WO2021102747A1 - 用于锂离子电池的电解液、锂离子电池、电池模块、电池包及装置 - Google Patents

用于锂离子电池的电解液、锂离子电池、电池模块、电池包及装置 Download PDF

Info

Publication number
WO2021102747A1
WO2021102747A1 PCT/CN2019/121316 CN2019121316W WO2021102747A1 WO 2021102747 A1 WO2021102747 A1 WO 2021102747A1 CN 2019121316 W CN2019121316 W CN 2019121316W WO 2021102747 A1 WO2021102747 A1 WO 2021102747A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
battery
lithium
lithium ion
ion battery
Prior art date
Application number
PCT/CN2019/121316
Other languages
English (en)
French (fr)
Inventor
梁成都
刘成勇
郭永胜
范铨
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN201980063342.9A priority Critical patent/CN112930615B/zh
Priority to US17/620,336 priority patent/US20220376298A1/en
Priority to EP19954355.4A priority patent/EP3930070B1/en
Priority to PCT/CN2019/121316 priority patent/WO2021102747A1/zh
Publication of WO2021102747A1 publication Critical patent/WO2021102747A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of batteries, and in particular to an electrolyte for lithium ion batteries, lithium ion batteries, battery modules, battery packs and devices.
  • lithium-ion batteries have been widely used in high-tech products such as automobiles and mobile phones.
  • Commercial lithium-ion batteries mainly use graphite as the negative electrode material, and its capacity is close to the theoretical value of graphite (372mAh/g). It is difficult to process graphite to increase the capacity of lithium-ion batteries.
  • the theoretical specific capacity of metallic lithium is as high as 3860mAh/g, and the electrode potential is as low as -3.04V (vs. H 2 /H + ). Therefore, the development of lithium-ion batteries with metallic lithium as the negative electrode has once again attracted the attention of scientific researchers.
  • Li-ion batteries are prone to produce lithium dendrites during the cycle, leading to short circuits; 2) lithium dendrites have large surface area, high activity, and easy It reacts violently with the electrolyte to produce flammable gases such as hydrogen, alkanes, and olefins; 3) The large volume changes during the lithium deposition/dissolution process cause the continuous rupture and recombination of the SEI film on the surface of the lithium metal, which consumes the electrolyte and active lithium. The above behaviors will all lead to a decrease in the cycle efficiency of lithium-ion batteries, a shortened battery cycle life, and potential safety hazards.
  • Some embodiments of this application provide an electrolyte, a lithium ion battery, a battery module, a battery pack, and a device for a lithium ion battery.
  • the electrolyte can inhibit the growth of lithium dendrites in the lithium ion battery and improve the cycle performance of the battery. At the same time, the flame retardancy of the battery is improved, and the defects in the prior art are effectively solved.
  • the present application provides an electrolyte for a lithium ion battery, including: electrolyte lithium salt, organic solvent, and additives.
  • the additive is a compound represented by the following formula I:
  • R 1 is a C1-10 alkylene group.
  • one or more hydrogen atoms in the alkylene group may be substituted by phenyl (Ph-), halogen, nitrogen, oxygen, sulfur, silicon, or boron. Or one or more substitutions in phosphorus.
  • R 2 and R 3 are each independently selected from halogen, C1-10 saturated or unsaturated alkyl or alkoxy, or alkylamino (for example, R-NR 4 -or -R 1 -NR 4 R 5 ),
  • one or more hydrogen atoms in the saturated or unsaturated alkyl group, alkoxy group or alkylamino group may be replaced by one or more of halogen, nitrogen, oxygen, sulfur, silicon, boron or phosphorus. replace.
  • R is a C1-10 saturated or unsaturated alkyl group.
  • one or more hydrogen atoms in the saturated or unsaturated alkyl group may be halogen, nitrogen, oxygen, sulfur, silicon, boron or phosphorus.
  • One or more of the substitutions may be halogen, nitrogen, oxygen, sulfur, silicon, boron or phosphorus.
  • R 4 and R 5 are each independently selected from H or halogen.
  • the present application provides a lithium ion battery, which includes a positive electrode, a negative electrode, a separator provided between the positive electrode and the negative electrode, and the electrolyte described in the first aspect of the present application.
  • the present application also provides a battery module, including the lithium ion battery described in the second aspect of the present application.
  • the present application also provides a battery pack, including the battery module described in the third aspect of the present application.
  • the present application also provides a device, including the lithium ion battery described in the second aspect of the present application, and the lithium ion battery is used as a power source for the device.
  • a compound represented by formula I is added as an additive to the electrolyte of a lithium ion battery. Since the compound contains a sulfonyl group, it can be formed on the surface of both positive and negative electrodes containing P, S, N, F, etc. Interface film of elemental composition. The interface film has good ion conductivity, can inhibit the growth of lithium dendrites in lithium-ion batteries, is beneficial to reduce the impedance of lithium-ion batteries, and can inhibit excessive side reactions between the positive and negative electrodes and the electrolyte, thereby improving Battery cycle performance. In addition, the additive also has flame retardancy, which can improve the safety performance of electrolytes and lithium-ion batteries.
  • Fig. 1 is a perspective view of a lithium ion battery according to an embodiment of the present application.
  • Fig. 2 is an exploded view of the lithium ion battery shown in Fig. 1.
  • Fig. 3 is a perspective view of a battery module according to an embodiment of the present application.
  • Fig. 4 is a perspective view of a battery pack according to an embodiment of the present application.
  • Fig. 5 is an exploded view of the battery pack shown in Fig. 4.
  • Fig. 6 is a schematic diagram of a lithium ion battery as a power supply device according to an embodiment of the present application.
  • any lower limit may be combined with any other upper limit to form an unspecified range; and any lower limit may be combined with other lower limits to form an unspecified range, and any upper limit may be combined with any other upper limit to form an unspecified range.
  • every point or single value between the end points of the range is included in the range. Therefore, each point or single numerical value can be used as its own lower limit or upper limit in combination with any other point or single numerical value, or in combination with other lower limit or upper limit to form an unclear range. It should be understood that the enumeration of numerical values is merely an example and should not be interpreted as exhaustive.
  • the electrolyte for a lithium ion battery according to the first aspect of the present application includes: an electrolyte lithium salt, an organic solvent, and an additive.
  • the additive is a compound represented by the following formula I:
  • R 1 is a C1-10 alkylene group.
  • one or more hydrogen atoms in the alkylene group may be substituted by phenyl (Ph-), halogen, nitrogen, oxygen, sulfur, silicon, or boron. Or one or more substitutions in phosphorus.
  • R 2 and R 3 are each independently selected from halogen, C1-10 saturated or unsaturated alkyl or alkoxy, or alkylamino (for example, R-NR 4 -or -R 1 -NR 4 R 5 ),
  • one or more hydrogen atoms in the saturated or unsaturated alkyl group, alkoxy group or alkylamino group may be replaced by one or more of halogen, nitrogen, oxygen, sulfur, silicon, boron or phosphorus. replace.
  • R is a C1-10 saturated or unsaturated alkyl group.
  • one or more hydrogen atoms in the saturated or unsaturated alkyl group may be halogen, nitrogen, oxygen, sulfur, silicon, boron or phosphorus.
  • One or more of the substitutions may be halogen, nitrogen, oxygen, sulfur, silicon, boron or phosphorus.
  • R 4 and R 5 are each independently selected from H or halogen.
  • the halogen is selected from fluorine, chlorine, bromine or iodine.
  • R 1 is selected from a C1-4 alkylene group.
  • one or more hydrogen atoms in the alkylene group may be phenyl, fluorine, chlorine, bromine, iodine, One or more of nitrogen, oxygen, sulfur, silicon, boron, and phosphorus are substituted.
  • R 1 is selected from -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -or -CH 2 (CH 2 ) 2 CH 2 -, optionally, these One or more hydrogen atoms in the group may be substituted by one or more of phenyl, fluorine, chlorine, bromine, iodine, nitrogen, oxygen, sulfur, silicon, boron, or phosphorus.
  • R 1 is selected from -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 (CH 2 ) 2 CH 2 -or -CH 2 -CHPh -.
  • R 2 and R 3 are each independently selected from F, Cl, Br, or a C1-4 alkyl or alkoxy group, optionally, the alkyl group or the alkoxy group
  • One or more hydrogen atoms may be replaced by one or more of fluorine, chlorine, bromine, iodine, nitrogen, oxygen, sulfur, silicon, boron, or phosphorus.
  • R 2 and R 3 are each independently selected from F, Cl, -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH 2 (CH 2 ) 2 CH 3 , -OCH 3 , -OCH 2 CH 3 , -OCH 2 CH 2 CH 3 , -OCH 2 (CH 2 ) 2 CH 3 , -CF 3 , -CF 2 CF 3 , -CF 2 (CF 2 ) 2 CF 3 , -CH 2 CF 3 or -CH(CF 3 ) 2 .
  • R 2 and R 3 are each independently selected from R-NR 4 -or -R 1 -NR 4 R 5 , wherein R is a C1-4 alkyl group, and R 4 and R 5 are each independently Ground is selected from H, fluorine, chlorine, bromine or iodine, and R 1 is as described above.
  • R 2 and R 3 are each independently selected from R-NR 4 -or -R 1 -NR 4 R 5 , wherein R is -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 or -CH 2 (CH 2 ) 2 CH 3 , R 4 and R 5 are each independently selected from H, fluorine, chlorine, bromine or iodine, and R 1 is selected from -CH 2 -, -CH 2 CH 2- , -CH 2 CH 2 CH 2 -or -CH 2 (CH 2 ) 2 CH 2 -.
  • R 2 and R 3 are each independently selected from R-NR 4 -or -R 1 -NR 4 R 5 , wherein R is -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 or -CH 2 (CH 2 ) 2 CH 3 , R 4 and R 5 are each independently H, and R 1 is selected from -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2- Or -CH 2 (CH 2 ) 2 CH 2 -.
  • R 2 and R 3 are each independently selected from CH 3 NH-, CF 3 NH-, CH 3 CH 2 NH-, CH 3 (CH 2 ) 2 NH-, CH 3 (CH 2 ) 2 NH-, -CH 2 NH 2 or -CH 2 CH 2 NH 2 .
  • R 2 is independently selected from F, Cl, -CH 3 , -CH 2 CH 3 , -OCH 3 , -OCH 2 CH 3 , -CF 3 , CH 3 NH- or CF 3 NH -.
  • R 3 is independently selected from F, Cl, -CH 3 , -CH 2 CH 3 , -CF 3 , -CF 2 CF 3 , -CF 2 CF 2 CF 3 , -CF 2 ( CF 2 ) 2 CF 3 , -CH 2 CF 3 or -CH(CF 3 ) 2 .
  • the compound represented by formula I is selected from the following compounds:
  • the content of the compound represented by formula I as an additive in the electrolyte is 0.1 wt% to 15 wt%, preferably 0.5 wt% to 10 wt%.
  • Proper additive content can effectively improve the flame retardancy of the electrode surface and the battery, as well as the conduction of lithium ions inside the battery, and prevent polarization.
  • the content of the compound represented by formula I as an additive in the electrolyte is 0.1% by weight, 0.2% by weight, 0.3% by weight, 0.5% by weight, 0.6% by weight, 0.8% by weight, and 1.0% by weight. %, 1.5% by weight, 2.0% by weight, 2.5% by weight, 5% by weight, 8% by weight, 10% by weight, or 15% by weight, etc., including any value and all ranges and subranges therein.
  • Examples include, but are not limited to, 0.1wt%-15wt%, 0.1wt%-10wt%, 0.3wt%-15wt%, 0.5wt%-15wt%, 0.5wt%-15wt%, 0.5wt%-10wt%, 1.0wt %-15wt%, 2.5wt%-10wt%, 5wt%-10wt%, etc.
  • electrolyte of the present application As an improvement of the electrolyte of the present application, other functional additives known in the art that can be used to improve the performance of lithium-ion batteries can be added to the electrolyte, such as SEI film forming additives, flame retardant additives, anti-overcharge additives, Conductive additives, such as triethyl phosphite (TEP), will not be repeated here.
  • SEI film forming additives such as flame retardant additives, anti-overcharge additives,
  • Conductive additives such as triethyl phosphite (TEP)
  • the type of organic solvent used in the present application is not specifically limited, and can be appropriately selected according to actual needs, as long as the technical solution of the present application can be realized.
  • the organic solvent may be selected from at least one of carbonates, carboxylates, sulfates, phosphates, amides, nitriles, and ethers.
  • the organic solvent may be selected from ethylene carbonate (EC), fluoroethylene carbonate (FEC), propylene carbonate, dimethyl carbonate, diethyl carbonate (DEC), dipropyl carbonate , Ethyl methyl carbonate (EMC), methyl formate, ethyl formate, ethyl propionate, propyl propionate, methyl butyrate, ethyl acetate, acid anhydride, N-methylpyrrolidone (NMP), N-methyl Base formamide, N-methyl acetamide, acetonitrile, sulfolane, dimethyl sulfoxide, ethylene sulfite, propylene sulfite, triethyl phosphate, methyl ethyl phosphite, methyl sulfide, diethyl Alkyl sulfite, dimethyl sulfite, ethylene glycol dimethyl ether, diethylene glycol di
  • the organic solvent may be a mixed solvent of two or more of the above organic solvents, and their ratio is not particularly limited, and can be appropriately selected according to actual needs, as long as the technical solution of the application can be realized.
  • the organic solvent when they contains two different organic solvents, they can be in a volume ratio of 1:1, 2:8, 3:7, 4:6, 8:2, 7: 3, 6:4 equal proportions to mix and use.
  • the content of the organic solvent in the electrolyte is not specifically limited, and can be appropriately selected according to actual needs, as long as the technical solution of the present application can be realized.
  • the content of the organic solvent in the electrolyte is 60 wt% to 90 wt%. It is preferably 70% by weight to 80% by weight. Examples include, but are not limited to, 65 wt%, 70 wt%, 75 wt%, 80 wt%, 85 wt%, etc., including any value and all ranges and subranges therein.
  • the electrolyte lithium salt used in the present application is not specifically limited, and can be appropriately selected according to actual needs, as long as the technical solution of the present application can be realized.
  • the electrolyte lithium salt may be selected from one or more of organic lithium salt and inorganic lithium salt.
  • the concentration of the electrolyte lithium salt in the electrolyte is 0.5 mol/L to 10 mol/L, preferably 1 mol/L to 5 mol/L.
  • concentration of the electrolyte lithium salt in the electrolyte is 0.5 mol/L to 10 mol/L, preferably 1 mol/L to 5 mol/L.
  • concentration of the electrolyte lithium salt in the electrolyte is 0.5 mol/L to 10 mol/L, preferably 1 mol/L to 5 mol/L.
  • concentration of the electrolyte lithium salt in the electrolyte is 0.5 mol/L to 10 mol/L, preferably 1 mol/L to 5 mol/L.
  • 0.5mol/L, 0.6mol/L, 0.8mol/L, 1.0mol/L, 1.5mol/L, 2.0mol/L, 3mol/L, 5mol/L, 8mol/L, 10mol/L L including any value and all ranges and subranges therein.
  • the lithium ion battery according to the second aspect of the present application includes a positive electrode, a negative electrode, a separator provided between the positive electrode and the negative electrode, and the electrolyte according to the first aspect of the present application, wherein the electrolyte comprises the formula I
  • the compound is used as an additive.
  • FIG. 1 shows a perspective view of a lithium ion battery according to an embodiment of the present application
  • FIG. 2 is an exploded view of the lithium ion battery shown in FIG. 1.
  • the lithium ion battery 5 (hereinafter referred to as the battery cell 5) according to the present application includes a case 51, an electrode assembly 52, a top cover assembly 53, a positive electrode, a negative electrode, a separator, and an electrolyte (not shown) ).
  • the electrode assembly 52 is housed in the housing 51, and the number of the electrode assembly 52 is not limited, and can be one or more.
  • the battery cell 5 shown in FIG. 1 is a can-type battery, but the present application is not limited to this.
  • the battery cell 5 may be a pouch-type battery, that is, the housing 51 is replaced by a metal plastic film and the top cover is eliminated. Component 53.
  • the positive electrode used in the lithium secondary battery of the present application includes a positive electrode current collector and a positive electrode active material layer provided on at least one surface of the positive electrode current collector.
  • the positive electrode current collector includes two opposite surfaces in its thickness direction, and the positive electrode active material layer is laminated on either or both of the two surfaces of the positive electrode current collector.
  • the positive electrode active material layer contains the positive electrode active material, which can perform reversible deintercalation/intercalation of lithium ions during operation.
  • the application does not specifically limit the type of positive electrode active material, and it may be a positive electrode active material for lithium ion batteries known in the art.
  • a lithium transition metal composite oxide where the transition metal can be one or more of Mn, Fe, Ni, Co, Cr, Ti, Zn, V, Al, Zr, Ce, and Mg.
  • the lithium transition metal composite oxide may be, for example, LiMn 2 O 4 , LiNiO 2 , LiCoO 2 , LiNi 1-y Co y O 2 (0 ⁇ y ⁇ 1), LiNi m Co n Al 1-mn O 2 (0 ⁇ m ⁇ 1, 0 ⁇ n ⁇ 1, 0 ⁇ m+n ⁇ 1), LiNi s Co t Mn 1-st O 2 (0 ⁇ s ⁇ 1, 0 ⁇ t ⁇ 1, 0 ⁇ s+t ⁇ 1, for example LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM 811 for short), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM 111 for short), or LiNi 0.4 Co 0.3 Mn 0.3 O 2 (NCM 433 for short), LiNi 0.4 Co 0.2 Mn 0.4 O 2 (NCM 424 for short), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM 523 for short), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM 622 for short)), LiNi
  • the lithium transition metal composite oxide can also be doped with elements with high electronegativity, such as one or more of S, N, F, Br, Cl, and I.
  • the lithium transition metal composite oxide can also be coated and modified. The doping and/or coating modification can make the compound have a more stable structure and better electrochemical performance.
  • the positive active material may include the positive active material represented by the following formula (II).
  • M is selected from Mn, Fe, Cr, Ti, Zn, V, Al, Zr or Ce
  • A is selected from S, N, F, Cl, Br or I.
  • M is selected from Mn and Al, and A is selected from S and F.
  • a conductive agent and a binder may be further included in the positive active material layer.
  • the conductive agent may be one or more of graphite, superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the binder can be styrene butadiene rubber (SBR), water-based acrylic resin, carboxymethyl cellulose (CMC), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), poly One or more of vinyl butyral (PVB), ethylene-vinyl acetate copolymer (EVA) and polyvinyl alcohol (PVA).
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVB poly One or more of vinyl butyral
  • EVA ethylene-vinyl acetate copolymer
  • PVA polyvinyl alcohol
  • the positive current collector collects and conducts current.
  • the positive electrode current collector can be a metal foil or a porous metal plate, for example, a foil or a porous plate of metals such as aluminum, copper, nickel, titanium, or silver, or their alloys, such as aluminum foil.
  • the positive electrode needs to be further processed into a positive pole piece for use.
  • the structure and preparation method of the positive pole piece are known in the art.
  • the positive pole piece can be prepared by coating. For example, first mix the positive electrode active material, the binder, the conductive agent and the organic solvent in a predetermined ratio, and then stir the mixture to a homogeneous system to obtain the positive electrode slurry; then, the positive electrode slurry is coated on the positive electrode current collector and dried After the steps of, rolling, etc., the positive pole piece is prepared.
  • the binder, conductive agent, and organic solvent are all conventional reagents used in lithium ion batteries, and will not be repeated here.
  • the negative electrode used in the lithium ion battery of the present application includes a negative electrode current collector and a negative electrode active material layer provided on at least one surface of the negative electrode current collector.
  • the negative electrode current collector includes two opposite surfaces in the thickness direction of the negative electrode current collector, and the negative electrode active material layer is stacked on either or both of the two surfaces of the negative electrode current collector.
  • the negative electrode active material layer contains the negative electrode active material, which can carry out reversible deposition/elution or alloying/dealloying of lithium ions during the working process.
  • the type of the negative electrode active material is not particularly limited, and it may be a negative electrode active material for lithium ion batteries known in the art. For example, lithium metal foil, lithium alloy.
  • the lithium alloy can be graphite, or one or more of the following mixtures of materials that can undergo lithium alloying below 2V (vs.Li/Li + ): natural graphite, artificial graphite, mesophase Carbon microspheres (MCMB), hard carbon, soft carbon, silicon, silicon-carbon composite, Li-Sn alloy, Li-Sn-O alloy, Sn, SnO, SnO 2 , spinel structure lithiated TiO 2- Li 4 Ti 5 O 12 , Li-Al alloy.
  • natural graphite natural graphite, artificial graphite, mesophase Carbon microspheres (MCMB), hard carbon, soft carbon, silicon, silicon-carbon composite, Li-Sn alloy, Li-Sn-O alloy, Sn, SnO, SnO 2 , spinel structure lithiated TiO 2- Li 4 Ti 5 O 12 , Li-Al alloy.
  • MCMB mesophase Carbon microspheres
  • a metal foil or porous metal plate can be used, for example, a foil or porous plate of metals such as copper, nickel, titanium, or iron, or their alloys, such as copper foil.
  • the negative electrode needs to be further processed into a negative electrode piece for use, and the structure and preparation method of the negative electrode piece are known in the art.
  • the negative pole piece can be formed on the negative electrode current collector by at least one of mechanical rolling, vapor deposition, and electroless plating, wherein the vapor deposition method is a physical vapor deposition method; the physical vapor deposition method may be evaporation.
  • the method and the sputtering method for example, at least one of a vacuum evaporation method, a thermal evaporation method, an electron beam evaporation method, and a magnetron sputtering method.
  • negative pole piece for example, first mix negative electrode active material, binder, conductive agent and solvent according to a predetermined ratio.
  • the solvent can be N-methylpyrrolidone or water, and stir the mixture to a homogeneous system to obtain Negative electrode slurry; afterwards, the negative electrode slurry is coated on the negative electrode current collector, after drying, rolling and other processes, the negative electrode piece is prepared.
  • the types of conductive agents and binders in the negative active material layer are not specifically limited, and can be selected according to actual needs.
  • the separator used in the lithium ion battery of the present application is not particularly limited, and any known separator with a porous structure with electrochemical stability and chemical stability can be selected, such as glass fiber, non-woven fabric, polyethylene (PE), A single-layer or multi-layer film of one or more of polypropylene (PP) and polyvinylidene fluoride (PVDF).
  • PE polyethylene
  • PP polypropylene
  • PVDF polyvinylidene fluoride
  • the positive pole piece and the negative pole piece are alternately stacked, and an isolation film is arranged between the positive pole piece and the negative pole piece to separate the positive electrode and the negative electrode to obtain a battery cell, which can also be obtained by winding; Put the electric core in the shell, inject the electrolyte, and seal it to obtain the lithium ion battery.
  • Fig. 3 shows a perspective view of a battery module according to an embodiment of the present application.
  • the battery module 4 according to the present application includes a plurality of battery cells 5 arranged in a longitudinal direction.
  • the battery module 4 can be used as a power source or an energy storage device.
  • the number of battery cells 5 in the battery module 4 can be adjusted according to the application and capacity of the battery module 4.
  • FIG. 4 shows a perspective view of a battery pack according to an embodiment of the present application
  • FIG. 5 is an exploded view of the battery pack shown in FIG. 4.
  • the battery pack 1 according to the present application includes an upper case 2, a lower case 3 and a battery module 4.
  • the upper case 2 and the lower case 3 are assembled together to form a space for accommodating the battery module 4.
  • the battery module 4 is placed in the space of the upper case 2 and the lower case 3 assembled together.
  • the output pole of the battery module 4 passes through one or between the upper case 2 and the lower case 3 to supply power to the outside or charge from the outside.
  • the battery pack 1 can be used as a power source or an energy storage device.
  • Fig. 6 shows a schematic diagram of a lithium ion battery as a power supply device according to an embodiment of the present application.
  • the device using the battery cell 5 is an electric vehicle.
  • the device using the battery cell 5 can be any electric vehicle other than electric vehicles (such as electric buses, electric trams, electric bicycles, electric motorcycles, electric scooters, electric golf carts, electric trucks). ), electric ships, electric tools, electronic equipment and energy storage systems.
  • the electric vehicle may be an electric pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
  • the device provided in the fifth aspect of the present application may include the battery module 4 described in the third aspect of the present application.
  • the device provided in the fifth aspect of the present application may also include the fourth aspect of the present application.
  • An organic solvent is prepared in the drying room, and then the electrolyte lithium salt and the additives of the application are added to the organic solvent, and the electrolyte is obtained after uniform mixing.
  • the positive electrode active material, lithium nickel cobalt manganese oxide (LiNi 0.8 Co 0.1 Mn 0.1 O 2 , NCM 811), the binder PVDF, and the conductive agent acetylene black are mixed in a mass ratio of 98:1:1, and the organic solvent N-methyl is added.
  • Pyrrolidone (NMP) until the system becomes uniform and transparent, the electrode active material slurry is prepared after stirring with a vacuum mixer; the slurry is uniformly coated on aluminum foil (thickness 12 ⁇ m), dried at room temperature and transferred to an oven at 120°C for 1h After cold pressing and slitting, the positive pole piece is obtained.
  • a 25 ⁇ m lithium metal was pasted on the surface of the copper foil, and then cold pressed and slit to obtain a negative pole piece.
  • a polypropylene film (PP) with a thickness of 12 ⁇ m is used as the separator, and the positive electrode, separator, and negative electrode pieces prepared above are sequentially laminated, so that the separator is located between the positive and negative electrode pieces for isolation. Then wrap the aluminum-plastic film, transfer it to a vacuum oven for drying at 120°C, and then inject the electrolyte prepared above.
  • the electrolyte injection volume is 1.7g/Ah, and the seal is sealed to prepare a soft pack battery with a capacity of 1Ah (ie, lithium ion). battery).
  • the lithium ion battery of Comparative Example 1-2 was prepared according to the above method, the difference is that there is no additive in the electrolyte of Comparative Example 1-2.
  • the self-extinguishing time (SET) method is used to evaluate the flammability of the electrolyte.
  • the specific steps are to make glass wool balls with a diameter of about 3 ⁇ 5mm using glass fiber wool as raw materials, and place them on a wire mesh.
  • the ignition time is controlled at 2s, and the quality of the syringe before and after injection is weighed. The time from when the ignition device is removed to the flame automatically extinguishes is recorded. This time is called the self-extinguishing time. Taking the self-extinguishing time per unit mass of electrolyte as a standard, compare the flame retardant properties of electrolytes with different additive contents. The results are shown in Table 2.
  • the prepared lithium-ion battery was charged to 4.25V with a constant current of 1.5mA/cm 2 at 25°C, and then charged with a constant voltage of 4.25V until the current dropped to 0.3mA/cm 2 to obtain the first week charging specific capacity (C c1 ); then discharge to 3.0V at a constant current of 1.5mA/cm 2 to obtain the first week discharge specific capacity (C d1 ), and calculate the first week efficiency of the lithium-ion battery according to the following formula.
  • the first week efficiency of the lithium ion battery the first week specific discharge capacity (C d1 )/the first week charge specific capacity (C c1 ).
  • the charge cut-off voltage of the lithium iron phosphate positive battery is set to 4.0V.
  • the prepared lithium-ion battery was charged to 4.25V with a constant current of 1.5mA/cm 2 at 25°C, and then charged with a constant voltage of 4.25V until the current dropped to 0.3mA/cm 2 ; and then at a constant current of 1.5mA/cm 2 Discharge to 3.0V at a constant current (5 batteries per group), measure the energy of the lithium-ion battery, and calculate the energy density of the lithium-ion battery according to the following formula.
  • the lithium-ion battery Charge the lithium-ion battery to 4.25V with a constant current of 1.5mA/cm 2 at 25°C, then charge with a constant voltage of 4.25V until the current drops to 0.3mA/cm 2 , and then discharge with a constant current of 1.5mA/cm 2
  • the first week discharge specific capacity (C d1 ) is obtained; repeat the charge and discharge to the nth week to obtain the specific discharge capacity of the lithium ion battery after n cycles, which is recorded as C dn .
  • Capacity retention ratio specific discharge capacity (C dn ) after cycling for n cycles/specific discharge capacity in the first week (C d1 ).
  • the lithium ion battery after the 100-week cycle was disassembled, and the surface morphology of the metal lithium negative electrode was observed through an optical microscope to observe whether lithium dendrites were formed. The results are shown in Table 2.
  • the electrolytes of Examples 1-18 contain the specific additives of this application, which can effectively improve the first week efficiency of the battery. After 200 weeks of cycling, the lithium dendrites of the lithium ion battery are significantly suppressed. It shows that the additive is beneficial to improve the interface composition and lithium deposition morphology of the surface of the lithium metal negative electrode, and can effectively inhibit the growth of lithium dendrites during the battery cycle and improve the cycle performance.
  • Comparative Examples 1-2 and Examples 1 to 5 Comparing Comparative Examples 1-2 and Examples 1 to 5, it can be seen that as the content of additives increases, the surface film of the lithium negative electrode gradually changes, and the lithium dendrites present at the end of the cycle obviously disappear; although the conductivity of the electrolyte has decreased , The battery performance is correspondingly reduced, but it is still better than Comparative Examples 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种用于锂离子电池的电解液、锂离子电池、电池模块、电池包及装置。所述电解液包括有机溶剂、溶解在该有机溶剂中的电解质锂盐以及添加剂,其中所述添加剂为如下式I所示的化合物。所述电解液能够抑制锂离子电池中的锂枝晶生长、改善电池循环性能、同时还提高了电池的阻燃能力,有效解决了现有技术中存在的缺陷。(I)

Description

用于锂离子电池的电解液、锂离子电池、电池模块、电池包及装置 技术领域
本申请涉及电池领域,尤其涉及一种用于锂离子电池的电解液、锂离子电池、电池模块、电池包及装置。
背景技术
目前,锂离子电池已广泛应用于汽车、手机等高科技产品中。商业化锂离子电池主要以石墨为负极材料,其容量发挥已经接近石墨理论值(372mAh/g),很难通过对石墨进行处理而高幅度提升锂离子电池的容量。而金属锂的理论比容量高达3860mAh/g,电极电位低至-3.04V(vs.H 2/H +),因此发展以金属锂作为负极的锂离子电池再次引起科研工作者的关注。
然而,限制锂离子电池进一步发展的障碍主要有以下三个方面:1)锂离子电池在循环过程中容易产生锂枝晶,导致电池易出现短路;2)锂枝晶表面积大、活性高,易与电解液剧烈反应,产生氢气、烷烃、烯烃等易燃气体;3)锂沉积/溶出过程中,体积变化大,导致金属锂表面SEI膜持续发生破裂与重组,消耗电解液和活性锂。上述行为,都会导致锂离子电池循环效率降低,电池循环寿命缩短以及安全隐患。
因此,如何有效改善金属锂电极表面性质、抑制锂枝晶的生成、以及提高电池阻燃能力是当前进一步发展锂离子电池需要解决的重点问题。
发明内容
本申请部分实施例提供一种用于锂离子电池的电解液、锂离子电池、电池模块、电池包及装置,所述电解液能够抑制锂离子电池中的锂枝晶生长、改善电池循环性能、同时还提高了电池的阻燃能力,有效解决了现有技术中 存在的缺陷。
一方面,本申请提供一种用于锂离子电池的电解液,包括:电解质锂盐、有机溶剂和添加剂。其中所述添加剂为如下式I所示的化合物:
Figure PCTCN2019121316-appb-000001
其中,R 1为C1-10的亚烷基,任选的,所述亚烷基中的一个或多个氢原子可被苯基(Ph-)、卤素、氮、氧、硫、硅、硼或磷中的一个或多个取代。
R 2和R 3各自独立地选自卤素、C1-10的饱和或不饱和的烷基或烷氧基、或烷基氨基(例如R-NR 4-或-R 1-NR 4R 5),任选的,所述饱和或不饱和的烷基、烷氧基或烷基氨基中的一个或多个氢原子可被卤素、氮、氧、硫、硅、硼或磷中的一个或多个取代。
R为C1-10的饱和或不饱和的烷基,任选的,所述饱和或不饱和的烷基中的一个或多个氢原子可被卤素、氮、氧、硫、硅、硼或磷中的一个或多个取代。
R 4、R 5各自独立地选自H或卤素。
第二方面,本申请提供一种锂离子电池,包括正极、负极,设置于正极和负极之间的隔离膜,以及本申请第一方面所述的电解液。
第三方面,本申请还提供一种电池模块,包括本申请第二方面所述的锂离子电池。
第四方面,本申请还提供一种电池包,包括本申请第三方面所述的电池模块。
第五方面,本申请还提供一种装置,包括本申请第二方面所述的锂离子电池,所述锂离子电池用作所述装置的电源。
本申请通过在锂离子电池的电解液中添加如式I所示的化合物作为添加剂,由于该化合物中含有磺酰基团,因此在正、负电极表面均能够形成含有P、S、N、F等元素成分的界面膜。该界面膜具有良好的导离子能力,能够抑制锂离子电池中的锂枝晶生长,有利于降低锂离子电池的阻抗,且能够抑制正、负电极与电解液之间的过度副反应,从而改善电池循环性能。此外,该添加剂还具有阻燃性,因而能够改善电解液及锂离子电池的安全性能。
附图说明
下面结合附图进一步详细描述本申请。
图1是根据本申请一实施例的锂离子电池的立体图。
图2是图1所示锂离子电池的分解图。
图3是根据本申请一实施例的电池模块的立体图。
图4是根据本申请一实施例的电池包的立体图。
图5是图4所示电池包的分解图。
图6是根据本申请一实施例的锂离子电池作为电源装置的示意图。
其中,附图标记说明如下:
1 电池包
2 上箱体
3 下箱体
4 电池模块
5 电池单体
51 壳体
52 电极组件
53 顶盖组件
具体实施方式
下面将详细说明根据本申请的用于锂离子电池的电解液、锂离子电池、 电池模块、电池包及装置。
为了简便,本文仅示例性地公开了一些数值范围。然而,任意下限可以与任何其它上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,尽管未明确记载,但是范围端点间的每个点或单个数值都包含在该范围内。因此,每个点或单个数值可以作为自身的下限或上限与任意其它点或单个数值组合、或与其它下限或上限组合形成未明确记载的范围。应理解,数值的列举仅作为示例,不应解释为穷尽。
在本文的描述中,需要说明的是,除非另有说明,“以上”、“以下”、“≤”、“≥”均包含本数,“至少一种”是指包括一种或多种,“一种或多种”中的“多种”含义是指两种或两种以上。
电解液
下文将详细描述根据本申请第一方面的用于锂离子电池的电解液。
根据本申请第一方面的用于锂离子电池的电解液,包括:电解质锂盐、有机溶剂和添加剂。其中所述添加剂为如下式I所示的化合物:
Figure PCTCN2019121316-appb-000002
其中,R 1为C1-10的亚烷基,任选的,所述亚烷基中的一个或多个氢原子可被苯基(Ph-)、卤素、氮、氧、硫、硅、硼或磷中的一个或多个取代。
R 2和R 3各自独立地选自卤素、C1-10的饱和或不饱和的烷基或烷氧基、或烷基氨基(例如R-NR 4-或-R 1-NR 4R 5),任选的,所述饱和或不饱和的烷基、烷氧基或烷基氨基中的一个或多个氢原子可被卤素、氮、氧、硫、硅、硼或磷中的一个或多个取代。
R为C1-10的饱和或不饱和的烷基,任选的,所述饱和或不饱和的烷基中的一个或多个氢原子可被卤素、氮、氧、硫、硅、硼或磷中的一个或多个取代。
R 4、R 5各自独立地选自H或卤素。
在本申请一实施例中,所述卤素选自氟、氯、溴或碘。
在本申请一实施例中,R 1选自C1-4的亚烷基,任选的,所述亚烷基中的一个或多个氢原子可被苯基、氟、氯、溴、碘、氮、氧、硫、硅、硼、磷中的一个或多个取代。
在本申请一实施例中,R 1选自-CH 2-、-CH 2CH 2-、-CH 2CH 2CH 2-或-CH 2(CH 2) 2CH 2-,任选地,这些基团中的一个或多个氢原子可被苯基、氟、氯、溴、碘、氮、氧、硫、硅、硼或磷中的一个或多个取代。
在本申请一实施例中,R 1选自-CH 2-、-CH 2CH 2-、-CH 2CH 2CH 2-、-CH 2(CH 2) 2CH 2-或-CH 2-CHPh-。
在本申请一实施例中,R 2和R 3各自独立地选自F、Cl、Br,或C1-4的烷基或烷氧基,任选的,所述烷基或烷氧基中的一个或多个氢原子可被氟、氯、溴、碘、氮、氧、硫、硅、硼或磷中的一个或多个取代。
在本申请一实施例中,R 2和R 3各自独立地选自F、Cl、-CH 3、-CH 2CH 3、-CH 2CH 2CH 3、-CH 2(CH 2) 2CH 3、-OCH 3、-OCH 2CH 3、-OCH 2CH 2CH 3、-OCH 2(CH 2) 2CH 3、-CF 3、-CF 2CF 3、-CF 2CF 2CF 3、-CF 2(CF 2) 2CF 3、-CH 2CF 3或-CH(CF 3) 2
在本申请一实施例中,R 2和R 3各自独立地选自R-NR 4-或-R 1-NR 4R 5,其中R为C1-4的烷基,R 4、R 5各自独立地选自H、氟、氯、溴或碘,R 1如上文所述。
在本申请一实施例中,R 2和R 3各自独立地选自R-NR 4-或-R 1-NR 4R 5,其中R为-CH 3、-CH 2CH 3、-CH 2CH 2CH 3或-CH 2(CH 2) 2CH 3,R 4、R 5各自独立地选自H、氟、氯、溴或碘,R 1选自-CH 2-、-CH 2CH 2-、-CH 2CH 2CH 2-或-CH 2(CH 2) 2CH 2-。
在本申请一实施例中,R 2和R 3各自独立地选自R-NR 4-或-R 1-NR 4R 5,其中R为-CH 3、-CH 2CH 3、-CH 2CH 2CH 3或-CH 2(CH 2) 2CH 3,R 4、R 5各自独立地为H,R 1选自-CH 2-、-CH 2CH 2-、-CH 2CH 2CH 2-或-CH 2(CH 2) 2CH 2-。
在本申请一实施例中,R 2和R 3各自独立地选自CH 3NH-、CF 3NH-、CH 3CH 2NH-、CH 3(CH 2) 2NH-、CH 3(CH 2) 2NH-、-CH 2NH 2或-CH 2CH 2NH 2
在本申请一实施例中,R 2独立地选自F、Cl、-CH 3、-CH 2CH 3、-OCH 3、-OCH 2CH 3、-CF 3、CH 3NH-或CF 3NH-。
在本申请一实施例中,R 3独立地选自F、Cl、-CH 3、-CH 2CH 3、-CF 3、-CF 2CF 3、-CF 2CF 2CF 3、-CF 2(CF 2) 2CF 3、-CH 2CF 3或-CH(CF 3) 2
在本申请一实施例中,如式I所示的化合物选自以下化合物:
Figure PCTCN2019121316-appb-000003
试验表明,本申请使用如式I所示的化合物作为添加剂用于电解液中,能够在电极表面形成含有P、S、N、F等元素成分的界面膜,有效抑制电解液 溶剂与锂负极、正极材料间的持续剧烈反应,减缓金属锂枝晶的生成,提高锂离子电池充放电的库仑效率,显著改善锂离子电池的循环性能;此外还能够有效抑制电解液及电池的燃烧性,提高电池的安全性能。
在本申请一实施例中,作为添加剂的式I所示的化合物在电解液中的含量为0.1wt%~15wt%,优选0.5wt%~10wt%。适当的添加剂含量可以有效改善电极表面和电池的阻燃性,以及电池内部锂离子的传导,预防极化发生。
在本申请一实施例中,作为添加剂的式I所示的化合物在电解液中的含量为0.1wt%、0.2wt%、0.3wt%、0.5wt%、0.6wt%、0.8wt%、1.0wt%、1.5wt%、2.0wt%、2.5wt%、5wt%、8wt%、10wt%或15wt%等,包括其中的任何数值及所有范围和子范围。例如包括但不限于,0.1wt%~15wt%、0.1wt%~10wt%、0.3wt%~15wt%、0.5wt%~15wt%、0.5wt%~15wt%、0.5wt%~10wt%、1.0wt%~15wt%、2.5wt%~10wt%、5wt%~10wt%等。
作为本申请电解液的一种改进,所述电解液中还可添加其他本领域已知可用于提高锂离子电池性能的功能添加剂,例如SEI膜成膜添加剂、阻燃添加剂、防过充添加剂、导电添加剂,如亚磷酸三乙酯(TEP),在此不再赘述。
用于本申请的有机溶剂的种类没有具体限制,可根据实际需求适当选择,只要能够实现本申请的技术方案即可。作为示例,在本申请一实施例中,所述有机溶剂可选自碳酸酯、羧酸酯、硫酸酯、磷酸酯、酰胺类、腈类、醚类中的至少一种。例如包括但不限于,所述有机溶剂可选自碳酸乙烯酯(EC)、氟代碳酸乙烯酯(FEC)、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯(DEC)、碳酸二丙酯、碳酸甲乙酯(EMC)、甲酸甲酯、甲酸乙酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、乙酸乙酯、酸酐、N-甲基吡咯烷酮(NMP)、N-甲基甲酰胺、N-甲基乙酰胺、乙腈、环丁砜、二甲亚砜、乙烯亚硫酸酯、丙烯亚硫酸酯、三乙基磷酸酯、甲基乙基亚磷酸酯、甲硫醚、二乙基亚硫酸酯、亚硫酸二甲酯、乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、1,3-二氧戊环、四氢呋喃、含氟环状有机酯、含硫环状有机酯中的一种或几种。
所述有机溶剂可以是上述有机溶剂的两种或更多种的混合溶剂,它们的比例没有特别限制,可根据实际需求适当选择,只要能够实现本申请的技术方案即可。例如,在本申请一实施例中,当所述有机溶剂包含两种不同有机溶剂时,它们可以按照体积比1:1、2:8、3:7、4:6、8:2、7:3、6:4等比例来混合使用。
所述有机溶剂在电解液中的含量没有具体限制,可根据实际需求适当选择,只要能够实现本申请的技术方案即可。作为例举,在本申请一实施例中,所述有机溶剂在电解液中的含量为60wt%~90wt%。优选70wt%~80wt%。例如包括但不限于,65wt%、70wt%、75wt%、80wt%、85wt%等,包括其中的任何数值及所有范围和子范围。
同样地,用于本申请的电解质锂盐没有具体限制,可根据实际需求适当选择,只要能够实现本申请的技术方案即可。在本申请一实施例中,所述电解质锂盐可选自有机锂盐、无机锂盐中的一种或几种。例如,所述电解质锂盐可选自LiPF 6、LiBF 4、LiTFSI(双三氟磺酰亚胺锂)、LiFSI(双氟磺酰亚胺锂)、LiClO 4、LiAsF 6、LiPO 2F 2、LiBOB、LiDFOB、LiTFOP、LiN(SO 2R F) 2、LiN(SO 2F)(SO 2R F)中的至少一种,其中取代基R F=C nF 2n+1,n为1~10的整数。
在本申请一实施例中,所述电解质锂盐在电解液中的浓度为0.5mol/L~10mol/L,优选为1mol/L~5mol/L。例如包括但不限于,0.5mol/L、0.6mol/L、0.8mol/L、1.0mol/L、1.5mol/L、2.0mol/L、3mol/L、5mol/L、8mol/L、10mol/L,包括其中的任何数值及所有范围和子范围。
锂离子电池
接下来将详细描述根据本申请第二方面的锂离子电池。
根据本申请第二方面的锂离子电池,包括正极、负极,设置于正极与负极之间的隔离膜,以及本申请第一方面所述的电解液,其中所述电解液包含如式I所述的化合物作为添加剂。
图1示出了根据本申请一实施例的锂离子电池的立体图,图2是图1所示锂离子电池的分解图。参看图1和图2,根据本申请的锂离子电池5(以 下简称电池单体5)包括壳体51、电极组件52、顶盖组件53、正极、负极、隔离膜以及电解液(未示出)。其中电极组件52收容于壳体51内,电极组件52的数量不受限制,可以为一个或多个。
需要说明的是,图1所示的电池单体5为罐型电池,但本申请并不限于此,电池单体5可以是袋型电池,即壳体51由金属塑膜替代且取消顶盖组件53。
用于本申请的锂二次电池的正极包括正极集流体以及设置于正极集流体至少一个表面上的正极活性物质层。例如,正极集流体在自身厚度方向上包括相对的两个表面,正极活性物质层层叠设置于正极集流体的两个表面中的任意一者或两者上。
正极活性物质层中含有正极活性物质,在工作过程中能够进行锂离子的可逆脱嵌/入嵌。本申请对正极活性物质的种类没有特别地限制,可以是本领域已知的用于锂离子电池的正极活性物质。例如锂过渡金属复合氧化物,其中过渡金属可以是Mn、Fe、Ni、Co、Cr、Ti、Zn、V、Al、Zr、Ce、Mg中的一种或多种。锂过渡金属复合氧化物例如可以是LiMn 2O 4、LiNiO 2、LiCoO 2、LiNi 1-yCo yO 2(0<y<1)、LiNi mCo nAl 1-m-nO 2(0<m<1,0≤n<1,0<m+n<1)、LiNi sCo tMn 1-s-tO 2(0<s<1,0≤t<1,0<s+t<1,例如LiNi 0.8Co 0.1Mn 0.1O 2(简称NCM 811)、LiNi 1/3Co 1/3Mn 1/3O 2(简称NCM 111),或者LiNi 0.4Co 0.3Mn 0.3O 2(简称NCM 433)、LiNi 0.4Co 0.2Mn 0.4O 2(简称NCM 424)、LiNi 0.5Co 0.2Mn 0.3O 2(简称NCM 523)、LiNi 0.6Co 0.2Mn 0.2O 2(简称NCM 622))、LiNi 0.8Co 0.15Al 0.05O 2(简称NCA)、LiXPO 4(X选自Fe、Mn、Co)、Li 3V 2(PO 4) 3中的一种或多种。锂过渡金属复合氧化物中还可以掺杂电负性大的元素,如S、N、F、Br、Cl、I中的一种或多种。锂过渡金属复合氧化物还可以进行包覆改性处理。通过掺杂和/或包覆改性能够使化合物具有更稳定的结构和更优的电化学性能。
在本申请一实施例中,正极活性物质可包括下式(II)所示的正极活性物质。
Li 1+xNi aCo bM 1-a-bO 2-yA y      (II)
其中,-0.1≤x≤0.2,0<a<1,0≤b<1,0<a+b<1,0≤y<0.2,M选自Mn、Fe、Cr、Ti、Zn、V、Al、Zr或Ce,A选自S、N、F、Cl、Br或I。
优选地,0.5≤a<1,更优选地,0.6≤a<1;M选自Mn、Al,A选自S、F。
任选地,正极活性物质层中还可以包括导电剂和粘结剂。本申请对正极活性物质层中的导电剂和粘结剂的种类没有具体限制,可以根据实际需求进行选择。作为示例,导电剂可以是石墨、超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯、碳纳米纤维中一种或多种。粘结剂可以是丁苯橡胶(SBR)、水性丙烯酸树脂(water-based acrylic resin)、羧甲基纤维素(CMC)、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚乙烯醇缩丁醛(PVB)、乙烯-醋酸乙烯酯共聚物(EVA)及聚乙烯醇(PVA)中的一种或多种。
正极集流体汇集和传导电流。正极集流体可以采用金属箔材或多孔金属板,例如使用铝、铜、镍、钛或银等金属或它们的合金的箔材或多孔板,如铝箔。
通常在具体应用中,需要将所述正极进一步加工成正极极片使用,正极极片的构造和制备方法是本领域已知的。例如,正极极片可以采用涂布方式制备。例如先将正极活性物质、粘结剂、导电剂及有机溶剂按照预定比例混合,将混合物料搅拌至均一体系,获得正极浆料;之后将正极浆料涂布于正极集流体上,经过烘干、辊压等工序后,制得正极极片。
所述粘结剂、导电剂、有机溶剂(例如N-甲基吡咯烷酮(NMP))均为用于锂离子电池的常规试剂,在此不再赘述。
用于本申请的锂离子电池的负极包括负极集流体以及设置于负极集流体至少一个表面上的负极活性物质层。例如,负极集流体在自身厚度方向上包括相对的两个表面,负极活性物质层层叠设置于负极集流体的两个表面中的任意一者或两者上。
负极活性物质层中含有负极活性物质,在工作过程中能够进行锂离子的可逆沉积/溶出或合金化/脱合金化。对负极活性物质的种类没有特别地限制, 可以是本领域已知的用于锂离子电池的负极活性物质。例如锂金属箔、锂合金。其中,锂合金可以是石墨、或者是在<2V(vs.Li/Li +)以下可以发生锂合金化的材料中的一种或两种以上的下述混合物:天然石墨、人造石墨、中间相碳微球(MCMB)、硬碳、软碳、硅、硅-碳复合物、Li-Sn合金、Li-Sn-O合金、Sn、SnO、SnO 2、尖晶石结构的锂化TiO 2-Li 4Ti 5O 12、Li-Al合金。
负极集流体可以使用金属箔材或多孔金属板等材料,例如使用铜、镍、钛或铁等金属或它们的合金的箔材或多孔板,如铜箔。
同样地,在具体应用中,需要将所述负极进一步加工成负极极片使用,所述负极极片的构造和制备方法是本领域已知的。例如,负极极片可以通过机械辊轧、气相沉积法、化学镀中的至少一种手段将锂金属形成于负极集流体上,其中气相沉积法例如物理气相沉积法;物理气相沉积法可以是蒸发法、溅射法中的至少一种,例如真空蒸镀法、热蒸发法、电子束蒸发法、磁控溅射法中的至少一种。或用涂布方式制备负极极片,例如先将负极活性物质、粘结剂、导电剂及溶剂按照预定比例混合,溶剂可以是N-甲基吡咯烷酮或水,将混合物料搅拌至均一体系,获得负极浆料;之后将负极浆料涂布于负极集流体上,经过烘干、辊压等工序后,制得负极极片。其中,负极活性物质层中的导电剂及粘结剂的种类不做具体限制,可以根据实际需求进行选择。
用于本申请的锂离子电池的隔离膜没有特别限制,可以选用任意已知的具有电化学稳定性和化学稳定性的多孔结构隔离膜,例如玻璃纤维、无纺布、聚乙烯(PE)、聚丙烯(PP)及聚偏二氟乙烯(PVDF)中的一种或多种的单层或多层薄膜。
正极极片和负极极片交替层叠设置,并在正极极片与负极极片之间设置隔离膜以起到隔离正极和负极的作用,得到电芯,也可以是经卷绕后得到电芯;将电芯置于外壳中,注入电解液,并封口,即得到锂离子电池。
电池模块
接下来将简单描述根据本申请第三方面的电池模块。
图3示出了根据本申请一实施例的电池模块的立体图。参看图3,根 据本申请的电池模块4包括多个电池单体5,所述多个电池单体5沿纵向排列。
电池模块4可以作为电源或储能装置。电池模块4中的电池单体5的数量可以根据电池模块4的应用和容量进行调节。
电池包
接下来将简单描述根据本申请第四方面的电池包。
图4示出了根据本申请一实施例的电池包的立体图,图5是图4所示电池包的分解图。参看图4和图5,根据本申请的电池包1包括上箱体2、下箱体3以及电池模块4。其中,上箱体2和下箱体3组装在一起并形成收容电池模块4的空间。电池模块4置于组装在一起的上箱体2和下箱体3的空间内。
电池模块4的输出极从上箱体2和下箱体3的其中之一或二者之间穿出,以向外部供电或从外部充电。
需要说明的是,电池包1采用的电池模块4的数量和排列可以依据实际需要来确定。电池包1可以作为电源或储能装置。
装置
接下来将简单描述根据本申请第五方面的装置。
图6示出了根据本申请一实施例的锂离子电池作为电源装置的示意图。仅作为示例,在图6中,使用电池单体5的装置为电动汽车。当然不限于此,使用电池单体5的装置可以为除电动汽车外的任何电动车辆(例如电动大巴、电动有轨电车、电动自行车、电动摩托车、电动踏板车、电动高尔夫球车、电动卡车)、电动船舶、电动工具、电子设备及储能系统。
所述电动汽车可以为电动纯电动车、混合动力电动车、插电式混合动力电动车。当然,依据实际使用形式,本申请第五方面提供的装置可包括本申请的第三方面所述的电池模块4,当然,本申请第五方面提供的装置也可包括本申请第四方面所述的电池包1。
实施例
下面结合具体实施例,进一步阐述本申请。应理解,下文的示例性实 施例仅用于举例说明,并非对本申请进行限定。除非另有声明,实施例中使用的所有试剂都可商购或按照常规方法进行合成获得,并且可直接使用而无需进一步处理。实施例中未注明的实验条件采用常规条件、或采用材料供应商或设备供应商推荐的条件。
实施例1-18
按照下述方法以及表1具体参数制备本申请的实施例1-18。
(1)电解液的制备
在干燥房中准备有机溶剂,然后向该有机溶剂中加入电解质锂盐和本申请的添加剂,混合均匀后,即得到电解液。
(2)正极极片制备
将正极活性材料镍钴锰酸锂(LiNi 0.8Co 0.1Mn 0.1O 2,NCM 811)、粘结剂PVDF、导电剂乙炔黑,按照质量比98:1:1混合,加入有机溶剂N-甲基吡咯烷酮(NMP)至体系成均一透明状,真空搅拌机搅拌后制得电极活性材料浆料;将该浆料均匀涂覆于铝箔(厚度为12μm)上,室温晾干后转移至120℃烘箱干燥1h,之后经冷压、分切,得到正极极片。
(3)负极极片制备
将25μm锂金属贴于铜箔表面,之后经过冷压、分切,得到负极极片。
(4)软包电池的制备
以厚度12μm的聚丙烯薄膜(PP)作为隔离膜,将上述制得的正极极片、隔离膜、负极极片依次进行叠片,使隔离膜处于正、负极极片中间起到隔离的作用。然后外包铝塑膜,转移至真空烘箱中120℃干燥,之后注入上述制得的电解液,电解液注液量为1.7g/Ah,封口,制备得容量为1Ah的软包电池(即锂离子电池)。
对比例1-2
按照上述方法制备对比例1-2的锂离子电池,区别在于,对比例1-2的电解液中没有添加剂。
表1 实施例1-18和对比例1-2的锂离子电池的制备参数
Figure PCTCN2019121316-appb-000004
一)电解液性能测试
1.电解液电导率测定
使用输立强电化学工作站测量电解液的电导率。在手套箱中将待测电解液样品装到铂黑电导池中(电导池常数约10cm -1,通过0.1mol/L的标准KCl溶液准确标定)并密封,然后采用交流阻抗(EIS)方法测定阻抗曲线, 交流阻抗谱频率范围为0.1~1.0MHz,交流激励信号电压为5mV。测试温度为25℃之间,使用JULABO F12恒温油浴锅控制测试温度在±0.1℃的误差范围内,结果参看表2。
2.电解液燃烧性能评价
采用自熄时间法(Self-extinguishing time,简称SET)评价电解液的可燃性。具体步骤是以玻璃纤维棉为原料制成直径约为3~5mm的玻璃棉球,安置在铁丝网上,用注射器分别取出含有不同含量添加剂的电解液,将该电解液注入玻璃棉球,迅速点火,点火时间控制在2s,并称出注入前后注射器的质量差,记录点火装置移开后至火焰自动熄灭的时间,该时间被称为自熄时间。以单位质量电解液的自熄时间为标准,比较含不同添加剂含量的电解液的阻燃性能,结果参看表2。
二)锂离子电池的性能测试
1.锂离子电池的首周放电比容量和首周效率测试
将制得的锂离子电池在25℃下以1.5mA/cm 2的恒定电流充电至4.25V,之后以4.25V恒压充电至电流降到0.3mA/cm 2,得到首周充电比容量(C c1);再以1.5mA/cm 2的恒定电流放电至3.0V,得到首周放电比容量(C d1),并按照下式计算锂离子电池的首周效率。
锂离子电池的首周效率=首周放电比容量(C d1)/首周充电比容量(C c1)。
实施例16中,磷酸铁锂正极电池充电截止电压设置为4.0V。
2.锂离子电池的能量密度测试
将制得的锂离子电池在25℃下以1.5mA/cm 2的恒定电流充电至4.25V,之后以4.25V恒压充电至电流降到0.3mA/cm 2;再以1.5mA/cm 2的恒定电流放电至3.0V,(每组5支电池),测量锂离子电池的能量,并按照下式计算锂离子电池的能量密度。
能量密度(Wh/kg)=电池能量/电池质量
结果参看表2。
3.锂离子电池的容量保持率测试
将锂离子电池在25℃下以1.5mA/cm 2的恒定电流充电至4.25V,之后以4.25V恒压充电至电流降到0.3mA/cm 2,再以1.5mA/cm 2的恒定电流放电至3.0V,得到首周放电比容量(C d1);如此反复充放电至第n周,得锂离子电池循环n周后的放电比容量,记为C dn。并按照下式计算锂离子电池的容量保持率。
容量保持率=循环n周后的放电比容量(C dn)/首周放电比容量(C d1)。
结果参看表2。
4.金属锂负极极片表面观察
将上述循环100周后的锂离子电池拆解,通过光学显微镜观察金属锂负极极片的表面形貌,观察是否有锂枝晶生成,结果参看表2。
表2 实施例1-18和对比例1-2的电解液及锂离子电池的性能评价
Figure PCTCN2019121316-appb-000005
从上述表1和表2可以看出:
1)相对于对比例1,实施例1~18的电解液中因添加有本申请特定的添加剂,可以有效提升电池的阻燃性,降低电池的安全风险。
2)相对于对比例1,实施例1~18的电解液中因有本申请特定的添加剂,可以有效提高电池的首周效率,循环200周后锂离子电池的锂枝晶情况得到明显抑制,说明该添加剂有利于改善锂金属负极表面的界面组成和锂沉积形貌,能够有效抑制电池循环过程中的锂枝晶生长,改善循环性能。
3)比较对比例1-2和实施例1~5可知,随着添加剂含量增加,锂负极的表面膜逐渐发生变化,循环末端存在的锂枝晶明显消失;虽然电解液的电导率有所降低、电池性能也相应降低,但仍然优于对比例1和2。
4)比较实施例1、7~8,以及对比例1可知,电解液体系中进一步加入其它含F和磷酸酯等传统功能添加剂如TEP,可以进一步改善阻燃功能。
5)比较实施例9~15、16~18可知,加入本申请的其他相似结构的添加剂,同样也能改善阻燃性和抑制锂枝晶生长,利于电池安全性和循环稳定性。也同样适用于其他锂离子电池体系。
根据上述说明书的揭示和教导,本领域技术人员还可以对上述实施方式进行变更和修改。因此,本申请并不局限于上面揭示和描述的具体实施方式,对本申请的一些修改和变更也应当落入本申请的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本申请构成任何限制。

Claims (15)

  1. 一种用于锂离子电池的电解液,包括:
    有机溶剂,
    溶解在所述有机溶剂中的电解质锂盐,以及
    添加剂;
    其特征在于,所述添加剂为如下式I所示的化合物:
    Figure PCTCN2019121316-appb-100001
    其中,R 1为C1-10的亚烷基,任选的,所述亚烷基中的一个或多个氢原子可被苯基、卤素、氮、氧、硫、硅、硼或磷中的一个或多个取代;
    R 2和R 3各自独立地选自卤素、C1-10的饱和或不饱和的烷基或烷氧基、R-NR 4-或-R 1-NR 4R 5,任选的,所述饱和或不饱和的烷基或烷氧基中的一个或多个氢原子可被卤素、氮、氧、硫、硅、硼或磷中的一个或多个取代;
    R为C1-10的饱和或不饱和的烷基,任选的,所述饱和或不饱和的烷基中的一个或多个氢原子可被卤素、氮、氧、硫、硅、硼或磷中的一个或多个取代;所述R 4、R 5各自独立地选自H或卤素。
  2. 根据权利要求1所述的电解液,其特征在于,所述式I化合物中R 1选自C1-4的亚烷基,任选的,所述亚烷基中的一个或多个氢原子可被苯基、氟、氯、溴、碘、氮、氧、硫、硅、硼、磷中的一个或多个取代。
  3. 根据权利要求1或2所述的电解液,其特征在于,所述式I化合物中R 1选自-CH 2-、-CH 2CH 2-、-CH 2CH 2CH 2-、-CH 2(CH 2) 2CH 2-或-CH 2-CHPh-。
  4. 根据权利要求1所述的电解液,其特征在于,所述式I化合物中R 2 和R 3各自独立地选自F、Cl、Br、C1-4的烷基或烷氧基、R-NR 4-或-R 1-NR 4R 5,任选的,所述烷基或烷氧基中的一个或多个氢原子可被氟、氯、溴、碘、氮、氧、硫、硅、硼或磷中的一个或多个取代;
    R独立地选自C1-4的烷基;R 4、R 5各自独立地选自H。
  5. 根据权利要求1或4所述的电解液,其特征在于,所述式I化合物中R 2和R 3各自独立地选自F、Cl、-CH 3、-CH 2CH 3、-CH 2CH 2CH 3、-CH 2(CH 2) 2CH 3、-OCH 3、-OCH 2CH 3、-OCH 2CH 2CH 3、-OCH 2(CH 2) 2CH 3、-CF 3、-CF 2CF 3、-CF 2CF 2CF 3、-CF 2(CF 2) 2CF 3、-CH 2CF 3、-CH(CF 3) 2、CH 3NH-、CF 3NH-、CH 3CH 2NH-、CH 3(CH 2) 2NH-、CH 3(CH 2) 2NH-、-CH 2NH 2或-CH 2CH 2NH 2
  6. 根据前述任一项权利要求所述的电解液,其特征在于,所述式I化合物选自以下化合物:
    Figure PCTCN2019121316-appb-100002
  7. 根据前述任一项权利要求所述的电解液,其特征在于,所述式I化合 物在所述电解液中的浓度为0.1wt%~15wt%,优选0.5wt%~10wt%。
  8. 根据前述任一项权利要求所述的电解液,其特征在于,所述电解质锂盐选自:LiPF 6、LiBF 4、LiTFSI、LiFSI、LiClO 4、LiAsF 6、LiPO 2F 2、LiBOB、LiDFOB、LiTFOP、LiN(SO 2R F) 2、LiN(SO 2F)(SO 2R F)中的至少一种,其中取代基R F=C nF 2n+1,n为1~10的整数,
    优选地,所述电解质盐选自LiTFSI、LiFSI中的至少一种。
  9. 根据权利要求8所述的电解液,其特征在于,所述电解质锂盐在电解液中的浓度为0.5mol/L~10mol/L,优选1mol/L~5mol/L。
  10. 根据前述任一项权利要求所述的电解液,其特征在于,所述电解液还包括SEI膜成膜添加剂、阻燃添加剂、防过充添加剂、导电添加剂中的至少一种。
  11. 一种锂离子电池,包括正极、负极,设置于正极与负极之间的隔离膜,以及根据权利要求1-10任一项所述的电解液,
    优选的,所述正极包含如式II所述的正极活性材料:
    Li 1+xNi aCo bM 1-a-bO 2-yA y  (II)
    其中,-0.1≤x≤0.2,0<a<1,0≤b<1,0<a+b<1,0≤y<0.2,M选自Mn、Fe、Cr、Ti、Zn、V、Al、Zr或Ce中的至少一种,A选自S、N、F、Cl、Br或I;
    优选地,0.5≤a<1,更优选地,0.6≤a<1,M选自Mn、Al,A选自S、F。
  12. 一种电池模块,包括根据权利要求11所述的锂离子电池。
  13. 一种电池包,包括根据权利要求12所述的电池模块。
  14. 一种装置,包括根据权利要求11所述的锂离子电池,所述锂离子电池用作所述装置的电源。
  15. 根据权利要求14所述的装置,其特征在于,所述装置包括电动车辆、混合动力电动车辆、插电式混合动力电动车辆、电动自行车、电动踏板车、电动高尔夫球车、电动卡车、电动船舶、储能系统。
PCT/CN2019/121316 2019-11-27 2019-11-27 用于锂离子电池的电解液、锂离子电池、电池模块、电池包及装置 WO2021102747A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980063342.9A CN112930615B (zh) 2019-11-27 2019-11-27 用于锂离子电池的电解液、锂离子电池、电池模块、电池包及装置
US17/620,336 US20220376298A1 (en) 2019-11-27 2019-11-27 Electrolyte for lithium-ion battery, lithium-ion battery, battery module, battery pack, and apparatus
EP19954355.4A EP3930070B1 (en) 2019-11-27 2019-11-27 Electrolyte for lithium ion battery, lithium ion battery, battery module, battery pack, and device
PCT/CN2019/121316 WO2021102747A1 (zh) 2019-11-27 2019-11-27 用于锂离子电池的电解液、锂离子电池、电池模块、电池包及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/121316 WO2021102747A1 (zh) 2019-11-27 2019-11-27 用于锂离子电池的电解液、锂离子电池、电池模块、电池包及装置

Publications (1)

Publication Number Publication Date
WO2021102747A1 true WO2021102747A1 (zh) 2021-06-03

Family

ID=76129819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121316 WO2021102747A1 (zh) 2019-11-27 2019-11-27 用于锂离子电池的电解液、锂离子电池、电池模块、电池包及装置

Country Status (4)

Country Link
US (1) US20220376298A1 (zh)
EP (1) EP3930070B1 (zh)
CN (1) CN112930615B (zh)
WO (1) WO2021102747A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024511494A (ja) * 2021-11-12 2024-03-13 エルジー エナジー ソリューション リミテッド リチウム二次電池用非水系電解液及びこれを含むリチウム二次電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593516A (zh) * 2012-03-30 2012-07-18 厦门大学 阻燃型锂离子电池电解液及其制备方法
CN105655641A (zh) * 2016-03-30 2016-06-08 宁德新能源科技有限公司 一种电解液及其锂离子电池
CN106471000A (zh) * 2014-07-02 2017-03-01 中央硝子株式会社 离子性络合物、非水电解液电池用电解液、非水电解液电池及离子性络合物的合成法
CN108503670A (zh) * 2018-04-11 2018-09-07 惠州市大道新材料科技有限公司 一种氟磷酰亚胺及其碱金属盐的制备方法
JP2018177670A (ja) * 2017-04-10 2018-11-15 セントラル硝子株式会社 非対称イミド三級アンモニウム塩の製造方法
CN110299562A (zh) * 2019-07-17 2019-10-01 珠海市赛纬电子材料股份有限公司 一种新型锂盐添加剂及其锂离子电池非水电解液

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889906A (en) * 1988-11-25 1989-12-26 Monsanto Company Amine salts of 1,4,2-oxazaphospholidine-4-acetic acid, 2-alkoxy-2-oxides
JP2007517860A (ja) * 2004-01-15 2007-07-05 バイオラブ・リミテッド スフィンゴミエリン、その中間体及びその調製方法
CN108365265A (zh) * 2018-05-15 2018-08-03 中山弘毅新材料有限公司 一种锂离子电池非水电解液及锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593516A (zh) * 2012-03-30 2012-07-18 厦门大学 阻燃型锂离子电池电解液及其制备方法
CN106471000A (zh) * 2014-07-02 2017-03-01 中央硝子株式会社 离子性络合物、非水电解液电池用电解液、非水电解液电池及离子性络合物的合成法
CN105655641A (zh) * 2016-03-30 2016-06-08 宁德新能源科技有限公司 一种电解液及其锂离子电池
JP2018177670A (ja) * 2017-04-10 2018-11-15 セントラル硝子株式会社 非対称イミド三級アンモニウム塩の製造方法
CN108503670A (zh) * 2018-04-11 2018-09-07 惠州市大道新材料科技有限公司 一种氟磷酰亚胺及其碱金属盐的制备方法
CN110299562A (zh) * 2019-07-17 2019-10-01 珠海市赛纬电子材料股份有限公司 一种新型锂盐添加剂及其锂离子电池非水电解液

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3930070A4 *

Also Published As

Publication number Publication date
EP3930070A4 (en) 2022-04-13
US20220376298A1 (en) 2022-11-24
EP3930070B1 (en) 2023-03-22
CN112930615B (zh) 2022-06-03
EP3930070A1 (en) 2021-12-29
CN112930615A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
JP7232359B2 (ja) 再充電可能なバッテリーセル用のso2ベースの電解質および再充電可能なバッテリーセル
CN108172902B (zh) 丙烯酸乙酯类化合物用作电解液添加剂、电解液、基于铝负极的二次电池及其制备方法
WO2020098571A1 (zh) 负极极片及锂离子二次电池
WO2020063371A1 (zh) 正极极片及锂离子二次电池
US20130167363A1 (en) Non-aqueous Electrolytic Solutions And Electrochemical Cells Comprising The Same
CN113839093A (zh) 一种锂离子电池非水电解液及其应用
CN111788732B (zh) 锂二次电池电解液及包含其的锂二次电池
JP7371268B2 (ja) リチウムイオン二次電池、電池モジュール、電池パック、及び電気機器
WO2021047405A1 (zh) 一种电解液及包含该电解液的锂金属电池、电池模块、电池包和装置
CN110085906A (zh) 非水电解液、含有该非水电解液的锂离子电池
CN105074995A (zh) 电解液、及锂离子二次电池
JP2022551058A (ja) リチウム二次電池用非水電解液及びそれを含むリチウム二次電池
CN111048831B (zh) 用于二次电池的电解液以及包含电解液的锂二次电池
WO2023164794A1 (zh) 电化学装置及包含该电化学装置的电子装置
JP6396136B2 (ja) リチウム二次電池
WO2023070989A1 (zh) 电化学装置和包含其的电子装置
JP2012084426A (ja) 非水電解質二次電池
KR102288293B1 (ko) 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지
WO2022198651A1 (zh) 一种正极极片、包含该正极极片的电化学装置和电子装置
KR20200122636A (ko) 리튬 이차전지용 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
CN112687952A (zh) 电解液、电化学装置及电子装置
WO2021102747A1 (zh) 用于锂离子电池的电解液、锂离子电池、电池模块、电池包及装置
KR20210026499A (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR20200126781A (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
CN114520370A (zh) 一种锂离子电池电解液及锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954355

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019954355

Country of ref document: EP

Effective date: 20210921

NENP Non-entry into the national phase

Ref country code: DE