WO2021117836A1 - 光硬化性材料組成物並びに光硬化性材料組成物の硬化物及びその製造方法 - Google Patents

光硬化性材料組成物並びに光硬化性材料組成物の硬化物及びその製造方法 Download PDF

Info

Publication number
WO2021117836A1
WO2021117836A1 PCT/JP2020/046162 JP2020046162W WO2021117836A1 WO 2021117836 A1 WO2021117836 A1 WO 2021117836A1 JP 2020046162 W JP2020046162 W JP 2020046162W WO 2021117836 A1 WO2021117836 A1 WO 2021117836A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylate
bisphenol
material composition
type
photocurable material
Prior art date
Application number
PCT/JP2020/046162
Other languages
English (en)
French (fr)
Inventor
輝伸 齋藤
元 桝本
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020200635A external-priority patent/JP2021095567A/ja
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2021117836A1 publication Critical patent/WO2021117836A1/ja
Priority to US17/751,929 priority Critical patent/US11834539B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/02Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonates or saturated polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen

Definitions

  • the present invention relates to a photocurable material composition and a cured product obtained by using the photocurable material composition. More specifically, the present invention relates to a photocurable composition capable of obtaining a cured product having a high thermal deformation temperature and excellent impact resistance. The present invention also relates to the production of a three-dimensional cured product or the like using the photocurable composition.
  • the photocurable material composition cures in a short time by light irradiation, it is also used as a coating material, a paint, a sealant, and recently as a material for an optical three-dimensional modeling method.
  • the cured product made of the photocurable material composition has impact resistance, the surface hardness, thermal deformation temperature and strength are insufficient, or the cured product has rigidity but is brittle and is formed into a coating film or the like. In some cases, cracks are likely to occur, and few are known to have both impact resistance and rigidity. Therefore, in most parts where impact resistance and rigidity are required, a thermoplastic resin is used instead of the composition. Injection molding is generally used to mold the thermoplastic resin into the shape of a part, but the degree of freedom in the shape may be limited by the mold material or the type of the thermoplastic resin itself.
  • a material having a functional group capable of increasing the crosslink density or a material having a bulky substituent is selected as the material to be used.
  • a material having a functional group that can increase the crosslink density such as a polyfunctional acrylate or an epoxy material or a material having a bulky substituent such as an isobornyl group is photocured, stress concentration and curing failure occur in the curing process. As a result, the thermal deformation temperature increases, but the impact resistance is significantly reduced.
  • Patent Document 1 discloses an attempt to improve an active energy ray-curable composition by combining polycarbonate with an active energy ray-curable material composition.
  • Patent Document 2 discloses that a cured product obtained by a formulation using a cationically polymerizable organic compound and a radically polymerizable organic compound (B) in combination has excellent toughness and heat resistance.
  • the Charpy impact strength (notched) is 20 kJ / J / inferred from the value of the breaking energy. It is presumed that it is difficult to exceed m 2. Further, in the material formulation shown in Patent Document 2, although the deflection temperature under load exceeds 40 ° C., it can be inferred that the Charpy impact strength converted from the Izod impact strength does not exceed 20 kJ / m 2.
  • the present invention has been made in view of the background art described above, and an object of the present invention is that the deflection temperature under load after curing by ultraviolet irradiation is 40 ° C. or higher and the Charpy impact strength (notched) is 20 kJ / m 2. It is an object of the present invention to provide a photocurable material composition having both of the above and a cured product thereof.
  • the photocurable material composition of the present invention comprises a monofunctional acrylate having a 5-membered ring skeleton containing at least an ether bond and a polycarbonate resin soluble in the monofunctional acrylate having a 5-membered ring skeleton containing the ether bond.
  • the content of the monofunctional acrylate having a 5-membered ring skeleton containing the ether bond is 18% by weight to 80% by weight, and the content of the polycarbonate resin is 10. It is from% by weight to 40% by weight.
  • a cured product can be provided by irradiating the photocurable material composition with light.
  • the photocurable material composition of the present invention can be used for producing a three-dimensional cured product.
  • a photocurable material composition having a deflection temperature under load of a cured product by light irradiation of 40 ° C. or higher and a Charpy impact strength (notched) of 20 kJ / m 2 or higher, and a cured product thereof. be able to. Therefore, if the photocurable material composition of the present invention is used, a cured product having mechanical properties that cannot be obtained with the conventional photocurable material composition can be obtained, and even parts that cannot be used due to insufficient strength can be used. become able to.
  • the photocurable material composition of the present invention is used in the optical three-dimensional modeling method, it is possible to supply not only models but also parts that can be used as products, and small-quantity products do not use molds. It will be possible to produce products directly to.
  • the photocurable material composition of the present invention is a polycarbonate resin soluble in a monofunctional acrylate having a 5-membered ring skeleton containing at least an ether bond and a monofunctional acrylate having a 5-membered ring skeleton containing an ether bond (hereinafter referred to as a polycarbonate resin). , And simply referred to as "polycarbonate resin"), and the content of the monofunctional acrylate having a 5-membered ring skeleton containing an ether bond in the photocurable material composition is 18% by weight to 80% by weight. By weight%, the content of the polycarbonate resin is 10% by weight to 40% by weight.
  • the monofunctional acrylate having a 5-membered ring skeleton containing an ether bond is not particularly limited as long as the impact resistance of the cured product obtained by polymerizing the photocurable composition is not lowered.
  • tetrahydrofurfuryl acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl acrylate tetrahydrofurfuryl alcohol acrylic acid multimeric ester (for example, Biscort manufactured by Osaka Organic Chemical Industry Co., Ltd.) # 150D), an alkoxylated tetrahydrofurfuryl acrylate (for example, Sartomer SR611 manufactured by Alchema Co., Ltd.).
  • the adhesion of the interface with the polycarbonate resin is improved, and the rigidity when formed into a film and the impact resistance when formed into a bulk body are improved. linked. It can be inferred that the improvement in adhesion is due to the fact that the oxygen atom of the 5-membered ring skeleton containing the ether bond has a higher polarity than the oxygen atom of the 6-membered ring skeleton.
  • the polycarbonate resin has a polycarbonate moiety, it is considered that the interaction between the oxygen atom of the more polar polycarbonate moiety and the oxygen atom of the 5-membered ring skeleton is strengthened and the adhesion is improved. Further, since an acrylate containing a 3-membered ring skeleton containing an ether bond or an acrylate containing a 4-membered ring skeleton may undergo a ring-opening reaction due to an acid or a base, a monofunctional acrylate having a 5-membered ring skeleton containing an ether bond Is used.
  • the compatibility with the polycarbonate resin is also improved by using a monofunctional acrylate having a 5-membered ring skeleton containing an ether bond. Due to the improved compatibility, the monofunctional acrylate having a 5-membered ring skeleton containing an ether bond at the molecular level and the polycarbonate resin are mixed with each other when uncured, so that the phase separation structure when cured is also at the submicron level. Becomes possible. On the other hand, when the compatibility is low, the phase separation structure at the time of curing is considered to be larger than that of the present invention, and it is difficult to realize high mechanical properties even if the adhesion is improved.
  • a polyfunctional acrylate having a 5-membered ring skeleton containing an ether bond is also suitable in terms of improving adhesion with a polycarbonate resin.
  • the impact resistance of the film or bulk body deteriorates due to the influence of residual stress due to the increase in crosslink density and defective parts of a size that cannot be visually observed due to the large amount of shrinkage during curing. Therefore, it is not suitable for the present invention.
  • the monofunctional acrylate having a 5-membered ring skeleton containing an ether bond becomes a monofunctional methacrylate having a 5-membered ring skeleton containing an ether bond
  • the mechanical properties related to rigidity such as deflection temperature under load are improved.
  • a monofunctional methacrylate having a 5-membered ring skeleton containing an ether bond is used instead of the monofunctional acrylate having a 5-membered ring skeleton containing an ether bond. It cannot be used as the main component.
  • the content of the monofunctional acrylate having a 5-membered ring skeleton containing an ether bond in the photocurable material composition is particularly high as long as the mechanical properties of the cured product obtained by polymerizing the photocurable material composition are not deteriorated. There is no limit. Considering the solubility of the polycarbonate resin, the mechanical properties of the cured product obtained by polymerizing the photocurable material composition, the viscosity of the photocurable material composition, and the like, the content is 18% by weight to 80% by weight.
  • the polycarbonate resin soluble in the monofunctional acrylate having a 5-membered ring skeleton containing an ether bond is not particularly limited as long as it is uniformly dissolved in the monofunctional acrylate having a 5-membered ring skeleton containing an ether bond, and is bisphenol.
  • A-type polycarbonate bisphenol AP-type polycarbonate, bisphenol AF-type polycarbonate, bisphenol B-type polycarbonate, bisphenol BP-type polycarbonate, bisphenol C-type polycarbonate, bisphenol E-type polycarbonate, bisphenol F-type polycarbonate, bisphenol G-type polycarbonate, bisphenol M-type polycarbonate, bisphenol S-type polycarbonate, bisphenol P-type polycarbonate, bisphenol PH-type polycarbonate, bisphenol TMC-type polycarbonate, bisphenol Z-type polycarbonate, bisphenoxyethanol fluorene-type polycarbonate, polyethylene glycol-modified bisphenoxyethanol fluorene-type polycarbonate, and the like.
  • bisphenol A type polycarbonate, bisphenol B type polycarbonate, bisphenol C type polycarbonate, bisphenol E type polycarbonate, bisphenol F type polycarbonate, bisphenol G type polycarbonate, bisphenol TMC type polycarbonate, bisphenol Z type polycarbonate, bisphenoloxyethanol fluorene type Polycarbonate and polyethylene glycol-modified bisphenoloxyethanol fluorene-type polycarbonate are preferable.
  • Bisphenol C-type polycarbonate, bisphenol G-type polycarbonate, bisphenol TMC-type polycarbonate, bisphenol Z-type polycarbonate, bisphenoloxyethanol fluorene-type polycarbonate in order to improve the mechanical properties of the cured product obtained by polymerizing the soluble and photocurable compositions. Is more preferable.
  • the molecular weight of the polycarbonate resin is not limited as long as the mechanical properties of the cured product obtained by polymerizing the photocurable composition are not deteriorated.
  • the weight average molecular weight is 1000 to 200,000.
  • the weight average molecular weight is more preferably 4000 to 50,000.
  • the content of the polycarbonate resin in the photocurable material composition takes into consideration the mechanical properties of the cured product obtained by polymerizing the photocurable material composition, the solubility of the polycarbonate resin, the viscosity of the photocurable material composition, and the like. Then, it is 10% by weight to 40% by weight. More preferably, it is 20% by weight to 33% by weight.
  • the photocurable material composition may be referred to as a monofunctional (meth) acrylate (hereinafter, also referred to as "other monofunctional (meth) acrylate”) different from the monofunctional acrylate having a 5-membered ring skeleton containing an ether bond. .) May be included.
  • a monofunctional (meth) acrylate hereinafter, also referred to as "other monofunctional (meth) acrylate”
  • the cured product of the photocurable material composition can improve the deflection temperature under load while maintaining impact resistance. ..
  • Examples of the monofunctional (meth) acrylate different from the monofunctional acrylate having a 5-membered ring skeleton containing an ether bond include 4-tert-butylcyclohexyl (meth) acrylate and 3,3,5-trimethylcyclohexyl (meth) acrylate.
  • the content is preferably 48% by weight or less, more preferably 8% by weight to 48% by weight, based on the total amount of the photocurable material composition. ..
  • the photocurable material composition exceeds this range and contains other monofunctional (meth) acrylates, the impact resistance of the obtained cured product is lowered.
  • the photocurable material composition of the present invention may contain components other than the above components.
  • the photocurable material composition of the present invention may contain a polymerization initiator for copolymerizing the polymerizable functional group of a monofunctional acrylate having a 5-membered ring skeleton containing an ether bond.
  • a polymerization inhibitor, a photosensitizer, a light-resistant stabilizer, a heat-resistant stabilizer, an antioxidant, a mold release agent, a fungicide, a filler, a dye, etc. are further added, if necessary. It may be contained.
  • Examples of the polymerization initiator that generates radical species by light irradiation include 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 1-hydroxycyclohexylphenyl ketone, and 2-hydroxy-2-.
  • Methyl-1-phenyl-propane-1-one, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 4-phenylbenzophenone, 4-phenoxy Examples include, but are not limited to, benzophenone, 4,4'-diphenylbenzophenone, 4,4'-diphenoxybenzophenone and the like.
  • iodonium (4-methylphenyl) [4- (2-methylpropyl) phenyl] -hexafluorophosphate can be mentioned as a suitable polymerization initiator. Not limited.
  • examples of the polymerization initiator that generates radical species by heat include azo compounds such as azobisisobutynitrile (AIBN), benzoyl peroxide, tert-butyl peroxypivalate, tert-butyl peroxyneohexanoate, and tert.
  • azo compounds such as azobisisobutynitrile (AIBN), benzoyl peroxide, tert-butyl peroxypivalate, tert-butyl peroxyneohexanoate, and tert.
  • -Peroxides such as hexyl peroxyneohexanoate, tert-butylperoxyneodecanoate, tert-hexylperoxyneodecanoate, cumylperoxyneohexanoate, cumylperoxyneodecanoate
  • the content of the polymerization initiator in the photocurable material composition is preferably in the range of 0.01% by mass or more and 10.00% by mass or less with respect to the photocurable material composition.
  • the polymerization initiator may be used alone or in combination of two or more.
  • the ratio of the polymerization initiator added to the photocurable material composition may be appropriately selected depending on the amount of light irradiation and the additional heating temperature. Further, it may be adjusted according to the target average molecular weight of the obtained polymer.
  • Hydroquinone-based agents include hydroquinone, hydroquinone monomethyl ether, hydroquinone monoethyl ether, hydroquinone monopropyl ether, hydroquinone monobutyl ether, hydroquinone monopentyl ether, hydroquinone monohexyl ether, hydroquinone monooctyl ether, hydroquinone monoheptyl ether, and the like.
  • Examples of the polymerization inhibitor of the above a phenolic polymerization inhibitor having a substituent such as 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate.
  • hydroquinone-based polymerization inhibitors such as hydroquinone and benzoquinone-based polymerization inhibitors such as benzoquinone may turn yellow when irradiated with UV, and are therefore suitable for obtaining a thin film cured product such as a coating.
  • polymerization inhibitor examples include those mentioned above as polymerization inhibitors during reaction and storage, but are not limited thereto.
  • the content of the polymerization inhibitor in the photocurable material composition is preferably in the range of 0.01% by mass or more and 1.00% by mass or less with respect to the photocurable material composition. Further, only one polymerization inhibitor may be used, or two or more kinds of polymerization inhibitors may be used in combination. In consideration of the small amount of coloring, it is preferable to use a hydroquinone-based polymerization inhibitor in combination.
  • Photosensitizers include benzophenone, 4,4-diethylaminobenzophenone, 1-hydroxycyclohexylphenylketone, isoamyl p-dimethylaminobenzoate, methyl 4-dimethylaminobenzoate, benzoin, benzoin ethyl ether, benzoin isobutyl ether, benzoin isopropyl Examples thereof include ether, 2,2-diethoxyacetophenone, methyl o-benzoylbenzoate, 2-hydroxy-2-methyl-1-phenylpropan-1-one, acylphosphine oxide and the like.
  • the content of the photosensitizer in the photocurable material composition is preferably in the range of 0.01% by mass or more and 10.00% by mass or less with respect to the photocurable material composition.
  • the light-resistant stabilizer is not particularly limited as long as it does not significantly affect the properties of the cured product of the photocurable material composition, and 2- (2H-benzotriazole-2-yl) -p-cresol, 2 -(2H-benzotriazole-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol, 2- [5-chloro (2H) -benzotriazole-2-yl] -4-methyl -6- (tert-butyl) phenol, 2- (2H-benzotriazole-2-yl) -4,6-di-tert-pentylphenol, 2- (2H-benzotriazole-2-yl) -4- ( 1,1,3,3-Tetramethylbutyl) phenol, 2,2'-methyllenbis [6- (2H-benzotriazole-2-yl)]-4- (1,1,3,3-tetramethylbutyl) Benzotriazole compounds such as phenol, 2- (2H
  • the light-resistant stabilizer may serve as a photosensitizer, in which case the photosensitizer may not be added.
  • the content of the light-resistant stabilizer in the photocurable material composition is preferably in the range of 0.01% by mass or more and 10.00% by mass or less with respect to the photocurable material composition.
  • the heat-resistant stabilizer is not particularly limited as long as it does not significantly affect the properties of the cured product of the photocurable material composition, and pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4).
  • the content of the heat-resistant stabilizer in the photocurable material composition is preferably in the range of 0.01% by mass or more and 10.00% by mass or less with respect to the photocurable material composition.
  • the antioxidant is not particularly limited as long as it does not significantly affect the properties of the cured product of the photocurable material composition, and is bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate. , Bis (1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis (1,1-dimethylethyl) -4-hydrideiphenyl] methyl] butylmalonate and other hindered amines Compounds and the like can be mentioned.
  • the content of the antioxidant in the photocurable material composition is preferably in the range of 0.01% by mass or more and 10.00% by mass or less with respect to the photocurable material composition.
  • the polymerizable material is not particularly limited, and is a monofunctional or bifunctional or higher functional epoxy compound and / or an oxetane compound.
  • Examples of monofunctional or bifunctional or higher functional epoxy compounds and oxetane compounds include hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol AD diglycidyl ether, hydrogenated bisphenol Z diglycidyl ether, and cyclohexanedimethanol.
  • Photoacid generators include triarylsulfonium hexafluoroantimonate, triphenylphenacylphosphonium tetrafluoroborate, triphenylsulfonium hexafluoroantimonate, and bis- [4- (diphenylsulfonio) phenyl] sulfide bisdihexa.
  • Fluoroantimonate bis- [4- (di4'-hydroxyethoxyphenylsulfonio) phenyl] sulfide bisdihexafluoroantimonate, bis- [4- (diphenylsulfonio) phenyl] sulfide bisdihexafluorophos Fate, diphenyliodonium tetrafluoroborate, etc. can be mentioned, but are not limited thereto.
  • the filler is not particularly limited as long as it does not deteriorate the mechanical properties of the cured product of the photocurable material composition.
  • the types of fillers are metal salts, metal oxides, polymer fine particles, inorganic fibers, organic fibers, carbon and the like.
  • the metal oxide include, but are not limited to, silicon oxide, titanium oxide, aluminum oxide, and the like.
  • the polymer fine particles include, but are not limited to, acrylic fine particles, polystyrene fine particles, nylon particles, and the like.
  • the organic fiber include, but are not limited to, nylon fiber, cellulose nanofiber, and the like.
  • the method for preparing the photocurable material composition of the present invention is not particularly limited, and the method of weighing all the materials and then heating and stirring is the most convenient. However, if there is a concern about polymerization due to heating, a polymerization inhibitor may be added as appropriate. If it is difficult to mix uniformly by heating alone, the mixture may be prepared by dissolving all the materials in a solvent such as acetone and then distilling off the solvent. Further, stirring by a disperser such as an ultrasonic homogenizer, a ball mill, or a disc mill may be used.
  • a disperser such as an ultrasonic homogenizer, a ball mill, or a disc mill may be used.
  • the shape of the cured product and the curing method of the photocurable material composition are not particularly limited.
  • the curing method include a method of applying a photocurable material composition on a substrate and then irradiating with light, a method of injecting the photocurable material composition into a mold and then irradiating with light, and an optical method for stacking cured products of thin films. It is a three-dimensional modeling method.
  • the method of applying the photocurable material composition on the substrate is not particularly limited.
  • a composition containing the above resin is used by using a contact transfer type coating device such as a roll coater, a reverse coater, a bar coater, a slit coater, or a non-contact type coating device such as a spinner (rotary coating device) or a curtain flow coater.
  • a coating film may be formed by coating an object on a substrate so as to have a desired film thickness.
  • the photocurable material composition is selectively irradiated with active energy rays so as to obtain a cured layer having a desired pattern to form a cured layer, and then the cured layer is uncured liquid photocurable.
  • a method of supplying a resin composition and similarly irradiating it with active energy rays to repeat a laminating operation of newly forming a cured layer continuous with the cured layer to finally obtain a desired three-dimensional molded product. is there.
  • the photocurable material composition of the present invention can be widely used in the field of optical three-dimensional modeling and is not limited in any way, but a typical application field is to verify the appearance design in the middle of design. Models, models for checking the functionality of parts, resin molds for making molds, base models for making molds, direct molds for prototype molds, and so on.
  • the material composition of the present invention can be used as a component that requires durability in order to achieve both thermal deformation temperature and impact resistance.
  • Examples of the active energy ray include ultraviolet rays, electron beams, X-rays, radiation, and high frequencies.
  • ultraviolet rays having a wavelength of 300 to 430 nm are preferably used from an economical point of view, and as the light source at that time, an ultraviolet laser (for example, a semiconductor-pumped solid-state laser, an Ar laser, a He-Cd laser, etc.) and a high-pressure mercury lamp are used.
  • an ultraviolet laser for example, a semiconductor-pumped solid-state laser, an Ar laser, a He-Cd laser, etc.
  • a high-pressure mercury lamp Ultra-high pressure mercury lamp, mercury lamp, xenon lamp, halogen lamp, metal halide lamp, ultraviolet LED (light emitting diode), fluorescent lamp and the like can be used.
  • active energy rays focused in dots such as laser light are used. It may be used to form a cured resin layer in a stippling or line drawing manner, or through a planar drawing mask formed by arranging a plurality of micro-light shutters such as a liquid crystal shutter or a digital micromirror shutter (DMD).
  • a molding method may be adopted in which the molding surface is irradiated with active energy rays in a planar manner to form a cured resin layer.
  • FIG. 1 shows a configuration example of the stereolithography apparatus 100 using the free liquid level method.
  • the stereolithography apparatus 100 has a tank 11 filled with a liquid photocurable resin composition 10. Inside the tank 11, a modeling stage 12 is provided so as to be driveable in the vertical direction by a drive shaft 13. The irradiation position of the active energy ray 15 emitted from the light source 14 is changed by the galvanometer mirror 16 controlled by the control unit 18 according to the slice data, and the surface of the tank 11 is scanned. In FIG. 1, the scanning range is exemplified by a thick broken line.
  • the slice data is data generated by slicing the three-dimensional shape data of the three-dimensional model to be modeled with a predetermined thickness in the modeling direction.
  • the thickness d of the photocurable resin composition 10 cured by irradiation with the active energy ray 15 is a value determined based on the setting at the time of generating the slice data, and the accuracy of the obtained model 17 (three-dimensional shape data). Affects reproducibility).
  • the thickness d is achieved by the control unit 18 controlling the drive amount of the drive shaft 13.
  • the control unit 18 controls the drive shaft 13 based on the setting, and supplies the photocurable resin composition 10 with a predetermined thickness d onto the modeling stage 12.
  • the photocurable resin composition 10 was cured according to the slice data. A cured product is formed.
  • the modeling stage 12 is moved in the direction of the white arrow by a distance corresponding to the thickness d, and the photocurable resin composition 10 having a thickness d and uncured is supplied to the surface of the cured product.
  • the modeled product thus obtained is taken out from the tank 11, the unreacted photocurable resin composition remaining on the surface thereof is removed, and then post-treatment such as cleaning or post-cure by heat treatment is performed as necessary. , May be the final article.
  • Post-cure can cure the unreacted photocurable resin composition that may remain on the surface and inside of the modeled object, suppress the stickiness of the surface of the modeled object, and in addition to the initial stage of the modeled object. The strength can be improved.
  • the stereolithography apparatus using the regulated liquid level method has a configuration in which the modeling stage 12 of the stereolithography apparatus 100 of FIG. 1 is provided so as to pull up the cured product above the liquid level, and the light irradiation means is provided below the tank 11. It becomes.
  • Typical modeling examples of the regulated liquid level method are as follows. First, the photocurable resin composition is supplied between the support surface of the support stage provided so as to be able to move up and down and the bottom surface of the tank, and the support surface of the support stage and the bottom surface of the tank containing the photocurable resin composition are combined. Is installed so that is a predetermined distance d.
  • the photocurable resin composition between the support surface of the support stage and the bottom surface of the tank is irradiated with active energy rays based on the slice data from the bottom surface side of the tank containing the photocurable resin composition. .. Irradiation with active energy rays cures the photocurable resin composition between the stage support surface and the bottom surface of the tank, and a cured product is formed. After that, the support stage is raised and the cured product is peeled off from the bottom surface of the tank.
  • the height of the support stage is adjusted so that the distance between the cured product formed on the support stage and the bottom surface of the tank is a predetermined distance d, and at the same time, the cured product on the support stage and the bottom surface of the tank are combined.
  • An uncured curable resin composition is supplied in between.
  • the uncured photocurable resin composition is selectively irradiated with active energy rays based on the slice data to form a cured product integrated with the previously formed cured product.
  • the photocurable resin composition according to the present invention can be polymerized by light irradiation to produce a protective film, a coating film, a sealant and the like.
  • an article can be produced by pouring the photocurable resin composition according to the present invention as a raw material into a mold, pouring it into the mold, and then irradiating the mold with light to polymerize the composition.
  • the cured product of the photocurable resin composition according to the present invention can achieve both high thermal deformation temperature and high impact resistance.
  • Example 1 Preparation of Photocurable Material Composition 28.0 g of tetrahydrofurfuryl acrylate as a monofunctional acrylate having a 5-membered ring skeleton containing an ether bond, and bisphenol Z-type polycarbonate resin as a polycarbonate resin (manufactured by Mitsubishi Gas Chemicals, Ltd.) , Average molecular weight 20000) 7.0 g, and 0.22 g of 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization initiator were weighed. These were transferred to a container that could be sealed, and heated and stirred at 50 ° C. for 24 hours (VMRC-5 manufactured by AS ONE Corporation) to prepare a photocurable material composition.
  • VMRC-5 manufactured by AS ONE Corporation
  • the evaluation sample for which the evaluation standard is A has the same deflection temperature under load and Charpy impact strength as ABS resin. Further, the evaluation sample having the evaluation standard of B has the performance of achieving both the deflection temperature under load and the Charpy impact strength exceeding the cured product obtained from the conventional photocurable material composition, although it is not as good as that of ABS resin. On the other hand, the evaluation sample having the evaluation standard C has the same deflection temperature under load and Charpy impact strength as the cured product obtained from the conventional photocurable material composition.
  • Example 2 A photocurable material composition was prepared in the same manner as in Example 1 except that the polycarbonate resin was changed to 14.0 g. Using this photocurable material composition, an evaluation sample was prepared in the same manner as in Example 1, and evaluated by the method described in Example 1. The evaluation results are shown in Table 1.
  • Example 3 The same method as in Example 1 except that the tetrahydrofurfuryl acrylate was changed to 24.5 g, the polycarbonate resin was changed to 14.0 g, and 3.5 g of cyclic trimethylolpropane formal acrylate was added as another monofunctional (meth) acrylate.
  • a photocurable material composition was prepared in. Using this photocurable material composition, an evaluation sample was prepared in the same manner as in Example 1, and evaluated by the method described in Example 1. The evaluation results are shown in Table 1.
  • Example 4 The same method as in Example 1 except that the tetrahydrofurfuryl acrylate was changed to 8.0 g, the polycarbonate resin was changed to 14.0 g, and 20.0 g of cyclic trimethylolpropane formal acrylate was added as another monofunctional (meth) acrylate.
  • a photocurable material composition was prepared in. Using this photocurable material composition, an evaluation sample was prepared in the same manner as in Example 1, and evaluated by the method described in Example 1. The evaluation results are shown in Table 1.
  • Example 5 A photocurable material composition was prepared in the same manner as in Example 1 except that the polycarbonate resin was changed to EP-6000 manufactured by Mitsubishi Gas Chemical Company. Using this photocurable material composition, an evaluation sample was prepared in the same manner as in Example 1, and evaluated by the method described in Example 1. The evaluation results are shown in Table 1.
  • Example 6 A photocurable material composition was prepared in the same manner as in Example 1 except that the polycarbonate resin was changed to BIS-C manufactured by Mitsubishi Gas Chemical Company. Using this photocurable material composition, an evaluation sample was prepared in the same manner as in Example 1, and evaluated by the method described in Example 1. The evaluation results are shown in Table 1.
  • Tetrahydrofurfuryl acrylate is alkoxylated Tetrahydrofurfuryl acrylate (Sartmer SR611 manufactured by Alchema Co., Ltd.), Polycarbonate resin is changed to FPC-0220 manufactured by Mitsubishi Gas Chemical Company, Inc., and the photocurable material composition is the same as in Example 1. The thing was prepared. Using this photocurable material composition, an evaluation sample was prepared in the same manner as in Example 1, and evaluated by the method described in Example 1. The evaluation results are shown in Table 1.
  • Example 8 A photocurable material composition was prepared in the same manner as in Example 1 except that the tetrahydrofurfuryl acrylate was changed to (2-methyl-2-ethyl-1,3-dioxolane-4-yl) methyl acrylate. Using this photocurable material composition, an evaluation sample was prepared in the same manner as in Example 1, and evaluated by the method described in Example 1. The evaluation results are shown in Table 1.
  • Example 9 A photocurable material composition was prepared in the same manner as in Example 1 except that the tetrahydrofurfuryl acrylate was changed to a tetrahydrofurfuryl alcohol acrylic acid multimer ester (Viscoat # 150D manufactured by Osaka Organic Chemical Industry Co., Ltd.). Using this photocurable material composition, an evaluation sample was prepared in the same manner as in Example 1, and evaluated by the method described in Example 1. The evaluation results are shown in Table 1.
  • Example 10 A photocurable material composition was prepared in the same manner as in Example 1 except that tetrahydrofurfuryl acrylate was changed to 24.5 g and 3.5 g of isobornyl methacrylate was added as another monofunctional (meth) acrylate. did. Using this photocurable material composition, an evaluation sample was prepared in the same manner as in Example 1, and evaluated by the method described in Example 1. The evaluation results are shown in Table 1.
  • Example 11 A photocurable material composition was prepared in the same manner as in Example 1 except that tetrahydrofurfuryl acrylate was changed to 24.5 g and 3.5 g of 1-adamantyl acrylate was added as another monofunctional (meth) acrylate. did. Using this photocurable material composition, an evaluation sample was prepared in the same manner as in Example 1, and evaluated by the method described in Example 1. The evaluation results are shown in Table 1.
  • Example 12 The same method as in Example 1 except that the tetrahydrofurfuryl acrylate was changed to 25.0 g, the polycarbonate resin was changed to 14.0 g, and 3.0 g of cyclic trimethylolpropane formal acrylate was added as another monofunctional (meth) acrylate.
  • a photocurable material composition was prepared in. Using this photocurable material composition, an evaluation sample was prepared in the same manner as in Example 1, and evaluated by the method described in Example 1. The evaluation results are shown in Table 1.
  • Example 1 A photocurable material composition was prepared in the same manner as in Example 1 except that the tetrahydrofurfuryl acrylate was changed to tetrahydrofurfuryl methacrylate. Using this photocurable material composition, an evaluation sample was prepared in the same manner as in Example 1, and evaluated by the method described in Example 1. The evaluation results are shown in Table 1.
  • Example 2 A photocurable material composition was prepared in the same manner as in Example 1 except that the tetrahydrofurfuryl acrylate was changed to cyclic trimethylolpropane formal acrylate. Using this photocurable material composition, an evaluation sample was prepared in the same manner as in Example 1, and evaluated by the method described in Example 1. The evaluation results are shown in Table 1.
  • Example 3 The same method as in Example 1 except that the tetrahydrofurfuryl acrylate was changed to 7.0 g, the polycarbonate resin was changed to 14.0 g, and 21.0 g of cyclic trimethylolpropane formal acrylate was added as another monofunctional (meth) acrylate.
  • a photocurable material composition was prepared in. Using this photocurable material composition, an evaluation sample was prepared in the same manner as in Example 1, and evaluated by the method described in Example 1. The evaluation results are shown in Table 1.
  • Monofunctional Acrylate 1 Tetrahydrofurfuryl Acrylate
  • Monofunctional Acrylate 2 Alkalated Tetrahydrofurfuryl Acrylate
  • Monofunctional Acrylate 3 (2-Methyl-2-ethyl-1,3-dioxolan-4-yl) Methyl Acrylate
  • Monofunctional Acrylate 4 Tetrahydrofurfuryl alcohol acrylic acid multimeric ester
  • Other monofunctional (meth) acrylate 1 Cyclic trimethylolpropanformal acrylate
  • Other monofunctional (meth) acrylate 2 Isobornyl methacrylate
  • Other monofunctional (meth) acrylate 3 1-adamantyl acrylate
  • Other monofunctional (meth) acrylate 4 Tetrahydrofurfuryl methacrylate
  • Polycarbonate resin 1 Bisphenol Z type polycarbonate resin (average molecular weight 20000)
  • Polycarbonate resin 2 EP-6000 manufactured by Mitsubishi Gas Chemical Company, Inc. Polycarbonate resin 3
  • the photocurable material composition of the present invention and its cured product have a higher thermal deformation temperature and stronger impact resistance than conventional materials that are cured by active energy rays, they can be used for coating materials and parts that require durability. It can be used for manufacturing in curing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

紫外線照射後の硬化物の荷重たわみ温度が40℃以上かつシャルピー衝撃強さ(ノッチ付き)が20kJ/m以上を両立する光硬化性材料組成物及びその硬化物を提供する。エーテル結合を含んだ5員環骨格を有する単官能アクリレートと、前記単官能アクリレートに可溶なポリカーボネート樹脂と、を少なくとも有することを特徴とする光硬化性材料組成物であって、前記エーテル結合を含んだ5員環骨格を有する単官能アクリレートの含有量が18重量%乃至80重量%であり、前記ポリカーボネート樹脂の含有量が10重量%乃至40重量%である光硬化性材料組成物。

Description

光硬化性材料組成物並びに光硬化性材料組成物の硬化物及びその製造方法
 本発明は、光硬化性材料組成物及び該光硬化性材料組成物を用いて得られる硬化物に関する。より詳細には、本発明は、熱変形温度が高くかつ耐衝撃性にも優れる硬化物を得ることが可能な光硬化性組成物に関する。また、本発明は、当該光硬化性組成物を用いた立体硬化物等の製造に関する。
 光硬化型材料組成物は光照射により短時間で硬化するため、コーティング材料や塗料、封止剤、最近では光学的立体造形法の材料としても利用されている。しかしながら、光硬化性材料組成物からなる硬化物は耐衝撃性があるものの、表面硬度、熱変形温度及び強度が不十分なものであるか、或いは剛性はあるものの、脆く、塗膜等にした場合にクラックが発生し易いものであるか、のどちらかであり、耐衝撃性と剛性を両立するものはほとんど知られていない。そのため、耐衝撃性と剛性が要求される部品においては該組成物ではなく熱可塑性樹脂が使用されることがほとんどである。熱可塑性樹脂を部品形状に成形するためには射出成形が一般的であるが、形状の自由度は型材質や熱可塑性樹脂そのものの種類により制限されることもある。
 一般に、光硬化性材料組成物の硬化物の熱変形温度を高くしようとする場合、使用する材料は架橋密度を上げられるような官能基をもつ材料や嵩高い置換基を持つ材料を選定する。しかし、多官能アクリレートやエポキシ材料のような架橋密度を上げられる官能基を持つ材料や、イソボルニル基のような嵩高い置換基を持つ材料を光硬化させる場合、硬化過程において応力集中や硬化不良が生じるため、熱変形温度は高くなるが耐衝撃性は著しく低下してしまう。
 一方、光硬化性材料組成物の硬化物の耐衝撃性を高くしようとする場合、使用する材料は架橋密度を下げられる材料やゴムのような性質を持つ材料を選定する。しかし、高分子量のアクリルやエポキシのような架橋密度を下げられる材料やウレタン等の伸縮運動可能な官能基を持つ材料を硬化させた場合、架橋密度の低さや分子の伸縮運動による衝撃の吸収があり耐衝撃性は向上する一方で、硬化物は柔らかくなるため熱変形温度は低下してしまう。
 熱変形温度と耐衝撃性を両立するために、熱変形温度を高くする材料と衝撃性を高くする材料を組み合わせて使用することも可能であるが、ほとんどはそれぞれの利点を損なった硬化物となるため、コーティング材料や塗料、封止剤、光学的立体造形物や注型成形物において熱変形温度と耐衝撃性を両立する材料処方は見出せていない。熱変形温度の評価手法として荷重たわみ温度(℃)、耐衝撃値の評価手法としてシャルピー衝撃強さ(kJ/m)があるが、耐衝撃性の高い材料の多くは荷重たわみ温度が40℃未満(荷重1.8MPa)であり、剛性の高い材料はシャルピー衝撃強さが5kJ/m未満(ノッチ有り)である。熱変形温度が低いと造形物が自重で歪み、耐衝撃値が低いと少しの衝撃で薄い部分が欠ける不良が発生してしまうため、荷重たわみ温度が40℃以上であり、かつシャルピー衝撃強さが20kJ/m以上(ノッチ有り)となる材料が求められている。
 近年、光学的立体造形法が盛んに開発され射出成形や注型では製作し難い特殊な形状の硬化物が製作されるようになってきている。しかし、光学的立体造形法において使用される活性化エネルギー線硬化型材料組成物も、耐衝撃性と剛性を両立するものはなく、製品や部品として使用するには機械特性が不十分となっている。
 以上のような背景のもと、特許文献1には、ポリカーボネートを活性エネルギー線硬化型材料組成物と複合化することにより、活性エネルギー線硬化型組成物を改良する試みが開示されている。また、特許文献2には、カチオン重合性有機化合物とラジカル重合性有機化合物(B)を組合せて使用する処方で得られる硬化物が靱性と耐熱性に優れることが開示されている。
特開2001-329133号公報 特開2018-53133号公報
 しかしながら、特許文献1で示される材料処方では、フィルム引張試験において弾性率と破断エネルギーが高いことが示されているが、破断エネルギーの値から推察してシャルピー衝撃強さ(ノッチ付き)が20kJ/mを超えることは難しいと推察される。また、特許文献2に示される材料処方では、荷重たわみ温度は40℃を超えるものの、アイゾット衝撃強さから換算されるシャルピー衝撃強さは20kJ/m以上にはならないことが推察できる。
 本発明は、以上に述べた背景技術に鑑みてなされたものであり、その目的は、紫外線照射による硬化後の荷重たわみ温度が40℃以上かつシャルピー衝撃強さ(ノッチ付き)が20kJ/m以上を両立する光硬化性材料組成物及びその硬化物を提供することである。
 本発明の光硬化性材料組成物は、少なくともエーテル結合を含んだ5員環骨格を有する単官能アクリレートと、前記エーテル結合を含んだ5員環骨格を有する単官能アクリレートに可溶なポリカーボネート樹脂と、を有する光硬化性材料組成物であって、前記エーテル結合を含んだ5員環骨格を有する単官能アクリレートの含有量が18重量%乃至80重量%であり、前記ポリカーボネート樹脂の含有量が10重量%乃至40重量%である。この光硬化性材料組成物に光照射することで硬化物を提供することができる。
 本発明の光硬化性材料組成物は、立体硬化物を製造することに利用できる。
 本発明によれば、光照射による硬化物の荷重たわみ温度が40℃以上かつシャルピー衝撃強さ(ノッチ付き)が20kJ/m以上を両立する光硬化性材料組成物及びその硬化物を提供することができる。このため、本発明の光硬化性材料組成物を使用すれば従来の光硬化性材料組成物では得られなかった機械特性を有する硬化物が得られ、強度不足で使用できなかった部品についても使用できるようになる。また、光学的立体造形法で本発明の光硬化性材料組成物を使用すれば模型だけでなく製品として使用可能な部品も供給することが可能になり、少量生産品は金型を使用せずに直接製品を生産することが可能になる。
自由液面法を用いた光造形装置の構成例を示す図である。
 以下、本発明を詳細に説明する。
 まず本発明の光硬化性材料組成物について説明する。本発明の光硬化性材料組成物は、少なくともエーテル結合を含んだ5員環骨格を有する単官能アクリレートと、エーテル結合を含んだ5員環骨格を有する単官能アクリレートに可溶なポリカーボネート樹脂(以下、単に「ポリカーボネート樹脂」と称することもある。)と、を有し、光硬化性材料組成物中のエーテル結合を含んだ5員環骨格を有する単官能アクリレートの含有量が18重量%乃至80重量%であり、ポリカーボネート樹脂の含有量が10重量%乃至40重量%である。
 エーテル結合を含んだ5員環骨格を有する単官能アクリレートとしては、光硬化性組成物が重合して得られる硬化物の耐衝撃性を低下させないのであれば特に制限はない。好ましくは、テトラヒドロフルフリルアクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチルアクリレート、テトラヒドロフルフリルアルコールアクリル酸多量体エステル(例えば、大阪有機化学工業株式会社製 ビスコート#150D)、アルコキシ化テトラヒドロフルフリルアクリレート(例えば、アルケマ株式会社製 サートマーSR611)である。
 エーテル結合を含んだ5員環骨格を有する単官能アクリレートを用いることにより、ポリカーボネート樹脂との界面の密着性が向上し、膜にした際の剛性やバルク体にした際の耐衝撃性の改善につながっている。密着性の向上は、エーテル結合を含んだ5員環骨格の酸素原子が6員環骨格の酸素原子よりも極性が高いことが原因と推察できる。ポリカーボネート樹脂にはポリカーボネート部位があるため、より極性の高いポリカーボネート部位の酸素原子と5員環骨格の酸素原子との相互作用が強くなり密着性が改善したものと考えられる。また、エーテル結合を含んだ3員環骨格や4員環骨格を含んだアクリレートは酸や塩基による開環反応が生じる可能性があるため、エーテル結合を含んだ5員環骨格を有する単官能アクリレートを用いている。
 さらに、エーテル結合を含んだ5員環骨格を有する単官能アクリレートを用いることによりポリカーボネート樹脂との相溶性も改善している。相溶性が改善することにより、未硬化時には分子レベルでエーテル結合を含んだ5員環骨格を有する単官能アクリレートとポリカーボネート樹脂が混合しあうため、硬化した際の相分離構造もサブミクロンレベルのものが可能になる。一方、相溶性が低い場合には硬化する際の相分離構造も本発明のものよりも大きくなると考えられ、密着性が改善していたとしても高い機械特性を実現することは難しい。
 一方、エーテル結合を含んだ5員環骨格を有する多官能アクリレートもポリカーボネート樹脂との密着性改善という意味においては好適である。しかし、多官能アクリレートの場合、硬化時の収縮量が多いことによる目視では観察できないサイズの不良部位や架橋密度が上がったことによる残留応力の影響により、膜やバルク体の耐衝撃性が悪化してしまうため本発明には不適である。
 なお、エーテル結合を含んだ5員環骨格を有する単官能アクリレートがエーテル結合を含んだ5員環骨格を有する単官能メタクリレートになると、荷重たわみ温度等の剛性に関する機械特性は改善する。しかし、耐衝撃性が劇的に低下するため、本発明において、エーテル結合を含んだ5員環骨格を有する単官能アクリレートに代えて、エーテル結合を含んだ5員環骨格を有する単官能メタクリレートを主成分として使用することはできない。
 光硬化性材料組成物中のエーテル結合を含んだ5員環骨格を有する単官能アクリレートの含有量は、光硬化性材料組成物が重合して得られる硬化物の機械特性を低下させなければ特に制限はない。ポリカーボネート樹脂の溶解性、光硬化性材料組成物が重合して得られる硬化物の機械特性、光硬化性材料組成物の粘度等を考慮すると18重量%乃至80重量%である。
 エーテル結合を含んだ5員環骨格を有する単官能アクリレートに可溶なポリカーボネート樹脂は、エーテル結合を含んだ5員環骨格を有する単官能アクリレートに均一に溶解するのであれば特に制限はなく、ビスフェノールA型ポリカーボネート、ビスフェノールAP型ポリカーボネート、ビスフェノールAF型ポリカーボネート、ビスフェノールB型ポリカーボネート、ビスフェノールBP型ポリカーボネート、ビスフェノールC型ポリカーボネート、ビスフェノールE型ポリカーボネート、ビスフェノールF型ポリカーボネート、ビスフェノールG型ポリカーボネート、ビスフェノールM型ポリカーボネート、ビスフェノールS型ポリカーボネート、ビスフェノールP型ポリカーボネート、ビスフェノールPH型ポリカーボネート、ビスフェノールTMC型ポリカーボネート、ビスフェノールZ型ポリカーボネート、ビスフェノキシエタノールフルオレン型ポリカーボネート、ポリエチレングリコール変性ビスフェノキシエタノールフルオレン型ポリカーボネート等である。溶解性等を考慮するとビスフェノールA型ポリカーボネート、ビスフェノールB型ポリカーボネート、ビスフェノールC型ポリカーボネート、ビスフェノールE型ポリカーボネート、ビスフェノールF型ポリカーボネート、ビスフェノールG型ポリカーボネート、ビスフェノールTMC型ポリカーボネート、ビスフェノールZ型ポリカーボネート、ビスフェノキシエタノールフルオレン型ポリカーボネート、ポリエチレングリコール変性ビスフェノキシエタノールフルオレン型ポリカーボネートが好ましい。溶解性や光硬化性組成物が重合して得られる硬化物の機械特性を向上させるために、ビスフェノールC型ポリカーボネート、ビスフェノールG型ポリカーボネート、ビスフェノールTMC型ポリカーボネート、ビスフェノールZ型ポリカーボネート、ビスフェノキシエタノールフルオレン型ポリカーボネートがより好ましい。
 ポリカーボネート樹脂の分子量は、光硬化性組成物が重合して得られる硬化物の機械特性が低下しなければ制限はない。好ましくは、重量平均分子量が1000乃至200000である。硬化物の機械特性や光硬化性材料組成物の粘度、ポリカーボネート樹脂の溶解性等を考慮すると重量平均分子量は4000乃至50000がより好ましい。
 光硬化性材料組成物中のポリカーボネート樹脂の含有量は、光硬化性材料組成物が重合して得られる硬化物の機械特性やポリカーボネート樹脂の溶解性、光硬化性材料組成物の粘度等を考慮すると10重量%乃至40重量%である。より好ましくは20重量%乃至33重量%である。
 光硬化性材料組成物は、さらにエーテル結合を含んだ5員環骨格を有する単官能アクリレートとは異なる単官能(メタ)アクリレート(以下、「その他の単官能(メタ)アクリレート」と称することもある。)を含んでもよい。その他の単官能(メタ)アクリレートまたは多官能(メタ)アクリレートを含むことで、光硬化性材料組成物の硬化物は、耐衝撃性を維持したままを荷重たわみ温度を改善することが可能である。
 エーテル結合を含んだ5員環骨格を有する単官能アクリレートとは異なる単官能(メタ)アクリレートとしては、4-tert-ブチルシクロヘキシル(メタ)アクリレート、3,3,5-トリメチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、環状トリメチロールプロパンホルマール(メタ)アクリレート、3-ヒドロキシ-1-(メタ)アクリロイルオキシアダマンタン、1-アダマンチル(メタ)アクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、ジシクロペンタエニル(メタ)アクリレート、2-イソプロピルアダマンタン-2-イル(メタ)アクリレート、テトラヒドロジシクロペンタジエニル(メタ)アクリレート、α-(メタ)アクリロキシ-γ-ブチロラクトン、2-ヒドロキシ-o-フェニルフェノールプロピル(メタ)アクリレート、アクリロイルモルホリン、ジエチルアクリルアミド、イソプロピルアクリルアミド、ヒドロキシエチルアクリルアミド、シクロヘキシル(メタ)アクリレート、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソオクチル(メタ)アクリレート、テトラヒドロフルフリルメタクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、フェニルグリシジル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソオクチル(メタ)アクリレート、トリデシル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシジトリプロピレングリコール(メタ)アクリレート、トリシクロデカン(メタ)アクリレート、ジシクロペンタジエンオキシエチル(メタ)アクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、ジシクロペンテニルオキシメタクリレート、ジシクロペンタニルアクリレート、ジシクロペンタニルメタクリレート等であるがこれらに限定されない。また、光硬化性材料組成物の硬化物の機械特性が低下しない範囲で一種類のみを追加しても良いし複数同時に組合せても良い。
 光硬化性材料組成物がその他の単官能(メタ)アクリレートを含む場合、含有量は、光硬化性材料組成物全体の48重量%以下が好ましく、さらに好ましくは8重量%乃至48重量%である。
 光硬化性材料組成物がこの範囲を超えてその他の単官能(メタ)アクリレートを含有すると、得られる硬化物の耐衝撃性が低下する。
 次に本発明の光硬化性材料組成物は、上記成分以外の成分を含んでいてもよい。
 本発明の光硬化性材料組成物は、エーテル結合を含んだ5員環骨格を有する単官能アクリレートの重合性官能基を共重合するための重合開始剤を含んでいてもよい。また、光硬化性材料組成物には、必要に応じて重合禁止剤、光増感剤、耐光安定剤、耐熱安定剤、酸化防止剤、離型剤、防カビ剤、フィラー、色素等をさらに含有させてもよい。
 光照射によりラジカル種を発生する重合開始剤としては、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、4-フェニルベンゾフェノン、4-フェノキシベンゾフェノン、4,4’-ジフェニルベンゾフェノン、4,4’-ジフェノキシベンゾフェノン等が挙げられるがこれらに限定されない。
 また、光照射によりカチオン種を発生する重合開始剤としては、ヨードニウム(4-メチルフェニル)[4-(2-メチルプロピル)フェニル]-ヘキサフルオロホスフェートが好適な重合開始剤として挙げられるがこれに限定されない。
 さらに、熱によりラジカル種を発生する重合開始剤としては、アゾビスイソブチルニトリル(AIBN)等のアゾ化合物、ベンゾイルパーオキサイド、tert-ブチルパーオキシピバレート、tert-ブチルパーオキシネオヘキサノエート、tert-ヘキシルパーオキシネオヘキサノエート、tert-ブチルパーオキシネオデカノエート、tert-ヘキシルパーオキシネオデカノエート、クミルパーオキシネオヘキサノエート、クミルパーオキシネオデカノエート等の過酸化物が挙げられるがこれらに限定されない。
 光硬化性材料組成物中の重合開始剤の含有量は、光硬化性材料組成物に対して、0.01質量%以上10.00質量%以下の範囲が好ましい。なお、重合開始剤は1種類のみで使用することもできるし、2種類以上を併用して使用することもできる。なお、光硬化性材料組成物に対する重合開始剤の添加比率は、光照射量、さらには、付加的な加熱温度に応じて適宜選択してもよい。また、得られる重合体の目標とする平均分子量に応じて、調整してもよい。
 重合禁止剤には、ヒドロキノン、ヒドロキノンモノメチルエーテル、ヒドロキノンモノエチルエーテル、ヒドロキノンモノプロピルエーテル、ヒドロキノンモノブチルエーテル、ヒドロキノンモノペンチルエーテル、ヒドロキノンモノヘキシルエーテル、ヒドロキノンモノオクチルエーテル、ヒドロキノンモノへプチルエーテル等のヒドロキノン系の重合禁止剤、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート等の置換基を有するフェノール系の重合禁止剤が挙げられる。但し、ヒドロキノン等のヒドロキノン系の重合禁止剤、ベンゾキノン等のベンゾキノン系の重合禁止剤は、UV照射で黄変することがあるためコーティング等の薄膜硬化物を得る際に好適である。
 重合禁止剤には、反応時や保存時の重合抑制剤として上記したものが挙げられるがそれらに限定されない。光硬化性材料組成物中の重合禁止剤の含有量は、光硬化性材料組成物に対して、0.01質量%以上1.00質量%以下の範囲が好ましい。また、一つの重合禁止剤のみを使用しても良いし2種類以上の重合禁止剤を組み合わせて使用しても良い。着色の少なさを考慮すると具体的にはヒドロキノン系重合禁止剤を組み合わせて利用することが好ましい。
 光増感剤にはベンゾフェノン、4,4-ジエチルアミノベンゾフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、p-ジメチルアミノ安息香酸イソアミル、4-ジメチルアミノ安息香酸メチル、ベンゾイン、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、2,2-ジエトキシアセトフェノン、o-ベンゾイル安息香酸メチル、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、アシルホスフィンオキサイド等が挙げられる。光硬化性材料組成物中の光増感剤の含有量は、光硬化性材料組成物に対して、0.01質量%以上10.00質量%以下の範囲が好ましい。
 耐光安定剤としては、光硬化性材料組成物の硬化物の特性に大きな影響を及ぼさないものであれば特に制限は無く、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-[5-クロロ(2H)-ベンゾトリアゾール-2-イル]-4-メチル-6-(tert-ブチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2,2’-メチルレンビス[6-(2H-ベンゾトリアゾール-2-イル)]-4-(1,1,3,3-テトラメチルブチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール等のベンゾトリアゾール系の化合物、2-シアノ-3,3-ジフェニルアクリル酸エチル、2-シアノ-3,3-ジフェニルアクリル酸 2-エチルヘキシル等のシアノアクリレート系の化合物、トリアジン系の化合物、オクタベンゾン、2,2’-4,4’-テトラヒドロベンゾフェノン等のベンゾフェノン系の化合物等が挙げられる。上記耐光安定剤が光増感剤の役割を果たす場合もあり、その場合には光増感剤は添加しなくても良い。光硬化性材料組成物中の耐光安定剤の含有量は、光硬化性材料組成物に対して、0.01質量%以上10.00質量%以下の範囲が好ましい。
 耐熱安定剤としては、光硬化性材料組成物の硬化物の特性に大きな影響を及ぼさないものであれば特に制限は無く、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)]プロピオネート、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシベンゼンプロパン酸の側鎖を有する炭素数7~9のアルキルエステル、4,6-ビス(オクチルチオメチル)-o-クレゾール、4,6-ビス(ドデシルチオメチル)-o-クレゾール、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)]プロピオネート、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)]プロピオネート等のヒンダードフェノール系の化合物、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト等のリン系の化合物、ジオクタデシル-3,3’-チオジプロピオネート等の硫黄系の化合物等が挙げられる。光硬化性材料組成物中の耐熱安定剤の含有量は、光硬化性材料組成物に対して、0.01質量%以上10.00質量%以下の範囲が好ましい。
 酸化防止剤としては、光硬化性材料組成物の硬化物の特性に大きな影響を及ぼさないものであれば特に制限は無く、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドリキシフェニル]メチル]ブチルマロネート等のヒンダードアミン系の化合物等が挙げられる。光硬化性材料組成物中の酸化防止剤の含有量は、光硬化性材料組成物に対して、0.01質量%以上10.00質量%以下の範囲が好ましい。
 また、本発明の光硬化性材料組成物には、その硬化物の著しい性能低下が生じない範囲で粘度調整や機能付与のためその他の重合性材料或いは色素、フィラー等を添加しても構わない。重合性材料の制限は特になく単官能或いは2官能以上のエポキシ化合物及び/またはオキセタン化合物である。
 単官能或いは2官能以上のエポキシ化合物及びオキセタン化合物としては、水素添加ビスフェノールAジグリシジルエーテル、水素添加ビスフェノールFジグリシジルエーテル、水素添加ビスフェノールADジグリシジルエーテル、水素添加ビスフェノールZジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、トリシクロデカンジメタノールジグリシジルエーテル、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-1-メチルシクロヘキシル-3,4-エポキシ-1-メチルシクロヘキサンカルボキシレート、6-メチル-3,4-エポキシシクロヘキシルメチル-6-メチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-3-メチルシクロヘキシルメチル-3,4-エポキシ-3-メチルシクロヘキサンカルボキシレート、3,4-エポキシ-5-メチルシクロヘキシルメチル-3,4-エポキシ-5-メチルシクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタジオキサン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、3,4-エポキシ-6-メチルシクロヘキシルカルボキシレート、ジシクロペンタジエンジエポキサイド、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、エポキシヘキサヒドロフタル酸ジオクチル、エポキシヘキサヒドロフタル酸ジ-2-エチルヘキシル、ε-カプロラクトン変性3’,4’-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、ビス(3,4-エポキシシクロヘキシル)メタン、2,2-ビス(3,4-エポキシシクロヘキシル)プロパン、1,1-ビス(3,4-エポキシシクロヘキシル)エタン、アルファピネンオキサイド、カンファレンアルデヒド、リモネンモノオキサイド、リモネンジオキサイド、4-ビニルシクロヘキセンモノオキサイド、4-ビニルシクロヘキセンジオキサイド、3-ヒドロキシメチル-3-メチルオキセタン、3-ヒドロキシメチル-3-エチルオキセタン、3-ヒドロキシメチル-3-プロピルオキセタン、3-ヒドロキシメチル-3-ノルマルブチルオキセタン、3-ヒドロキシメチル-3-プロピルオキセタンなどを挙げることができるがこれらに限定されない。
 また、エポキシ化合物及び/またはオキセタン化合物を添加する場合は、材料組成物に光酸発生剤や光塩基発生剤を添加してエポキシ、オキセタン化合物の重合反応を促進しても良い。光酸発生剤としては、トリアリールスルホニウムヘキサフルオロアンチモネート、テトラフルオロホウ酸トリフェニルフェナシルホスホニウム、ヘキサフルオロアンチモン酸トリフェニルスルホニウム、ビス-[4-(ジフェニルスルフォニオ)フェニル]スルフィドビスジヘキサフルオロアンチモネート、ビス-[4-(ジ4’-ヒドロキシエトキシフェニルスルフォニオ)フェニル]スルフィドビスジヘキサフルオロアンチモネート、ビス-[4-(ジフェニルスルフォニオ)フェニル]スルフィドビスジヘキサフルオロフォスフェート、テトラフルオロホウ酸ジフェニルヨードニウムなどを挙げることができるがこれらに限定されない。
 フィラーとしては特に制限はなく、光硬化性材料組成物の硬化物の機械特性を劣化させなければ良い。フィラーの種類は、金属塩、金属酸化物、ポリマー微粒子、無機ファイバー、有機ファイバー、カーボン等である。金属酸化物としては、酸化ケイ素、酸化チタン、酸化アルミニウム等でありこれらに限定されない。ポリマー微粒子としては、アクリル微粒子、ポリスチレン微粒子、ナイロン粒子等であるがこれらに限定されない。有機ファイバーとしては、ナイロンファイバー、セルロースナノファイバー等であるがこれらに限定されない。
 本発明の光硬化性材料組成物の調製方法は特に制限されず、すべての材料を秤量した後、加熱撹拌する方法が最も簡便である。ただし、加熱による重合の懸念がある場合は適宜重合禁止剤を添加しても良い。また加熱だけでは均一に混合することが困難な場合はアセトン等の溶剤に全ての材料を溶解させた後、溶媒留去することで調製しても良い。さらに、超音波ホモジナイザー、ボールミル、ディスクミル等の分散機による撹拌を利用しても良い。
 光硬化性材料組成物を硬化する工程において、硬化物の形状や光硬化性材料組成物の硬化方法については特に限定されない。硬化方法としては、例えば、基材上に光硬化性材料組成物を塗布した後に光照射する方法や型に光硬化性材料組成物を注入した後に光照射する方法、薄膜の硬化物を積み重ねる光学的立体造形法等である。
 光硬化性材料組成物を基材上に塗布する方法は、特に限定されない。例えば、ロールコーター、リバースコーター、バーコーター、スリットコーター等の接触転写型塗布装置や、スピンナー(回転式塗布装置)、カーテンフローコーター等の非接触型塗布装置を用いて、上の樹脂を含む組成物を基材上に、所望の膜厚となるよう塗布して塗布膜を形成しても良い。
 また、本発明の光硬化性材料組成物を用いて光学的立体造形を行う場合、従来既知の光学的立体造形方法及び装置のいずれもが使用できる。好ましくは、光硬化性材料組成物に所望のパターンを有する硬化層が得られるように活性エネルギー線を選択的に照射して硬化層を形成し、次いでこの硬化層に未硬化の液状光硬化性樹脂組成物を供給し、同様に活性エネルギー光線を照射して前記の硬化層と連続した硬化層を新たに形成する積層操作を繰り返すことによって最終的に目的とする立体的造形物を得る方法である。
 本発明の光硬化性材料組成物は、光学的立体造形分野に幅広く用いることができ、何ら限定されるものではないが、代表的な応用分野としては、設計の途中で外観デザインを検証するためのモデル、部品の機能性をチェックするためのモデル、鋳型を制作するための樹脂型、金型を制作するためのベースモデル、試作金型用の直接型などを挙げることできる。特に、本発明の材料組成物は、熱変形温度と耐衝撃性を両立するため耐久性が求められる部品としても使用可能である。
 活性エネルギー光線としては、紫外線、電子線、X線、放射線、高周波などを挙げることができる。その中でも、300~430nmの波長を有する紫外線が経済的な観点から好ましく用いられ、その際の光源としては、紫外線レーザー(例えば半導体励起固体レーザー、Arレーザー、He-Cdレーザーなど)、高圧水銀ランプ、超高圧水銀ランプ、水銀ランプ、キセノンランプ、ハロゲンランプ、メタルハライドランプ、紫外線LED(発光ダイオード)、蛍光灯などを使用することができる。
 光硬化性材料組成物よりなる造形面に活性エネルギー光線を照射して所定の形状パターンを有する各硬化樹脂層を形成するに当たっては、レーザー光などのような点状に絞られた活性エネルギー光線を使用して点描または線描方式で硬化樹脂層を形成してもよいし、または液晶シャッターまたはデジタルマイクロミラーシャッター(DMD)などのような微小光シャッターを複数配列して形成した面状描画マスクを介して造形面に活性エネルギー線を面状に照射して硬化樹脂層を形成させる造形方式を採用してもよい。
 図1に、自由液面法を用いた光造形装置100の構成例を示す。光造形装置100は、液状の光硬化性樹脂組成物10を満たした槽11を有している。槽11の内側には、造形ステージ12が、駆動軸13によって鉛直方向に駆動可能に設けられている。光源14から射出された活性エネルギー光線15は、スライスデータに従って制御部18によって制御されるガルバノミラー16で照射位置が変更され、槽11の表面を走査する。図1では、走査範囲を太い破線で例示的に示している。スライスデータとは、造形対象の三次元モデルの三次元形状データを所定の厚さで造形方向にスライスして生成されるデータである。
 活性エネルギー光線15の照射によって硬化される光硬化性樹脂組成物10の厚さdは、スライスデータの生成時の設定に基づいて決まる値であり、得られる造形物17の精度(三次元形状データの再現性)に影響を与える。厚さdは、制御部18が駆動軸13の駆動量を制御することによって達成される。
 まず、制御部18が設定に基づいて駆動軸13を制御し、造形ステージ12の上に所定の厚さdで光硬化性樹脂組成物10を供給する。造形ステージ12上の液状の光硬化性樹脂組成物10に、スライスデータに基づいて活性エネルギー光線15が選択的に照射されると、光硬化性樹脂組成物10が硬化してスライスデータに応じた硬化物が形成される。次いで、造形ステージ12を白抜きの矢印の方向に厚さdに相当する距離を移動させ、硬化物の表面に厚さdで未硬化の光硬化性樹脂組成物10を供給する。そして、スライスデータに基づいて未硬化の光硬化性樹脂組成物10に活性エネルギー光線15を照射すると、先に形成した硬化物と一体化した硬化物が形成される。このように、光硬化性樹脂組成物を層状に硬化させる工程を繰り返すことによって、目的とする立体的な硬化物(造形物)17を得ることができる。
 このようにして得られる造形物を槽11から取り出し、その表面に残存する未反応の光硬化性樹脂組成物を除去した後、必要に応じて洗浄や熱処理によるポストキュアーなどの後処理を行って、最終的な物品としてもよい。ポストキュアーにより、造形物の表面及び内部に残存する可能性のある未反応の光硬化性樹脂組成物を硬化させることができ、造形物の表面のべたつきを抑えることができる他、造形物の初期強度を向上させることができる。
 また、規制液面法による造形も好ましい。規制液面法を用いる光造形装置は、図1の光造形装置100の造形ステージ12が硬化物を液面の上方に引き上げるように設けられ、光照射手段が槽11の下方に設けられた構成となる。規制液面法の代表的な造形例は、次の通りである。まず、昇降自在に設けられた支持ステージの支持面と槽の底面との間に光硬化性樹脂組成物を供給し、支持ステージの支持面と光硬化性樹脂組成物を収容した槽の底面とが所定の距離dとなるように設置する。次いで、光硬化性樹脂組成物を収容した槽の底面側から、支持ステージの支持面と槽の底面との間の光硬化性樹脂組成物に、スライスデータに基づいて活性エネルギー光線が照射される。活性エネルギー光線の照射により、ステージ支持面と槽の底面との間の光硬化性樹脂組成物が硬化し、硬化物が形成される。その後、支持ステージを上昇させて、硬化物を槽の底面から引きはがす。
 次いで、支持ステージの上に形成された硬化物と槽の底面との間が所定の距離dとなるように支持ステージの高さを調整すると同時に、支持ステージ上の硬化物と槽の底面との間に未硬化の硬化性樹脂組成物を供給する。そして、先ほどと同様に、未硬化の光硬化性樹脂組成物にスライスデータに基づいて選択的に活性エネルギー光線が照射され、先に形成した硬化物と一体化した硬化物が形成される。このような工程を複数回繰り返すことにより、光硬化性樹脂物の硬化物が積層されて一体化した造形物を得ることができる。
 以上、本発明に係る光硬化樹脂組成物を光学的立体造形法にて硬化させて物品を製造する例を説明したが、用途はこれに限定されるものではない。本発明に係る光硬化樹脂組成物は、光照射によって重合させることにより、保護フィルム、塗膜、封止剤などを製造することができる。あるいは、型に、原料として本発明に係る光硬化樹脂組成物を流し込み、型に流し込んだ後に光を照射して重合させることにより、物品を製造することもできる。いずれの用途においても、本発明に係る光硬化樹脂組成物の硬化物は、高い熱変形温度と高い耐衝撃性を両立することができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はその要旨を超えない限り、以下に説明する実施例に限定されるものではない。
 (実施例1)
 (1)光硬化性材料組成物の作製
 エーテル結合を含んだ5員環骨格を有する単官能アクリレートとしてテトラヒドロフルフリルアクリレート28.0g、ポリカーボネート樹脂としてビスフェノールZ型のポリカーボネート樹脂(三菱ガス化学株式会社製、平均分子量20000)7.0g、重合開始剤として2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド(東京化成工業株式会社製)0.22gを秤量した。これらを密閉できる容器に移し、50℃で24時間加熱撹拌(アズワン社製 VMRC-5)を行うことで光硬化性材料組成物を調製した。
 (2)評価用サンプルの作製
 離型剤を塗布した石英板に4mm×10mm×80mmのサイズで枠抜きされた型を設置し、上記で調製した光硬化性材料組成物を型に注ぎ離型剤を塗布した石英板で挟んで固定した。紫外線積算光量計(商品名:UTI-250、ウシオ電機株式会社製)を用いて365nmの波長の光を10mWで120秒照射を表面裏面各2回行うことで、光硬化性材料組成物を硬化させた。その後、型から角柱状の造形物を離型した。得られた造形物を50℃で1時間熱処理した後に100℃で1時間熱処理し、評価用サンプルとした。
 (3)評価方法
 株式会社東洋精機製作所製のHDT試験機を用いた荷重たわみ温度(熱変形温度)並びに株式会社東洋精機製作所製の衝撃試験機及びノッチ加工機を用いたシャルピー衝撃強さ(耐衝撃性)の評価は、JIS K 7191-1 A法及びJIS K 7111-1に則った試験条件で評価用サンプルを評価し、下記の基準で判定した。結果を表1に示す。
 (評価基準)
 A:荷重たわみ温度が70℃以上かつシャルピー衝撃強さが20kJ/m以上
 B:荷重たわみ温度が40℃以上70℃未満かつシャルピー衝撃強さが20kJ/m以上
 C:荷重たわみ温度が40℃未満若しくはシャルピー衝撃強さが20kJ/m未満
 評価基準がAとなる評価用サンプルは、ABS樹脂と同等の荷重たわみ温度及びシャルピー衝撃強さを有する。また、評価基準がBとなる評価用サンプルは、ABS樹脂程ではないが、従来の光硬化性材料組成物から得られる硬化物を超える荷重たわみ温度及びシャルピー衝撃強さを両立する性能を有する。一方、評価基準がCの評価用サンプルは従来の光硬化性材料組成物から得られる硬化物と同等の荷重たわみ温度及びシャルピー衝撃強さを有する。
 (実施例2)
 ポリカーボネート樹脂を14.0gに変更した他は実施例1と同様の方法で光硬化性材料組成物を調製した。この光硬化性材料組成物を用いて実施例1と同様の方法で評価用サンプルを作製し、実施例1に記載の方法で評価した。評価結果を表1に示す。
 (実施例3)
 テトラヒドロフルフリルアクリレートを24.5g、ポリカーボネート樹脂を14.0gに変更し、さらにその他の単官能(メタ)アクリレートとして環状トリメチロールプロパンホルマールアクリレートを3.5g追加した他は実施例1と同様の方法で光硬化性材料組成物を調製した。この光硬化性材料組成物を用いて実施例1と同様の方法で評価用サンプルを作製し、実施例1に記載の方法で評価した。評価結果を表1に示す。
 (実施例4)
 テトラヒドロフルフリルアクリレートを8.0g、ポリカーボネート樹脂を14.0gに変更し、さらにその他の単官能(メタ)アクリレートとして環状トリメチロールプロパンホルマールアクリレートを20.0g追加した他は実施例1と同様の方法で光硬化性材料組成物を調製した。この光硬化性材料組成物を用いて実施例1と同様の方法で評価用サンプルを作製し、実施例1に記載の方法で評価した。評価結果を表1に示す。
 (実施例5)
 ポリカーボネート樹脂を三菱ガス化学株式会社製EP-6000に変更した他は実施例1と同様の方法で光硬化性材料組成物を調製した。この光硬化性材料組成物を用いて実施例1と同様の方法で評価用サンプルを作製し、実施例1に記載の方法で評価した。評価結果を表1に示す。
 (実施例6)
 ポリカーボネート樹脂を三菱ガス化学株式会社製BIS-Cに変更した他は実施例1と同様の方法で光硬化性材料組成物を調製した。この光硬化性材料組成物を用いて実施例1と同様の方法で評価用サンプルを作製し、実施例1に記載の方法で評価した。評価結果を表1に示す。
 (実施例7)
 テトラヒドロフルフリルアクリレートをアルコキシ化テトラヒドロフルフリルアクリレート(アルケマ株式会社製 サートマーSR611)、ポリカーボネート樹脂を三菱ガス化学株式会社製FPC-0220に変更した他は実施例1と同様の方法で光硬化性材料組成物を調製した。この光硬化性材料組成物を用いて実施例1と同様の方法で評価用サンプルを作製し、実施例1に記載の方法で評価した。評価結果を表1に示す。
 (実施例8)
 テトラヒドロフルフリルアクリレートを(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチルアクリレートに変更した他は実施例1と同様の方法で光硬化性材料組成物を調製した。この光硬化性材料組成物を用いて実施例1と同様の方法で評価用サンプルを作製し、実施例1に記載の方法で評価した。評価結果を表1に示す。
 (実施例9)
 テトラヒドロフルフリルアクリレートをテトラヒドロフルフリルアルコールアクリル酸多量体エステル(大阪有機化学工業株式会社製ビスコート#150D)に変更した他は実施例1と同様の方法で光硬化性材料組成物を調製した。この光硬化性材料組成物を用いて実施例1と同様の方法で評価用サンプルを作製し、実施例1に記載の方法で評価した。評価結果を表1に示す。
 (実施例10)
 テトラヒドロフルフリルアクリレートを24.5gに変更し、さらにその他の単官能(メタ)アクリレートとしてイソボルニルメタクリレートを3.5g追加した他は実施例1と同様の方法で光硬化性材料組成物を調製した。この光硬化性材料組成物を用いて実施例1と同様の方法で評価用サンプルを作製し、実施例1に記載の方法で評価した。評価結果を表1に示す。
 (実施例11)
 テトラヒドロフルフリルアクリレートを24.5gに変更し、さらにその他の単官能(メタ)アクリレートとして1-アダマンチルアクリレートを3.5g追加した他は実施例1と同様の方法で光硬化性材料組成物を調製した。この光硬化性材料組成物を用いて実施例1と同様の方法で評価用サンプルを作製し、実施例1に記載の方法で評価した。評価結果を表1に示す。
 (実施例12)
 テトラヒドロフルフリルアクリレートを25.0g、ポリカーボネート樹脂を14.0gに変更し、さらにその他の単官能(メタ)アクリレートとして環状トリメチロールプロパンホルマールアクリレートを3.0g追加した他は実施例1と同様の方法で光硬化性材料組成物を調製した。この光硬化性材料組成物を用いて実施例1と同様の方法で評価用サンプルを作製し、実施例1に記載の方法で評価した。評価結果を表1に示す。
 (比較例1)
 テトラヒドロフルフリルアクリレートをテトラヒドロフルフリルメタクリレートに変更した他は実施例1と同様の方法で光硬化性材料組成物を調製した。この光硬化性材料組成物を用いて実施例1と同様の方法で評価用サンプルを作製し、実施例1に記載の方法で評価した。評価結果を表1に示す。
 (比較例2)
 テトラヒドロフルフリルアクリレートを環状トリメチロールプロパンホルマールアクリレートに変更した他は実施例1と同様の方法で光硬化性材料組成物を調製した。この光硬化性材料組成物を用いて実施例1と同様の方法で評価用サンプルを作製し、実施例1に記載の方法で評価した。評価結果を表1に示す。
 (比較例3)
 テトラヒドロフルフリルアクリレートを7.0g、ポリカーボネート樹脂を14.0gに変更し、さらにその他の単官能(メタ)アクリレートとして環状トリメチロールプロパンホルマールアクリレートを21.0g追加した他は実施例1と同様の方法で光硬化性材料組成物を調製した。この光硬化性材料組成物を用いて実施例1と同様の方法で評価用サンプルを作製し、実施例1に記載の方法で評価した。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、略号は以下の化合物を示す。
 単官能アクリレート1:テトラヒドロフルフリルアクリレート
 単官能アクリレート2:アルコキシ化テトラヒドロフルフリルアクリレート
 単官能アクリレート3:(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチルアクリレート
 単官能アクリレート4:テトラヒドロフルフリルアルコールアクリル酸多量体エステル
 その他の単官能(メタ)アクリレート1:環状トリメチロールプロパンホルマールアクリレート
 その他の単官能(メタ)アクリレート2:イソボルニルメタクリレート
 その他の単官能(メタ)アクリレート3:1-アダマンチルアクリレート
 その他の単官能(メタ)アクリレート4:テトラヒドロフルフリルメタクリレート
 ポリカーボネート樹脂1:ビスフェノールZ型のポリカーボネート樹脂(平均分子量20000)
 ポリカーボネート樹脂2:三菱ガス化学株式会社製EP-6000
 ポリカーボネート樹脂3:三菱ガス化学株式会社製BIS-C
 ポリカーボネート樹脂4:三菱ガス化学株式会社製FPC-0220
 本発明の光硬化性材料組成物及びその硬化物は、従来の活性エネルギー光線で硬化する材料と比較して熱変形温度が高く衝撃性の強いため、耐久性が求められるコーティング材料や部品を光硬化において製造することに利用することができる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2019年12月13日提出の日本国特許出願特願2019-225913および2020年12月2日提出の日本国特許出願特願2020-200635を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。
 10:光硬化性樹脂組成物
 11:槽
 12:造形ステージ
 13:駆動軸
 14:光源
 15:活性エネルギー光線
 16:ガルバノミラー
 17:硬化物(造形物)
 18:制御部
 100:光造形装置

Claims (14)

  1.  エーテル結合を含んだ5員環骨格を有する単官能アクリレートと、前記エーテル結合を含んだ5員環骨格を有する単官能アクリレートに可溶なポリカーボネート樹脂と、を少なくとも有する光硬化性材料組成物であって、
     前記エーテル結合を含んだ5員環骨格を有する単官能アクリレートの含有量が18重量%乃至80重量%であり、
     前記ポリカーボネート樹脂の含有量が10重量%乃至40重量%である、
     光硬化性材料組成物。
  2.  前記エーテル結合を含んだ5員環骨格を有する単官能アクリレートがテトラヒドロフルフリルアクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチルアクリレート、テトラヒドロフルフリルアルコールアクリル酸多量体エステル、及びアルコキシ化テトラヒドロフルフリルアクリレートからなる群から選択されることを特徴とする請求項1に記載の光硬化性材料組成物。
  3.  前記ポリカーボネート樹脂がビスフェノールA型、ビスフェノールB型、ビスフェノールC型、ビスフェノールE型、ビスフェノールF型、ビスフェノールG型、ビスフェノールM型、ビスフェノールP型、ビスフェノールPH型、ビスフェノールTMC型、ビスフェノールZ型、及びビスフェノキシエタノールフルオレン型からなる群から選択される少なくとも1つであることを特徴とする請求項1または2に記載の光硬化性材料組成物。
  4.  前記ポリカーボネート樹脂がビスフェノールA型、ビスフェノールB型、ビスフェノールC型、ビスフェノールE型、ビスフェノールF型、ビスフェノールG型、ビスフェノールTMC型、ビスフェノールZ型、及びビスフェノキシエタノールフルオレン型からなる群から選択されることを特徴とする請求項3に記載の光硬化性材料組成物。
  5.  前記ポリカーボネート樹脂がビスフェノールC型、ビスフェノールZ型、及びビスフェノキシエタノールフルオレン型からなる群から選択される少なくとも1つであることを特徴とする請求項4に記載の光硬化性材料組成物。
  6.  さらに、前記エーテル結合を含んだ5員環骨格を有する単官能アクリレートとは異なる単官能(メタ)アクリレートを含むことを特徴とする請求項1乃至5のいずれか1項に記載の光硬化性材料組成物。
  7.  前記エーテル結合を含んだ5員環骨格を有する単官能アクリレートとは異なる単官能(メタ)アクリレートを8重量%乃至48重量%の含有量で含むことを特徴とする請求項6に記載の光硬化性材料組成物。
  8.  前記エーテル結合を含んだ5員環骨格を有する単官能アクリレートとは異なる単官能(メタ)アクリレートが4-tert-ブチルシクロヘキシル(メタ)アクリレート、3,3,5-トリメチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、環状トリメチロールプロパンホルマール(メタ)アクリレート、3-ヒドロキシ-1-(メタ)アクリロイルオキシアダマンタン、1-アダマンチル(メタ)アクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、2-イソプロピルアダマンタン-2-イル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチル(メタ)アクリレート、及びトリシクロデカン(メタ)アクリレートからなる群から選択される少なくとも1つであることを特徴とする請求項6または7に記載の光硬化性材料組成物。
  9.  光学的立体造形法に用いられることを特徴とする請求項1乃至8のいずれか1項に記載の光硬化性材料組成物。
  10.  請求項1乃至9のいずれか1項に記載の光硬化性材料組成物が共重合してなる硬化物。
  11.  光学的立体造形法を用いた物品の製造方法であって、
     光硬化性樹脂組成物を所定の厚さで供給する工程と、
     造形対象の三次元モデルのスライスデータに基づいて、前記光硬化性樹脂組成物に活性エネルギー光線を照射して硬化させる工程と、
     を含み、
     前記光硬化性樹脂組成物が、請求項1乃至8のいずれか1項に記載の光硬化性樹脂組成物であることを特徴とする、物品の製造方法。
  12.  さらに、前記活性エネルギー光線の照射によって得られた造形物に、熱処理を施す工程を含むことを特徴とする、請求項11に記載の物品の製造方法。
  13.  前記活性エネルギー光線は、300~430nmの波長を有する紫外線であることを特徴とする、請求項11または12に記載の物品の製造方法。
  14.  注型を用いた物品の製造方法であって、
     型に原料を流し込む工程と、
     前記型に流し込んだ前記原料に光を照射する工程と、
     を含み、
     前記原料が、請求項1乃至8のいずれか1項に記載の光硬化性樹脂組成物であることを特徴とする、物品の製造方法。
PCT/JP2020/046162 2019-12-13 2020-12-10 光硬化性材料組成物並びに光硬化性材料組成物の硬化物及びその製造方法 WO2021117836A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/751,929 US11834539B2 (en) 2019-12-13 2022-05-24 Photocurable material composition, cured product of photocurable material composition and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-225913 2019-12-13
JP2019225913 2019-12-13
JP2020200635A JP2021095567A (ja) 2019-12-13 2020-12-02 光硬化性材料組成物並びに光硬化性材料組成物の硬化物及びその製造方法
JP2020-200635 2020-12-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/751,929 Continuation US11834539B2 (en) 2019-12-13 2022-05-24 Photocurable material composition, cured product of photocurable material composition and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2021117836A1 true WO2021117836A1 (ja) 2021-06-17

Family

ID=76329962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046162 WO2021117836A1 (ja) 2019-12-13 2020-12-10 光硬化性材料組成物並びに光硬化性材料組成物の硬化物及びその製造方法

Country Status (2)

Country Link
US (1) US11834539B2 (ja)
WO (1) WO2021117836A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11834539B2 (en) 2019-12-13 2023-12-05 Canon Kabushiki Kaisha Photocurable material composition, cured product of photocurable material composition and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008547A (ja) * 2010-05-28 2012-01-12 Sumitomo Chemical Co Ltd 光学フィルム
JP2013112693A (ja) * 2011-11-25 2013-06-10 Toagosei Co Ltd 硬化型接着剤組成物
JP2014529637A (ja) * 2011-08-01 2014-11-13 サン ケミカル コーポレイション 高伸縮のエネルギー硬化性インク、及び熱転写ラベルへの応用における使用方法
JP2015120781A (ja) * 2013-12-20 2015-07-02 東亞合成株式会社 活性エネルギー線硬化型コーティング剤組成物
US20150315325A1 (en) * 2012-12-14 2015-11-05 Rick L. Tabor Reaction products containing hydroxyalkylterephthalates and methods of making and using same
JP2018522090A (ja) * 2015-05-21 2018-08-09 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se エネルギー硬化性超分岐ポリカーボネートポリオール骨格多官能アクリレート
WO2020246489A1 (ja) * 2019-06-07 2020-12-10 キヤノン株式会社 硬化性樹脂組成物とその硬化物、及び立体物の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329133A (ja) 2000-05-23 2001-11-27 Kawamura Inst Of Chem Res 樹脂複合体、組成物及びその製造方法
JP5349097B2 (ja) * 2009-03-19 2013-11-20 富士フイルム株式会社 インク組成物、インクジェット記録方法、印刷物、及び、成形印刷物の製造方法
JP6865460B2 (ja) 2016-09-29 2021-04-28 シーメット株式会社 光学的立体造形用樹脂組成物
JP6924260B2 (ja) * 2017-04-26 2021-08-25 富士フイルム株式会社 光硬化性インク組成物、及び、画像形成方法
WO2021117836A1 (ja) 2019-12-13 2021-06-17 キヤノン株式会社 光硬化性材料組成物並びに光硬化性材料組成物の硬化物及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008547A (ja) * 2010-05-28 2012-01-12 Sumitomo Chemical Co Ltd 光学フィルム
JP2014529637A (ja) * 2011-08-01 2014-11-13 サン ケミカル コーポレイション 高伸縮のエネルギー硬化性インク、及び熱転写ラベルへの応用における使用方法
JP2013112693A (ja) * 2011-11-25 2013-06-10 Toagosei Co Ltd 硬化型接着剤組成物
US20150315325A1 (en) * 2012-12-14 2015-11-05 Rick L. Tabor Reaction products containing hydroxyalkylterephthalates and methods of making and using same
JP2015120781A (ja) * 2013-12-20 2015-07-02 東亞合成株式会社 活性エネルギー線硬化型コーティング剤組成物
JP2018522090A (ja) * 2015-05-21 2018-08-09 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se エネルギー硬化性超分岐ポリカーボネートポリオール骨格多官能アクリレート
WO2020246489A1 (ja) * 2019-06-07 2020-12-10 キヤノン株式会社 硬化性樹脂組成物とその硬化物、及び立体物の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11834539B2 (en) 2019-12-13 2023-12-05 Canon Kabushiki Kaisha Photocurable material composition, cured product of photocurable material composition and manufacturing method thereof

Also Published As

Publication number Publication date
US11834539B2 (en) 2023-12-05
US20220282020A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
US20210088899A1 (en) Thiol-acrylate polymers, methods of synthesis thereof and use in additive manufacturing technologies
JP7271138B2 (ja) 光硬化性材料組成物およびその硬化物
EP3418313B1 (en) Composition optical three-dimensional molding
WO2020209105A1 (ja) 立体造形用の光硬化性樹脂組成物、及び、物品の製造方法
CN112955302A (zh) 用于具有部分固化的积层制造的方法
WO2021117836A1 (ja) 光硬化性材料組成物並びに光硬化性材料組成物の硬化物及びその製造方法
JP5393239B2 (ja) 光学的立体造形物の処理方法
JP2021095567A (ja) 光硬化性材料組成物並びに光硬化性材料組成物の硬化物及びその製造方法
US11667741B2 (en) Photocurable resin composition
JP5738367B2 (ja) 黄色度の低い光学的立体造形物
US11673983B2 (en) Photocurable resin composition and a method for producing an article
JP7434745B2 (ja) 活性エネルギー線硬化型組成物、硬化物、および硬化物の製造方法
JP2022027496A (ja) 光硬化性樹脂組成物
JP2021105156A (ja) 活性エネルギー線硬化型組成物、インクセット、組成物収容容器、並びに像形成装置及び像形成方法、印刷物
JP6390817B2 (ja) 光学物品用活性エネルギー線硬化型樹脂組成物、硬化物及び光学シート
JP2022047507A (ja) 光硬化性組成物及びその硬化物
US20220081571A1 (en) Energy ray-curable resin compositions and its cured products
WO2016047586A1 (ja) 樹脂成形品の製造方法、成形型
WO2024090478A1 (ja) 光硬化性樹脂組成物
JP7400250B2 (ja) 活性エネルギー線硬化型組成物、及び立体物の造形方法
JP2017217767A (ja) 光硬化性吐出用樹脂組成物及びそれを用いた硬化物、印刷物
JP2023105936A (ja) 光硬化性樹脂組成物
JP2024014707A (ja) 光硬化性樹脂組成物及び立体物の製造方法
JP2023532178A (ja) サージカルガイド用光硬化性樹脂組成物、それから製造されたサージカルガイド及びその製造方法
JP2023136633A (ja) 立体造形物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898344

Country of ref document: EP

Kind code of ref document: A1