WO2021124686A1 - 滑り免震装置 - Google Patents

滑り免震装置 Download PDF

Info

Publication number
WO2021124686A1
WO2021124686A1 PCT/JP2020/040188 JP2020040188W WO2021124686A1 WO 2021124686 A1 WO2021124686 A1 WO 2021124686A1 JP 2020040188 W JP2020040188 W JP 2020040188W WO 2021124686 A1 WO2021124686 A1 WO 2021124686A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding
fixing plate
seismic isolation
isolation device
structure fixing
Prior art date
Application number
PCT/JP2020/040188
Other languages
English (en)
French (fr)
Inventor
伸介 山崎
直以 野呂
克尚 小西
渡辺 厚
晃治 西本
雅人 関山
有希 二ノ宮
原田 大
Original Assignee
日鉄エンジニアリング株式会社
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄エンジニアリング株式会社, 東レ株式会社 filed Critical 日鉄エンジニアリング株式会社
Priority to CN202080045991.9A priority Critical patent/CN114051547A/zh
Priority to MX2022000512A priority patent/MX2022000512A/es
Priority to US17/596,234 priority patent/US11629517B2/en
Publication of WO2021124686A1 publication Critical patent/WO2021124686A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/04Bearings; Hinges
    • E01D19/042Mechanical bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D11/00Double or multi-ply fabrics not otherwise provided for
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/004Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft with weave pattern being non-standard or providing special effects
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/58Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads characterised by the coefficients of friction
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/08Vibration-dampers; Shock-absorbers with friction surfaces rectilinearly movable along each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • B32B2262/0238Vinyl halide, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/16Structural features of fibres, filaments or yarns e.g. wrapped, coiled, crimped or covered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/744Non-slip, anti-slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/04Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons
    • D10B2321/042Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons polymers of fluorinated hydrocarbons, e.g. polytetrafluoroethene [PTFE]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/14Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/30Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensation products not covered by indexing codes D10B2331/02 - D10B2331/14
    • D10B2331/301Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensation products not covered by indexing codes D10B2331/02 - D10B2331/14 polyarylene sulfides, e.g. polyphenylenesulfide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/04Friction

Definitions

  • This disclosure relates to a slip seismic isolation device.
  • seismic isolation technologies and immunity such as technology to resist seismic force and technology to reduce seismic force entering structures, for various structures such as buildings, bridges, elevated roads, and detached houses.
  • Seismic technology and seismic control technology have been developed and applied to various structures.
  • the seismic isolation technology is a technology for reducing the seismic force itself entering the structure, the vibration of the structure at the time of an earthquake is effectively reduced.
  • a seismic isolation device is interposed between the foundation and the superstructure, which are the substructures, to reduce the transmission of the vibration of the foundation due to the earthquake to the superstructure, and the vibration of the superstructure. Is reduced to guarantee structural stability. It should be noted that this seismic isolation device is effective not only in the event of an earthquake but also in reducing the influence of traffic vibration that constantly acts on the structure on the superstructure.
  • the sliding seismic isolation device has a flat sliding seismic isolation bearing and a spherical sliding seismic isolation bearing.
  • the flat sliding seismic isolation bearing does not have a restoring force, but the spherical sliding seismic isolation bearing has a restoring force and an earthquake.
  • the slide seismic isolation device When the load became heavy, the slide seismic isolation device had to be increased in scale in order to obtain a slide seismic isolation device having a plane size suitable for this load. Therefore, the cost competitiveness is lower than that of different types of seismic isolation devices such as laminated rubber seismic isolation devices, and as a result, the frequency of use is low.
  • a high-performance slip seismic isolation device equipped with a sliding body that realizes a surface pressure of 60 N / mm 2 (60 MPa) has been proposed.
  • the upper sill (upper structure fixing plate) and the lower sill (lower structure fixing plate) having a sliding surface having a curvature, and the upper sill and the lower sill are in contact with each other.
  • a double woven fabric layer composed of PTFE fibers and fibers having a higher tensile strength than the PTFE fibers is provided on the upper surface and the lower surface of the sliding body (see, for example, Patent Document 1).
  • slip seismic isolation device According to the slip seismic isolation device described in Patent Document 1, it is possible to provide a slip seismic isolation device having high seismic isolation performance against a surface pressure of about 60 MPa. Further, in the slip seismic isolation device described in Patent Document 1, PTFE fibers (polytetrafluoroethylene) and fibers having higher tensile strength than PTFE fibers (high-strength fibers) are used on the upper and lower sliding surfaces of the sliding body. A friction material made of double woven fabric, which is formed of, for example, PPS fiber (polyphenylene sulfide, polyphenylene sulfide), is attached.
  • PPS fiber polyphenylene sulfide, polyphenylene sulfide
  • the double woven fabric is fixed to the upper surface and the lower surface of the sliding body by adhesion or the like so that the PTFE fibers are located on the upper and lower structure fixing plates side. ..
  • the PTFE fibers are located on the upper and lower structure fixing plates side. ..
  • Abrasion powder of PTFE fiber enters, and at least a part thereof can face the sliding surface of the upper and lower structure fixing plates. Therefore, it is possible to enjoy the good slidability of the PTFE fiber and maintain a predetermined friction coefficient for a while.
  • the double woven fabric has a structure in which PTFE fibers are arranged on the sliding side and high-strength fibers are arranged on the adhesive side, and due to the presence of the high-strength fiber layer. It can withstand a high surface pressure of 60 MPa.
  • the PTFE fibers are exposed on the sliding side, and the discharge of the PTFE fibers is promoted due to wear during sliding, so that excess fiber pools are not accumulated in the PTFE fiber layer and a stable friction coefficient is obtained. It is secured.
  • the PTFE fiber layer is lost due to wear, it has a function of ensuring a constant friction coefficient for the time being by clogging the stitches of the high-strength fibers in the lower layer.
  • the PTFE fiber layer is discharged due to wear, there is a problem in sliding durability. Therefore, it is conceivable to increase the thickness of the PTFE fiber to improve the durability, but in a high surface pressure state of 60 MPa, it is difficult for the thickening to function effectively due to the compressive deformation of the PTFE fiber layer. For the above reasons, there is a limit to the improvement of sliding durability.
  • the present disclosure provides a slip seismic isolation device having excellent sliding durability without significantly increasing the thickness of the friction material.
  • a sliding seismic isolation device having a structure fixing plate having a first sliding surface and a metal sliding body having a second sliding surface in contact with the first sliding surface.
  • a friction material made of a single woven fabric formed by a plurality of twisted yarns twisted by combining high-strength fibers and PTFE fibers is applied to one or both of the first sliding surface and the second sliding surface. It is characterized by being attached.
  • a plurality of twisted yarns twisted by combining high-strength fibers and PTFE fibers are used as warp or weft, and a plurality of twisted yarns are woven with a plurality of wefts or warp to form a single woven fabric.
  • a friction material a friction material made of a single woven fabric is attached to either or both of the first sliding surface of the structure fixing plate and the second sliding surface of the sliding body, so that the sliding material has high sliding durability.
  • a seismic isolation device can be formed.
  • the slip seismic isolation device of this embodiment is also a slip seismic isolation device having high seismic isolation performance while countering a surface pressure of about 60 MPa, similar to the slip seismic isolation device described in Patent Document 1.
  • the friction material is attached to either one or both of the first sliding surface and the second sliding surface
  • the friction material is attached only to the first sliding surface of the structure fixing plate.
  • the PTFE fibers are internally conjugated (held by the high-strength fibers) in the twisted yarn obtained by twisting the high-strength fibers and the PTFE fibers together.
  • the abrasion powder of the PTFE fiber it becomes difficult for the abrasion powder of the PTFE fiber to be swept out to the outside (difficult to precipitate) during sliding, and as a result, the effect of extending the remaining life of the PTFE fiber is exhibited.
  • a plurality of twisted yarns are, for example, warp yarns (weft yarns), high-strength fibers or the like forming the twisted yarns can be applied to the weft yarns (warp yarns).
  • the single woven fabric formed by a plurality of twisted yarns twisted by combining high-strength fibers and PTFE fibers has a first metal structure fixing plate via an adhesive such as an epoxy resin adhesive. It can be attached to one sliding surface or the second sliding surface of a metal sliding body, and it has been verified that the friction material does not peel off even under a surface pressure of about 60 MPa.
  • the single woven fabric has a form in which both the warp and the weft are made of the twisted yarn, or only one of the warp and the weft is made of the twisted yarn and the other. Is one of a form made of the high-strength fiber or a form in which only one of the warp and the weft is made of the twisted yarn and the other is made of PTFE fiber.
  • the sliding seismic isolation device having a friction material made of a single woven fabric of any form has improved sliding durability as compared with the sliding seismic isolation device having a friction material made of a double woven fabric. ..
  • the "warp” and “weft” are literally warp threads extending in the vertical direction (vertical direction) and weft threads extending in the horizontal direction (horizontal direction) in a plan view. When this is rotated by 90 °, the warp and the weft are reversed, and the warp and the weft in the state before the rotation become the weft and the warp, respectively.
  • the woven structure is preferably a twill structure or a satin structure.
  • the twill structure is more preferable from the viewpoint of suppressing the misalignment of the friction material, and among them, the ratio of the PTFE fibers to the PTFE fibers exposed on the front surface and the back surface by forming the 3/1 twill structure or the 2/1 twill structure is preferable. Can be mentioned as a particularly preferable condition because it can control.
  • the above-mentioned 3/1 twill structure and 2/1 twill structure are rotated by 90 °, and the 1/3 twill structure and 1/2, respectively. It may be interpreted as a twill organization.
  • the high-strength fiber is one of either PPS fiber or liquid crystal polyester fiber.
  • PPS fiber or liquid crystal polyester fiber is applied as a high-strength fiber to form a twisted yarn together with the PTFE fiber, and a friction material made of a single woven fabric formed by the twisted yarn is provided.
  • a slip seismic isolation device having excellent sliding durability is formed.
  • Another aspect of the slip seismic isolation device according to the present disclosure is characterized in that the weight ratio of the PTFE fibers in the single woven fabric is 70% or less.
  • the weight ratio of the PTFE fibers in the single woven fabric is set to 70% or less, for example, slip seismic isolation provided with a friction material composed of a double woven fabric formed of PTFE fibers and PPS fibers.
  • the sliding durability can be improved as compared with the device.
  • the weight ratio of the PTFE fiber is as low as 70% or less, it means that the weight ratio of the high-strength fiber is high, and when the weight ratio of the high-strength fiber is high, the weight ratio of the PTFE fiber made of the high-strength fiber is high. Precipitation is suppressed.
  • the structure fixing plate includes an upper structure fixing plate and a lower structure fixing plate both having the first sliding surface.
  • the sliding body includes the upper and lower second sliding surfaces that come into contact with the upper and lower first sliding surfaces on the upper and lower surfaces thereof.
  • the friction material is attached to the first sliding surface of each of the upper structure fixing plate and the lower structure fixing plate, or one or both of the upper and lower second sliding surfaces of the sliding body. It is characterized by being a two-sided sliding bearing.
  • one or both of the first sliding surfaces of the upper structure fixing plate and the lower structure fixing plate, or the upper and lower second sliding surfaces of the sliding body are made of a single woven fabric.
  • the structure fixing plate includes the first sliding surface.
  • the sliding body includes the second sliding surface that comes into contact with the first sliding surface and is held by a pedestal.
  • the friction material is a single-sided sliding bearing attached to either or both of the first sliding surface of the structure fixing plate and the second sliding surface of the sliding body.
  • the friction material made of a single woven fabric is attached to either one or both of the first sliding surface of the structure fixing plate and the second sliding surface of the sliding body. It is possible to form a sliding seismic isolation device having a single-sided sliding bearing having sliding durability. This single-sided sliding bearing anti-slip seismic isolation device is applied to, for example, bridges in addition to general buildings.
  • the slip seismic isolation device of the present disclosure it is possible to provide a slip seismic isolation device having excellent sliding durability without significantly increasing the thickness of the friction material.
  • FIG. 1 is an exploded perspective view of the slip seismic isolation device according to the first embodiment
  • FIG. 2 is a vertical sectional view of the slip seismic isolation device according to the first embodiment
  • FIG. 3 is a plan view of the friction material made of a single woven fabric as viewed from above
  • FIG. 4 is a cross-sectional view cut along the IV-IV line of FIG. 3, which is an example of the friction material made of a single woven fabric. It is a figure explaining the structure together with the attachment mode to a structure fixing plate.
  • the sliding seismic isolation device 100 includes an upper structure fixing plate 20 (an example of a structure fixing plate) and a lower structure fixing plate 30 (structure fixing plate) having a sliding surface (first sliding surface) having a curvature.
  • An example and a two-sided sliding bearing sliding seismic isolation device having a metal sliding body 10.
  • the sliding body 10 is arranged between the upper structure fixing plate 20 and the lower structure fixing plate 30, and is the first sliding surface of the upper structure fixing plate 20 such as the lower surface 21 and the lower structure fixing plate 30. It has an upper surface 12 and a lower surface 13 (both are second sliding surfaces) having the same curvature as the upper surface 31 which is one sliding surface.
  • Both the upper structure fixing plate 20 and the lower structure fixing plate 30 are square plate materials in a plan view, and are rolled steel materials for welded steel materials (SM490A, B, C, or SN490B, C, or S45C) or stainless steel materials (SUS material). ), Cast steel, cast iron, etc.
  • the first sliding surfaces provided on the lower surface 21 of the upper structure fixing plate 20 and the upper surface 31 of the lower structure fixing plate 30 are curved in a circular shape in a plan view, and friction is applied to both first sliding surfaces. Material 40 is attached.
  • the sliding body 10 has a substantially columnar sliding body main body 11, and the sliding body main body 11 has the same curvature as the lower surface 21 of the upper structure fixing plate 20 and the upper surface 31 of the lower structure fixing plate 30.
  • the upper surface 12 and the lower surface 13 are formed.
  • the sliding body main body 11 is also a rolled steel material for weld steel (SM490A, B, C, or SN490B, C, or S45C) or a stainless steel material (SUS), similarly to the upper structure fixing plate 20 and the lower structure fixing plate 30. It is made of material), cast steel, cast iron, etc., and has a load bearing strength of about 60 N / mm 2 (60 MPa).
  • Stopper rings 22 and 32 for preventing the sliding body 10 from falling off are fixed to the outer edges of the sliding surfaces of the lower surface 21 of the upper structure fixing plate 20 and the upper surface 31 of the lower structure fixing plate 30.
  • metal surfaces are exposed on the upper surface 12 and the lower surface 13 of the sliding body 10.
  • a metal surface made of a stainless steel surface is exposed on the upper surface 12 and the lower surface 13.
  • stainless steel plates having a curvature may be attached to the upper and lower surfaces of the sliding body main body 11 to form upper and lower metal surfaces.
  • the metal surface made of a stainless steel surface is preferably a mirror-finished surface.
  • the friction material 40 is attached to the first sliding surfaces 21 and 31 of the upper structure fixing plate 20 and the lower structure fixing plate 30, but the second upper and lower parts of the sliding body 10 are attached.
  • a friction material may be attached to the sliding surfaces 12 and 13, and a stainless steel plate may be attached to the first sliding surfaces 21 and 31 of the upper structure fixing plate 20 and the lower structure fixing plate 30. Further, the friction material may be attached to both the first sliding surfaces 21 and 31 and the second sliding surfaces 12 and 13.
  • the friction material 40 is formed of a single woven fabric.
  • the single woven fabric 40 has a plurality of warp yarns 41 and a plurality of weft yarns 42, and the plurality of warp yarns 41 have a plurality of warp yarns 42, and the warp yarn densities are 54 yarns / 2.54 cm and the weft yarn densities are 33 yarns / 2.54 cm, 3 /. It is woven with one twill structure.
  • the warp yarns 41 are PTFE fibers having a total fineness of 880 dtex, a single yarn number of 120 filaments and a twist number of 33 t / m (manufactured by Toray Industries, Inc.), and a total fineness of 850 dtex, a single yarn number of 144 filaments and a twist number of 33 t / m. It is formed by a twisted yarn obtained by twisting the liquid crystal polyester fiber ("Ciberus" (registered trademark) manufactured by Toray Industries, Inc.) at a twist number of 167 t / m.
  • the weft 42 is made of a liquid crystal polyester fiber (manufactured by "Ciberus” (registered trademark) Toray Industries, Inc.) having a total fineness of 1700 dtex and a single yarn number of 288 filaments.
  • a liquid crystal polyester fiber manufactured by "Ciberus” (registered trademark) Toray Industries, Inc.) having a total fineness of 1700 dtex and a single yarn number of 288 filaments.
  • the warp 41 is made of a twisted yarn, but only the weft 42 may be made of a twisted yarn, or both the warp yarn 41 and the weft yarn 42 are made of a twisted yarn. You may.
  • the combined twisted yarn is a yarn obtained by twisting a high-strength fiber and a PTFE fiber together.
  • PPS fibers and liquid crystal polyester fibers are applied to the high-strength fibers.
  • PTFE fiber Toyoflon (registered trademark) manufactured by Toray Industries, Inc. can be applied.
  • PPS fiber "torque converter” (registered trademark) manufactured by Toray Industries, Inc. can be applied.
  • liquid crystal polyester fiber Ciberus (registered trademark) manufactured by Toray Industries, Inc. can be applied.
  • high-strength fibers such as PPS fibers and liquid crystal polyester fibers, or PTFE fibers are applied to the weft 42.
  • the weight ratio of the PTFE fibers in the applied single woven fabric 40 is set to be 70% or less. Further, here, the weight ratio of the PTFE fiber is the weight ratio of the PTFE fiber to the whole of the single woven fabric 40, and is obtained by calculating by the following procedure. (1) After cutting the woven fabric into a length of 200 mm and a width of 200 mm, the warp and weft threads are disassembled, and the total weight W of the disassembled threads is measured. (2) Only the composite yarn is selected from the decomposed yarns, and the total weight W1 of the composite yarns in the woven fabric is measured.
  • Y ⁇ (W1 ⁇ ⁇ / 100 + W2) / W ⁇ ⁇ 100 (%).
  • the numerical limitation regarding the weight ratio of these PTFE fibers is based on the results of the sliding experiments described in detail below.
  • the weight ratio of the PTFE fiber is as low as 70% or less, it means that the weight ratio of the high-strength fiber is high, and when the weight ratio of the high-strength fiber is high, the weight ratio of the PTFE fiber made of the high-strength fiber is high. Precipitation is suppressed. Since the PTFE fibers are held between the high-strength fibers in the ply-twisted yarn, the amount of the PTFE fibers precipitated is suppressed, so that the effect is particularly remarkable under a high load of about 60 MPa.
  • a 3/1 twill structure is adopted, and the warp yarn 41 made of twisted yarn is woven so as to be exposed more on the surface than the weft yarn 42 made of high-strength fiber.
  • a large amount of twisted yarn containing PTFE fibers can be exposed on the surface, and even if the friction material 40 has the same weight ratio of PTFE fibers, the effect of reducing the frictional force by the PTFE fibers changes. To do.
  • the single woven fabric 40 of the illustrated example is an example of a single woven fabric that is preferable from the viewpoints of both the effect of reducing the frictional force by the PTFE fiber and the effect of suppressing the precipitation amount of the PTFE fiber by the high-strength fiber.
  • the friction material 40 is adhered to the metal structure fixing plate 30 (20) via an adhesive 43 such as an epoxy resin adhesive.
  • an adhesive 43 such as an epoxy resin adhesive.
  • the adhesive area of the weft 42 with the adhesive 43 is large.
  • Adhesive strength can be increased.
  • the illustrated double woven fabric 40' is formed of a PTFE fiber 46 and a PPS fiber 49 having a higher tensile strength than the PTFE fiber 46.
  • the weft 47 of the PPS fiber 49 is arranged on the upper structure fixing plate 20 and the lower structure fixing plate 30 side, and the warp 48 of the PPS fiber 49 is woven so as to be involved. ing. Further, the weft 44 of the PTFE fiber 46 is arranged above these (positions on the 10 side of each sliding body), and the warp 45 of the PTFE fiber 46 is woven so as to involve the weft 44 of the PTFE fiber 46, and the PTFE fiber. The warp 45 of 46 is woven so as to involve the weft 47 of the lower PPS fiber 49.
  • the PTFE fibers 46 are arranged on the sliding body 10 side, and the double woven fabric 40', which is a friction material, is applied to the lower surface 21 of the upper structure fixing plate 20 and the upper surface 31 of the lower structure fixing plate 30. Is fixed via the adhesive 43.
  • the thickness of the friction material 40 is significantly increased by attaching the friction material 40 made of a single woven fabric to the first sliding surfaces 21 and 31 of the structure fixing plates 20 and 30. Instead, a sliding seismic isolation device 100 having high sliding durability is formed while countering a surface pressure of about 60 MPa.
  • FIG. 6 is a vertical cross-sectional view of the slip seismic isolation device according to the second embodiment.
  • the sliding seismic isolation device 200 includes a structure fixing plate 50 having a lower surface 51 (first sliding surface) having a curvature, and an upper surface 72 (second sliding surface) having the same curvature as the lower surface 51.
  • This is a single-sided sliding bearing sliding seismic isolation device having a pedestal 60 that slidably accommodates a metal sliding body 70.
  • the cradle 60 has a substrate 61 and a cylindrical body 62 protruding upward from the substrate 61 at the center position of the substrate 61, and the substrate 61 and the cylindrical body 62 are integrally molded. A concave spherical surface 63 recessed downward is formed at the upper end of the cylindrical body 62.
  • the structure fixing plate 50 and the substrate 61 are both square view plates, and the structure fixing plate 50, the cradle 60, and the sliding body 70 are all the same as the upper structure fixing plate 20 and the lower structure fixing plate 30. It is made of the same material.
  • the concave spherical surface 63 of the cylindrical body 62 is provided with a lower surface 71 (convex spherical surface) having the same curvature as the concave spherical surface 63, and a sliding body having an upper surface 72 having the same curvature as the lower surface 51 of the structure fixing plate 50.
  • 70 is slidably housed and held in the concave spherical surface 63.
  • a metal surface is exposed on the upper surface 72 of the sliding body 70.
  • a friction material 40 made of a single woven fabric is fixed to the lower surface 51 of the structure fixing plate 50 in the same manner as in the mounting mode of the upper structure fixing plate 20 on the lower surface 21.
  • a stopper ring 52 for preventing the columnar body 62 slidably accommodating the sliding body 70 from falling off is fixed to the outer edge of the lower surface 51 of the structure fixing plate 50.
  • the sliding seismic isolation device 200 shown in the figure has a structure fixing plate 50 arranged above, but has a pedestal with a sliding body above and a structure fixing plate below.
  • a slip seismic isolation device having a structure upside down from that of FIG. 4 may be used.
  • the thickness of the friction material 40 is significantly increased by attaching the friction material 40 made of a single woven fabric to the first sliding surface 51 of the structure fixing plate 50. Without this, a sliding seismic isolation device 200 having high sliding durability is formed while resisting a surface pressure of about 60 MPa.
  • the first sliding experiment is an experiment for comparing the sliding distances of a friction material made of a double woven fabric and a friction material made of a single woven fabric.
  • test specimens Three types were manufactured by adhering various sample friction materials to a metal substrate.
  • SS400 rolled steel plate for general structure
  • a & D's MODEL EFM-III-EN was used as the testing machine, and the test was carried out at a friction load of 20 MPa and a friction speed of 400 mm / sec.
  • a hollow cylindrical ring made of S45C with an outer diameter of 25.6 mm, an inner diameter of 20 mm, and a length of 15 mm was used as the mating material.
  • a roughness measuring device SJ-201 manufactured by Mitutoyo was used for measuring the roughness. In this sliding experiment, the sliding distance until the friction material was damaged was measured.
  • Example 1 shows the specifications and experimental results of the friction materials that make up each of the test specimens of Comparative Examples and Examples 1 and 2.
  • Example 1 was obtained by twisting PTFE fiber ("Toyoflon” (registered trademark) manufactured by Toray Industries, Inc.) and PPS fiber ("Torcon” (registered trademark) manufactured by Toray Industries, Inc.). It is a single woven fabric woven with a 3/1 twill structure using twisted yarn as the warp and PPS fiber (“Torcon” (registered trademark) manufactured by Toray Industries, Inc.) as the weft.
  • Example 2 is obtained by twisting and twisting the above-mentioned PTFE fiber ("Toyoflon” (registered trademark) manufactured by Toray Industries, Inc.) and liquid polyester fiber ("Ciberus” (registered trademark) manufactured by Toray Industries, Inc.). It is a single woven fabric 40 of the illustrated example woven with a 3/1 twill structure using a twisted yarn as a warp and a liquid crystal polyester fiber (manufactured by Toray Industries, Inc. as a registered trademark) as a weft.
  • PTFE fiber Toyoflon
  • Liberus registered trademark
  • PTFE fiber (“Toyoflon” (registered trademark) manufactured by Toray Industries, Inc.) was used for the warp and weft on the front surface
  • PPS fiber Tecon (registered trademark) manufactured by Toray Industries, Inc.) was used for the warp and weft on the back surface. It is a double woven fabric in which both the front surface and the back surface are woven with a plain weave.
  • Example 1 is 62 m, which is about twice as much as the sliding distance of Comparative Example 1: 32 m, and the sliding distance of Example 2 is 109 m, which is more than three times. It has been confirmed that the sliding distance of the friction material made of a single woven fabric is longer than that of the friction material made of a double woven fabric, and the sliding durability is improved.
  • the second sliding experiment is an experiment for verifying the optimum range of the weight ratio of the PTFE fibers in the friction material.
  • Example 3 is a single-layer woven fabric produced by the same method as in Example 2 except that PTFE fibers (“Toyoflon” (registered trademark) manufactured by Toray Industries, Inc.) are used for the weft, and the weight ratio of the PTFE fibers to the woven fabric. Is 70%.
  • PTFE fibers (“Toyoflon” (registered trademark) manufactured by Toray Industries, Inc.) are used for the weft, and the weight ratio of the PTFE fibers to the woven fabric. Is 70%.
  • Example 4 is a single-layer woven fabric produced by the same method as in Example 2 except that liquid crystal polyester fibers (manufactured by Toray Industries, Inc., "Ciberus” (registered trademark)) are used for the weft, and the weight of the PTFE fibers in the woven fabric. The ratio is 51%.
  • the sliding distance of Comparative Example 1 shown in Table 1 is 32 m
  • the sliding distance of Example 3 is about 1.5 times 50 m
  • the sliding distance of Example 4 is more than twice. It is 72 m, and it has been specified that Example 2 is 109 m, which is more than tripled as described above.
  • the sliding distance is extended in the order of Examples 3, 4 and 2, and it is specified that the sliding distance becomes longer as the weight ratio of Toyoflon decreases from 70%. From this experimental result, the weight ratio of PTFE fibers in a single woven fabric can be defined as 70% or less.
  • the third sliding experiment is a sliding seismic isolation device (Comparative Example 2) provided with a friction material made of a double woven fabric and a sliding seismic isolation device provided with a friction material made of a single woven fabric under a surface pressure of 60 MPa (Example). This is an experiment for comparing the sliding distances of 5).
  • the double woven fabric forming the friction material of the sliding seismic isolation device of Comparative Example 2 is a double woven fabric composed of PTFE fiber and PPS fiber
  • the single woven fabric forming the friction material of the sliding seismic isolation device of Example 5 is a double woven fabric. This is the same as in Example 2.
  • the diameter of the sliding body is ⁇ 130 mm and the height is 65 mm. In this sliding experiment as well, the sliding distance until the friction material was damaged was measured.
  • FIGS. 7A and 7B The experimental results are shown in FIGS. 7A and 7B.
  • FIG. 7A is an experimental result of Comparative Example 2
  • FIG. 7B is an experimental result of Example 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Textile Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Dampers (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

摩擦材の厚みを厚くすることなく、摺動耐久性に優れた滑り免震装置を提供する。第一摺動面21,31を備えている構造体固定板20,30と、第一摺動面21,31と当接する第二摺動面12,13を備えている金属製の摺動体10と、を有する滑り免震装置100であり、高強度繊維とPTFE繊維とを合わせて撚った複数の合撚糸41により形成される一重織物からなる摩擦材40が、第一摺動面21,31と第二摺動面12,13のいずれか一方、もしくは双方に取り付けられている。

Description

滑り免震装置
 本開示は、滑り免震装置に関する。
 地震国においては、ビルや橋梁、高架道路、戸建の住宅といった様々な構造物に対して、地震力に抗する技術、構造物に入る地震力を低減する技術など、様々な耐震技術や免震技術、制震技術が開発され、各種構造物に適用されている。中でも免震技術は、構造物に入る地震力そのものを低減する技術であることから、地震時の構造物の振動は効果的に低減される。この免震技術を概説すると、下部構造物である基礎と上部構造物との間に免震装置を介在させ、地震による基礎の振動の上部構造物への伝達を低減し、上部構造物の振動を低減して構造安定性を保証するものである。尚、この免震装置は、地震時のみならず、構造物に対して常時作用する交通振動の上部構造物への影響低減にも効果を発揮する。
 免震装置には、鉛プラグ入り積層ゴム支承装置や高減衰積層ゴム支承装置、積層ゴム支承とダンパーを組み合わせた装置、滑り免震装置など、様々な形態の装置が存在している。その中で、滑り免震装置には平面滑り免震支承と球面滑り免震支承があり、平面滑り免震支承は復元力を有しないが、球面滑り免震支承は復元力を有し、地震時のセルフセンタリング機能を有する。ところで、従来の滑り免震装置では、装置内に介在するテフロン(登録商標)等の基準面圧が20N/mm(20MPa)であるために、構造物の高層化等に起因して載荷重量が重くなった場合に、この荷重に見合う平面寸法の滑り免震装置とするべく、滑り免震装置を大規模化せざるを得なかった。そのため、積層ゴム免震装置等の異種の免震装置に比べてコスト競争力が低くなってしまい、結果として使用頻度が低くなっていた。
 そこで、例えば、面圧60N/mm(60MPa)を実現する摺動体を備えた、高性能な滑り免震装置が提案されている。具体的には、曲率を有する摺動面を備えた上沓(上部構造体固定板)及び下沓(下部構造体固定板)と、上沓と下沓の間で、それぞれの沓と接して曲率を有する上面及び下面を備えた鋼製の摺動体と、から構成される滑り免震装置である。摺動体の上面と下面には、PTFE繊維とPTFE繊維よりも引張強度の高い繊維とからなる二重織物層が備えられている(例えば、特許文献1参照)。
特許第5521096号公報
 特許文献1に記載の滑り免震装置によれば、60MPa程度の面圧に対抗して、高い免震性能を備えた滑り免震装置を提供することができる。また、特許文献1に記載の滑り免震装置においては、摺動体の上下の摺動面において、PTFE繊維(polytetrafluoroethylene、ポリテトラフルオロエチレン)と、PTFE繊維よりも引張強度の高い繊維(高強度繊維であり、例えばPPS繊維(polyphenylenesulfide、ポリフェニレンサルファイド))とにより形成される、二重織物からなる摩擦材を取り付けている。より詳細には、摺動体の上面と下面のいずれにおいても、PTFE繊維が上下の構造体固定板側に位置するようにして二重織物が摺動体の上面と下面に接着等により固定されている。このような形態の摺動体を適用することにより、仮にPTFE繊維が摺動に起因して摩耗して減厚し、消滅した場合でも、摺動体の接着面側に存在しているPPS繊維内にPTFE繊維の摩耗粉が入り込み、少なくともその一部は上下の構造体固定板の有する摺動面に臨むことができる。そのため、PTFE繊維の良好な摺動性を享受することができ、暫くの間は所定の摩擦係数を維持することが可能になる。
 上記する滑り免震装置において、二重織物は、PTFE繊維が摺動側に配設され、高強度繊維が接着側に配設される構造を有しており、この高強度繊維層の存在により60MPaの高面圧に耐えることができる。また、摺動側にPTFE繊維が露出しており、摺動の際の摩耗によりPTFE繊維の排出が促進されることにより、PTFE繊維層に余分な繊維溜まりを蓄積せず、安定した摩擦係数を担保している。また、仮に摩耗によりPTFE繊維層が無くなったとしても、下層の高強度繊維の編み目に目詰まりすることにより、当面の間、一定の摩擦係数を担保できる機能を有する。一方、PTFE繊維層は摩耗により排出されることから、摺動耐久性に対しては課題がある。そこで、PTFE繊維を増厚して耐久性を向上する方策も考えられるが、60MPaの高面圧状態においては、PTFE繊維層の圧縮変形により増厚が有効に機能し難い。以上の理由により、摺動耐久性の向上に対しては限界がある。
 本開示は、摩擦材の厚みを大幅に厚くすることなく、摺動耐久性に優れた滑り免震装置を提供する。
 本開示による滑り免震装置の一態様は、
 第一摺動面を備えている構造体固定板と、該第一摺動面と当接する第二摺動面を備えている金属製の摺動体と、を有する滑り免震装置であって、
 高強度繊維とPTFE繊維とを合わせて撚った複数の合撚糸により形成される一重織物からなる摩擦材が、前記第一摺動面と前記第二摺動面のいずれか一方、もしくは双方に取り付けられていることを特徴とする。
 本態様によれば、高強度繊維とPTFE繊維とを合わせて撚った複数の合撚糸を経糸もしくは緯糸とし、複数の合撚糸を複数の緯糸もしくは経糸にて織り込んで一体とされた一重織物を摩擦材とし、構造体固定板の第一摺動面と摺動体の第二摺動面のいずれか一方もしくは双方に一重織物からなる摩擦材を取り付けたことにより、高い摺動耐久性を有する滑り免震装置を形成することができる。尚、本態様の滑り免震装置も、特許文献1に記載の滑り免震装置と同様に、60MPa程度の面圧に対抗しながら、高い免震性能を備えた滑り免震装置となる。
 ここで、「摩擦材が、第一摺動面と第二摺動面のいずれか一方、もしくは双方に取り付けられている」とは、摩擦材が構造体固定板の第一摺動面にのみ取り付けられている形態、摩擦材が摺動体の第二摺動面にのみ取り付けられている形態、摩擦材が第一摺動面と第二摺動面の双方に取り付けられている形態を含んでいる。
 本態様の滑り免震装置を構成する一重織物においては、高強度繊維とPTFE繊維とを合わせて撚った合撚糸において、PTFE繊維が繊維内部抱合されている(高強度繊維にて保持されている)ことにより、摺動時にPTFE繊維の摩耗粉が外部に掃き出され難くなり(析出し難くなり)、結果としてPTFE繊維の残存寿命が延びる効果が奏される。ここで、複数の合撚糸が例えば経糸(緯糸)である場合に、緯糸(経糸)には合撚糸を形成する高強度繊維等を適用することができる。
 また、高強度繊維とPTFE繊維とを合わせて撚った複数の合撚糸により形成される一重織物は、エポキシ樹脂系接着剤等の接着剤を介して、金属製の構造体固定板の有する第一摺動面や金属製の摺動体の有する第二摺動面に貼り付けることが可能であり、60MPa程度の面圧下においても、摩擦材の剥がれがないことが検証されている。
 また、本開示による滑り免震装置の他の態様において、前記一重織物は、経糸と緯糸がともに前記合撚糸からなる形態、もしくは、経糸と緯糸のいずれか一方のみが前記合撚糸からなり、他方は前記高強度繊維からなる形態、もしくは、経糸と緯糸のいずれか一方のみが前記合撚糸からなり、他方はPTFE繊維からなる形態、のいずれか一種であることを特徴とする。
 本態様によれば、いずれの形態の一重織物からなる摩擦材を有する滑り免震装置であっても、二重織物からなる摩擦材を有する滑り免震装置に比べて摺動耐久性が向上する。尚、本明細書において、「経糸」と「緯糸」とは、平面視において、文字通り縦方向(上下方向)に延びる糸が経糸であり、横方向(水平方向)に延びる糸が緯糸であるが、これを90°回転させると、経糸と緯糸が逆転し、回転前の状態の経糸と緯糸はそれぞれ緯糸と経糸になる。従って、例えば、「経糸のみが合撚糸からなり、緯糸は高強度繊維からなる形態」に関しては、「緯糸のみが合撚糸からなり、経糸は高強度繊維からなる形態」を含むものとしてよく、「経」や「緯」に厳格に拘束されるものではない。
 また、経糸と緯糸の織り方を変えることにより、摩擦材の表面に露出するPTFE繊維の露出面積を変更することが可能になる。仮に摩擦材におけるPTFE繊維の重量比が同じ場合であっても、PTFE繊維の露出面積が変化することにより、摩擦力低減効果が変わる。また、同様に経糸と緯糸の織り方を変えることにより、摩擦材の裏面に露出する高強度繊維の露出面積を変更することが可能になり、高強度繊維の露出面積が大きくなると構造体固定板や摺動体に対する摩擦材の接着強度を高めることができる。具体的には、織組織はツイル組織やサテン組織が好ましい。さらに、摩擦材の目ずれを抑制する観点ではツイル組織がより好ましく、中でも3/1ツイル組織や2/1ツイル組織にすることにより、上述した表面と裏面に露出するPTFE繊維とPTFE繊維の比率を制御できることから特に好ましい条件として挙げることができる。ここで、前記の通り、経糸、緯糸を逆転させて解釈し得る観点から、上記3/1ツイル組織や2/1ツイル組織は、90°回転させて、それぞれ1/3ツイル組織や1/2ツイル組織と解釈してもよい。
 また、本開示による滑り免震装置の他の態様において、前記高強度繊維がPPS繊維もしくは液晶ポリエステル繊維のいずれか一種であることを特徴とする。
 本態様によれば、高強度繊維としてPPS繊維もしくは液晶ポリエステル繊維が適用されてPTFE繊維とともに合撚糸を形成し、この合撚糸にて形成される一重織物からなる摩擦材を備えていることにより、摺動耐久性に優れた滑り免震装置が形成される。
 また、本開示による滑り免震装置の他の態様は、前記一重織物における前記PTFE繊維の重量比が70%以下であることを特徴とする。
 本態様によれば、一重織物におけるPTFE繊維の重量比が70%以下に設定されていることにより、例えば、PTFE繊維とPPS繊維により形成される二重織物からなる摩擦材を備えた滑り免震装置に比べて、摺動耐久性を向上させることができる。PTFE繊維の重量比が70%以下と低くなることは、高強度繊維の重量比が高くなることを意味しており、高強度繊維の重量比が高くなることにより、高強度繊維によるPTFE繊維の析出が抑制される。
 また、本開示による滑り免震装置の他の態様において、前記構造体固定板は、ともに前記第一摺動面を備えている上部構造体固定板及び下部構造体固定板を含み、
 前記摺動体は、その上下面において、上下の前記第一摺動面に当接する上下の前記第二摺動面を備えており、
 前記摩擦材が、前記上部構造体固定板及び前記下部構造体固定板のそれぞれの前記第一摺動面、もしくは、前記摺動体の上下の前記第二摺動面のいずれか一方もしくは双方に取付けられている、二面滑り支承であることを特徴とする。
 本態様によれば、上部構造体固定板及び下部構造体固定板のそれぞれの第一摺動面、もしくは、摺動体の上下の第二摺動面のいずれか一方もしくは双方に、一重織物からなる摩擦材が取り付けられていることにより、摩擦材の厚みを大幅に厚くすることなく、高い摺動耐久性を有する二面滑り支承の滑り免震装置を形成することができる。尚、この二面滑り支承の滑り免震装置は、例えば高層ビル等の一般建築物に一般に適用される。
 また、本開示による滑り免震装置の他の態様において、前記構造体固定板は前記第一摺動面を備えており、
 前記摺動体は、前記第一摺動面に当接する前記第二摺動面を備えるとともに受け台にて保持されており、
 前記摩擦材が、前記構造体固定板の前記第一摺動面、もしくは、前記摺動体の前記第二摺動面のいずれか一方もしくは双方に取付けられている、片面滑り支承であることを特徴とする。
 本態様によれば、構造体固定板の第一摺動面、もしくは、摺動体の第二摺動面のいずれか一方もしくは双方に、一重織物からなる摩擦材が取り付けられていることにより、高い摺動耐久性を有する片面滑り支承の滑り免震装置を形成することができる。尚、この片面滑り支承の滑り免震装置は、一般建築物の他、例えば橋梁等に適用される。
 本開示の滑り免震装置によれば、摩擦材の厚みを大幅に厚くすることなく、摺動耐久性に優れた滑り免震装置を提供することができる。
第1の実施形態に係る滑り免震装置の分解斜視図である。 第1の実施形態に係る滑り免震装置の縦断面図である。 一重織物からなる摩擦材を上から見た平面図である。 図3のIV-IVラインで切断した断面図であって、一重織物からなる摩擦材の一例の構造を構造体固定板への取り付け態様とともに説明する図である。 二重織物からなる摩擦材の一例の構造を構造体固定板への取り付け態様とともに説明する図である。 第2の実施形態に係る滑り免震装置の縦断面図である。 面圧60MPa下における、二重織物の摩擦材が適用された滑り免震装置(平面滑り免震装置)を用いた摺動実験結果を示す図である。 面圧60MPa下における、一重織物の摩擦材が適用された滑り免震装置(平面滑り免震装置)を用いた摺動実験結果を示す図である。
 以下、各実施形態に係る滑り免震装置について、添付の図面を参照しながら説明する。尚、本明細書及び図面において、実質的に同一の構成要素については、同一の符号を付することにより重複した説明を省く場合がある。
 [第1の実施形態に係る滑り免震装置]
 はじめに、図1乃至図4を参照して、実施形態に係る滑り免震装置の一例について説明する。ここで、図1は、第1の実施形態に係る滑り免震装置の分解斜視図であり、図2は、第1の実施形態に係る滑り免震装置の縦断面図である。また、図3は、一重織物からなる摩擦材を上から見た平面図であり、図4は、図3のIV-IVラインで切断した断面図であって、一重織物からなる摩擦材の一例の構造を構造体固定板への取り付け態様とともに説明する図である。
 滑り免震装置100は、曲率を有する摺動面(第一摺動面)を備えている上部構造体固定板20(構造体固定板の一例)及び下部構造体固定板30(構造体固定板の一例)と、金属製の摺動体10とを有する、二面滑り支承の滑り免震装置である。摺動体10は、上部構造体固定板20と下部構造体固定板30の間に配設され、上部構造体固定板20の第一摺動面である下面21及び下部構造体固定板30の第一摺動面である上面31と同一の曲率を有する上面12と下面13(ともに第二摺動面)を備えている。
 上部構造体固定板20と下部構造体固定板30はともに平面視正方形の板材であり、溶接鋼材用圧延鋼材(SM490A、B、C、もしくはSN490B、C、もしくはS45C)、あるいはステンレス材(SUS材)や鋳鋼材、鋳鉄等から形成されている。上部構造体固定板20の下面21と下部構造体固定板30の上面31に設けられている第一摺動面は、平面視円形で湾曲しており、双方の第一摺動面には摩擦材40が取り付けられている。
 一方、摺動体10は、略円柱状の摺動体本体11を有し、摺動体本体11には、上部構造体固定板20の下面21と下部構造体固定板30の上面31と同一の曲率を有する上面12と下面13が形成されている。また、摺動体本体11も上部構造体固定板20及び下部構造体固定板30と同様に、溶接鋼材用圧延鋼材(SM490A、B、C、もしくはSN490B、C、もしくはS45C)、あるいはステンレス材(SUS材)や鋳鋼材、鋳鉄等から形成されており、面圧60N/mm(60MPa)程度の耐荷強度を有している。
 上部構造体固定板20の下面21と下部構造体固定板30の上面31の各摺動面の外縁には、摺動体10の脱落を防止するためのストッパーリング22,32が固定されている。
 そして、摺動体10の上面12及び下面13においては、金属面が露出している。例えば、摺動体本体11がステンレス製の形態では、ステンレス面からなる金属面が上面12及び下面13において露出している。また、摺動体本体11がステンレス以外の鋼製の形態では、摺動体本体11の上下面において曲率を有するステンレス板が取り付けられ、上下の金属面を形成してもよい。また、ステンレス面からなる金属面は、鏡面仕上げ面であるのが好ましい。
 尚、図示例は、上部構造体固定板20と下部構造体固定板30の第一摺動面21,31に摩擦材40が取り付けられている形態であるが、摺動体10の上下の第二摺動面12,13に摩擦材が取り付けられ、上部構造体固定板20と下部構造体固定板30の第一摺動面21、31にステンレス板が取り付けられている形態あってもよい。また、第一摺動面21,31と第二摺動面12,13の双方に、摩擦材が取り付けられている形態であってもよい。
 図3及び図4に示すように、摩擦材40は一重織物により形成される。一重織物40は、複数の経糸41と複数の緯糸42とを有し、複数の経糸41が複数の緯糸42により、経糸密度54本/2.54cm、緯糸密度33本/2.54cm、3/1ツイル組織で製織されている。経糸41は、総繊度880dtex、単糸数120フィラメント、撚数33t/mのPTFE繊維("トヨフロン"(登録商標)東レ株式会社製)と、総繊度850dtex、単糸数144フィラメント、撚数33t/mの液晶ポリエステル繊維("シベラス"(登録商標)東レ株式会社製)とを、撚数167t/mにて合撚して得られた合撚糸により形成される。また、緯糸42は、総繊度1700dtex、単糸数288フィラメントの液晶ポリエステル繊維("シベラス"(登録商標)東レ株式会社製)からなる。尚、図示例は、経糸41のみが合撚糸からなる形態であるが、緯糸42のみが合撚糸からなる形態であってもよいし、経糸41と緯糸42の双方が合撚糸からなる形態であってもよい。
 ここで、合撚糸は、高強度繊維とPTFE繊維とを合わせて撚った糸である。高強度繊維には、PPS繊維や液晶ポリエステル繊維が適用される。PTFE繊維としては、東レ株式会社製のトヨフロン(登録商標)が適用できる。また、PPS繊維としては、東レ株式会社製の"トルコン"(登録商標)が適用できる。さらに、液晶ポリエステル繊維としては、東レ株式会社製のシベラス(登録商標)が適用できる。
 図示例において、緯糸42には、PPS繊維や液晶ポリエステル繊維等の高強度繊維、もしくはPTFE繊維が適用される。
 本実施形態の滑り免震装置100において、適用される一重織物40におけるPTFE繊維の重量比は70%以下となるように設定されている。また、ここで、PTFE繊維の重量比とは、一重織物40の全体に対するPTFE繊維の重量比率のことであり、以下の手順にて算出して得られるものである。
 (1)織物をタテ200mm×ヨコ200mmに裁断した後、経糸と緯糸を分解し、分解糸の総重量Wを測定する。
 (2)分解糸のうち複合糸のみを選別し、織物中の複合糸の総重量W1を測定する。
 (3)複合糸を任意に5本選択し、フッ素樹脂繊維Aとその他の繊維に分解し、それぞれの重量を測定する。5本の複合糸の重量総和をW、5本の複合糸のフッ素樹脂繊維Aの重量和をWとして、複合糸中に占めるフッ素樹脂繊維Aの重量比率αを式:α=W/W×100(%)により算出する。
 ただし、分解糸が上記測定方法に必要な糸量を確保できない場合は、確保できる最大長さと試行回数にて試験を行った結果をもって代用するものとする。
 (4)複合糸ではなく織物中に単独で存在するフッ素樹脂繊維を選別し、総重量W2を測定する。
 (5)織物中のフッ素樹脂繊維Aの重量比率Yを、式:Y={(W1×α/100+W2)/W}×100(%)により算出する。
 ただし、分解糸が上記測定方法に必要な糸量を確保できない場合は、確保できる最大長さにて試験を行った結果をもって代用するものとする。
 これらPTFE繊維の重量比に関する数値限定は、以下で詳説する摺動実験の結果に依拠している。PTFE繊維の重量比が70%以下と低くなることは、高強度繊維の重量比が高くなることを意味しており、高強度繊維の重量比が高くなることにより、高強度繊維によるPTFE繊維の析出が抑制される。合撚糸において高強度繊維の間にPTFE繊維が保持されるため、PTFE繊維の析出量が抑制されることから、特に60MPa程度の高荷重下においてその効果は顕著となる。
 図3及び図4に示す一重織物40では、3/1ツイル組織を採用し、高強度繊維から成る緯糸42に比べて合撚糸からなる経糸41が表面に多く露出するように織り込まれている。このような設計とすることで、PTFE繊維を含む合撚糸を表面に多く露出させることができ、同じPTFE繊維の重量比を有する摩擦材40であっても、PTFE繊維による摩擦力低減効果が変化する。図示例の一重織物40は、PTFE繊維による摩擦力低減効果と、高強度繊維によるPTFE繊維の析出量抑制効果の双方の観点から好ましい一重織物の例である。
 また、図4に示すように、摩擦材40は、金属製の構造体固定板30(20)に対して、エポキシ樹脂系接着剤等による接着剤43を介して接着される。図示例の一重織物40では、緯糸42における接着剤43との接着面積が大きくなっており、例えば高強度繊維からなる緯糸42を適用した場合には、構造体固定板30等に対する摩擦材40の接着強度を高めることができる。
 ここで、図3及び図4に示す一重織物からなる摩擦材40と比較するべく、二重織物からなる摩擦材40'を図5に示す。
 図示する二重織物40'は、PTFE繊維46と、PTFE繊維46よりも引張強度の高いPPS繊維49とにより形成される。
 二重織物40'の構成は、上部構造体固定板20や下部構造体固定板30側にPPS繊維49の緯糸47が配設され、これを巻き込むようにしてPPS繊維49の経糸48が織り込まれている。また、これらの上方(各摺動体10側の位置)にはPTFE繊維46の緯糸44が配され、PTFE繊維46の経糸45がPTFE繊維46の緯糸44を巻き込むようにして織り込まれるとともに、PTFE繊維46の経糸45はさらに下方のPPS繊維49の緯糸47も巻き込むようにして織り込まれている。そして、PTFE繊維46が摺動体10側に配設されるようにして、摩擦材である二重織物40'が上部構造体固定板20の下面21と下部構造体固定板30の上面31に対して接着剤43を介した固定される。
 特許文献1に示すように、図示する二重織物40'からなる摩擦材を備えた滑り免震装置においても、面圧60MPa程度の高荷重下において優れた免震性能が奏される。しかしながら、このような高荷重下におけるPTFE繊維の析出抑制の観点においては、二重織物からなる摩擦材40'に比べて、本実施形態の滑り免震装置100を形成する一重織物からなる摩擦材40が優れている(PTFE繊維の析出量が相対的に少ない)ことが本発明者等により特定されている。
 滑り免震装置100において、構造体固定板20,30の第一摺動面21,31に一重織物からなる摩擦材40が取り付けられていることにより、摩擦材40の厚みを大幅に厚くすることなく、60MPa程度の面圧に対抗しながら、高い摺動耐久性を有する滑り免震装置100が形成される。
 [第2の実施形態に係る滑り免震装置]
 次に、図6を参照して、第2の実施形態に係る滑り免震装置の一例について説明する。ここで、図6は、第2の実施形態に係る滑り免震装置の縦断面図である。
 滑り免震装置200は、曲率を有する下面51(第一摺動面)を備えている構造体固定板50と、下面51と同一の曲率を有する上面72(第二摺動面)を備えている金属製の摺動体70を摺動自在に収容する受け台60と、を有する、片面滑り支承の滑り免震装置である。
 受け台60は、基板61と、基板61の中央位置において基板61から上方に突出した円柱体62とを有し、基板61と円柱体62は一体に成形されている。円柱体62の上端には下方に窪んだ凹球面63が形成されている。構造体固定板50と基板61はともに平面視正方形の板材であり、構造体固定板50と受け台60と摺動体70は、いずれも上部構造体固定板20や下部構造体固定板30と同様の素材により形成されている。
 円柱体62の凹球面63には、凹球面63と同一の曲率を有する下面71(凸球面)を備え、かつ、構造体固定板50の下面51と同一の曲率を有する上面72を備える摺動体70が、凹球面63に摺動自在に収容され、保持されている。そして、摺動体70の上面72においては、金属面が露出している。
 一方、構造体固定板50の下面51には、上部構造体固定板20の下面21への取り付け態様と同様に、一重織物からなる摩擦材40が構造体固定板50の下面51に固定されている。また、構造体固定板50の下面51の外縁には、摺動体70を摺動自在に収容する円柱体62の脱落を防止するためのストッパーリング52が固定されている。
 尚、図示する滑り免震装置200は、上方に構造体固定板50が配設されている形態であるが、上方に摺動体を備えた受け台があり、下方に構造体固定板が配設されている、図4とは上下が逆の構成の滑り免震装置であってもよい。
 このように、滑り免震装置200においても、構造体固定板50の第一摺動面51に一重織物からなる摩擦材40が取り付けられていることにより、摩擦材40の厚みを大幅に厚くすることなく、60MPa程度の面圧に対抗しながら、高い摺動耐久性を有する滑り免震装置200が形成される。
 [摺動実験]
 <摺動実験その1>
 次に、本発明者等により実施された摺動実験その1について説明する。この摺動実験その1は、二重織物からなる摩擦材と一重織物からなる摩擦材の摺動距離を比較する実験である。
 (実験概要と実験結果)
 金属基板にサンプルとなる種々の摩擦材を接着することにより、三種類の試験体を製作した。金属基板はSS400(一般構造用圧延鋼板)を適用し、接着剤にはエポキシ樹脂(本材:硬化剤=4:1)を塗布量約25g/m用いた。
 試験機には、エー・アンド・デイ製MODEL:EFM-III-ENを用い、摩擦荷重:20MPa、摩擦速度:400mm/秒にて試験を実施した。相手材はS45Cで作られた、外径 25.6mm、内径 20mm、長さ 15mm の中空円筒形状のリングを用いた。上記リングの表面をサンドパーパーで磨き、表面粗さRa=0.8μmm±0.1となるように調整した。粗さの測定には粗さ測定器(ミツトヨ製SJ-201)を用いた。この摺動実験では、摩擦材が破損するまでの摺動距離を測定した。
 比較例、実施例1,2の各試験体を構成する摩擦材の仕様と実験結果を、以下の表1に示す。ここで、実施例1は、PTFE繊維("トヨフロン"(登録商標)東レ株式会社製)と、PPS繊維("トルコン"(登録商標)東レ株式会社製)とを、合撚して得られた合撚糸を経糸に用い、PPS繊維("トルコン"(登録商標)東レ株式会社製)を緯糸に用いて3/1ツイル組織で製織された一重織物である。実施例2は、上記する、PTFE繊維("トヨフロン"(登録商標)東レ株式会社製)と、液晶ポリエステル繊維("シベラス"(登録商標)東レ株式会社製)とを、合撚して得られた合撚糸を経糸に用い、液晶ポリエステル繊維("シベラス"(登録商標)東レ株式会社製)を緯糸に用いて3/1ツイル組織で製織された図示例の一重織物40である。比較例1は、表面の経糸および緯糸にPTFE繊維("トヨフロン"(登録商標)東レ株式会社製)を用い、裏面の経糸および緯糸にPPS繊維("トルコン"(登録商標)東レ株式会社製)を用いて、表面と裏面がいずれも平組織で製織された二重織物である。
Figure JPOXMLDOC01-appb-T000001
 表1より、比較例1の摺動距離:32mに対して、実施例1の摺動距離は約2倍の62mとなり、実施例2の摺動距離は3倍以上の109mであることが特定されており、二重織物からなる摩擦材に対して一重織物からなる摩擦材の摺動距離が長くなり、摺動耐久性の向上が確認されている。
 <摺動実験その2>
 次に、本発明者等により実施された摺動実験その2について説明する。この摺動実験その2は、摩擦材におけるPTFE繊維の重量比の最適範囲を検証するための実験である。
 (実験概要と実験結果)
 試験体の製作方法は摺動実験その1と同様である。
 実施例2乃至4の各試験体を構成する摩擦材の仕様と試験結果を、以下の表2に示す。ここで、実施例2の織物に占めるPTFE繊維の重量比率は32%である。実施例3は、緯糸にPTFE繊維("トヨフロン"(登録商標)東レ株式会社製)を用いた以外は実施例2と同様の方法で作製した一重織物であり、織物に占めるPTFE繊維の重量比率は70%である。実施例4は、緯糸に液晶ポリエステル繊維("シベラス"(登録商標)東レ株式会社製)を用いた以外は実施例2と同様の方法で作製した一重織物であり、織物に占めるPTFE繊維の重量比率は51%である。
Figure JPOXMLDOC01-appb-T000002
 表2より、表1に示す比較例1の摺動距離:32mに対して、実施例3の摺動距離は約1.5倍の50mとなり、実施例4の摺動距離は2倍以上の72mであり、実施例2は既に説明したように3倍以上の109mであることが特定されている。
 そして、実施例3,4,2の順に摺動距離が延びており、トヨフロンの重量比率が70%から低減するに従い、摺動距離が長くなることが特定されている。この実験結果より、一重織物におけるPTFE繊維の重量比を70%以下に規定することができる。
 <摺動実験その3>
 次に、本発明者等により実施された摺動実験その3について説明する。この摺動実験その3は、60MPaの面圧下における、二重織物からなる摩擦材を備えた滑り免震装置(比較例2)と一重織物からなる摩擦材を備えた滑り免震装置(実施例5)の摺動距離を比較する実験である。
 (実験概要と実験結果)
 比較例2の滑り免震装置の摩擦材を形成する二重織物は、PTFE繊維とPPS繊維からなる二重織物であり、実施例5の滑り免震装置の摩擦材を形成する一重織物は、実施例2と同様である。比較例2、実施例5ともに、摺動体の直径はφ130mm、高さは65mmである。本摺動実験においても、摩擦材が破損するまでの摺動距離を測定した。
 実験結果を図7A及び図7Bに示す。ここで、図7Aは、比較例2の実験結果であり、図7Bは実施例5の実験結果である。
 実験の結果、比較例2の摺動距離は52mとなり、実施例5の摺動距離は181mとなることが特定されており、比較例2に対して実施例5の摺動距離は3倍以上も長くなることが分かる。本実験結果より、60MPaの面圧下においても、一重織物からなる摩擦材を備えた滑り免震装置の摺動耐久性が優れていることが実証されている。
 尚、上記実施形態に挙げた構成等に対し、その他の構成要素が組み合わされるなどした他の実施形態であってもよく、ここで示した構成に本開示が何等限定されるものではない。この点に関しては、本開示の趣旨を逸脱しない範囲で変更することが可能であり、その応用形態に応じて適切に定めることができる。
 本国際出願は、2019年12月20日に出願した日本国特許出願第2019-230625号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。
10       :摺動体
11       :摺動体本体
12       :上面(第二摺動面)
13       :下面(第二摺動面)
20       :上部構造体固定板(構造体固定板)
21       :下面(第一摺動面)
30       :下部構造体固定板(構造体固定板)
31       :上面(第一摺動面)
40       :摩擦材(一重織物)
41       :経糸(合撚糸)
42       :緯糸
43       :接着剤
50       :構造体固定板
51       :下面(第一摺動面)
60       :受け台
61       :基板
62       :円柱体
63       :凹球面
70       :摺動体
71       :下面(凸球面)
72       :上面(第二摺動面)
100      :滑り免震装置(二面滑り支承の滑り免震装置)
200      :滑り免震装置(片面滑り支承の滑り免震装置)

Claims (4)

  1.  第一摺動面を備えている構造体固定板と、該第一摺動面と当接する第二摺動面を備えている金属製の摺動体と、を有する滑り免震装置であって、
     経糸と緯糸のうち、いずれか一方が高強度繊維とPTFE繊維とを合わせて撚った複数の合撚糸により形成され、いずれか他方が複数の高強度繊維により形成されている、一重織物からなる摩擦材が、前記第一摺動面と前記第二摺動面のいずれか一方、もしくは双方に取り付けられており、
     前記一重織物はツイル組織を有し、該一重織物を形成する前記他方の前記高強度繊維に比べて、該一重織物を形成する前記一方の前記合撚糸が、前記摩擦材が取り付けられている側と反対側の表面に多く露出するように織り込まれていることを特徴とする、滑り免震装置。
  2.  前記高強度繊維がPPS繊維もしくは液晶ポリエステル繊維のいずれか一種であることを特徴とする、請求項1に記載の滑り免震装置。
  3.  前記構造体固定板は、ともに前記第一摺動面を備えている上部構造体固定板及び下部構造体固定板を含み、
     前記摺動体は、その上下面において、上下の前記第一摺動面に当接する上下の前記第二摺動面を備えており、
     前記摩擦材が、前記上部構造体固定板及び前記下部構造体固定板のそれぞれの前記第一摺動面、もしくは、前記摺動体の上下の前記第二摺動面のいずれか一方もしくは双方に取付けられている、二面滑り支承であることを特徴とする、請求項1又は2に記載の滑り免震装置。
  4.  前記構造体固定板は前記第一摺動面を備えており、
     前記摺動体は、前記第一摺動面に当接する前記第二摺動面を備えるとともに受け台にて保持されており、
     前記摩擦材が、前記構造体固定板の前記第一摺動面、もしくは、前記摺動体の前記第二摺動面のいずれか一方もしくは双方に取付けられている、片面滑り支承であることを特徴とする、請求項1又は2に記載の滑り免震装置。
PCT/JP2020/040188 2019-12-20 2020-10-27 滑り免震装置 WO2021124686A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080045991.9A CN114051547A (zh) 2019-12-20 2020-10-27 滑动隔震装置
MX2022000512A MX2022000512A (es) 2019-12-20 2020-10-27 Dispositivo de aislamiento sismico deslizante.
US17/596,234 US11629517B2 (en) 2019-12-20 2020-10-27 Sliding seismic isolation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-230625 2019-12-20
JP2019230625A JP6762413B1 (ja) 2019-12-20 2019-12-20 滑り免震装置

Publications (1)

Publication Number Publication Date
WO2021124686A1 true WO2021124686A1 (ja) 2021-06-24

Family

ID=72614593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040188 WO2021124686A1 (ja) 2019-12-20 2020-10-27 滑り免震装置

Country Status (6)

Country Link
US (1) US11629517B2 (ja)
JP (1) JP6762413B1 (ja)
CN (1) CN114051547A (ja)
MX (1) MX2022000512A (ja)
TW (1) TWI735376B (ja)
WO (1) WO2021124686A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114829689B (zh) * 2019-12-20 2023-06-16 东丽株式会社 机织物及机械臂用电缆罩
CN116997693A (zh) * 2021-03-29 2023-11-03 东丽株式会社 机织物和滑动材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104731A (ja) * 1998-09-29 2000-04-11 Oiles Ind Co Ltd 二つの摺動部材を組み合わせた摺動構造およびそれを用いたすべり支承装置
JP2005220487A (ja) * 2004-02-06 2005-08-18 Toray Ind Inc フッ素繊維布帛および複合材料
JP2010054050A (ja) * 2009-09-30 2010-03-11 Oiles Ind Co Ltd 二つの摺動部材を組み合わせた摺動構造およびそれを用いたすべり支承装置
JP5521096B1 (ja) * 2013-07-25 2014-06-11 新日鉄住金エンジニアリング株式会社 滑り免震装置
JP2018525542A (ja) * 2015-08-05 2018-09-06 東レ株式会社 自己潤滑織物およびその生産方法と用途

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260217A (en) 1975-11-12 1977-05-18 Toshiba Corp Watch case
US6245836B1 (en) 1998-04-22 2001-06-12 Oiles Corporation Lubricating coating compound, sliding structure combining two sliding members in which lubricating coating compound is applied to one of the sliding members, and slide bearing apparatus using the same
WO2013003614A1 (en) 2011-06-29 2013-01-03 Worksafe Technologies Seismic isolation systems
CN103572454B (zh) * 2012-08-07 2016-08-10 东丽纤维研究所(中国)有限公司 一种低摩擦系数织物及其用途
TW201443321A (zh) 2013-05-08 2014-11-16 Hsin Kuang Alga Engineering Co Ltd 摩擦單擺隔震支承
KR101410025B1 (ko) * 2013-10-15 2014-06-20 (주)알티에스 플라스틱 베어링블록 조립체 및 이를 이용한 면진장치
TWM485921U (zh) * 2014-05-26 2014-09-11 Chong-Shien Tsai 隔震器
TW201636482A (zh) * 2015-04-10 2016-10-16 hui-zhen Su 複合式隔震消能模組
JP6173639B1 (ja) * 2017-05-10 2017-08-02 新日鉄住金エンジニアリング株式会社 滑り免震装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104731A (ja) * 1998-09-29 2000-04-11 Oiles Ind Co Ltd 二つの摺動部材を組み合わせた摺動構造およびそれを用いたすべり支承装置
JP2005220487A (ja) * 2004-02-06 2005-08-18 Toray Ind Inc フッ素繊維布帛および複合材料
JP2010054050A (ja) * 2009-09-30 2010-03-11 Oiles Ind Co Ltd 二つの摺動部材を組み合わせた摺動構造およびそれを用いたすべり支承装置
JP5521096B1 (ja) * 2013-07-25 2014-06-11 新日鉄住金エンジニアリング株式会社 滑り免震装置
JP2018525542A (ja) * 2015-08-05 2018-09-06 東レ株式会社 自己潤滑織物およびその生産方法と用途

Also Published As

Publication number Publication date
US11629517B2 (en) 2023-04-18
MX2022000512A (es) 2022-02-10
CN114051547A (zh) 2022-02-15
TWI735376B (zh) 2021-08-01
TW202124819A (zh) 2021-07-01
US20220145655A1 (en) 2022-05-12
JP6762413B1 (ja) 2020-09-30
JP2021099124A (ja) 2021-07-01

Similar Documents

Publication Publication Date Title
WO2021124686A1 (ja) 滑り免震装置
JP6979549B1 (ja) 改良された性能を伴う断熱ボード
US3594049A (en) Bearing liner
US5460865A (en) Hybrid honeycomb sandwich panel
US4084863A (en) Bearing and bearing liner having a compliant layer
JPS5918500B2 (ja) 構造物を強い動的水平応力の作用から保護する装置
KR102197495B1 (ko) 내마모성 다중 직물
EP2857717B1 (en) Sliding seismic isolation device
EP0692647A2 (en) Bearing assembly
KR102596032B1 (ko) 함침된 직물 및 연마 입자를 포함하는 연마 제품
JP6628923B1 (ja) 滑り免震装置
JP6349472B1 (ja) 滑り免震装置用のスライダーと滑り免震装置
CN214037338U (zh) 一种高强度耐用性好的建筑抗震支架
JP6733026B1 (ja) 摺動体とその製作方法
CN213562028U (zh) 复合磨料砂纸
JPH02234945A (ja) 摺動材
US3607589A (en) Delamination resistant laminated structure
JP7414007B2 (ja) 摺動布帛
EP3091399B1 (en) Low-friction sliding material and low-friction pressurizing member for toner fixing devices
TR2022000337T2 (tr) Kayar sismik izolasyon tertibatı.
CN201152338Y (zh) Frp增强橡胶隔振器
JP2002161492A (ja) 製紙用複合ファブリック
JP7221837B2 (ja) 衣服用ハンガー
JPH0215052Y2 (ja)
JP4933135B2 (ja) 高負荷伝動ベルト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902016

Country of ref document: EP

Kind code of ref document: A1