WO2021128791A1 - 一种聚氨酯树脂及其制备方法 - Google Patents

一种聚氨酯树脂及其制备方法 Download PDF

Info

Publication number
WO2021128791A1
WO2021128791A1 PCT/CN2020/099737 CN2020099737W WO2021128791A1 WO 2021128791 A1 WO2021128791 A1 WO 2021128791A1 CN 2020099737 W CN2020099737 W CN 2020099737W WO 2021128791 A1 WO2021128791 A1 WO 2021128791A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane resin
polyurethane
polyol
diisocyanate
preparing
Prior art date
Application number
PCT/CN2020/099737
Other languages
English (en)
French (fr)
Inventor
史培猛
尚永华
孙立冬
孙积钊
李建峰
王鹏
胡浩
周琦
朱付林
Original Assignee
万华化学(宁波)有限公司
万华化学集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学(宁波)有限公司, 万华化学集团股份有限公司 filed Critical 万华化学(宁波)有限公司
Publication of WO2021128791A1 publication Critical patent/WO2021128791A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6648Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6651Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203

Definitions

  • the invention relates to a method for preparing a polyurethane resin by reacting an alicyclic diisocyanate composition with a polyol, in particular to a polyurethane resin with good heat resistance and optical transparency and a preparation method thereof.
  • Polyurethane resin material is prepared by the reaction of isocyanate and polyol. It can be processed into polyurethane foam, polyurethane fiber, polyurethane rubber and elastomer, polyurethane coating and adhesive, etc. It is widely used in household, construction, daily necessities, transportation, home appliances, etc. And other fields.
  • Polyurethane elastomer has a hard segment formed by the isocyanate part and a soft segment formed by the polyol part. Therefore, through the design of the molecular chain, the material can be given high strength, high toughness, wear resistance, oil resistance and other excellent properties. Polyurethane elastomer It combines the high elasticity of rubber and the rigidity of plastic.
  • Polyurethane elastomer materials are limited by their formula and process structure, and generally have the disadvantages of poor heat resistance and poor optical transparency. When working at higher temperatures, they are prone to aging, softening, and deformation, resulting in a decrease in mechanical strength.
  • the long-term use temperature of polyurethane elastomer does not exceed 80°C, and the short-term use temperature does not exceed 120°C. At the same time, the optical transparency is not good, which seriously affects the application and promotion of polyurethane elastomer materials.
  • Patent CN109181277A improves the hydrolysis resistance and heat resistance of polyurethane elastomers by adding anti-hydrolysis agents and heat-resistant additives, but the addition of additives adversely affects the optical transparency of the elastomer.
  • Patent CN108948725A is modified by mixing polyurethane elastomer materials with butadiene rubber and modified basalt fibers to obtain heat-resistant and wear-resistant modified polyurethane elastomer materials.
  • the basalt fiber modification process is complicated, which is not conducive to industrial promotion, and The mixing process affects the final optical transparency of the product.
  • the technical solutions to improve the heat resistance of polyurethane elastomers described in the above patents mainly include the use of aromatic diisocyanates as substrates, the addition of modifiers, and mixing with other materials.
  • the thermal performance is improved while the optical transparency of the polyurethane elastomers is improved. Will cause certain negative effects, and there are unavoidable drawbacks.
  • the present invention aims to solve the problems of poor heat resistance and poor optical transparency that are common in conventional polyurethane resins, especially polyurethane elastomers.
  • the present invention provides a method for preparing polyurethane resins such as polyurethane elastomers with excellent heat resistance and optical transparency based on an alicyclic diisocyanate composition.
  • the present invention provides the following technical solutions:
  • the invention provides a method for preparing a polyurethane resin.
  • the polyurethane resin is prepared by reacting an alicyclic diisocyanate composition and a polyol, and the content of substance A contained in the alicyclic diisocyanate composition used is controlled to be ⁇ 0.5wt. %, the substance A has the following general formula (I):
  • R 1 is a halogen atom
  • R 2 , R 3 , and R 4 are each independently a hydrogen atom, a C1-C8 alkane group or a C3-C8 cycloalkane group
  • R 2, R 3, R 4, R 5 position on the six membered ring is arbitrary, and R 1 are, for example, may be ortho, meta or para position, R 2 , R 3 , R 4 , and R 5 may be respectively connected to different C atoms of the six-membered ring of the general formula (I), or two of the groups may be connected to the same C atom of the six-membered ring.
  • the halogen atom in R 1 is , for example, Cl and Br;
  • the C1-C8 alkane group in R 2 , R 3 , and R 4 is, for example, a methyl group or an isobutyl group, and the cycloalkane group is, for example, a cyclohexyl methyl group. .
  • the inventors of the present application have conducted long-term studies on the preparation of polyurethane resins with excellent heat resistance and optical transparency. As a result, they have found that when the alicyclic diisocyanate composition is used to prepare polyurethane resins such as polyurethane elastomers, the content of the substance A is The polyurethane elastomer performance has a significant impact.
  • the content of the substance A ⁇ 0.5wt% means that the total content of the substances satisfying the general formula (I) is controlled to ⁇ 0.5wt%.
  • the substances satisfying the general formula (I) are not particularly limited, as long as they satisfy the general formula ( I) are all included.
  • the specific compound of the alicyclic diisocyanate composition varies according to the composition of the alicyclic diisocyanate composition.
  • the impurities satisfying the general formula (I) are, for example, but not limited to, one of the following structural formulas Or more, it should be noted that these are all exemplary descriptions, which do not mean that the impurities (substance A) of the cycloaliphatic diisocyanate composition to be controlled in the present invention are limited to this:
  • the inventor of the present application found that when preparing a polyurethane resin in an alicyclic diisocyanate composition, if the substance A (that is, an impurity meeting the general formula (I)) contained in the alicyclic diisocyanate composition is a monoisocyanate compound containing a halogen and a cyclohexane structure, Isocyanates play a role in chain termination in the process of preparing polyurethane from polyisocyanates, which will reduce the degree of steric crosslinking of polyurethane to a certain extent, thereby affecting the heat resistance of the final polyurethane elastomer product.
  • the cyclohexane structure has a boat conformation and a chair conformation.
  • the six carbon atoms in the cyclohexane structure have flat bonds and upright bonds, which results in a high complexity of the cyclohexane space structure.
  • the halogen atom does not have unsaturated bonds.
  • a polyurethane resin with excellent heat resistance and good optical transparency, especially a polyurethane elastomer, can be prepared.
  • the content of the substance A contained in the alicyclic diisocyanate composition is ⁇ 0.5wt%, preferably ⁇ 0.3wt%, more preferably ⁇ 0.1wt%, further preferably ⁇ 0.05wt% .
  • the content of the substance A can be determined with reference to the qualitative analysis using a gas-mass spectrometer in the following examples, and then the quantitative analysis using gas chromatography.
  • the cycloaliphatic diisocyanate composition is dicyclohexylmethane diisocyanate (HMDI), isophorone diisocyanate (IPDI), cyclohexyl dimethylene diisocyanate (HXDI), methyl ring
  • HMDI dicyclohexylmethane diisocyanate
  • IPDI isophorone diisocyanate
  • HXDI cyclohexyl dimethylene diisocyanate
  • HTDI hexyl diisocyanate
  • CHDI cyclohexyl diisocyanate
  • the cycloaliphatic diisocyanate composition is dicyclohexylmethane diisocyanate (HMDI), that is, dicyclohexylmethane diisocyanate is used as an essential component, because HMDI contains 2,4'-HMDI, 4,4'- HMDI, 2,2'-HMDI and other isomers, the raw materials containing various isomers of HMDI are called dicyclohexylmethane diisocyanate composition.
  • HMDI dicyclohexylmethane diisocyanate
  • the cycloaliphatic diisocyanate composition may also contain other cycloaliphatic polyisocyanates, such as isophorone diisocyanate (IPDI), cyclohexyl dimethylene diisocyanate One or more of (HXDI), methylcyclohexyl diisocyanate (HTDI), and cyclohexyl diisocyanate (CHDI).
  • IPDI isophorone diisocyanate
  • HXDI cyclohexyl dimethylene diisocyanate
  • HTDI methylcyclohexyl diisocyanate
  • CHDI cyclohexyl diisocyanate
  • derivatives of these cycloaliphatic diisocyanates such as isocyanurate modified products, biuret modified products, allophanate modified products, and polyols of these cycloaliphatic diisocyanates can also be included.
  • the polyisocyanate component when producing the polyurethane resin of the present invention preferably contains the above-mentioned dicyclohexylmethane diisocyanate.
  • the alicyclic diisocyanate composition is preferably used alone The above-mentioned dicyclohexylmethane diisocyanate.
  • the cycloaliphatic diisocyanate composition can be obtained by the phosgenation reaction of the cycloaliphatic diamine composition.
  • the present invention preferably uses dicyclohexylmethanediamine (HMDA) composition (including 2,4'-HMDA, 4,4'-HMDA, 2,2'-HMDA and other isomers of HMDA called bicyclic Hexylmethane diamine composition) Dicyclohexylmethane diisocyanate (HMDI) composition prepared by the phosgenation method.
  • HMDA dicyclohexylmethanediamine
  • HMDI Dicyclohexylmethane diisocyanate
  • Alicyclic diamines are usually prepared by catalytic hydrogenation of corresponding aromatic amines.
  • patents CN106631826B, CN108440311A, CN109851508A, CN110204447A disclose the catalytic hydrogenation of diphenylmethanediamine (MDA) to prepare dicyclohexylmethanediamine (HMDA). )Methods.
  • the second reason for the impurity is: the process route of preparing cycloaliphatic diisocyanate by phosgenation of cycloaliphatic diamine has a deamination reaction, and the removal of amino group will lead to cyclohexene structure and monomer. The appearance of isocyanates.
  • the process route of preparing cycloaliphatic diisocyanate by phosgenation of cycloaliphatic diamine has a deamination reaction, and the removal of amino group will lead to cyclohexene structure and monomer.
  • the appearance of isocyanates E.g:
  • the by-product HCl has an addition reaction with the carbon-carbon unsaturated double bond in the above-mentioned cyclohexene structure monoisocyanate containing unsaturated double bond, leading to the production of the substance A.
  • phosgenation method specifically, for example, a liquid phase phosgenation method in which a dicyclohexylmethanediamine composition is reacted with phosgene in a liquid phase, or a dicyclohexyl diamine composition can be used.
  • a gas phase phosgenation method in which a methane diamine composition and phosgene react in a gas phase, and the present invention is preferably a dicyclohexylmethane diisocyanate composition obtained by a gas phase phosgenation method.
  • the liquid-phase phosgenation method includes two steps of cold phosgenation reaction and thermal phosgenation reaction.
  • the main reaction of the cold phosgenation reaction is the generation of carbamoyl chloride and amine hydrochloride.
  • the main reaction of the chemical reaction is the conversion of amine hydrochloride to carbamoyl chloride and the thermal decomposition reaction of carbamoyl chloride to isocyanate.
  • the implementation of the liquid-phase phosgenation method is not particularly limited. According to the well-known in the art, a single-stage or multi-stage series stirred tank reactor is usually used, and the reactor feed mode can be dynamic mixing or static mixing.
  • an inert solvent is introduced into the reactor in advance, and the reaction pressure is adjusted to, for example, normal pressure or higher than normal pressure, and for example, 1.0 MPa (gauge pressure) or less, preferably 0.4 MPa (gauge pressure) or less.
  • control at 10°C or higher such as 100°C or lower, preferably 50°C or lower, and introduce the stoichiometric amount of the dicyclohexylmethanediamine composition, for example, 2 times or more, for example 12 times or less, preferably 10 times or less.
  • the phosgene is passed into the above-mentioned dicyclohexylmethanediamine composition that has been dissolved in an inert solvent.
  • the reaction liquid is maintained in the range of, for example, 10° C. or higher, for example, 100° C. or lower, preferably 50° C. or lower, and the generated hydrogen chloride is discharged to the outside of the reactor through a reflux condenser.
  • the inert solvent at least one of aromatic hydrocarbon-based organic solvents and ester-based organic solvents may be included.
  • aromatic hydrocarbon-based organic solvents may be aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, etc.; aromatic hydrocarbon-based organic solvents may also specifically be halogenated aromatic hydrocarbon-based organic solvents, such as chlorobenzene, dichlorobenzene, etc. Benzene, 1,2,4-trichlorobenzene, etc.
  • the ester-based organic solvent may specifically be an aliphatic carboxylic acid ester and an aromatic carboxylic acid ester.
  • Aliphatic carboxylic acid esters include, for example, pentyl formate, isoamyl formate, hexyl formate, butyl acetate, pentyl acetate, butyl stearate, butyl lactate or pentyl lactate, etc.; aromatic carboxylic acid esters Examples include benzyl formate, methyl salicylate, methyl benzoate, dimethyl phthalate, diethyl phthalate, and dibutyl phthalate. These inert solvents can be used alone or in combination of two or more kinds.
  • the amount of the inert solvent relative to 100 parts by mass of dicyclohexylmethanediamine, it is, for example, 500 parts by mass or more, preferably 800 parts by mass or more, for example, 5000 parts by mass or less, preferably 1500 parts by mass or less, and more preferably 1000 parts by mass or less.
  • the reaction pressure is normal pressure or higher, preferably 0.1Mpa (gauge pressure) or higher, and for example 1.2Mpa (gauge pressure) or lower, preferably 0.6Mpa (gauge pressure) or lower, and the reaction temperature is 120° C. or higher, for example 200° C. or lower, the reaction time continues, for example, 1 hour or longer and, for example, 5 hours or less.
  • the reaction liquid turns from a white slurry state to a clear and transparent state, the reaction is completed and the reaction can be terminated.
  • the gas phase phosgenation reaction can be carried out by using tubular reactors with mechanical stirring, or tubular reactors with microchannel mixers, or tubular reactors with coaxial nozzles as disclosed in the art.
  • a tubular reactor with coaxial nozzles is preferred.
  • the dicyclohexylmethane diamine composition is diluted with inert gas or inert solvent vapor, heated to 200-600°C, preferably 300-500°C, phosgene is heated to 200-600°C, preferably 300-500°C, and the diluted
  • the dicyclohexylmethane diamine composition and phosgene are passed into the reaction tube, and the gas phase phosgenation reaction is carried out at 200-600°C, preferably 300-500°C.
  • the vapor pressure of the diluted dicyclohexylmethanediamine composition is -0.08 ⁇ 1Mpa (gauge pressure), preferably -0.06 ⁇ 0.6Mpa (gauge pressure);
  • the inlet pressure of phosgene is -0.08 ⁇ 1Mpa (gauge pressure), Preferably -0.06 ⁇ 0.6Mpa (gauge pressure);
  • reaction pressure is -0.08 ⁇ 1Mpa (gauge pressure), preferably -0.06 ⁇ 0.6Mpa (gauge pressure).
  • the inert gas may be one or several combinations of nitrogen, argon or other rare gases, preferably nitrogen.
  • the inert solvent vapor may be vapor of toluene, xylene, chlorobenzene, dichlorobenzene, chloronaphthalene, and decalin, preferably chlorobenzene vapor.
  • the amount of the inert gas or inert solvent vapor is 0-50%, preferably 10-40%, based on the molar amount of the dicyclohexylmethanediamine composition.
  • the molar ratio of the phosgene to the dicyclohexylmethanediamine composition is 3:1-30:1, preferably 5:1-15:1.
  • the residence time of the gas phase phosgenation reaction is 0.01-30 seconds, preferably 0.05-20 seconds; the gas velocity in the reaction tube is maintained at 3m/s or more, preferably 10m/s or more, more preferably 15-100m/s.
  • a liquid inert medium and/or a mixture of inert medium and isocyanate is used to absorb and cool the mixed gas after the reaction of the phosgene and dicyclohexylmethanediamine composition, and spray absorption known in the art can be used. Cooling technology.
  • the temperature of the reaction mixture is generally cooled to below 180°C, preferably below 150°C within 0.1 to 5 seconds, preferably within 0.2 to 3 seconds.
  • inert organic solvents suitable for isocyanate preparation can be selected, such as aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, etc., or organic solvents based on halogenated aromatic hydrocarbons. , Such as chlorobenzene, dichlorobenzene, 1,2,4-trichlorobenzene, etc.
  • ester-based organic solvents which may specifically be aliphatic carboxylic acid esters, such as pentyl formate, isoamyl formate, hexyl formate, butyl acetate, pentyl acetate, butyl stearate, butyl lactate Or amyl lactate, etc.; it can also be an aromatic carboxylic acid ester, such as benzyl formate, methyl salicylate, methyl benzoate, dimethyl phthalate, diethyl phthalate, phthalate Dibutyl formate and so on.
  • These inert solvents can be used singly or in combination of two or more, preferably the inert liquid is chlorobenzene, dichlorobenzene, toluene, xylene and/or a mixture thereof.
  • the reaction liquid can be filtered and subsequently separated as needed.
  • a rectification tower or a stripping tower is usually used to remove the by-product hydrogen chloride and excess phosgene in the reaction liquid.
  • the phosgene is refined, it can be transported back to the reaction system for recycling; a rectification tower is used.
  • the solvent in the reaction liquid is removed, and the solvent can be transported back to the reaction system for recycling after being refined; a crude dicyclohexylmethane diisocyanate combined material stream that is substantially free of solvent is obtained through separation.
  • Scraper evaporator or rectification tower is used to separate and refine the crude dicyclohexylmethane diisocyanate combined material stream to remove the non-volatile components (tar) and low boiling point light component impurities to obtain the dicyclohexylmethane diisocyanate combination Things.
  • the alicyclic diisocyanate composition can be purified to adjust the content of the substance A.
  • the purification method does not need to be particularly limited, and the existing industrial separation technology can be used, such as Rectification, crystallization, etc. are realized, and the rectification separation is preferred in the present invention.
  • the purification is, for example, rectification separation or crystallization separation.
  • Rectification separation is a conventional purification process in the field.
  • the rectification tower can be a plate tower or a packed tower.
  • the rectification conditions can be based on the requirements of the purified cycloaliphatic diisocyanate composition.
  • the content ratio of the substance A is appropriately set.
  • the number of theoretical plates of the rectification column is preferably 5 or more, more preferably 10 or more, and preferably 60 or less, and more preferably 30 or less.
  • the top pressure of the distillation column is preferably 0.05 Kpa (absolute pressure) or more, more preferably 0.1 Kpa (absolute pressure) or more, and preferably 2 Kpa (absolute pressure) or less, and more preferably 0.5 Kpa (absolute pressure) or less.
  • the reflux ratio of the distillation column is preferably 0.05 or more, more preferably 0.5 or more, and preferably 50 or less, and more preferably 30 or less.
  • the top temperature of the distillation column is preferably 100°C or higher, more preferably 120°C or higher, and preferably 180°C or lower, and more preferably 160°C or lower.
  • the bottom temperature of the distillation column is preferably 150°C or higher, more preferably 170°C or higher, and preferably 220°C or lower, and more preferably 205°C or lower.
  • the preheating temperature is preferably 120°C or higher, more preferably 140°C or higher, and preferably 180°C. °C or less, more preferably 160 °C or less.
  • the material rich in the substance A is extracted from the top of the tower, and the purified product is extracted through the side line of the rectification tower.
  • the top extraction amount of the rectification column is preferably 0.5 wt% or more, more preferably 1 wt% or more, and preferably 5 wt% or less, more preferably 3 wt% or less of the fraction collected.
  • the extraction amount of the material rich in heavy components at the bottom of the tower is preferably 0.5 wt% or more, more preferably 1 wt% or more, and preferably 5 wt% or less, more preferably 3 wt% or less of the material collected.
  • the proportion of the substance A contained in the alicyclic diisocyanate composition can be adjusted.
  • anti-aging additives can be added to the alicyclic diisocyanate composition to enhance the storage stability of the alicyclic diisocyanate composition, extend its shelf life, and facilitate the use of the alicyclic diisocyanate composition of the present invention.
  • the color number of the alicyclic diisocyanate composition remains stable and is not easy to yellow.
  • antioxidants for example, hindered phenol antioxidants, sulfonamide group-containing compounds, organic phosphites, etc.
  • hindered phenol antioxidants such as antioxidant 264 (Eastman Chemical Company, Tenox BHT), Antioxidant 245 (Irganox 245, BASF, Germany), and 1076 (Irganox 1076, BASF, Germany), etc.
  • the addition amount of anti-aging additives is generally 50-5000 ppm, preferably 100-1000 ppm.
  • the polyol used in the preparation of the polyurethane resin of the present invention is a compound with a molecular weight of more than 400 and usually less than 20,000 having 2 or more hydroxyl groups, such as polyether polyol, polyester polyol, and polyolefin polyol. , Epoxy resin, one or more of bio-based polyols.
  • the above-mentioned polyols used in the preparation of polyurethane can be those commonly used in the art, and there is no special requirement for this.
  • polyether polyol for example, polyoxyethylene polyol, polyoxypropylene polyol, polymer polyol, polyurea polyol, polytetrahydrofuran and its copolyether glycol, polytrimethylene glycol, aromatic Polyether polyols, etc.
  • polyester polyols examples include adipic acid-based polyester diols, aromatic polyester polyols, polycaprolactone polyols, and polycarbonate diols.
  • adipic acid-based polyester diol examples include polyethylene adipate diol, polypropylene adipate diol, polybutylene adipate diol, and polyglycol adipate diol.
  • Diethylene glycol, etc.; aromatic polyester polyols include, for example, polyethylene phthalate diethylene glycol, 1,6-hexanediol phthalate glycol, and phthalic acid Neopentyl glycol ester diols, etc.; polycaprolactone polyols include polycaprolactone diols and polycaprolactone triols; polycarbonate diols include poly(hexylene carbonate diol), Polycarbonate-1,6-hexanediol ester diol, polybutylene carbonate diol, etc.
  • polyolefin polyols examples include hydroxy-terminated polybutadiene, hydroxy-terminated hydrogenated polybutadiene, hydroxy-terminated epoxidized polybutadiene resin, and hydroxy-terminated polybutadiene-acrylonitrile polystyrene polyol. Wait.
  • epoxy resin examples include bisphenol A epoxy resin, bisphenol F epoxy resin, novolac epoxy resin, and aliphatic epoxy resin.
  • bio-based polyols examples include castor oil and its derivative polyols, soybean oil polyols, palm oil polyols, rosin ester polyols, fatty acid dimer diols, fish oil polyols, and lignin polyols. .
  • polyol components can be used alone or in combination of two or more.
  • the polyurethane resin of the present invention can be produced by the reaction of the above-mentioned alicyclic diisocyanate composition (polyisocyanate component) and at least any one of the above-mentioned polyol components.
  • the hydroxyl value of the polyol component used in the production of the polyurethane resin of the present invention is preferably 10 mg KOH/g or more, more preferably 50 mg KOH/g or more, preferably 1500 mg KOH/g or less, more preferably 1000 mg KOH/g or less, and more preferably It is 500 mg KOH/g or less, the molecular weight is preferably 400 or more, more preferably 800 or more, and preferably 20,000 or less, more preferably 5,000 or less, and the functionality is 2-8, preferably 2-6.
  • the hydroxyl value of the polyol component can be determined by analysis according to the method A-phthalic anhydride method in the GB/T 12008.3-2019 standard.
  • the polyurethane resin in the present invention can be used in the preparation of polyurethane elastomers, polyurethane optical materials, polyurethane coating materials (such as coatings, adhesives) or polyurethane foam, and is preferably used in the preparation of polyurethane elastomers.
  • the polyurethane resin of the present invention has excellent heat resistance and good optical transparency.
  • the polyurethane resin of the present invention can be manufactured using process routes known in the art such as the one-step method and the prepolymer method, and the present invention preferably uses the prepolymer method for polymerization production.
  • the reaction system for preparing the polyurethane resin may also include a catalyst and a chain extender.
  • the one-step method is a preparation method in which the required raw materials such as polyisocyanate (i.e., alicyclic diisocyanate composition), polyol, catalyst, chain extender, etc. are uniformly mixed at one time, and poured into a molding process.
  • polyisocyanate i.e., alicyclic diisocyanate composition
  • polyol i.e., polyol
  • catalyst i.e., alicyclic diisocyanate composition
  • chain extender etc.
  • the prepolymer method is to react with polyol and a slight excess of polyisocyanate (i.e. cycloaliphatic diisocyanate composition) to synthesize a polyurethane prepolymer with isocyanate groups at both ends, and then combine the prepolymer with a catalyst and a chain extender Further reaction, curing, casting and molding, to obtain polyurethane elastomer material.
  • polyisocyanate i.e. cycloaliphatic diisocyanate composition
  • using a prepolymer method to prepare the polyurethane resin includes the following steps:
  • the polyurethane prepolymer is mixed with a catalyst and a chain extender, and cured by pouring to obtain the polyurethane resin; preferably, the pouring and curing are performed at a temperature of 50 to 100° C., and the curing time is 1 to 10 hours.
  • the raw material formula used in the prepolymer method of the present invention includes the following parts by mass of each raw material:
  • the chain extender is 50-500 parts, preferably 50-400 parts;
  • the catalyst is 0.005 to 1 part, preferably 0.01 to 0.5 part.
  • the chain extender can be those conventionally applicable in the art.
  • the chain extender of the present invention can be a bifunctional compound or a compound with trifunctional and above.
  • the bifunctional compound can be exemplified by 1,4- Dihydric alcohols such as butanediol, ethylene glycol, diethylene glycol, 1,6-hexanediol, such as 3,3'-dichloro-4,4'-diphenylmethanediamine (MOCA) , 3,5-Diethyltoluenediamine (DETDA) and other diamines, ethanolamine, etc.
  • compounds with trifunctional groups and above include glycerol, trimethylolpropane, pentaerythritol; 1,4-butane is preferred in the present invention Diol and/or 3,3'-dichloro-4,4'-diphenylmethanediamine.
  • the content of isocyanate groups in the prepared isocyanate-terminated prepolymer can be titrated and analyzed using the method specified in the GB/T 12009.4-1989 standard, or calculated according to the following formula:
  • M NCO The molecular weight of the cycloaliphatic diisocyanate composition, g/mol
  • M OH The molecular weight of polyol, g/mol
  • the amount of bifunctional compound used as chain extender is calculated according to the following formula:
  • prepolymer the amount of prepolymer, g;
  • the preferred chain extension coefficient of the present invention is 0.8 to 1.1, more preferably 0.9 to 1.0.
  • the catalyst for the prepolymer method is generally an organotin compound, such as stannous octoate, dibutyltin dichloride, dibutyltin dilaurate, dibutyltin diacetate, di(dodecylsulfide) dibutyltin One or more of them, the process route of the present invention is preferably dibutyltin dilaurate.
  • the prepolymerization temperature is preferably 60 to 120°C, more preferably 80 to 100°C
  • the prepolymerization time is preferably 1 to 6 hours, more preferably 2 to 4 hours
  • the pouring curing temperature is preferably 50 to 100°C, more preferably 60 to 80°C
  • the casting curing time is preferably 1 to 10 hours, more preferably 3 to 6 hours.
  • the present invention also provides a polyurethane resin, which is prepared by the above-mentioned preparation method.
  • the obtained polyurethane resin not only has excellent heat resistance, but also has good optical transparency.
  • the Vicat softening temperature of the obtained polyurethane resin is 125-145°C, and the light transmittance is 85%-95%.
  • Heating program starting temperature of 50°C, heating to 100°C at 5°C/min, then heating to 290°C at 10°C/min, constant temperature for 40min;
  • Inlet temperature 280°C
  • Carrier gas helium
  • Carrier gas flow 1ml/min;
  • Electron impact (EI) ion source
  • Ion source temperature 200°C;
  • Chromatographic column DB-5, (length 30m ⁇ inner diameter 0.25mm ⁇ film thickness 0.25 ⁇ m) (Agilent);
  • Heating program heating from 120°C to 220°C, heating at 10°C/min, holding at 220°C for 2 minutes, and heating at 5°C/min to 290°C;
  • Inlet temperature 280°C
  • Injection volume 0.2 ⁇ L
  • Carrier gas N 2 ;
  • Carrier gas flow 1.5ml/min;
  • Heat resistance of polyurethane resin Test the Vicat softening temperature in accordance with the GB/T 1633-2000 standard.
  • Optical transparency of polyurethane resin Test the light transmittance according to the method A-haze meter in the GB/T 2410-2008 standard.
  • dicyclohexylmethane diisocyanate composition Take the distillation and purification process of dicyclohexylmethane diisocyanate composition as an example, and describe the control scheme of substance A content as an example.
  • the dicyclohexylmethane diisocyanate composition used is Wanhua Chemical Group Co., Ltd. brand name WANNATE HMDI product After GC-MS and GC analysis (as described above), the specific structure and content of substance A contained in it are as follows:
  • the diameter of the tower is 50mm
  • the height of the packing is 1.5m
  • the 304 stainless steel ⁇ ring 5mm ⁇ 5mm packing is used
  • the number of test theoretical plates is 25, and the feeding position is away from the bottom of the packing.
  • the side line extraction position is 1m away from the bottom of the packing, and the feed is preheated to 155°C, the feed rate is 10Kg/h, the bottom pressure is 500Pa absolute, the bottom temperature is 195°C, and the bottom output is 0.2Kg/h, tower top pressure is 150Pa absolute, tower top temperature is 150°C, reflux ratio is 8, tower top recovery is 0.25Kg/h, sideline extraction outlet pressure is absolute pressure 230Pa, recovery temperature is 180 °C, the recovery rate is 9.55Kg/h, after analysis, the content of substance A in the purified dicyclohexylmethane diisocyanate composition extracted from the side line is:
  • the dicyclohexylmethane diisocyanate composition after rectification and purification was added with 120 ppm of antioxidant 264 (Eastman Chemical Company, Tenox BHT, USA).
  • the content of substance A in the dicyclohexylmethane diisocyanate composition before purification is 1% by weight
  • the content of substance A in the dicyclohexylmethane diisocyanate composition after rectification and purification is 0.5% by weight
  • the different content control of substance A in the dicyclohexylmethane diisocyanate composition can be achieved by adjusting the distillation separation parameters in this embodiment.
  • the content of different substances A can be referred to this example, and the content of substance A contained in the different cycloaliphatic diisocyanate compositions can be controlled by rectification and separation.
  • step (2) The polyurethane prepolymer obtained in step (1), 82 parts of 1,4-butanediol (BASF company, used after removing water for 2.5 hours at 102°C and 200Pa absolute pressure) and 0.1 part of dilaurel Dibutyltin acid (Dabco T-12) is placed in a casting machine, heated to 45°C, decompressed to an absolute pressure of 1KPa to remove bubbles for 0.5 hours, mixed evenly, and poured into a mold that has been preheated to 75°C. Heat and cure for 4 hours to obtain a polyurethane resin (polyurethane elastomer).
  • BASF company used after removing water for 2.5 hours at 102°C and 200Pa absolute pressure
  • Dabco T-12 dilaurel Dibutyltin acid
  • the polyurethane elastomer was produced according to the same steps as in Example 1, and the difference from Example 1 was only that the content of the substance A in the dicyclohexylmethane diisocyanate composition used was 0.3% by weight.
  • the polyurethane elastomer was manufactured according to the same steps as in Example 1, and the difference from Example 1 was only that the content of the substance A in the dicyclohexylmethane diisocyanate composition used was 0.1% by weight.
  • the polyurethane elastomer was manufactured according to the same steps as in Example 1, and the difference from Example 1 was only that the content of the substance A in the dicyclohexylmethane diisocyanate composition used was 0.05wt%.
  • the polyurethane elastomer was manufactured according to the same steps as in Example 1, except that the difference from Example 1 was that the content of the substance A in the dicyclohexylmethane diisocyanate composition used was 0.03 wt%.
  • the polyurethane elastomer was manufactured according to the same steps as in Example 1, except that the difference from Example 1 was that the content of the substance A in the dicyclohexylmethane diisocyanate composition used was 0.01 wt%.
  • step (2) The polyurethane prepolymer obtained in step (1), 242 parts of 3,3'-dichloro-4,4'-diphenylmethanediamine (Suzhou Xiangyuan New Materials Co., Ltd., in 102 °C, 200Pa absolute pressure, after removing water for 2.5 hours) and 0.08 parts of stannous octoate (Dabco T-9) are placed in the casting machine, heated to 45°C, decompressed to 1KPa absolute pressure to remove bubbles 0.5 After hours, mix uniformly, pour into a mold preheated to 100°C, heat and cure for 3 hours to obtain polyurethane resin (polyurethane elastomer).
  • methylcyclohexyl diisocyanate is a product of DuPont of the United States, 82 parts, after rectification and purification), alicyclic
  • the content of the substance A in the group diisocyanate composition is 0.5% by weight. After reacting for 3 hours, a sample is taken to determine the isocyanate group content, which reaches a predetermined value of 22% to obtain a polyurethane prepolymer;
  • step (2) The polyurethane prepolymer obtained in step (1), 62 parts of 1,4-butanediol (BASF company, used after dewatering at 102°C and 200Pa absolute pressure for 2.5 hours) and 0.06 parts of diacetic acid Dibutyltin (Dabco T-1 of the American Air Chemical Industry) is placed in the casting machine, respectively heated to 45°C, reduced to an absolute pressure of 1KPa to remove bubbles for 0.5 hours, mixed evenly, and poured into a mold that has been preheated to 50°C and heated Cured for 10 hours to obtain polyurethane resin (polyurethane elastomer).
  • BASF company used after dewatering at 102°C and 200Pa absolute pressure for 2.5 hours
  • Diacetic acid Dibutyltin Diacetic acid Dibutyltin
  • the polyurethane elastomer was manufactured according to the same steps as in Example 1. The difference from Example 1 was that the dicyclohexylmethane diisocyanate composition used was not purified, and the content of the substance A was 0.6% by weight.
  • the polyurethane elastomer was manufactured according to the same steps as in Example 1, except that the dicyclohexylmethane diisocyanate composition used was not purified, and the difference from Example 1 was that the content of the substance A was 0.7% by weight.
  • the polyurethane elastomer was produced according to the same steps as in Example 1, except that the dicyclohexylmethane diisocyanate composition used was not purified, and the difference from Example 1 was that the content of the substance A was 0.9% by weight.
  • the polyurethane elastomer was manufactured according to the same steps as in Example 1. The difference from Example 1 was that the dicyclohexylmethane diisocyanate composition used was not purified, and the content of the substance A was 1% by weight.
  • Example 7 Following the same steps as in Example 7 to produce polyurethane elastomer.
  • the difference from Example 7 is that the alicyclic diisocyanate composition after mixing dicyclohexylmethane diisocyanate and cyclohexyl diisocyanate is not purified. , Wherein the content of the substance A is 0.8wt%.
  • the polyurethane elastomer was produced according to the same procedure as in Example 8.
  • the difference from Example 8 is that the alicyclic diisocyanate composition obtained by mixing dicyclohexylmethane diisocyanate and methylcyclohexyl diisocyanate is not Purification treatment, wherein the content of the substance A is 1 wt%.
  • the polyurethane resin prepared by the process of the present invention has excellent light transmittance, high Vicat conversion temperature, and good heat resistance; it is particularly suitable for use as polyurethane elastomers, and can also be suitably used as polyurethane optical materials and polyurethane coating materials (such as coatings, adhesives), polyurethane foam and other industrial products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

一种聚氨酯树脂及其制备方法,解决常规聚氨酯树脂特别是聚氨酯弹性体普遍存在的耐热性差、光学透明性不好的问题。所述制备方法,通过脂环族二异氰酸酯组合物和多元醇反应制备所述聚氨酯树脂,控制所用的所述脂环族二异氰酸酯组合物中含有的物质A含量≤0.5wt%,所述物质A具有如下通式(I)的结构:(I) 其中,R 1为卤素原子;R 2、R 3、R 4各自独立地为氢原子、C1~C8的烷烃基或C3~C8的环烷烃基;R 5为异氰酸酯基或异氰酸甲基。

Description

一种聚氨酯树脂及其制备方法 技术领域
本发明涉及一种利用脂环族二异氰酸酯组合物与多元醇反应制备聚氨酯树脂的方法,具体涉及耐热和光学透明性好的聚氨酯树脂及其制备方法。
背景技术
聚氨酯树脂材料由异氰酸酯与多元醇反应制备而成,可加工制成聚氨酯泡沫塑料、聚氨酯纤维、聚氨酯橡胶及弹性体、聚氨酯涂料和胶黏剂等,广泛应用于家居、建筑、日用品、交通、家电等各个领域。
聚氨酯弹性体由于其结构具有异氰酸酯部分形成的硬段及多元醇部分形成的软段,因此可以通过对分子链的设计,赋予材料高强度、高韧性、耐磨、耐油等优异性能,聚氨酯弹性体兼具了橡胶的高弹性和塑料的刚性。
聚氨酯弹性体材料受到其配方和工艺结构的限制,普遍存在耐热性差、光学透明性不好的缺点,在较高的温度下工作时,易出现老化、软化、变形,造成机械强度下降,通常的聚氨酯弹性体长期使用温度不超过80℃,短期使用温度不超过120℃,同时光学透明性不好,严重影响了聚氨酯弹性体材料的应用推广。
针对聚氨酯弹性体耐热性能改进的相关研究,有如下专利进行报道。
专利CN109181277A通过添加抗水解剂和耐热添加剂的方式,提升聚氨酯弹性体的耐水解性和耐热性能,但是添加剂的加入对弹性体的光学透明性产生不利影响。
专利CN108948725A通过将聚氨酯弹性体材料与顺丁橡胶和改性玄武岩纤维混炼改性,制得了耐热耐磨的改性聚氨酯弹性体材料,其玄武岩纤维改性工艺复杂,不利于工业化推广,且混炼工艺影响制品的最终光学透明性。
专利CN107325261A、CN107880243A均通过使用芳香族二异氰酸酯制备改性聚氨酯弹性体,以提升聚氨酯弹性体耐热性能,但其聚氨酯制品易黄变,影响了光学透明性,限制了制品的下游应用。
以上专利所述提升聚氨酯弹性体耐热性能的技术方案主要有利用芳香族二异氰酸酯作为基材、添加改性剂、与其它材料混炼等,热性能提升的同时对聚氨酯弹性体的光学透明性会造成一定的负面影响,存在不可避免的弊端。
发明内容
本发明所要解决的是常规聚氨酯树脂特别是聚氨酯弹性体普遍存在的耐热性差、光学透明性不好的问题。本发明提供了一种基于脂环族二异氰酸酯组合物制备耐热性能及光学透明性优异的聚氨酯树脂例如聚氨酯弹性体的方法。
为了实现本发明的目的,本发明提供如下技术方案:
本发明提供一种聚氨酯树脂的制备方法,通过脂环族二异氰酸酯组合物和多元醇反应制备所述聚氨酯树脂,控制所用的所述脂环族二异氰酸酯组合物中含有的物质A含量≤0.5wt%,所述物质A具有如下通式(I):
Figure PCTCN2020099737-appb-000001
其中,R 1为卤素原子;R 2、R 3、R 4各自独立地为氢原子、C1~C8的烷烃基或C3~C8的环烷烃基;R 5为异氰酸酯基或异氰酸甲基(即O=C=N-CH 2-)。
根据上述通式(I),R 2、R 3、R 4、R 5在六元环上的位置是任意的,例如可以是和R 1邻位的、间位的或对位的,R 2、R 3、R 4、R 5可以分别连接在通式(I)的六元环的不同C原子上,也可以其中两个基团连接在六元环的同一C原子上。
R 1中所述卤素原子例如为Cl、Br;R 2、R 3、R 4中所述C1~C8的烷烃基例如为甲基、异丁基,所述环烷烃基例如为环己基甲基。
本申请发明人对制备耐热、光学透明性优异的聚氨酯树脂开展了长期研究,结果发现,使用脂环族二异氰酸酯组合物制备聚氨酯树脂例如聚氨酯弹性体时,所述物质A的含量对制备的聚氨酯弹性体性能影响显著。
所述物质A的含量≤0.5wt%是指满足通式(I)的物质的总含量控制在≤0.5wt%,满足通式(I)的物质并没有特别的种类限定,只要满足通式(I)均包含在内,根据脂环族二异氰酸酯组合物的组成不同,其具体化合物也会有所变化,满足通式(I)的杂质例如为但不局限于如下结构式的物质中的一种或多种,需注意的是,此处均为示例性说明,并不意味着本发明需要控制的脂环族二异氰酸酯组合物的杂质(物质A)局限于此:
Figure PCTCN2020099737-appb-000002
Figure PCTCN2020099737-appb-000003
本申请发明人发现,脂环族二异氰酸酯组合物在制备聚氨酯树脂时,若其中含有的物质A(即满足通式(I)的杂质)为含有卤素和环己烷结构的单异氰酸酯化合物,单异氰酸酯在多异氰酸酯制备聚氨酯过程中起到链终止的作用,会一定程度上降低聚氨基甲酸酯的空间交联度,进而影响最终聚氨酯弹性体制品的耐热性能。
此外,环己烷结构存在船式构象、椅式构象,同时环己烷结构中6个碳原子均存在平伏键、直立键,导致环己烷空间结构复杂度高。本发明人惊奇的发现,卤素原子位于含有环己烷结构的单异氰酸酯的环己烷六元环上时,即含所述物质A空间构型与二异氰酸酯构型相仿,所述物质A会参与到聚氨基甲酸酯空间结构搭建中,但是卤素原子不具备不饱和键,搭建聚氨基甲酸酯空间结构时仅占据了异氰酸酯基团的位置,却无法实现扩链的功能,会导致聚氨基甲酸酯空间对称性的下降,导致最终聚氨酯制品光学透明性的下降。本发明人发现,当所用的脂环族二异氰酸酯组合物中,所述物质A的含量>0.5wt%时,即会对脂环族二异氰酸酯组合物与多元醇反应制备的聚氨酯树脂的耐热性及光学透明性造成明显不良影响。
因此,通过控制脂环族二异氰酸酯组合物中所述物质A的含量≤0.5wt%,可以制得耐热性能优异且光学透明性好的聚氨酯树脂特别是聚氨酯弹性体。
本发明中的一些实施方案中,所述脂环族二异氰酸酯组合物中含有的所述物质A含量≤0.5wt%,优选≤0.3wt%,更优选≤0.1wt%,进一步优选≤0.05wt%。
所述物质A的含量可参照下文实施例中利用气质联用仪进行定性分析后,利用气相色谱法进行定量分析而测定。
一些实施方案中,所述脂环族二异氰酸酯组合物为二环己基甲烷二异氰酸酯(HMDI)、异氟尔酮二异氰酸酯(IPDI)、环己基二亚甲基二异氰酸酯(HXDI)、甲基环己基二异氰酸酯(HTDI)、环己基二异氰酸酯(CHDI)中的一种或多种。即,在该方案中,所述脂环族二异氰酸酯组合物是指这些物质的一种或多种组合而成,但不排除其中存在杂质,例如所述物质A。
优选的,所述脂环族二异氰酸酯组合物为二环己基甲烷二异氰酸酯(HMDI),即以二环己基甲烷二异氰酸酯作为必要成分,因HMDI含有2,4'-HMDI,4,4'-HMDI,2,2'-HMDI等多种异构体,含有HMDI各种异构体的原料称为二环己基甲烷二异氰酸酯组合物。此外,在不损害本发明效果的前提下,所述脂环族二异氰酸酯组合物可以同时含有其它脂环族多异氰酸酯,例如异氟尔酮二异氰酸酯(IPDI)、环己基二亚甲基二异氰酸酯(HXDI)、甲基环己基二异氰酸酯(HTDI)、环己基二异氰酸酯(CHDI)中的一种或多种。此外,也可包含这些脂环族二异氰酸酯的衍生物,例如这些脂环族二异氰酸酯的异氰脲酸酯改性物、缩二脲改性物、脲基甲酸酯改性物、多元醇改性物、碳化二亚胺改性物等。在将上述的二环己基甲烷二异氰酸酯与其它多异氰酸酯及其改性物组合使用的情况下,对于它们的组合比例,需根据使用该多异氰酸酯组合物所制造的树脂的具体用途以任意的比例组合。制造本发明的聚氨酯树脂时的多异氰酸酯成分优选包含上述的二环己基甲烷二异氰酸酯,从制造耐热性能优异及光学透明性好的聚氨酯弹性体角度考虑,优选脂环族二异氰酸酯组合物单独使用上述的二环己基甲烷二异氰酸酯。
本领域人员公知的,脂环族二异氰酸酯组合物可通过脂环族二胺组合物进行光气化反应得到。本发明优选使用由二环己基甲烷二胺(HMDA)组合物(包含2,4’-HMDA,4,4’-HMDA,2,2’-HMDA等多种异构体的HMDA称为二环己基甲烷二胺组合物)经过光气化法制备的二环己基甲烷二异氰酸酯(HMDI)组合物。
脂环族二胺通常使用相应的芳香胺经催化加氢制得,例如专利CN106631826B、CN108440311A、CN109851508A、CN110204447A公开了二苯基甲烷二胺(MDA)催化加氢制备二环己基甲烷二胺(HMDA)的方法。
造成杂质(物质A)产生的原因之一为:在芳环加氢过程中,会存在少量的加氢不完全,导致出现不饱和双键结构,诸如如下含不饱和双键的环己烯结构:
Figure PCTCN2020099737-appb-000004
造成杂质(物质A)产生的原因之二为:脂环族二胺通过光气化法制备脂环族二异氰酸酯的工艺路线中存在脱氨基反应,氨基的脱除会导致环己烯结构和单异氰酸酯的出现。例如:
Figure PCTCN2020099737-appb-000005
同时光气化法制备异氰酸酯工艺路线中有HCl作为副产:
NH 2-R-NH 2+2COCl 2→NCO-R-NCO+4HCl
副产HCl与上述含不饱和双键的环己稀结构单异氰酸酯中的碳碳不饱和双键发生加成反应,导致所述物质A的产生。
本领域技术人员所知晓的,作为光气化法,具体而言,可采用例如使二环己基甲烷二胺组合物以液相形式与光气反应的液相光气化法或使二环己基甲烷二胺组合物与光气以气相形式反应的气相光气化法,本发明优选气相光气化法获得的二环己基甲烷二异氰酸酯组合物。
本领域技术人员所知晓的,液相光气化法包括冷光气化反应和热光气化反应两步,冷光气化反应的主反应是氨基甲酰氯及胺盐酸盐的生成,热光气化反应的主反应是胺盐酸盐向氨基甲酰氯的转化及氨基甲酰氯向异氰酸酯的热分解反应。液相光气化法反应的实施方式无特殊限制,按照本领域人员公知的,通常使用单级或多级串联搅拌釜式反应器,反应器进料方式可为动态混合或静态混合进料。冷光气化反应阶段中,在反应器中预先通入惰性溶剂,调节反应压力为例如常压或常压以上、且例如1.0MPa(表压)以下、优选0.4MPa(表压)以下,将温度控制在例如10℃或10℃以上、且例如100℃以下、优选50℃以下,导入上述二环己基甲烷二胺组合物的化学计量的例如2倍以上、且例如12倍以下、优选10倍以下的光气,通入在惰性溶剂中已溶解了的上述二环己基甲烷二胺组合物。这期间,将反应液保持为例如10℃以上、且例如100℃以下、优选50℃以下的范围,将产生的氯化氢通过回流冷凝器排放至反应器外。作为惰性溶剂,可包括基于芳烃的有机溶剂和基于酯的有机溶剂中的至少一种。
其中,基于芳烃的有机溶剂可以为例如苯、甲苯、二甲苯、乙基苯等芳香族烃类;基于芳烃的有机溶剂也可以具体地是基于卤代芳烃的有机溶剂,如氯苯、二氯苯、1,2,4-三氯苯等。基于酯的有机溶剂可以具体地是脂肪族羧酸酯和芳香族羧酸酯。脂肪族羧酸酯可举出如甲酸戊酯、甲酸异戊酯、甲酸己酯、乙酸丁酯、乙酸戊酯、硬脂酸丁酯、乳酸丁酯或乳酸戊酯等;芳香族羧酸酯可举出如甲酸苄酯、水杨酸甲酯、苯甲酸甲酯、邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二丁酯等。这些惰性溶剂可单独使用或2种及2种以上混合使用。
关于惰性溶剂的用量,相对于二环己基甲烷二胺100质量份而言,例如为500质量份以上,优选为800质量份以上,例如为5000质量份以下,优选为1500质量份以下,进一步优选1000质量份以下。
在热光气化反应阶段,反应的压力为常压或常压以上、优选0.1Mpa(表压)以上、且例如1.2Mpa(表压)以下、优选0.6Mpa(表压)以下,反应温度为120℃以上、且例如200℃以下,反应时间持续进行例如1小时以上、且例如5小时以下,若反应液由白色浆料状转化为澄清透明状,则反应完成,可终止反应。
气相光气化法反应的实施,可以使用本领域公开的带有机械搅拌的管式反应器,或带有微通道型混合器的管式反应器,或带有同轴喷嘴的管式反应器,本发明优选带有同轴喷嘴的管式反应器。
将二环己基甲烷二胺组合物经过惰性气体或惰性溶剂蒸汽稀释,加热至200~600℃,优选300~500℃,光气加热至200~600℃,优选300~500℃,将稀释后的二环己基甲烷二胺组合物与光气通入反应管内,在200~600℃,优选300~500℃下进行气相光气化反应。
稀释后的二环己基甲烷二胺组合物蒸汽压力为-0.08~1Mpa(表压),优选-0.06~0.6Mpa(表压);光气的通入压力为-0.08~1Mpa(表压),优选-0.06~0.6Mpa(表压);反应压力为-0.08~1Mpa(表压),优选-0.06~0.6Mpa(表压)。
所述惰性气体可以为氮气或者氩气或其它稀有气体的一种或几种组合物,优选氮气。所述惰性溶剂蒸汽可以为甲苯、二甲苯、氯苯、二氯苯、氯萘、十氢化萘的蒸汽,优选氯苯蒸汽。所述惰性气体或惰性溶剂蒸汽的用量为基于二环己基甲烷二胺组合物摩尔量的0~50%,优选10%~40%。光气与二环己基甲烷二胺组合物的摩尔比为3:1~30:1,优选5:1~15:1。气相光气化反应停留时间为0.01~30秒,优选0.05~20秒;反应管内气速维持在3m/s以上,优选10m/s以上,更优选15~100m/s。
在反应管的出口,用一种液态惰性介质和/或惰性介质与异氰酸酯的混合物对光气与二环己基甲烷二胺组合物反应后的混合气体进行吸收冷却,可以采用本领域公知的喷射吸收冷却技术。一般在0.1~5秒内,优选0.2~3秒内将反应混合物温度冷却至180℃以下,优选150℃以下。作为吸收冷却用的液态惰性介质,可以选用所有适用于制备异氰酸酯的惰性有机溶剂,可以为例如苯、甲苯、二甲苯、乙基苯等芳香族烃类,也可以是基于卤代芳烃的有机溶剂,如氯苯、二氯苯、1,2,4-三氯苯等。也可以使基于酯的有机溶剂,可以具体地是脂肪族羧酸酯,如甲酸戊酯、甲酸异戊酯、甲酸己酯、乙酸丁酯、乙酸戊酯、硬脂酸丁酯、乳酸丁酯或乳酸戊酯等;也可以是芳香族羧酸酯,如甲酸苄酯、水杨酸甲酯、苯甲酸甲酯、邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二丁酯等。这些惰性溶剂可单独使用或2种以上混合使用,优选惰性液体是氯苯、二氯苯、甲苯、二甲苯和/或其混合物。
不论采用液相光气化法工艺还是气相光气化法工艺,反应结束后,根据需要,可对反应液进行过滤及后续的分离。根据本领域公知的技术,通常采用精馏塔或汽提塔对反应液中的副产氯化氢、过量光气进行脱除,光气经过精制后可以输送回反应系统进行回收利用;采用精馏塔对反应液中的溶剂进行脱除,溶剂经过精制后可以输送回反应系统进行回收利用;通过分离得到基本不含溶剂的粗二环己基甲烷二异氰酸酯组合物料流。采用刮板蒸发器或精馏塔对粗二环己基甲烷二异氰酸酯组合物料流进行分离精制,将不挥发组分(焦油)和低沸点轻组分杂质脱除,获得二环己基甲烷二异氰酸酯组合物。
另外,本技术方案中,根据需要,可通过将脂环族二异氰酸酯组合物进行纯化,从而调节所述物质A的含有比例,纯化的方法无须特别限制,可利用现有的工业分离技术,例如精馏、结晶等来实现,本发明优选精馏分离。通过 纯化所述脂环族二异氰酸酯组合物以控制所述脂环族二异氰酸酯组合物中含有的所述物质A含量≤0.5wt%,所述纯化例如为精馏分离或结晶分离。
精馏分离为本领域常规纯化工艺,在利用精馏分离的方式进行纯化时,精馏塔可以是板式塔或填料塔,精馏条件可根据纯化后的脂环族二异氰酸酯组合物所需要的所述物质A的含有比例适当设定,具体而言,精馏塔的理论塔板数优选为5以上,更优选为10以上,且优选为60以下,更优选为30以下。精馏塔的塔顶压力优选为0.05Kpa(绝压)以上,更优选为0.1Kpa(绝压)以上,且优选为2Kpa(绝压)以下,更优选为0.5Kpa(绝压)以下。精馏塔的回流比,优选为0.05以上,更优选为0.5以上,且优选为50以下,更优选为30以下。精馏塔的塔顶温度优选为100℃以上,更优选为120℃以上,且优选为180℃以下,更优选为160℃以下。另外,精馏塔的塔底温度优选为150℃以上,更优选为170℃以上,且优选为220℃以下,更优选为205℃以下。
在利用精馏塔将脂环族二异氰酸酯组合物进行精馏纯化前,可利用预热器将其进行预加热,预加热温度优选为120℃以上,更优选为140℃以上,且优选为180℃以下,更优选为160℃以下。
塔顶采出富含所述物质A的物料,纯化后的产品经由精馏塔侧线采出。精馏塔的塔顶采出量为优选0.5wt%以上、更优选1wt%以上,且优选5wt%以下、更优选3wt%以下的馏分收集。塔底富含重组分物料采出量为优选0.5wt%以上、更优选1wt%以上,且优选5wt%以下、更优选3wt%以下的物料收集。
根据现有分离技术例如参照上述精馏工艺,能调节脂环族二异氰酸酯组合物中含有的所述物质A的比例。
根据具体的使用领域,可向脂环族二异氰酸酯组合物中添加防老化助剂,以增强脂环族二异氰酸酯组合物的储存稳定性,延长其保质期,并利于实现使 用本发明所述脂环族二异氰酸酯组合物制备聚氨酯树脂过程中,脂环族二异氰酸酯组合物色号保持稳定,不易黄变。
作为防老化助剂,可举出例如受阻酚抗氧化剂、含有磺酰胺基的化合物、有机亚磷酸酯等,优选使用受阻酚抗氧化剂,例如抗氧剂264(美国Eastman化学公司,Tenox BHT)、抗氧剂245(德国BASF公司,Irganox 245)、抗氧剂1076(德国BASF公司,Irganox 1076)等,防老化助剂的添加量一般为50-5000ppm,优选100-1000ppm。
一些实施方案中,本发明制备聚氨酯树脂所用的所述多元醇为具有2个及以上羟基的分子量400以上、通常20000以下的化合物,例如为聚醚多元醇、聚酯多元醇、聚烯烃多元醇、环氧树脂、生物基多元醇中的一种或多种。制备聚氨酯所用的上述多元醇可以采用本领域常使用的那些,对此不作特别要求。
作为聚醚多元醇,可举出如聚氧化乙烯多元醇、聚氧化丙烯多元醇、聚合物多元醇、聚脲多元醇、聚四氢呋喃及其共聚醚二醇、聚三亚甲基二醇、芳香族聚醚多元醇等。
作为聚酯多元醇,可举出如己二酸系聚酯二醇、芳香族聚酯多元醇、聚己内酯多元醇和聚碳酸酯二元醇。己二酸系聚酯二醇可举出如聚己二酸乙二醇酯二醇、聚己二酸丙二醇酯二醇、聚己二酸丁二醇酯二醇、聚己二酸二醇酯二甘醇等;芳香族聚酯多元醇可举出如聚邻苯二甲酸一缩二乙二醇酯二醇、邻苯二甲酸-1,6-己二醇酯二醇、邻苯二甲酸新戊二醇酯二醇等;聚己内酯多元醇可举出如聚己内酯二元醇和聚己内酯三元醇;聚碳酸酯二醇可举出聚碳酸亚己酯二醇、聚碳酸-1,6-己二醇酯二醇、聚碳酸亚丁酯二醇等。
作为聚烯烃多元醇,可举出如端羟基聚丁二烯、端羟基氢化聚丁二烯、端羟基环氧化聚丁二烯树脂、端羟基聚丁二烯-丙烯腈聚苯乙烯多元醇等。
作为环氧树脂可举出如:双酚A环氧树脂,双酚F环氧树脂、酚醛环氧树脂及脂肪族环氧树脂等。
作为生物基多元醇,可举出如蓖麻油及其衍生物多元醇、大豆油多元醇、棕榈油多元醇、松香酯多元醇、脂肪酸二聚体二醇、鱼油多元醇及木质素多元醇等。
这些多元醇成分可以单独使用或并用2种及以上。
本发明的聚氨酯树脂可通过上述脂环族二异氰酸酯组合物(多异氰酸酯成分)与上述的多元醇成分中的至少任一种的反应来制造。
制造本发明的聚氨酯树脂所用的多元醇成分的羟值优选为10mg KOH/g以上,更优选为50mg KOH/g以上,优选为1500mg KOH/g以下,更优选为1000mg KOH/g以下,进一步优选为500mg KOH/g以下,分子量优选为400以上,更优选为800以上,且优选为20000以下,更优选为5000以下,官能度为2~8,优选为2~6。
多元醇成分的羟值可由按照GB/T 12008.3-2019标准中的方法A-邻苯二甲酸酐法进行分析确定。
本发明中所述聚氨酯树脂可以用于聚氨酯弹性体、聚氨酯光学材料、聚氨酯涂覆材料(例如涂料、胶黏剂)或聚氨酯泡沫的制备,优选应用于聚氨酯弹性体的制备。本发明的聚氨酯树脂具有优异的耐热性能,且光学透明性好。
本发明的聚氨酯树脂可利用本领域公知的例如一步法和预聚体法等工艺路线制造,本发明优选利用预聚体法进行聚合制造。
制备所述聚氨酯树脂的反应体系中还可包括催化剂和扩链剂。
一步法是将多异氰酸酯(即脂环族二异氰酸酯组合物)、多元醇、催化剂、扩链剂等所需的原料一次均匀混合,浇注成型的制备方法。
预聚体法是用多元醇和稍过量的多异氰酸酯(即脂环族二异氰酸酯组合物)反应,合成两端为异氰酸酯基封端的聚氨酯预聚体,然后再将预聚体与催化剂、扩链剂进一步反应固化浇注成型,获得聚氨酯弹性体材料。
一步法和预聚体法的具体工艺可以采用本领域现有工艺进行。一些实施方案中,采用预聚体法制备所述聚氨酯树脂,包括如下步骤:
1)通过将所述多元醇和过量的所述脂环族二异氰酸酯组合物进行预聚合反应制备两端为异氰酸酯基封端的聚氨酯预聚体;优选的,所述预聚合反应温度为60~120℃,反应时间为1~6h;
2)将所述聚氨酯预聚体与催化剂和扩链剂混合,经浇筑固化,获得所述聚氨酯树脂;优选的,所述浇筑固化在温度50~100℃下进行,固化时间为1~10h。
一些实施方案中,本发明所述预聚体法所用原料配方中,包括如下质量份的各原料:
所述脂环族二异氰酸酯组合物50~500份,优选100~400份;
所述多元醇100份;
所述扩链剂50~500份,优选50~400份;
所述催化剂0.005~1份,优选0.01~0.5份。
扩链剂可以采用本领域所常规适用的那些,例如一些实施方案中,本发明所述扩链剂可以为双官能团化合物或三官能团及以上的化合物,双官能团化合物可举出如1,4-丁二醇、乙二醇、一缩二乙二醇、1,6-己二醇等二元醇,如3,3’-二氯-4,4’-二苯基甲烷二胺(MOCA)、3,5-二乙基甲苯二胺(DETDA)等二元胺,乙醇胺等,三官能团及以上的化合物可举出如甘油、三羟甲基丙烷、季戊四醇;本发明优选1,4-丁二醇和/或3,3’-二氯-4,4’-二苯基甲烷二胺。
本发明制备聚氨酯树脂过程中,制备的端异氰酸酯预聚体中异氰酸酯基的含量可以使用GB/T 12009.4-1989标准规定的方法进行滴定分析,也可按照下式进行计算:
Figure PCTCN2020099737-appb-000006
上式中,
m NCO——脂环族二异氰酸酯组合物的加入量,g;
m OH——多元醇的加入量,g;
M NCO——脂环族二异氰酸酯组合物的分子量,g/mol;
M OH——多元醇的分子量,g/mol;
42.02——异氰酸酯基的摩尔质量。
双官能团化合物作为扩链剂的用量按照下式计算:
扩链剂理论加入量为:
Figure PCTCN2020099737-appb-000007
m 2——扩链剂的用量,g;
m 预聚体——预聚体的用量,g;
M 扩链剂——扩链剂的分子量,g/mol
f——扩链系数。
采用三官能团及以上化合物作为扩链剂时,可参照上式方式进行计算即可。
本发明优选的扩链系数为0.8~1.1,更优选0.9~1.0。
作为预聚体法的催化剂一般为有机锡化合物,可举出如辛酸亚锡、二丁基二氯化锡、二月桂酸二丁基锡、二乙酸二丁基锡、二(十二烷基硫)二丁基锡中一种或多种,本发明的工艺路线优选二月桂酸二丁基锡。
本发明中,采用所述预聚体法的反应工艺中,预聚合温度优选60~120℃,更优选80~100℃,预聚合时间优选1~6h,更优选2~4h;浇筑固化温度优选50~100℃,更优选60~80℃,浇筑固化时间优选1~10h,更优选3~6h。
需要说明的是,在制造本发明的聚氨酯树脂时,根据具体用途需要,可以按照适当的比例进一步添加行业内公知的添加剂,例如增塑剂、消泡剂、阻燃剂、脱水剂、抗氧化剂、紫外线吸收剂、防水解剂、耐气候稳定剂等。
本发明还提供一种聚氨酯树脂,采用上文所述的制备方法制得。
本发明提供的技术方案具有如下有益效果:
按照本发明的方法,得到的聚氨酯树脂不仅耐热性能优异,且光学透明性好。所得聚氨酯树脂的维卡软化温度为125-145℃,透光率为85%-95%。
具体实施方式
为了更好的理解本发明的技术方案,下面结合实施例进一步阐述本发明的内容,但本发明的内容并不仅仅局限于以下实施例。
需要说明的是,在以下的实施例及对比例中,利用以下的方法(GC-MS和GC分析)分析测定二异氰酸酯组合物中所述物质A的含量:
分析仪器:Agilent 7890B-5977气质联用仪(安捷伦公司),用于所述物质A的定性分析,具体分析条件如下:
色谱柱:DB-5MS,(长度30m×内径0.25mm×膜厚0.25μm)(安捷伦公司);
色谱条件:
升温程序:起始温度50℃,以5℃/min升温至100℃,再以10℃/min升温至290℃,恒温40min;
进样量:1μL;
分流比:30:1;
进样口温度:280℃;
接口温度:250℃;
载气:氦气;
载气流量:1ml/min;
质谱条件:
电子轰击(EI)离子源;
能量:70eV;
离子源温度:200℃;
传输线温度:280℃;
质量扫描范围:m/z20-500;
溶剂延迟:2.5min。
分析仪器:Agilent 7890B(安捷伦公司),用于所述物质A的定量分析,具体分析条件如下:
色谱柱:DB-5,(长度30m×内径0.25mm×膜厚0.25μm)(安捷伦公司);
升温程序:从120℃升温至220℃,以10℃/min进行升温,达到220℃后保持2min,以5℃/min升温至290℃;
分流比:30:1;
进样口温度:280℃;
进样量:0.2μL;
检测器温度:300℃;
载气:N 2
载气流量:1.5ml/min;
检测方法:FID。
聚氨酯树脂耐热性能:按照GB/T 1633-2000标准进行测试维卡软化温度。
聚氨酯树脂的光学透明性:按照GB/T 2410-2008标准中方法A-雾度计法进行测试透光率。
对脂环族二异氰酸酯组合物进行纯化以控制物质A含量的示例说明如下:
以二环己基甲烷二异氰酸酯组合物的精馏纯化工艺为例,举例描述其物质A含量的控制方案,所使用二环己基甲烷二异氰酸酯组合物为万华化学集团股份有限公司产牌号WANNATE HMDI产品,经GC-MS和GC分析(如上文所描述),其中含有的物质A的具体结构和含量如下:
Figure PCTCN2020099737-appb-000008
含量0.3wt%;
Figure PCTCN2020099737-appb-000009
含量0.6wt%;
Figure PCTCN2020099737-appb-000010
0.1wt%。
使用填料式精馏塔对其进行精馏纯化,塔直径为50mm,填料高度1.5m,使用304不锈钢材质θ环5mm×5mm填料,测试理论塔板数为25块,进料位置距离填料底端为0.6m,侧线采出位置距离填料底端1m,预热至155℃后进料,进料速度10Kg/h,塔底压力为绝压500Pa,塔底温度195℃,塔底采出量为0.2Kg/h,塔顶压力为绝压150Pa,塔顶温度为150℃,回流比为8,塔顶采出量为0.25Kg/h,侧线采出口压力为绝压230Pa,采出温度为180℃,采出量为9.55Kg/h,经分析,侧线采出的纯化后的二环己基甲烷二异氰酸酯组合物中物质A的含量为:
Figure PCTCN2020099737-appb-000011
含量0.15wt%;
Figure PCTCN2020099737-appb-000012
含量0.3wt%;
Figure PCTCN2020099737-appb-000013
0.05wt%。
精馏纯化后的二环己基甲烷二异氰酸酯组合物添加120ppm的抗氧剂264(美国Eastman化学公司,Tenox BHT)。
本示例中,纯化前的二环己基甲烷二异氰酸酯组合物中物质A含量为1wt%,经过精馏纯化后的二环己基甲烷二异氰酸酯组合物中物质A含量为0.5wt%;本领域技术人员根据掌握的常规精馏技术,可以通过调节本实施方式中的精馏分离参数,实现二环己基甲烷二异氰酸酯组合物中物质A的不同含量控制。以下实施例中所用脂环族二异氰酸酯组合物原料,其不同的物质A含量可参照该示例,经精馏分离实现不同的脂环族二异氰酸酯组合物中含有的物质A的含量控制。
实施例1
实施例中所述份为质量份(下同)。
(1)聚氨酯预聚体的制备
称取相对分子质量为1000的聚氧化丙烯二醇,羟值110mg KOH/g,官能度2(上海高桥石油化工公司,聚醚多元醇GE-210)100份,边搅拌边加热至110℃,减压至绝压200Pa除水2.5小时,降温至60℃,加入265份的二环己基甲烷二异氰酸酯组合物(万华化学集团股份有限公司产牌号WANNATE HMDI产品,按照上述方式经精馏纯化处理),其中所述物质A的含量为0.5wt%。升温至80℃,反应1.5小时,取样测定异氰酸酯基含量,达到预定值21%,得到聚氨酯预聚体;
(2)将步骤(1)得到的聚氨酯预聚体、82份的1,4-丁二醇(BASF公司,于102℃、绝压200Pa下除水2.5小时后使用)和0.1份的二月桂酸二丁基锡(美国空气化工Dabco T-12)置于浇注机中,分别加热至45℃,减压至绝压1KPa除气泡0.5小时,混合均匀,浇注到已预热至75℃的模具中,加热固化4h,得到聚氨酯树脂(聚氨酯弹性体)。
实施例2
和实施例1按照同样的步骤操作制造聚氨酯弹性体,与实施例1的不同仅在于所使用的二环己基甲烷二异氰酸酯组合物中所述物质A的含量为0.3wt%。
实施例3
和实施例1按照同样的步骤操作制造聚氨酯弹性体,与实施例1的不同仅在于所使用的二环己基甲烷二异氰酸酯组合物中所述物质A的含量为0.1wt%。
实施例4
和实施例1按照同样的步骤操作制造聚氨酯弹性体,与实施例1的不同仅在于所使用的二环己基甲烷二异氰酸酯组合物中所述物质A的含量为0.05wt%。
实施例5
和实施例1按照同样的步骤操作制造聚氨酯弹性体,与实施例1的不同仅在于所使用的二环己基甲烷二异氰酸酯组合物中所述物质A的含量为0.03wt%。
实施例6
和实施例1按照同样的步骤操作制造聚氨酯弹性体,与实施例1的不同仅在于所使用的二环己基甲烷二异氰酸酯组合物中所述物质A的含量为0.01wt%。
实施例7
(1)聚氨酯预聚体的制备
称取相对分子质量为2000的聚碳酸酯二醇,羟值55mg KOH/g,官能度2(日本大赛璐化学工业株式会社,聚碳酸酯多元醇CD-220)100份,边搅拌边加热至130℃,减压至绝压200Pa除水2.5小时,降温至120℃,加入205份的二环己基甲烷二异氰酸酯与环己基二异氰酸酯混合后的脂环族二异氰酸酯组合物(二环己基甲烷二异氰酸酯为万华化学集团股份有限公司产牌号WANNATE HMDI产品,102份,经精馏纯化处理,环己基二异氰酸酯为美国DuPont公司产品,103份,经精馏纯化处理),脂环族二异氰酸酯组合物中所述物质A的含量为0.5wt%。反应1小时,取样测定异氰酸酯基含量,达到预定值25%,得到聚氨酯预聚体;
(2)将步骤(1)得到的聚氨酯预聚体、242份的3,3’-二氯-4,4’-二苯基甲烷二胺(苏州市湘园新材料股份有限公司,于102℃、绝压200Pa下除水2.5小时后使用)和0.08份的辛酸亚锡(美国空气化工Dabco T-9)置于浇注机中,分别加热至45℃,减压至绝压1KPa除气泡0.5小时,混合均匀,浇注到已预热至100℃的模具中,加热固化3h,得到聚氨酯树脂(聚氨酯弹性体)。
实施例8
(1)聚氨酯预聚体的制备
称取相对分子质量为2000的聚碳酸酯二醇,羟值55mg KOH/g,官能度2(日本大赛璐化学工业株式会社,聚碳酸酯多元醇CD-220)100份,边搅拌边加热至130℃,减压至绝压200Pa除水2.5小时,降温至60℃,加入164份的二环己基甲烷二异氰酸酯与甲基环己基二异氰酸酯混合后的脂环族二异氰酸酯组合物(二环己基甲烷二异氰酸酯为万华化学集团股份有限公司产牌号WANNATE HMDI产品,82份,经精馏纯化处理,甲基环己基二异氰酸酯为美国DuPont公司产品,82份,经精馏纯化处理),脂环族二异氰酸酯组合物中所述物质A的含量为0.5wt%。反应3小时,取样测定异氰酸酯基含量,达到预定值22%,得到聚氨酯预聚体;
(2)将步骤(1)得到的聚氨酯预聚体、62份的1,4-丁二醇(BASF公司,于102℃、绝压200Pa下除水2.5小时后使用)和0.06份的二乙酸二丁基锡(美国空气化工Dabco T-1)置于浇注机中,分别加热至45℃,减压至绝压1KPa除气泡0.5小时,混合均匀,浇注到已预热至50℃的模具中,加热固化10h,得到聚氨酯树脂(聚氨酯弹性体)。
对比例1
和实施例1按照同样的步骤操作制造聚氨酯弹性体,与实施例1的不同仅在于所使用的二环己基甲烷二异氰酸酯组合物未经纯化处理,其中所述物质A的含量为0.6wt%。
对比例2
和实施例1按照同样的步骤操作制造聚氨酯弹性体,与实施例1的不同仅在于所使用的二环己基甲烷二异氰酸酯组合物未经纯化处理,其中所述物质A的含量为0.7wt%。
对比例3
和实施例1按照同样的步骤操作制造聚氨酯弹性体,与实施例1的不同仅在于所使用的二环己基甲烷二异氰酸酯组合物未经纯化处理,其中所述物质A的含量为0.9wt%。
对比例4
和实施例1按照同样的步骤操作制造聚氨酯弹性体,与实施例1的不同仅在于所使用的二环己基甲烷二异氰酸酯组合物未经纯化处理,其中所述物质A的含量为1wt%。
对比例5
和实施例7按照同样的步骤操作制造聚氨酯弹性体,与实施例7的不同仅在于所使用的二环己基甲烷二异氰酸酯与环己基二异氰酸酯混合后的脂环族二异氰酸酯组合物未经纯化处理,其中所述物质A的含量为0.8wt%。
对比例6
和实施例8按照同样的步骤操作制造聚氨酯弹性体,与实施例8的不同仅在于所使用的二环己基甲烷二异氰酸酯与甲基环己基二异氰酸酯混合后的脂环族二异氰酸酯组合物未经纯化处理,其中所述物质A的含量为1wt%。
将实施例1~8及对比例1~6中得到的聚氨酯弹性体的维卡软化温度及透光率的检测结果展示于表1之中:
表1
Figure PCTCN2020099737-appb-000014
利用本发明工艺制备的聚氨酯树脂,具有优异的透光率和较高维卡转化温度,耐热性好;特别适合用作聚氨酯弹性体,还可合适地作为聚氨酯光学材料、聚氨酯涂覆材料(如涂料、胶黏剂)、聚氨酯泡沫等各种工业制品使用。
本领域技术人员可以理解,在本说明书的教导之下,可对本发明做出一些修改或调整。这些修改或调整也应当在本发明权利要求所限定的范围之内。

Claims (10)

  1. 一种聚氨酯树脂的制备方法,通过脂环族二异氰酸酯组合物和多元醇反应制备所述聚氨酯树脂,其特征在于,控制所用的所述脂环族二异氰酸酯组合物中含有的物质A的含量≤0.5wt%,所述物质A具有如下通式(I)的结构:
    Figure PCTCN2020099737-appb-100001
    其中,R 1为卤素原子;R 2、R 3、R 4各自独立地为氢原子、C1~C8的烷烃基或C3~C8的环烷烃基;R 5为异氰酸酯基或异氰酸甲基。
  2. 根据权利要求1所述的聚氨酯树脂的制备方法,其特征在于,所述物质A例如包括如下结构式的化合物中的一种或多种:
    Figure PCTCN2020099737-appb-100002
    Figure PCTCN2020099737-appb-100003
  3. 根据权利要求1或2所述的聚氨酯树脂的制备方法,其特征在于,所述脂环族二异氰酸酯组合物为二环己基甲烷二异氰酸酯(HMDI)、异氟尔酮二异氰酸酯(IPDI)、环己基二亚甲基二异氰酸酯(HXDI)、甲基环己基二异氰酸酯(HTDI)、环己基二异氰酸酯(CHDI)中的一种或多种的组合;
    优选的,所述脂环族二异氰酸酯组合物为二环己基甲烷二异氰酸酯(HMDI)。
  4. 根据权利要求1-3任一项所述的聚氨酯树脂的制备方法,其特征在于,所述脂环族二异氰酸酯组合物中含有的所述物质A含量≤0.3wt%,优选≤0.1wt%,更优选≤0.05wt%。
  5. 根据权利要求1-4任一项所述的聚氨酯树脂的制备方法,其特征在于,通过纯化所述脂环族二异氰酸酯组合物以控制所述脂环族二异氰酸酯组合物中含有的所述物质A的含量≤0.5wt%,所述纯化例如为精馏分离和/或结晶分离。
  6. 根据权利要求1-5任一项所述的聚氨酯树脂的制备方法,其特征在于,所述多元醇具有2个以上羟基且分子量为400-20000,所述多元醇例如为聚醚多元醇、聚酯多元醇、聚烯烃多元醇、环氧树脂、生物基多元醇中的一种或多种;
    优选的,所述多元醇的羟值为10mg KOH/g-1500mg KOH/g,官能度优选为2-8。
  7. 根据权利要求1-6任一项所述的聚氨酯树脂的制备方法,其特征在于,采用一步法或预聚体法制备所述聚氨酯树脂;
    制备所述聚氨酯树脂的反应体系中还包括催化剂和扩链剂。
  8. 根据权利要求7所述的聚氨酯树脂的制备方法,其特征在于,采用预聚体法制备所述聚氨酯树脂,包括如下步骤:
    1)通过将所述多元醇和过量的所述脂环族二异氰酸酯组合物进行预聚合反应制备两端为异氰酸酯基封端的聚氨酯预聚体;优选的,所述预聚合反应温度为60~120℃,反应时间为1~6h;
    2)将所述聚氨酯预聚体与催化剂和扩链剂混合,经浇筑固化,获得所述聚氨酯树脂;优选的,所述浇筑固化在温度50~100℃下进行,固化时间为1~10h。
  9. 根据权利要求8所述的聚氨酯树脂的制备方法,其特征在于,制备所述聚氨酯树脂采用包括如下质量份的各原料:
    所述脂环族二异氰酸酯组合物50~500份;
    所述多元醇100份;
    所述扩链剂50~500份;
    所述催化剂0.005~1份。
  10. 一种聚氨酯树脂,其特征在于,采用权利要求1-9任一项所述的制备方法制得,优选所述聚氨酯树脂用于聚氨酯弹性体、聚氨酯光学材料、聚氨酯涂覆材料或聚氨酯泡沫的制备,优选用于聚氨酯弹性体的制备。
PCT/CN2020/099737 2019-12-27 2020-07-01 一种聚氨酯树脂及其制备方法 WO2021128791A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911378576.0A CN110982038B (zh) 2019-12-27 2019-12-27 一种聚氨酯树脂及其制备方法
CN201911378576.0 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021128791A1 true WO2021128791A1 (zh) 2021-07-01

Family

ID=70078094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099737 WO2021128791A1 (zh) 2019-12-27 2020-07-01 一种聚氨酯树脂及其制备方法

Country Status (2)

Country Link
CN (1) CN110982038B (zh)
WO (1) WO2021128791A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110982038B (zh) * 2019-12-27 2021-05-14 万华化学(宁波)有限公司 一种聚氨酯树脂及其制备方法
KR20230079440A (ko) 2020-12-01 2023-06-07 완후아 케미컬 그룹 코., 엘티디 폴리이소시아네이트 조성물, 이의 제조 방법 및 응용
CN112592457B (zh) * 2020-12-01 2023-04-07 万华化学集团股份有限公司 一种多异氰酸酯组合物及其制备方法和应用
CN113416153A (zh) * 2021-05-28 2021-09-21 岳阳昌德新材料有限公司 脂环族二异氰酸酯及其制备方法与应用
CN113307928B (zh) * 2021-06-11 2022-05-27 浙江华峰合成树脂有限公司 一种聚氨酯树脂及其制备方法和应用
CN113480709B (zh) * 2021-07-15 2022-02-22 盛鼎高新材料有限公司 聚氨酯树脂组合物及制备方法、成型体及用途
CN117385554B (zh) * 2023-12-07 2024-03-22 苏州中科纳威新材料有限公司 一种聚氨酯纳米纤维膜、制备系统及制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4153777A (en) * 1975-10-01 1979-05-08 Goodyear Aerospace Corporation Polyurethane and method of making
US20080228006A1 (en) * 2004-12-22 2008-09-18 Lanxess Deutschland Gmbh Method For the Reduction of Chlorine-Containing Components in Organic Isocyanates
CN101402719A (zh) * 2008-11-18 2009-04-08 广州市鹿山化工材料有限公司 透明高弹性热塑性聚氨酯及其制备方法
CN101928235A (zh) * 2009-11-05 2010-12-29 甘肃银达化工有限公司 连续制备1,6-己二异氰酸酯的方法
CN103360282A (zh) * 2013-05-16 2013-10-23 甘肃银光聚银化工有限公司 一种连续制备六亚甲基二异氰酸酯的装置和方法
CN103382167A (zh) * 2013-05-16 2013-11-06 甘肃银光聚银化工有限公司 一种精制六亚甲基二异氰酸酯的装置和方法
TW201920085A (zh) * 2017-09-11 2019-06-01 南韓商韓華化學股份有限公司 脂肪族異氰酸酯的製備方法
CN110396057A (zh) * 2019-07-16 2019-11-01 万华化学(宁波)有限公司 一种制备低氯含量的异氰酸酯的方法
CN110511163A (zh) * 2019-09-02 2019-11-29 万华化学集团股份有限公司 光化反应制备多异氰酸酯的方法以及制备水性聚氨酯树脂的方法
CN110982038A (zh) * 2019-12-27 2020-04-10 万华化学(宁波)有限公司 一种聚氨酯树脂及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4153777A (en) * 1975-10-01 1979-05-08 Goodyear Aerospace Corporation Polyurethane and method of making
US20080228006A1 (en) * 2004-12-22 2008-09-18 Lanxess Deutschland Gmbh Method For the Reduction of Chlorine-Containing Components in Organic Isocyanates
CN101402719A (zh) * 2008-11-18 2009-04-08 广州市鹿山化工材料有限公司 透明高弹性热塑性聚氨酯及其制备方法
CN101928235A (zh) * 2009-11-05 2010-12-29 甘肃银达化工有限公司 连续制备1,6-己二异氰酸酯的方法
CN103360282A (zh) * 2013-05-16 2013-10-23 甘肃银光聚银化工有限公司 一种连续制备六亚甲基二异氰酸酯的装置和方法
CN103382167A (zh) * 2013-05-16 2013-11-06 甘肃银光聚银化工有限公司 一种精制六亚甲基二异氰酸酯的装置和方法
TW201920085A (zh) * 2017-09-11 2019-06-01 南韓商韓華化學股份有限公司 脂肪族異氰酸酯的製備方法
CN110396057A (zh) * 2019-07-16 2019-11-01 万华化学(宁波)有限公司 一种制备低氯含量的异氰酸酯的方法
CN110511163A (zh) * 2019-09-02 2019-11-29 万华化学集团股份有限公司 光化反应制备多异氰酸酯的方法以及制备水性聚氨酯树脂的方法
CN110982038A (zh) * 2019-12-27 2020-04-10 万华化学(宁波)有限公司 一种聚氨酯树脂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN YUHONG, LI LEI: "Effect of Raw Materials on Transparency of Polyurethane Elastomer", CHINA ELASTOMERICS, HUAXUE GONGYEBU, HECHENG XIANGJIAO XINXI ZONGZHAN, vol. 12, no. 2, 25 April 2002 (2002-04-25), pages 14 - 18, XP055824236, ISSN: 1005-3174, DOI: 10.16665/j.cnki.issn1005-3174.2002.02.005 *
XUE FENG, HUANG SHUHUAI: "Study of Transparent Casting Polyurethane Resin Synthesis and Its Performance", HUAZHONG KEJI DAXUE XUEBAO (ZIRAN KEXUE BAN)/JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (NATURAL SCIENCE EDITION), HUAZHONG KEJI DAXUE, CN, vol. 32, no. 7, 1 July 2004 (2004-07-01), CN, pages 98 - 101, XP055824223, ISSN: 1671-4512, DOI: 10.13245/j.hust.2004.07.034 *
XUE FENG, HUANG SHU-HUAI: "Thermal and Mechanical Properties of Transparent Casting Polyurethane Resin", GAOFENZI-CAILIAO-KEXUE-YU-GONGCHENG = POLYMER MATERIALS SCIENCE AND ENGINEERING, CHENGDU KEJI DAXUE GAOFENZI YANJIUSUO, CN, vol. 20, no. 4, 1 July 2004 (2004-07-01), CN, pages 214 - 218, XP055824234, ISSN: 1000-7555, DOI: 10.16865/j.cnki.1000-7555.2004.04.055 *

Also Published As

Publication number Publication date
CN110982038A (zh) 2020-04-10
CN110982038B (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2021128791A1 (zh) 一种聚氨酯树脂及其制备方法
EP2370400B1 (en) Process for manufacturing isocyanates
KR101887244B1 (ko) 에폭시 수지용 경화제로서의 디아미노메틸시클로헥산의 입체이성질체 혼합물의 용도
CN110511163B (zh) 光化反应制备多异氰酸酯的方法以及制备水性聚氨酯树脂的方法
EP3901133B1 (en) Method for preparing isophorone diisocyanate
JP2007056269A5 (zh)
KR101813353B1 (ko) 트랜스-비스(아미노메틸)사이클로헥세인의 제조 방법, 비스(아이소사이아네이토메틸)사이클로헥세인의 제조 방법, 비스(아이소사이아네이토메틸)사이클로헥세인, 폴리아이소사이아네이트 조성물 및 폴리우레테인 수지
KR101273845B1 (ko) 디아미노디페닐메탄의 제조 방법
CN114478321B (zh) 中间体间苯二亚甲基二氨基甲酸乙酯溶液分离精制净化的方法、装置及用途
JPS5916858A (ja) ポリアミンの1段階製造方法
CN112457217A (zh) 一种制备1、5-戊二异氰酸酯的方法
CN112592457B (zh) 一种多异氰酸酯组合物及其制备方法和应用
KR20180059520A (ko) 이소시아네이트의 제조 방법
DE102009054749A1 (de) Zusammensetzung aus (cyclo)aliphatischen Diisocyanaten und aromatischen Säurehalogeniden
CN112062937B (zh) 基于氨基甲酸酯的环氧化合物、其制备方法和应用
WO2011130907A1 (zh) 一种通过界面光气化反应制备异氰酸酯的方法
KR20180030657A (ko) 시클릭 이소시아네이트의 제조 방법
CN116239502B (zh) 通过1,5-戊二胺合成1,5-戊二异氰酸酯的方法
CN112441951A (zh) 一种成盐光气化法合成含醚键二异氰酸酯的方法
WO2024103324A1 (zh) 一种异氰酸酯组合物、改性组合物和聚氨酯弹性体
CN116239502A (zh) 通过1,5-戊二胺合成1,5-戊二异氰酸酯的方法
KR102655900B1 (ko) 재생 폴리올로부터 제조되는 단일 촉매를 이용한 폴리아이소시아누레이트 및 폴리우레탄 중합체의 원팟 제조방법
JP2596650B2 (ja) イソシアネート化合物の製造法
JP2951691B2 (ja) カチオン電着組成物
JPH07278088A (ja) 脂肪族イソシアナートの精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905458

Country of ref document: EP

Kind code of ref document: A1