1 publication Critical patent/WO2021129724A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/58Naphthylamines; N-substituted derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/60Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton containing a ring other than a six-membered aromatic ring forming part of at least one of the condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/38Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Definitions

  • the invention belongs to the technical field of organic light-emitting materials, and specifically provides an aromatic amine compound and an organic electroluminescence device using the same.
  • OLED Organic light-emitting diode
  • OLED is based on the principle that when an electric field is applied between the anode and the anode, the holes on the anode side and the electrons on the cathode side move to the light-emitting layer and combine to form excitons in the light-emitting layer.
  • the electron When the electron is in the excited state, it releases energy to the outside, and the process of releasing energy from the excited state to releasing energy to the ground state emits light to the outside. Since the Kodak Company in the United States reported on organic molecular electroluminescence in 1987 and the University of Cambridge in the United Kingdom reported on polymer electroluminescence in 1990, countries around the world have carried out research and development.
  • This type of material has the advantages of simple structure, high yield, low cost, active luminescence, fast response speed, high resolution, etc., and has the properties of low driving voltage, all solid state, non-vacuum, anti-vibration, low temperature resistance (-40°C), etc. , Is considered to be a new technology that is most likely to replace liquid crystal displays in the future, which has attracted great attention.
  • multilayer structures are usually used in organic electroluminescent devices.
  • These multilayer structures may include one or more of the following film layers: hole injection layer (hole injection layer). injection layer (HIL), hole transport layer (HTL), electron-blocking layer (EBL), organic electroluminescence layer (EML), hole blocking layer (hole -blocking layer (HBL), electron transport layer (electron transport layer, ETL), electron injection layer (electron injection layer, EIL), etc.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL organic electroluminescence layer
  • HBL hole blocking layer
  • ETL electron transport layer
  • EIL electron injection layer
  • the existing light-emitting layer materials in organic electroluminescent devices are, for example, NPB, TPD, and m-MTDATA, but these materials generally have low luminous efficiency and poor thermal stability, resulting in shorter life of organic electroluminescent devices and relatively low luminous efficiency. low.
  • the purpose of the present invention is to improve the luminous efficiency and device lifetime of organic electroluminescent devices.
  • the first aspect of the present invention provides an aromatic amine compound, wherein the aromatic amine compound has a structure represented by the following formula (1):
  • R 1 and Ar 5 are the same or different, and are each independently selected from: substituted or unsubstituted C6-30 aryl, substituted or unsubstituted C2-C40 heteroaryl, substituted or unsubstituted C1- C10 alkyl, hydrogen, deuterium, halogen, cyano, C3-C10 trialkylsilyl, triphenylsilyl, where Ar 5 is not hydrogen;
  • Ar 1 , Ar 2 , Ar 3 , and Ar 4 are the same or different, and are each independently selected from: substituted or unsubstituted C6-C40 aryl groups, substituted or unsubstituted C2-C40 heteroaryl groups;
  • L is selected from a single bond, a substituted or unsubstituted C6-C30 arylene group, and a substituted or unsubstituted C2-C30 heteroarylene group;
  • R 1 , Ar 5 , Ar 1 , Ar 2 , Ar 3 , Ar 4 and L are the same or different, and are independently selected from: deuterium, halogen, cyano, C6-C20 aryl, C3-C20 heteroaryl groups, C1-C10 alkyl groups, C3-C6 cycloalkyl groups, C1-C10 trialkylsilyl groups, C6-C48 triarylsilyl groups.
  • the second aspect of the present invention provides an organic electroluminescent device, comprising an anode, a cathode, and at least one functional layer between the anode layer and the cathode layer, the functional layer including a hole injection layer and a hole transport layer , An organic electroluminescence layer, an electron transport layer, an electron injection layer, and an electron blocking layer, wherein at least one of the organic electroluminescence layer, the hole transport layer, and the electron transport layer contains the aromatic compound according to the first aspect of the present invention Amine compound.
  • the molecular structure of the aromatic amine compound of the present invention contains an electron-donating aromatic amine group and a large number of large conjugated systems, which can increase the electron mobility and transition rate, and the molecular structure has a relatively large steric hindrance.
  • the twist angle is large, and the T1 value is relatively high. Therefore, the aromatic amine compound can be used as an organic electroluminescent device material, which can improve the electrical stability, luminous efficiency and color purity of the organic electroluminescent device, and can extend the device life.
  • FIG. 1 is a schematic structural diagram of an embodiment of the organic electroluminescent device of the present invention.
  • Anode; 200 cathode; 300, functional layer; 310, hole injection layer; 320, hole transport layer; 321, first hole transport layer; 322, second hole transport layer; 330, organic electro-induced Light-emitting layer; 340, hole blocking layer; 350, electron transport layer; 360, electron injection layer; 370, electron blocking layer.
  • the first aspect of the present invention provides an aromatic amine compound, wherein the aromatic amine compound has a structure represented by the following formula (1):
  • R 1 and Ar 5 are the same or different, and are each independently selected from: substituted or unsubstituted C6-30 aryl, substituted or unsubstituted C2-C40 heteroaryl, substituted or unsubstituted C1- C10 alkyl, hydrogen, deuterium, halogen, cyano, C3-C10 trialkylsilyl, triphenylsilyl, where Ar 5 is not hydrogen;
  • Ar 1 , Ar 2 , Ar 3 , and Ar 4 are the same or different, and are each independently selected from: substituted or unsubstituted C6-C40 aryl groups, substituted or unsubstituted C2-C40 heteroaryl groups;
  • L is selected from a single bond, a substituted or unsubstituted C6-C30 arylene group, and a substituted or unsubstituted C2-C30 heteroarylene group;
  • R 1 , Ar 5 , Ar 1 , Ar 2 , Ar 3 , Ar 4 and L are the same or different, and are independently selected from: deuterium, halogen, cyano, C6-C20 aryl, C3-C20 heteroaryl groups, C1-C10 alkyl groups, C3-C6 cycloalkyl groups, C1-C10 trialkylsilyl groups, C6-C48 triarylsilyl groups.
  • the molecular structure of the aromatic amine compound of the present invention contains an electron-donating aromatic amine group and a large number of large conjugated systems, which can increase the electron mobility and transition rate.
  • the aromatic amine compound can be used as a light emitting device for organic electroluminescence devices.
  • the layer material can improve the electrical stability, color purity and luminous efficiency of the organic electroluminescent device, and can extend the life of the device.
  • Cx ⁇ Cy (x and y are positive integers satisfying x ⁇ y) means that the number of carbon atoms of the partial structure corresponding to the functional group name described after the term is x ⁇ y A.
  • C1-C10 alkyl group refers to an alkyl group having 1 to 10 carbon atoms
  • C6 to C30 aryl group refers to an aryl group having 6 to 30 carbon atoms.
  • a single bond refers to a case where other atoms are not present in the part represented by L.
  • L in the chemical formula (1) is a single bond
  • N may be directly connected to Ar 2 .
  • substituted or unsubstituted means that the functional group described after the term may or may not have the substituent Ra.
  • substituted or unsubstituted alkyl refers to an alkyl group having a substituent Ra or an unsubstituted alkyl group.
  • Ra can be deuterium, halogen, hydroxyl, cyano, nitro, amino, alkyl, cycloalkyl, haloalkyl, heteroalkyl containing more than one of O, N, Si and S, heterocycloalkyl, Alkoxy, alkylthio, dialkylamino, diarylamino, aryloxy, arylthio, silyl, trialkylsilyl, triarylsilyl, alkenyl, cycloalkenyl. These groups may also have substituents selected from the above.
  • the substituent Ra can be selected from deuterium, halogen, cyano, methyl, ethyl, isopropyl, tert-butyl, phenyl, biphenyl, naphthyl, phenanthryl, quinoline.
  • Linyl isoquinolinyl, N-phenylcarbazolyl, pyridyl, pyrimidinyl, dibenzofuranyl, dibenzothienyl, 9,9-diphenylfluorenyl, anthracenyl, carbazolyl , 9,9-dimethylfluorenyl, spirobifluorenyl, One or more of quinazolinyl, quinazolinyl and quinoxalinyl.
  • the C1-C10 alkyl group may be a straight-chain alkyl group or a branched-chain alkyl group.
  • the C1-C10 alkyl group may be a linear alkyl group having 1 to 10 carbon atoms; or a branched alkyl group having 3 to 10 carbon atoms. More specifically, the C1-C10 alkyl group can be methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, and neopentyl.
  • the C3-C6 cycloalkyl group may be cyclopentyl or cyclohexyl, but, It is not limited to this.
  • hetero means that a functional group includes at least one heteroatom such as B, O, N, P, Si, or S, and the remaining atoms are carbon and hydrogen.
  • the unsubstituted alkyl group may be a "saturated alkyl group" without any double or triple bonds.
  • an aryl group refers to an optional functional group or substituent derived from an aromatic hydrocarbon ring.
  • the aryl group can be a monocyclic aryl group or a polycyclic aryl group.
  • the aryl group can be a monocyclic aryl group, a condensed ring aryl group, two or more monocyclic aryl groups conjugated by carbon-carbon bonds, A monocyclic aryl group and a condensed ring aryl group conjugated by carbon bonds, and two or more fused ring aryl groups conjugated by a carbon-carbon bond. That is, two or more aromatic groups conjugated through carbon-carbon bonds can also be regarded as aryl groups in the present application.
  • the aryl group does not contain heteroatoms such as B, O, N, P, Si, or S.
  • biphenyl, terphenyl, etc. are aryl groups.
  • aryl groups may include phenyl, naphthyl, fluorenyl, anthracenyl, phenanthryl, biphenyl, terphenyl, tetraphenyl, pentaphenyl, hexaphenyl, benzo[9,10 ]Phenanthryl, pyrenyl, benzofluoranthene Group, fluorenyl group, 9,9-dimethylfluorenyl group, 9,9 diphenylfluorenyl group, spirobifluorenyl group, etc., but not limited thereto.
  • unsubstituted aryl refers to aryl groups with 6-30 carbon atoms, such as phenyl, naphthyl, pyrenyl, dimethyl fluorenyl, 9,9 diphenyl fluorene Base, spirobifluorenyl, anthracenyl, phenanthryl, Group, azulenyl, acenaphthylene, biphenyl, benzanthracenyl, spirobifluorenyl, perylene, indenyl, etc.
  • the substituted aryl group having 6-30 carbon atoms means that at least one hydrogen atom is replaced by a deuterium atom, F, Cl, I, CN, hydroxyl, nitro, amino and the like.
  • the substituted aryl group refers to the replacement of one or more hydrogen atoms in the aryl group by other groups.
  • at least one hydrogen atom is replaced by a deuterium atom, F, Cl, Br, I, CN, hydroxyl, amino, branched alkyl, linear alkyl, cycloalkyl, alkoxy, alkylamino or other groups, Such as 9,9-dimethyl fluorenyl, 9,9 diphenyl fluorenyl, spirobifluorenyl and so on.
  • substituted aryl group with 20 carbon atoms means that the total number of carbon atoms of the aryl group and the substituent on the aryl group is 20.
  • the number of carbon atoms of 9,9-dimethylfluorenyl is 15.
  • the substituted aryl group may be one or more hydrogen atoms in the aryl group, such as deuterium atom, halogen group, -CN, aryl, heteroaryl, trialkylsilyl, alkyl, Cycloalkyl, alkoxy, alkylthio and other groups are substituted.
  • aryl-substituted aryl groups include, but are not limited to, dibenzofuranyl-substituted phenyl groups, dibenzothiophene-substituted phenyl groups, pyridine-substituted phenyl groups, and the like.
  • the number of carbon atoms of a substituted aryl group refers to the total number of carbon atoms of the aryl group and the substituents on the aryl group.
  • a substituted aryl group with 18 carbon atoms refers to an aryl group and a substituted group.
  • the total number of carbon atoms of the group is 18.
  • the heteroaryl group may be a heteroaryl group including at least one of B, O, N, P, Si, and S as a heteroatom.
  • the heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • the heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems conjugated through carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic monocyclic ring or an aromatic fused ring.
  • heteroaryl groups may include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, Acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyrazine Azinyl, isoquinolinyl, indolyl, carbazolyl, N-arylcarbazolyl, N-heteroarylcarbazolyl, N-alkylcarbazolyl, benzoxazolyl, benzimidazole Group, benzothiazolyl, benzo, be
  • thienyl, furanyl, phenanthrolinyl, etc. are heteroaryl groups of a single aromatic ring system
  • N-arylcarbazolyl, N-heteroarylcarbazolyl, phenyl-substituted dibenzofuranyl, Dibenzofuranyl-substituted phenyl groups and the like are heteroaryl groups of multiple aromatic ring systems conjugated through carbon-carbon bonds.
  • the substituted heteroaryl group may be one or more hydrogen atoms in the heteroaryl group, such as deuterium atom, halogen group, -CN, aryl, heteroaryl, trialkylsilyl, alkane Group, cycloalkyl, alkoxy, alkylthio and other groups are substituted.
  • aryl-substituted heteroaryl groups include, but are not limited to, phenyl-substituted dibenzofuranyl, phenyl-substituted dibenzothienyl, phenyl-substituted pyridyl, and the like. It should be understood that the number of carbon atoms of the substituted heteroaryl group refers to the total number of carbon atoms of the heteroaryl group and the substituents on the heteroaryl group.
  • each q is independently 0, 1, 2 or 3, and each R "independently selected from hydrogen, fluorine, and chlorine" in the description, its meaning is:
  • formula Q-1 represents that there are q substituents R on the benzene ring ", each R” can be the same or different, and the options of each R" do not affect each other;
  • formula Q-2 means that there are q substituents R" on each benzene ring of biphenyl, and the two benzene rings
  • the number q of R" substituents may be the same or different, and each R" may be the same or different, and the options of each R" do not affect each other.
  • the non-positioned link in this application refers to the single bond extending from the ring system It means that one end of the link can be connected to any position in the ring system that the bond penetrates, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positioned linkages that penetrate the bicyclic ring. ) ⁇ Any possible connection shown in formula (f-10).
  • the phenanthryl group represented by the formula (X') is connected to other positions of the molecule through a non-positional linkage extending from the middle of the benzene ring on one side. It includes any possible connection modes shown in formula (X'-1) to formula (X'-4).
  • the non-positional substituent in this application refers to a substituent connected by a single bond extending from the center of the ring system, which means that the substituent can be connected at any possible position in the ring system.
  • the substituent R group represented by the formula (Y) is connected to the quinoline ring through a non-localized linkage, and its meaning includes the following formula (Y-1) to Any possible connection mode shown in formula (Y-7).
  • trialkylsilyl include, but are not limited to, trimethylsilyl, triethylsilyl, and the like.
  • triarylsilyl examples include, but are not limited to, triphenylsilyl and the like.
  • the aromatic amine compound has a structure represented by the following formula (1):
  • R 1 is a C1-C10 alkyl group
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 and Ar 5 are the same or different, and are each independently selected from: substituted or unsubstituted C6-C30 aryl groups, substituted or unsubstituted C2-C40 heteroaryl groups;
  • L is selected from a single bond, a substituted or unsubstituted C6-C30 arylene group, and a substituted or unsubstituted C2-C30 heteroarylene group;
  • the substituents in Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and L are the same or different, and are each independently selected from: deuterium, halogen, cyano, C1-C10 alkyl, C3-C6 Cycloalkyl groups, C1-C10 trialkylsilyl groups, C6-C48 triarylsilyl groups.
  • said L is selected from a single bond, or from a group represented by the following general formula:
  • n 1 , n 2 , n 3 , n 5 , n 6 , n 7 , n 8 , and n 9 are each independently selected from 0, 1, 2, 3, and 4;
  • n 4 is selected from 0, 1, 2, 3, 4, 5, 6;
  • Y 1 is selected from C (G 10 G 11 ), O, S, Se, Si (G 12 G 13 ), N (G 14 );
  • G 1 to G 14 are the same or different, and are independently selected from hydrogen, deuterium, halogen, cyano, C1-C10 alkyl, C6-C18 aryl, C3-C18 heteroaryl, C3-C10 Or G 10 and G 11 are connected to form a ring, or G 12 and G 13 are connected to form a ring;
  • X 1 to X 5 are the same or different, and are independently selected from C(R') or N, and at least one of X 1 to X 5 is N, wherein R'in X 1 to X 5 is the same or Different and independently selected from hydrogen, C1-C10 alkyl, C6-C18 aryl, C3-C18 heteroaryl, C3-C10 cycloalkyl, or any two adjacent R's connected Into a ring.
  • n 1 is greater than or equal to 2, G 1 is the same or different; when n 2 is greater than or equal to 2, G 2 is the same or different; when n 3 is greater than or equal to 2, G 3 is the same or different;
  • n 4 is greater than or equal to 2, G 4 is the same or different; when n 5 is greater than or equal to 2, G 5 is the same or different; when n 6 is greater than or equal to 2, G 6 is the same or different; when n 7 is greater than or When equal to 2, G 7 is the same or different; when n 8 is greater than or equal to 2, G 8 is the same or different; when n 9 is greater than or equal to 2, G 9 is the same or different.
  • n 1 to n 11 are selected from 0, the benzene ring is not substituted.
  • any two adjacent R's are connected to form a ring
  • any two adjacent R's are connected to each other to form a ring with the atoms to which they are commonly connected.
  • a ring with 3-15 carbon atoms can be formed, or a ring with 3-10 carbon atoms can be formed; the ring can be saturated (e.g., five-membered ring, six-membered ring), or unsaturated , Such as aromatic ring.
  • the ring refers to a saturated or unsaturated ring, such as cyclohexane, cyclopentane, 6 to 12 membered aromatic ring or 5 to 12 membered heteroaromatic ring, etc., but not limited thereto .
  • a ring system formed by n atoms is an n-membered ring.
  • phenyl is a 6-membered aryl group.
  • the 6 to 10-membered aromatic ring refers to a benzene ring, an indene ring, a naphthalene ring, and the like.
  • the ring refers to a saturated or unsaturated ring.
  • the number of carbon atoms of the ring can be 5, for example It can also be 6, for example It can also be 13, for example
  • the number of carbon atoms in the ring can also be other values, which will not be listed here, and the application does not specifically limit the number of carbon atoms in the ring.
  • said L is selected from single bond, substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or Unsubstituted biphenylene, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted diphenylfluorenyl.
  • said L is selected from a single bond, a substituted or unsubstituted C6-C12 arylene group, and a substituted or unsubstituted C4- C12 heteroarylene;
  • the L is selected from substituted or unsubstituted pyridinylene, substituted or unsubstituted dibenzothienylene, and substituted or unsubstituted pyrimidinylene.
  • the substituents in L are the same or different, and are independently selected from: deuterium, fluorine, cyano, methyl, Ethyl, isopropyl, tert-butyl, phenyl, naphthyl, trimethylsilyl.
  • said L is selected from a single bond, or from the group consisting of groups represented by the following general formula:
  • * means that L is used with Group connection; ** means L is used with Group connection.
  • said L is selected from a single bond, or from the group consisting of groups represented by the following general formula:
  • * means that L is used with Group connection; ** means L is used with Group connection.
  • the L is selected from a single bond, or selected from the group consisting of the following groups:
  • the L is selected from a single bond, or selected from the group consisting of the following groups:
  • the Ar 1 , Ar 2 , Ar 3 , Ar 4 and Ar 5 are the same or different, and are each independently selected from: substituted or unsubstituted C6-C30 aryl groups and A substituted or unsubstituted C2-C30 heteroaryl group.
  • the Ar 1 , Ar 2 , Ar 3 , Ar 4 and Ar 5 are the same or different, and are each independently selected from: substituted or unsubstituted C6-C24 aryl groups and substituted or unsubstituted C3-C25
  • the heteroaryl groups are further independently selected from: substituted or unsubstituted C6-C20 aryl groups and substituted or unsubstituted C5-C20 heteroaryl groups.
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 and Ar 5 are the same or different, and are independently selected from the following general formulas:
  • b 1 , b 4 , b 7 , and b 9 are the same or different, and are independently selected from 0, 1, 2, 3, 4, and 5;
  • b 5 , b 6 , and b 8 are the same or different, and are independently selected from 0, 1, 2, 3, 4;
  • b 2 , b 3 , and b 11 are the same or different, and are independently selected from 0, 1, 2, 3, 4, 5, 6, and 7;
  • b 10 is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;
  • W 1 and W 2 are the same or different, and are independently selected from C and N;
  • Y 2 is selected from O, S, Si (E 12 E 13 ), C (E 14 E 15 ), N (E 16 ), Se;
  • Z 1 and Z 2 are the same or different, and are independently selected from O, S, C (E 17 R 18 ), and N (E 19 );
  • E 1 to E 19 are the same or different, and are independently selected from hydrogen, deuterium, halogen atom, cyano group, C1-C10 alkyl group, C6-C18 aryl group, C6-C18 heteroaryl group, C3-C10 Or E 12 and E 13 are connected to form a ring, or E 14 and E 15 are connected to form a ring, or E 17 and E 18 are connected to form a ring;
  • W 3 to W 7 are the same or different, and are independently selected from C(Q) or N, and at least one of W 3 to W 7 is N, wherein Q in W 3 to W 7 is the same or different, And are independently selected from hydrogen, C1-C10 alkyl, C6-C18 aryl, C3-C18 heteroaryl, C3-C10 cycloalkyl, or any two adjacent Qs are connected to form a ring;
  • W 8 to W 11 are the same or different, and are independently selected from C(Q') or N, and at least one of W 8 to W 11 is N, wherein Q'in W 8 to W 11 is the same or Different and independently selected from hydrogen, C1-C10 alkyl, C6-C18 aryl, C3-C18 heteroaryl, C3-C10 cycloalkyl, or any two adjacent Q's connected Into a ring.
  • Adjacent Q can be connected to form a ring, which means that W 3 and W 4 form a ring, or W 4 and W 5 form a ring, or W 5 and W 6 form a ring, or W 6 and W 7 form a ring.
  • W 3 and W 4 form a ring
  • W 5 and W 6 form a ring.
  • Adjacent Q' can be connected to form a ring, which means that W 8 and W 9 form a ring, or W 9 and W 10 form a ring, or W 10 and W 11 form a ring. Of course, it also includes W 8 and W 9 forming a ring and W 10 and W 11 form a ring, etc.
  • the Ar 1 , Ar 3 and Ar 4 are the same or different, and are each independently selected from: substituted or unsubstituted C6-C20 aryl groups and substituted or unsubstituted C5- C12 heteroaryl.
  • the Ar 1 , Ar 3 and Ar 4 are the same or different, and are independently selected from the group formed by the following groups:
  • the Ar 1 , Ar 2 , Ar 3 and Ar 4 are the same or different, and are each independently selected from: substituted or unsubstituted C6-C25 aryl groups, substituted or unsubstituted ⁇ C3-C26 heteroaryl group.
  • the Ar 1 , Ar 2 , Ar 3 and Ar 4 are the same or different, and are each independently selected from: substituted or unsubstituted C6-C20 aryl groups, substituted or unsubstituted ⁇ C5-C26 heteroaryl group.
  • the Ar 1 , Ar 2 , Ar 3 and Ar 4 are the same or different, and are each independently selected from: substituted or substituted phenyl, substituted or unsubstituted pyridyl, Substituted or unsubstituted pyrimidinyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted quinolinyl, substituted or unsubstituted isoquinolinyl, substituted or unsubstituted anthracene Group, substituted or unsubstituted phenanthryl, substituted or unsubstituted fluorenyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted carbazolyl, substituted Or unsubstituted N-phenylcarbazolyl, substituted or substituted pheny
  • the substituents in Ar 1 , Ar 2 , Ar 3 , and Ar 4 are the same or different, and are independently selected from: deuterium, halogen, cyano, C1-C5 alkane Group, trimethylsilyl group, C6-C15 aryl group, C3-C20 heteroaryl group.
  • the Ar 1 , Ar 2 , Ar 3 and Ar 4 are the same or different, and are independently selected from substituted or unsubstituted groups T, and the unsubstituted group T is selected from The group consisting of the following groups:
  • the substituted group T has one or more than two substituents, and the substituents of T are independently selected from deuterium, fluorine, cyano, trimethylsilyl, methyl, ethyl, isopropyl, tert-butyl, Phenyl, biphenyl, pyridyl, pyrimidinyl, N-phenylcarbazolyl, phenanthryl, naphthyl, carbazolyl, dibenzofuranyl or dibenzothienyl.
  • the Ar 1 , Ar 2 , Ar 3 and Ar 4 are the same or different, and are independently selected from the group formed by the following groups:
  • the substituents in Ar 1 , Ar 2 , Ar 3 , and Ar 4 are the same or different, and are independently selected from: deuterium, fluorine, cyano, phenyl, pyrimidinyl , Pyridyl, naphthyl, phenanthryl, methyl, ethyl, isopropyl, tert-butyl, dibenzofuranyl, dibenzothienyl, carbazolyl, N-phenylcarbazolyl.
  • the Ar 5 is selected from substituted or unsubstituted C6-C15 aryl groups and substituted or unsubstituted C4-C10 heteroaryl groups.
  • the Ar 5 is selected from the group consisting of the following groups:
  • the Ar 5 is selected from deuterium, cyano, fluorine, trimethylsilyl, C1-C5 deuterated alkyl, C1-C5 alkyl, substituted or unsubstituted C6-C25 aryl groups or substituted or unsubstituted C4-C18 heteroaryl groups.
  • the Ar 5 is selected from deuterium, cyano, fluorine, trimethylsilyl, deuterated methyl, methyl, ethyl, isopropyl, tert-butyl, substituted or Unsubstituted phenyl, substituted or unsubstituted pyridyl, substituted or unsubstituted pyrimidinyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted quinolinyl, substituted or Unsubstituted isoquinolinyl, substituted or unsubstituted phenanthrenyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted fluorenyl, substituted or unsubstituted N-phenylcarbazolyl, substituted or
  • the Ar 5 is selected from deuterium, cyano, fluorine, trimethylsilyl, deuterated methyl, methyl, ethyl, isopropyl, tert-butyl or the following groups Group composed of groups:
  • the Ar 5 is selected from deuterium, cyano, fluorine, trimethylsilyl, deuterated methyl, methyl, ethyl, isopropyl, tert-butyl or the following groups Group composed of groups:
  • the R 1 is selected from hydrogen, deuterium, cyano, fluorine, trimethylsilyl, triphenylsilyl, C1-C10 alkyl, substituted or unsubstituted C6 ⁇ C21 aryl or substituted or unsubstituted C4-C12 heteroaryl.
  • the R 1 is selected from hydrogen, deuterium, cyano, fluorine, trimethylsilyl, triphenylsilyl, C1-C10 alkyl, substituted or unsubstituted benzene Group, substituted or unsubstituted pyridyl, substituted or unsubstituted pyrimidinyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted quinolinyl, substituted or unsubstituted iso Quinolinyl, substituted or unsubstituted phenanthryl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted fluorenyl.
  • the R 1 is selected from hydrogen, deuterium, cyano, fluorine, trimethylsilyl, triphenylsilyl, C1-C10 alkyl groups, or the following groups: group:
  • the R 1 is selected from hydrogen, deuterium, cyano, fluorine, trimethylsilyl, triphenylsilyl, C1-C10 alkyl groups, or the following groups: group:
  • the substituents in R 1 and Ar 5 are the same or different, and are independently selected from: deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tertiary Butyl, trimethylsilyl, phenyl, dimethylfluorenyl, phenanthryl, N-phenylcarbazolyl, dibenzofuranyl, dibenzothienyl, carbazolyl, pyridyl, pyrimidinyl , Quinolinyl, isoquinolinyl.
  • the substituents in R 1 and Ar 5 are the same or different, and are independently selected from: deuterium, fluorine, cyano, C1-C5 alkyl, trimethylsilyl Group, C6-C15 aryl group, C5-C18 heteroaryl group.
  • Ar 2 is selected from substituted or unsubstituted C6-C25 aryl groups and substituted or unsubstituted C3-C33 heteroaryl groups.
  • Ar 2 is selected from the group consisting of the following groups:
  • the aromatic amine compound is selected from one or more of the following compounds P1-P243:
  • the second aspect of the present invention provides a method for preparing the aromatic amine compound according to the first aspect of the present invention.
  • the method comprises: under coupling reaction conditions, in the presence of a fifth palladium catalyst and a base catalyst, making the formula (2)
  • the Suzuki reaction occurs when the compound of formula (3) is contacted with the compound represented by formula (3), and the compound represented by formula (1) is obtained:
  • the amount of the compound represented by the formula (2) and the compound represented by the formula (3) can be varied in a relatively wide range.
  • the compound represented by the formula (2) and the formula (3) The molar ratio of the compounds shown can be 1: (1 to 1.05).
  • the coupling reaction conditions may be conventional Suzuki coupling reaction conditions in the art.
  • the Suzuki reaction conditions may include: a reaction temperature of 65-70°C, a reaction time of 8-12h, and a reaction solvent of toluene , A mixture of ethanol and water; the fifth palladium catalyst is palladium acetate and/or palladium chloride, and the alkali catalyst is at least one of potassium carbonate, sodium carbonate and sodium bicarbonate.
  • the preparation method of the compound represented by formula (2) may include: under the fourth amination reaction conditions, in the presence of a fourth palladium catalyst and a fourth phosphine ligand catalyst, making the compound represented by formula (4) Ullman reaction occurs when the compound contacts with aryl halide (or heteroaryl halide) Ar 4 -X' 4:
  • X 4 can be Br or I.
  • the molar ratio of the compound represented by formula (4) to Ar 4 -X' 4 can be 1: (1 to 1.1); the reaction temperature can be 100 to 110° C., the reaction time is 3 to 5 hours, and the reaction solvent It can be toluene; the fourth palladium catalyst can be palladium acetate and/or palladium chloride, and the fourth phosphine ligand catalyst can be tricyclic ethylphosphine and/or 2-dicyclohexylphosphine-2,4, 6-Triisopropylbiphenyl.
  • the preparation method of the compound represented by formula (4) comprises: in the presence of a second palladium catalyst and a second phosphine ligand catalyst, the compound represented by formula (5) is combined with an aryl halide (or heteroaryl) Haloalkane) Ar 2 -L-X' 2 contact with Ullmann reaction:
  • X '2 is Br or I.
  • the molar ratio of the compound represented by formula (5) to Ar 2 -L-X' 2 can be 1:(1 ⁇ 1.1); the reaction temperature can be 100 ⁇ 110°C, the reaction time can be 3 ⁇ 5h, and the reaction
  • the solvent may be toluene; the second palladium catalyst may be palladium acetate and/or palladium chloride, and the second phosphine ligand catalyst may be tricyclohexylphosphine and/or 2-dicyclohexylphosphine-2,4, 6-Triisopropylbiphenyl.
  • the compound represented by formula (5) can be prepared by two-step amination reaction respectively.
  • the preparation of the compound represented by formula (5) The method may include: contacting the compound represented by formula (6) with Ar 3 -NH 2 in the presence of a third palladium catalyst and a third phosphine ligand catalyst:
  • X '3 is I or Br.
  • the molar ratio of the compound represented by formula (6) to the aromatic amine (or aromatic heterocyclic amine) Ar 3 -NH 2 can be 1: (1 to 1.1); the reaction temperature can be 100 to 110°C, The reaction time can be 3 to 5 hours, the reaction solvent can be toluene; the third palladium catalyst can be palladium acetate and/or palladium chloride, and the third phosphine ligand catalyst can be tricyclohexylphosphine and/or 2- Dicyclohexylphosphine-2,4,6-triisopropylbiphenyl.
  • the preparation method of the compound represented by formula (6) may include: contacting the compound represented by formula (8) with Ar 1 -NH 2 in the presence of a first palladium catalyst and a first phosphine ligand catalyst:
  • X '1 is I or Br.
  • the molar ratio of the compound represented by formula (8) to Ar 1 -NH 2 can be 1: (1 to 1.1); the reaction temperature can be 100 to 110° C., the reaction time can be 3 to 5 hours, and the reaction solvent It may be toluene; the first palladium catalyst may be palladium acetate and/or palladium chloride, and the first phosphine ligand catalyst may be tricyclohexylphosphine and/or 2-dicyclohexylphosphine-2,4,6 -Triisopropyl biphenyl.
  • the compound represented by formula (5) can be prepared by a one-step amination reaction.
  • the preparation method of the compound represented by formula (5) can include: In the presence of the third palladium catalyst and the third phosphine ligand catalyst, the compound represented by formula (7) is brought into contact with Ar 3 -NH 2:
  • X" 3 is I or Br.
  • the molar ratio of the compound represented by formula (7) to Ar 3 -NH 2 can be 1: (2.1 to 2.3);
  • the reaction temperature can be 100 to 110° C.
  • the reaction time can be 3 to 5 hours, and the reaction solvent It may be toluene;
  • the third palladium catalyst may be palladium acetate and/or palladium chloride, and the third phosphine ligand catalyst may be tricyclohexylphosphine and/or 2-dicyclohexylphosphine-2,4,6 -Triisopropyl biphenyl.
  • the third aspect of the present invention provides the application of the aromatic amine compound described in the first aspect of the present invention in the preparation of organic electroluminescent devices.
  • the aromatic amine compound has good electron transport properties and suitable energy levels, and can be used as an organic electroluminescent layer material, an electron transport layer material, and a hole transport layer material of the organic electroluminescent device One or two or three of them.
  • the compound of the present invention when used as an organic electroluminescent layer material, is specifically used as a host material of an organic electroluminescent layer.
  • the fourth aspect of the present invention provides an organic electroluminescent device, which includes an anode 100, a cathode 200, and at least one functional layer 300 between the anode layer and the cathode layer. It includes a hole injection layer 310, a hole transport layer 320, an organic electroluminescence layer 330, an electron transport layer 350, and an electron injection layer 360.
  • the hole injection layer 310, the hole transport layer 320, and the organic electroluminescence layer 330, the electron transport layer 350, and the electron injection layer 360 may be formed on the anode 100 in sequence.
  • the organic electroluminescent layer 330 may contain the aromatic amine compound described in the first aspect of the present invention, and preferably contains at least one of the compounds P1 to P243.
  • the electron transport layer 350 may contain the aromatic amine compound described in the first aspect of the present invention, and preferably contains at least one of the compounds P1 to P243.
  • the hole transport layer 320 may contain the aromatic amine compound described in the first aspect of the present invention, and preferably contains at least one of the compounds P1 to P243; further, the hole transport layer 320 may contain a first hole The hole transport layer 321 and the second hole transport layer 322. The first hole transport layer 321 is closer to the anode than the second hole transport layer 322, and the second hole transport layer 322 contains the aromatic compound described in the first aspect of the present invention. Amine compound.
  • the functional layer 300 of the organic electroluminescent device may further include a hole blocking layer 340 and an electron blocking layer 370, and the hole blocking layer 340 may be disposed on the organic electroluminescent layer 330 and the electron transport layer Between 350, the electron blocking layer 370 may be disposed between the hole transport layer 320 and the organic electroluminescent layer 330.
  • the organic electroluminescent device of the present invention is based on the excellent performance of the compound of the present invention.
  • the device obtained by using the compound as the organic electroluminescent layer material can reduce the driving voltage of the organic electroluminescent device, improve the luminous efficiency, and prolong the life of the device;
  • As a hole transport material the compound has better luminous efficiency, better electrical stability and better hole transport performance, and can significantly improve organic electroluminescence when used in the hole transport layer of organic electroluminescent devices The performance of the device.
  • the compounds of the synthesis method not mentioned in the present invention are all raw materials obtained through commercial channels.
  • ICP-7700 mass spectrometer and M5000 element analyzer are used for the analysis and detection of intermediates and compounds in the present invention.
  • Dissolve cuprous chloride (100mmol, 9.90g) in 30ml concentrated hydrochloric acid, lower the temperature to -10°C, start to slowly add liquid A4, control the temperature at -10°C, and add in batches with an interval of 30min, about 4h After adding, heat up naturally, keep the system unobstructed, and stir overnight. After 12h, the temperature of the system was raised to 70 ⁇ 80°C for sampling every 2h, and the reaction was complete in 14-20h. Slowly add the reaction solution to 100ml of water under stirring, add 100ml of dichloromethane and stir for 10min, stand still for 5min, and separate the liquids.
  • the filter cake was rinsed with ethanol and drained.
  • the filtrate was separated, the aqueous phase was extracted with toluene, and the organic phase was washed 3 times with water.
  • Dissolve cuprous chloride (100mmol, 9.79g) in 30mL concentrated hydrochloric acid, lower the temperature to -10°C, start to slowly add A10 liquid, control the temperature at -10°C, and add in batches with an interval of 30min, about 4h. After adding, heat up naturally, keep the system unobstructed, and stir overnight. After 12h, the system was heated to 70 ⁇ 80°C temperature every 2h to test the sample, 14-20h the reaction was complete. Under stirring, slowly add the reaction solution to 100mL water, add 100mL dichloromethane and stir for 10min, stand still for 5min, separate, water phase Extract once with 100 mL of dichloromethane, separate the liquids, combine the organic phases, wash with water, and wash until neutral.
  • the filter cake was rinsed with ethanol and drained.
  • the filtrate was separated, the aqueous phase was extracted with toluene, and the organic phase was washed 3 times with water.
  • Dissolve cuprous chloride (100mmol, 9.79g) in 30mL concentrated hydrochloric acid, lower the temperature to -10°C, start to slowly add A22 liquid, control the temperature at -10°C, and add in batches with an interval of 30min, about 4h. After adding, heat up naturally, keep the system unobstructed, and stir overnight. After 12h, the system was heated to 70 ⁇ 80°C temperature every 2h to test the sample, 14-20h the reaction was complete. Under stirring, slowly add the reaction solution to 100mL water, add 100mL dichloromethane and stir for 10min, stand still for 5min, separate, water phase Extract once with 100 mL of dichloromethane, separate the liquids, combine the organic phases, wash with water, and wash until neutral.
  • aqueous phase is extracted once with 130mL toluene, the liquids are separated, and the organic phases are combined. -0.06 ⁇ 0.075MPa, 55 ⁇ 60°C) to stop, get a crude product, add 20mL ethanol, stir and precipitate a large amount of solid at 25°C, filter. The filter cake is rinsed with ethanol. 20 mmol of intermediate 22d was obtained with a yield of 50%.
  • the filter cake was rinsed with ethanol and drained.
  • the filtrate was separated, the aqueous phase was extracted with toluene, and the organic phase was washed 3 times with water.
  • Dissolve cuprous chloride (100mmol, 9.79g) in 30mL concentrated hydrochloric acid, lower the temperature to -10°C, start to slowly add A34 liquid, control the temperature at -10°C, and add in batches with an interval of 30min, about 4h. After adding, heat up naturally, keep the system unobstructed, and stir overnight. After 12h, the system is heated to 70 ⁇ 80°C temperature every 2h to test the sample, 14-20h reaction is complete, the reaction solution is slowly added to 100mL water with stirring, 100mL dichloromethane is added and stirred for 10min, stand still for 5min, separate, water phase Extract once with 100 mL of dichloromethane, separate the liquids, combine the organic phases, wash with water, and wash until neutral.
  • the filter cake was rinsed with ethanol and drained.
  • the filtrate was separated, the aqueous phase was extracted with toluene, and the organic phase was washed 3 times with water.
  • Dissolve cuprous chloride (100mmol, 9.90g) in 30ml concentrated hydrochloric acid lower the temperature to -10°C, start to slowly add A131 liquid, control the temperature at -10°C, and add in batches with an interval of 30min, about 4h. After adding, heat up naturally, keep the system unobstructed, and stir overnight. After 12h, the temperature of the system was raised to 70 ⁇ 80°C for sampling every 2h, and the reaction was complete in 14-20h. Slowly add the reaction solution to 100ml of water under stirring, add 100ml of dichloromethane and stir for 10min, stand still for 5min, and separate the liquids.
  • the anode is prepared by the following process: the thickness of ITO is The ITO substrate was cut into a size of 40mm (length) ⁇ 40mm (width) ⁇ 0.7mm (thickness). Using photolithography, it was prepared into an experimental substrate with patterns of cathode, anode and insulating layer, using ultraviolet ozone and O 2 :N 2 plasma is used for surface treatment to increase the work function of the anode and remove dross.
  • CBP was vapor-deposited on the hole auxiliary layer as the main body, and Ir(piq) 2 (acac) was simultaneously doped at a film thickness ratio of 100:3 to form The light-emitting layer.
  • DBimiBphen and LiQ are mixed in a weight ratio of 1:1 and can be formed by evaporation process Thickness of the electron transport layer. Subsequently, LiQ was vapor-deposited on the electron transport layer to form a thickness of The electron injection layer.
  • magnesium (Mg) and silver (Ag) were mixed at a vapor deposition rate of 1:9, and vacuum vapor-deposited on the electron injection layer to form a thickness of The cathode.
  • the vapor deposition thickness on the above cathode is CP-1, forming the cover layer CPL, thus completing the manufacture of the organic light-emitting device.
  • the chemical structure of the main materials used to make the device is shown below.
  • the organic electroluminescence device was produced in the same manner as in Application Example 1, except that the compounds shown in the table were used instead of compound P4 when forming the hole auxiliary layer.
  • the organic electroluminescence device was fabricated in the same manner as in Application Example 1, except that Compound A and Compound B were used instead of Compound P4 when forming the hole auxiliary layer.
  • the chemical structures of compound A and compound B are as follows:
  • the organic electroluminescent device prepared as above was tested under the condition of 15mA/cm 2 for the life of the T95 device.
  • the driving voltage, efficiency, and color coordinates were tested at a constant current density of 10 mA/cm 2.
  • the test results are shown in the table.
  • the current efficiency of the organic electroluminescent device prepared in Application Examples 1-23 is at least 6.22% higher than that of Comparative Example 1 and Comparative Example 2, and the external quantum efficiency is improved by at least 7.9%.
  • Application Example 1- Compared with Comparative Example 1 and Comparative Example 2, the T95 lifetime of the organic electroluminescent device of 23 is increased by at least 13.4%; in addition, the organic electroluminescent device prepared in Application Example 1-23 also has a lower driving voltage. .
  • the aromatic amine compound of the present invention can further improve the lifetime and photoelectric efficiency of the device while ensuring that the device has a lower driving voltage.
  • the anode is prepared by the following process: the thickness of ITO is The substrate (manufactured by Corning) was cut into a size of 40mm (length) ⁇ 40mm (width) ⁇ 0.7mm (thickness), and a photolithography process was used to prepare it into an experimental substrate with a cathode lap area, an anode, and an insulating layer pattern. Use ultraviolet ozone and O 2 :N 2 plasma for surface treatment to increase the work function of the anode (experimental substrate) and remove scum.
  • PPDN was vacuum evaporated on the experimental substrate (anode) to form a thickness of The hole injection layer
  • HT-1 is vacuum-evaporated on the hole injection layer to form a thickness of The hole transport layer
  • ⁇ , ⁇ -ADN is used as the main body, and BD-1 is simultaneously doped at a film thickness ratio of 100:3 to form a thickness of The light-emitting layer.
  • the compound P62 and LiQ are mixed in a weight ratio of 1:1, and can be formed by an evaporation process Thickness of the electron transport layer. Subsequently, LiQ was vapor-deposited on the electron transport layer to form a thickness of The electron injection layer.
  • magnesium (Mg) and silver (Ag) were mixed at a vapor deposition rate of 1:9, and vacuum vapor-deposited on the electron injection layer to form a thickness of The cathode.
  • the vapor deposition thickness on the above cathode is CP-1, forming the cover layer CPL, thus completing the manufacture of the organic light-emitting device.
  • the chemical structure of the main materials used to make the device is shown below.
  • An organic electroluminescence device was produced in the same manner as in Application Example 24, except that the compounds shown in the table were used instead of compound P62 when forming the electron transport layer.
  • the organic electroluminescence device was produced in the same manner as in Application Example 24, except that Compound C and Compound D were used instead of Compound P62 when forming the electron transport layer.
  • the chemical structures of compound C and compound D are as follows:
  • the organic electroluminescent device prepared as above was tested under the condition of 15mA/cm 2 for the life of the T95 device.
  • the driving voltage, efficiency, and color coordinates were tested at a constant current density of 10 mA/cm 2.
  • the test results are shown in the table.
  • the driving voltage of the organic electroluminescent devices prepared in application examples 24-37 is at least 0.14V lower than that of comparative example 3-4; the current efficiency of application examples 24-37 is at least lower than that of comparative example 3-4 Increased by 3.5%; the external quantum efficiency of the devices of application examples 24-37 is increased by at least 8.2% than that of the comparative examples 3-4; it can be seen that compared with the comparative examples 3-4, the organic electro-induced devices prepared in application examples 24-37 The light-emitting device has a lower driving voltage and a higher luminous efficiency.
  • the blue organic electroluminescent devices prepared in Application Examples 24-37 have higher current efficiency, external quantum efficiency and lower driving voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

涉及一种芳胺化合物和有机电致发光器件,该芳胺化合物具有如式(1)所示的结构,该芳胺化合物含有富电子的N原子,并含有众多大共轭体系,可以提高电子迁移率和跃迁速率,采用该芳胺化合物制备的器件具有较高的电稳定性、器件效率,并具有较长的器件寿命。

Description

芳胺化合物和有机电致发光器件
相关申请的交叉引用
本申请要求于2019年12月27日递交的申请号为CN201911382479.9的中国专利申请的优先权,及2020年12月18日递交的申请号为CN202011507383.3的中国专利申请的优先权,在此引用上述中国专利申请的内容全文以作为本申请的一部分。
技术领域
本发明属于有机发光材料技术领域,具体提供一种芳胺化合物和使用其的有机电致发光器件。
背景技术
有机发光二极管(organic light-emitting diode),简称为OLED,其原理是在阴阳两极施加电场时,阳极侧的空穴和阴极侧的电子会向发光层移动,在发光层结合形成激子,激子处于激发态向外释放能量,从激发态释放能量变为基态释放能量的过程对外发光。自1987年美国柯达公司报道有机分子电致发光和1990年英国剑桥大学报道聚合物电致发光以来,世界各国纷纷开展研究与开发。该类材料具有结构简单、成品率高、成本低、主动发光、响应速度快、分率高等优点,且具有驱动电压低、全固态、非真空、抗荡、耐低温(-40℃)等性能,被认为是未来最有可能替代液晶显示器的一种新技术,引起极大关注。
为了提高有机电致发光器件的亮度、效率和寿命,通常在有机电致发光器件中使用多层结构,这些多层结构可以包括如下膜层中的一种或多种:空穴注入层(hole injection layer,HIL)、空穴传输层(hole transport layer,HTL)、电子阻挡层(electron-blocking layer,EBL)、有机电致发光层(light-emitting layer,EML)、空穴阻挡层(hole-blocking layer,HBL)、电子传输层(electron transport layer,ETL)和电子注入层(electron injection layer,EIL)等。这些膜层能够提高载流子(空穴和电子)在各层界面间的注入效率、平衡载流子在各层之间传输的能力,从而提高有机电致发光器件的亮度和效率。
目前有机电致器件中现有的发光层材料例如为NPB、TPD和m-MTDATA,但这些材料发光效率普遍较低,热稳定较差,导致有机电致发光器件的寿命较短且发光效率比较低。
发明内容
本发明的目的是提高有机电致发光器件的发光效率和器件寿命。
为了实现上述目的,本发明第一方面提供一种芳胺化合物,其中,所述芳胺化合物具有如下式(1)所示的结构:
Figure PCTCN2020138946-appb-000001
其中,R 1和Ar 5相同或不同,且分别独立地选自:取代或未取代的C6-30的芳基、取代或未取代的C2~C40的杂芳基、取代或未取代的C1~C10的烷基、氢、氘、卤素、氰基、C3~C10的三烷基硅基、三苯基硅基,其中Ar 5不为氢;
Ar 1、Ar 2、Ar 3、Ar 4相同或不同,且分别独立地选自:取代或未取代的C6~C40的芳基、取代 或未取代的C2~C40的杂芳基;
L选自单键、取代或未取代的C6~C30的亚芳基、取代或未取代的C2~C30的亚杂芳基;
所述R 1、Ar 5、Ar 1、Ar 2、Ar 3、Ar 4以及L中的取代基相同或不同,且分别独立地选自:氘、卤素、氰基、C6~C20的芳基、C3~C20的杂芳基、C1~C10的烷基、C3~C6的环烷基、C1~C10的三烷基硅基、C6~C48的三芳基硅基。
本发明第二方面提供一种有机电致发光器件,包括阳极、阴极、以及介于阳极层与阴极层之间的至少一层功能层,所述功能层包括空穴注入层、空穴传输层、有机电致发光层、电子传输层、电子注入层以及电子阻挡层,所述有机电致发光层、空穴传输层和电子传输层中的至少一者含有本发明第一方面所述的芳胺化合物。
通过上述技术方案,本发明的芳胺化合物的分子结构中含有供电子的芳香胺基团,以及含有众多大共轭体系,可以提高电子迁移率和跃迁速率,且分子结构的空间位阻较大,扭曲角度大,T1值相对较高,因此,该芳胺化合物可以用作有机电致发光器件材料,能够提高有机电致发光器件的电稳定性、器件发光效率和色纯度,并能够延长器件寿命。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的有机电致发光器件的一种实施方式的结构示意图。
附图标记说明
100、阳极;200、阴极;300、功能层;310、空穴注入层;320、空穴传输层;321、第一空穴传输层;322、第二空穴传输层;330、有机电致发光层;340、空穴阻挡层;350、电子传输层;360、电子注入层;370、电子阻挡层。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本发明将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本发明的实施例的充分理解。
用语“该”和“所述”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。
本发明第一方面提供一种芳胺化合物,其中,所述芳胺化合物具有如下式(1)所示的结构:
Figure PCTCN2020138946-appb-000002
其中,R 1和Ar 5相同或不同,且分别独立地选自:取代或未取代的C6-30的芳基、取代或未取 代的C2~C40的杂芳基、取代或未取代的C1~C10的烷基、氢、氘、卤素、氰基、C3~C10的三烷基硅基、三苯基硅基,其中Ar 5不为氢;
Ar 1、Ar 2、Ar 3、Ar 4相同或不同,且分别独立地选自:取代或未取代的C6~C40的芳基、取代或未取代的C2~C40的杂芳基;
L选自单键、取代或未取代的C6~C30的亚芳基、取代或未取代的C2~C30的亚杂芳基;
所述R 1、Ar 5、Ar 1、Ar 2、Ar 3、Ar 4以及L中的取代基相同或不同,且分别独立地选自:氘、卤素、氰基、C6~C20的芳基、C3~C20的杂芳基、C1~C10的烷基、C3~C6的环烷基、C1~C10的三烷基硅基、C6~C48的三芳基硅基。
本发明的芳胺化合物的分子结构中含有供电子的芳香胺基团,以及含有众多大共轭体系,可以提高电子迁移率和跃迁速率,该芳胺化合物可以用作有机电致发光器件的发光层材料,能够提高有机电致发光器件的电稳定性、色纯度和器件发光效率,并能够延长器件寿命。
在本发明中,“Cx~Cy”(x和y是满足x<y的正整数)这样的术语是指,与在该术语后面记载的官能团名相当的部分结构的碳原子数为x~y个。例如,“C1~C10的烷基”是指碳原子数为1~10的烷基、“C6~C30的芳基”是指碳原子数为6~30的芳基。
在本发明中,单键是指L所表示的部分不存在其他原子的情况。例如,当化学式(1)的L为单键时,N可以直接连接于Ar 2
在本发明中,“取代或未取代的”这样的术语是指,在该术语后面记载的官能团可以具有或不具有取代基Ra。例如,“取代或未取代的烷基”是指具有取代基Ra的烷基或者非取代的烷基。Ra可以为氘、卤素、羟基、氰基、硝基、氨基、烷基、的环烷基、卤代烷基、包含O、N、Si和S中的一个以上的杂烷基、杂环烷基、烷氧基、烷硫基、二烷氨基、二芳氨基、芳氧基、芳硫基、硅基、三烷基硅基、三芳基硅基、烯基、环烯基。这些基团还可以具有选自上述中的取代基。
在本申请的具体实施方式中,取代基Ra可以选自氘、卤素、氰基、甲基、乙基、异丙基、叔丁基、苯基、联苯基、萘基、菲基、喹啉基、异喹啉基、N-苯基咔唑基、吡啶基、嘧啶基、二苯并呋喃基、二苯并噻吩基、9,9-二苯基芴基、蒽基、咔唑基、9,9-二甲基芴基、螺二芴基、
Figure PCTCN2020138946-appb-000003
基、喹唑啉基、喹喔啉基中的一种或几种。
在本发明中,C1~C10的烷基可以为直链烷基或支链烷基。具体而言,C1~C10的烷基可以为碳原子数1至10的直链烷基;或碳原子数3至10的支链烷基。更具体而言,C1~C10的烷基可以为甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、新戊基、己基、庚基、辛基、2-乙基己基、壬基、癸基、3,7-二甲基辛基等,C3~C6的环烷基可以为环戊基、环己基,但是,并不限定于此。
在本申请中,当没有另外提供具体的定义时,“杂”是指在一个官能团中包括至少1个B、O、N、P、Si或S等杂原子且其余原子为碳和氢。未取代的烷基可以是没有任何双键或三键的“饱和烷基基团”。
在本申请中,芳基指的是衍生自芳香烃环的任选官能团或取代基。芳基可以是单环芳基或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者多个稠环芳基。即,通过碳碳键共轭连接的两个或者多个芳香基团也可以视为本申请的芳基。其中,芳基中不含有B、O、N、P、Si或S等杂原子。举例而言,在本申请中,联苯基、三联苯基等为芳基。芳基的示例可以包括苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、四联苯基、五联苯基、六联苯基、苯并[9,10]菲基、芘基、苯并荧蒽基、
Figure PCTCN2020138946-appb-000004
基、芴基、9,9-二甲基芴基、9,9二苯基芴基、螺二芴基等, 而不限于此。
在本申请中,未取代的芳基,指的是的碳原子数为6-30的芳基,例如:苯基、萘基、芘基、二甲基芴基、9,9二苯基芴基、螺二芴基、蒽基、菲基、
Figure PCTCN2020138946-appb-000005
基、甘菊环基、苊基、联苯基、苯并蒽基、螺二芴基、苝基、茚基等。取代的碳原子数为6-30的芳基是指至少一个氢原子被氘原子、F、Cl、I、CN、羟基、硝基、氨基等取代。取代的芳基,指的是芳基中的一个或者多个氢原子被其它基团所取代。例如至少一个氢原子被氘原子、F、Cl、Br、I、CN、羟基、氨基、支链烷基、直链烷基、环烷基、烷氧基、烷胺基或者其他基团取代,如9,9-二甲基芴基、9,9二苯基芴基、螺二芴基等。可以理解的是,取代的碳原子数为20的芳基,指的是芳基和芳基上的取代基的碳原子总数为20个。举例而言,9,9-二甲基芴基的碳原子数为15。
在本申请中,取代的芳基可以是芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、-CN、芳基、杂芳基、三烷基硅基、烷基、环烷基、烷氧基、烷硫基等基团取代。杂芳基取代的芳基的具体实例包括但不限于,二苯并呋喃基取代的苯基、二苯并噻吩取代的苯基、吡啶取代的苯基等。应当理解地是,取代的芳基的碳原子数,指的是芳基和芳基上的取代基的碳原子总数,例如碳原子数为18的取代的芳基,指的是芳基和取代基的总碳原子数为18。
在本申请中,杂芳基可以是包括B、O、N、P、Si和S中的至少一个作为杂原子的杂芳基。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、N-芳基咔唑基、N-杂芳基咔唑基、N-烷基咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、苯并噻唑基、吩噻嗪基、二苯并硅基、二苯并呋喃基、苯基取代的二苯并呋喃基、二苯并呋喃基取代的苯基等,而不限于此。其中,噻吩基、呋喃基、菲咯啉基等为单个芳香环体系的杂芳基,N-芳基咔唑基、N-杂芳基咔唑基、苯基取代的二苯并呋喃基、二苯并呋喃基取代的苯基等为通过碳碳键共轭连接的多个芳香环体系的杂芳基。
在本申请中,取代的杂芳基可以是杂芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、-CN、芳基、杂芳基、三烷基硅基、烷基、环烷基、烷氧基、烷硫基等基团取代。芳基取代的杂芳基的具体实例包括但不限于,苯基取代的二苯并呋喃基、苯基取代的二苯并噻吩基、苯基取代的吡啶基等。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上的取代基的碳原子总数。
在本申请中所采用的描述方式“各……独立地为”与“……分别独立地为”和“……独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。
举例而言:在
Figure PCTCN2020138946-appb-000006
其中,各q独立地为0、1、2或3,各R”独立地选自氢、氟、氯”的描述中,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互 不影响。
本申请中的不定位连接键,是指从环体系中伸出的单键
Figure PCTCN2020138946-appb-000007
其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。例如,下式(f)中所示的,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)~式(f-10)所示出的任一可能的连接方式。
Figure PCTCN2020138946-appb-000008
例如,下式(X’)中所示的,式(X’)所表示的菲基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X’-1)~式(X’-4)所示出的任一可能的连接方式。
Figure PCTCN2020138946-appb-000009
本申请中的不定位取代基,指的是通过一个从环体系中央伸出的单键连接的取代基,其表示该取代基可以连接在该环体系中的任何可能位置。例如,下式(Y)中所示的,式(Y)所表示的取代基R基通过一个不定位连接键与喹啉环连接,其所表示的含义,包括如式(Y-1)~式(Y-7)所示出的任一可能的连接方式。
Figure PCTCN2020138946-appb-000010
在本申请中,三烷基硅基的具体实例包括但不限于,三甲基硅基、三乙基硅基等。
在本申请中,三芳基硅基的具体实例包括但不限于三苯基硅基等。
在本申请中,芳基和杂芳基的解释适用于亚芳基和亚杂芳基。
在本发明的一种实施方式中,所述芳胺化合物具有如下式(1)所示的结构:
Figure PCTCN2020138946-appb-000011
其中,R 1为C1~C10的烷基;
Ar 1、Ar 2、Ar 3、Ar 4和Ar 5相同或不同,且各自独立地选自:取代或未取代的C6~C30的芳基、 取代或未取代的C2~C40的杂芳基;
L选自单键、取代或未取代的C6~C30的亚芳基、取代或未取代的C2~C30的亚杂芳基;
所述Ar 1、Ar 2、Ar 3、Ar 4、Ar 5以及L中的取代基相同或不同,且分别独立地选自:氘、卤素、氰基、C1~C10的烷基、C3~C6的环烷基、C1~C10的三烷基硅基、C6~C48的三芳基硅基。
在本发明的一种实施方式中,式(1)所示的芳胺化合物中,所述L选自单键,或者选自以下通式表示的基团:
Figure PCTCN2020138946-appb-000012
其中,
Figure PCTCN2020138946-appb-000013
表示化学键;
n 1、n 2、n 3、n 5、n 6、n 7、n 8、n 9各自独立地选自0、1、2、3、4;
n 4选自0、1、2、3、4、5、6;
Y 1选自C(G 10G 11)、O、S、Se、Si(G 12G 13)、N(G 14);
其中G 1至G 14相同或不同,且分别独立地选自氢、氘、卤素、氰基、C1~C10的烷基、C6~C18的芳基、C3~C18的杂芳基、C3~C10的环烷基;或者G 10和G 11连接成环,或者G 12和G 13连接成环;
X 1至X 5相同或不同,且分别独立地选自C(R’)或N,且X 1至X 5中至少一个为N,其中,所述X 1至X 5中的R’相同或不同,且分别独立地选自氢、C1~C10的烷基、C6~C18的芳基、C3~C18的杂芳基、C3~C10的环烷基,或者任意相邻的两个R’连接成环。
在本申请中,当n 1大于或等于2时,G 1相同或不同;当n 2大于或等于2时,G 2相同或不同;当n 3大于或等于2时,G 3相同或不同;当n 4大于或等于2时,G 4相同或不同;当n 5大于或等于2时,G 5相同或不同;当n 6大于或等于2时,G 6相同或不同;当n 7大于或等于2时,G 7相同或不同;当n 8大于或等于2时G 8相同或不同;当n 9大于或等于2时,G 9相同或不同。
在本申请中,n 1至n 11选自0时,苯环没有被取代。
在本申请中,“任意相邻的两个R’连接成环”即任意两个相邻的R’相互连接以与它们共同连接的原子形成环。例如:可以形成碳原子数为3-15的环,还例如形成碳原子数为3-10的环;该环可以是饱和的(例如五元环、六元环),也可以是不饱和的,例如芳香环。
在本申请中,所述的环指的是饱和或不饱和的环,例如环己烷、环戊烷、6至12元的芳环或5至12元的杂芳环等,但不限于此。
在本申请中,n个原子形成的环体系,即为n元环。例如,苯基为6元芳基。6至10元芳环是指苯环、茚环和萘环等。
在本申请中,所述的环指的是饱和或不饱和的环,可选地,该环的碳原子数可以是5,例如
Figure PCTCN2020138946-appb-000014
也可以是6,例如
Figure PCTCN2020138946-appb-000015
还可以是13,例如
Figure PCTCN2020138946-appb-000016
当然,成环的碳原 子数还可以为其他数值,此处不再一一列举,本申请不对该环的碳原子数进行特殊限定。
在本发明的一种实施方式中,式(1)所示的芳胺化合物中,所述L选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯基芴基。
在本发明的一种实施方式中,式(1)所示的芳胺化合物中,所述L选自单键、取代或未取代的C6~C12的亚芳基、取代或未取代的C4~C12的亚杂芳基;
优选地,所述L选自取代或未取代的亚吡啶基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚嘧啶基。
在本发明的一种实施方式中,式(1)所示的芳胺化合物中,所述L中的取代基相同或不同,且分别独立地选自:氘、氟、氰基、甲基、乙基、异丙基、叔丁基、苯基、萘基、三甲基硅基。
在本发明的一种实施方式中,式(1)所示的芳胺化合物中,所述L选自单键,或者选自如下通式表示的基团所组成的组:
Figure PCTCN2020138946-appb-000017
其中,*表示L用于与
Figure PCTCN2020138946-appb-000018
基团连接;**表示L用于与
Figure PCTCN2020138946-appb-000019
基团连接。
在本发明的一种实施方式中,式(1)所示的芳胺化合物中,所述L选自单键,或者选自如下通式表示的基团所组成的组:
Figure PCTCN2020138946-appb-000020
其中,*表示L用于与
Figure PCTCN2020138946-appb-000021
基团连接;**表示L用于与
Figure PCTCN2020138946-appb-000022
基团连接。
在本发明的一种实施方式中,所述L选自单键,或者选自如下基团所组成的组:
Figure PCTCN2020138946-appb-000023
其中,
Figure PCTCN2020138946-appb-000024
表示化学键。
在本发明的一种实施方式中,所述L选自单键,或者选自如下基团所组成的组:
Figure PCTCN2020138946-appb-000025
Figure PCTCN2020138946-appb-000026
其中,
Figure PCTCN2020138946-appb-000027
表示化学键。
在本发明的一种具体实施方式中,所述Ar 1、Ar 2、Ar 3、Ar 4和Ar 5相同或不同,且分别独立地选自:取代或未取代的C6~C30的芳基及取代或未取代的C2~C30的杂芳基。
优选地,所述Ar 1、Ar 2、Ar 3、Ar 4和Ar 5相同或不同,且分别独立地选自:取代或未取代的C6~C24的芳基及取代或未取代的C3~C25的杂芳基,进一步独立地选自:取代或未取代的C6~C20的芳基及取代或未取代的C5~C20的杂芳基。
在本申请的一种实施方式中,所述Ar 1、Ar 2、Ar 3、Ar 4和Ar 5相同或不同,且分别独立地选自如下通式:
Figure PCTCN2020138946-appb-000028
其中,
b 1、b 4、b 7、b 9相同或不同,且分别独立地选自0、1、2、3、4、5;
b 5、b 6、b 8相同或不同,且分别独立地选自0、1、2、3、4;
b 2、b 3、b 11相同或不同,且分别独立地选自0、1、2、3、4、5、6、7;
b 10选自0、1、2、3、4、5、6、7、8、9;
W 1和W 2相同或不同,且分别独立地选自C、N;
Y 2选自O、S、Si(E 12E 13)、C(E 14E 15)、N(E 16)、Se;
Z 1和Z 2相同或不同,且分别独立地选自O、S、C(E 17R 18)、N(E 19);
E 1至E 19相同或不同,且分别独立地选自氢、氘、卤素原子、氰基、C1~C10的烷基、C6~C18的芳基、C6~C18的杂芳基、C3~C10的环烷基;或者E 12和E 13连接成环,或者E 14和E 15连接成环,或者E 17和E 18连接成环;
W 3至W 7相同或不同,且分别独立地选自C(Q)或N,且W 3至W 7中至少一个为N,其中,所述W 3至W 7中的Q相同或不同,且分别独立地选自氢、C1~C10的烷基、C6~C18的芳基、C3~C18的杂芳基、C3~C10的环烷基,或者任意相邻的两个Q连接成环;
W 8至W 11相同或不同,且分别独立地选自C(Q’)或N,且W 8至W 11中至少一个为N,其中,所述W 8至W 11中的Q’相同或不同,且分别独立地选自氢、C1~C10的烷基、C6~C18的芳基、C3~C18的杂芳基、C3~C10的环烷基,或者任意相邻的两个Q’连接成环。
在本申请中,当b 1大于或等于2时,E 1相同或不同;当b 2大于或等于2时,E 2相同或不同;当b 3大于或等于2时,E 3相同或不同;当b 4大于或等于2时,E 4相同或不同;当b 5大于或 等于2时,E 5相同或不同;当b 6大于或等于2时,E 6相同或不同;当b 7大于或等于2时,E 7相同或不同;当b 8大于或等于2时,E 8相同或不同;当b 9大于或等于2时,E 9相同或不同;当b 10大于或等于2时,E 10相同或不同;当b 11大于或等于2时,E 11相同或不同。
在本申请中,b 1至b 11选自0时,苯环没有被取代。
相邻的Q能够连接成环,是指W 3和W 4成环,或W 4和W 5成环,或W 5和W 6成环,或W 6和W 7成环,当然也包括W 3和W 4成环且W 5和W 6成环等情况。
相邻的Q’能够连接成环,是指W 8和W 9成环,或W 9和W 10成环,或W 10和W 11成环,当然也包括W 8和W 9成环且W 10和W 11成环等情况。
在本申请的一种实施方式中,所述Ar 1、Ar 3及Ar 4相同或不同,且分别独立地选自:取代或未取代的C6~C20的芳基及取代或未取代的C5~C12的杂芳基。
在本申请的一种实施方式中,所述Ar 1、Ar 3及Ar 4相同或不同,且分别独立地选自如下基团所形成的组:
Figure PCTCN2020138946-appb-000029
在本申请的一种实施方式中,所述Ar 1、Ar 2、Ar 3及Ar 4相同或不同,且分别独立地选自:取代或未取代的C6~C25的芳基、取代或未取代的C3~C26的杂芳基。
在本申请的一种实施方式中,所述Ar 1、Ar 2、Ar 3及Ar 4相同或不同,且分别独立地选自:取代或未取代的C6~C20的芳基、取代或未取代的C5~C26的杂芳基。
在本申请的一种实施方式中,所述Ar 1、Ar 2、Ar 3及Ar 4相同或不同,且分别独立地选自:取代或为取代的苯基、取代或未取代的吡啶基、取代或未取代的嘧啶基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的蒽基、取代或未取代的菲基、取代或未取代的芴基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的咔唑基、取代或未取代的N-苯基咔唑基、取代或未取代的三嗪基、取代或未取代的三联苯基、取代或未取代的9,9'-螺二芴基。
在本申请的一种实施方式中,所述Ar 1、Ar 2、Ar 3、Ar 4中的取代基相同或不同,且分别独立地选自:氘、卤素、氰基、C1~C5的烷基、三甲基硅基、C6~C15的芳基、C3~C20的杂芳基。
在本申请的一种实施方式中,所述Ar 1、Ar 2、Ar 3及Ar 4相同或不同,且分别独立地选自取代或未取代的基团T,未取代的基团T选自如下基团所组成的组:
Figure PCTCN2020138946-appb-000030
Figure PCTCN2020138946-appb-000031
取代的基团T具有一个或两个以上的取代基,T的取代基独立地选自氘、氟、氰基、三甲基硅基、甲基、乙基、异丙基、叔丁基、苯基、联苯基、吡啶基、嘧啶基、N-苯基咔唑基、菲基、萘基、咔唑基、二苯并呋喃基或者二苯并噻吩基。
在本申请的一种实施方式中,所述Ar 1、Ar 2、Ar 3及Ar 4相同或不同,且分别独立地选自如下基团所形成的组:
Figure PCTCN2020138946-appb-000032
Figure PCTCN2020138946-appb-000033
在本申请的一种实施方式中,所述Ar 1、Ar 2、Ar 3、Ar 4中的取代基相同或不同,且分别独立地选自:氘、氟、氰基、苯基、嘧啶基、吡啶基、萘基、菲基、甲基、乙基、异丙基、叔丁基、二苯并呋喃基、二苯并噻吩基、咔唑基、N-苯基咔唑基。
在本申请的一种实施方式中,所述Ar 5选自取代或未取代的C6~C15的芳基及取代或未取代的C4~C10的杂芳基。
在本申请的一种实施方式中,所述Ar 5选自如下基团所组成的组:
Figure PCTCN2020138946-appb-000034
在本申请的一种实施方式中,所述Ar 5选自氘、氰基、氟、三甲基硅基、C1~C5的氘代烷基、C1~C5的烷基、取代或未取代的C6~C25的芳基或者取代或未取代的C4~C18的杂芳基。
在本申请的一种实施方式中,所述Ar 5选自氘、氰基、氟、三甲基硅基、氘代甲基、甲基、乙基、异丙基、叔丁基、取代或未取代的苯基、取代或未取代的吡啶基、取代或未取代的嘧啶基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的菲基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的芴基、取代或未取代的N-苯基咔唑基、取代或未取代的咔唑基。
在本申请的一种实施方式中,所述Ar 5选自氘、氰基、氟、三甲基硅基、氘代甲基、甲基、乙基、异丙基、叔丁基或者如下基团所组成的组:
Figure PCTCN2020138946-appb-000035
Figure PCTCN2020138946-appb-000036
在本申请的一种实施方式中,所述Ar 5选自氘、氰基、氟、三甲基硅基、氘代甲基、甲基、乙基、异丙基、叔丁基或者如下基团所组成的组:
Figure PCTCN2020138946-appb-000037
在本申请的一种实施方式中,所述R 1选自氢、氘、氰基、氟、三甲基硅基、三苯基硅基、C1~C10的烷基、取代或未取代的C6~C21的芳基或者取代或未取代的C4~C12的杂芳基。
在本申请的一种实施方式中,所述R 1选自氢、氘、氰基、氟、三甲基硅基、三苯基硅基、C1~C10的烷基、取代或未取代的苯基、取代或未取代的吡啶基、取代或未取代的嘧啶基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的菲基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的芴基。
在本申请的一种实施方式中,所述R 1选自氢、氘、氰基、氟、三甲基硅基、三苯基硅基、C1~C10的烷基或者如下基团所组成的组:
Figure PCTCN2020138946-appb-000038
Figure PCTCN2020138946-appb-000039
在本申请的一种实施方式中,所述R 1选自氢、氘、氰基、氟、三甲基硅基、三苯基硅基、C1~C10的烷基或者如下基团所组成的组:
Figure PCTCN2020138946-appb-000040
在本申请的一种实施方式中,所述R 1和Ar 5中的取代基相同或不同,且分别独立地选自:氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三甲基硅基、苯基、二甲基芴基、菲基、N-苯基咔唑基、二苯并呋喃基、二苯并噻吩基、咔唑基、吡啶基、嘧啶基、喹啉基、异喹啉基。
在本申请的一种实施方式中,所述R 1和Ar 5中的取代基相同或不同,且分别独立地选自:氘、氟、氰基、C1~C5的烷基、三甲基硅基、C6~C15的芳基、C5~C18的杂芳基。
在本申请的一种实施方式中,Ar 2选自取代或未取代的C6~C25的芳基及取代或未取代的C3~C33的杂芳基。
在本申请的一种实施方式中,Ar 2选自如下基团所组成的组:
Figure PCTCN2020138946-appb-000041
Figure PCTCN2020138946-appb-000042
在本申请的一种实施方式中,所述芳胺化合物选自以下化合物P1-P243的一种或多种:
Figure PCTCN2020138946-appb-000043
Figure PCTCN2020138946-appb-000044
Figure PCTCN2020138946-appb-000045
Figure PCTCN2020138946-appb-000046
Figure PCTCN2020138946-appb-000047
Figure PCTCN2020138946-appb-000048
Figure PCTCN2020138946-appb-000049
Figure PCTCN2020138946-appb-000050
Figure PCTCN2020138946-appb-000051
Figure PCTCN2020138946-appb-000052
本发明第二方面提供制备本发明第一方面所述的芳胺化合物的方法,该方法包括:在偶联反应条件下,在第五钯催化剂和碱催化剂存在下,使式(2)所示的化合物与式(3)所示的化合物接触发生铃木反应,得到式(1)所示的化合物:
Figure PCTCN2020138946-appb-000053
在根据本发明的方法中,式(2)所示的化合物与式(3)所示的化合物用量可以在较大范围变化,可选地,式(2)所示的化合物与式(3)所示的化合物的摩尔比可以为1:(1~1.05)。偶联反应条件可以为本领域常规的Suzuki偶联反应条件,一种实施方式中,所述铃木反应的条件可以包括:反应温度为65~70℃,反应时间为8~12h,反应溶剂为甲苯、乙醇和水的混合物;所述第五钯催化剂为醋酸钯和/或氯化钯,所述碱催化剂为碳酸钾、碳酸钠和碳酸氢钠中的至少一种。
可选地,式(2)所示的化合物的制备方法可以包括:在第四胺化反应条件下,在第四钯催化剂和第四膦配体催化剂存在下,使式(4)所示的化合物与芳基卤代烷(或杂芳基卤代烷)Ar 4-X’ 4接触发生乌尔曼反应:
Figure PCTCN2020138946-appb-000054
其中,X 4可以为Br或I。
可选地,式(4)所示的化合物与Ar 4-X’ 4的摩尔比可以为1:(1~1.1);反应温度可以为100~110℃,反应时间为3~5h,反应溶剂可以为甲苯;所述第四钯催化剂可以为醋酸钯和/或氯化钯,所述第四膦配体催化剂可以为三环乙基膦和/或2-二环己基膦-2,4,6-三异丙基联苯。
可选地,式(4)所示的化合物的制备方法包括:在第二钯催化剂和第二膦配体催化剂存在下,使式(5)所示的化合物与芳基卤代烷(或杂芳基卤代烷)Ar 2-L-X’ 2接触发生乌尔曼反应:
Figure PCTCN2020138946-appb-000055
其中,X’ 2为Br或I。
可选地,式(5)所示的化合物与Ar 2-L-X’ 2的摩尔比可以为1:(1~1.1);反应温度可以为100~110℃,反应时间可以为3~5h,反应溶剂可以为甲苯;所述第二钯催化剂可以为醋酸钯和/或氯化钯,所述第二膦配体催化剂可以为三环己基膦和/或2-二环己基膦-2,4,6-三异丙基联苯。
可选地,在Ar 1与Ar 3不同的实施方式中,可以分别通过两步胺化反应制备式(5)所示的化合物,这一实施方式中,式(5)所示的化合物的制备方法可以包括:在第三钯催化剂和第三膦配体催化剂存在下,使式(6)所示的化合物与Ar 3-NH 2接触:
Figure PCTCN2020138946-appb-000056
其中,X’ 3为I或Br。
可选地,式(6)所示的化合物与芳胺(或芳杂环胺)Ar 3-NH 2的摩尔比为可以为1:(1~1.1);反应温度可以为100~110℃,反应时间可以为3~5h,反应溶剂可以为甲苯;所述第三钯催化剂可以为醋酸钯和/或氯化钯,所述第三膦配体催化剂可以为三环己基膦和/或2-二环己基膦-2,4,6-三异丙基联苯。
进一步地,式(6)所示的化合物的制备方法可以包括:在第一钯催化剂和第一膦配体催化剂存在下,使式(8)所示的化合物与Ar 1-NH 2接触:
Figure PCTCN2020138946-appb-000057
其中,X’ 1为I或Br。
可选地,式(8)所示的化合物与Ar 1-NH 2的摩尔比可以为1:(1~1.1);反应温度可以为100~110℃,反应时间可以为3~5h,反应溶剂可以为甲苯;所述第一钯催化剂可以为醋酸钯和/或氯化钯,所述第一膦配体催化剂可以为三环己基膦和/或2-二环己基膦-2,4,6-三异丙基联苯。
在Ar 1与Ar 3相同的实施方式中,可以通过一步胺化反应制备式(5)所示的化合物,这一种实施方式中,式(5)所示的化合物的制备方法可以包括:在第三钯催化剂和第三膦配体催化剂存在下,使式(7)所示的化合物与Ar 3-NH 2接触:
Figure PCTCN2020138946-appb-000058
式(7)中,X” 3为I或Br。
可选地,式(7)所示的化合物与Ar 3-NH 2的摩尔比可以为1:(2.1~2.3);反应温度可以为100~110℃,反应时间可以为3~5h,反应溶剂可以为甲苯;所述第三钯催化剂可以为醋酸钯和/或 氯化钯,所述第三膦配体催化剂可以为三环己基膦和/或2-二环己基膦-2,4,6-三异丙基联苯。
本发明第三方面提供本发明第一方面所述的芳胺化合物在制备有机电致发光器件中的应用。
根据本发明,所述芳胺化合物具有较好的电子传输性能和适宜的能级,可以用作所述有机电致发光器件的有机电致发光层材料、电子传输层材料和空穴传输层材料中的一者或两者或三者。其中,用作有机电致发光层材料时,本发明的化合物具体地用作有机电致发光层主体材料。
如图1所示,本发明第四方面提供一种有机电致发光器件,包括阳极100、阴极200、以及介于阳极层与阴极层之间的至少一层功能层300,所述功能层300包括空穴注入层310、空穴传输层320、有机电致发光层330、电子传输层350以及电子注入层360,所述的空穴注入层310、空穴传输层320、有机电致发光层330、电子传输层350以及电子注入层360可以依次形成在所述的阳极100上。一种实施方式中,所述有机电致发光层330可以含有本发明第一方面所述的芳胺化合物,优选含有化合物P1~P243中的至少一种。另一实施方式中,电子传输层350可以含有本发明第一方面所述的芳胺化合物,优选含有化合物P1~P243中的至少一种。再一实施方式中,空穴传输层320可以含有本发明第一方面所述的芳胺化合物,优选含有化合物P1~P243中的至少一种;进一步地,空穴传输层320可以包含第一空穴传输层321和第二空穴传输层322,第一空穴传输层321相对于第二空穴传输层322更靠近阳极,第二空穴传输层322含有本发明第一方面所述的芳胺化合物。
进一步的一种实施方式中,该有机电致发光器件的功能层300还可以包括空穴阻挡层340和电子阻挡层370,空穴阻挡层340可以设置于有机电致发光层330与电子传输层350之间,电子阻挡层370可以设置于空穴传输层320与有机电致发光层330之间。
本发明的有机电致发光器件基于本发明化合物的优异性能,采用该化合物作为有机电致发光层材料得到的器件能够降低有机电致发光器件的驱动电压,提高发光效率,延长器件寿命;采用该化合物作为空穴传输材料,具有更好地发光效率、更好的电稳定性和更佳的空穴传输性能,在用于有机电致发光器件的空穴传输层时可以显著改善有机电致发光器件的性能。
本发明中未提到的合成方法的化合物的都是通过商业途径获得的原料产品。
本发明中的中间体和化合物的分析检测使用ICP-7700质谱仪和M5000元素分析仪。
下面结合合成实施例1-10来具体说明本发明的芳胺化合物的合成方法。
合成例1(化合物P4)
Figure PCTCN2020138946-appb-000059
(1)向装有机械搅拌、温度计、恒压滴液漏斗的三口反应瓶中加入15mL浓硫酸,开启搅拌分批加入5g亚硝酸钠,体系温度控制在70℃,加料完毕体系呈浅绿色。将原料4a(50mmol,17.95g)溶于40mL冰醋酸中,缓慢滴加到亚硝酸钠的浓硫酸溶液中,滴加过程保温在40~50℃,体系有稍微放热,滴加完毕保温2h,得到A4液。将氯化亚铜(100mmol,9.90g)溶于30ml浓盐酸中,降温至-10℃,开始缓慢滴加A4液,控制温度在-10℃,分批滴加,中间间隔30min,大约4h滴加完毕,自然升温,保持体系畅通,搅拌过夜。12h后将体系升温至70~80℃温度每间隔2h测样,14-20h反应完全。搅拌下将反应液缓慢加入到100ml水中,加入100mL二氯甲烷搅拌10min,静止5min,分液,水相用100mL二氯甲烷萃取一次,分液,合并有机相,加水水洗,洗至中性。有机相加入无水硫酸钠8g,搅拌干燥5min,过滤,滤饼用13mL二氯甲烷淋洗,有机相浓缩(- 0.06~0.075MPa,35~40℃)至不出,得到45mmol的中间体4b,收率90%。
Figure PCTCN2020138946-appb-000060
(2)向装有机械搅拌、温度计、恒压滴液漏斗的三口反应瓶,通氮气10min后(2000mL/min),依次加入中间体4b(40mmol,15.13g)、对甲基苯胺(84mmol,9.00g)、130mL甲苯,加热回流分水0.5h,降温至70~80℃,缓慢加入120mmol叔丁醇钠,升温至100-110℃回流,回流分水0.5h,降温至50~60℃,分批缓慢加入醋酸钯(0.4mmol)、三环己基膦(0.8mmol),注意观察体系温度,会产生剧烈反应。待体系稳定后加热回流(T=100-110℃),保温反应3h,送检当反应完全时,停止反应。降温至25-30℃,加入130mL水、130mL甲苯搅拌分液,水相用130ml甲苯萃取一次,分液,合并有机相,有机相加入0.7g无水硫酸钠搅拌干燥,过滤,有机相浓缩(-0.06~0.075MPa,55~60℃)至不出,得到粗品,加入20mL乙醇,温度在25℃下搅拌析出大量固体,过滤。滤饼用乙醇淋洗。得到36mmol的中间体4d,收率90%。
Figure PCTCN2020138946-appb-000061
(3)向装有机械搅拌、温度计、恒压滴液漏斗的三口反应瓶,通氮气10min后(2000mL/min),依次加入中间体4d(35mmol,11.79g)、原料4e(38mmol,8.80g)、130ml甲苯,加热回流分水0.5h,降温至70~80℃,缓慢加入100mmol叔丁醇钠,升温至100-110℃回流,回流分水0.5h,降温至50~60℃,分批缓慢加入醋酸钯(0.4mmol)、三环己基膦(0.8mmol),注意观察体系温度,会产生剧烈反应。待体系稳定后加热回流(T=100-110℃),保温反应3h,送检当反应完全时,停止反应。降温至25-30℃,加入130mL水、130mL甲苯搅拌分液,水相用130ml甲苯萃取一次,分液,合并有机相,有机相加入0.7g无水硫酸钠搅拌干燥,过滤,有机相浓缩(-0.06~0.075MPa,55~60℃)至不出,得到粗品,加入20mL乙醇,温度在25℃下搅拌析出大量固体,过滤。滤饼用乙醇淋洗。得到20mmol的中间体4f,收率57%。
Figure PCTCN2020138946-appb-000062
(4)向装有机械搅拌、温度计、恒压滴液漏斗的三口反应瓶,通氮气10min后(2000mL/min),依次加入中间体4f(30mmol,14.67g)、原料4g(33mmol,5.18g)、130mL甲苯,加热回流分水0.5h,降温至70~80℃,缓慢加入100mmol叔丁醇钠,升温至100-110℃回流,回流分水0.5h,降温至50~60℃,分批缓慢加入醋酸钯(0.4mmol)、三环己基膦(0.8mmol),注意观察体系温度,会产生剧烈反应。待体系稳定后加热回流(T=100-110℃),保温反应3h,送检当反应完全时,停止反应。降温至25-30℃,加入130ml水、130ml甲苯搅拌分液,水相用130mL甲苯萃取一次,分液,合并有机相,有机相加入0.7g无水硫酸钠搅拌干燥,过滤,有机相浓缩(-0.06~0.075MPa, 55~60℃)至不出,得到粗品,加入20mL乙醇,温度在25℃下搅拌析出大量固体,过滤。滤饼用乙醇淋洗。得到27mmol的中间体4h,收率90%。
Figure PCTCN2020138946-appb-000063
(5)向装有机械搅拌、温度计、Y型管的三口烧瓶中加入甲苯72mL、乙醇54mL、水20mL,开启搅拌,加入中间体4h(15mmol,8.48g)、原料4i(15.75mmol,1.92g)、碳酸钾(30mmol,4.15g)、四丁基溴化铵(1.5mmol,0.48g),升温至45~50℃,快速加入醋酸钯(0.075mmol,0.017g),继续升温至65~70℃保温反应8h后。将反应液冷却至15~20℃,过滤,抽干,滤饼用乙醇淋洗,抽干。滤液分液,水相再用甲苯萃取,有机相水洗3次。无水硫酸镁干燥有机层,过滤,过滤后将滤液过短硅胶柱,减压除去溶剂,使用二氯甲烷体系对粗品进行重结晶提纯,得到6.8g化合物P4,收率75%。m/z=607.80[M+H] +
1H-NMR(CDCl 3,300MHz):δ(ppm)=8.12-8.08(d,2H),8.04-7.98(m,5H),7.93-7.88(m,4H),7.86-7.82(m,3H),7.77-7.73(m,2H),7.64-7.60(m,6H),7.58-7.53(m,4H),7.47-7.43(s,2H),7.26-7.22(m,1H),3.26-3.23(s,3H),3.18-3.15(s,3H),2.96-2.92(s,3H).
合成例2(化合物P10)
Figure PCTCN2020138946-appb-000064
(1)向装有机械搅拌、温度计、恒压滴液漏斗的三口反应瓶中加入15mL浓硫酸,开启搅拌分批加入5g亚硝酸钠,体系温度控制在60~80℃,加料完毕体系呈浅绿色。将原料10a(50mmol,20.00g)溶于50mL冰醋酸中,缓慢滴加到亚硝酸钠的浓硫酸溶液中,滴加过程保温在40~50℃,体系有稍微放热,滴加完毕保温2h,得到A10液。将氯化亚铜(100mmol,9.79g)溶于30mL浓盐酸中,降温至-10℃,开始缓慢滴加A10液,控制温度在-10℃,分批滴加,中间间隔30min,大约4h滴加完毕,自然升温,保持体系畅通,搅拌过夜。12h后将体系升温至70~80℃温度每间隔2h测样,14-20h反应完全.搅拌下将反应液缓慢加入到100mL水中,加入100mL二氯甲烷搅拌10min,静止5min,分液,水相用100mL二氯甲烷萃取一次,分液,合并有机相,加水水洗,洗至中性。有机相加入无水硫酸钠8g,搅拌干燥5min,过滤,滤饼用13mL二氯甲烷淋洗,有机相浓缩(-0.06~0.075MPa,35~40℃)至不出,得到42mmol的中间体10b,收率84%。
Figure PCTCN2020138946-appb-000065
(2)向装有机械搅拌、温度计、恒压滴液漏斗的三口反应瓶,通氮气10min后(2000mL/min),依次加入中间体10b(40mmol,16.82g)、对叔丁基苯胺(84mmol,12.53g)、130mL甲苯,加热回流分水0.5h,降温至70~80℃,缓慢加入120mmol叔丁醇钠,升温至100-110℃回流,回流分水0.5h,降温至50~60℃,分批缓慢加入醋酸钯(0.4mmol)、三环乙基膦(0.8mmol),注意观察体系温度,会产生剧烈反应。待体系稳定后加热回流(T=100-110℃),保温反应3h,送检当反应完全时, 停止反应。降温至25-30℃,加入130mL水、130mL甲苯搅拌分液,水相用130mL甲苯萃取一次,分液,合并有机相,有机相加入0.7g无水硫酸钠搅拌干燥,过滤,有机相浓缩(-0.06~0.075MPa,55~60℃)至不出,得到粗品,加入20ml乙醇,温度在25℃下搅拌析出大量固体,过滤。滤饼用乙醇淋洗。得到21mmol的中间体10d,收率52.5%。
Figure PCTCN2020138946-appb-000066
(3)向装有机械搅拌、温度计、恒压滴液漏斗的三口反应瓶,通氮气10min后(2000mL/min),依次加入中间体10d(30mmol,13.44g)、原料10e(33mmol,7.03g)、130mL甲苯,加热回流分水0.5h,降温至70~80℃,缓慢加入100mmol叔丁醇钠,升温至100-110℃回流,回流分水0.5h,降温至50~60℃,分批缓慢加入醋酸钯(0.4mmol)、三环乙基膦(0.8mmol),注意观察体系温度,会产生剧烈反应。待体系稳定后加热回流(T=100-110℃),保温反应3h,送检当反应完全时,停止反应。降温至25-30℃,加入130mL水、130mL甲苯搅拌分液,水相用130mL甲苯萃取一次,分液,合并有机相,有机相加入0.7g无水硫酸钠搅拌干燥,过滤,有机相浓缩(-0.06~0.075MPa,55~60℃)至不出,得到粗品,加入20mL乙醇,温度在25℃下搅拌析出大量固体,过滤。滤饼用乙醇淋洗。得到26.8mmol的化合物10f,收率89.3%。
Figure PCTCN2020138946-appb-000067
(4)向装有机械搅拌、温度计、恒压滴液漏斗的三口反应瓶,通氮气10min后(2000mL/min),依次加入中间体10f(22mmol,13.10g)、原料10g(26.4mmol,4.15g)、130ml甲苯,加热回流分水0.5h,降温至70~80℃,缓慢加入85mmol叔丁醇钠,升温至100-110℃回流,回流分水0.5h,降温至50~60℃,分批缓慢加入醋酸钯(0.38mmol)、三环己基膦(0.65mmol),注意观察体系温度,会产生剧烈反应。待体系稳定后加热回流(T=100-110℃),保温反应3h,送检当反应完全时,停止反应。降温至25-30℃,加入130mL水、130mL甲苯搅拌分液,水相用130mL甲苯萃取一次,分液,合并有机相,有机相加入0.7g无水硫酸钠搅拌干燥,过滤,有机相浓缩(-0.06~0.075MPa,55~60℃)至不出,得到粗品,加入30mL乙醇,温度在25℃下搅拌析出大量固体,过滤。滤饼用乙醇淋洗。得到20.2mmol的中间体10h,收率91.8%。
Figure PCTCN2020138946-appb-000068
(5)向装有机械搅拌、温度计、Y型管的三口烧瓶中加入甲苯78ml、乙醇58mL、水23mL,开启搅拌,加入中间体10h(15mmol,10.07g)、原料10i(15.30mmol,1.87g)、碳酸钾(30mmol, 4.15g)、四丁基溴化铵(1.5mmol,0.48g),升温至45~50℃,快速加入醋酸钯(0.075mmol,0.017g),继续升温至65~70℃保温反应8h后。将反应液冷却至15~20℃,过滤,抽干,滤饼用乙醇淋洗,抽干。滤液分液,水相再用甲苯萃取,有机相水洗3次。无水硫酸镁干燥有机层,过滤,过滤后将滤液过短硅胶柱,减压除去溶剂,使用二氯甲烷体系对粗品进行重结晶提纯,得到6.7g化合物P10,收率63%。m/z=713.08[M+H] +
1H-NMR(CDCl 3,300MHz):δ(ppm)=8.10-8.06(d,2H),8.02-7.98(m,3H),7.74-7.69(m,4H),7.62-7.58(m,8H),7.52-7.47(m,6H),7.27-7.24(m,1H),3.19-3.15(s,18H),3.01-2.98(s,9H),2.81-2.77(s,9H).
合成例3(化合物P22)
Figure PCTCN2020138946-appb-000069
(1)向装有机械搅拌、温度计、恒压滴液漏斗的三口反应瓶中加入15mL浓硫酸,开启搅拌分批加入5g亚硝酸钠,体系温度控制在60~80℃,加料完毕体系呈浅绿色。将原料22a(50mmol,20.05g)溶于40mL冰醋酸中,缓慢滴加到亚硝酸钠的浓硫酸溶液中,滴加过程保温在40~50℃,体系有稍微放热,滴加完毕保温2h,得到A22液。将氯化亚铜(100mmol,9.79g)溶于30mL浓盐酸中,降温至-10℃,开始缓慢滴加A22液,控制温度在-10℃,分批滴加,中间间隔30min,大约4h滴加完毕,自然升温,保持体系畅通,搅拌过夜。12h后将体系升温至70~80℃温度每间隔2h测样,14-20h反应完全.搅拌下将反应液缓慢加入到100mL水中,加入100mL二氯甲烷搅拌10min,静止5min,分液,水相用100mL二氯甲烷萃取一次,分液,合并有机相,加水水洗,洗至中性。有机相加入无水硫酸钠8g,搅拌干燥5min,过滤,滤饼用13mL二氯甲烷淋洗,有机相浓缩(-0.06~0.075MPa,35~40℃)至不出,得到42mmol的中间体22b,收率84%。
Figure PCTCN2020138946-appb-000070
(2)向装有机械搅拌、温度计、恒压滴液漏斗的三口反应瓶,通氮气10min后(2000mL/min),依次加入中间体22b(40mmol,16.82g)、原料22c(84mmol,16.73g)、130mL甲苯,加热回流分水0.5h,降温至70~80℃,缓慢加入120mmol叔丁醇钠,升温至100-110℃回流,回流分水0.5h,降温至50~60℃,分批缓慢加入醋酸钯(0.4mmol)、三环己基膦(0.8mmol),注意观察体系温度,会产生剧烈反应。待体系稳定后加热回流(T=100-110℃),保温反应3h,送检当反应完全时,停止反应。降温至25-30℃,加入130mL水、130ml甲苯搅拌分液,水相用130mL甲苯萃取一次,分液,合并有机相,有机相加入0.7g无水硫酸钠搅拌干燥,过滤,有机相浓缩(-0.06~0.075MPa,55~60℃)至不出,得到粗品,加入20mL乙醇,温度在25℃下搅拌析出大量固体,过滤。滤饼用乙醇淋洗。得到20mmol的中间体22d,收率50%。
Figure PCTCN2020138946-appb-000071
(3)向装有机械搅拌、温度计、恒压滴液漏斗的三口反应瓶,通氮气10min后(2000mL/min),依次加入中间体22d(30mmol,13.89g)、原料22f(33mmol,7.03g)、130mL甲苯,加热回流分水0.5h,降温至70~80℃,缓慢加入100mmol叔丁醇钠,升温至100-110℃回流,回流分水0.5h,降温至50~60℃,分批缓慢加入醋酸钯(0.4mmol)、三环己基膦(0.8mmol),注意观察体系温度,会产生剧烈反应。待体系稳定后加热回流(T=100-110℃),保温反应3h,送检当反应完全时,停止反应。降温至25-30℃,加入130mL水、130mL甲苯搅拌分液,水相用130mL甲苯萃取一次,分液,合并有机相,有机相加入0.7g无水硫酸钠搅拌干燥,过滤,有机相浓缩(-0.06~0.075MPa,55~60℃)至不出,得到粗品,加入20ml乙醇,温度在25℃下搅拌析出大量固体,过滤。滤饼用乙醇淋洗。得到25mmol的中间体22f,收率83.3%。
Figure PCTCN2020138946-appb-000072
(4)向装有机械搅拌、温度计、恒压滴液漏斗的三口反应瓶,通氮气10min后(2000mL/min),依次加入中间体22f(22mmol,13.10g)、原料22g(26.4mmol,5.46g)、130mL甲苯,加热回流分水0.5h,降温至70~80℃,缓慢加入85mmol叔丁醇钠,升温至100-110℃回流,回流分水0.5h,降温至50~60℃,分批缓慢加入醋酸钯(0.38mmol)、三环己基膦(0.65mmol),注意观察体系温度,会产生剧烈反应。待体系稳定后加热回流(T=100-110℃),保温反应3h,送检当反应完全时,停止反应。降温至25-30℃,加入130mL水、130mL甲苯搅拌分液,水相用130mL甲苯萃取一次,分液,合并有机相,有机相加入0.7g无水硫酸钠搅拌干燥,过滤,有机相浓缩(-0.06~0.075MPa,55~60℃)至不出,得到粗品,加入30mL乙醇,温度在25℃下搅拌析出大量固体,过滤。滤饼用乙醇淋洗。得到19.8mmol的中间体22h,收率90%。
Figure PCTCN2020138946-appb-000073
(5)向装有机械搅拌、温度计、Y型管的三口烧瓶中加入甲苯78ml、乙醇58mL、水23mL,开启搅拌,加入中间体22h(16mmol,11.54g)、原料22i(18mmol,3.56g)、碳酸钾(30mmol,4.15g)、四丁基溴化铵(1.5mmol,0.48g),升温至45~50℃,快速加入醋酸钯(0.075mmol,0.017g),继续升温至65~70℃保温反应8h后。将反应液冷却至15~20℃,过滤,抽干,滤饼用乙醇淋洗,抽干。滤液分液,水相再用甲苯萃取,有机相水洗3次。无水硫酸镁干燥有机层,过滤,过滤后将滤液过短硅胶柱,减压除去溶剂,使用二氯甲烷体系对粗品进行重结晶提纯,得到9.1g化合物P22, 收率68%。m/z=840.25[M+H] +
合成例4(化合物P34)
Figure PCTCN2020138946-appb-000074
(1)向装有机械搅拌、温度计、恒压滴液漏斗的三口反应瓶中加入15mL浓硫酸,开启搅拌分批加入5g亚硝酸钠,体系温度控制在60~80℃,加料完毕体系呈浅绿色。将原料34a(50mmol,15.05g)溶于40mL冰醋酸中,缓慢滴加到亚硝酸钠的浓硫酸溶液中,滴加过程保温在40~50℃,体系有稍微放热,滴加完毕保温2h,得到A34液。将氯化亚铜(100mmol,9.79g)溶于30mL浓盐酸中,降温至-10℃,开始缓慢滴加A34液,控制温度在-10℃,分批滴加,中间间隔30min,大约4h滴加完毕,自然升温,保持体系畅通,搅拌过夜。12h后将体系升温至70~80℃温度每间隔2h测样,14-20h反应完全,搅拌下将反应液缓慢加入到100mL水中,加入100mL二氯甲烷搅拌10min,静止5min,分液,水相用100mL二氯甲烷萃取一次,分液,合并有机相,加水水洗,洗至中性。有机相加入无水硫酸钠8g,搅拌干燥5min,过滤,滤饼用13mL二氯甲烷淋洗,有机相浓缩(-0.06~0.075MPa,35~40℃)至不出,得到42mmol的中间体34b,收率84%。
Figure PCTCN2020138946-appb-000075
(2)向装有机械搅拌、温度计、恒压滴液漏斗的三口反应瓶,通氮气10min后(2000mL/min),依次加入中间体34b(40mmol,16.82g)、对叔丁基苯胺(84mmol,12.53g)、130mL甲苯,加热回流分水0.5h,降温至70~80℃,缓慢加入120mmol叔丁醇钠,升温至100-110℃回流,回流分水0.5h,降温至50~60℃,分批缓慢加入醋酸钯(0.4mmol)、三环己基膦(0.8mmol),注意观察体系温度,会产生剧烈反应。待体系稳定后加热回流(T=100-110℃),保温反应3h,送检当反应完全时,停止反应。降温至25-30℃,加入130mL水、130mL甲苯搅拌分液,水相用130mL甲苯萃取一次,分液,合并有机相,有机相加入0.7g无水硫酸钠搅拌干燥,过滤,有机相浓缩(-0.06至0.075MPa,55~60℃)至不出,得到粗品,加入20mL乙醇,温度在25℃下搅拌析出大量固体,过滤。滤饼用乙醇淋洗。得到33mmol的中间体34d,收率82.5%。
Figure PCTCN2020138946-appb-000076
(3)向装有机械搅拌、温度计、恒压滴液漏斗的三口反应瓶,通氮气10min后(2000mL/min),依次加入中间体34d(25mmol,11.53g)、原料34e(27.5mmol,6.76g)、130mL甲苯,加热回流分水0.5h,降温至70~80℃,缓慢加入100mmol叔丁醇钠,升温至100-110℃回流,回流分水0.5h,降温至50~60℃,分批缓慢加入醋酸钯(0.3mmol)、三环己基膦(0.6mmol),注意观察体系温度,会产生剧烈反应。待体系稳定后加热回流(T=100-110℃),保温反应3h,送检当反应完全时,停 止反应。降温至25-30℃,加入130mL水、130mL甲苯搅拌分液,水相用130mL甲苯萃取一次,分液,合并有机相,有机相加入0.7g无水硫酸钠搅拌干燥,过滤,有机相浓缩(-0.06~0.075MPa,55~60℃)至不出,得到粗品,加入20mL乙醇,温度在25℃下搅拌析出大量固体,过滤。滤饼用乙醇淋洗。得到15mmol的中间体34f,收率60%。
Figure PCTCN2020138946-appb-000077
(4)向装有机械搅拌、温度计、恒压滴液漏斗的三口反应瓶,通氮气10min后(2000mL/min),依次加入中间体34f(22mmol,13.84g)、原料34g(26.4mmol,5.46g),130ml甲苯,加热回流分水0.5h,降温至70~80℃,缓慢加入85mmol叔丁醇钠,升温至100-110℃回流,回流分水0.5h,降温至50~60℃,分批缓慢加入醋酸钯(0.38mmol)、三环己基膦(0.65mmol),注意观察体系温度,会产生剧烈反应。待体系稳定后加热回流(T=100-110℃),保温反应3h,送检当反应完全时,停止反应。降温至25-30℃,加入130mL水、130mL甲苯搅拌分液,水相用130mL甲苯萃取一次,分液,合并有机相,有机相加入0.7g无水硫酸钠搅拌干燥,过滤,有机相浓缩(-0.06~0.075MPa,55~60℃)至不出,得到粗品,加入30mL乙醇,温度在25℃下搅拌析出大量固体,过滤。滤饼用乙醇淋洗。得到19.2mmol的中间体34h,收率87.3%。
Figure PCTCN2020138946-appb-000078
(5)向装有机械搅拌、温度计、Y型管的三口烧瓶中加入甲苯78mL、乙醇58mL、水23mL,开启搅拌,加入中间体34h(16mmol,12.08g)、原料34i(18mmol,3.56g)、碳酸钾(30mmol,4.15g)、四丁基溴化铵(1.5mmol,0.48g),升温至45~50℃,快速加入醋酸钯(0.075mmol,0.017g),继续升温至65~70℃保温反应8h后。将反应液冷却至15~20℃,过滤,抽干,滤饼用乙醇淋洗,抽干。滤液分液,水相再用甲苯萃取,有机相水洗3次。无水硫酸镁干燥有机层,过滤,过滤后将滤液过短硅胶柱,减压除去溶剂,使用二氯甲烷体系对粗品进行重结晶提纯,得到8.2g的化合物P34,收率59%。m/z=873.58[M+H] +
中间体128a的合成:
Figure PCTCN2020138946-appb-000079
(1)向装有机械搅拌、温度计、Y型管的三口烧瓶中加入甲苯100mL、乙醇20mL、水20mL,开启搅拌,加入原料128a-1(50mmol)、原料对氨基苯硼酸(55mmol)、碳酸钾(100mmol)、四丁 基溴化铵(5mmol),升温至45~50℃,快速加入醋酸钯(0.5mmol),继续升温至65~70℃保温反应5h后。加入20ml水,静止,分液,水相再用50ml甲苯萃取,有机相水洗3次。无水硫酸镁干燥有机层,过滤,过滤后将滤液过短硅胶柱,减压除去溶剂,5倍乙醇对粗品进行重结晶提纯,得到45mmol中间体128a-2,收率90%。
Figure PCTCN2020138946-appb-000080
(2)向装有机械搅拌、温度计的三口烧瓶中加入二氯乙烷60ml,开启搅拌,加入中间体128a-2(40mmol),降温至-5~0℃,分批加入NBS(42mmol)。加完后保温1h,反应液水洗3次。无水硫酸镁干燥有机层,过滤,减压除去溶剂,加入3倍石油醚过滤,得到38mmo产物128a,收率95%。
参考128a合成方法,用下表中的原料替原料128a-1合成相关中间体。
Figure PCTCN2020138946-appb-000081
合成例5-13
按照合成例1的方法合成如下化合物,不同的是,将实施例1中的原料4a、原料4c、原料4e、原料4g、原料4i替换成相应原料,所采用的原料以及相应制备的化合物、质谱数据具体如表1-1、 表1-2、表1-3、表1-4、表1-5、表1-6、表1-7所示。
表1-1
Figure PCTCN2020138946-appb-000082
表1-2
Figure PCTCN2020138946-appb-000083
Figure PCTCN2020138946-appb-000084
表1-3
Figure PCTCN2020138946-appb-000085
表1-4
Figure PCTCN2020138946-appb-000086
Figure PCTCN2020138946-appb-000087
表1-5
Figure PCTCN2020138946-appb-000088
表1-6
Figure PCTCN2020138946-appb-000089
Figure PCTCN2020138946-appb-000090
表1-7
Figure PCTCN2020138946-appb-000091
Figure PCTCN2020138946-appb-000092
合成例26(化合物P131的合成):
Figure PCTCN2020138946-appb-000093
(1)向装有机械搅拌、温度计、恒压滴液漏斗的三口反应瓶中加入15mL浓硫酸,开启搅拌分批加入5g亚硝酸钠,体系温度控制在70℃,加料完毕体系呈浅绿色。将原料131a(50mmol,17.95g)溶于40mL冰醋酸中,缓慢滴加到亚硝酸钠的浓硫酸溶液中,滴加过程保温在40~50℃,体系有稍微放热,滴加完毕保温2h,得到A131液。将氯化亚铜(100mmol,9.90g)溶于30ml浓盐酸中,降温至-10℃,开始缓慢滴加A131液,控制温度在-10℃,分批滴加,中间间隔30min,大约4h滴加完毕,自然升温,保持体系畅通,搅拌过夜。12h后将体系升温至70~80℃温度每间隔2h测样,14-20h反应完全。搅拌下将反应液缓慢加入到100ml水中,加入100mL二氯甲烷搅拌10min,静止5min,分液,水相用100mL二氯甲烷萃取一次,分液,合并有机相,加水水洗,洗至中性。有机相加入无水硫酸钠8g,搅拌干燥5min,过滤,滤饼用13mL二氯甲烷淋洗,有机相浓缩(-0.06~0.075MPa,35~40℃)至不出,得到45mmol的中间体131b,收率90%。
Figure PCTCN2020138946-appb-000094
(2)向装有机械搅拌、温度计、冷凝器的三口反应瓶,通氮气10min后(2000mL/min),依次加入中间体131b(40mmol)、原料131c(44mmol)、100mL甲苯,加热回流分水0.5h,降温至70~80℃,缓慢加入80mmol叔丁醇钠,升温至100-110℃回流,回流分水0.5h,降温至50~60℃,分批缓慢加入醋酸钯(0.4mmol)、三环己基膦(0.8mmol),注意观察体系温度,会产生剧烈反应。待体系稳定后加热回流(T=100-110℃),保温反应2h。降温至25-30℃,加入100mL水、100mL甲苯搅拌分液,水相用100mL甲苯萃取一次,分液,合并有机相,有机相加入0.7g无水硫酸钠搅拌干燥,过滤,有机相浓缩(-0.06至0.075MPa,55~60℃)至不出,得到粗品,加入20mL二甲苯重结晶,过滤,得到22mmol的中间体131d,收率55%。
Figure PCTCN2020138946-appb-000095
(3)向装有机械搅拌、温度计、冷凝器的三口反应瓶,通氮气10min后(2000mL/min),依次加入中间体131d(20mmol)、原料131e(21mmol)、60mL甲苯,加热回流分水0.5h,降温至70~80℃,缓慢加入40mmol的叔丁醇钠,升温至100-110℃回流,回流分水0.5h,降温至50~60℃,分批缓慢加入醋酸钯(0.2mmol)、三环己基膦(0.4mmol),注意观察体系温度,会产生剧烈反应。待体系稳定后加热回流(T=100-110℃),保温反应2h。降温至25-30℃,加入50mL水,过滤,得到18mmol的中间体131f,收率90%。
Figure PCTCN2020138946-appb-000096
(4)向装有机械搅拌、温度计、Y型管的三口烧瓶中加入甲苯50mL、乙醇10mL、水10mL,开启搅拌,加入中间体131f(10mmol)、原料131g(11mmol)、碳酸钾(20mmol)、四丁基溴化铵(1mmol),升温至45~50℃,快速加入醋酸钯(0.01mmol),继续升温至65~70℃保温反应6h后。将反应液冷却至15~20℃,过滤,抽干,滤饼用乙醇淋洗,抽干。滤液分液,水相再用甲苯萃取,有机相水洗3次。无水硫酸镁干燥有机层,过滤,过滤后将滤液过短硅胶柱,减压除去溶剂,使用二氯甲烷体系对粗品进行重结晶提纯,得到4.76g化合物P131,收率62%。m/z=769.8[M+H] +
表1-8
Figure PCTCN2020138946-appb-000097
Figure PCTCN2020138946-appb-000098
表1-9
Figure PCTCN2020138946-appb-000099
表1-10
Figure PCTCN2020138946-appb-000100
Figure PCTCN2020138946-appb-000101
表1-11
Figure PCTCN2020138946-appb-000102
有机电致发光器件的制作(第二空穴传输层)
应用例1
通过以下过程制备阳极:将ITO厚度为
Figure PCTCN2020138946-appb-000103
的ITO基板切割成40mm(长)×40mm(宽)×0.7mm(厚)的尺寸,采用光刻工序,将其制备成具有阴极、阳极以及绝缘层图案的实验基板,利用紫外臭氧以及O 2:N 2等离子进行表面处理,以增加阳极的功函数和和清除浮渣。
在实验基板(阳极)上真空蒸镀TCNQ以形成厚度为
Figure PCTCN2020138946-appb-000104
的空穴注入层,并且在空穴注入层上真空蒸镀HT-1,以形成厚度为
Figure PCTCN2020138946-appb-000105
的第一空穴传输层。在空穴传输层上真空蒸镀化合物P4,形成厚度为
Figure PCTCN2020138946-appb-000106
的空穴辅助层(第二空穴传输层)。
在空穴辅助层上蒸镀CBP作为主体,按照100:3的膜厚比同时掺杂Ir(piq) 2(acac),形成厚度为
Figure PCTCN2020138946-appb-000107
的发光层。
将DBimiBphen和LiQ以1:1的重量比进行混合,并可通过蒸镀工艺形成
Figure PCTCN2020138946-appb-000108
厚度的电子传输层。随后,将LiQ蒸镀在电子传输层上以形成厚度为
Figure PCTCN2020138946-appb-000109
的电子注入层。
然后,将镁(Mg)和银(Ag)以1:9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为
Figure PCTCN2020138946-appb-000110
的阴极。
此外,在上述阴极上蒸镀厚度为
Figure PCTCN2020138946-appb-000111
的CP-1,形成覆盖层CPL,从而完成有机发光器件的制造。制备器件所采用的主要材料的化学结构如下所示。
Figure PCTCN2020138946-appb-000112
应用例2-应用例23
除了在形成空穴辅助层时各自使用表中所示的化合物代替化合物P4以外,利用与应用例1相同的方法制作有机电致发光器件。
比较例1至2
除了在形成空穴辅助层时分别使用化合物A和化合物B代替化合物P4以外,利用与应用例1相同的方法制作有机电致发光器件。化合物A和化合物B的化学结构如下所示:
Figure PCTCN2020138946-appb-000113
如上制得的有机电致发光器件在15mA/cm 2的条件下测试T95器件寿命,驱动电压、效率、色坐标是在恒定电流密度10mA/cm 2下进行测试,测试结果如表所示。
Figure PCTCN2020138946-appb-000114
结合表所示的结果可知,应用例1-23制备的有机电致发光器件的电流效率比比较例1和比较例2至少提高了6.22%,外量子效率至少提高了7.9%,应用例1-23的有机电致发光器件的T95寿命和比较例1和比较例2相比,至少提高了13.4%;此外,应用例1-23所制备的有机电致发光器件也兼具较低的驱动电压。可见,本发明的芳胺化合物作为第二空穴传输材料,在能够在保证器件具有较低驱动电压的情况下,进一步提高了器件的寿命和光电效率。
有机电致发光器件的制作(电子传输层)
应用例24
通过以下过程制备阳极:将ITO厚度为
Figure PCTCN2020138946-appb-000115
的基板(康宁制造)切割成40mm(长)×40mm(宽)×0.7mm(厚)的尺寸,采用光刻工序,将其制备成具有阴极搭接区域、阳极以及绝缘层图案的实验基板,利用紫外臭氧以及O 2:N 2等离子进行表面处理,以增加阳极(实验基板)的功函数和清除浮渣。
在实验基板(阳极)上真空蒸镀PPDN以形成厚度为
Figure PCTCN2020138946-appb-000116
的空穴注入层,并且在空穴注入层上真空蒸镀HT-1,以形成厚度为
Figure PCTCN2020138946-appb-000117
的空穴传输层。在空穴传输层上蒸镀HT-2,形成厚度为
Figure PCTCN2020138946-appb-000118
的电子阻挡层。
然后将α,β-ADN作为主体,按照100:3的膜厚比同时掺杂BD-1,形成厚度为
Figure PCTCN2020138946-appb-000119
的发光层。
将化合物P62和LiQ以1:1的重量比进行混合,并可通过蒸镀工艺形成
Figure PCTCN2020138946-appb-000120
厚度的电子传输层。随后,将LiQ蒸镀在电子传输层上以形成厚度为
Figure PCTCN2020138946-appb-000121
的电子注入层。
然后,将镁(Mg)和银(Ag)以1:9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为
Figure PCTCN2020138946-appb-000122
的阴极。
此外,在上述阴极上蒸镀厚度为
Figure PCTCN2020138946-appb-000123
的CP-1,形成覆盖层CPL,从而完成有机发光器件的制造。制备器件所采用的主要材料的化学结构如下所示。
Figure PCTCN2020138946-appb-000124
应用例25-应用例37
除了在形成电子传输层时各自使用表中所示的化合物代替化合物P62以外,利用与应用例24相同的方法制作有机电致发光器件。
比较例3至4
除了在形成电子传输层时分别使用化合物C和化合物D代替化合物P62以外,利用与应用例24相同的方法制作有机电致发光器件。化合物C和化合物D的化学结构如下所示:
Figure PCTCN2020138946-appb-000125
如上制得的有机电致发光器件在15mA/cm 2的条件下测试T95器件寿命,驱动电压、效率、色坐标是在恒定电流密度10mA/cm 2下进行测试,测试结果如表所示。
Figure PCTCN2020138946-appb-000126
结合表的结果可知,应用例24-37所制备的有机电致发光器件的驱动电压比比较例3-4至少降低了0.14V;应用例24-37的电流效率比比较例的3-4至少提高了3.5%;应用例24-37器件的外量子效率比比较例的3-4至少提高了8.2%;可见,相较于对比例3-4,应用例24-37所制备的有机电致发光器件具有更低的驱动电压和较高的发光效率。
根据上表可知,相较于比较例3、比较例4,应用例24~37所制备的蓝光有机电致发光器件具有更高的电流效率、外量子效率和更低的驱动电压。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再 另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (20)

  1. 一种芳胺化合物,其特征在于,所述芳胺化合物具有如下式(1)所示的结构:
    Figure PCTCN2020138946-appb-100001
    其中,R 1和Ar 5相同或不同,且分别独立地选自:取代或未取代的C6-30的芳基、取代或未取代的C2~C40的杂芳基、取代或未取代的C1~C10的烷基、氢、氘、卤素、氰基、C3~C10的三烷基硅基、三苯基硅基,其中Ar 5不为氢;
    Ar 1、Ar 2、Ar 3、Ar 4相同或不同,且分别独立地选自:取代或未取代的C6~C40的芳基、取代或未取代的C2~C40的杂芳基;
    L选自单键、取代或未取代的C6~C30的亚芳基、取代或未取代的C2~C30的亚杂芳基;
    所述R 1、Ar 5、Ar 1、Ar 2、Ar 3、Ar 4以及L中的取代基相同或不同,且分别独立地选自:氘、卤素、氰基、C6~C20的芳基、C3~C20的杂芳基、C1~C10的烷基、C3~C6的环烷基、C1~C10的三烷基硅基、C6~C48的三芳基硅基。
  2. 根据权利要求1所述的芳胺化合物,其中,所述芳胺化合物具有如下式(1)所示的结构:
    Figure PCTCN2020138946-appb-100002
    其中,R 1为C1~C10的烷基;
    Ar 1、Ar 2、Ar 3、Ar 4和Ar 5相同或不同,且各自独立地选自:取代或未取代的C6~C30的芳基、取代或未取代的C2~C40的杂芳基;
    L选自单键、取代或未取代的C6~C30的亚芳基、取代或未取代的C2~C30的亚杂芳基;
    所述Ar 1、Ar 2、Ar 3、Ar 4、Ar 5以及L中的取代基相同或不同,且分别独立地选自:氘、卤素、氰基、C1~C10的烷基、C3~C6的环烷基、C1~C10的三烷基硅基、C6~C48的三芳基硅基。
  3. 根据权利要求1或2所述的芳胺化合物,其中,所述L选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯基芴基。
  4. 根据权利要求1-3中任意一项所述的芳胺化合物,其中,所述L选自单键、取代或未取代的C6~C12的亚芳基、取代或未取代的C4~C12的亚杂芳基;
    优选地,所述L选自取代或未取代的亚吡啶基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚嘧啶基。
  5. 根据权利要求1-4中任意一项所述的芳胺化合物,其中,所述L选自单键,或者选自如下通式表示的基团所组成的组:
    Figure PCTCN2020138946-appb-100003
    Figure PCTCN2020138946-appb-100004
    其中,*表示L用于与
    Figure PCTCN2020138946-appb-100005
    基团连接;**表示L用于与
    Figure PCTCN2020138946-appb-100006
    基团连接。
  6. 根据权利要求1-5中任意一项所述的芳胺化合物,其中,所述Ar 1、Ar 3及Ar 4相同或不同,且分别独立地选自:取代或未取代的C6~C20的芳基及取代或未取代的C5~C12的杂芳基。
  7. 根据权利要求1-6中任意一项所述的芳胺化合物,其中,所述Ar 1、Ar 3及Ar 4相同或不同,且分别独立地选自如下基团所形成的组:
    Figure PCTCN2020138946-appb-100007
  8. 根据权利要求1-7中任意一项所述的芳胺化合物,其中,所述Ar 1、Ar 2、Ar 3及Ar 4相同或不同,且分别独立地选自:取代或为取代的苯基、取代或未取代的吡啶基、取代或未取代的嘧啶基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的蒽基、取代或未取代的菲基、取代或未取代的芴基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的咔唑基、取代或未取代的N-苯基咔唑基、取代或未取代的三嗪基、取代或未取代的三联苯基、取代或未取代的9,9'-螺二芴基。
  9. 根据权利要求1-8中任意一项所述的芳胺化合物,其中,所述Ar 1、Ar 2、Ar 3及Ar 4相同或不同,且分别独立地选自取代或未取代的基团T,未取代的基团T选自如下基团所组成的组:
    Figure PCTCN2020138946-appb-100008
    Figure PCTCN2020138946-appb-100009
    取代的基团T具有一个或两个以上的取代基,T的取代基独立地选自氘、氟、氰基、三甲基硅基、甲基、乙基、异丙基、叔丁基、苯基、联苯基、吡啶基、嘧啶基、N-苯基咔唑基、菲基、萘基、咔唑基、二苯并呋喃基或者二苯并噻吩基。
  10. 根据权利要求1-9中任意一项所述的芳胺化合物,其中所述Ar 5选自取代或未取代的C6~C15的芳基及取代或未取代的C4~C10的杂芳基。
  11. 根据权利要求1-10中任意一项所述的芳胺化合物,其中所述Ar 5选自如下基团所组成的组:
    Figure PCTCN2020138946-appb-100010
  12. 根据权利要求1-11中任意一项所述的芳胺化合物,其中,所述Ar 5选自氘、氰基、氟、三甲基硅基、取代或未取代的C1~C5的烷基、取代或未取代的C6~C25的芳基或者取代或未取代的C4~C18的杂芳基。
  13. 根据权利要求1-12中任意一项所述的芳胺化合物,其中,所述Ar 5选自氘、氰基、氟、三甲基硅基、氘代甲基、甲基、乙基、异丙基、叔丁基、取代或未取代的苯基、取代或未取代的吡啶基、取代或未取代的嘧啶基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的菲基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的芴基、取代或未取代的N-苯基咔唑基、取代或未取代的咔唑基。
  14. 根据权利要求1-13中任意一项所述的芳胺化合物,其中,所述Ar 5选自氘、氰基、氟、三甲基硅基、氘代甲基、甲基、乙基、异丙基、叔丁基或者如下基团所组成的组:
    Figure PCTCN2020138946-appb-100011
  15. 根据权利要求1-14中任意一项所述的芳胺化合物,其中,所述R 1选自氢、氘、氰基、氟、三甲基硅基、三苯基硅基、C1~C10的烷基、取代或未取代的C6~C21的芳基或者取代或未取代的C4~C12的杂芳基。
  16. 根据权利要求1-15中任意一项所述的芳胺化合物,其中,所述R 1选自氢、氘、氰基、氟、三甲基硅基、三苯基硅基、C1~C10的烷基、取代或未取代的苯基、取代或未取代的吡啶基、取代 或未取代的嘧啶基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的菲基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的芴基。
  17. 根据权利要求1-16中任意一项所述的芳胺化合物,其中所述R 1选自氢、氘、氰基、氟、三甲基硅基、三苯基硅基、C1~C10的烷基或者如下基团所组成的组:
    Figure PCTCN2020138946-appb-100012
  18. 根据权利要求1-17中任意一项所述的芳胺化合物,其中,所述Ar 2选自如下基团所组成的组:
    Figure PCTCN2020138946-appb-100013
  19. 根据权利要求1-18中任意一项所述的芳胺化合物,其中所述芳胺化合物选自以下化合物P1-P243的一种或多种:
    Figure PCTCN2020138946-appb-100014
    Figure PCTCN2020138946-appb-100015
    Figure PCTCN2020138946-appb-100016
    Figure PCTCN2020138946-appb-100017
    Figure PCTCN2020138946-appb-100018
    Figure PCTCN2020138946-appb-100019
    Figure PCTCN2020138946-appb-100020
    Figure PCTCN2020138946-appb-100021
    Figure PCTCN2020138946-appb-100022
    Figure PCTCN2020138946-appb-100023
  20. 一种有机电致发光器件,其特征在于,包括阳极、阴极、以及介于阳极层与阴极层之间的至少一层功能层,所述功能层包括空穴注入层、空穴传输层、有机电致发光层、电子传输层以及电子注入层,其中,所述有机电致发光层、空穴传输层和电子传输层中的至少一者含有权利要求1~19中任一项所述的芳胺化合物。
PCT/CN2020/138946 2019-12-27 2020-12-24 芳胺化合物和有机电致发光器件 WO2021129724A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/787,626 US20230118116A1 (en) 2019-12-27 2020-12-24 Arylamine compound and organic electroluminescent device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911382479.9 2019-12-27
CN201911382479 2019-12-27
CN202011507383.3A CN112500298B (zh) 2019-12-27 2020-12-18 芳胺化合物和有机电致发光器件
CN202011507383.3 2020-12-18

Publications (1)

Publication Number Publication Date
WO2021129724A1 true WO2021129724A1 (zh) 2021-07-01

Family

ID=74922570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138946 WO2021129724A1 (zh) 2019-12-27 2020-12-24 芳胺化合物和有机电致发光器件

Country Status (3)

Country Link
US (1) US20230118116A1 (zh)
CN (1) CN112500298B (zh)
WO (1) WO2021129724A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113308158A (zh) * 2021-05-26 2021-08-27 广东盛世宝建筑新技术有限公司 一种用于墙面基层的速干型界面剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107531684A (zh) * 2015-04-13 2018-01-02 德山新勒克斯有限公司 有机电气元件用化合物、利用其的有机电气元件及其电子装置
CN108863918A (zh) * 2018-06-19 2018-11-23 长春海谱润斯科技有限公司 一种芳胺衍生物及其有机电致发光器件
WO2019102936A1 (ja) * 2017-11-24 2019-05-31 学校法人関西学院 有機デバイス用材料およびそれを用いた有機電界発光素子
WO2019132028A1 (ja) * 2017-12-28 2019-07-04 出光興産株式会社 新規化合物及び有機エレクトロルミネッセンス素子
CN110225917A (zh) * 2017-05-02 2019-09-10 株式会社Lg化学 新的化合物和使用其的有机发光器件
CN110256409A (zh) * 2019-04-11 2019-09-20 浙江虹舞科技有限公司 一种以2-氰基吡嗪为受体的热活性延迟荧光有机化合物及其制备和应用
CN111647009A (zh) * 2020-06-02 2020-09-11 苏州久显新材料有限公司 含硼类化合物及其电子器件

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69112898T2 (de) * 1990-05-02 1996-06-13 Mita Industrial Co Ltd Meta-Phenylendiaminverbindung und elektrophotoempfindliches Material, das diese Verbindung verwendet.
JPH07324058A (ja) * 1994-05-30 1995-12-12 Mita Ind Co Ltd m−フェニレンジアミン誘導体およびそれを用いた電子写真感光体
US5763110A (en) * 1996-09-03 1998-06-09 Xerox Corporation Electroluminescent devices comprising polynuclear arylamines
JP5624275B2 (ja) * 2008-12-22 2014-11-12 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
KR101070223B1 (ko) * 2009-05-14 2011-10-06 덕산하이메탈(주) 아릴아미노 구조를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
TWI490234B (zh) * 2009-10-27 2015-07-01 Samsung Electronics Co Ltd Composition for anode buffer layer, polymer compound for anode buffer layer, organic electroluminescent device, method for producing the same, and use thereof
JP2012146811A (ja) * 2011-01-12 2012-08-02 Showa Denko Kk 有機エレクトロルミネッセント素子
JP2014135466A (ja) * 2012-04-09 2014-07-24 Kyushu Univ 有機発光素子ならびにそれに用いる発光材料および化合物
CN117924246A (zh) * 2015-05-08 2024-04-26 默克专利有限公司 π共轭类化合物、有机电致发光元件材料、发光材料、发光性薄膜、有机电致发光元件、显示装置及照明装置
CN107400111A (zh) * 2017-09-12 2017-11-28 长春海谱润斯科技有限公司 一种含有三苯胺结构的化合物及其制备方法和应用
JP6967433B2 (ja) * 2017-11-27 2021-11-17 エスケーマテリアルズジェイエヌシー株式会社 有機電界発光素子
WO2019132040A1 (ja) * 2017-12-28 2019-07-04 出光興産株式会社 新規化合物及び有機エレクトロルミネッセンス素子
US11631821B2 (en) * 2018-02-23 2023-04-18 Lg Chem, Ltd. Polycyclic aromatic compounds containing a 1,11-dioxa-,1,11-dithia-, or 1-oxa-11-thia-4,8-diaza-11b-boradicyclopenta[a,j]phenalene core and organic light-emitting device comprising same
WO2019198699A1 (ja) * 2018-04-12 2019-10-17 学校法人関西学院 シクロアルキル置換多環芳香族化合物
KR101990818B1 (ko) * 2018-05-04 2019-06-19 머티어리얼사이언스 주식회사 유기전계발광소자
KR102661365B1 (ko) * 2018-06-06 2024-04-25 가꼬우 호징 관세이 가쿠잉 터셔리 알킬 치환 다환 방향족 화합물
CN110407859B (zh) * 2019-07-18 2022-09-20 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107531684A (zh) * 2015-04-13 2018-01-02 德山新勒克斯有限公司 有机电气元件用化合物、利用其的有机电气元件及其电子装置
CN110225917A (zh) * 2017-05-02 2019-09-10 株式会社Lg化学 新的化合物和使用其的有机发光器件
WO2019102936A1 (ja) * 2017-11-24 2019-05-31 学校法人関西学院 有機デバイス用材料およびそれを用いた有機電界発光素子
WO2019132028A1 (ja) * 2017-12-28 2019-07-04 出光興産株式会社 新規化合物及び有機エレクトロルミネッセンス素子
CN108863918A (zh) * 2018-06-19 2018-11-23 长春海谱润斯科技有限公司 一种芳胺衍生物及其有机电致发光器件
CN110256409A (zh) * 2019-04-11 2019-09-20 浙江虹舞科技有限公司 一种以2-氰基吡嗪为受体的热活性延迟荧光有机化合物及其制备和应用
CN111647009A (zh) * 2020-06-02 2020-09-11 苏州久显新材料有限公司 含硼类化合物及其电子器件

Also Published As

Publication number Publication date
CN112500298A (zh) 2021-03-16
CN112500298B (zh) 2022-03-04
US20230118116A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
WO2022089428A1 (zh) 含氮化合物、包含其的电子元件和电子装置
KR100958000B1 (ko) 신규한 바이나프탈렌 유도체, 이의 제조방법 및 이를 이용한 유기전자소자
WO2022083598A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2021218588A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2020248943A1 (zh) 含氮化合物、电子元件和电子装置
WO2021135181A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2022206396A1 (zh) 主体材料组合物和有机电致发光器件及电子装置
WO2022088865A1 (zh) 含氮化合物、电子元件和电子装置
WO2021228111A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2022262365A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2021135183A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2022267661A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2022188514A1 (zh) 一种有机化合物及包含其的电子元件和电子装置
WO2021223688A1 (zh) 一种有机化合物和应用以及使用其的有机电致发光器件和电子装置
WO2022213905A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2022121618A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2022199449A1 (zh) 有机化合物及包含其的电子器件和电子装置
WO2021120835A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2021135725A1 (zh) 有机化合物、使用其的电子器件及电子装置
CN112341343B (zh) 一种有机化合物及包含其的电子元件和电子装置
WO2022042267A1 (zh) 含氮化合物、电子元件和电子装置
WO2022170831A1 (zh) 有机电致发光材料、电子元件和电子装置
WO2022206389A1 (zh) 含氮化合物及包含其的电子元件和电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2021190380A1 (zh) 有机化合物、电子元件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907750

Country of ref document: EP

Kind code of ref document: A1