WO2021125636A1 - 내식성과 점 용접성이 우수한 아연계 도금강재 - Google Patents

내식성과 점 용접성이 우수한 아연계 도금강재 Download PDF

Info

Publication number
WO2021125636A1
WO2021125636A1 PCT/KR2020/017515 KR2020017515W WO2021125636A1 WO 2021125636 A1 WO2021125636 A1 WO 2021125636A1 KR 2020017515 W KR2020017515 W KR 2020017515W WO 2021125636 A1 WO2021125636 A1 WO 2021125636A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
plating layer
layer
plated steel
plating
Prior art date
Application number
PCT/KR2020/017515
Other languages
English (en)
French (fr)
Inventor
곽영진
정우성
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN202080088899.0A priority Critical patent/CN114901856B/zh
Priority to EP20901232.7A priority patent/EP4079929A4/en
Priority to US17/787,182 priority patent/US20230030466A1/en
Priority to JP2022536983A priority patent/JP7464717B2/ja
Publication of WO2021125636A1 publication Critical patent/WO2021125636A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size

Definitions

  • the present invention relates to a zinc-based plated steel material having excellent corrosion resistance and spot weldability, and more particularly, to a zinc-based plated steel material plated with a multilayer zinc alloy including two or more layers and having excellent corrosion resistance and spot weldability.
  • the zinc plating method which suppresses corrosion of iron through cathodic corrosion protection, is widely used to manufacture steel materials with high corrosion resistance due to its excellent corrosion resistance performance and economic feasibility. Demand for plated steel is increasing.
  • galvanized steel or zinc alloy plated steel (hereinafter referred to as 'zinc-coated steel') is generally processed into parts by machining, etc. and then welded by spot welding, etc. to be used as a product.
  • Austenite as a microstructure
  • zinc-based plated steel containing high-strength steel containing retained austenite or high-strength IF (Interstitial Free) steel with high P addition zinc in the molten state penetrates along the grain boundary of the substrate during spot welding to cause brittle cracks. There is a problem that so-called liquid metal embrittlement (LME) occurs.
  • LME liquid metal embrittlement
  • Type A cracks cracks occurring in the upper and lower portions of the nugget are referred to as Type A cracks
  • Type B cracks cracks occurring at the weld shoulder are referred to as Type B cracks
  • Type C cracks cracks generated inside the steel plate due to electrode misalignment during welding. do.
  • Type B and C cracks greatly affect the rigidity of the material, preventing the occurrence of cracks during welding will be a key requirement in the art.
  • the zinc-based plated steel may be plated by a physical vapor deposition (PVD) method including vacuum deposition in some cases.
  • PVD physical vapor deposition
  • the galvanized layer formed by the physical vapor deposition method grows into a columnar structure in the form of a column, an empty space may occur between the growing column and the column, which causes a problem in that the density of the plating layer is lowered.
  • the galvanized layer having such a low density has a problem in that the hardness is low and the galling resistance is lowered.
  • the adhesion with the base iron is lowered depending on the composition of the plating layer, so that there is a possibility that the problem that the plating layer falls off from the base iron during processing may occur.
  • a zinc-based plated steel material having excellent galling resistance may be provided.
  • a zinc-based plated steel material having excellent adhesion between the plating layer and the base iron may be provided.
  • a zinc-based plated steel material according to one aspect of the present invention is So Ji-cheol; and a multilayer zinc-based plating layer comprising two or more distinct plating layers, wherein the multilayer zinc-based plating layer may contain 0.16 to 0.78% by weight of Mg.
  • a method of manufacturing a zinc-based plated steel material comprises the steps of preparing a base iron; and sequentially forming a multilayer zinc-based plating layer comprising two or more distinct plating layers on the base iron, wherein the multilayer zinc-based plating layer may include Mg in an amount of 0.12 to 0.64% by weight.
  • a zinc-based plated steel material having excellent corrosion resistance and spot weldability by forming a multilayer galvanized layer and controlling the characteristics of each layer under the special conditions of the present invention.
  • it is possible to improve galling resistance by forming a multilayer zinc-based plating layer including a zinc alloy plating layer containing a trace amount of Mg and controlling the rigidity of some of the layers.
  • by controlling the layer configuration of the plating layer it is possible to provide a galvanized steel material having excellent adhesion to the base iron even including a rigid layer.
  • FIG. 1 is a photograph of an enlarged observation of a weld section of a welding member in which an LME crack is generated by point welding;
  • FIG. 3 is a schematic diagram showing the layer structure of a multi-layer zinc-based plated layer of a zinc-based plated steel material obtained according to one embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an apparatus for electromagnetic heating physical vapor deposition.
  • the zinc-based plated steel material having excellent spot weldability and corrosion resistance of the present invention will be described in detail.
  • the description of 'on', for example, 'on the base iron' only means that it is in contact with the base steel, and the upper part in height It is important to note that this does not mean that it is located in.
  • the content of elements in the present invention is based on weight unless otherwise indicated.
  • the zinc-based plated steel material of the present invention includes a base iron and a multi-layered plating layer formed on the base iron.
  • the shape of the base iron is not particularly limited, and may be, for example, a steel plate or a steel wire.
  • Multi-layer as used in the present invention means that there are several layers that are compositionally or systematically distinguished.
  • the individual layers constituting the multilayer may be formed by a method such as physical vapor deposition (PVD). can be easily distinguished.
  • PVD physical vapor deposition
  • the midpoint of the region blurred by diffusion may be used as the boundary between the two layers.
  • it is not necessarily physical vapor deposition, it is not excluded from the scope of the present invention as long as the layers are clearly distinguished within the above-described scope.
  • the present invention there is no particular limitation on the conditions of the base iron (steel).
  • the problem of LME cracks during spot welding usually occurs in high-strength steels having a strength of 980 MPa or more
  • one embodiment of the present invention can be more advantageously applied to high-strength steels having a strength of 1,200 MPa or more.
  • the upper limit of the strength of the target high-strength steel does not need to be particularly determined, but it can be set to 1,800 MPa or less if the steel material that is currently on the market is the target.
  • the base iron of the high-strength steel is not necessarily limited thereto, but may include at least one selected from austenite, retained austenite, and martensite as a microstructure.
  • C 0.10 to 1.0%
  • Si 0.5 to 3%
  • Mn 1.0 to 25%
  • Al 0.01 to 10%
  • P 0.1% or less
  • S 0.01% or less
  • the content of C, Si, Mn, P and S may satisfy Relational Expression 1 below.
  • liquid metal embrittlement may be mainly a problem during spot welding, and the reasons are as follows. That is, the austenite or retained austenite structure has weaker grain boundaries than other structures. When stress is applied by spot welding, liquid molten zinc penetrates the grain boundaries of the austenite or retained austenite structure on the welded part to cause cracks. This causes liquid metal embrittlement, which is a brittle fracture.
  • the present invention is directed to a zinc-based plated steel in which Mg is added to a zinc-based plated layer in order to further improve the corrosion resistance of the galvanized steel.
  • Mg is added to the galvanized layer
  • the corrosion resistance of the plated layer can be further improved.
  • FIG. 2 when Mg is added to the galvanized layer, the melting point of the plating layer is lowered, and due to the low melting point, the fluidity of the plating layer during welding is increased to facilitate penetration along the grain boundary.
  • the inventors of the present invention have studied in depth to solve this problem. As a result, when a zinc-based plating layer composed of two or more distinct plating layers is formed on the base iron, it does not cause problems such as liquid metal embrittlement during welding while securing corrosion resistance. It was confirmed that it did not, and led to the present invention.
  • the present invention relates to a zinc-based plated steel material in which a zinc-based plating layer comprising two or more zinc layers or a zinc alloy layer containing a trace amount of Mg is formed on the surface of a base iron, wherein the Mg content in the zinc-based plating layer is lowered, but some
  • the structure of the plating layer is designed to ensure corrosion resistance by adding an appropriate amount of Mg only to the layer.
  • the zinc-based plating layer of the present invention includes at least one layer containing Mg in a ratio of 0.12 to 0.64% by weight, and Mg in an amount of 0.4 to 0.9% by weight, based on the weight of the entire multilayer plating layer.
  • the Mg content relative to the weight of the entire multilayer plating layer is not sufficient, it may not be sufficient to secure corrosion resistance. Conversely, when the Mg content is excessively high, spot weldability may be poor, and thus the Mg content relative to the weight of the entire multilayer plating layer may be set within the above-described range.
  • the present invention contributes to securing corrosion resistance by adding Mg in a relatively high content to only some layers, but not adding Mg to the remaining layers or adding a small amount to increase the Mg content of the entire alloy plating layer.
  • Mg in some of the plating layers is rather high, since the plating layers are melted and mixed during welding, Mg in the molten plating solution is diluted to a lower content by the content in the entire plating layer or by diffusion of Fe. As a result, the melting point of the molten plating solution This will not degrade significantly. Accordingly, when the layer structure of the zinc-based plating layer is controlled according to one embodiment of the present invention, corrosion resistance and spot weldability can be simultaneously implemented.
  • the zinc-based plating layer may be deposited on the base iron in a small amount of 35 g/m 2 or less per one side (based on the total amount of adhesion of all layers, the amount of the plating layer attached per unit area of the base iron) means).
  • This adhesion amount is much smaller than the typical galvanized adhesion amount of 60 g/m 2 of hot-dip galvanized steel sheet (GI steel sheet), and by reducing the adhesion amount in this way, the possibility of LME occurrence during spot welding can be further reduced.
  • the adhesion amount of the zinc-based plating layer may be 35 g/m 2 or less. However, when the amount of adhesion is too small, corrosion resistance may not be sufficiently secured, so the adhesion amount may be 15 g/m 2 or more.
  • the zinc-based plating layer 100 may have a three-layer structure consisting of the first to third plating layers 110 to 130 sequentially from the interface with the base iron, and among them, the first 2
  • the Mg content of the plating layer 120 may be 0.4 to 0.9 wt%.
  • corrosion resistance of the entire zinc-based plating layer can be secured.
  • the spot weldability of the galvanized layer may be improved.
  • the first plating layer 110 and the third plating layer 130 preferably have an Mg content of 0.1 wt % or less so as to exhibit the functions of each layer to be described later, and may be a pure Zn layer substantially not containing Mg. However, it should be noted that even a pure Zn layer does not mean to exclude other elements with impurity levels (other elements may also include Mg).
  • the second plating layer 120 containing 0.4 to 0.9% by weight of Mg is a relatively hard layer and may not be in close contact with the base iron, and the Mg content between the second plating layer 120 and the base iron is low.
  • adhesion of the plating layer may be improved.
  • the third plating layer 130 may suppress the occurrence of blackening on the surface of the steel sheet.
  • Mg is a strong oxidizing element and tends to easily form oxides or hydroxides, which may change the surface roughness and cause blackening.
  • Black discoloration can be prevented by making the outermost surface a third plating layer having a low Mg content.
  • the adhesion amount of the third plating layer 130 is controlled over a certain level, a uniform phosphate film can be formed on the surface of the plated steel sheet, so that when used for a private vehicle, excellent phosphate treatment and sealer adhesion can be expected
  • the adhesion amount of the second plating layer 120 to obtain the effect of improving corrosion resistance according to the second plating layer 120 may be 8 g/m 2 or more.
  • the adhesion amount of the second plating layer 120 may be limited to 16 g/m 2 or less.
  • the adhesion amount of the second plating layer 120 may be 9-15 g/m 2 , and in another embodiment, it may be 11-13 g/m 2 .
  • the adhesion amount of these plating layers may be 3 g/m 2 or more, respectively.
  • the deposition amount of the second plating layer 120 may be limited. Therefore, the upper limit of the deposition amount of these plating layers may be set to 14 g/m 2 , respectively, and in one embodiment, 10 g/m It can also be set to 2.
  • the adhesion amount of one or both of the first plating layer 110 and the third plating layer 130 may be 3 to 10 g/m 2 , respectively, and in another embodiment, each 6 to 8 g It could also be /m 2 .
  • the zinc-based plating layer of the present invention may be effective in preventing LME during welding compared to a conventional hot-dip galvanized (GI) steel sheet in terms of composition.
  • GI hot-dip galvanized
  • the reason is that, in the case of a conventional hot-dip galvanized steel sheet, a small amount of aluminum is included. This is because an inhibition layer that prevents alloying between the plating layer and the base iron is formed due to the aluminum.
  • the zinc-based plated steel material according to one embodiment of the present invention may have excellent spot weldability due to high resistance to LME cracking.
  • Type The average length of crack B can be controlled to be 0.1 times or less of the thickness of the substrate.
  • the zinc-based plated steel material according to one embodiment of the present invention is not necessarily limited thereto, but the zinc-based plated steel material is deposited on the surface of the steel sheet by a method such as physical vapor deposition (PVD) including vacuum deposition. It can be manufactured by plating.
  • PVD physical vapor deposition
  • the vacuum deposition method refers to a method in which a coating material is heated in a vacuum chamber to generate vapor, and the vapor is ejected onto the surface of the substrate to be deposited.
  • generation of an inhibition layer occurring in the hot-dip plating process may be reduced or prevented.
  • the suppression layer serves to suppress alloying between the base iron and the plating layer in a heating process such as welding, thereby increasing the time during which the melting point of the plating layer is maintained in a low state, so it is not good for securing weldability.
  • the physical vapor deposition method such as vacuum deposition reduces or prevents the suppression layer, so that the Fe-Zn alloy phase such as Fe 11 Zn 40 having a higher melting point than the zinc melting point (419° C.) is easily formed, so the physical vapor deposition method
  • the plating layer formed by the may be more advantageous in securing spot weldability.
  • the zinc-based plated steel material according to an embodiment of the present invention may be manufactured by various methods, and the manufacturing method is not particularly limited.
  • at least one of the different plating layers constituting the multi-layer zinc-based plating layer may be formed by a physical vapor deposition (PVD) method, preferably by a vacuum deposition method.
  • the plating layer formed by the physical vapor deposition method may be a layer containing Mg in an amount of 0.4 wt% or more (a second plating layer according to one embodiment).
  • all of the distinct plating layers constituting the multi-layer zinc-based plating layer may be formed by physical vapor deposition, preferably vacuum deposition.
  • the zinc-based plating layer of the present invention may be manufactured by the following method.
  • the base iron is prepared, and after pickling, rinsing, and drying using an aqueous solution of 14% by weight or more of HCl, the foreign material and the natural oxide film on the surface are removed using plasma and ion beam, and then a multi-layer plating layer is sequentially formed.
  • the zinc-based plated steel material of the present invention can be manufactured.
  • each of the multilayer plating layers may be formed by an electroplating method or a conventional vacuum deposition method, for example, an electron beam method, a sputtering method, a thermal evaporation method, an induction heating evaporation method, an ion plating method, etc.
  • a conventional vacuum deposition method for example, an electron beam method, a sputtering method, a thermal evaporation method, an induction heating evaporation method, an ion plating method, etc.
  • -Mg alloy plating layer it may be formed by electromagnetic heating physical vapor deposition having an electromagnetic stirring effect.
  • the electromagnetic heating physical vapor deposition method (Electro-Magnetic Heating Physical Vapor Deposition) is, when a high-frequency power is applied to a pair of electromagnetic coils that generate an alternating electromagnetic field to generate electromagnetic force, the coating material (in the present invention, Zn, Mg Or Zn-Mg alloy) is heated in a space surrounded by an alternating electromagnetic field, and the heated coating material generates a large amount of deposition vapor (metal vapor).
  • a schematic diagram of is shown. Referring to FIG. 4 , a large amount of deposition vapor formed by the above method is sprayed at high speed to the surface of the base iron through a plurality of nozzles of a vapor distribution box to form a plating layer.
  • the coating material is provided inside the crucible, and the coating material is vaporized by heating the crucible provided with the coating material.
  • the coating material is coated for reasons such as melting of the crucible and heat loss due to the crucible.
  • the degree of vacuum inside the vacuum deposition chamber is preferably adjusted to a condition of 1.0 ⁇ 10 -3 mbar to 1.0 ⁇ 10 - 5 mbar, and in this case, the increase in brittleness and deterioration of properties due to oxide formation during the plating layer formation process can be effectively prevented. can be prevented
  • the temperature of the coating material to be heated is preferably controlled to 700° C. or higher, more preferably 800° C. or higher, and even more preferably controlled to 1000° C. or higher. If the temperature is less than 700 °C, there is a risk that the crystal grain refinement and plating layer homogenization effect may not be sufficiently secured. On the other hand, the higher the temperature of the coating material to be heated, the more advantageous it is to achieve the desired technical effect.
  • the upper limit is not particularly limited, but when the temperature is above a certain level, the effect is saturated, and the process cost is reduced. When the bar becomes too high, considering this, the upper limit may be limited to 1500°C.
  • the temperature of the base iron before and after deposition is desirable to be below 100°C, and if it exceeds 100°C, the temperature non-uniformity of the width steel plate causes reversal in the width direction, which prevents the maintenance of the vacuum level when passing through the multi-step differential decompression system on the exit side. can do.
  • the plating layer of each layer was obtained through a separate process in a separate vacuum chamber, and when the plating layer of each layer was formed, the current applied to the pair of electromagnetic coils was 1.2 kA, and the current applied to the pair of electromagnetic coils was 1.2 kA.
  • the frequency was constant at 60 kHz based on 2 kg of the deposition material, the temperature of the heated coating material at 1000°C, and the temperature of the vapor distribution box at 900°C.
  • the temperature of the base iron before and after deposition of the plating layer of each layer was made constant at 60 °C.
  • the adhesion amount and the weight ratio of Mg of the multilayer zinc-based plated steel prepared by the ICP (Inductively Coupled Plasma) method were measured. More specifically, after cutting into a specimen having a size of 80mmX80mm, degreasing the surface, and using a high-precision scale, the primary basis weight (W 1 : 0.0000g) was performed. After that, it was attached to the O-Ring 54.5mm diameter (dia) column with a clamp on the front part so that the solution did not leak. Then, after 30cc of 1:3 HCl solution was added, 2-3 drops of an inhibitor were added. After the generation of H 2 gas from the surface was terminated, the solution was collected in a 100 cc mass flask.
  • ICP Inductively Coupled Plasma
  • the remaining amount on the surface was collected using a washing bottle and collected to 100cc or less. Thereafter, after the specimen was completely dried, a second basis weight (W 2 ) was performed, and the value obtained by dividing the difference between the primary basis weight value and the secondary basis weight value by the unit area was used as the total adhesion amount.
  • W 2 second basis weight
  • the Mg content of the collected solution was measured by the ICP method, and this was used as the Mg weight ratio, and the results are shown in Table 1.
  • the first plating layer and the third plating layer were pure Zn plating layers, and had a composition that did not substantially include elements other than Zn, and the second plating layer had a Zn-Mg alloy composition additionally containing Mg.
  • Type B cracks occur in some or all of the specimens, and the average length of Type B cracks is 0.1 times or less the thickness of the base iron (cold rolled steel sheet).
  • Type B cracks occur in some or all specimens, and the average length of Type B cracks is more than 0.1 times and less than 0.2 times the thickness of the base iron (cold-rolled steel sheet)
  • Type B cracks occur in some or all specimens, and the average length of Type B cracks exceeds 0.2 times the thickness of the base iron (cold-rolled steel sheet)
  • the galling resistance is obtained by measuring the number of friction rotations until the coefficient of friction exceeds 0.3 while rotating a chrome-plated steel ball made of a cold working mold steel material on the specimen at a load of 5 MPa and a speed of 200 mm/s in the lubricated state. Confirmed.
  • the multi-layer zinc-based plated steel is cut into a 40mmX80mm size specimen, the specimen is mounted on a press tester, and a 60° bend test is performed, the specimen is detached from the tester and the cellophane tape is attached to the bent part. After removing the tape, the peeled tape was attached to a white paper and the peeling width was measured, and evaluated according to the following criteria.
  • Phosphating properties were evaluated after cutting a multilayer zinc-based galvanized steel material into a specimen having a size of 75 mmX150 mm, and after surface adjustment and phosphate treatment according to the standard automobile manufacturers, the phosphate uniformity was evaluated.
  • Example 1 0.10 35 3 0 13 0.4 9 0 13
  • Example 2 0.67 21 3 0.08 3 0.9 15 0.08 3
  • Example 3 0.40 14 3 0.07 3 0.68 8 0 3
  • Example 4 0.33 36 3 0.05 11 0.73 15 0.02 10
  • Example 5 0.24 20 3 0 7 0.68 7 0.01 6
  • Example 6 0.15 23 3 0 7 0.3 10 0.06 6
  • Example 7 0.48 25 3 0 7
  • Example 9 0.39 28 3 0.12 7 0.68 15 0 6
  • Example 10 0.43 22 3 0 7 0.68 14 0 One Example 11 0.25 35 3 0 7 0.68 13 0 15
  • Example 12 0.36 25 3 0 7 0.68 12 0.13 6
  • Example 13 0.32 24 3 0 7 0.68 11 0.02 6
  • Example 14 0.30 23 3 0 7 0.68 10 0.03 6
  • Example 15 0.34 26 3 0.01 7 0.68 13 0 6
  • Example 16 0.28 22 3 0
  • 1 Mg content in total plating layer
  • 2 total plating layer adhesion amount
  • 3 plating layer number
  • 4 first plating layer Mg content
  • 5 first plating layer adhesion amount
  • 6 second plating layer Mg content
  • 7 second plating layer Adhesion amount
  • 8 3rd plating layer Mg content
  • 9 3rd plating layer adhesion amount.
  • the content is based on weight %
  • the adhesion amount is based on g/m 2 .
  • Example 1 3 One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One
  • Example 1 when the Mg content in the entire plating layer was smaller than the range according to one embodiment of the present invention, it was confirmed that the corrosion resistance was insufficient. Also, in Example 2, when the Mg content in the entire plating layer was excessive, the corrosion resistance was sufficient, but the spot weldability was poor because it was vulnerable to LME generation.
  • Example 3 was a case in which the amount of adhesion of the entire plating layer was small, and did not exhibit sufficient corrosion resistance, and in Example 4, the adhesion amount of the entire plating layer was excessive, resulting in poor spot weldability.
  • Examples 8 and 44 were cases in which the plating adhesion amount of the first plating layer was small, and as a result, the plating adhesion was 2nd or 3rd grade.
  • Example 9 is a case in which the Mg content of the first plating layer is excessive, which also resulted in poor plating adhesion.
  • Example 45 was a case where the adhesion amount of the first and third plating layers was small, and the plating adhesion and blackening resistance were insufficient.
  • Example 46 was a case where the adhesion amount of the first and third plating layers was insufficient and the Mg content of the second plating layer was also low, and the result was insufficient in phosphate treatment property, blackening resistance and corrosion resistance.
  • Examples 47 and 50 were cases in which the adhesion amount of the third plating layer was insufficient, and the results were insufficient in blackening resistance and corrosion resistance.
  • the Mg content in the entire plating layer was excessive and the adhesion amount of the third plating layer was insufficient, and as a result, the spot weldability was somewhat insufficient.
  • Example 12 was a case in which the Mg content of the third plating layer was high, and showed poor blackening resistance.
  • Example 5 the adhesion amount of the second plating layer was smaller than the value prescribed in the present invention, and as a result, the result (grade 2) was somewhat insufficient compared to the case where the corrosion resistance satisfies the prescribed value.
  • Example 6 is a case in which the Mg content of the second plating layer is insufficient, and it can be seen that even in this case, the corrosion resistance is somewhat insufficient (grade 2) compared to the case where the prescribed value is satisfied.
  • Example 7 when the Mg content of the second plating layer was excessive, the corrosion resistance was excellent, but the spot weldability was found to be 2nd grade.
  • Example 10 was a case in which the plating adhesion amount of the third plating layer was insufficient, and blackening resistance was found to be 2nd grade.
  • Example 11 was a case in which the amount of adhesion of the third plating layer was excessive, and the result of galling resistance in plating was 2nd grade.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 내식성과 점 용접성이 우수한 아연계 도금강재에 관한 것으로서, 보다 구체적으로는 둘 이상의 층을 포함하는 다층의 아연합금이 도금되고 우수한 내식성과 점 용접성을 가진 아연계 도금강재에 관한 것이다. 본 발명의 한가지 측면에 따른 아연계 도금강재는 소지철; 및 2 이상의 구별되는 도금층으로 이루어진 다층의 아연계 도금층을 포함하고, 상기 다층의 아연계 도금층은, 0.12~0.64중량%의 Mg를 포함하는 아연계 도금강재일 수 있다.

Description

내식성과 점 용접성이 우수한 아연계 도금강재
본 발명은 내식성과 점 용접성이 우수한 아연계 도금강재에 관한 것으로서, 보다 구체적으로는 둘 이상의 층을 포함하는 다층의 아연합금이 도금되고 우수한 내식성과 점 용접성을 가진 아연계 도금강재에 관한 것이다.
음극방식을 통해 철의 부식을 억제하는 아연도금법은 방식 성능 및 경제성이 우수하여 고내식 특성을 가지는 강재를 제조하는데 널리 사용되고 있으며, 자동차, 가전 제품 및 건축자재 등 산업 전반에 걸쳐 아연이 도금된 아연도금강재에 대한 수요가 증가하고 있다.
이러한 아연도금강재는 부식환경에 노출되었을 때 철보다 산화환원전위가 낮은 아연이 먼저 부식되어 강재의 부식이 억제되는 희생방식(Sascrificial Corrosion Protection)의 특성을 가지며, 이와 더불어 도금층의 아연이 산화되면서 강재 표면에 치밀한 부식 생성물을 형성시켜 산화분위기로부터 강재를 차단함으로써 강재의 내부식성을 향상시킨다.
그러나, 산업 고도화에 따라 대기오염이 증가하고 있고 부식환경이 악화되고 있으며, 자원 및 에너지 절약에 대해 엄격한 규제가 이뤄지고 있어 종래의 아연도금강재보다 더 우수한 내식성을 갖는 강재 개발의 필요성이 높아지고 있다. 그 일환으로, 도금층에 마그네슘(Mg) 등의 원소를 첨가하여 강재의 내식성을 향상시키는 아연계 도금강재 제조 기술에 관한 연구가 다양하게 진행되고 있다.
한편, 아연도금강재 혹은 아연합금도금강재(이하, '아연계 도금강재'라 함)는 일반적으로 가공 등에 의해 부품으로 가공된 후 점용접 등으로 용접되어 제품으로 사용되게 되는데, 미세조직으로 오스테나이트 또는 잔류 오스테나이트를 포함하는 고강도 강재, 고 P 첨가 고강도 IF (Interstitial Free) 강재 등을 소지로 하는 아연계 도금강재의 경우 점용접시 용융 상태인 아연이 소지철 결정립계를 따라 침투하여 취성크랙을 유발하는 일명 액상금속취화(LME, Liquid Metal Embrittlement)가 발생하는 문제가 있다.
도 1은 점용접에 의해 LME 균열이 발생한 용접 부재의 용접부를 확대하여 관찰한 사진이다. 도 1에서 너깃 (Nugget) 상하부에 발생한 크랙은 Type A 크랙이라 하고, 용접 어깨부에서 발생한 크랙은 Type B 크랙이라 하며, 용접시 전극의 misalignment에 의해 강판의 내부에 발생된 크랙은 Type C 크랙이라 한다. 이중, Type B 및 C 크랙은 재료의 강성에 큰 영향을 미치기 때문에, 용접시 크랙의 발생을 방지하는 것이 당 기술 분야에서 핵심 요구 사항이라 할 것이다.
또한, 아연계 도금강재는 경우에 따라서는 진공증착 등을 포함하는 물리적 기상(증기) 증착(Physical Vapor Deposition; PVD) 방법에 의하여 도금되는 경우가 있다. 그런데, 상기 물리적 기상 증착 방법으로 형성된 아연 도금층은 기둥 형태의 주상정(columnar) 조직으로 성장하기 때문에 성장하는 기둥과 기둥 사이에 빈 공간이 발생할 수 있고, 이는 도금층의 밀도가 저하되는 문제를 야기한다. 이와 같이 밀도가 낮은 아연 도금층은 경도가 낮고, 내골링성이 저하되는 문제가 있다.
또한, 아연계 도금강재의 경우에는 도금층의 조성에 따라 소지철과의 밀착성이 저하하여 가공시 도금층이 소지철으로부터 탈락해 버리는 문제가 발생할 소지도 있다.
본 발명의 한가지 측면에 따르면 점용접성이 우수한 아연계 도금강재를 제공할 수 있다.
본 발명의 다른 한가지 측면에 따르면 내 골링성이 우수한 아연계 도금강재가 제공될 수 있다.
본 발명의 또다른 한가지 측면에 따르면 도금층과 소지철의 밀착성이 우수한 아연계 도금강재가 제공될 수 있다.
본 발명의 과제는 상술한 내용으로 제한되지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 개시내용에 기재된 사항으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 한가지 측면에 따른 아연계 도금강재는 소지철; 및 2 이상의 구별되는 도금층으로 이루어진 다층의 아연계 도금층을 포함하고, 상기 다층의 아연계 도금층은, 0.16~0.78중량%의 Mg를 포함할 수 있다.
본 발명의 다른 한가지 측면에 따른 아연계 도금강재의 제조방법은 소지철을 준비하는 단계; 상기 소지철 위에 2 이상의 구별되는 도금층으로 이루어진 다층의 아연계 도금층을 순차적으로 형성하는 단계를 포함하고, 상기 다층의 아연계 도금층은, 0.12~0.64중량%의 Mg를 포함할 수 있다.
본 발명의 한가지 측면에 의할 경우 아연도금층을 다층으로 형성하고 각각의 층의 특징을 본 발명의 특별한 조건으로 제어함으로써 우수한 내식성과 점 용접성을 가지는 아연계 도금강재를 제공할 수 있다. 또한, 본 발명의 다른 한가지 측면에 따르면 Mg를 미량 포함한 아연합금도금층을 포함하는 아연계 도금층을 다층으로 형성하고 그 중 일부의 층의 강성을 제어함으로써 내 골링성을 향상시킬 수 있다. 또한, 본 발명의 또 다른 한가지 측면에서는 도금층의 층 구성을 제어함으로써 강성의 층을 포함하더라도 소지철과의 밀착성이 우수한 아연도금강재를 제공할 수 있다.
도 1은 점 용접에 의해 LME 크랙이 발생한 용접 부재의 용접부 단면을 확대하여 관찰한 사진,
도 2는 아연-마그네슘 이원계 상태도의 일부,
도 3은 본 발명의 한가지 구현례에 따라 얻어지는 아연계 도금강재의 다층의 아연계 도금층의 층구조를 나타낸 모식도, 그리고
도 4는 전자기 가열 물리 기상 증착을 위한 장치의 모식도이다.
이하, 본 발명의 점용접성 및 내식성이 우수한 아연계 도금강재에 대하여 상세히 설명한다. 본 발명에서 강판의 상하는 적치상태에 따라 언제든지 바뀔 수 있으므로, '상(on)'이라는 기재, 예를 들면 '소지철 상'이라고 기재한 것은 소지철에 접한다는 것을 의미할 뿐, 높이 상으로 상부에 위치한다는 것을 의미하는 것은 아니라는 점에 유의할 필요가 있다. 또한, 본 발명에서 원소의 함량은 특별히 달리 표현하지 아니하는 한 중량을 기준으로 한 것이라는 점에 유의할 필요가 있다.
본 발명의 아연계 도금강재는 소지철과 상기 소지철 상에 형성된 다층의 도금층을 포함한다. 본 발명에서는 상기 소지철의 형태에 대해서는 특별히 한정하지 않으며, 예를 들면, 강판 또는 강선재일 수 있다. 본 발명에서 말하는 다층이라는 것은 조성 또는 조직적으로 구분되는 층이 여러 개 있다는 것을 의미한다. 본 발명의 한가지 구현례에 따르면 다층을 이루는 개별 층들은 물리적 기상 증착(PVD) 등의 방법에 의하여 형성될 수 있는데, 이와 같은 공정의 특성상 같은 층의 조성의 변동은 매우 좁으며 그로 인하여 다른 층들과 용이하게 구별될 수 있다. 다만, 층을 형성하는 과정 또는 층의 형성 전/후에 도금층에 열이 가해짐으로써 두 층 사이에 확산이 일어나서 두 층의 경계가 약간 흐릿해지는 경우도 있을 수 있는데, 본 발명에서는 이러한 경우까지 포함할 수 있다. 다만, 이와 같은 경우에는 확산에 의하여 흐릿해진 영역의 중간 지점을 두 층의 경계로 삼을 수 있다. 다만, 반드시 물리적 기상 증착이 아니라도 상술한 범주 내에서 층의 구분이 명확하게 이루어지는 한 본 발명의 범위에서 제외할 것은 아니다.
또한, 본 발명에서는 소지철(강재)의 조건에 대해서도 특별히 제한하지 아니한다. 다만, 점 용접시 LME 크랙에 의한 문제는 통상 강도가 980MPa 이상의 고강도 강재에서 발생하는 것이므로 본 발명의 한가지 구현례는 강도가 1,200MPa 이상인 고강도 강재에 보다 유리하게 적용될 수 있다. 대상으로 하는 고강도 강재의 강도의 상한은 특별히 정할 필요가 없으나, 통상 출시되고 있는 강재를 대상으로 한다면 1,800MPa 이하로 정할 수 있다.
또한, 고강도 강재의 소지철은 반드시 이로 한정하는 것은 아니나, 미세 조직으로 오스테나이트, 잔류 오스테나이트 및 마르텐사이트 중에서 선택된 1종 이상을 포함할 수 있다.
그리고 반드시 이로 한정하는 것은 아니나, 본 발명의 한가지 구현례에 적용될 수 있는 소지철로서는 중량%로, C: 0.10~1.0%, Si: 0.5~3%, Mn: 1.0~25%, Al: 0.01~10%, P: 0.1% 이하, S: 0.01% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 조성을 가지는 것을 들 수 있다. 또한 이 경우, 상기 C, Si, Mn, P 및 S의 함량은 하기 관계식 1을 만족할 수 있다.
[관계식 1] [C]+[Mn]/20+[Si]/30+2[P]+4[S]≥0.3
(여기서, [C], [Mn], [Si], [P] 및 [S] 각각은 해당 원소의 함량(중량%)을 의미함)
상기와 같은 합금 조성과 미세 조직을 가질 경우, 점용접시 액상금속취화(LME)가 주로 문제될 수 있으며, 그 이유는 다음과 같다. 즉, 오스테나이트 또는 잔류 오스테나이트 조직은 타 조직에 비해 결정립계가 취약한데, 점용접에 의해 응력이 작용하게 되면, 액상의 용융 아연이 용접부 상의 오스테나이트 또는 잔류 오스테나이트 조직의 결정립계에 침투하여 균열을 발생시키고, 이에 따라 취성파괴인 액상금속취화를 일으키게 되는 것이다.
그러나, 본 발명에서는 후술할 바와 같이, 액상의 용융 아연이 잔류하는 시간을 최소화하였기 때문에, 상기와 같은 합금 조성과 미세 조직을 갖는 강재를 소지로 하여 아연계 도금강재를 제조하더라도, 액상금속취화의 발생이 효과적으로 억제되게 된다. 다만, 소지철의 합금 조성이 상기의 범위를 만족하지 않는 경우에도 본 발명이 적용될 수 있음은 물론이라 할 것이다.
본 발명은 아연계 도금강재의 내식성을 더욱 향상시키기 위하여 아연계 도금층에 Mg를 첨가한 아연계 도금강재를 대상으로 한다. Mg이 아연도금층에 첨가될 경우에는 도금층의 내식성이 더욱 향상시킬 수 있다. 그러나, 도 2에 도시한 바와 같이 Mg가 아연도금층에 첨가될 경우에는 도금층의 융점이 낮아지게 되고, 낮은 융점으로 인하여 용접시 도금층의 유동성이 증가하여 결정립계를 따라 침투하기 용이하게 된다.
본 발명의 발명자들은 이러한 문제점을 해결하기 위하여 깊이 연구한 결과, 구별되는 2 이상의 도금층으로 이루어진 아연계 도금층을 소지철 상에 형성시킬 경우, 내식성을 확보하면서도 용접시에 액상금속취화 등의 문제점을 일으키지 않는 것을 확인하고 본 발명에 이르게 되었다.
본 발명은 둘 이상의 아연층 또는 미량의 Mg를 포함한 아연합금층을 포함하는 아연계 도금층이 소지철의 표면에 형성된 아연계 도금강재에 관한 것으로서, 상기 아연계 도금층 내의 Mg 함량은 낮추되, 일부의 층에만 적절한 양의 Mg를 첨가시킴으로써 내식성 확보가 가능하도록 도금층의 구조를 설계한 것이다. 이와 같이 할 경우 본 발명의 아연계 도금층은 전체 다층 도금층의 중량 대비 Mg를 0.12~0.64%의 비율로 포함하되, Mg를 0.4~0.9중량%로 포함하는 층을 적어도 하나 포함하게 된다. 전체 다층 도금층의 중량 대비 Mg 함량이 충분하지 않을 경우에는 내식성 확보가 충분하지 않을 수 있다. 반대로 Mg 함량이 과도하게 높을 경우에는 점 용접성이 불량할 수 있으므로, 전체 다층 도금층의 중량 대비 Mg 함량을 상술한 범위로 정할 수 있다.
즉, 도 2에서 확인할 수 있듯이, 아연 함량이 100%인 지점으로부터 내식성을 향상시키기 위하여 전체 도금층의 Mg 함량을 높이게 되면 융점이 크게 낮아지는 영역이 있어 LME 발생이 매우 용이하게 된다. 본 발명은 이와 같은 문제점을 해결하기 위하여 일부의 층에만 Mg를 상대적으로 높은 함량으로 첨가하여 내식성 확보에 기여하게 하되, 나머지 층에는 Mg를 첨가하지 않거나 미량 첨가하여 전체 합금도금층의 Mg 함량은 높아지지 않도록 한다. 일부의 도금층에서 Mg 함량이 다소 높다고 하더라도 용접시에는 도금층이 용융되어 혼합되기 때문에 용융된 도금액 중에서 Mg는 전체 도금층 중의 함량 또는 Fe의 확산에 의하여 그보다 낮은 함량으로 희석되게 되며 그 결과 용융된 도금액의 융점이 크게 저하하지 않게 된다. 따라서, 본 발명의 한가지 구현례에 따라 아연계 도금층의 층구조를 제어할 경우에는 내식성과 점 용접성을 동시에 구현할 수 있는 것이다.
본 발명의 한가지 구현례에 따르면 상기 아연계 도금층은 소지철 상에 한쪽 면 당 35g/m 2 이하의 소량으로 부착될 수 있다(전체 층의 부착량 합계 기준, 소지철 단위 면적당 부착되는 도금층의 양을 의미함). 이러한 부착량은 용융아연도금강판(GI 강판)의 통상적인 아연도금부착량인 60g/m 2 보다 훨씬 작은 값으로서, 부착량을 이와 같이 적게 함으로써 점 용접시 LME의 발생가능성을 더욱 감소시킬 수 있다. 따라서, 본 발명의 한가지 구현례에서는 아연계 도금층의 부착량은 35g/m 2 이하일 수 있다. 다만, 부착량이 너무 작을 경우에는 내식성 확보가 충분하지 않을 수 있으므로, 상기 부착량은 15g/m 2 이상일 수 있다.
도 3에 나타낸 본 발명의 한가지 구현례에서는 아연계 도금층(100)은 소지철과의 계면에서부터 순차적으로 제1 내지 제3 도금층(110 내지 130)으로 이루어진 3층 구조를 가질 수 있으며, 그 중에서 제2 도금층(120)의 Mg 함량이 0.4~0.9중량%일 수 있다. 제2 도금층(120)의 Mg 함량을 0.4중량% 이상으로 제어함으로써 제어함으로써 아연계 도금층 전체의 내식성을 확보할 수 있다. 또한 제2 도금층(120)의 Mg 함량을 0.9중량% 이하로 제어함으로써 아연도금층의 점 용접성을 향상시킬 수 있다.
제1 도금층(110)과 제3 도금층(130)은 후술하는 각 층의 기능을 발휘할 수 있도록 Mg 함량이 0.1중량% 이하인 것이 바람직하며, 실질적으로 Mg를 포함하지 아니하는 순 Zn 층일 수 있다. 다만, 순 Zn 층이라고 하더라도 불순물 수준의 다른 원소(다른 원소에는 Mg도 포함될 수 있다)를 배제하는 의미는 아니라는 것에 유의할 필요가 있다.
소지철과의 계면에 제1 도금층(110)을 형성함으로써 도금 밀착성을 향상시킬 수 있다. 즉, Mg를 0.4~0.9중량% 포함하는 제2 도금층(120)은 비교적 경질의 층으로서 소지철과의 밀착이 원활하지 않을 수 있는데, 제2 도금층(120)과 소지철 사이에 Mg 함량이 낮은 또는 순 Zn의 제1 도금층(110)을 형성할 경우 도금층의 밀착성을 향상시킬 수 있다. 또한, 제3 도금층(130)은 강판 표면에 흑변이 발생하는 것을 억제할 수 있다. Mg는 산화성이 강한 원소로서 산화물 또는 수산화물을 쉽게 형성시키려는 경향이 있는데, 이로 인하여 표면의 조도가 변화하고 흑변 현상이 발생할 수 있다. 최표면을 Mg 함량이 낮은 제3 도금층으로 함으로써 흑변을 방지할 수 있다. 그 뿐만 아니라, 제3 도금층(130)의 부착량을 일정 수준 이상으로 제어할 경우에는 도금강판 표면에 균일한 인산염 피막을 형성할 수 있어서, 자용차 용도로 사용시 우수한 인산염 처리성 및 실러(Sealer) 밀착성을 기대할 수 있다.
본 발명의 한가지 구현례에 따르면 상기 제2 도금층(120)에 따른 내식성 향상 효과를 얻기 위한 제2 도금층(120)의 부착량은 8g/m 2 이상일 수 있다. 다만, 제2 도금층의 부착량이 너무 클 경우에는 다른 도금층의 부착량이 상대적으로 줄어들어서 그에 따른 유리한 효과를 얻기 어려울 뿐만 아니라, 용접시 용융된 도금액의 융점이 감소하여 LME 에 취약하게 될 수 있으므로 상기 제2 도금층(120)의 부착량은 16g/m 2 이하로 제한될 수 있다. 본 발명의 다른 한가지 구현례에 따르면 상기 제2 도금층(120)의 부착량은 9~15g/m 2 일 수 있으며, 또 다른 한가지 구현례에서는 11~13g/m 2일 수 있다.
또한, 제1 도금층(110) 및 제3 도금층(130)의 역할을 기대하기 위해서는 이들 도금층의 부착량은 각각 3g/m 2 이상일 수 있다. 다만, 이들 도금층의 부착량이 너무 증가할 경우에는 제2 도금층(120)의 부착량이 제한될 수 있으므로, 이들 도금층의 부착량의 상한은 각각 14g/m 2으로 정할 수 있으며, 한가지 구현례에서는 10g/m 2으로 정할 수도 있다. 본 발명의 다른 한가지 구현례에서는 상기 제1 도금층(110) 및 제3 도금층(130) 중 하나 또는 모두의 부착량은 각각 3~10g/m 2일 수도 있으며, 또다른 한가지 구현례에서는 각각 6~8g/m 2일 수도 있다.
본 발명의 상기 아연계 도금층은 조성적인 측면에서도 통상적인 용융아연도금(GI) 강판에 비하여 용접시 LME 방지에 효과적일 수 있다. 그 이유는 통상적인 용융아연도금강판의 경우 소량의 알루미늄을 포함하게 되는데, 상기 알루미늄으로 인하여 도금층과 소지철 사이의 합금화를 방해하는 억제층(inhibition layer)이 형성되기 때문이다. 이러한 억제층의 존재하에 점 용접을 실시할 경우 철과의 합금화가 지연되게 되고 그로 인하여 융점이 낮은 용융 도금액이 형성되어 결정립계로 용이하게 침투할 수 있게 되는 반면 본 발명에서와 같이 Mg를 포함하는 합금층이 존재할 경우에는 억제층이 형성되지 않아서 철과의 합금화가 촉진되고 그로 인하여 도금층(용융 도금액)의 융점이 증가하므로 LME 방지에 효과적일 수 있다.
상술한 바와 같이 본 발명의 한가지 구현례에 따른 아연계 도금강재는 LME 크랙에 대한 저항성이 높아 우수한 점 용접성을 가질 수 있는데, 예를 들면 SEP 1220-2 규격에 따라 점 용접을 실시하였을 때, Type B 크랙의 평균 길이가 소지철 두께의 0.1 배 이하로 제어될 수 있다.
본 발명의 한가지 구현례에 따른 아연계 도금강재는 반드시 이로 제한하는 것은 아니나, 아연계 도금강재는 진공 증착(vacuum deposition) 등을 포함하는 물리적 기상 증착(PVD) 등의 방법에 의하여 강판 표면을 증착 도금함으로써 제조될 수 있다. 뒤에서 보다 상세히 설명하겠지만, 진공 증착법은 진공 챔버 내에서 코팅 물질을 가열하여 증기를 생성하고, 상기 증기를 소지철의 표면에 분출하여 증착되도록 하는 방법을 의미한다. 물리적 기상 증착에 의할 경우, 용융 도금 과정에서 발생하는 억제층(inhibition layer)의 생성이 감소 내지는 방지될 수 있다. 상기 억제층은 용접 등의 가열 과정에서 소지철과 도금층 사이의 합금화를 억제하는 역할을 수행하여 도금층의 융점이 낮은 상태로 유지되는 시간을 증가시키는 역할을 하므로 용접성 확보에 좋지 않다. 그러나, 상술한 바와 같이 진공 증착 등의 물리적 기상 증착법은 억제층을 감소 내지는 방지함으로써 아연 융점(419℃) 보다 융점이 높은 Fe 11Zn 40 등의 Fe-Zn 합금상이 용이하게 형성되므로 물리적 기상 증착 법에 의해 형성된 도금층은 점 용접성 확보에 보다 유리할 수 있다.
이와 같은 진공 증착에 의하여 아연계 도금강재를 제조할 경우 증착 공정의 특성상 도금층의 표면 방향으로 입자가 기둥 형상으로 형성되는, 이른바 주상정 입자가 형성되게 되는데 이러한 경우 입자와 입자 사이가 치밀하지 못하여 프레스 성형 등의 성형시 골링(galling) 현상이 발생할 수 있다. 그러나, 본 발명의 한가지 구현례에 따라 다층의 도금층 중 한층으로서 Mg를 0.4~0.9중량% 포함하는 도금층을 포함할 경우에는 골링 현상이 현저하게 개선될 수 있다. 즉, 도금층에 Mg를 소량 포함시킬 경우 도금층의 경도가 상승하게 되어 골링이 일어나는 것을 방지할 수 있는 것이다.
본 발명의 구현례에 따른 아연계 도금강재는 다양한 방법으로 제조될 수 있으며, 그 제조방법은 특별히 제한되지 않는다. 다만, 한가지 구현례에 따르면 상기 다층의 아연계 도금층을 이루는 구별되는 도금층 중 적어도 하나의 층은 물리적 기상 증착(PVD)법에 의해 형성될 수 있으며, 바람직하게는 진공 증착법에 의하여 형성될 수 있다. 이 경우 상기 물리적 기상 증착 법에 의해 형성되는 도금층은 Mg를 0.4중량% 이상 포함하는 층(한가지 구현례에 따르면 제2 도금층)일 수 있다. 또한 본 발명의 한가지 구현례에 따르면 상기 다층의 아연계 도금층을 이루는 구별되는 도금층 전부는 물리적 기상 증착, 바람직하게는 진공 증착법에 의해 형성될 수 있다. 구체적으로 한가지 구현례에 따르면 본 발명의 아연계 도금층은 다음과 같은 방법에 의하여 제조될 수 있다.
먼저, 소지철을 준비하고, 14중량% 이상의 HCl 수용액을 이용하여 산세, 린스 및 건조 후, 플라즈마 및 이온빔 등을 이용하여 표면의 이물 및 자연 산화막을 제거한 후, 다층의 도금층을 순차로 형성함으로써 본 발명의 아연계 도금강재를 제조할 수 있다.
이때, 다층의 도금층 각각은 전기도금법 혹은 통상적인 진공증착법, 예를 들어, 전자빔법, 스퍼터링법, 열증발법, 유도가열 증발법, 이온 플레이팅법 등에 의해 형성될 수 있으나, 이중, Mg 도금층 혹은 Zn-Mg 합금 도금층의 경우, 전자기 교반(Electromagnetic Stirring) 효과를 가지는 전자기 가열 물리 기상 증착법에 의해 형성할 수도 있다.
여기서, 전자기 가열 물리 기상 증착법(Electro-Magnetic Heating Physical Vapor Deposition)이란, 교류 전자기장을 생성하는 한 쌍의 전자기 코일에 고주파 전원을 인가하여 전자기력을 발생시키면, 코팅 물질(본 발명의 경우, Zn, Mg 혹은 Zn-Mg 합금)이 교류 전자기장에 둘러싸인 공간에서 가열되어, 가열된 코팅물질이 대량의 증착 증기(금속 증기)를 발생하게 되는 현상을 이용한 것으로서, 도 4에 이러한 전자기 가열 물리 기상 증착을 위한 장치의 모식도가 도시되어 있다. 도 4를 참조하면, 상기와 같은 방법에 의해 형성된 대량의 증착 증기는 증기 분배 박스(vapor distribution box)의 다수의 노즐을 통해 소지철의 표면으로 고속으로 분사되어 도금층을 형성하게 된다.
통상의 진공증착 장치에서는 코팅 물질이 도가니 내부에 구비되며, 코팅 물질의 기화는 이러한 코팅 물질이 구비된 도가니의 가열에 의해 이뤄지게 되는데, 이 경우, 도가니의 용융, 도가니에 의한 열 손실 등의 이유로 코팅 물질 자체에 충분한 열 에너지를 공급하는데 애로 사항이 있다. 이에 따라, 증착 속도가 느릴 뿐 아니라, 도금층을 이루는 결정립 크기를 미세화하는데도 일정한 한계가 존재한다. 또한, 본 발명에서와 같이 Zn-Mg 합금 증기를 증착시키고자 할 경우, 도금층의 균질성 확보에도 일정한 한계가 존재한다.
그러나, 이와 달리, 전자기 가열 물리 기상 증착법에 의해 증착을 수행할 경우, 통상의 진공증착법과 달리, 온도에 따른 제약 조건이 없어 코팅 물질을 보다 고온에 노출시킬 수 있으며, 이에 따라, 고속 증착이 가능할 뿐 아니라, 결과적으로 형성된 도금층을 이루는 결정립 크기의 미세화와 도금층 내 합금 원소 분포의 균질화를 달성할 수 있는 장점이 있다.
증착 공정시 진공 증착 챔버 내부의 진공도는 1.0 ×10 -3mbar 내지 1.0 ×10 -5mbar의 조건으로 조절함이 바람직하며, 이 경우, 도금층 형성 과정에서 산화물 형성으로 인한 취성 증가 및 물성 저하 발생을 효과적으로 방지할 수 있다.
증착 공정시, 가열되는 코팅 물질의 온도는 700℃ 이상으로 조절함이 바람직하고, 800℃ 이상으로 조절함이 보다 바람직하며, 1000℃ 이상으로 조절함이 보다 더 바람직하다. 만약, 그 온도가 700℃ 미만일 경우 결정립 미세화 및 도금층 균질화 효과를 충분히 확보하지 못할 우려가 있다. 한편, 가열되는 코팅 물질의 온도가 높을수록 목적하는 기술적 효과 달성에 유리한 바, 본 발명에서는 그 상한에 대해 특별히 한정하지 않으나, 그 온도가 일정 수준 이상일 경우 그 효과가 포화될 뿐 아니라, 공정 비용이 지나치게 높아지는 바, 이를 고려할 때, 그 상한을 1500℃로 한정할 수는 있다.
증착 전후 소지철의 온도는 100℃ 이하로 조절함이 바람직하며, 만약, 100℃를 초과할 경우 폭강판의 온도 불균일도에 의해 폭 방향의 반곡으로 의해 출측 다단계 차등 감압 시스템 통과시 진공도 유지를 방해할 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만 하기하는 실시예는 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.
(실시예)
중량%로, C: 0.18%, Si: 1.5Mn: 3.5%, Al: 0.01P: 0.006%, S: 0.003%, 잔부 Fe 및 불가피한 불순물을 포함하는 두께 1.4mm의 자동차용 고강도 냉연강판을 준비하고, 도 4의 장치(진공도 3.2 ×10 -3mbar)를 이용하여 하기 표 1과 같은 조건의 다층 도금층을 갖는 다층 아연계 도금강재를 제조하였다. 모든 예에 있어서, 각 층의 도금층은 별도 진공 챔버에서 별도 공정을 통해 얻어졌으며, 각 층의 도금층 형성시, 한 쌍의 전자기 코일에 인가되는 전류는 1.2kA로, 한 쌍의 전자기 코일에 인가되는 주파수는 증착 물질 2kg를 기준으로 60kHz로, 가열된 코팅 물질의 온도는 1000℃로, 증기 분배 박스의 온도는 900℃로 일정하게 하였다. 또한, 각 층의 도금층 증착 전후의 소지철의 온도는 60℃로 일정하게 하였다.
다음으로, ICP(Inductively Coupled Plasma) 법에 의해 제조된 다층 아연계 도금강재의 부착량과 Mg 중량비를 측정하였다. 보다 구체적으로, 80mmX80mm 크기의 시편으로 절단하고, 표면을 탈지한 후, 고정밀 저울을 이용하여 1차 평량(W 1: 0.0000g)하였다. 그 후, 전면부에 O-Ring 54.5mm 직경(dia) 전용 컬럼에 클램프로 부착하여 용액이 누수되지 않도록 밀착시켰다. 이후, 1:3 HCl 용액 30cc 투입 후, 인히비터(inhibiter)를 2~3방울 투입하였다. 표면에서 H 2 가스의 발생이 종료된 후, 용액을 100cc 매스 플라스크에 포집하였다. 이때, 세척병을 이용하여 표면의 잔량을 모두 포집하여 100cc 이하로 포집하였다. 이후, 시편을 완전 건조한 후, 2차 평량(W 2)을 하였으며, 1차 평량 값과 2차 평량 값의 차이를 단위 면적으로 나눈 값을 총 부착량으로 하였다. 한편, 포집된 용액을 대상으로 ICP 법에 의해 Mg 함량을 측정하고, 이를 Mg 중량비로 하였으며, 그 결과를 표 1에 함께 나타내었다. 표 1에 나타낸 바와 같이 제1 도금층 및 제3 도금층은 순 Zn 도금층으로서 Zn 외의 다른 원소는 실질적으로 포함하지 않는 조성을 가지고 있었으며, 제2 도금층은 Mg를 추가적으로 포함하는 Zn-Mg 합금조성을 가지고 있었다.
다음으로, 제조된 다층 아연계 도금강재에 대하여 용접성, 내식성, 실러 접착성, 인산염 처리성 및 내 흑변성을 평가하고, 그 결과를 하기 표 2에 나타내었다.
보다 구체적으로, 내식성은 각각의 다층 아연계 도금강재를 75mmX150mm 크기의 시편으로 절단한 후, JIS Z2371에 의거하여 염수분무시험을 실시하여 초기 적청 발생 시간을 측정하고, 아래와 같은 기준으로 평가하였다.
1. 우수: 편면 부착량 60g/m 2의 아연도금강판(GI 강판) 대비 적청 발생 시간이 2배 이상 긴 경우
2. 보통: 편면 부착량 60g/m 2의 아연도금강판(GI 강판) 대비 적청 발생 시간이 동등 수준이거나, 2배 미만 긴 경우
3. 불량: 편면 부착량 60g/m 2의 아연도금강판(GI 강판) 대비 적청 발생 시간이 짧은 경우
용접성은 SEP 1220-2 규격에 따라 40mmX120mm 크기의 시편으로 절단하고, 각 시편에 걸쳐 총 100회 점용접을 실시한 후 Type B 크랙의 유무 및 그 크기를 측정하고, 아래와 같은 기준으로 평가하였다.
1. 매우 우수: 모든 시편에서 Type B 크랙이 발생하지 않은 경우
2. 우수: 일부 혹은 모든 시편에서 Type B 크랙이 발생하며, Type B 크랙의 평균 길이가 소지철(냉연강판) 두께의 0.1배 이하인 경우
3. 보통: 일부 혹은 모든 시편에서 Type B 크랙이 발생하며, Type B 크랙의 평균 길이가 소지철(냉연강판) 두께의 0.1배 초과 0.2배 이하인 경우
4. 불량: 일부 혹은 모든 시편에서 Type B 크랙이 발생하며, Type B 크랙의 평균 길이가 소지철(냉연강판) 두께의 0.2배를 초과하는 경우
한편, 내골링성은 도유한 상태에서 크롬 도금된 냉간가공용 금형강 재질의 강구를 시편에 5MPa의 하중과 200mm/s의 속도로 회전시키면서 마찰계수가 0.3을 초과할 때까지의 마찰 회전수를 측정하여 확인하였다.
1. 우수: 마찰계수가 0.3을 초과할 때까지의 마찰 회전수가 80회 이상
2. 보통: 마찰계수가 0.3을 초과할 때까지의 마찰 회전수가 60회 이상, 80회 미만
3. 불량: 마찰계수가 0.3을 초과할 때까지의 마찰 회전수가 60회 미만
도금 밀착성을 확인하기 위하여 다층 아연계 도금강재를 40mmX80mm 크기의 시편으로 절단한 후, 시편을 프레스 시험기에 장착하고, 60°굽힘 시험을 실시한 후, 시편을 시험기에서 탈착하여 구부러진 부분에 셀로판 테이프를 부착하고 테이프를 떼어낸 후, 떼어낸 테이프를 백지에 부착하고 박리 폭을 측정하였으며, 아래와 같은 기준으로 평가하였다.
1. 우수: 박리 폭이 6.0mm 이하인 경우
2. 보통: 박리 폭이 6.0mm 초과 8.0mm이하인 경우
3. 불량: 박리 폭이 8.0mm를 초과하는 경우
인산염 처리성은 다층 아연계 도금강재를 75mmX150mm 크기의 시편으로 절단한 후, 통상의 자동차사 규격에 따라 표면 조정 및 인산염 처리 후, 인산염 균일도를 평가하였다.
1. 양호: 인산염 피막 균일 형성
2. 불량: 인산염 피막 불균일 형성
내 흑변성은 다층 아연계 도금강재를 75mmX150mm 크기의 시편으로 절단한 후, 50℃, 95% 상대습도(RH)가 유지되는 항온항습기에 10~20kgf/cm의 압력으로 가압 밀착시편을 120시간 동안 방치하여 실험 전후의 색상 변화(△E)를 측정하여 다음 기준에 의해 평가 하였다.
1.양호 : △E ≤ 3
2.보통 : 3 < △E ≤ 5
3.불량 : △E > 5
구분
예1 0.10 35 3 0 13 0.4 9 0 13
예2 0.67 21 3 0.08 3 0.9 15 0.08 3
예3 0.40 14 3 0.07 3 0.68 8 0 3
예4 0.33 36 3 0.05 11 0.73 15 0.02 10
예5 0.24 20 3 0 7 0.68 7 0.01 6
예6 0.15 23 3 0 7 0.3 10 0.06 6
예7 0.48 25 3 0 7 1 12 0 6
예8 0.43 22 3 0 2 0.68 14 0 6
예9 0.39 28 3 0.12 7 0.68 15 0 6
예10 0.43 22 3 0 7 0.68 14 0 1
예11 0.25 35 3 0 7 0.68 13 0 15
예12 0.36 25 3 0 7 0.68 12 0.13 6
예13 0.32 24 3 0 7 0.68 11 0.02 6
예14 0.30 23 3 0 7 0.68 10 0.03 6
예15 0.34 26 3 0.01 7 0.68 13 0 6
예16 0.28 22 3 0 7 0.68 9 0 6
예17 0.35 27 3 0 7 0.68 14 0 6
예18 0.34 26 3 0 7 0.68 13 0 6
예19 0.33 25 3 0 7 0.68 12 0 6
예20 0.24 15 3 0 3 0.4 9 0 3
예21 0.29 21 3 0 3 0.4 15 0 3
예22 0.12 29 3 0 10 0.4 9 0 10
예23 0.17 35 3 0 10 0.4 15 0 10
예24 0.54 15 3 0 3 0.9 9 0 3
예25 0.64 21 3 0 3 0.9 15 0 3
예26 0.28 29 3 0 10 0.9 9 0 10
예27 0.39 35 3 0 10 0.9 15 0 10
예28 0.30 15 3 0 3 0.5 9 0 3
예29 0.36 15 3 0 3 0.6 9 0 3
예30 0.42 15 3 0 3 0.7 9 0 3
예31 0.48 15 3 0 3 0.8 9 0 3
예32 0.36 21 3 0 3 0.5 15 0 3
예33 0.43 21 3 0 3 0.6 15 0 3
예34 0.50 21 3 0 3 0.7 15 0 3
예35 0.57 21 3 0 3 0.8 15 0 3
예36 0.20 22 3 0 3 0.5 9 0 10
예37 0.25 22 3 0 3 0.6 9 0 10
예38 0.29 22 3 0 3 0.7 9 0 10
예39 0.33 22 3 0 3 0.8 9 0 10
예40 0.27 28 3 0 3 0.5 15 0 10
예41 0.32 28 3 0 3 0.6 15 0 10
예42 0.38 28 3 0 3 0.7 15 0 10
예43 0.43 28 3 0 3 0.8 15 0 10
예44 0.26 14 3 0 2 0.4 9 0 3
예45 0.28 13 3 0 2 0.4 9 0 2
예46 0.21 13 3 0 2 0.3 9 0 2
예47 0.35 13 3 0 3 0.5 9 0 1
예48 0.24 15 3 0 3 0.4 9 0 3
예49 0.64 21 3 0 3 0.9 15 0 3
예50 0.28 13 3 0 3 0.4 9 0 1
예51 0.71 19 3 0 3 0.9 15 0 1
여기서, ①: 전체 도금층 중 Mg 함량, ②: 전체 도금층 부착량, ③: 도금층 층 개수, ④: 제1 도금층 Mg 함량, ⑤: 제1 도금층 부착량, ⑥: 제2 도금층 Mg 함량, ⑦: 제2 도금층 부착량, ⑧: 제3 도금층 Mg 함량, ⑨: 제3 도금층 부착량을 의미한다. 또한, 함량은 중량%, 부착량은 g/m 2을 기준으로 한다.
구분 내식성 점용접성 인산염 처리성 내골링성 도금 밀착성 내흑변성
예1 3 1 1 1 1 1
예2 1 3 1 1 1 1
예3 3 1 1 1 1 1
예4 1 4 1 1 1 1
예5 2 1 1 1 1 1
예6 2 1 1 3 1 1
예7 1 2 1 1 1 1
예8 1 1 1 1 2 1
예9 1 1 1 1 3 1
예10 1 1 1 1 1 2
예11 1 1 1 2 1 1
예12 1 1 2 1 1 2
예13 1 1 1 1 1 1
예14 1 1 1 1 1 1
예15 1 1 1 1 1 1
예16 1 1 1 1 1 1
예17 1 1 1 1 1 1
예18 1 1 1 1 1 1
예19 1 1 1 1 1 1
예20 1 1 1 1 1 1
예21 1 1 1 1 1 1
예22 1 1 1 1 1 1
예23 1 1 1 1 1 1
예24 1 1 1 1 1 1
예25 1 1 1 1 1 1
예26 1 1 1 1 1 1
예27 1 1 1 1 1 1
예28 1 1 1 1 1 1
예29 1 1 1 1 1 1
예30 1 1 1 1 1 1
예31 1 1 1 1 1 1
예32 1 1 1 1 1 1
예33 1 1 1 1 1 1
예34 1 1 1 1 1 1
예35 1 1 1 1 1 1
예36 1 1 1 1 1 1
예37 1 1 1 1 1 1
예38 1 1 1 1 1 1
예39 1 1 1 1 1 1
예40 1 1 1 1 1 1
예41 1 1 1 1 1 1
예42 1 1 1 1 1 1
예43 1 1 1 1 1 1
예44 2 1 1 1 3 1
예45 2 1 1 1 3 3
예46 3 1 1 1 3 3
예47 2 1 2 1 1 3
예48 1 1 1 1 1 1
예49 1 1 1 1 1 1
예50 2 1 2 1 1 3
예51 1 1 2 1 1 3
상기 표 1의 조건과 표 2의 결과로부터 확인할 수 있듯이, 예 1은 전체 도금층 중 Mg 함량이 본 발명의 한가지 구현례에 따른 범위 보다 작았던 경우로서 내식성이 미흡하다는 것을 확인할 수 있었다. 또한, 예 2는 전체 도금층 중 Mg 함량이 과다하였던 경우로서 내식성은 충분하나, LME 발생에 취약함으로써 점 용접성이 나쁘게 나타났다.
예 3은 전체 도금층의 부착량이 작았던 경우로서, 충분한 내식성을 나타내지 못하였으며, 또한 예 4는 전체 도금층의 부착량이 과다하여 점용접성이 불량하였다. 예 8과 예 44은 제1 도금층의 도금 부착량이 작았던 경우로서 그 결과 도금 밀착성이 2 등급 또는 3 등급을 나타내고 있었다.
예 9는 제1 도금층의 Mg 함량이 과다한 경우인데, 이 역시 도금 밀착성이 나쁜 결과를 초래하고 있었다.
예 45는 제1 및 제3 도금층의 부착량이 작았던 경우로서, 도금 밀착성과 내 흑변성이 미흡한 결과를 나타내었다. 예 46은 제1 및 제3 도금층의 부착량이 부족하고 제2 도금층의 Mg 함량도 낮았던 경우로서 인산염 처리성, 내 흑변성 및 내식성이 미흡한 결과를 나타내었다. 또한, 예 47과 예 50은 제3 도금층의 부착량이 부족하였던 경우로서 내 흑변성과 내식성이 부족한 결과를 나타내고 있었다. 예 51은 전체 도금층 중의 Mg 함량이 과다하고 제3 도금층의 부착량이 부족하였던 경우로서, 그 결과 점 용접성이 다소 미흡한 결과를 나타내었다.
예 12는 제3 도금층의 Mg 함량이 높았던 경우로서, 내 흑변성이 우수하지 못한 결과를 나타내고 있었다.
또한, 예 5는 제2 도금층의 부착량이 본 발명에서 규정하는 값 보다 작았던 경우로서, 그 결과 내식성이 규정치를 만족하는 경우에 비해서는 다소 미흡한 결과(2 등급)를 나타내고 있었다. 예 6은 제2 도금층의 Mg 함량이 부족한 경우로서, 이 경우에도 규정치를 충족하는 경우보다 내식성이 다소 미흡(2 등급)하다는 것을 확인할 수 있다. 반대로, 예 7은 제2 도금층의 Mg 함량이 과다한 경우인데 내식성은 우수하나, 점 용접성이 2 등급으로 나타났다.
예 10은 제3 도금층의 도금 부착량이 부족했던 경우로서 내 흑변성이 2 등급인 것으로 나타났다. 예 11은 제3 도금층의 부착량이 과다했던 경우로서, 도금 내 골링성이 2등급인 결과를 나타내고 있었다.
반면, 본 발명에서 규정하는 조건을 모두 충족하는 나머지 예들에서는 내식성, 점 용접성, 인산염 처리성, 내 골링성, 도금 밀착성 및 내 흑변성이 모두 최상인 결과를 얻을 수 있었다. 따라서, 본 발명의 유리한 효과를 확인할 수 있었다.

Claims (16)

  1. 소지철; 및
    2 이상의 구별되는 도금층으로 이루어진 다층의 아연계 도금층을 포함하고,
    상기 다층의 아연계 도금층은,
    0.12~0.64중량%의 Mg를 포함하는
    아연계 도금강재.
  2. 제 1 항에 있어서,
    상기 다층의 아연계 도금층은 소지철과의 계면에서부터 순차적으로 제1 도금층, 제2 도금층 및 제3 도금층을 포함하고, 상기 제2 도금층이 Mg를 0.4~0.9중량%를 포함하는 Zn-Mg 합금층인 아연계 도금강재.
  3. 제 2 항에 있어서, 상기 제1 도금층 및 제3 도금층은 각각 0.1중량% 이하(0중량% 포함)의 Mg를 포함하는 Zn 층인 아연계 도금강재.
  4. 제 3 항에 있어서, 상기 다층의 아연계 도금층은 전체 부착량이 15~35g/m 2인 아연계 도금강재.
  5. 제 4 항에 있어서, 상기 제2 도금층의 부착량은 9~15g/m 2인 아연계 도금강재.
  6. 제 5 항에 있어서, 상기 제1 도금층 및 제3 도금층의 부착량은 각각 3~10g/m 2인 아연계 도금강재.
  7. 제 1 항에 있어서, 상기 소지철은 C: 0.10~1.0%, Si: 0.5~3%, Mn: 1.0~25%, Al: 0.01~10%, P: 0.1% 이하(0% 제외), S: 0.01% 이하(0% 제외), 잔부 Fe 및 불가피한 불순물을 포함하는 아연계 도금강재.
  8. 제 7 항에 있어서,
    상기 소지철에 포함된 C, Si, Mn, P 및 S의 함량은 하기 관계식 1을 만족하는 아연계 도금강재.
    [관계식 1] [C]+[Mn]/20+[Si]/30+2[P]+4[S]≥0.3
    (여기서, [C], [Mn], [Si], [P] 및 [S] 각각은 해당 원소의 함량(중량%)을 의미함)
  9. 제 1 항에 있어서, 상기 소지철은 미세조직으로 오스테나이트, 잔류 오스테나이트 및 마르텐사이트 중에서 선택된 1종 또는 2종 이상을 포함하는 아연계 도금강재.
  10. 제 1 항 내지 제 9 항 중 어느 한 항에 있어서, SEP 1220-2 규격에 따라 점 용접을 실시하였을 때, Type-B 크랙의 평균 길이가 소지철 두께의 0.1배 이하인 아연계 도금강재.
  11. 제 1 항 내지 제 9 항 중 어느 한 항에 있어서, 상기 다층의 아연계 도금층을 이루는 2 이상의 구별되는 도금층 중 적어도 하나의 도금층은 물리적 기상 증착(PVD)법에 의하여 형성되는 아연계 도금강재.
  12. 제 11 항에 있어서, 상기 물리적 기상 증착(PVD) 법에 의해 형성되는 도금층은 Mg를 0.4~0.9중량% 포함하는 Zn-Mg 합금층인 아연계 도금강재.
  13. 소지철을 준비하는 단계;
    상기 소지철 위에 2 이상의 구별되는 도금층으로 이루어진 다층의 아연계 도금층을 순차적으로 형성하는 단계를 포함하고,
    상기 다층의 아연계 도금층은,
    0.12~0.64중량%의 Mg를 포함하는
    아연계 도금강재의 제조방법.
  14. 제 13 항에 있어서,
    상기 다층의 아연계 도금층을 순차적으로 형성하는 단계는,
    제1 도금층을 형성하는 단계;
    Mg를 0.4~0.9중량%를 포함하는 Zn-Mg 합금층으로 이루어진 제2 도금층을 형성하는 단계; 및
    제3 도금층을 형성하는 단계를 순차적으로 포함하는
    아연계 도금강재의 제조방법.
  15. 제 14 항에 있어서,
    상기 제1 도금층 및 제3 도금층은 각각 0.1중량% 이하(0중량% 포함)의 Mg를 포함하는 Zn 층인 아연계 도금강재의 제조방법.
  16. 제 13 항 내지 제 15 항 중 어느 한 항에 있어서, 상기 다층의 아연계 도금층 중 하나 또는 그 이상의 도금층은 물리적 기상 증착(PVD) 법에 의해 형성되는 아연계 도금강재의 제조방법.
PCT/KR2020/017515 2019-12-20 2020-12-03 내식성과 점 용접성이 우수한 아연계 도금강재 WO2021125636A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080088899.0A CN114901856B (zh) 2019-12-20 2020-12-03 耐蚀性和点焊性优异的镀锌系钢材
EP20901232.7A EP4079929A4 (en) 2019-12-20 2020-12-03 ZINC-BASED, METAL-COATED STEEL WITH EXCELLENT ANTI-CORROSION PROPERTIES AND SPOT-WELDABILITY
US17/787,182 US20230030466A1 (en) 2019-12-20 2020-12-03 Zinc-based coated steel material having excellent corrosion resistance and spot weldability
JP2022536983A JP7464717B2 (ja) 2019-12-20 2020-12-03 耐食性とスポット溶接性に優れた亜鉛系めっき鋼材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190171333A KR102364899B1 (ko) 2019-12-20 2019-12-20 내식성과 점 용접성이 우수한 아연계 도금강재
KR10-2019-0171333 2019-12-20

Publications (1)

Publication Number Publication Date
WO2021125636A1 true WO2021125636A1 (ko) 2021-06-24

Family

ID=76476772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017515 WO2021125636A1 (ko) 2019-12-20 2020-12-03 내식성과 점 용접성이 우수한 아연계 도금강재

Country Status (6)

Country Link
US (1) US20230030466A1 (ko)
EP (1) EP4079929A4 (ko)
JP (1) JP7464717B2 (ko)
KR (1) KR102364899B1 (ko)
CN (1) CN114901856B (ko)
WO (1) WO2021125636A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441683A (ja) * 1990-06-06 1992-02-12 Sumitomo Metal Ind Ltd スポット溶接性に優れた亜鉛系めっき複層鋼板
KR20130060591A (ko) * 2011-11-30 2013-06-10 현대하이스코 주식회사 내식성이 우수한 아연합금도금강판 및 그 제조 방법
US20150013409A1 (en) * 2010-12-17 2015-01-15 Arcelormittal Investigación Y Desarrollo Sl Steel Sheet including a Multilayer Coating and Methods
KR20150071883A (ko) * 2013-12-19 2015-06-29 주식회사 포스코 밀착성이 우수한 고내식 도금 강판 및 그 제조 방법
KR20190078399A (ko) * 2017-12-26 2019-07-04 주식회사 포스코 점용접성 및 내식성이 우수한 다층 아연합금도금강재

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417853A (en) * 1987-07-14 1989-01-20 Kobe Steel Ltd Zinc alloy plated product having excellent exfoliation resistance of coated film
JPH02141588A (ja) * 1988-11-22 1990-05-30 Kobe Steel Ltd 密着性に優れた高耐食性Zn−Mg合金蒸着めっき金属
JPH08239754A (ja) * 1995-02-28 1996-09-17 Nisshin Steel Co Ltd 二次密着性及び耐食性に優れたZn−Mg合金めっき鋼板
JPH09256157A (ja) * 1996-03-22 1997-09-30 Nisshin Steel Co Ltd Zn−Mg蒸着めっき鋼板の製造方法
EP2794951B1 (en) * 2011-12-23 2019-03-06 Tata Steel Nederland Technology B.V. Substrate with a double layered coating
KR101500043B1 (ko) * 2012-12-21 2015-03-06 주식회사 포스코 가공성 및 가공부 내식성이 우수한 용융아연합금 도금강판 및 그의 제조방법
WO2017078195A1 (ko) * 2015-11-02 2017-05-11 키스와이어 에스디엔 비에이치디 고내식 아연합금도금 강선 및 그 제조방법
KR101867732B1 (ko) * 2016-12-22 2018-06-14 주식회사 포스코 다층구조의 도금강판 및 그 제조방법
WO2018124649A1 (ko) * 2016-12-26 2018-07-05 주식회사 포스코 점용접성 및 내식성이 우수한 다층 아연합금도금강재
KR20190082972A (ko) * 2017-04-27 2019-07-10 키스와이어 에스디엔 비에이치디 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441683A (ja) * 1990-06-06 1992-02-12 Sumitomo Metal Ind Ltd スポット溶接性に優れた亜鉛系めっき複層鋼板
US20150013409A1 (en) * 2010-12-17 2015-01-15 Arcelormittal Investigación Y Desarrollo Sl Steel Sheet including a Multilayer Coating and Methods
KR20130060591A (ko) * 2011-11-30 2013-06-10 현대하이스코 주식회사 내식성이 우수한 아연합금도금강판 및 그 제조 방법
KR20150071883A (ko) * 2013-12-19 2015-06-29 주식회사 포스코 밀착성이 우수한 고내식 도금 강판 및 그 제조 방법
KR20190078399A (ko) * 2017-12-26 2019-07-04 주식회사 포스코 점용접성 및 내식성이 우수한 다층 아연합금도금강재

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4079929A4 *

Also Published As

Publication number Publication date
JP7464717B2 (ja) 2024-04-09
CN114901856A (zh) 2022-08-12
JP2023507961A (ja) 2023-02-28
KR102364899B1 (ko) 2022-02-18
KR102364899B9 (ko) 2023-04-12
KR20210079502A (ko) 2021-06-30
CN114901856B (zh) 2023-12-12
US20230030466A1 (en) 2023-02-02
EP4079929A1 (en) 2022-10-26
EP4079929A4 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
WO2012091385A2 (en) High corrosion resistant hot dip zn alloy plated steel sheet and method of manufacturing the same
WO2018124649A1 (ko) 점용접성 및 내식성이 우수한 다층 아연합금도금강재
WO2020130631A1 (ko) 전기 저항 점용접성이 우수한 고강도 아연도금강판 및 그 제조방법
WO2019132461A1 (ko) 열간 프레스 성형용 도금강판, 이를 이용한 성형부재 및 이들의 제조방법
WO2018124629A1 (ko) 점용접성 및 내식성이 우수한 아연합금도금강재
WO2020130602A2 (ko) 점 용접성이 우수한 아연도금강판 및 그 제조방법
WO2015099455A1 (ko) 액체금속취화에 의한 크랙 저항성이 우수한 용융아연도금강판
WO2017111400A1 (ko) 내마찰성 및 내백청성이 우수한 도금 강재 및 그 제조방법
WO2017111449A1 (ko) 도금성이 우수한 고강도 용융 아연계 도금 강재 및 그 제조방법
WO2018117714A1 (ko) 용접성 및 프레스 가공성이 우수한 용융 아연계 도금강재 및 그 제조방법
WO2019132339A1 (ko) 점용접성 및 내식성이 우수한 다층 아연합금도금강재
WO2021125696A2 (ko) 알루미늄합금 도금강판, 열간성형 부재 및 이들의 제조방법
WO2017111431A1 (ko) 내식성이 우수한 열간 프레스 성형품 및 그 제조방법
WO2021112584A1 (ko) 표면품질과 점 용접성이 우수한 아연도금강판 및 그 제조방법
WO2019125020A1 (ko) 저온 밀착성과 가공성이 우수한 용융아연도금강판 및 그 제조방법
WO2021125636A1 (ko) 내식성과 점 용접성이 우수한 아연계 도금강재
WO2018117770A1 (ko) 가공부 내식성이 우수한 알루미늄계 합금 도금강판
WO2022124825A1 (ko) 도금품질이 우수한 고강도 용융아연도금강판, 도금용 강판 및 이들의 제조방법
WO2020111775A1 (ko) 도금 밀착성 및 내부식성이 우수한 아연도금강판 및 이의 제조방법
WO2016105157A1 (ko) 인산염 처리성과 스폿 용접성이 우수한 아연합금도금강판 및 그 제조방법
WO2019132288A1 (ko) 점 용접성이 우수한 초고강도 고망간 아연도금강판 및 그의 제조방법
WO2022124826A1 (ko) 도금품질이 우수한 고강도 용융아연도금강판, 도금용 강판 및 이들의 제조방법
WO2021125885A1 (ko) 표면품질과 전기저항 점 용접성이 우수한 고강도 용융아연도금 강판 및 그 제조방법
WO2018124630A1 (ko) 점용접성 및 내식성이 우수한 단층 아연합금도금강재 및 그 제조방법
WO2019132305A1 (ko) 내식성, 용접성 및 윤활성이 우수한 아연합금도금강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536983

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020901232

Country of ref document: EP

Effective date: 20220720