WO2021120350A1 - 白介素-2衍生物 - Google Patents

白介素-2衍生物 Download PDF

Info

Publication number
WO2021120350A1
WO2021120350A1 PCT/CN2020/070748 CN2020070748W WO2021120350A1 WO 2021120350 A1 WO2021120350 A1 WO 2021120350A1 CN 2020070748 W CN2020070748 W CN 2020070748W WO 2021120350 A1 WO2021120350 A1 WO 2021120350A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
cysteine residue
derivative
amino acid
complex
Prior art date
Application number
PCT/CN2020/070748
Other languages
English (en)
French (fr)
Inventor
赵耀
彭璐佳
郭建云
朱笑婷
张建军
魏婷婷
刘慧杰
郑茜
王冀姝
张维
Original Assignee
北京志道生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京志道生物科技有限公司 filed Critical 北京志道生物科技有限公司
Priority to JP2022535594A priority Critical patent/JP2023514003A/ja
Priority to CA3151681A priority patent/CA3151681A1/en
Priority to GB2201999.6A priority patent/GB2604238A/en
Priority to BR112022003712A priority patent/BR112022003712A2/pt
Priority to US17/771,032 priority patent/US20220363731A1/en
Priority to MX2022003301A priority patent/MX2022003301A/es
Priority to AU2020406768A priority patent/AU2020406768A1/en
Priority to EP20901536.1A priority patent/EP4023666A4/en
Priority to KR1020227008663A priority patent/KR20220113918A/ko
Publication of WO2021120350A1 publication Critical patent/WO2021120350A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/55IL-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • A61K38/2013IL-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • C07K14/7155Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Definitions

  • the invention belongs to the field of molecular biology, and specifically relates to an interleukin-2 derivative and a compound thereof.
  • Interleukin-2 (IL-2), discovered in 1976, was called T cell growth factor (TCGF) at that time, is a globular glycoprotein that plays an important role in maintaining the normal functions of T lymphocytes and NK cells .
  • Natural IL-2 is a polypeptide composed of 133 amino acid residues, with a molecular weight of about 15kD and three cysteine residues, located at positions 58, 105 and 125 respectively.
  • Post-translational modifications include Thr glycosylation at position 3, and cysteine residues at positions 58 and 105 form disulfide bonds, which are essential for their functions, mainly composed of 4 alpha helices and some linking sequences (loop ) Composed of high-level structures (Bazan et al., Science 257, 410-413 (1992)).
  • IL-2 is mainly produced by activated T cells, which can promote the proliferation and differentiation of T cells, maintain T cell activity; stimulate the production, proliferation and activation of natural killer (NK) cells, and induce cytotoxic T lymphocytes (CTL) The production and induction and activation of lymphokine activated killer (LAK) and tumor infiltrating lymphocytes; promote the expression of cytokines and cytolytic molecules by T cells, and promote the proliferation of B cells (Waldmann et al., Nat Rev Immunol 6,595-601 (2009) )); These cells have or indirectly have the effect of killing exogenous microorganism-infected cells and cancerous cells, so IL-2 has a good antiviral, anticancer effect and wide clinical application potential.
  • IL-2 mediates its effects by binding to IL-2 receptor (IL-2R).
  • IL-2 receptor consists of 3 subunits, namely ⁇ (CD25), ⁇ (CD122) and ⁇ (CD132) receptors.
  • Body subunits where ⁇ receptors are mainly expressed on the surface of T suppressor cells (T reg ) and some endothelial cells (endothelial cells), while ⁇ and ⁇ receptor subunits are highly expressed on effector T cells (T eff ) and NK cell.
  • T reg T suppressor cells
  • T eff effector T cells
  • NK cell effector T cells
  • the affinity of IL-2 to the complex form of different receptor subunits is different.
  • IL-2 has the highest affinity to the complex composed of ⁇ , ⁇ , and ⁇ receptor subunits, and it has the highest affinity to the complex composed of ⁇ and ⁇ receptor subunits.
  • the affinity of the complex composed of the base is moderate (about 100-fold reduction), and the combination of IL-2 and the two forms of receptor subunits can transmit signals (Minami et al., Annu Rev Immunol 11, 245-268 ( 1993)).
  • IL-2 the affinity of the complex composed of the base
  • it will preferentially bind to the high-affinity receptors on the surface of Treg cells, which will cause immunosuppression and fail to achieve the therapeutic effect.
  • High-dose IL-2 can neutralize the immune suppression caused by Treg activation by activating a large number of effector T cells. At the same time, there will be more toxic side effects and activation induced cell apoptosis.
  • IL-2 aldesleukin
  • VLS is caused by the expression of high-affinity receptors ( ⁇ , ⁇ and ⁇ subunits) of IL-2 on endothelial cells (Krieg et al., Proc Nat Acad Sci USA107, 11906-11 (2010)), so it is weakened or eliminated.
  • the binding of ⁇ receptors will help to weaken the function of IL-2 to promote the inhibition of T cell proliferation activity; at the same time, it can also reduce the binding to endothelial cell ⁇ receptors, thereby reducing or eliminating the side effects caused by IL-2 treatment.
  • the binding sites of IL-2 and ⁇ receptor subunits are mainly at amino acid positions 37, 38, 41, 42, 43, 44, 45, 61, 62, 65, 68 and 72 (Rickert.M et al. (2005 )Science 308:1477-1480), Merck and Roche companies or other scientific research institutions have made some mutations around these IL-2 surface amino acids that bind to ⁇ receptor subunits, such as Merck's mutants (R38W, F42K, WO2008003473A2) , Which reduces the interaction with ⁇ receptor subunits to achieve effector T cell activation to enhance efficacy; while Roche’s IL-2 mutants (F42A, Y45A and L72G, US 2016/0208017A1), which are different from ⁇ receptors It can bind to ⁇ and ⁇ receptor subunit complexes normally, and can exert an effect. It is currently in clinical practice.
  • reducing or eliminating the interaction between IL-2 and ⁇ receptor subunits may be an important aspect of treatment effectiveness and reducing the side effects of treatment in cancer patients.
  • the present invention provides an IL-2 derivative and a complex.
  • the IL-2 derivative is partially blocked by introducing at least one cysteine residue on the basis of wild-type IL-2. Or completely block the binding plane of the IL-2 derivative and the ⁇ receptor subunit, while basically retaining the affinity for the ⁇ and ⁇ receptor subunit complex.
  • the amino acid sequence of wild-type IL-2 is shown in SEQ ID NO.1.
  • At least one cysteine residue introduced on the basis of wild-type IL-2 can:
  • the introduction of at least one cysteine residue is the introduction of at least one cysteine residue by means of point mutation.
  • the first cysteine residue and the second cysteine residue are introduced by point mutation on the basis of wild-type IL-2; the first cysteine residue
  • One or both of the residue and the second cysteine residue are amino acids related to the binding plane of wild-type IL-2 and ⁇ receptor subunit or amino acids in the vicinity thereof.
  • the amino acid positions related to the binding plane of wild-type IL-2 and ⁇ receptor subunits are 37th, 38th, 41th, 42nd, 43rd, 44th, 45th, No. 61, No. 62, No. 65, No. 68 and No. 72.
  • first cysteine residue is the 37th, 38th, 41st, 42nd, 43rd, 44th, 45th, 61th, The amino acid at position 62 or its vicinity; the second cysteine residue is the amino acid at position 61, 62, 65, 68, 72 or its vicinity of wild-type IL-2 .
  • “nearby” means: 1) 1 to 4 amino acids adjacent to the primary structure; and/or amino acids adjacent to the tertiary structure.
  • the first cysteine residue is an amino acid point mutation selected from the group consisting of K35C, L36C, R38C, M39C, L40C, T41C, F42C, K43C, F44C and E61C.
  • the second cysteine residue is an amino acid point mutation selected from the group consisting of V69C, E62C, P65C, T111C, Y107C, A112C, T113C, I114C, L72C and A73C.
  • the combination of the first cysteine residue and the second cysteine residue that form the intramolecular disulfide bond is selected from the group of amino acid point mutation combinations: M39C and V69C, F44C and E62C, F44C and P65C, F42C and V69C, E61C and Y107C, F42C and P65C, F42C and T111C, F42C and A112C, F42C and T113C, T41C and A112C, L40C and A112C, L40C and T113C, L40C and I114C, M39C and L72C, M39C and A73C, M39C R38C and V69C, R38C and L72C, L36C and V69C, L36C and L72C, L36C and A73C, K35C and V69C, and K43C and A112C.
  • the distance between the first cysteine residue and the second cysteine residue is less than
  • a third cysteine residue is introduced by point mutation on the basis of wild-type IL-2; the third cysteine residue is wild-type IL-2 Amino acids related to the binding plane of the alpha receptor subunit or amino acids near it.
  • the third cysteine residue is the 37th, 38th, 41th, 42nd, 43rd, 44th, 45th, 61th, The 62nd, 65th, 68th, 72th amino acid or the amino acid near it.
  • “nearby” means: 1) 1 to 4 amino acids adjacent to the primary structure; and/or amino acids adjacent to the tertiary structure.
  • the third cysteine residue is an amino acid point mutation selected from the group consisting of: P34C, K35C, T37C, R38C, T41C, K43C, F44C, Y45C, E61C, E62C, K64C, P65C, E68C, and L72C .
  • a fourth cysteine residue is possessed or introduced on the blocking module; the third cysteine residue on the IL-2 derivative and the fourth cysteine residue on the blocking module can be Form intermolecular disulfide bonds.
  • the distance between the third cysteine residue and the fourth cysteine residue is less than
  • the blocking module is the extracellular segment of the alpha receptor subunit.
  • amino acid sequence of the extracellular segment of the alpha receptor subunit is shown in SEQ ID NO.24.
  • the fourth cysteine residue on the extracellular segment of the alpha receptor subunit is selected from the group of amino acid point mutations: D4C, D5C, M25C, N27C, R35C, R36C, K38C, S39C, G40C, S41C, L42C, I118C, Y119C and H120C.
  • the combination of the third cysteine residue and the fourth cysteine residue that form the intermolecular disulfide bond is selected from the group of amino acid point mutation combinations: T41C and N27C, P34C and D4C, E68C and L42C, Y45C and R35C, R38C and H120C, L72C and M25C, E61C and S39C, T41C and I118C, K35C and D4C, T37C and D4C, R38C and D4C, R38C and D5C, T41C and L42C, T41C and Y119C, K43C and R119C, K43C K43C and R36C, F44C and L42C, K43C and L42C, E61C and K38C, E62C and K38C, K64C and S39C, K64C and G40C, K64C and S41C, P65C and K38C.
  • the cysteine residue at position 125 of the wild-type IL-2 is converted to other amino acid residues by means of point mutations.
  • the point mutation at position 125 of wild-type IL-2 is C125A.
  • amino acid sequence of the IL-2 derivative is shown in SEQ ID NO. 3 to SEQ ID NO. 24; or shown in SEQ ID NO. 26 to 40.
  • the second aspect of the present invention provides a composite.
  • the composite includes:
  • the third cysteine residue on the IL-2 derivative and the fourth cysteine residue on the blocking module form an intermolecular disulfide bond, thereby forming a complex of IL-2 and the blocking module , Partially block or completely block the binding plane of IL-2 derivative and ⁇ receptor subunit, while basically retaining the affinity for ⁇ and ⁇ receptor subunit complex.
  • the introduction of at least one cysteine residue is the introduction of at least one cysteine residue by means of point mutations.
  • the third cysteine residue is an amino acid related to the binding plane of wild-type IL-2 and ⁇ receptor subunit or an amino acid near it.
  • the third cysteine residue is the 37th, 38th, 41st, 42nd, 43rd, 44th, 45th, 61st position of wild-type IL-2.
  • “nearby” means: 1) 1 to 4 amino acids adjacent to the primary structure; and/or amino acids adjacent to the tertiary structure.
  • the distance between the third cysteine residue and the fourth cysteine residue is less than
  • the third cysteine residue is an amino acid point mutation selected from the group consisting of P34C, K35C, T37C, R38C, T41C, K43C, F44C, Y45C, E61C, E62C, K64C, P65C, E68C, and L72C.
  • the blocking module is the extracellular segment of the alpha receptor subunit, and its amino acid sequence is shown in SEQ ID NO. 25.
  • the fourth cysteine residue on the extracellular segment of the alpha receptor subunit is selected from the group of amino acid point mutations: D4C, D5C, M25C, N27C, R35C, R36C, K38C, S39C, G40C, S41C, L42C, I118C, Y119C and H120C.
  • the combination of the third cysteine residue and the fourth cysteine residue that form the intermolecular disulfide bond is selected from the group of amino acid point mutation combinations: T41C and N27C, P34C and D4C, E68C and L42C, Y45C and R35C, R38C and H120C, L72C and M25C, E61C and S39C, T41C and I118C, K35C and D4C, T37C and D4C, R38C and D4C, R38C and D5C, T41C and L42C, T41C and Y119C, K43C and R119C, K43C K43C and R36C, F44C and L42C, K43C and L42C, E61C and K38C, E62C and K38C, K64C and S39C, K64C and G40C, K64C and S41C, P65C and K38C.
  • the point mutation at position 125 of wild-type IL-2 is C125A.
  • the combination of the amino acid sequence of the IL-2 derivative and the sequence of the extracellular segment of the ⁇ receptor subunit is selected from a combination of SEQ ID NO. 26 and SEQ ID NO. 50, SEQ ID NO. 27 and SEQ ID NO.51, SEQ ID NO.28 and SEQ ID NO.52, SEQ ID NO.29 and SEQ ID NO.53, SEQ ID NO.30 and SEQ ID NO.54, SEQ ID NO.31 and SEQ ID NO. 55, SEQ ID NO. 32 and SEQ ID NO. 56, SEQ ID NO. 33 and SEQ ID NO. 57, SEQ ID NO. 34 and SEQ ID NO. 58, SEQ ID NO.
  • the third aspect of the present invention provides an isolated polynucleotide, which in a specific embodiment encodes an IL-2 derivative as described above, or encodes a complex as described above.
  • the fourth aspect of the present invention provides an expression vector.
  • it comprises an isolated polynucleotide as described above.
  • the fifth aspect of the present invention provides a host cell, in a specific embodiment, comprising an isolated polynucleotide as described above.
  • the sixth aspect of the present invention provides a composition.
  • the composition comprises the IL-2 derivative as described above or the complex as described above, and a pharmaceutically acceptable carrier.
  • the seventh aspect of the present invention provides the use of the above-mentioned IL-2 derivative or the above-mentioned complex in the preparation of a medicine or preparation for the treatment of diseases.
  • the eighth aspect of the present invention provides the use of the IL-2 derivative or the complex as described above in the preparation of a composition for stimulating the immune system of an individual.
  • the ninth aspect of the present invention provides a method for producing an IL-2 derivative.
  • the method includes culturing the host as described above under conditions suitable for expressing the IL-2 derivative. cell.
  • the tenth aspect of the present invention provides a method for generating a complex.
  • the method includes culturing the host cell according to claim 37 under conditions suitable for expressing the complex.
  • IL-2 derivatives or complexes form intramolecular or intermolecular disulfide bonds, so that the site where the IL-2 derivative binds to the ⁇ receptor is blocked, thereby avoiding interaction with Alpha receptor binding structure.
  • the IL-2 derivatives or complexes of the present invention are a new direction for reducing VLS or reducing or eliminating toxic and side effects caused by IL-2 treatment.
  • Figure 1 is an SDS-PAGE electrophoresis of the purified IL-2 derivative in an embodiment of the present invention; wherein the reduction is the loading buffer with the reducing agent ⁇ -ME, and the non-reduction is without the reducing agent.
  • Fig. 2 is a signal diagram of Fortebio testing the binding ability of IL-2 derivatives to IL2R ⁇ in an embodiment of the present invention, at a concentration of 100 nM; the irrelevant protein control used is HER2.
  • Figure 2A is for IL-2wt C125A
  • Figure 2B is for IL-2 mutant 1
  • Figure 2C is for IL-2 mutant 2
  • Figure 2D is for IL-2 mutant 3
  • Figure 2E is for IL-2 mutant 4
  • Fig. 2F is for IL-2 complex 1
  • Fig. 2G is for IL-2 complex 2
  • Fig. 2H is for IL-2 complex 3
  • Fig. 2I is for IL-2 complex 4.
  • Fig. 3 is a signal diagram for determining the binding affinity of IL-2 derivatives to IL2R ⁇ and Ka, kd, KD and R2 in the Fortebio test of an embodiment of the present invention, and the concentration range is 1.25nM-40nM.
  • Figure 3A is for IL-2 wt C125A
  • Figure 3B is for IL-2 mutant 1
  • Figure 3C is for IL-2 mutant 2
  • Figure 3D is for IL-2 mutant 3
  • Figure 3E is for IL-2 mutant 4
  • Fig. 3F is for IL-2 complex 1
  • Fig. 3G is for IL-2 complex 2
  • Fig. 3H is for IL-2 complex 3
  • Fig. 3I is for IL-2 complex 4.
  • Figure 4 is a CTLL-2 (T cell) proliferation experiment in an example of the present invention.
  • the relative amino acid positions of IL-2 derivatives and wild-type IL-2 are calculated based on the amino acid sequence of wild-type IL-2 (such as SEQ ID NO. 1).
  • the nucleotide sequence of wild-type IL-2 is shown in SEQ ID NO.146.
  • CD25-ECD the relevant amino acid positions of CD25-ECD are calculated based on the amino acid sequence shown in SEQ ID NO.25.
  • IL-2 derivatives include IL-2 mutants, complexes formed by IL-2 mutants and other molecules.
  • IL-2 mutant refers to a molecule formed by mutation (such as point mutation or insertion mutation) on the basis of wild-type IL-2.
  • IL2R ⁇ refers to interleukin-2 receptor ⁇ , also called “ ⁇ receptor subunit”
  • IL2R ⁇ refers to interleukin-2 receptor ⁇ , also called “ ⁇ receptor subunit”
  • IL2R ⁇ refers to the interleukin-2 receptor ⁇ , also known as the “ ⁇ receptor subunit”
  • IL2R ⁇ refers to the complex formed by the interleukin-2 receptor ⁇ and receptor ⁇ , also called “ ⁇ and ⁇ receptor Body subunit complex”.
  • the strategy adopted is to introduce additional cysteine residues to form new disulfide bonds within the IL-2 molecule, or to make IL-2 interact with other disulfide bonds through intermolecular disulfide bonds.
  • the blocking module forms a complex, thereby partially or completely blocking the binding site of IL-2 and ⁇ receptors, but does not affect the binding to ⁇ and ⁇ receptor subunit complexes.
  • the first cysteine residue and the second cysteine residue are introduced to form an IL-2 intramolecular disulfide bond, making the IL-2 derivative more structurally It is stable and can also form a barrier to destroy the binding plane with ⁇ receptors.
  • the way to introduce the first cysteine residue and the second cysteine residue is to make appropriate point mutations on the basis of wild-type IL-2.
  • the positions of the first cysteine residue and the second cysteine residue to be introduced are mainly determined in the following ways:
  • the positions of the first and second cysteine residues are amino acid residues on the binding surface of IL-2 and ⁇ receptor or amino acid residues nearby; on the binding surface of IL-2 and ⁇ receptor
  • the amino acid residues of are 37, 38, 41, 42, 43, 44, 45, 61, 62, 65, 68 and 72 amino acid positions;
  • the original amino acid residues are mutated into the first cysteine residue and the second cysteine residue by mutation.
  • the mutant IL-2 derivatives (and IL-2 mutants) form intramolecular disulfide bonds after normal transcription and translation.
  • the original free cysteine at position 125 of IL-2 is mutated to prevent it from interfering with the formation of intermolecular disulfide bonds.
  • amino acid sequence of the designed IL-2 mutant is shown in Table 1:
  • the expression host can be E. coli or mammalian cells.
  • IL-2 forms a complex with the blocking module through intermolecular disulfide bonds, thereby completely or partially blocking the binding plane of IL-2 and ⁇ receptors, thereby blocking IL-2 from endogenous Binding of sex alpha receptors.
  • the disulfide bond between IL-2 and the blocking module is achieved by introducing a third cysteine residue on the wild-type IL-2, and having or introducing a fourth cysteine residue on the blocking module. It is formed between the three cysteine residues and the fourth cysteine residue.
  • the blocking module is the extracellular segment of the alpha receptor.
  • the amino acid sequence of the extracellular segment of the wild-type ⁇ receptor is shown in SEQ ID NO.25.
  • the binding of ⁇ receptor to IL-2 is not stable (high dissociation coefficient Kd), and a stable heterodimer cannot be formed. It must be combined with ⁇ and ⁇ receptor subunits to form IL-2 High affinity receptor. Therefore, it is impossible to form a stable complex by co-expressing two wild-type molecules.
  • the third cysteine residue was introduced on the wild-type IL-2, and the fourth cysteine residue was introduced on the extracellular segment of the ⁇ receptor (CD25-ECD).
  • the disulfide bond formed between the residue and the fourth cysteine residue makes the IL-2 derivative and the extracellular segment of the ⁇ receptor (CD25-ECD) form a complex, blocking IL-2 from endogenous Binding of sex alpha receptors.
  • amino acid sequence of the extracellular segment of the wild-type alpha receptor is shown in SEQ ID NO.25:
  • the nucleotide sequence of the extracellular segment of the wild-type ⁇ receptor is shown in SEQ ID NO.145.
  • the positions of the third cysteine residue and the fourth cysteine residue to be introduced are mainly determined by the following methods:
  • the position of the third cysteine residue is an amino acid residue on the binding surface of IL-2 and ⁇ receptor or an amino acid residue near it; an amino acid residue on the binding surface of IL-2 and ⁇ receptor
  • the base is the amino acid positions 37, 38, 41, 42, 43, 44, 45, 61, 62, 65, 68 and 72;
  • the original amino acid residue on IL-2 was mutated into the third cysteine residue by mutation, and the original amino acid residue on the extracellular region of the ⁇ receptor (CD25-ECD) was changed. Becomes the fourth cysteine residue.
  • disulfide bonds can be formed between IL-2 and ⁇ receptor extracellular region to form a new molecule IL- 2/CD25-ECD heterodimer.
  • the complex cannot bind to the endogenous ⁇ receptors in the body, but can bind to the ⁇ and ⁇ receptor subunit complexes, so as to achieve the purpose of not activating Treg.
  • the original free cysteine at position 125 of IL-2 was mutated to prevent it from forming additional extracellular domains with the alpha receptor with cysteine mutations and IL-2. Disulfide bonds affect the formation of ⁇ receptors and IL-2 dimers.
  • amino acid sequences of the designed IL-2 mutant and CD25-ECD mutant are shown in Table 2:
  • the expression host is mammalian cells (HEK293 or CHO).
  • IL-2 wt C125A
  • IL-2 mutants 1 to 4 and IL-2 complex 1 to 4 were selected for expression respectively, and the HPC4 tag attached to the C-terminus of the molecule was used for purification and preparation.
  • G418 solution Weigh 250mg Geneticin TM and add 4.5ml ultrapure water to dissolve it, dilute the ultrapure water to 5ml, filter with 0.22um membrane, and store at -20°C;
  • PEI solution Weigh 50mg of PEI and add 45ml of ultrapure water to dissolve it, adjust the pH to 7.0 with 1M NaOH, dilute the ultrapure water to 50ml, filter with a 0.22um membrane, and store at -20°C;
  • the plasmid is prepared in advance in a 2ml de-endotoxin centrifuge tube;
  • Liquid A Plasmid 1ug/ml+Opti-MEMTM 33.3ul/ml
  • Liquid B PEI 2ug/ml+Opti-MEMTM 33.3ul/ml
  • IL-2 wt C125A
  • IL-2 mutants 1 to 4 plasmids were transfected separately; the plasmids of IL-2 complex 1 to 4 were transfected after mixing the two plasmids.
  • IL-2 related derivatives have the HPC4 tag at the C-terminus, so it can be affinity purified with a filler coupled with HPC4 antibody, and then further purified by gel filtration chromatography (superdex200) to obtain a higher purity protein. SDS-PAGE analysis was performed according to the method described in "Molecular Cloning".
  • Example 2 Determination of the affinity of IL-2wt (C125A), IL-2 mutants 1 to 4 and IL-2 complex 1 to 4 to IL2R ⁇ and IL2R ⁇ by biolayer interferomeory (BLI)
  • the proteins used in the experiment were all produced by Beijing Zhidao Biotechnology Co., Ltd., IL2R ⁇ -his (purchased from Beijing Zhidao Biotechnology Co., Ltd.), IL2R ⁇ -Fc (purchased from Beijing Zhidao Biotechnology Co., Ltd.), and IL2 mutants were transiently expressed by HEK293 and pro- And obtained after purification.
  • Buffer formulation 10mM HEPES, 150mM sodium chloride, 3mM EDTA, 0.1% BSA and 0.05% Tween 20; ProA sensor (Pall Fortebio company, item number #18-5010); HISIK sensor (Pall Fortebio company, item number #18- 5120); BLI equipment is Octet RED96 produced by Pall Fortebio; data acquisition and analysis are performed using Data acquisition 11.0 and Data analysis 11.0 software respectively.
  • CTLL-2 (T cell) proliferation test is a commonly used cell-level test to determine the activity of interleukins to stimulate immune cells. Therefore, the proliferation experiment of CTLL-2 cells is used to examine the biological activity of IL-2 derivatives.
  • CTLL-2 cells Resuspend the cells in a culture medium containing FBS and Rat-T-Stim.
  • MTS addition add 20 ⁇ l to each well AQueous One Solution Reagent, 37 degrees, 5% CO 2 incubate for 2 to 4 hours.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Cell Biology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种IL-2衍生物,通过在野生型IL-2的基础上引入至少一个半胱氨酸残基,部分封闭或完全封闭IL-2衍生物与α受体亚基的结合平面,同时基本保留对β和γ受体亚基复合物的亲和力。本发明还公开了复合物,包括IL-2衍生物,IL-2衍生物在野生型IL-2的基础上引入第三半胱氨酸残基;封闭模块,封闭模块上具有或引入有第四半胱氨酸残基;IL-2衍生物上的第三半胱氨酸残基和所述封闭模块上的第四半胱氨酸残基形成分子间二硫键,从而形成IL-2与封闭模块的复合物,部分封闭或完全封闭IL-2衍生物与α受体亚基的结合平面,同时基本保留对β和γ受体亚基复合物的亲和力。

Description

白介素-2衍生物 技术领域
本发明属于分子生物学领域,具体涉及一种白介素-2衍生物及其复合物。
背景技术
白介素-2(IL-2),于1976年被发现,当时被称为T细胞生长因子(TCGF),是一种在维持T淋巴细胞和NK细胞的正常功能中起着重要作用的球状糖蛋白。天然IL-2是一个具有133个氨基酸残基组成的多肽,分子量大约15kD,有三个半胱氨酸残基,分别位于第58、105和125位。翻译后修饰包括第3位的Thr糖基化,第58位和105位半胱氨酸残基形成二硫键,并形成其功能必不可少的主要由4个α螺旋以及一些连接序列(loop)组成的高级结构(Bazan等,Science257,410-413(1992))。
IL-2主要由活化的T细胞生成,它能促进T细胞的增殖和分化,维持T细胞活性;刺激天然杀伤(NK)细胞的生成、增殖和活化,并诱导细胞毒性T淋巴细胞(CTL)的生成以及诱导和激活淋巴因子激活的杀细胞(LAK)及肿瘤浸润淋巴细胞;促进T细胞表达细胞因子和细胞溶解分子,促进B细胞的增殖(Waldmann等,Nat Rev Immunol6,595-601(2009));这些细胞都有或间接有杀伤外源微生物感染细胞以及癌变细胞的作用,因此IL-2有很好的抗病毒、抗癌作用和广泛的临床应用潜力。
IL-2通过结合IL-2受体(IL-2R)来介导其作用,IL-2受体由3个亚基组成,分别为α(CD25)、β(CD122)和γ(CD132)受体亚基,其中α受体主要表达在T抑制细胞(T reg)和一些内皮细胞(endothelial cells)表面,而β和γ受体亚基则高表达于效应性T细胞(T eff)和NK细胞。IL-2对不同受体亚基的复合物形式的亲和力是不同的,IL-2对α、β和γ受体亚基组成的复合体的亲和力是最高的,对由β和γ受体亚基组成的复合体的亲和力则为中等(约降低100倍),而IL-2与两种形式的受体亚基组合结合后均能传递信号(Minami等,Annu Rev Immunol 11,245-268(1993))。但是临床在IL-2低剂量的条件下,是会优先和Treg细胞表面上的高亲和力受体结合,则会产生免疫抑制,达不到治疗的效果。高剂量的IL-2会通过激活大量的效应T细胞从而中和Treg激活带来的免疫抑制,同时也会出现更多的毒副作用,以及细胞凋亡(activation induced cell apoptosis)。
基于IL-2的抗肿瘤作用,高剂量IL-2(阿地白介素)于1992年通过FDA批准用于黑色素瘤和肾细胞癌的临床治疗。但是接受高剂量IL-2治疗的患者经常经历严重的副作用,包括心血管、肺水肿、肝、胃肠、神经学和血液学等事件,大多数的 这些副作用可由血管(或毛细管)渗漏综合征(VLS)的来解释,也是临床和动物实验评价IL-2治疗副作用的一项指标。而引起VLS是由于内皮细胞上表达有IL-2的高亲和力受体(α、β和γ亚基)(Krieg等,Proc Nat Acad Sci USA107,11906-11(2010)),所以减弱或消除与α受体的结合将有助于减弱IL-2促进抑制T细胞增殖活性的功能;同时还可减少对内皮细胞α受体的结合,从而降低或消除IL-2治疗引起的毒副作用。IL-2与α受体亚基的结合位点主要在第37,38,41,42,43,44,45,61,62,65,68和72位氨基酸位点(Rickert.M等(2005)Science 308:1477-1480),Merck和Roche公司或其它科研机构围绕这些与α受体亚基结合的IL-2表面氨基酸做了一些突变,如Merck公司的突变体(R38W、F42K,WO2008003473A2),降低与α受体亚基的相互作用,以其达到效应T细胞活化以增强功效;而Roche的IL-2突变体(F42A、Y45A和L72G,US 2016/0208017A1),其与α受体不结和,但可以正常结合β和γ受体亚基复合物,并可以发挥效应,目前正在临床中。
因此降低或消除IL-2与α受体亚基的相互作用,可能是治疗有效性并减少肿瘤患者治疗副作用的一个重要方面。
发明内容
有鉴于现有技术中的缺陷,本发明提供了一种IL-2衍生物及起复合物。
本发明的一个方面提供了一种IL-2衍生物,在一个具体实施方式中,该IL-2衍生物通过在野生型IL-2的基础上引入至少一个半胱氨酸残基,部分封闭或完全封闭IL-2衍生物与α受体亚基的结合平面,同时基本保留对β和γ受体亚基复合物的亲和力。野生型IL-2的氨基酸序列如SEQ ID NO.1所示。
进一步地,在野生型IL-2的基础上引入的至少一个半胱氨酸残基,能够:
a)形成IL-2衍生物的分子内二硫键;或者
b)使得IL-2衍生物能通过分子间二硫键与封闭模块结合。
可选地,所述引入至少一个半胱氨酸残基为通过点突变的方式引入至少一个半胱氨酸残基。
可选地,在一种方式中,在野生型IL-2的基础上通过点突变方式引入第一半胱氨酸残基和第二半胱氨酸残基;所述第一半胱氨酸残基和所述第二半胱氨酸残基中的一个或两个为野生型IL-2与α受体亚基的结合平面相关的氨基酸或其附近的氨基酸。其中,野生型IL-2与α受体亚基的结合平面相关的氨基酸位点为第37位、第38位、第41位、第42位、第43位、第44位、第45位、第61位、第62位、第65位、第68位和第72位。
进一步地,第一半胱氨酸残基为野生型IL-2的第37位、第38位、第41位、第42位、第43位、第44位、第45位、第61位、第62位氨基酸或其附近的氨基 酸;第二半胱氨酸残基为野生型IL-2的第61位、第62位、第65位、第68位、第72位氨基酸或其附近的氨基酸。可选地,“附近”为:1)一级结构上相邻的1~4个氨基酸;和/或三级结构上相邻的氨基酸。
进一步地,第一半胱氨酸残基为选自下组的氨基酸点突变:K35C、L36C、R38C、M39C、L40C、T41C、F42C、K43C、F44C和E61C。
进一步地,第二半胱氨酸残基为选自下组的氨基酸点突变:V69C、E62C、P65C、T111C、Y107C、A112C、T113C、I114C、L72C和A73C。
可选地,形成分子内二硫键的第一半胱氨酸残基和第二半胱氨酸残基的组合选自下组的氨基酸点突变组合:M39C和V69C、F44C和E62C、F44C和P65C、F42C和V69C、E61C和Y107C、F42C和P65C、F42C和T111C、F42C和A112C、F42C和T113C、T41C和A112C、L40C和A112C、L40C和T113C、L40C和I114C、M39C和L72C、M39C和A73C、R38C和V69C、R38C和L72C、L36C和V69C、L36C和L72C、L36C和A73C、K35C和V69C以及K43C和A112C。
可选地,第一半胱氨酸残基和第二半胱氨酸残基的残基质心矢量距离为小于
Figure PCTCN2020070748-appb-000001
可选地,在第二种方式中,在野生型IL-2的基础上通过点突变方式引入第三半胱氨酸残基;所述第三半胱氨酸残基为野生型IL-2与α受体亚基的结合平面相关的氨基酸或其附近的氨基酸。
进一步地,第三半胱氨酸残基为野生型IL-2的第37位、第38位、第41位、第42位、第43位、第44位、第45位、第61位、第62位、第65位、第68位、第72位氨基酸或其附近的氨基酸。可选地,“附近”为:1)一级结构上相邻的1~4个氨基酸;和/或三级结构上相邻的氨基酸。
进一步地,所述第三半胱氨酸残基为选自下组的氨基酸点突变:P34C、K35C、T37C、R38C、T41C、K43C、F44C、Y45C、E61C、E62C、K64C、P65C、E68C和L72C。
进一步地,封闭模块上具有或引入有第四半胱氨酸残基;IL-2衍生物上的第三半胱氨酸残基与所述封闭模块上的第四半胱氨酸残基能形成分子间二硫键。
可选地,第三半胱氨酸残基和所述第四半胱氨酸残基的残基质心矢量距离为小于
Figure PCTCN2020070748-appb-000002
可选地,封闭模块为α受体亚基的胞外段。
进一步地,α受体亚基的胞外段的氨基酸序列如SEQ ID NO.24所示。
进一步地,α受体亚基的胞外段上的所述第四半胱氨酸残基位选自下组的氨基酸点突变:D4C、D5C、M25C、N27C、R35C、R36C、K38C、S39C、G40C、S41C、L42C、I118C、Y119C和H120C。
可选地,形成分子间二硫键的第三半胱氨酸残基和第四半胱氨酸残基的组合选 自下组的氨基酸点突变组合:T41C和N27C、P34C和D4C、E68C和L42C、Y45C和R35C、R38C和H120C、L72C和M25C、E61C和S39C、T41C和I118C、K35C和D4C、T37C和D4C、R38C和D4C、R38C和D5C、T41C和L42C、T41C和Y119C、K43C和R35C、K43C和R36C、F44C和L42C、K43C和L42C、E61C和K38C、E62C和K38C、K64C和S39C、K64C和G40C、K64C和S41C、P65C和K38C。
无论第一种方式还是第二种方式,可选地,通过点突变的方式将野生型IL-2第125位的半胱氨酸残基转变为其他的氨基酸残基。
进一步可选地,野生型IL-2第125位的点突变为C125A。
可选地,IL-2衍生物的氨基酸序列如SEQ ID NO.3~SEQ ID NO.24所示;或如SEQ ID NO.26~40所示。
本发明的第二个方面提供了一种复合物,在一个具体实施方式中,该复合物包括:
1)IL-2衍生物,所述IL-2衍生物在野生型IL-2的基础上引入第三半胱氨酸残基;
2)封闭模块,所述封闭模块上具有或引入有第四半胱氨酸残基;
所述IL-2衍生物上的第三半胱氨酸残基和所述封闭模块上的第四半胱氨酸残基形成分子间二硫键,从而形成IL-2与封闭模块的复合物,部分封闭或完全封闭IL-2衍生物与α受体亚基的结合平面,同时基本保留对β和γ受体亚基复合物的亲和力。
可选地,引入至少一个半胱氨酸残基为通过点突变的方式引入至少一个半胱氨酸残基。
进一步地,所述第三半胱氨酸残基为野生型IL-2与α受体亚基的结合平面相关的氨基酸或其附近的氨基酸。
进一步地,所述第三半胱氨酸残基为野生型IL-2的第37位、第38位、第41位、第42位、第43位、第44位、第45位、第61位、第62位、第65位、第68位、第72位氨基酸或其附近的氨基酸。可选地,“附近”为:1)一级结构上相邻的1~4个氨基酸;和/或三级结构上相邻的氨基酸。
可选地,所述第三半胱氨酸残基和所述第四半胱氨酸残基的残基质心矢量距离为小于
Figure PCTCN2020070748-appb-000003
进一步地,第三半胱氨酸残基为选自下组的氨基酸点突变:P34C、K35C、T37C、R38C、T41C、K43C、F44C、Y45C、E61C、E62C、K64C、P65C、E68C和L72C。
可选地,所述封闭模块为α受体亚基的胞外段,其氨基酸序列如SEQ ID NO.25所示。
进一步地,α受体亚基的胞外段上的所述第四半胱氨酸残基位选自下组的氨基酸点突变:D4C、D5C、M25C、N27C、R35C、R36C、K38C、S39C、G40C、S41C、L42C、I118C、Y119C和H120C。
可选地,形成分子间二硫键的第三半胱氨酸残基和第四半胱氨酸残基的组合选自下组的氨基酸点突变组合:T41C和N27C、P34C和D4C、E68C和L42C、Y45C和R35C、R38C和H120C、L72C和M25C、E61C和S39C、T41C和I118C、K35C和D4C、T37C和D4C、R38C和D4C、R38C和D5C、T41C和L42C、T41C和Y119C、K43C和R35C、K43C和R36C、F44C和L42C、K43C和L42C、E61C和K38C、E62C和K38C、K64C和S39C、K64C和G40C、K64C和S41C、P65C和K38C。
可选地,野生型IL-2第125位的点突变为C125A。
可选地,IL-2衍生物的氨基酸序列和所述α受体亚基的胞外段的序列组合选自下组的组合:SEQ ID NO.26和SEQ ID NO.50,SEQ ID NO.27和SEQ ID NO.51,SEQ ID NO.28和SEQ ID NO.52,SEQ ID NO.29和SEQ ID NO.53,SEQ ID NO.30和SEQ ID NO.54,SEQ ID NO.31和SEQ ID NO.55,SEQ ID NO.32和SEQ ID NO.56,SEQ ID NO.33和SEQ ID NO.57,SEQ ID NO.34和SEQ ID NO.58,SEQ ID NO.35和SEQ ID NO.59,SEQ ID NO.36和SEQ ID NO.60,SEQ ID NO.37和SEQ ID NO.61,SEQ ID NO.38和SEQ ID NO.62,SEQ ID NO.39和SEQ ID NO.63,SEQ ID NO.40和SEQ ID NO.64,SEQ ID NO.41和SEQ ID NO.65,SEQ ID NO.42和SEQ ID NO.66,SEQ ID NO.43和SEQ ID NO.67,SEQ ID NO.44和SEQ ID NO.68,SEQ ID NO.45和SEQ ID NO.69,SEQ ID NO.46和SEQ ID NO.70,SEQ ID NO.47和SEQ ID NO.71,SEQ ID NO.48和SEQ ID NO.72,SEQ ID NO.49和SEQ ID NO.73。
本发明的第三个方面提供了一种分离的多核苷酸,在一个具体实施方式中,其编码如上所述的IL-2衍生物,或者编码如上所述的复合物。
本发明的第四个方面提供了一种表达载体,在一个具体实施方式中,其包含如上所述的一种分离的多核苷酸。
本发明的第五个方面提供了一种宿主细胞,在一个具体实施方式中,包含如上所述的一种分离的多核苷酸。
本发明的第六个方面提供了一种组合物,在一个具体实施方式中,该组合物包含如上所述的IL-2衍生物或者如上所述的复合物,以及药学可接受载体。
本发明的第七个方面提供如上所述的IL-2衍生物或者如上所述的复合物用于制备用于治疗疾病的药物或制剂中的用途。
本发明的第八个方面提供如上所述的IL-2衍生物或者如上所述的复合物在制 备用于刺激个体的免疫系统的组合物中的用途。
本发明的第九个方面提供了一种生成IL-2衍生物的方法,在一个具体实施方式中,该方法包括在适合于表达所述IL-2衍生物的条件下培养如上所述的宿主细胞。
本发明的第十个方面提供了一种生成复合物的方法,在一个具体实施方式中,该方法包括在适合于表达所述复合物的条件下培养如权利要求37所述的宿主细胞。
本发明的具体实施方式中的IL-2衍生物或复合物,通过形成分子内或分子间二硫键的方式,使得IL-2衍生物与α受体结合的位点被封闭,从而避免与α受体结合结构。本发明中的IL-2衍生物或复合物为减少VLS或降低或消除IL-2治疗引起的毒副作用带来的新的方向。
附图说明
图1是本发明一个实施例中纯化后的IL-2衍生物SDS-PAGE电泳;其中,还原为上样缓冲液中加入还原剂β-ME,非还原为不加还原剂。
图2是本发明一个实施例中Fortebio测试IL-2衍生物与IL2Rα结合能力测定信号图,浓度为100nM;使用的不相关的蛋白对照为HER2。其中,图2A针对IL-2wt C125A;图2B针对IL-2突变体1;图2C针对IL-2突变体2;图2D针对IL-2突变体3;图2E针对IL-2突变体4;图2F针对IL-2复合物1;图2G针对IL-2复合物2;图2H针对IL-2复合物3;图2I针对IL-2复合物4。
图3是本发明一个实施例中Fortebio测试IL-2衍生物与IL2Rβγ结合亲和力测定信号图以及Ka,kd,KD和R2,浓度范围是1.25nM-40nM。其中,图3A针对IL-2 wt C125A;图3B针对IL-2突变体1;图3C针对IL-2突变体2;图3D针对IL-2突变体3;图3E针对IL-2突变体4;图3F针对IL-2复合物1;图3G针对IL-2复合物2;图3H针对IL-2复合物3;图3I针对IL-2复合物4。
图4是本发明一个实施例中CTLL-2(T细胞)的增殖实验。
具体实施方式
以下将结合实施例对本发明作进一步地说明,应理解这些实施例仅作为例证的目的,不用于限制本发明的保护范围。
下列实施例中未注明具体条件的实验方法,通常按照常规条件,例如Sambrook等分子克隆:实验室手册(New York:Cold Spring Harbor Laboratory Press,1989)中所述的条件,或按照制造厂商所建议的条件。所采用的试剂,若无特殊说明,均为市售或公开渠道可以获得的试剂。
本文中,IL-2衍生物和野生型IL-2的相关氨基酸位置,以野生型IL-2的 氨基酸序列(如SEQ ID NO.1)为基准进行计算。
野生型IL-2(IL-2 wt,SEQ ID NO.1):
Figure PCTCN2020070748-appb-000004
野生型IL-2的核苷酸序列如SEQ ID NO.146所示。
本文中,CD25-ECD的相关氨基酸位置,以SEQ ID NO.25所示的氨基酸序列为基准进行计算。
本文中,“第一”、“第二”、“第三”等,仅是为了进行区分,不是顺序的限定。例如,一个衍生物中可以仅具有“第三”半胱氨酸残基,而不必具有“第一”和“第二”半胱氨酸残基。
本文中,“IL-2衍生物”包括IL-2突变体、IL-2突变体与其他分子形成的复合物。IL-2突变体是指在野生型IL-2的基础上进行突变(比如点突变或插入突变)所形成的分子。
本文中,“IL2Rα”是指白介素-2受体α,也称为“α受体亚基”;“IL2Rβ”是指白介素-2受体β,也称为“β受体亚基”;“IL2Rγ”是指白介素-2受体γ,也称为“γ受体亚基”;“IL2Rβγ”是指白介素-2受体β和受体γ形成的复合物,也称为“β和γ受体亚基复合物”。
现有技术中,为了能够降低或消除IL-2与α受体的结合,都是对IL-2与α受体的结合表面内的氨基酸进行简单突变。
本发明的具体实施方式中,采用的策略是通过引入额外的半胱氨酸残基,使得IL-2分子内部形成新的二硫键,或者使得IL-2通过分子间二硫键与另外的封闭模块形成复合物,从而部分封闭或完全封闭IL-2与α受体的结合位点,但是也不影响与β和γ受体亚基复合物的结合。
在第一个具体实施方式中,是通过引入第一半胱氨酸残基和第二半胱氨酸残基,形成IL-2分子内二硫键,使得IL-2衍生物从结构上更加稳定,而且还可以形成屏障,破坏与α受体的结合平面。
引入第一半胱氨酸残基和第二半胱氨酸残基的方式是在野生型IL-2的基础上进行合适的点突变。关于需要引入的第一半胱氨酸残基和第二半胱氨酸残基的位置,主要通过以下方式确定:
1)第一和第二半胱氨酸残基的位置为IL-2和α受体的结合面上的氨基酸残基或其附近的氨基酸残基;IL-2和α受体的结合面上的氨基酸残基为第37,38,41,42,43,44,45,61,62,65,68和72位氨基酸位点;
2)充分考虑到IL-2的结构和原子间的距离;
3)通过生物信息学和蛋白质工程学设计,在上述氨基酸残基周围根据残基质心的矢量距离判据,寻找两个合适的位点,其能形成分子内二硫键,但是不容易或不会形成IL-2分子间二硫键。
确定合适的位点后,通过突变将原氨基酸残基突变成第一半胱氨酸残基和第二半胱氨酸残基。突变后的IL-2衍生物(及IL-2突变体)通过正常的转录和翻译后形成分子内的二硫键。
在一些实施例中,将IL-2第125位原有的自由半胱氨酸突变掉,防止其干扰分子间二硫键的形成。
在一些实施例中,设计获得的IL-2突变体的氨基酸序列如表1所示:
表1设计获得的IL-2突变体的氨基酸序列
Figure PCTCN2020070748-appb-000005
Figure PCTCN2020070748-appb-000006
Figure PCTCN2020070748-appb-000007
表达宿主可以是E.Coli或哺乳动物细胞。
在第二个具体实施方式中,IL-2通过分子间二硫键与封闭模块形成复合物, 从而全部或部分封闭IL-2与α受体的结合平面,进而阻断IL-2与内源性α受体的结合。IL-2与封闭模块之间的二硫键,是通过在野生型IL-2上引入第三半胱氨酸残基,在封闭模块上具有或引入第四半胱氨酸残基,由第三半胱氨酸残基和第四半胱氨酸残基之间形成的。
在一个实施例中,封闭模块是α受体的胞外段。野生型α受体的胞外段的氨基酸序列如SEQ ID NO.25所示。在天然状态下,α受体与IL-2的结合并不稳定(高解离系数Kd),不能形成稳定的异源二聚体,必须与β和γ受体亚基共同构成IL-2的高亲和力的受体。因此,无法通过共表达两种野生型的分子而形成稳定的复合物。但是,在野生型IL-2上引入第三半胱氨酸残基,在α受体的胞外段(CD25-ECD)上引入第四半胱氨酸残基,通过第三半胱氨酸残基和第四半胱氨酸残基之间形成的二硫键,使IL-2衍生物和α受体的胞外段(CD25-ECD)形成复合物,阻断IL-2与内源性α受体的结合。
野生型α受体的胞外段的氨基酸序列如SEQ ID NO.25所示:
Figure PCTCN2020070748-appb-000008
野生型α受体的胞外段的核苷酸序列如SEQ ID NO.145所示。
关于需要引入的第三半胱氨酸残基和第四半胱氨酸残基的位置,主要通过以下方式确定:
1)第三半胱氨酸残基的位置为IL-2和α受体的结合面上的氨基酸残基或其附近的氨基酸残基;IL-2和α受体的结合面上的氨基酸残基为第37,38,41,42,43,44,45,61,62,65,68和72位氨基酸位点;
2)通过生物信息学和蛋白质工程学设计,分别在IL-2和α受体胞外区(CD25-ECD)根据残基质心的矢量距离判据,寻找合适的结合面位点,该突变不影响蛋白质的结构。
确定合适的位点后,通过突变将IL-2上的原氨基酸残基突变成第三半胱氨酸残基,将α受体胞外区(CD25-ECD)上的原氨基酸残基突变成第四半胱氨酸残基。IL-2和α受体胞外区的突变体进行共表达之后,通过转录和翻译后,可以在IL-2与α受体胞外区之间形成二硫键,形成一个全新的分子IL-2/CD25-ECD异源二聚体(heterodimer)。该复合物无法与体内的内源性α受体结合,但是可以与β和γ受体亚基复合物结合,从而达到不激活Treg的目的。
在一个实施例中,将IL-2第125位原有的自由半胱氨酸突变掉,防止其在与带有半胱氨酸突变的α受体的胞外段及IL-2形成额外的二硫键,影响α受体 与IL-2二聚体的形成。
在一些实施例中,设计获得的IL-2突变体和CD25-ECD突变体的氨基酸序列如表2所示:
表2设计获得的IL-2突变体和CD25-ECD突变体的氨基酸序列
Figure PCTCN2020070748-appb-000009
Figure PCTCN2020070748-appb-000010
Figure PCTCN2020070748-appb-000011
Figure PCTCN2020070748-appb-000012
Figure PCTCN2020070748-appb-000013
Figure PCTCN2020070748-appb-000014
Figure PCTCN2020070748-appb-000015
Figure PCTCN2020070748-appb-000016
Figure PCTCN2020070748-appb-000017
表达宿主为哺乳动物细胞(HEK293或CHO)。
实施例1 IL-2(C125A)、IL-2突变体和IL-2复合物的制备
本实施例中挑选IL-2 wt(C125A),IL-2突变体1~4和IL-2复合物1~4进行分别表达,并依靠分子C端带有的HPC4标签进行纯化和制备。
1.1表达质粒构建
委托苏州金唯智生物科技有限公司合成带有IL-2 wt C125A(SEQ ID NO.74)、IL-2突变体1~4、IL-2复合物1~4(IL-2复合物中IL-2 Pair 1~4和CD25-ECD Pair 1~4)的基因,然后或按照《分子克隆》提到的操作方法,进行重叠PCR得到目的片段。然后进行片段和pTT5通用载体的重组连接、转化DH10B、测序和保菌,从而得到需要的IL-2 wt(C125A),IL-2突变体1~4和IL-2复合物1~4的质粒(IL-2复合物中IL-2 Pair 1~4的质粒和CD25-ECD Pair 1~4的质粒);或按照《Agilent QuikChange Lightning Site-Directed Mutagenesis Kit》提到的操作方法,进行PCR、DpnI消化、转化DH10B、测序和保菌,从而得到需要的IL-2 wt(C125A),IL-2突变体1~4和IL-2复合物1~4的质粒。
1.2质粒提取及HEK293细胞准备
1.2.1质粒提取
按照《Qiagen Mini-prep Kit》和《Qiagen Endofree Maxi-prep Kit》提到的操作方法,进行IL-2 wt(C125A),IL-2突变体1~4和IL-2复合物1~4的质粒的制备。
1.2.2 HEK293细胞准备
新鲜传代的密度为1-1.2×10^6/ml的HEK293细胞(National Research Council,Canada)用于瞬时表达。
1.3 HEK293瞬时表达
1.3.1试剂制备
A)G418溶液:称取250mg Geneticin TM加入4.5ml超纯水溶解,超纯水定容至5ml,0.22um滤膜过滤,-20℃保存;
B)PEI溶液:称取50mgPEI加入45ml超纯水溶解,1M NaOH调节pH至7.0,超纯水定容至50ml,0.22um滤膜过滤,-20℃保存;
C)培养基:在1L FreeStyle TM 293Expression Medium中加入10ml Pluronicd TM F-68和500ul G418;
D)质粒提前准备在2ml去内毒素离心管中;
E)根据转染需要体积准备好新鲜传代至1-1.2×106个/ml的细胞悬液。
1.3.2配制转染试剂-质粒复合物
A液:质粒1ug/ml+Opti-MEMTM 33.3ul/ml
B液:PEI 2ug/ml+Opti-MEMTM 33.3ul/ml
将B液倒入A液混匀孵育10min后,加入细胞悬液。
转染中,IL-2 wt(C125A),IL-2突变体1~4的质粒分别单独转染;IL-2复合物1~4的质粒,是将两种质粒混合后,进行转染。
1.3.3换液
在115rpm,36.8℃,5%CO2培养4h后,800g 5min离心,换成未添加F68和G418的FreeStyle TM 293 Expression Medium
1.3.4表达培养和收获
在115rpm,36.8℃,5%CO 2培养5天后,离心8500rpm 15min,收集细胞上清。
1.4纯化制备
所有IL-2相关的衍生物C端都带有HPC4标签,因此可以用偶联有HPC4抗体的填料进行亲和纯化,然后再经过凝胶过滤层析(superdex200)进行进一步纯化得到纯度较高的蛋白。按照《分子克隆》描述的方法进行SDS-PAGE分 析。
结果如图1所示,表明质粒转染细胞后,都生成了IL-2 wt(C125A),IL-2突变体1~4和IL-2复合物1~4相应的蛋白和复合物,质粒构建及蛋白表达及纯化成功。
实施例2通过生物膜干涉技术(biolayer interferomeory,BLI)测定IL-2wt(C125A),IL-2突变体1~4和IL-2复合物1~4分别与IL2Rβγ和IL2Rα的亲和力
1、实验材料
实验所用蛋白均为北京志道生物科技有限公司生产,IL2Rα-his(购自北京志道生物科技有限公司),IL2Rβγ-Fc(购自北京志道生物科技有限公司)以及IL2突变体通过HEK293瞬时表达以及亲和纯化后获得。缓冲液配方:10mM HEPES,150mM氯化钠,3mM EDTA,0.1%BSA和0.05%吐温20;ProA传感器(Pall Fortebio公司,货号#18-5010);HISIK传感器(Pall Fortebio公司,货号#18-5120);BLI设备为Pall Fortebio公司生产的Octet RED96;数据获取和分析工作分别采用Data acquisition 11.0和Data analysis 11.0软件进行。
2、实验方法
1)IL2Rβγ-Fc准备
用缓冲液稀释IL2Rβγ-Fc至浓度10ug/ml,加入96孔测定板第2列,控制程序中设为Loading,600s。
2)IL2Rα-his准备
用缓冲液稀释IL2Rα-his至浓度10ug/ml,加入96孔测定板第3列,控制程序中设为Loading,600s.
3)样品准备
用缓冲液将IL-2衍生物稀释到100nM,然后1:1向下系列稀释6个梯度(共7个梯度)至浓度为1.625nM以及0浓度,分别加入96孔测定板5-9列,控制程序中设定为Association,200s。在96孔测定板第1,4,10,11列加入缓冲液,12列加入PH1.7的甘氨酸,上述样品和溶液的加样量均为200ul。
4)检测与IL2Rβγ-Fc的亲和力
取8个ProA传感器分别置于传感器支架第1列的A-H,在Data acquisition 11.0软件中将检测条件设置如下:1预湿:Baseline,60s,位置:第1列。2循环检测:第2列:loading,600s;第4列:Baseline1,60s;样品5-9列:Association,200s,第10列:Dissociation,600s;第11列:中和;第12列:再生。
5)检测与IL2Rα的结合
取8个HISIK传感器分别置于传感器支架第2列的A-H,在Data acquisition  11.0软件中将检测条件设置如下:1预湿:Baseline,60s,位置:第1列。2循环检测:第3列:loading,600s;第4列:Baseline1,60s;样品5-9列:Association,200s,第10列:Dissociation,600s;第11列:中和;第12列:再生。
6)数据分析
使用Data analysis 11.0软件对数据进行分析。以0浓度为对照扣减背景,通过Fitting curve计算KD值。
3、结果
如图2所示,从IL-2衍生物与IL2Rα受体结合曲线上看,除了IL-2突变体1大大减弱了与IL2Rα受体的结合外,其余IL-2衍生物几乎都不与其结合;如图3所示,从IL-2衍生物与IL2Rβγ受体结合曲线上看,和IL-2 wt C125A相比,都没有显著变化(图3)。
实施例3促进T细胞的增殖实验
CTLL-2(T细胞)的增殖实验是普遍应用的细胞水平测定白介素刺激免疫细胞活性的实验。因此,此处通过CTLL-2细胞的增殖实验来查看IL-2衍生物的生物活性。
1)CTLL-2细胞准备:将细胞用含有FBS和Rat-T-Stim的培养液重悬起来。
2)加样:将细胞接种于96孔培养板,每孔0.1ml。同时将待测样品IL-2衍生物11、18、21和28的蛋白(即实施例1中制备的蛋白)分别做倍比稀释,每孔加入0.1ml,每个稀释浓度均设3复孔。另设培养液对照孔(100ul细胞+100ul培养液)。37度,5%CO 2孵育72小时。
3)MTS加入:每孔加入20μl
Figure PCTCN2020070748-appb-000018
AQueous One Solution Reagent,37度,5%CO 2孵育2~4小时。
4)测定:用酶标测定仪于波长490nm测吸光值(A)并计算EC50值。
5)结果:挑选的具有代表性的IL-2复合物2和IL-2突变体4,他们都具有CTLL-2(T细胞)的增殖活性,说明没有严重影响β和γ受体亚基复合物的信号传导功能(图4)。

Claims (35)

  1. IL-2衍生物,其特征在于,所述IL-2衍生物通过在野生型IL-2的基础上引入至少一个半胱氨酸残基,部分封闭或完全封闭IL-2衍生物与α受体亚基的结合平面,同时基本保留对β和γ受体亚基复合物的亲和力。
  2. 如权利要求了1所述的IL-2衍生物,其特征在于,在野生型IL-2的基础上引入的至少一个半胱氨酸残基,能够:
    a)形成IL-2衍生物的分子内二硫键;或者
    b)使得IL-2衍生物能通过分子间二硫键与封闭模块结合。
  3. 如权利要求了2所述的IL-2衍生物,其特征在于,所述引入至少一个半胱氨酸残基为通过点突变的方式引入至少一个半胱氨酸残基。
  4. 如权利要求3所述的IL-2衍生物,其特征在于,在野生型IL-2的基础上通过点突变方式引入第一半胱氨酸残基和第二半胱氨酸残基;所述第一半胱氨酸残基和所述第二半胱氨酸残基中的一个或两个为野生型IL-2与α受体亚基的结合平面相关的氨基酸或其附近的氨基酸。
  5. 如权利要求4所述的IL-2衍生物,其特征在于,所述第一半胱氨酸残基为野生型IL-2的第37位、第38位、第41位、第42位、第43位、第44位、第45位、第61位、第62位氨基酸或其附近的氨基酸;所述第二半胱氨酸残基为野生型IL-2的第61位、第62位、第65位、第68位、第72位氨基酸或其附近的氨基酸。
  6. 如权利要求4所述的IL-2衍生物,其特征在于,所述第一半胱氨酸残基为选自下组的氨基酸点突变:K35C、L36C、R38C、M39C、L40C、T41C、F42C、K43C、F44C和E61C。
  7. 如权利要求4所述的IL-2衍生物,其特征在于,所述第二半胱氨酸残基为选自下组的氨基酸点突变:V69C、E62C、P65C、T111C、Y107C、A112C、T113C、I114C、L72C和A73C。
  8. 如权利要求4所述的IL-2衍生物,其特征在于,形成分子内二硫键的第一半胱氨酸残基和第二半胱氨酸残基的组合选自下组的氨基酸点突变组合:M39C和V69C、F44C和E62C、F44C和P65C、F42C和V69C、E61C和Y107C、F42C和 P65C、F42C和T111C、F42C和A112C、F42C和T113C、T41C和A112C、L40C和A112C、L40C和T113C、L40C和I114C、M39C和L72C、M39C和A73C、R38C和V69C、R38C和L72C、L36C和V69C、L36C和L72C、L36C和A73C、K35C和V69C以及K43C和A112C。
  9. 如权利要求4所述的IL-2衍生物,其特征在于,所述第一半胱氨酸残基和所述第二半胱氨酸残基的残基质心矢量距离为小于
    Figure PCTCN2020070748-appb-100001
  10. 如权利要求3所述的IL-2衍生物,其特征在于,在野生型IL-2的基础上通过点突变方式引入第三半胱氨酸残基;所述第三半胱氨酸残基为野生型IL-2与α受体亚基的结合平面相关的氨基酸或其附近的氨基酸。
  11. 如权利要求10所述的IL-2衍生物,其特征在于,所述第三半胱氨酸残基为野生型IL-2的第37位、第38位、第41位、第42位、第43位、第44位、第45位、第61位、第62位、第65位、第68位、第72位氨基酸或其附近的氨基酸。
  12. 如权利要求10所述的IL-2衍生物,其特征在于,所述第三半胱氨酸残基为选自下组的氨基酸点突变:P34C、K35C、T37C、R38C、T41C、K43C、F44C、Y45C、E61C、E62C、K64C、P65C、E68C和L72C。
  13. 如权利要求10所述的IL-2衍生物,其特征在于,所述封闭模块上具有或引入有第四半胱氨酸残基;所述IL-2衍生物上的第三半胱氨酸残基与所述封闭模块上的第四半胱氨酸残基能形成分子间二硫键。
  14. 如权利要求13所述的IL-2衍生物,其特征在于,所述第三半胱氨酸残基和所述第四半胱氨酸残基的残基质心矢量距离为小于
    Figure PCTCN2020070748-appb-100002
  15. 如权利要求13所述的IL-2衍生物,其特征在于,所述封闭模块为α受体亚基的胞外段。
  16. 如权利要求3所述的IL-2衍生物,其特征在于,通过点突变的方式将野生型IL-2第125位的半胱氨酸残基转变为其他的氨基酸残基。
  17. 如权利要求16所述的IL-2衍生物,其特征在于,野生型IL-2第125位的点突变为C125A。
  18. 如权利要求3所述的IL-2衍生物,其特征在于,所述IL-2衍生物的氨基酸序列如SEQ ID NO.3~SEQ ID NO.24所示;或如SEQ ID NO.26~40所示。
  19. 一种复合物,其特征在于,包括:
    1)IL-2衍生物,所述IL-2衍生物在野生型IL-2的基础上引入第三半胱氨酸残基;
    2)封闭模块,所述封闭模块上具有或引入有第四半胱氨酸残基;
    所述IL-2衍生物上的第三半胱氨酸残基和所述封闭模块上的第四半胱氨酸残基形成分子间二硫键,从而形成IL-2与封闭模块的复合物,部分封闭或完全封闭IL-2衍生物与α受体亚基的结合平面,同时基本保留对β和γ受体亚基复合物的亲和力。
  20. 如权利要求19所述的复合物,其特征在于,所述第三半胱氨酸残基为野生型IL-2与α受体亚基的结合平面相关的氨基酸或其附近的氨基酸。
  21. 如权利要求20所述的复合物,其特征在于,所述第三半胱氨酸残基和所述第四半胱氨酸残基的残基质心矢量距离为小于
    Figure PCTCN2020070748-appb-100003
  22. 如权利要求19所述的复合物,其特征在于,所述第三半胱氨酸残基为选自下组的氨基酸点突变:P34C、K35C、T37C、R38C、T41C、K43C、F44C、Y45C、E61C、E62C、K64C、P65C、E68C和L72C。
  23. 如权利要求19所述的复合物,其特征在于,所述封闭模块为α受体亚基的胞外段,其氨基酸序列如SEQ ID NO.25所示。
  24. 如权利要求23所述的复合物,其特征在于,α受体亚基的胞外段上的所述第四半胱氨酸残基位选自下组的氨基酸点突变:D4C、D5C、M25C、N27C、R35C、R36C、K38C、S39C、G40C、S41C、L42C、I118C、Y119C和H120C。
  25. 如权利要求23所述的复合物,其特征在于,形成分子间二硫键的第三半胱氨酸残基和第四半胱氨酸残基的组合选自下组的氨基酸点突变组合:T41C和N27C、P34C和D4C、E68C和L42C、Y45C和R35C、R38C和H120C、L72C和M25C、E61C和S39C、T41C和I118C、K35C和D4C、T37C和D4C、R38C和D4C、R38C和D5C、T41C和L42C、T41C和Y119C、K43C和R35C、K43C和 R36C、F44C和L42C、K43C和L42C、E61C和K38C、E62C和K38C、K64C和S39C、K64C和G40C、K64C和S41C、P65C和K38C。
  26. 如权利要求19所述的复合物,其特征在于,野生型IL-2第125位的点突变为C125A。
  27. 如权利要求23所述的复合物,其特征在于,所述IL-2衍生物的氨基酸序列和所述α受体亚基的胞外段的序列组合选自下组的组合:SEQ ID NO.26和SEQ ID NO.50,SEQ ID NO.27和SEQ ID NO.51,SEQ ID NO.28和SEQ ID NO.52,SEQ ID NO.29和SEQ ID NO.53,SEQ ID NO.30和SEQ ID NO.54,SEQ ID NO.31和SEQ ID NO.55,SEQ ID NO.32和SEQ ID NO.56,SEQ ID NO.33和SEQ ID NO.57,SEQ ID NO.34和SEQ ID NO.58,SEQ ID NO.35和SEQ ID NO.59,SEQ ID NO.36和SEQ ID NO.60,SEQ ID NO.37和SEQ ID NO.61,SEQ ID NO.38和SEQ ID NO.62,SEQ ID NO.39和SEQ ID NO.63,SEQ ID NO.40和SEQ ID NO.64,SEQ ID NO.41和SEQ ID NO.65,SEQ ID NO.42和SEQ ID NO.66,SEQ ID NO.43和SEQ ID NO.67,SEQ ID NO.44和SEQ ID NO.68,SEQ ID NO.45和SEQ ID NO.69,SEQ ID NO.46和SEQ ID NO.70,SEQ ID NO.47和SEQ ID NO.71,SEQ ID NO.48和SEQ ID NO.72,SEQ ID NO.49和SEQ ID NO.73。
  28. 一种分离的多核苷酸,其特征在于,其编码如权利要求1~18中任一项所述的IL-2衍生物,或者编码如权利要求19~27中任一项所述的复合物。
  29. 一种表达载体,其特征在于,包含如权利要求28所述的一种分离的多核苷酸。
  30. 一种宿主细胞,其特征在于,包含如权利要求28所述的一种分离的多核苷酸。
  31. 一种组合物,其特征在于,包含如权利要求1~18中任一项所述的IL-2衍生物或者如权利要求19~27中任一项所述的复合物,以及药学可接受载体。
  32. 如权利要求1~18中任一项所述的IL-2衍生物或者如权利要求19~27中任一项所述的复合物用于制备用于治疗疾病的药物或制剂中的用途。
  33. 如权利要求1~18中任一项所述的IL-2衍生物或者如权利要求19~27中任 一项所述的复合物在制备用于刺激个体的免疫系统的组合物中的用途。
  34. 一种生成IL-2衍生物的方法,其特征在于,所述方法包括在适合于表达所述IL-2衍生物的条件下培养如权利要求30所述的宿主细胞。
  35. 一种生成复合物的方法,其特征在于,所述方法包括在适合于表达所述复合物的条件下培养如权利要求30所述的宿主细胞。
PCT/CN2020/070748 2019-12-17 2020-01-07 白介素-2衍生物 WO2021120350A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2022535594A JP2023514003A (ja) 2019-12-17 2020-01-07 インターロイキン-2誘導体
CA3151681A CA3151681A1 (en) 2019-12-17 2020-01-07 Interleukin-2 derivative
GB2201999.6A GB2604238A (en) 2019-12-17 2020-01-07 Interleukin-2 Derivative
BR112022003712A BR112022003712A2 (pt) 2019-12-17 2020-01-07 Derivado de interleucina-2
US17/771,032 US20220363731A1 (en) 2019-12-17 2020-01-07 Interleukin-2 derivative
MX2022003301A MX2022003301A (es) 2019-12-17 2020-01-07 Derivado de interleucina-2.
AU2020406768A AU2020406768A1 (en) 2019-12-17 2020-01-07 Interleukin-2 derivative
EP20901536.1A EP4023666A4 (en) 2019-12-17 2020-01-07 INTERLEUKIN-2 DERIVATIVES
KR1020227008663A KR20220113918A (ko) 2019-12-17 2020-01-07 인터류킨-2-유도체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911302355.5A CN111018961B (zh) 2019-12-17 2019-12-17 白介素-2衍生物
CN201911302355.5 2019-12-17

Publications (1)

Publication Number Publication Date
WO2021120350A1 true WO2021120350A1 (zh) 2021-06-24

Family

ID=70210189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070748 WO2021120350A1 (zh) 2019-12-17 2020-01-07 白介素-2衍生物

Country Status (11)

Country Link
US (1) US20220363731A1 (zh)
EP (1) EP4023666A4 (zh)
JP (1) JP2023514003A (zh)
KR (1) KR20220113918A (zh)
CN (4) CN114437198A (zh)
AU (1) AU2020406768A1 (zh)
BR (1) BR112022003712A2 (zh)
CA (1) CA3151681A1 (zh)
GB (1) GB2604238A (zh)
MX (1) MX2022003301A (zh)
WO (1) WO2021120350A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11746137B2 (en) 2020-03-31 2023-09-05 Hanmi Pharm. Co., Ltd. Immunostimulating IL-2 analogs

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4139341A1 (en) * 2020-04-21 2023-03-01 Regeneron Pharmaceuticals, Inc. Il-2 variants with reduced binding to il-2 receptor alpha and uses thereof
TW202210502A (zh) 2020-06-03 2022-03-16 丹麥商阿森迪斯腫瘤製藥有限公司 新穎il-2序列及其用途
CN114380919A (zh) 2020-10-18 2022-04-22 北京志道生物科技有限公司 经修饰的il-2分子及其用途
CN114369153A (zh) * 2020-10-18 2022-04-19 北京志道生物科技有限公司 一种白介素-2突变体
WO2023046156A1 (en) * 2021-09-26 2023-03-30 Wuxi Biologics (Shanghai) Co. Ltd. Il-2 variants and fusion proteins thereof
CN114306576A (zh) * 2022-01-11 2022-04-12 北京志道生物科技有限公司 一种防止il-2衍生物蛋白复合体聚集及非共价连接蛋白亚基脱落的制剂
CN114349843B (zh) * 2022-01-18 2024-05-14 浙江博锐生物制药有限公司 白细胞介素-2衍生物及其制备方法和应用
CN116041539B (zh) * 2022-10-31 2023-07-21 山东博安生物技术股份有限公司 Il-2突变体免疫缀合物
WO2024104444A1 (zh) * 2022-11-17 2024-05-23 南通壹宸生物医药科技有限公司 Il-2突变体及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1442427A (zh) * 2002-07-23 2003-09-17 重庆大学 重组人白细胞介素-2的三突变体及制备方法
WO2008003473A2 (en) 2006-07-06 2008-01-10 Merck Patent Gmbh Compositions and methods for enhancing the efficacy of il-2 mediated immune responses
US20160208017A1 (en) 2011-02-10 2016-07-21 Roche Glycart Ag Mutant interleukin-2 polypeptides
CN107106654A (zh) * 2014-08-11 2017-08-29 德里尼亚公司 选择性地活化调节性t细胞用于治疗自身免疫病的修饰的il‑2变体
AU2018309172A1 (en) * 2017-08-03 2020-02-27 Synthorx, Inc. Cytokine conjugates for the treatment of autoimmune diseases

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019091384A1 (en) * 2017-11-08 2019-05-16 Yafei Shanghai Biolog Medicine Science & Technology Co., Ltd. Conjugates of biomolecule and use thereof
CA3086842A1 (en) * 2017-12-27 2019-07-04 Kyowa Kirin Co., Ltd. Il-2 variant
EP3773680A1 (en) * 2018-03-28 2021-02-17 Ascendis Pharma Oncology Division A/S Il-2 conjugates
CA3136992A1 (en) * 2019-05-24 2020-12-03 Proviva Therapeutics (Hong Kong) Limited Il-2 compositions and methods of use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1442427A (zh) * 2002-07-23 2003-09-17 重庆大学 重组人白细胞介素-2的三突变体及制备方法
WO2008003473A2 (en) 2006-07-06 2008-01-10 Merck Patent Gmbh Compositions and methods for enhancing the efficacy of il-2 mediated immune responses
US20160208017A1 (en) 2011-02-10 2016-07-21 Roche Glycart Ag Mutant interleukin-2 polypeptides
CN107106654A (zh) * 2014-08-11 2017-08-29 德里尼亚公司 选择性地活化调节性t细胞用于治疗自身免疫病的修饰的il‑2变体
AU2018309172A1 (en) * 2017-08-03 2020-02-27 Synthorx, Inc. Cytokine conjugates for the treatment of autoimmune diseases

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BAZAN ET AL., SCIENCE, vol. 257, 1992, pages 410 - 413
KRIEG ET AL., PROC. NAT. ACAD. SCI. USA, vol. 107, 2010, pages 11906 - 11
MINAMI ET AL., ANNU. REV. IMMUNOL., vol. 11, 1993, pages 245 - 268
RICKERT. M., SCIENCE, vol. 308, 2005, pages 1477 - 1480
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
WALDMANN ET AL., NAT. REV. IMMUNOL., vol. 6, 2009, pages 595 - 601

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11746137B2 (en) 2020-03-31 2023-09-05 Hanmi Pharm. Co., Ltd. Immunostimulating IL-2 analogs

Also Published As

Publication number Publication date
CN114437198A (zh) 2022-05-06
CN111018961A (zh) 2020-04-17
EP4023666A4 (en) 2023-03-22
CN114524873A (zh) 2022-05-24
CN111018961B (zh) 2022-03-18
CA3151681A1 (en) 2021-06-24
MX2022003301A (es) 2022-04-12
EP4023666A1 (en) 2022-07-06
GB202201999D0 (en) 2022-03-30
US20220363731A1 (en) 2022-11-17
GB2604238A (en) 2022-08-31
JP2023514003A (ja) 2023-04-05
KR20220113918A (ko) 2022-08-17
AU2020406768A1 (en) 2022-03-03
BR112022003712A2 (pt) 2022-10-11
CN114478743A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2021120350A1 (zh) 白介素-2衍生物
EP3854806A1 (en) Novel interleukin 2 and use thereof
EP3854805A1 (en) Novel interleukin 2 and use thereof
JP6549564B2 (ja) 高安定性のt細胞受容体およびその製法と使用
Murphy et al. IL‐3, IL‐5, and GM‐CSF signaling: crystal structure of the human beta‐common receptor
TW575581B (en) Pharmaceutical composition for neutralizing interleukin-18 (IL-18)
CN112724259B (zh) 人血清白蛋白与白介素2的融合蛋白及其用途
EP4122952A1 (en) Interleukin-2 mutant and use thereof
US20230174604A1 (en) Interleukin-2 mutant and use thereof
WO2022078185A1 (zh) 一种白介素-2突变体
ES2255067T3 (es) Receptores para la interleucina-12 humana.
CN107108717A (zh) 一种可溶且稳定的异质二聚tcr
CN114901684A (zh) 粒细胞集落刺激因子受体(g-csfr)的经修饰胞外结构域和结合其的细胞因子
WO2020103777A1 (zh) 白介素21蛋白(il21)突变体及其应用
CN114874333A (zh) 一种生长激素融合蛋白及其应用
EP2831107B1 (en) Toll-like receptor 2 binding epitope and binding members thereto
CN107223133B (zh) 一种可溶的异质二聚t细胞受体及其制法和应用
TWI834031B (zh) 白介素2突變體及其用途
WO2024046280A1 (zh) 一种聚乙二醇修饰的il-21衍生物及其应用
CN117384273A (zh) 一种聚乙二醇修饰的il-2衍生物及其应用
KR20230095612A (ko) 신규 면역 억제 인터루킨 2 (Interleukin 2) 아날로그
TW202330583A (zh) 白細胞介素21及其受體複合物
CN114380919A (zh) 经修饰的il-2分子及其用途
KR20210070325A (ko) 변형된 사람 에리트로포이에틴
CN117304301A (zh) 一种结合ssx2抗原的tcr分子及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202201999

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200107

ENP Entry into the national phase

Ref document number: 3151681

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020406768

Country of ref document: AU

Date of ref document: 20200107

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022003712

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020901536

Country of ref document: EP

Effective date: 20220329

ENP Entry into the national phase

Ref document number: 2022535594

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112022003712

Country of ref document: BR

Free format text: EXIGENCIA DE LISTAGEM: COM BASE NA PORTARIA 56 DE 27/12/2021, SOLICITA-SE QUE SEJA APRESENTADO, EM ATE 60 (SESSENTA) DIAS, NOVO CONTEUDO DE LISTAGEM DE SEQUENCIA POIS O CONTEUDO APRESENTADO NA PETICAO NO 870220017168 DE 25/02/2022 NAO POSSUI TODOS OS CAMPOS OBRIGATORIOS INFORMADOS, NAO CONSTANDO O CAMPO 150 / 151 . DEVERA SER INCLUIDO O CAMPO 140 / 141 UMA VEZ QUE O DEPOSITANTE JA POSSUI O NUMERO DO PEDIDO NO BRASIL

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112022003712

Country of ref document: BR

Free format text: FAVOR EFETUAR, EM ATE 60 (SESSENTA) DIAS, O PAGAMENTO DA GRU CODIGO DE SERVICO 207 PARA A REGULARIZACAO DO PEDIDO E CONTINUIDADE DA ANALISE DA RESPOSTA AO DESPACHO 1.5 PUBLICADO NA RPI 2680 DE 17/05/2022 ENVIADA ATRAVES DA PETICAO 206 NO 870220069417 DE 04/08/2022 A RESPOSTA A ESTE ADITAMENTO, CONTENDO GRU ORIGINAL E O COMPROVANTE DE PAGAMENTO REFERENTE AO DESPACHO 1.5 DA RPI 2680, TAMBEM DEVERA SER FEITA ATRAVES DE UMA PETICAO SOB O GRU CODIGO DE SERVICO 207, COM PAGAMENTO DA RESPECTIVA TAXA, TOTALIZANDO 2 TAXAS DE GRU CODIGO DE SERVICO 207 A SEREM PAGAS.

ENP Entry into the national phase

Ref document number: 112022003712

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220225