WO2021128228A1 - 包含固体颗粒的电解液及锂离子二次电池 - Google Patents

包含固体颗粒的电解液及锂离子二次电池 Download PDF

Info

Publication number
WO2021128228A1
WO2021128228A1 PCT/CN2019/128920 CN2019128920W WO2021128228A1 WO 2021128228 A1 WO2021128228 A1 WO 2021128228A1 CN 2019128920 W CN2019128920 W CN 2019128920W WO 2021128228 A1 WO2021128228 A1 WO 2021128228A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
lithium
glass
solid particles
containing solid
Prior art date
Application number
PCT/CN2019/128920
Other languages
English (en)
French (fr)
Inventor
陈洲文
成青
刘承一
Original Assignee
微宏动力系统(湖州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 微宏动力系统(湖州)有限公司 filed Critical 微宏动力系统(湖州)有限公司
Priority to CN201980103338.0A priority Critical patent/CN114867696A/zh
Priority to EP19957143.1A priority patent/EP4082978A4/en
Priority to US17/788,752 priority patent/US20230047398A1/en
Priority to PCT/CN2019/128920 priority patent/WO2021128228A1/zh
Publication of WO2021128228A1 publication Critical patent/WO2021128228A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/18Compositions for glass with special properties for ion-sensitive glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and specifically relates to an electrolyte containing solid particles and a lithium ion secondary battery containing the electrolyte.
  • lithium ion secondary batteries have been widely used in electric vehicles, 3C digital and other fields. These terminal applications require batteries to have a long battery life, and increasing the energy density of lithium-ion batteries is the main way to solve this problem.
  • High-energy density lithium-ion batteries usually require the use of high-nickel cathode materials, and high-nickel cathode materials have strong oxidizing properties and are prone to a variety of side reactions with the electrolyte, which affects the service life of the battery.
  • the high nickel cathode material easily releases oxygen at high temperatures, the risk of thermal runaway is significantly increased. Therefore, it is necessary to improve the battery's cycle life and safety by improving the performance of the electrolyte used in high-energy density batteries.
  • Lithium-ion batteries usually use organic solvents, and there is a risk of combustion and explosion when the battery is abused.
  • Adding a flame retardant to the electrolyte helps to increase the thermal stability of the electrolyte, thereby significantly reducing the possibility of thermal runaway caused by overheating of the battery.
  • adding organophosphorus compounds such as trimethyl phosphate and triphenyl phosphate, or fluorinated cyclotriphosphazene flame retardant to the electrolyte, achieves the flame retardant effect by terminating the radical chain reaction.
  • these additives will reduce the cycle life of the battery while improving the safety performance.
  • An embodiment of the present invention provides a non-aqueous suspension electrolyte, which is an electrolyte containing solid particles.
  • an electrolyte containing solid particles comprising: an organic solvent, an electrolyte lithium salt, and glass particles dispersed in a liquid electrolyte, the glass particles being composed of lithium oxide and phosphorus oxide.
  • the composite oxide glass of the material comprising: an organic solvent, an electrolyte lithium salt, and glass particles dispersed in a liquid electrolyte, the glass particles being composed of lithium oxide and phosphorus oxide.
  • the dispersion of the glass particles in the electrolyte solution can effectively reduce the flammability of the electrolyte solution itself. Furthermore, when the suspended electrolyte is used in a lithium ion battery, the glass particles with low electronic conductivity are dispersed between the positive electrode, the negative electrode and the separator to inhibit the battery's micro short circuit. If the lithium ion battery burns, these glass particles can cover the A protective film is formed on the surface of the positive electrode, the negative electrode or the diaphragm. In this process, polyphosphoric acid is further formed. Polyphosphoric acid with strong dehydration properties can carbonize the polymer to form a carbon isolation layer, thereby reducing the risk of further violent combustion and explosion.
  • the composite oxide glass particles containing lithium oxide and phosphorus oxide of the present disclosure have lower activation energy, so that their ion conductivity is higher than that of corresponding lithium phosphate crystals (such as LiPO 3 , Li 3 PO 4 or Li 2 ).
  • the ionic conductivity of P 2 O 7 is several orders of magnitude higher, and the conductivity is isotropic.
  • This kind of glass particles deposited on the surface of the positive or negative electrode can reduce the interface impedance, reduce the contact between the positive electrode and the electrolyte, and reduce the positive electrode material Its surface activity inhibits the side reaction between the positive electrode and the electrolyte, thereby increasing the service life of the battery.
  • the above-mentioned composite oxide glass containing lithium oxide and phosphorus oxide is xLi 2 O-(1-x)P 2 O 5 glass, where 0.3 ⁇ x ⁇ 0.7.
  • x x ⁇ 0.3
  • the P 2 O 5 in the melt is easy to volatilize so that it is difficult to form a stable liquid phase; when x> 0.7, part of the P 2 O 5 will appear during the quenching process. Crystallization, it is difficult to completely vitrify.
  • the composite oxide glass containing lithium oxide and phosphorus oxide may be xLi 2 O-(1-x)P 2 O 5 glass doped with M, where 0.3 ⁇ x ⁇ 0.7, M is selected from at least one of sulfur, boron, sodium, potassium, halogen, silicon, niobium, and tantalum. Elemental doping of the xLi 2 O-(1-x)P 2 O 5 glass material can further improve the ionic conductivity and flame retardancy of the glass particles, and it is easier to form a glass phase after doping.
  • the conductivity of lithium ions can be increased; doping with halogen ions such as iodine and fluorine can reduce the dissociation energy of lithium ions or decrease
  • the barrier of lithium ion conduction in the glass network can significantly increase the lithium ion conductivity of phosphate glass; doped halogen ions such as chlorine and iodine can form halogen radicals under heating to stop the combustion chain reaction, and further improve The flame retardancy of the glass material; the addition of boron element helps the formation of the glass body and enhances the lithium ion conductivity.
  • the molar percentage of M in the glass is less than or equal to 10%.
  • the molar percentage of M refers to the ratio of the molar amount of M in the glass to the sum of the molar amounts of lithium, phosphorus, and M.
  • the glass in the present disclosure Compared with the electrolyte containing the LISICON type or NASCION type solid electrolyte, the glass in the present disclosure has an amorphous structure, has an isotropic conductivity, and has a better effect of reducing interface impedance.
  • the glass in the present disclosure contains phosphorus and has a better flame retardant effect; the LISICON type or NASCION type solid electrolyte usually contains sulfur, and the stability in the air is significantly lower than that of the phosphorus oxide glass of the present disclosure. And in terms of manufacturing cost, the glass manufacturing cost is much lower than the LISICON type or NASCION type solid electrolyte.
  • Organic solvents are commonly used in lithium ion batteries, including: ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC) and ethyl methyl carbonate (EMC) ) At least one of.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • the electrolyte lithium salt includes at least one of lithium hexafluorophosphate (LiPF 6 ), lithium bistrifluoromethanesulfonimide (LiTFSI), and lithium bisfluorosulfonimide (LiFSI).
  • LiPF 6 lithium hexafluorophosphate
  • LiTFSI lithium bistrifluoromethanesulfonimide
  • LiFSI lithium bisfluorosulfonimide
  • the electrolyte containing solid particles further includes functional additives selected from the group consisting of vinylene carbonate (VC), fluoroethylene carbonate (FEC), and vinyl sulfate (DTD). , Methane disulfonate (MMDS), 1,3-propane sultone (PS), 1,4-butane sultone, 1,3-propene sultone, lithium difluorophosphate (LiPO 2 F 2 ), lithium bisoxalate borate (LiBOB), lithium difluorooxalate borate (LiDFOB), lithium difluorobisoxalate phosphate (LiDFOP), lithium tetrafluoromonooxalate (LiPF 4 C 2 0 4 ), double At least one of lithium trifluoromethylsulfonimide (LiTFSI) and lithium bisfluorosulfonimide (LiFSI).
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • the electrolyte containing solid particles further contains a suspension aid
  • the suspension aid is selected from at least one of polymer dispersants, surfactants and anti-settling agents, by changing The steric hindrance or electrostatic force of the solid particles in the electrolyte improves the stability of the suspended electrolyte.
  • the suspension aid can be selected from polycarboxylate copolymer dispersant, polyacrylate-based dispersant, polyurethane-based dispersant, phosphate ester salt anionic surfactant, sulfate ester salt anionic surfactant, and titanate coupling agent At least one of the others.
  • the particle size of the glass particles dispersed in the electrolyte is 0.01-2 microns.
  • the glass particles have a particle size of 0.1-2 microns.
  • the glass particles have a particle size of 0.05-1 microns.
  • the particle size of the glass particles is greater than 2 microns, it is easy to settle in the electrolyte solution, and it is easy to cause the filter of the liquid injection machine to be blocked when the battery is injected.
  • the required particle size can be obtained by methods such as high-energy ball milling.
  • the mass concentration of glass particles in the electrolyte is 0.01%-30%. In another achievable manner, the mass concentration of glass particles in the electrolyte is 0.2%-20%, 0.5%-20%, or 1%-15%.
  • concentration is lower than 0.01%, the improvement of battery performance is not obvious, and the concentration higher than 30% will increase the viscosity of the electrolyte, deteriorate the fluidity, and increase the difficulty of injecting the battery core, and will increase the battery impedance, resulting in battery performance deterioration.
  • the suspended electrolyte containing solid particles needs to exist stably for a long period of time, for example, the stable existence time is at least 24 hours.
  • the stability of the suspension electrolyte can be improved by adjusting the pH value of the suspension, the particle size of the glass particles, or the use of suspension additives.
  • the suspension electrolyte is an electrolyte containing solid particles, including: an organic solvent, an electrolyte lithium salt, and an electrolyte dispersed in The glass particles in the liquid electrolyte, the glass being a composite oxide glass containing lithium oxide and phosphorus oxide.
  • the suspension electrolyte of the present disclosure is used in a lithium ion secondary battery.
  • the distance between the positive electrode and the separator or the negative electrode and the separator in the dry cell before injection can be appropriately increased to improve the glass particles after the suspension electrolyte is injected. Uniformity of distribution.
  • the distance between the positive electrode and the separator or the negative electrode and the separator is 0.5-6 microns, or 2-5 microns.
  • the main parameters of the positive electrode In terms of mass fraction, the positive active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 is 95%, the binder is 3%, the conductive carbon black is 2%, and the aluminum foil is the current collector; the main parameters of the negative electrode: the negative active material is Artificial graphite 96%, binder 3%, conductive carbon black 1%, using copper foil as the current collector; using PP diaphragm, through coating, lamination and packaging process to make dry cells.
  • the soft-packed lithium-ion secondary battery is prepared.
  • the battery capacity is 2700mAh, and the battery energy density is about 270Wh/kg.
  • the divided batteries are subjected to high temperature cycling, storage performance and hot box tests.
  • Battery cycle life test the above soft-packed lithium ion secondary battery is charged and discharged in the voltage range of 2.50V to 4.20V at an ambient temperature of 45°C, and the charge and discharge rate is 1C, and the charge and discharge rate under high temperature conditions are investigated. Discharge cycle stability.
  • Hot box test charge at room temperature 1C to 4.2V, continue constant voltage charging, cut-off current 0.05C, place the battery in a hot box after the battery is fully charged, heat up the room temperature to 150°C, keep it warm for 2h, and then charge at 2°C/ Continue to heat up to 200°C at the rate of min, keep for 0.5h, and observe whether the battery cell catches fire or explodes during this process.
  • the basic electrolyte was obtained by the same method as in Example 1 for comparison, without adding any additives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

一种包含固体颗粒的电解液,包含:有机溶剂、电解质锂盐和分散在液体电解液中的玻璃颗粒,所述玻璃为包含锂氧化物和磷氧化物的复合氧化物玻璃。上述技术方案可以有效提高电池的安全性能,同时延长了电池的使用寿命。

Description

包含固体颗粒的电解液及锂离子二次电池 技术领域
本发明属于锂离子电池技术领域,具体涉及一种包含固体颗粒的电解液及包含其的锂离子二次电池。
背景技术
当前,锂离子二次电池已经广泛应用于电动汽车、3C数码等领域。这些终端应用都要求电池具有长的续航时间,提高锂离子电池的能量密度是解决这一问题的主要途径。高能量密度锂离子电池通常需要使用高镍正极材料,而高镍正极材料具有较强的氧化性,容易与电解液之间发生多种副反应,从而影响到电池的使用寿命。另外,由于高镍正极材料在高温下容易释氧,导致热失控的风险显著增加。因此,有必要通过改善高能量密度电池所使用的电解液性能以提升电池的循环寿命和安全性。
锂离子电池通常都采用有机溶剂,电池在滥用的情况下有燃烧爆炸的风险。在电解液中添加阻燃剂有助于增加电解液的热稳定性,从而显著降低电池过热所导致的热失控发生的可能性。例如,在电解液中添加三甲基磷酸酯、三苯基磷酸酯等有机磷系化合物,或者氟代环三磷腈类阻燃剂,通过终止自由基链式反应来达到阻燃的效果。但是,这些添加剂在提升安全性能的同时会降低电池的循环寿命。
发明内容
本发明的一个实施例提供了一种非水系悬浮电解液,该悬浮电解液为一种包含固体颗粒的电解液。
在一种可实现的方式中,提供一种包含固体颗粒的电解液,包含:有机溶剂、电解质锂盐和分散在液体电解液中的玻璃颗粒,所述玻璃颗粒为包含锂氧化物和磷氧化物的复合氧化物玻璃。
上述玻璃颗粒分散在电解质溶液中可有效降低电解液本身的可燃性。再者,当悬浮电解液用于锂离子电池中时,低电子电导率的玻璃颗粒分散于正极、负极和隔膜之间可抑制电池微短路,假如锂离子电池发生燃烧,这些玻璃颗粒可以覆盖在正极、负极或隔膜表面形成保护膜,在此过程中会进一步形成聚磷酸,具有 强脱水性的聚磷酸可以将聚合物碳化形成碳隔离层,从而降低进一步发生剧烈燃烧和爆炸的风险。另外,本公开的包含锂氧化物和磷氧化物的复合氧化物玻璃颗粒由于具有更低的激活能,使得其离子电导率比相应的磷酸锂晶体(如LiPO 3、Li 3PO 4或Li 2P 2O 7)的离子电导率高几个数量级,而且电导率为各向同性,这种玻璃颗粒沉积于正极或负极表面可以降低界面阻抗,并可减少正极与电解液的接触,降低正极材料的表面活性,抑制正极与电解液的副反应,从而提升电池的使用寿命。
在一些实施方式中,上述包含锂氧化物和磷氧化物的复合氧化物玻璃为xLi 2O-(1-x)P 2O 5玻璃,其中,0.3≤x≤0.7。当x<0.3时,在玻璃的熔融淬火制备工艺中,形成熔体时其中的P 2O 5容易挥发以致很难形成稳定的液相;当x>0.7时,在淬火工艺过程中会出现部分结晶,难以完全玻璃化。
在另一些实施方式中,包含锂氧化物和磷氧化物的复合氧化物玻璃可以为经过M掺杂的xLi 2O-(1-x)P 2O 5玻璃,其中,0.3≤x≤0.7,M选自硫、硼、钠、钾、卤素、硅、铌和钽中的至少一种。对xLi 2O-(1-x)P 2O 5玻璃材料进行元素掺杂可进一步提高玻璃颗粒的离子电导率和阻燃性,且掺杂后更容易形成玻璃相。例如xLi 2O-(1-x)P 2O 5中的磷元素被少量硫或钽取代可使得锂离子电导率增加;掺杂碘、氟等卤素离子能够降低锂离子的解离能或降低锂离子在玻璃网络中传导的势垒,可显著提升磷酸盐玻璃的锂离子电导率;掺杂的氯、碘等卤素离子在受热状态下可形成卤素自由基从而终止燃烧链式反应,进一步提升玻璃材料的阻燃性;硼元素的加入则有助于玻璃体的形成并提升锂离子电导率。通常,玻璃中M的摩尔百分含量小于等于10%。M的摩尔百分含量是指玻璃中M的摩尔量与锂、磷和M的摩尔量之和的比值。
与含有LISICON型或NASCION型固体电解质的电解液相比,本公开中的玻璃为非晶体结构,具有各向同性的电导率,降低界面阻抗效果更佳。本公开中的玻璃含有磷,阻燃效果更佳;LISICON型或NASCION型固体电解质通常含有硫,在空气中稳定性明显低于本公开的磷氧系玻璃。而且在制备成本方面,玻璃制备成本远低于LISICON型或NASCION型固体电解质。
有机溶剂为锂离子电池中常用的有机溶剂,包括:碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)中的至少 一种。
电解质锂盐包括:六氟磷酸锂(LiPF 6)、双三氟甲基磺酰亚胺锂(LiTFSI)和双氟磺酰亚胺锂(LiFSI)中的至少一种。
在一种可实现的方式中,包含固体颗粒的电解液还进一步包含功能添加剂,所述功能添加剂选自碳酸亚乙烯酯(VC)、氟代碳酸乙烯酯(FEC)、硫酸乙烯酯(DTD)、甲烷二磺酸亚甲酯(MMDS)、1,3-丙烷磺酸内酯(PS)、1,4-丁烷磺酸内酯、1,3-丙烯磺酸内酯、二氟磷酸锂(LiPO 2F 2)、双草酸硼酸锂(LiBOB)、二氟草酸硼酸锂(LiDFOB)、二氟双草酸磷酸锂(LiDFOP)、四氟单草酸磷酸锂(LiPF 4C 20 4)、双三氟甲基磺酰亚胺锂(LiTFSI)和双氟磺酰亚胺锂(LiFSI)中的至少一种。
在另一种可实现的方式中,包含固体颗粒的电解液还进一步包含悬浮助剂,所述悬浮助剂选自高分子分散剂、表面活性剂和抗沉剂中的至少一种,通过改变固体颗粒在电解液中的空间位阻或静电力作用来提升悬浮电解液的稳定性。比如悬浮助剂可以选自聚羧酸酯共聚物分散剂、聚丙烯酸酯系分散剂、聚氨酯系分散剂、磷酸酯盐阴离子表面活性剂、硫酸酯盐阴离子表面活性剂和钛酸酯偶联剂等中的至少一种。
通常,分散在电解液中玻璃颗粒的粒径为0.01-2微米。在一种可实现的方式中,玻璃颗粒的粒径为0.1-2微米。在另一种可实现的方式中,玻璃颗粒的粒径为0.05-1微米。当玻璃颗粒的粒度大于2微米时在电解液溶液中容易沉降,而且在电池注液时容易导致注液机的过滤器阻塞;粒度小于0.01微米时玻璃颗粒易导致电池隔膜孔堵塞。为了得到均一且稳定的悬浮电解液,可通过高能球磨等办法获得所需的粒径。
在一种可实现的方式中玻璃颗粒在电解液中的质量浓度为0.01%-30%。在另一种可实现的方式中,玻璃颗粒在电解液中的质量浓度为0.2%-20%,0.5%-20%,或者1%-15%。浓度低于0.01%时对电池性能的改善不明显,浓度高于30%会使电解液的粘度增大,流动性变差,注入电芯的难度增加,而且会增大电池阻抗,导致电池性能恶化。
根据本公开的目的,包含固体颗粒的悬浮电解液需要在较长时间内稳定存在,比如稳定存在时间至少在24h以上。在不显著影响电池性能的前提下可通过调 整悬浮液的pH值、玻璃颗粒粒径或悬浮助剂的使用等方法来改善悬浮电解液的稳定性。
本公开的另一个实施例提供了一种包含上述非水系悬浮电解液的锂离子二次电池,该悬浮电解液为一种包含固体颗粒的电解液,包含:有机溶剂、电解质锂盐和分散在液体电解液中的玻璃颗粒,所述玻璃为包含锂氧化物和磷氧化物的复合氧化物玻璃。
将本公开的悬浮电解液用于锂离子二次电池,在电池制备过程中,注液前干电芯中正极与隔膜或者负极与隔膜的间距可适当增加,以改善悬浮电解液注入后玻璃颗粒分布的均匀性。例如,正极与隔膜或者负极与隔膜的间距为0.5-6微米,或者2-5微米。
具体实施方式
以下的具体实施例对本发明进行了详细的描述,然而本发明并不限制于以下实施例。
实施例1
非水系悬浮电解液制备:
在充满氩气的手套箱(氧含量<1ppm,水含量<1ppm)中,将59.9g碳酸甲乙酯(EMC)与26.6g碳酸乙烯酯(EC)混合,在混合均匀的溶液中继续加入13.5g六氟磷酸锂,搅拌溶解后得到基础电解液,冷却到室温备用。将高速球磨后的0.5Li 2O-0.5P 2O 5(D50为0.2微米)按5%的重量份加入到上述基础电解液中,高速搅拌10分钟,密封后从手套箱取出,使用超声波清洗器进行超声处理(频率50Hz),30分钟后得到悬浮电解液,在密封后放入手套箱备用。
电池制备:
正极主要参数:以质量分数计,正极活性物质LiNi 0.8Co 0.1Mn 0.1O 2为95%,粘结剂3%,导电炭黑2%,以铝箔为集流体;负极主要参数:负极活性物质为人造石墨96%,粘结剂3%,导电炭黑1%,以铜箔为集流体;使用PP隔膜,通过涂布、叠片及封装工艺制得干电芯。将干燥好的上述干电芯放入充满氩气的手套箱中,确保上述悬浮电解液仍处于稳定的悬浮状态,使用针管将10g悬浮电解 液注入干电芯中,密封后取出静置24小时,经过后续化成,老化和分容后制得软包锂离子二次电池,电池容量为2700mAh,电池能量密度约270Wh/kg,分容后的电池分别进行高温循环、存储性能和热箱测试。
电池性能测试:
(1)电池循环寿命测试:在45℃环境温度下,将上述软包锂离子二次电池在2.50V~4.20V电压范围内充放电,充放电倍率均为1C,考察其高温条件下的充放电循环稳定性。
(2)70℃高温搁置实验:常温1C充电至4.2V,继续进行恒压充电,截止电流0.05C,待电池满电后在25℃条件下测试电池体积,测试完成后搁置于70℃烘箱中,7天后测试软包电池体积及容量保持率和恢复率。
(3)热箱测试:常温1C充电至4.2V,继续进行恒压充电,截止电流0.05C,待电池满电后置于热箱中,室温升温至150℃,保温2h,然后以2℃/min的速率继续升温至200℃,保温0.5h,观察电芯在此过程中有无起火及爆炸情况。
实施例2
在基础电解液中加入5%的0.5Li 2O-0.5P 2O 5(D50为0.2微米),加入0.3%分散剂ACUMER 1000(购自上海凯茵化工有限公司),通过超声分散制备得到悬浮电解液。电池制备及性能测试与实施例1相同。
实施例3
在基础电解液中加入10%的0.5Li 2O-0.5P 2O 5(D50为0.2微米),加入0.5%分散剂ACUMER 1000,通过超声分散制备得到悬浮电解液。电池制备及性能测试与实施例1相同。
实施例4
在基础电解液中加入5%的0.5Li 2O-0.5P 2O 5(D50为1微米),加入0.5%分散剂ACUMER 1000,通过超声分散制备得到悬浮电解液。电池制备及性能测试与实施例1相同。
实施例5
在基础电解液中加入5%的0.5Li 2O-0.5P 2O 5(D50为0.05微米),加入0.1%分散剂ACUMER 1000,通过超声分散制备得到悬浮电解液。电池制备及性能测试与实施例1相同。
实施例6
在基础电解液中加入1%的0.5Li 2O-0.5P 2O 5(D50为0.2微米),加入0.1%分散剂ACUMER 1000,通过超声分散制备得到悬浮电解液。电池制备及性能测试与实施例1相同。
实施例7
在基础电解液中加入15%的0.5Li 2O-0.5P 2O 5(D50为0.2微米),加入0.6%分散剂ACUMER 1000,通过超声分散制备得到悬浮电解液。电池制备及性能测试与实施例1相同。
实施例8
在基础电解液中加入5%的0.3Li 2O-0.7P 2O 5(D50为0.2微米),加入0.3%分散剂ACUMER 1000,通过超声制备得到悬浮电解液。电池制备及性能测试与实施例1相同。
实施例9
在基础电解液中加入5%的0.6Li 2O-0.4P 2O 5(D50为0.2微米),加入0.3%分散剂ACUMER 1000,通过超声制备得到悬浮电解液。电池制备及性能测试与实施例1相同。
对比例1
与实施例1中相同的方法得到基础电解液作为对比,不添加任何添加剂。
对比例2
在基础电解液中加入50%的0.5Li 2O-0.5P 2O 5(D50为0.2微米),加入2%分散剂ACUMER 1000,通过超声制备得到悬浮电解液。电池制备及性能测试与实施例1相同。
对比例3
在基础电解液中加入5%的0.5Li 2O-0.5P 2O 5(D50为5微米),加入0.5%分散剂ACUMER 1000,通过超声制备得到悬浮电解液,但该悬浮液数分钟内即发生明显沉降,未注入电芯进行后续测试。
综合实施例1~9及对比例1~3,可以看出使用含有xLi 2O-(1-x)P 2O 5玻璃颗粒悬浮电解液的电池具有更好的高温循环寿命和高温存储性能,并能抑制电芯在高温存储条件下的产气。同时可以看出,在电解液中添加少量分散剂对性能无显著影响。过量添加或使用大粒径的xLi 2O-(1-x)P 2O 5玻璃颗粒会导致电芯性能明显恶化或使得电解液悬浮液稳定性变差而发生沉降。
表1、电解液理化特性
Figure PCTCN2019128920-appb-000001
Figure PCTCN2019128920-appb-000002
表2、高温循环、存储及热箱性能对比
Figure PCTCN2019128920-appb-000003

Claims (12)

  1. 一种包含固体颗粒的电解液,包含:有机溶剂、电解质锂盐和分散在液体电解液中的玻璃颗粒,所述玻璃为包含锂氧化物和磷氧化物的复合氧化物玻璃。
  2. 根据权利要求1所述的包含固体颗粒的电解液,其特征在于,所述包含锂氧化物和磷氧化物的复合氧化物玻璃为xLi 2O-(1-x)P 2O 5玻璃,其中,0.3≤x≤0.7。
  3. 根据权利要求1所述的包含固体颗粒的电解液,其特征在于,所述包含锂氧化物和磷氧化物的复合氧化物玻璃为经过M掺杂的xLi 2O-(1-x)P 2O 5玻璃,其中,0.3≤x≤0.7,M选自硫、硼、钠、钾、卤素、硅、铌和钽中的至少一种。
  4. 根据权利要求3所述的包含固体颗粒的电解液,其特征在于,所述玻璃中M的摩尔百分含量小于等于10%。
  5. 根据权利要求1所述的包含固体颗粒的电解液,其特征在于,进一步包含功能添加剂,所述功能添加剂选自碳酸亚乙烯酯、氟代碳酸乙烯酯、硫酸乙烯酯、甲烷二磺酸亚甲酯、1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯、1,3-丙烯磺酸内酯、二氟磷酸锂、双草酸硼酸锂、二氟草酸硼酸锂、二氟双草酸磷酸锂、四氟单草酸磷酸锂、双三氟甲基磺酰亚胺锂和双氟磺酰亚胺锂中的至少一种。
  6. 根据权利要求1所述的包含固体颗粒的电解液,其特征在于,还进一步包含悬浮助剂,所述悬浮助剂选自高分子分散剂、表面活性剂和抗沉剂中的至少一种。
  7. 根据权利要求1-6任一所述的包含固体颗粒的电解液,其特征在于,所述有机溶剂包括:碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯和碳酸甲乙酯中的至少一种。
  8. 根据权利要求1-6任一所述的包含固体颗粒的电解液,其特征在于,所述电解质锂盐包括:六氟磷酸锂、双三氟甲基磺酰亚胺锂和双氟磺酰亚胺锂中的至少一种。
  9. 根据权利要求1-6任一所述的包含固体颗粒的电解液,其特征在于,分散在液体电解液中的玻璃颗粒的粒径为0.01-2微米。
  10. 根据权利要求9所述的包含固体颗粒的电解液,其特征在于,分散在液体电解液中的玻璃颗粒的粒径为0.05-1微米。
  11. 根据权利要求1-6任一所述的包含固体颗粒的电解液,其特征在于,所述玻璃颗粒在电解液中的质量浓度为0.01%-30%。
  12. 一种锂离子二次电池,包含如权利要求1所述的包含固体颗粒的电解液。
PCT/CN2019/128920 2019-12-27 2019-12-27 包含固体颗粒的电解液及锂离子二次电池 WO2021128228A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980103338.0A CN114867696A (zh) 2019-12-27 2019-12-27 包含固体颗粒的电解液及锂离子二次电池
EP19957143.1A EP4082978A4 (en) 2019-12-27 2019-12-27 ELECTROLYTE CONTAINING SOLID PARTICLES AND LITHIUM-ION SECONDARY BATTERY
US17/788,752 US20230047398A1 (en) 2019-12-27 2019-12-27 Electrolyte containing solid particles and lithium ion secondary battery
PCT/CN2019/128920 WO2021128228A1 (zh) 2019-12-27 2019-12-27 包含固体颗粒的电解液及锂离子二次电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128920 WO2021128228A1 (zh) 2019-12-27 2019-12-27 包含固体颗粒的电解液及锂离子二次电池

Publications (1)

Publication Number Publication Date
WO2021128228A1 true WO2021128228A1 (zh) 2021-07-01

Family

ID=76573809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128920 WO2021128228A1 (zh) 2019-12-27 2019-12-27 包含固体颗粒的电解液及锂离子二次电池

Country Status (4)

Country Link
US (1) US20230047398A1 (zh)
EP (1) EP4082978A4 (zh)
CN (1) CN114867696A (zh)
WO (1) WO2021128228A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851633A (zh) * 2021-11-29 2021-12-28 中南大学 一种磷酸铌包覆的铌掺杂高镍三元正极材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102844908A (zh) * 2010-03-29 2012-12-26 肖特公开股份有限公司 具有低热导率的无机组成部分的电池组电池单元所用的部件
CN103402939A (zh) * 2011-03-04 2013-11-20 肖特公开股份有限公司 传导锂离子的玻璃陶瓷以及所述玻璃陶瓷的用途
CN103858260A (zh) * 2011-09-29 2014-06-11 肖特公开股份有限公司 可充电锂离子电池和玻璃基材料用于其的用途
CN104508875A (zh) * 2012-07-26 2015-04-08 肖特公开股份有限公司 电化学储能器用添加剂和电化学储能器
CN109786837A (zh) * 2019-02-25 2019-05-21 安徽瑞达机械有限公司 一种防过充锂电池电解液及其制备方法
CN110128017A (zh) * 2018-02-02 2019-08-16 肖特股份有限公司 具有离子导电残余玻璃相的玻璃陶瓷及其生产方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2304394C (fr) * 1999-04-07 2009-09-08 Hydro-Quebec Composite traitement au lipo3
JP2001015160A (ja) * 1999-04-30 2001-01-19 Ohara Inc ガラスセラミックス複合電解質、及びリチウム二次電池
JP4053819B2 (ja) * 2002-05-30 2008-02-27 株式会社オハラ リチウムイオン二次電池
JP5197918B2 (ja) * 2004-12-02 2013-05-15 株式会社オハラ 全固体リチウムイオン二次電池および固体電解質
JP5311169B2 (ja) * 2005-01-11 2013-10-09 出光興産株式会社 リチウムイオン伝導性固体電解質、その製造方法及び該固体電解質を用いたリチウム二次電池用固体電解質並びに該二次電池用固体電解質を用いた全固体リチウム電池
CN100583543C (zh) * 2005-01-11 2010-01-20 出光兴产株式会社 锂离子传导性固体电解质、其制造方法及使用了该固体电解质的锂二次电池用固体电解质以及使用了该二次电池用固体电解质的全固体锂电池
JP5599573B2 (ja) * 2009-04-10 2014-10-01 出光興産株式会社 固体電解質粒子からなるガラス及びリチウム電池
CN103280568B (zh) * 2013-05-28 2016-03-02 宁德新能源科技有限公司 钛酸锂复合材料及其制备方法以及其应用
KR102067764B1 (ko) * 2013-05-29 2020-01-20 삼성전자주식회사 리튬 전지용 양극 및 이를 이용한 리튬 전지
DE102013112015A1 (de) * 2013-10-31 2015-04-30 Schott Ag Wiederaufladbarer Lithium-Ionen Akkumulator
US10749214B2 (en) * 2018-05-30 2020-08-18 GM Global Technology Operations LLC Sulfide and oxy-sulfide glass and glass-ceramic solid state electrolytes for electrochemical cells
CN109449487A (zh) * 2018-10-31 2019-03-08 中国科学院宁波材料技术与工程研究所 一种锂离子电池用高浓度电解液及其制备方法以及锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102844908A (zh) * 2010-03-29 2012-12-26 肖特公开股份有限公司 具有低热导率的无机组成部分的电池组电池单元所用的部件
CN103402939A (zh) * 2011-03-04 2013-11-20 肖特公开股份有限公司 传导锂离子的玻璃陶瓷以及所述玻璃陶瓷的用途
CN103858260A (zh) * 2011-09-29 2014-06-11 肖特公开股份有限公司 可充电锂离子电池和玻璃基材料用于其的用途
CN104508875A (zh) * 2012-07-26 2015-04-08 肖特公开股份有限公司 电化学储能器用添加剂和电化学储能器
CN110128017A (zh) * 2018-02-02 2019-08-16 肖特股份有限公司 具有离子导电残余玻璃相的玻璃陶瓷及其生产方法
CN109786837A (zh) * 2019-02-25 2019-05-21 安徽瑞达机械有限公司 一种防过充锂电池电解液及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4082978A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851633A (zh) * 2021-11-29 2021-12-28 中南大学 一种磷酸铌包覆的铌掺杂高镍三元正极材料及其制备方法

Also Published As

Publication number Publication date
EP4082978A4 (en) 2023-12-20
US20230047398A1 (en) 2023-02-16
EP4082978A1 (en) 2022-11-02
CN114867696A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
Guo et al. New class of LAGP-based solid polymer composite electrolyte for efficient and safe solid-state lithium batteries
WO2023040082A1 (zh) 一种锂离子电池非水电解液及其应用
CN111640986B (zh) 一种适用于高能量密度锂离子电池的高安全性电解液
Schaefer et al. Electrolytes for high-energy lithium batteries
CN111916826B (zh) 电解液及其制备方法、以及锂离子电池及其制备方法
WO2020063371A1 (zh) 正极极片及锂离子二次电池
Yang et al. Ionic liquid enhanced composite solid electrolyte for high-temperature/long-life/dendrite-free lithium metal batteries
CN109728340B (zh) 锂离子电池
JP2019515481A (ja) リチウム金属電池用保護負極、及びそれを含んだリチウム金属電池
CN112151866B (zh) 一种锂离子电池用电解液及包括该电解液的锂离子电池
CN113410510A (zh) 一种锂离子电池
JP2002025615A (ja) リチウム二次電池
CN112397704B (zh) 一种高比能动力锂离子电池
CN113130992A (zh) 一种非水电解液及锂离子电池
WO2023045379A1 (zh) 一种电解液、包括其的二次电池及该二次电池的制备方法
JP5633817B2 (ja) 電気デバイス用非水電解液及びそれを用いた二次電池
WO2023070770A1 (zh) 一种正极极片及包含其的锂离子二次电池
CN114024035A (zh) 一种电池
JP7176821B2 (ja) リチウム二次電池用非水電解液添加剤、これを含むリチウム二次電池用非水電解液及びリチウム二次電池
WO2021128228A1 (zh) 包含固体颗粒的电解液及锂离子二次电池
WO2023225799A1 (zh) 二次电池以及包含其的电池模块、电池包及用电装置
WO2023206216A1 (zh) 非水电解液、二次电池、电池模块、电池包和用电装置
CN113889667B (zh) 一种适配可快充钴酸锂电池的高电压电解液及其应用
CN107946645A (zh) 一种高安全电解液及锂电池
WO2021102747A1 (zh) 用于锂离子电池的电解液、锂离子电池、电池模块、电池包及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019957143

Country of ref document: EP

Effective date: 20220727