WO2021125277A1 - 銀ペースト、及び、接合体の製造方法 - Google Patents

銀ペースト、及び、接合体の製造方法 Download PDF

Info

Publication number
WO2021125277A1
WO2021125277A1 PCT/JP2020/047185 JP2020047185W WO2021125277A1 WO 2021125277 A1 WO2021125277 A1 WO 2021125277A1 JP 2020047185 W JP2020047185 W JP 2020047185W WO 2021125277 A1 WO2021125277 A1 WO 2021125277A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
less
volume
silver particles
particle size
Prior art date
Application number
PCT/JP2020/047185
Other languages
English (en)
French (fr)
Inventor
司 八十嶋
広太郎 岩田
琢磨 片瀬
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US17/786,110 priority Critical patent/US20230025330A1/en
Priority to EP20902898.4A priority patent/EP4059635A4/en
Priority to CN202080087677.7A priority patent/CN114829036B/zh
Publication of WO2021125277A1 publication Critical patent/WO2021125277A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F7/064Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using an intermediate powder layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J1/00Adhesives based on inorganic constituents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/056Particle size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/058Particle size above 300 nm up to 1 micrometer

Definitions

  • the present invention relates to a silver paste used when joining members to each other, and a method for producing a bonded body using the silver paste.
  • the present application claims priority based on Japanese Patent Application No. 2019-230355 filed in Japan on December 20, 2019, the contents of which are incorporated herein by reference.
  • a semiconductor device such as an LED or a power module has a structure in which a semiconductor element is bonded on a circuit layer made of a metal member.
  • a method using a solder material is widely used, for example, as shown in Patent Document 1.
  • lead-free solders such as Sn-Ag type, Sn-In type, and Sn-Ag-Cu type have become mainstream.
  • Patent Document 1 when an electronic component such as a semiconductor element and a circuit layer are joined via a solder material, a part of the solder melts when used in a high temperature environment. There is a risk that the reliability of bonding between electronic components such as semiconductor elements and the circuit layer will decrease.
  • the heat resistance of the semiconductor element itself has been improved, and the semiconductor device may be used in a high temperature environment such as an engine room of an automobile.
  • a large current is applied to the semiconductor element, and the amount of heat generated by the semiconductor element itself is large. For this reason, it has been difficult to deal with the conventional structure in which soldering materials are used.
  • Patent Documents 2 and 3 propose a silver paste containing a silver powder having a particle size of submicron size and a solvent.
  • Patent Documents 4 and 5 propose a silver paste containing a silver powder having a nano-sized particle size and a solvent. These silver pastes can be sintered under relatively low temperature conditions, and the melting point of the bonding layer formed after sintering is equivalent to that of silver. Therefore, the bonded layer made of the sintered body of the silver paste has excellent heat resistance, and can be stably used even in a high temperature environment or in a large current application.
  • Patent Documents 2 and 3 when silver powder having a particle size of submicron size is used, many voids are generated between the silver powders at the time of sintering, and the bonding strength becomes insufficient. There was a risk.
  • Patent Documents 4 and 5 when silver powder having a nano-sized particle size is used, an organic film is formed on the outer peripheral surface of the nano-sized silver powder, and the inside of the bonded layer after sintering is formed. There was a possibility that the bonding strength would be lowered by the gas generated by the decomposition of the organic matter remaining in the organic matter.
  • Patent Document 6 proposes a silver paste containing two or more types of silver powder having different particle diameters and limiting the amount of organic matter in the silver powder.
  • silver powders having different particle sizes form aggregates and the amount of organic substances in the silver powder is limited, so that a dense bonding layer can be formed and the amount of organic substances remaining in the bonding layer. Can be suppressed, and the bonding strength can be secured.
  • the present invention has been made in view of the above-mentioned circumstances, and even when the joint area is large, the generation of coarse voids can be suppressed, and the structure can be made dense in regions other than voids. It is an object of the present invention to provide a silver paste capable of ensuring bonding strength, and a method for producing a bonded body using the silver paste.
  • the silver paste according to one aspect of the present invention is a silver paste containing a silver powder and a solvent, and the silver powder is a first silver particle having a particle size of 100 nm or more and less than 500 nm.
  • the first silver particles have a particle size of 50 nm or more and less than 100 nm, and a third silver particle having a particle size of 1000 nm or more and less than 10000 nm.
  • the content is in the range of 12% by volume or more and 90% by volume or less
  • the content of the second silver particles is in the range of 1% by volume or more and 38% by volume or less
  • the content of the third silver particles is 5% by volume or more and 80%. It is characterized in that it is within the range of volume% or less.
  • the silver powder has a first silver particle having a particle size of 100 nm or more and less than 500 nm, a second silver particle having a particle size of 50 nm or more and less than 100 nm, and a first silver particle having a particle size of 1000 nm or more and less than 10,000 nm. Since each of the three silver particles is contained in the above range, it is possible to form a dense bonding layer by allowing the silver particles having a small particle size to enter the gaps between the silver particles having a large particle size.
  • the presence of the third silver particles having a particle size of 1000 nm or more and less than 10000 nm forms voids communicating with the outer peripheral portion of the joint surface, and the gas generated by volatilization of the solvent at the central portion of the joint surface is externally released. It can be discharged to the surface, and the formation of coarse voids can be suppressed. Therefore, even when the joint area is large, it is possible to suppress the generation of coarse voids, and it is possible to form a dense structure in a region other than the voids, and it is possible to secure the joint strength.
  • the silver paste according to one aspect of the present invention further contains a fatty acid silver and an aliphatic amine, and has a complex formed by reacting at least a part of the fatty acid silver with at least a part of the aliphatic amine.
  • a complex formed by reacting at least a part of the fatty acid silver and at least a part of the aliphatic amine fine silver is precipitated from the complex at the time of sintering, and the fine silver is precipitated. By filling the gaps between the silver particles with the concentrated silver, it is possible to form a more dense bonding layer.
  • the method for producing a bonded body according to one aspect of the present invention is a method for producing a bonded body in which a first member and a second member are joined via a bonding layer, and the above-mentioned silver paste is used as described above. It is characterized by forming a bonding layer.
  • the bonded layer is formed by using the silver paste described above, a dense bonded layer can be formed without coarse voids, and the first member and the first member can be formed. It is possible to manufacture a bonded body having excellent bonding strength with the second member.
  • the bonding area is large, the generation of coarse voids can be suppressed, and a dense structure can be formed in a region other than the voids to ensure the bonding strength. It is possible to provide a silver paste capable of producing a silver paste, and a method for producing a bonded product using the silver paste.
  • the silver paste according to the present embodiment is used when joining the first member and the second member.
  • the circuit layer (first member) of the insulating circuit board and the semiconductor element (second member) are used. It is used when joining a member) via a joining layer.
  • the silver paste of the present embodiment contains silver powder and a solvent.
  • a resin, a dispersant, a plasticizer and the like may be contained, if necessary.
  • the silver powder is said to contain first silver particles having a particle size of 100 nm or more and less than 500 nm, second silver particles having a particle size of 50 nm or more and less than 100 nm, and third silver particles having a particle size of 1000 nm or more and less than 10,000 nm. ing.
  • the particle size of the silver particles contained in the silver powder is calculated by measuring the projected area of the silver particles using, for example, an SEM (scanning electron microscope) and calculating the equivalent circle diameter from the obtained projected area. Can be obtained by converting the particle size based on the volume.
  • the content of the first silver particles is within the range of 12% by volume or more and 90% by volume or less
  • the content of the second silver particles is within the range of 1% by volume or more and 38% by volume or less
  • the content of the third silver particles is in the range of 5% by volume or more and 80% by volume or less.
  • the silver particles that do not correspond to the first silver particles, the second silver particles, and the third silver particles are preferably limited to 5% by volume or less, with the total amount of the silver powder being 100% by volume.
  • the silver powder contains the first silver particles, the second silver particles, and the third silver particles having different particle sizes
  • the second silver particles enter the gaps between the first silver particles.
  • the third silver particles are present, voids communicating with the outer peripheral portion of the joint surface are formed between the silver powders, and the gas generated by the volatilization of the solvent can be discharged to the outside. It will be possible.
  • the content of the first silver particles is preferably 27% by volume or more.
  • the content of the first silver particles is preferably 71% by volume or less.
  • the content of the second silver particles is preferably 2% by volume or more.
  • the content of the second silver particles is preferably 30% by volume or less.
  • the content of the third silver particles is preferably 25% by volume or more.
  • the content of the third silver particles is preferably 55% by volume or less.
  • the silver powder described above preferably contains an organic substance composed of an organic reducing agent or a decomposition product thereof, and the organic substance is preferably decomposed or volatilized at a temperature of 150 ° C.
  • organic reducing agents include ascorbic acid, formic acid, tartaric acid and the like. This organic reducing agent or an organic substance composed of a decomposition product thereof has an effect of suppressing oxidation of the surface of silver particles and suppressing mutual diffusion between silver particles.
  • first silver particles having a particle size of 100 nm or more and less than 500 nm, second silver particles having a particle size of 50 nm or more and less than 100 nm, and third silver particles having a particle size of 1000 nm or more and less than 10,000 nm are prepared. However, these can be produced by mixing them in a predetermined blending ratio.
  • an aqueous solution of silver organic acid and an organic substance having a reducing action on silver are mixed, and silver organic acid is reduced and precipitated as silver particles to form silver particles. It can also be produced by a method for obtaining a slurry.
  • silver organic acid include silver oxalate, silver citrate and silver maleate.
  • organic substances having a reducing action include ascorbic acid, formic acid, tartaric acid and salts thereof.
  • the particle size distribution of the silver particles obtained by this production method can be appropriately adjusted depending on the blending amount of the organic acid silver and the organic substance, and the temperature and time at the time of reduction.
  • Examples of the solvent used in the silver paste of the present embodiment include alcohol-based solvents, glycol-based solvents, acetate-based solvents, hydrocarbon-based solvents, and mixtures thereof.
  • Alcohol-based solvents include ⁇ -terpineol, isopropyl alcohol, ethylhexanediol, and mixtures thereof
  • glycol-based solvents include ethylene glycol, diethylene glycol, polyethylene glycol, and mixtures thereof, and acetate-based solvents.
  • Examples include butyl carbitol acetate and the like
  • hydrocarbon solvents include decane, dodecane, tetradecane, and mixtures thereof.
  • the silver paste of the present embodiment may further contain a fatty acid silver and an aliphatic amine, and may have a complex formed by reacting at least a part of the fatty acid silver with at least a part of the aliphatic amine. preferable. As described above, by containing the silver complex, fine silver is precipitated from the complex at the time of sintering, and the precipitated silver makes it possible to further densify the bonding layer.
  • Examples of silver fatty acid include silver acetate, silver oxalate, silver propionate, silver myristylate, silver butyrate and the like.
  • Examples of the aliphatic amine include primary amines, secondary amines, and tertiary amines.
  • the carbon number of the aliphatic amine is preferably 8 or more and 12 or less. By setting the number of carbon atoms to 8 or more, the boiling point of the aliphatic amine does not become too low, and it is possible to suppress the deterioration of the printability of the silver paste. On the other hand, when the number of carbon atoms is 12 or less, sintering of silver powder in the silver paste is promoted.
  • the molar ratio of the aliphatic amine to the fatty acid silver that is, the molar amount of the aliphatic amine / the molar amount of the fatty acid silver is 1.5 or more. It is preferably within the range of 3 or less.
  • the molar amount of the aliphatic amine / the molar amount of the silver fatty acid is more preferably 1.7 or more, and more preferably 2.0 or more.
  • the molar amount of the aliphatic amine / the molar amount of the silver fatty acid is more preferably 2.8 or less, and more preferably 2.5 or less.
  • the silver paste of the present embodiment may be obtained by mixing silver powder and a solvent and kneading them with a three-roll mill or the like.
  • the content of silver powder is preferably in the range of 70% by mass to 95% by mass
  • the content of the solvent is preferably in the range of 5% by mass to 30% by mass. preferable.
  • the viscosity of the silver paste may decrease and coating defects such as sagging may easily occur, and if it is too high, the viscosity may increase and the handleability may deteriorate.
  • the silver paste of the present embodiment further contains fatty acid silver and an aliphatic amine
  • the silver paste may be obtained by mixing the complex solution obtained by the following method, silver powder and a solvent.
  • a method for producing a complex solution first, a silver fatty acid, an aliphatic amine and a solvent are prepared, and silver fatty acid, an aliphatic amine and a solvent are mixed to prepare a mixture.
  • the fatty acid silver is 0.1% by mass to 40% by mass
  • the aliphatic amine is 0.1% by mass to 60% by mass
  • the solvent is 80% by mass or less. It is preferable to mix.
  • the ratio of the solvent may be 0.1% by mass or more.
  • the mixture is heated to 30 ° C. to 100 ° C. and stir for 5 minutes to 10 hours to prepare a mixed solution. After preparation, the mixture is cooled to room temperature (25 ° C.). As a result, a complex solution of fatty acid silver, an aliphatic amine and a solvent is prepared.
  • the heating temperature and heating time of the mixture are within the above ranges in order to facilitate uniform mixing of the fatty acid silver, the aliphatic amine, and the solvent.
  • the solvent examples include an acetate solvent such as butyl carbitol acetate, a dihydric alcohol solvent such as 2-ethyl-1,3-hexanediol, and a monohydric alcohol solvent such as 1-octanol and ⁇ -terpineol. Can be mentioned.
  • the silver paste When the mixture of the complex liquid, the silver powder and the solvent is 100% by mass, the silver paste has 1% by mass to 30% by mass of the complex liquid, 70% by mass to 95% by mass of the silver powder, and 0% by mass to 29% of the solvent. It is preferably obtained by mixing in a proportion of mass% (0.8 mass% or more when combined with the solvent of the complex solution).
  • a method for producing a bonded body using the silver paste according to the present embodiment will be described.
  • a joined body in which a first member and a second member are joined via a joining layer is manufactured.
  • the bonded body may be, for example, a semiconductor device in which an insulating circuit board as a first member and a semiconductor element as a second member are bonded via a bonding layer.
  • the silver paste of the present embodiment is applied to one or both of the joint surface of the first member and the joint surface of the second member.
  • the coating method for example, a spin coating method, a metal mask method, a screen printing method and the like can be applied.
  • the first member and the second member are laminated via a silver paste to form a laminated body.
  • a bonding layer made of a sintered body of silver paste is formed, and the first member and the second member are bonded.
  • the heating temperature during the heat treatment is preferably in the range of 120 ° C. or higher and 400 ° C. or lower.
  • the holding time at the heating temperature is preferably 30 minutes or more.
  • the holding time at the heating temperature is preferably 120 minutes or less, for example.
  • the laminate may be pressurized in the lamination direction at a pressure of 10 MPa or less.
  • the atmosphere at the time of heat treatment is preferably a nitrogen atmosphere.
  • a nitrogen atmosphere having an oxygen concentration of 500 ppm (volume basis) or less is preferable. More preferably, a nitrogen atmosphere having an oxygen concentration of 100 ppm (volume basis) or less is preferable.
  • the silver powder and the solvent are contained, and the silver powder contains the first silver particles having a particle size of 100 nm or more and less than 500 nm and a particle size of 50 nm or more. It contains second silver particles having a particle size of less than 100 nm and third silver particles having a particle size of 1000 nm or more and less than 10,000 nm, and the content of the first silver particles is 12% by volume, assuming that the entire silver powder is 100% by volume.
  • the content of the second silver particles is within the range of 1% by volume or more and 38% by volume or less, and the content of the third silver particles is within the range of 5% by volume or more and 80% by volume or less. Therefore, it is possible to form a dense bonding layer by allowing the silver particles having a small particle size to enter the gaps between the silver particles having a large particle size. Then, due to the presence of the third silver particles, voids communicating with the outer peripheral portion of the joint surface are formed between the silver powders, and the gas generated by volatilizing the solvent at the central portion of the joint surface is discharged to the outside. It is possible to suppress the formation of coarse voids. Therefore, even when the joint area is large, it is possible to suppress the generation of coarse voids, and it is possible to form a dense structure in a region other than the voids, and it is possible to secure the joint strength.
  • the silver paste of the present embodiment contains a fatty acid silver and an aliphatic amine and has a complex formed by reacting at least a part of the fatty acid silver with at least a part of the aliphatic amine, it is baked. At the time of formation, fine silver is precipitated from the complex, and the fine precipitated silver fills the gaps between the silver particles, so that a more dense bonding layer can be formed.
  • the method for producing a bonded body of the present embodiment since the bonded layer is formed by using the silver paste of the present embodiment, the gas generated by the volatilization of the solvent at the central portion of the bonded surface is released to the outside. It is possible to suppress the generation of coarse voids, and it is possible to form a dense structure in regions other than voids, and a bonded body having excellent bonding strength between the first member and the second member. Can be manufactured.
  • first silver particles having a particle size of 100 nm or more and less than 500 nm, second silver particles having a particle size of 50 nm or more and less than 100 nm, and third silver particles having a particle size of 1000 nm or more and less than 10,000 nm are provided. It was mixed and mixed. The silver powder and the solvent (ethylene glycol) were mixed at a mass ratio of 70:30. The obtained mixture was kneaded using a three-roll mill to produce a silver paste.
  • solvent ethylene glycol
  • the complex liquid prepared as follows was added to the silver paste.
  • the silver powder, the solvent (ethylene glycol) and the complex liquid were mixed at a mass ratio of 70:20:10.
  • the complex solution was obtained by the following method.
  • silver acetate (silver fatty acid), aminodecane (aliphatic amine) and butyl carbitol acetate (solvent) are prepared and the total amount of silver acetate, aminodecane and butyl carbitol acetate is 100% by mass, 22 mass of silver acetate is used.
  • %, Aminodecane was 41.3% by mass, and the balance was butyl carbitol acetate.
  • These were placed in a glass container together with a stirrer. Then, the container was placed on a hot plate heated to 50 ° C., and the stirrer was stirred for 1 hour while rotating at 300 rpm to obtain a complex solution.
  • a copper plate (thickness 2 mm) having gold plating on the outermost surface and a 10 mm square SiC element (thickness 400 ⁇ m) having gold plating on the outermost surface were prepared as the second member.
  • the above-mentioned silver paste was applied to the surface of the first member by a metal mask method to form a paste layer having a thickness of 150 ⁇ m and an area of 10 mm square.
  • the second member was laminated on this paste layer so as to form a paste layer of 130 ⁇ m , charged into a heating furnace having a nitrogen atmosphere (O 2 concentration of 100 volppm or less), and 250 ° C. at a heating rate of 2 ° C./min. The temperature was raised to 250 ° C.
  • Comparative Examples 1 to 4 containing no third silver particles having a particle size of 1000 nm or more and less than 10,000 nm. It is presumed that the gas generated by the volatilization of the solvent at the central part of the joint surface could not be discharged to the outside.
  • Comparative Example 5 in which the content of the third silver particles having a particle size of 1000 nm or more and less than 10000 nm was 85% by mass, which was out of the range of the present invention, the porosity of the region other than the void was high and the share strength was low.
  • Comparative Examples 6 and 7 in which the content of the first silver particles having a particle size of 100 nm or more and less than 500 nm was out of the range of the present invention, the porosity of the region other than the void was high and the shear strength was low.
  • Comparative Example 8 in which the secondary silver particles having a particle size of 50 nm or more and less than 100 nm were not contained, the porosity of the region other than the void was high and the shear strength was low. Voids were confirmed in Comparative Example 9 in which the content of the second silver particles having a particle size of 50 nm or more and less than 100 nm was 40% by mass, which was out of the range of the present invention. It is presumed that the gas generated by the volatilization of the solvent at the central part of the joint surface could not be discharged to the outside.
  • Examples 1 to 9 of the present invention no void was confirmed, and the share strength was sufficiently high.
  • the porosity of the region other than the void was low, and the shear strength was further increased.
  • the present invention even when the bonding area is large, the generation of coarse voids can be suppressed, and a dense structure can be formed in a region other than the voids, and the bonding strength can be ensured. It is possible to provide a silver paste and a method for producing a bonded body using the silver paste.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

この銀ペーストは、銀粉と、溶媒と、を含み、前記銀粉は、粒径が100nm以上500nm未満の第1銀粒子と、粒径が50nm以上100nm未満の第2銀粒子と、粒径が1000nm以上10000nm未満の第3銀粒子と、を含んでおり、前記銀粉の全体を100体積%として、前記第1銀粒子の含有量が12体積%以上90体積%以下の範囲内、前記第2銀粒子の含有量が1体積%以上38体積%以下の範囲内、前記第3銀粒子の含有量が5体積%以上80体積%以下の範囲内である。

Description

銀ペースト、及び、接合体の製造方法
 本発明は、部材同士を接合する際に用いられる銀ペースト、及び、この銀ペーストを用いた接合体の製造方法に関する。
 本願は、2019年12月20日に、日本に出願された特願2019-230355号に基づき優先権を主張し、その内容をここに援用する。
 例えば、LEDやパワーモジュールといった半導体装置は、金属部材からなる回路層の上に半導体素子が接合された構造とされている。
 半導体素子等の電子部品を回路層上に接合する際には、例えば特許文献1に示すように、はんだ材を用いた方法が広く使用されている。最近では、環境保護の観点から、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系等の鉛フリーはんだが主流となっている。
 ところで、特許文献1に記載されたように、はんだ材を介して半導体素子等の電子部品と回路層とを接合した場合には、高温環境下で使用した際にはんだの一部が溶融し、半導体素子等の電子部品と回路層と接合信頼性が低下するおそれがあった。
 特に、最近では、半導体素子自体の耐熱性が向上しており、半導体装置が自動車のエンジンルーム等の高温環境下で使用されることがある。また、半導体素子に対して大電流が負荷され、半導体素子自体の発熱量が大きくなっている。このため、従来のようにはんだ材で接合した構造では対応が困難であった。
 はんだ材の代替として、例えば、特許文献2,3には、粒径がサブミクロンサイズの銀粉と溶媒とを含む銀ペーストが提案されている。特許文献4,5には、粒径がナノサイズの銀粉と溶媒とを含む銀ペーストが提案されている。
 これらの銀ペーストは、比較的低温条件で焼結することができ、かつ、焼結後に形成される接合層の融点は銀と同等となる。このため、この銀ペーストの焼結体からなる接合層は、耐熱性に優れており、高温環境下や大電流用途においても安定して使用することが可能となる。
 しかしながら、特許文献2,3に記載されたように、粒径がサブミクロンサイズの銀粉を用いた場合には、焼結時に銀粉同士の間に多くの空隙が生じ、接合強度が不十分となるおそれがあった。
 特許文献4,5に記載されたように、粒径がナノサイズの銀粉を用いた場合には、ナノサイズの銀粉の外周面には有機物膜が形成されており、焼結後の接合層内に有機物が残存し、この有機物が分解して生じるガスによって接合強度が低下するおそれがあった。
 そこで、特許文献6には、粒径の異なる2種類以上の銀粉を含有するとともに銀粉における有機物量を制限した銀ペーストが提案されている。
 この銀ペーストにおいては、粒径の異なる銀粉が凝集体を形成するとともに、銀粉における有機物量が制限されているので、緻密な接合層を形成することができるとともに接合層内への有機物の残存量を抑制でき、接合強度を確保することが可能となる。
特開2004-172378号公報 国際公開第2006/126614号 国際公開第2007/034833号 特開2008-161907号公報 特開2011-094223号公報 特開2018-172764号公報
 ところで、最近では、部材同士の接合面積が大きくなる傾向にある。特許文献6に記載された銀ペーストにおいては、接合面の周辺で焼結が進行して緻密な焼結体が形成されると、接合面の中心部分で溶媒が揮発して生じたガスを外部へと排出することができなくなり、粗大なボイドが生じるおそれがあった。
 この発明は、前述した事情に鑑みてなされたものであって、接合面積が大きい場合であっても、粗大なボイドの発生を抑制でき、かつ、ボイド以外の領域では緻密な構造とすることができ、接合強度を確保することが可能な銀ペースト、及び、この銀ペーストを用いた接合体の製造方法を提供することを目的とする。
 上記課題を解決するために、本発明の一態様に係る銀ペーストは、銀粉と、溶媒と、を含む銀ペーストであって、前記銀粉は、粒径が100nm以上500nm未満の第1銀粒子と、粒径が50nm以上100nm未満の第2銀粒子と、粒径が1000nm以上10000nm未満の第3銀粒子と、を含んでおり、前記銀粉の全体を100体積%として、前記第1銀粒子の含有量が12体積%以上90体積%以下の範囲内、前記第2銀粒子の含有量が1体積%以上38体積%以下の範囲内、前記第3銀粒子の含有量が5体積%以上80体積%以下の範囲内であることを特徴としている。
 上記態様の銀ペーストによれば、前記銀粉は、粒径が100nm以上500nm未満の第1銀粒子と、粒径が50nm以上100nm未満の第2銀粒子と、粒径が1000nm以上10000nm未満の第3銀粒子とを、上述の範囲でそれぞれ含んでいるので、粒径の大きな銀粒子同士の隙間に粒径の小さな銀粒子が入り込むことにより、緻密な接合層を形成することが可能となる。
 そして、粒径が1000nm以上10000nm未満の第3銀粒子が存在することで、接合面の外周部分にまで連通する空隙が形成され、接合面の中心部分で溶媒が揮発して生じたガスを外部へと排出することができ、粗大なボイドの生成を抑制することができる。
 よって、接合面積が大きい場合であっても、粗大なボイドの発生を抑制でき、かつ、ボイド以外の領域では緻密な構造とすることができ、接合強度を確保することが可能となる。
 本発明の一態様に係る銀ペーストにおいては、さらに、脂肪酸銀と脂肪族アミンを含み、前記脂肪酸銀の少なくとも一部と前記脂肪族アミンの少なくとも一部とが反応して形成される錯体を有することが好ましい。
 この場合、前記脂肪酸銀の少なくとも一部と前記脂肪族アミンの少なくとも一部とが反応して形成される錯体を有しているので、焼結時に前記錯体から微細な銀が析出し、この微細な析出銀が銀粒子同士の隙間を埋めることで、さらに緻密な接合層を形成することが可能となる。
 本発明の一態様に係る接合体の製造方法は、第1の部材と第2の部材とが接合層を介して接合された接合体の製造方法であって、上述の銀ペーストを用いて前記接合層を形成することを特徴としている。
 上記態様の接合体の製造方法によれば、上述の銀ペーストを用いて接合層を形成しているので、粗大なボイドがなく、緻密な接合層を形成することができ、第1の部材と第2の部材との接合強度に優れた接合体を製造することが可能となる。
 本発明の上記態様によれば、接合面積が大きい場合であっても、粗大なボイドの発生を抑制でき、かつ、ボイド以外の領域では緻密な構造とすることができ、接合強度を確保することが可能な銀ペースト、及び、この銀ペーストを用いた接合体の製造方法を提供することができる。
 以下に、本発明の実施形態である銀ペースト、及び、この銀ペーストを用いた接合体の製造方法について説明する。
 本実施形態に係る銀ペーストは、第1の部材と第2の部材とを接合する際に用いられるものであり、例えば、絶縁回路基板の回路層(第1の部材)と半導体素子(第2の部材)とを接合層を介して接合する際に用いられる。
 本実施形態である銀ペーストは、銀粉と、溶媒と、を含むものである。銀粉及び溶媒の他に、必要に応じて、樹脂、分散剤、可塑剤等を含有していてもよい。
 銀粉は、粒径が100nm以上500nm未満の第1銀粒子と、粒径が50nm以上100nm未満の第2銀粒子と、粒径が1000nm以上10000nm未満の第3銀粒子と、を含むものとされている。
 銀粉に含まれる銀粒子の粒径は、例えば、SEM(走査型電子顕微鏡)を用いて、銀粒子の投影面積を測定し、得られた投影面積から円相当径を算出し、算出した粒径を体積基準の粒径に換算することで得ることができる。
 銀粉の全体を100体積%として、第1銀粒子の含有量は12体積%以上90体積%以下の範囲内とされ、第2銀粒子の含有量は1体積%以上38体積%以下の範囲内とされ、第3銀粒子の含有量が5体積%以上80体積%以下の範囲内とされている。
 第1銀粒子、第2銀粒子及び第3銀粒子に該当しない銀粒子は、銀粉の全体を100体積%として、5体積%以下に制限することが好ましい。
 上述のように、銀粉が、互いに粒径が異なる第1銀粒子、第2銀粒子及び第3銀粒子を含んでいるので、第1銀粒子同士の隙間に第2銀粒子が入り込むことになり、焼結後に緻密な接合層を形成することが可能となる。
 第3銀粒子が存在していることから、銀粉の間に接合面の外周部分にまで連通する空隙が形成されることになり、溶媒が揮発して生じたガスを外部へと排出することが可能となる。
 第1銀粒子の含有量は27体積%以上であることが好ましい。第1銀粒子の含有量は71体積%以下であることが好ましい。
 第2銀粒子の含有量は2体積%以上であることが好ましい。第2銀粒子の含有量は30体積%以下であることが好ましい。
 第3銀粒子の含有量は25体積%以上であることが好ましい。第3銀粒子の含有量は55体積%以下であることが好ましい。
 上述の銀粉は、有機還元剤あるいはその分解物からなる有機物を含むことが好ましく、この有機物は150℃の温度で分解若しくは揮発するものであることが好ましい。
 有機還元剤の例としては、アスコルビン酸、ギ酸、酒石酸等が挙げられる。
 この有機還元剤あるいはその分解物からなる有機物は、銀粒子表面の酸化を抑制し、銀粒子同士の相互拡散を抑制する作用を有する。
 上述の銀粉は、粒径が100nm以上500nm未満の第1銀粒子と、粒径が50nm以上100nm未満の第2銀粒子と、粒径が1000nm以上10000nm未満の第3銀粒子と、をそれぞれ準備し、これらを所定の配合比で混合することで製造することができる。
 第1銀粒子及び第2銀粒子については、有機酸銀の水溶液と銀に対して還元作用を有する有機物とを混合して、有機酸銀を還元して銀粒子として析出させて、銀粒子のスラリーを得る方法によっても製造することができる。有機酸銀の例としては、シュウ酸銀、クエン酸銀およびマレイン酸銀が挙げられる。還元作用を有する有機物としては、アスコルビン酸、ギ酸、酒石酸およびそれらの塩が挙げられる。この製造方法で得られる銀粒子の粒度分布は、有機酸銀と有機物との配合量、還元時の温度や時間によって適宜調整することができる。
 本実施形態である銀ペーストにおいて用いられる溶媒としては、アルコール系溶媒、グリコール系溶媒、アセテート系溶媒、炭化水素系溶媒、及びこれらの混合物等が挙げられる。
 アルコール系溶媒としては、α-テルピネオール、イソプロピルアルコール、エチルヘキサンジオール、及びこれらの混合物等があり、グリコール系溶媒としては、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、及びこれらの混合物等があり、アセテート系溶媒としては、ブチルカルビトールアセテート等があり、炭化水素系溶媒としては、デカン、ドデカン、テトラデカン、及びこれらの混合物等がある。
 本実施形態である銀ペーストにおいては、さらに、脂肪酸銀と脂肪族アミンを含み、前記脂肪酸銀の少なくとも一部と前記脂肪族アミンの少なくとも一部とが反応して形成される錯体を有することが好ましい。
 上述のように、銀の錯体を含有することで、焼結時にこの錯体から微細な銀が析出し、この析出銀によって接合層をさらに緻密化することが可能となる。
 脂肪酸銀としては、酢酸銀、シュウ酸銀、プロピオン酸銀、ミリスチル酸銀、酪酸銀等が挙げられる。脂肪族アミンとしては、第1級アミン、第2級アミン、第3級アミン等が挙げられる。脂肪族アミンの炭素数は好ましくは8以上12以下とすることが望ましい。炭素数を8以上とすることで脂肪族アミンの沸点が低くなりすぎず、銀ペーストの印刷性が低下することを抑制できる。一方、炭素数を12以下とすることで、銀ペースト中の銀粉の焼結が促進される。具体的な例としては、第1級アミンには、エチルヘキシルアミン、アミノデカン、ドデシルアミン、ノニルアミン、ヘキシルアミン等があり、第2級アミンには、ジメチルアミン、ジエチルアミン等があり、第3級アミンには、トリメチルアミン、トリエチルアミン等がある。
 本実施形態である銀ペーストにおいて、脂肪酸銀と脂肪族アミンを含む場合には、脂肪酸銀に対する脂肪族アミンのモル比、すなわち、脂肪族アミンのモル量/脂肪酸銀のモル量は1.5以上3以下の範囲内とすることが好ましい。脂肪族アミンのモル量/脂肪酸銀のモル量を1.5以上とすることにより、固体である脂肪酸銀の割合が相対的に低くなり、銀ペースト中に均一に分散させることができる。一方、脂肪族アミンのモル量/脂肪酸銀のモル量を3以下とすることにより、銀ペーストの粘性が低下することを抑制でき、印刷性を確保することができる。
 脂肪族アミンのモル量/脂肪酸銀のモル量は1.7以上とすることがさらに好ましく、2.0以上とすることがより好ましい。脂肪族アミンのモル量/脂肪酸銀のモル量は2.8以下とすることがさらに好ましく、2.5以下とすることがより好ましい。
 本実施形態である銀ペーストは、銀粉と溶媒とを混合し、三本ロールミル等で混練することにより得てもよい。銀ペーストを100質量%とするとき、銀粉の含有量は70質量%~95質量%の範囲内にすることが好ましく、溶媒の含有量は5質量%~30質量%の範囲内にすることが好ましい。銀ペーストにおいて、前記銀粉の含有量が少ないと銀ペーストの粘度が低下してダレ等の塗布不良が生じ易くなるおそれがあり、高すぎると粘度が増大してハンドリング性が悪化するおそれがある。
 本実施形態である銀ペーストにおいて、さらに、脂肪酸銀と脂肪族アミンを含む場合には、以下の方法で得られる錯体液と銀粉と溶媒とを混合して銀ペーストを得てもよい。
 錯体液の製造方法としては、まず、脂肪酸銀と脂肪族アミンと溶媒とを用意し、脂肪酸銀と脂肪族アミンと溶媒とを混合し、混合物を調製する。この混合物の合計量を100質量%とするときに、脂肪酸銀が0.1質量%~40質量%、脂肪族アミンが0.1質量%~60質量%、溶媒が80質量%以下の割合で混合することが好ましい。溶媒の割合は0.1質量%以上としてもよい。
 次に、前記混合物を30℃~100℃に加熱して5分間~10時間撹拌して混合液を調製することが好ましい。調製した後に、この混合液を室温(25℃)まで下げて冷却する。これにより脂肪酸銀と脂肪族アミンと溶媒の錯体液が調製される。混合物の加熱温度及び加熱時間を前記範囲内とするのは、脂肪酸銀と脂肪族アミンと溶媒とを均一に混合し易くするためである。前記溶媒としては、例えば、ブチルカルビトールアセテート等のアセテート系溶媒、2-エチル-1,3-ヘキサンジオール等の2価アルコール系溶媒、1-オクタノール、α-テルピネオール等の1価アルコール系溶媒等が挙げられる。
 銀ペーストは、錯体液と銀粉と溶媒との混合物を100質量%とするときに、錯体液が1質量%~30質量%、銀粉が70質量%~95質量%、溶媒が0質量%~29質量%(錯体液の溶媒と合わせて0.8質量%以上)の割合で混合して得ることが好ましい。
 次に、本実施形態である銀ペーストを用いた接合体の製造方法について説明する。
 本実施形態である接合体の製造方法では、第1の部材と第2の部材とが接合層を介して接合された接合体を製造する。この接合体としては、例えば第1の部材としての絶縁回路基板と、第2の部材としての半導体素子とを、接合層を介して接合した半導体装置であってもよい。
 第1の部材の接合面及び第2の部材の接合面の一方又は両方に、本実施形態である銀ペーストを塗布する。塗布方法としては、例えば、スピンコート法、メタルマスク法、スクリーン印刷法等を適用することができる。
 次に、第1の部材と第2の部材とを銀ペーストを介して積層して積層体とする。
 そして、この積層体を加熱処理することで、銀ペーストの焼結体からなる接合層が形成され、第1の部材と第2の部材とが接合される。
 加熱処理時には、銀ペーストに含まれる溶媒等の有機成分が分解してガスが発生する。
 本実施形態である銀ペーストにおいては、粒径が1000nm以上10000nm未満の第3銀粒子が存在していることから、銀粒子の間に接合面の外周部分にまで連通する空隙が形成され、上述のガスを外部へと排出することが可能となる。
 加熱処理時の加熱温度としては、120℃以上400℃以下の範囲内とすることが好ましい。
 加熱温度での保持時間は、30分以上とすることが好ましい。加熱温度での保持時間は、例えば、120分以下とすることが好ましい。
 加熱処理時には、積層体に対して10MPa以下の圧力で積層方向に加圧してもよい。
 加熱処理時の雰囲気としては、窒素雰囲気とするとよい。好ましくは酸素濃度が500ppm(体積基準)以下の窒素雰囲気とするとよい。より好ましくは酸素濃度100ppm(体積基準)以下の窒素雰囲気とするとよい。
 以上のような構成とされた本実施形態である銀ペーストによれば、銀粉と溶媒とを含んでおり、銀粉が、粒径が100nm以上500nm未満の第1銀粒子と、粒径が50nm以上100nm未満の第2銀粒子と、粒径が1000nm以上10000nm未満の第3銀粒子と、を含んでおり、前記銀粉の全体を100体積%として、前記第1銀粒子の含有量が12体積%以上90体積%以下の範囲内、前記第2銀粒子の含有量が1体積%以上38体積%以下の範囲内、前記第3銀粒子の含有量が5体積%以上80体積%以下の範囲内とされているので、粒径の大きな銀粒子同士の隙間に粒径の小さな銀粒子が入り込むことにより、緻密な接合層を形成することが可能となる。そして、第3銀粒子が存在することで、銀粉の間に接合面の外周部分にまで連通する空隙が形成され、接合面の中心部分で溶媒が揮発して生じたガスを外部へと排出することができ、粗大なボイドの生成を抑制することができる。
 よって、接合面積が大きい場合であっても、粗大なボイドの発生を抑制でき、かつ、ボイド以外の領域では緻密な構造とすることができ、接合強度を確保することが可能となる。
 本実施形態である銀ペーストにおいて、脂肪酸銀と脂肪族アミンを含み、前記脂肪酸銀の少なくとも一部と前記脂肪族アミンの少なくとも一部とが反応して形成される錯体を有する場合には、焼結時に錯体から微細な銀が析出し、この微細な析出銀が銀粒子同士の隙間を埋めることで、さらに緻密な接合層を形成することが可能となる。
 本実施形態である接合体の製造方法によれば、本実施形態である銀ペーストを用いて接合層を形成しているので、接合面の中心部分で溶媒が揮発して生じたガスを外部へと排出することができ、粗大なボイドの発生を抑制でき、かつ、ボイド以外の領域では緻密な構造とすることができ、第1の部材と第2の部材との接合強度に優れた接合体を製造することが可能となる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 以下に、本発明の有効性を確認するために行った確認実験の結果について説明する。
 表1に示すように、粒径が100nm以上500nm未満の第1銀粒子と、粒径が50nm以上100nm未満の第2銀粒子と、粒径が1000nm以上10000nm未満の第3銀粒子とを、配合して混合した。
 この銀粉と溶媒(エチレングリコール)とを、質量比で70:30の割合で混合した。
 得られた混合物を、三本ロールミルを用いて混錬して、銀ペーストを製造した。
 表1において、錯体液「有り」と記載されたものについては、以下のように作成した錯体液を銀ペーストに添加した。銀粉と溶媒(エチレングリコール)と錯体液を、質量比で70:20:10の割合で混合した。
 錯体液は以下の方法で得た。
 酢酸銀(脂肪酸銀)とアミノデカン(脂肪族アミン)とブチルカルビトールアセテート(溶媒)を用意し、酢酸銀とアミノデカンとブチルカルビトールアセテートの合計量を100質量%としたとき、酢酸銀を22質量%、アミノデカンを41.3質量%、残部をブチルカルビトールアセテートとした割合で取り分け、これらをスターラーの攪拌子とともにガラス製の容器に入れた。そして、50℃に加熱したホットプレートに前記容器を載せ、スターラーの攪拌子を300rpmで回転させながら1時間攪拌して錯体液を得た。
 第1の部材として最表面に金めっきを施した銅板(厚さ2mm)と、第2部材として最表面に金めっきを施した10mm角のSiC素子(厚さ400μm)とを準備した。
 第1の部材の表面に上述の銀ペーストを、メタルマスク法により塗布して厚さ150μm、10mm角の面積のペースト層を形成した。
 次いで、このペースト層に第2の部材を、ペースト層130μmとなるように積層し、窒素雰囲気(O濃度100volppm以下)の加熱炉に装入し、2℃/minの昇温速度で250℃まで昇温し、250℃で60分保持し、第1の部材と第2の部材とを接合層を介して接合した接合体を製造した。加熱時に積層体の加圧は行わなかった。
 得られた接合体について、ボイドの有無、ボイド以外の領域の空隙率を、以下のように評価した。
(ボイドの評価)
 上述の接合体について、超音波探傷機(日立パワーソリューションズ社製FSP8V)で接合層全体を観察した。白色で示される未接合部の面積と同じ面積の円とした場合における直径、即ち、円換算直径が0.1mm以上である場合をボイドと判定した。ボイドが確認されたものを「×」、ボイドが確認されなかったものを「〇」と表記した。
(ボイド以外の領域の空隙率の評価)
 上述の接合体を上面視中央付近で厚さ方向に切断し、切断面をCP加工した。ボイド以外の領域の任意の5ヶ所を5000倍でSEM観察し、画像処理ソフト(Image-J)で二値化し、空隙率を算出した。観察した5ヶ所の空隙率の算術平均値を表1に示した。
(シェア強度)
 上述した接合体の製造方法において、銀ペーストの塗布面積を2.5mm角、SiC素子の大きさを2.5mm角とした以外は同様にして、シェア強度測定用の接合体を得た。
 この接合体を、せん断強度評価試験機(株式会社レスカ製ボンディングテスタPTR-1101)を用いて接合強度を測定した。測定は、接合体の第1の部材を水平に固定し、接合層の表面から100μm上方の位置にてシェアツールを用いて、第2の部材を横から水平方向に押して、第2の部材が破断されたときの強度を測定した。シェアツールの移動速度は0.1mm/secとした。一条件につき3回試験を行い、それらの算術平均値を測定値とした。
Figure JPOXMLDOC01-appb-T000001
 粒径が1000nm以上10000nm未満の第3銀粒子を含まない比較例1~4においては、ボイドが確認された。接合面の中心部分で溶媒が揮発して生じたガスを外部へと排出することができなかったためと推測される。
 粒径が1000nm以上10000nm未満の第3銀粒子の含有量が85質量%と本発明の範囲から外れた比較例5においては、ボイド以外の領域の空隙率が高く、シェア強度が低くなった。
 粒径が100nm以上500nm未満の第1銀粒子の含有量が本発明の範囲から外れた比較例6,7においては、ボイド以外の領域の空隙率が高く、シェア強度が低くなった。
 粒径が50nm以上100nm未満の第2銀粒子を含まない比較例8においては、ボイド以外の領域の空隙率が高く、シェア強度が低くなった。
 粒径が50nm以上100nm未満の第2銀粒子の含有量が40質量%と本発明の範囲から外れた比較例9においては、ボイドが確認された。接合面の中心部分で溶媒が揮発して生じたガスを外部へと排出することができなかったためと推測される。
 これに対して、本発明例1~9においては、ボイドが確認されず、シェア強度が十分に高くなった。特に、錯体液を添加した本発明例6~9においては、ボイド以外の領域の空隙率が低く、シェア強度がさらに高くなった。
 以上のことから、本発明例によれば、接合面積が大きい場合であっても、ボイドの発生を抑制でき、かつ、緻密な接合層を形成でき、接合強度を確保することが可能な銀ペースト、及び、この銀ペーストを用いた接合体の製造方法を提供可能であることが確認された。
 本発明によれば、接合面積が大きい場合であっても、粗大なボイドの発生を抑制でき、かつ、ボイド以外の領域では緻密な構造とすることができ、接合強度を確保することが可能な銀ペースト、及び、この銀ペーストを用いた接合体の製造方法を提供することができる。

Claims (3)

  1.  銀粉と、溶媒と、を含む銀ペーストであって、
     前記銀粉は、粒径が100nm以上500nm未満の第1銀粒子と、粒径が50nm以上100nm未満の第2銀粒子と、粒径が1000nm以上10000nm未満の第3銀粒子と、を含んでおり、
     前記銀粉の全体を100体積%として、前記第1銀粒子の含有量が12体積%以上90体積%以下の範囲内、前記第2銀粒子の含有量が1体積%以上38体積%以下の範囲内、前記第3銀粒子の含有量が5体積%以上80体積%以下の範囲内であることを特徴とする銀ペースト。
  2.  さらに、脂肪酸銀と脂肪族アミンを含み、前記脂肪酸銀の少なくとも一部と前記脂肪族アミンの少なくとも一部とが反応して形成される錯体を有することを特徴とする請求項1に記載の銀ペースト。
  3.  第1の部材と第2の部材とが接合層を介して接合された接合体の製造方法であって、
     請求項1又は請求項2に記載の銀ペーストを用いて前記接合層を形成することを特徴とする接合体の製造方法。
PCT/JP2020/047185 2019-12-20 2020-12-17 銀ペースト、及び、接合体の製造方法 WO2021125277A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/786,110 US20230025330A1 (en) 2019-12-20 2020-12-17 Silver paste, and method of producing joined article
EP20902898.4A EP4059635A4 (en) 2019-12-20 2020-12-17 SILVER PASTE AND METHOD FOR PRODUCING A CONNECTED ARTICLE
CN202080087677.7A CN114829036B (zh) 2019-12-20 2020-12-17 银膏及接合体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019230355A JP6930578B2 (ja) 2019-12-20 2019-12-20 銀ペースト、及び、接合体の製造方法
JP2019-230355 2019-12-20

Publications (1)

Publication Number Publication Date
WO2021125277A1 true WO2021125277A1 (ja) 2021-06-24

Family

ID=76477651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047185 WO2021125277A1 (ja) 2019-12-20 2020-12-17 銀ペースト、及び、接合体の製造方法

Country Status (5)

Country Link
US (1) US20230025330A1 (ja)
EP (1) EP4059635A4 (ja)
JP (1) JP6930578B2 (ja)
CN (1) CN114829036B (ja)
WO (1) WO2021125277A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113593778A (zh) * 2021-08-10 2021-11-02 上海银浆科技有限公司 一种5g陶瓷基座滤波器用高q值电极银浆制备方法
CN113658756A (zh) * 2021-08-10 2021-11-16 上海银浆科技有限公司 一种5g陶瓷基座滤波器用电极银浆的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172378A (ja) 2002-11-20 2004-06-17 Mitsubishi Materials Corp パワーモジュール用基板の製造方法並びにパワーモジュール用基板及びパワーモジュール
WO2006126614A1 (ja) 2005-05-25 2006-11-30 Nihon Handa Co., Ltd. ペースト状銀組成物、その製造方法、固形状銀の製造方法、固形状銀、接着方法および回路板の製造方法
WO2007034833A1 (ja) 2005-09-21 2007-03-29 Nihon Handa Co., Ltd. ペースト状銀粒子組成物、固形状銀の製造方法、固形状銀、接合方法およびプリント配線板の製造方法
JP2008161907A (ja) 2006-12-28 2008-07-17 Hitachi Ltd 低温接合用材料及び接合方法
JP2011094223A (ja) 2008-11-26 2011-05-12 Mitsuboshi Belting Ltd 無機素材用接合剤及び無機素材の接合体
JP2018080385A (ja) * 2016-11-08 2018-05-24 Dowaエレクトロニクス株式会社 銀粒子分散液およびその製造方法並びにその銀粒子分散液を用いた導電膜の製造方法
JP2018172764A (ja) 2017-03-31 2018-11-08 三菱マテリアル株式会社 金属粒子凝集体とその製造方法、ペースト状金属粒子組成物および接合体の製造方法
JP2019087396A (ja) * 2017-11-07 2019-06-06 三菱マテリアル株式会社 銀ペースト、接合体及び接合体の製造方法
JP2019167616A (ja) * 2018-03-26 2019-10-03 三菱マテリアル株式会社 接合体の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2487215B1 (en) * 2011-02-11 2013-07-24 Henkel AG & Co. KGaA Electrically conductive adhesives comprising at least one metal precursor
CN104471652B (zh) * 2012-07-17 2016-10-26 日油株式会社 含银组合物及银成分形成基材
EP3072613B1 (en) * 2013-11-20 2019-05-29 National University Corporation Yamagata University Silver nanoparticles, method for producing silver nanoparticles, and silver nanoparticle ink
JP6373066B2 (ja) * 2014-05-30 2018-08-15 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
US10940534B2 (en) * 2015-08-25 2021-03-09 Tanaka Kikinzoku Kogyo K.K. Metal paste having excellent low-temperature sinterability and method for producing the metal paste
US10170691B2 (en) * 2016-01-28 2019-01-01 SK Hynix Inc. Electronic device and method for fabricating the same
US11430711B2 (en) * 2019-11-26 2022-08-30 Aegis Technology Inc. Carbon nanotube enhanced silver paste thermal interface material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172378A (ja) 2002-11-20 2004-06-17 Mitsubishi Materials Corp パワーモジュール用基板の製造方法並びにパワーモジュール用基板及びパワーモジュール
WO2006126614A1 (ja) 2005-05-25 2006-11-30 Nihon Handa Co., Ltd. ペースト状銀組成物、その製造方法、固形状銀の製造方法、固形状銀、接着方法および回路板の製造方法
WO2007034833A1 (ja) 2005-09-21 2007-03-29 Nihon Handa Co., Ltd. ペースト状銀粒子組成物、固形状銀の製造方法、固形状銀、接合方法およびプリント配線板の製造方法
JP2008161907A (ja) 2006-12-28 2008-07-17 Hitachi Ltd 低温接合用材料及び接合方法
JP2011094223A (ja) 2008-11-26 2011-05-12 Mitsuboshi Belting Ltd 無機素材用接合剤及び無機素材の接合体
JP2018080385A (ja) * 2016-11-08 2018-05-24 Dowaエレクトロニクス株式会社 銀粒子分散液およびその製造方法並びにその銀粒子分散液を用いた導電膜の製造方法
JP2018172764A (ja) 2017-03-31 2018-11-08 三菱マテリアル株式会社 金属粒子凝集体とその製造方法、ペースト状金属粒子組成物および接合体の製造方法
JP2019087396A (ja) * 2017-11-07 2019-06-06 三菱マテリアル株式会社 銀ペースト、接合体及び接合体の製造方法
JP2019167616A (ja) * 2018-03-26 2019-10-03 三菱マテリアル株式会社 接合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4059635A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113593778A (zh) * 2021-08-10 2021-11-02 上海银浆科技有限公司 一种5g陶瓷基座滤波器用高q值电极银浆制备方法
CN113658756A (zh) * 2021-08-10 2021-11-16 上海银浆科技有限公司 一种5g陶瓷基座滤波器用电极银浆的制备方法

Also Published As

Publication number Publication date
JP6930578B2 (ja) 2021-09-01
CN114829036B (zh) 2023-08-18
JP2021099906A (ja) 2021-07-01
EP4059635A4 (en) 2023-12-27
US20230025330A1 (en) 2023-01-26
EP4059635A1 (en) 2022-09-21
CN114829036A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
TWI716639B (zh) 接合材料及使用其之接合方法
WO2021125277A1 (ja) 銀ペースト、及び、接合体の製造方法
WO2014175417A1 (ja) 金属ナノ粒子分散体、金属ナノ粒子分散体の製造方法および接合方法
JPWO2018025903A1 (ja) はんだペースト用フラックス、及び、はんだペースト
KR20210068468A (ko) 접합 재료용 입자 및 그 제조 방법, 접합용 페이스트 및 그 조제 방법, 그리고 접합체의 제조 방법
JP7210842B2 (ja) 接合体の製造方法、焼結銅ピラー形成用銅ペースト、及び接合用ピラー付部材
JP5941588B2 (ja) 接合材およびそれを用いた接合方法
JP5962025B2 (ja) 導電性組成物及び接合体の製造方法
KR102354209B1 (ko) 접합재 및 그것을 사용한 접합 방법
JP2016188419A (ja) ニッケル粒子組成物、接合材及びそれを用いた接合方法
JP6831416B2 (ja) 接合材及び接合方法
JP2011083809A (ja) フラックス、はんだペースト及び接合部品
JP2022139486A (ja) 銀ペースト、および、接合体の製造方法
JP2023092937A (ja) 銀ペースト、および、接合体の製造方法
JP6845385B1 (ja) 接合用金属ペースト及び接合方法
JP2017177156A (ja) 接合用粉末及びこの粉末の製造方法並びにこの粉末を用いた接合用ペーストの製造方法
WO2019171908A1 (ja) 金属粒子凝集体及びその製造方法並びにペースト状金属粒子凝集体組成物及びこれを用いた複合体の製造方法
WO2016035314A1 (ja) 接合材およびそれを用いた接合方法
EP4306234A1 (en) Sintering paste and method for producing a sintering paste
JP7487011B2 (ja) 接合材、接合材の製造方法及び接合方法
WO2021060126A1 (ja) 接合材、接合材の製造方法、接合方法及び半導体装置
JP2022049054A (ja) 導電体作製方法、金属ペースト及び導電体
JP2018206826A (ja) 接合材、接合体および接合方法
WO2023190593A1 (ja) ペースト組成物及び複合体
JP2021138991A (ja) 接合材、接合材の製造方法及び接合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020902898

Country of ref document: EP

Effective date: 20220617

NENP Non-entry into the national phase

Ref country code: DE