WO2021115441A1 - 盐浴杂质离子提纯方法 - Google Patents

盐浴杂质离子提纯方法 Download PDF

Info

Publication number
WO2021115441A1
WO2021115441A1 PCT/CN2020/135813 CN2020135813W WO2021115441A1 WO 2021115441 A1 WO2021115441 A1 WO 2021115441A1 CN 2020135813 W CN2020135813 W CN 2020135813W WO 2021115441 A1 WO2021115441 A1 WO 2021115441A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt bath
lithium
ions
sodium
absorbent
Prior art date
Application number
PCT/CN2020/135813
Other languages
English (en)
French (fr)
Inventor
胡伟
覃文城
谈宝权
陈芳华
Original Assignee
深圳市东丽华科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市东丽华科技有限公司 filed Critical 深圳市东丽华科技有限公司
Publication of WO2021115441A1 publication Critical patent/WO2021115441A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions

Definitions

  • the invention relates to the technical field of glass chemical strengthening production, in particular to a method for purifying a glass reaction salt bath.
  • the size of the glass will expand due to the large ions in the salt bath replacing the small ions in the salt bath, and the increase of impurity ions will weaken the ion exchange capacity, especially the increase of Li + , resulting in a serious weakening of lithium aluminum
  • the sodium-lithium exchange degree of silicon chemically strengthened glass leads to a rapid decrease in size expansion after strengthening.
  • the increase of Li+ in the salt bath will lead to the lower limit of the mass production size of lithium aluminum silicon chemically strengthened glass.
  • the current chemically strengthened glass factory uses phosphate to dissolve in a salt bath, and phosphate and lithium ions form lithium phosphate and precipitate.
  • the input of this method will make the salt bath turbid, and it will be available after being clarified for a long period of 24-48 hours, and the lithium phosphate will precipitate.
  • Part of the lithium phosphate particles will be suspended in the salt bath and attached to the surface of the strengthened glass, thereby causing defects in the glass.
  • Excessive lithium phosphate will form phosphate crystals containing Na3PO4 with sodium on the glass substrate.
  • surface defects can be seen on the glass substrate.
  • the glass causes irreversible permanent damage such as raised point defects or surface fogging corrosion, which reduces the mechanical strength of the glass. Therefore, the purification of impurity ions in the salt bath is imminent.
  • the present invention relates to glass chemical strengthening production.
  • the main purpose of the present invention is to provide salt bath regeneration or purification and impurity removal methods, absorb salt bath compound impurities to maintain the salt bath stable state, and reduce the additional damage of the absorbent to the glass product, and ultimately improve Preparation process efficiency.
  • the present invention provides a method for purifying impurity ions in a salt bath.
  • the salt bath is heated to a reaction temperature between 350°C and 500°C and contains pure salt of potassium nitrate and/or sodium nitrate and/or lithium nitrate or Mixed salt; for contacting the exchange substrate containing lithium ions with the salt bath, and diffusing the lithium ions from the exchange substrate to be dissolved in the salt bath;
  • the absorbent is a phosphate; the stabilizer has siloxy groups and/or has the properties of siloxy groups.
  • the absorbent is sodium phosphate and or sodium dihydrogen phosphate, which form reactive precipitates and suspended particles with impurity lithium ions in the salt bath;
  • the reactive precipitates and suspended particles include: insoluble Li3PO4, insoluble Li 2 NaPO 4 Or at least one of insoluble LiNa 2 PO 4.
  • the reactive precipitation and suspending particles are adsorbed on the surface of the stabilizer by the stabilizer.
  • the stabilizer comprises at least one of silicon dioxide ⁇ silicic acid ⁇ metasilicate ⁇ silicate containing a silicon-oxygen covalent bond.
  • the stabilizer is at least one of silica sand, silicone oil, diatomaceous earth, and silica gel.
  • the dosage of the absorbent is 0.1-2wt% of the salt bath to be purified.
  • the dosage of the stabilizer is less than 50% of the mass of the absorbent.
  • the dosage of the stabilizer is less than 20% of the mass of the absorbent.
  • the order of administration of the stabilizer is at the same time as the absorbent or later than the absorbent.
  • the standard value is to keep the lithium ion in the salt bath below 300 ppm.
  • the standard value is to keep the lithium ion in the salt bath below 200 ppm.
  • the standard value is to keep the lithium ion in the salt bath below 150 ppm.
  • the purification salt bath is a potassium-sodium mixed salt bath or a pure sodium salt bath, and the lithium ion in the salt bath after purification is less than 300 ppm.
  • the purification salt bath is a potassium-sodium-lithium mixed salt bath or a sodium-lithium salt bath, and the lithium ions in the salt bath will be stabilized at a prescribed value between plus and minus 500 ppm after being put into and purified.
  • the present invention introduces the impurity ion absorbent phosphate lithium phosphate precipitates produced during use in the salt bath to adhere to the glass and cause defects.
  • the solution provided by the present invention is to add an absorbent and a stabilizer to the impurity ion salt bath, the absorbent is a phosphate, and the stabilizer is a stabilizer containing siloxy groups such as silicone oil, diatomaceous earth, silica gel, etc. , It will actively adsorb the lithium phosphate deposits, so that they will not sink to the bottom, prevent excessive precipitation and cause them to be suspended in the salt bath, thereby effectively solving the problem of glass defects caused by phosphates in removing impurities, and the bottom deposits are difficult solving issues. Further, the salt bath impurity ion purification method can quickly exert the absorption effect, and is convenient and quick to take out, reducing the impact on production efficiency.
  • the absorbent and stabilizer at the same time in the preferred ratio. Due to the addition of the stabilizer, the suspended matter can be quickly absorbed to make the salt bath clarified. , It can be used within a short period of 1-2h. This ensures the continuous strengthening of the salt bath, facilitates continuous production, and improves production efficiency.
  • the ions exchanged in the salt bath are sodium ions and/or lithium ions.
  • the concentration of lithium ions in the salt bath will gradually increase, which will cause the salt bath to exceed the standard. Therefore, after a few batches of strengthening, purification materials will be added to remove lithium ions. . However, excessive purification will cause glass quality problems. Using purified samples with stabilizers can effectively reduce this problem.
  • the invention relates to a strengthened glass salt bath process, which is used to solve the method for regenerating or reducing surface defects after salt bath poisoning.
  • This salt bath impurity ion purification method includes the following steps:
  • Step 1 Salt bath preparation; the salt bath contains pure salt or mixed salt of potassium nitrate and/or sodium nitrate and/or lithium nitrate;
  • Step 2 Preparation of the exchange substrate containing lithium ions
  • Step 3 Immerse and heat the exchange substrate in a salt bath with a reaction temperature between 350°C and 500°C;
  • Step 4 Bring the exchange substrate containing lithium ions into contact with the salt bath, and allow the lithium ions to diffuse from the exchange substrate to dissolve in the salt bath;
  • the impurity ion lithium ion, sodium ion concentration exceeds the standard value, put in absorbent and stabilizer.
  • the standard value can be, for example, that the purification salt bath is a potassium-sodium-lithium mixed salt bath or a sodium-lithium salt bath. After being purified, the lithium ions in the salt bath will be stabilized at a specified value between plus and minus 500 ppm, or the purification
  • the salt bath is a potassium-sodium mixed salt bath or a pure sodium salt bath. After ion exchange, the salt bath contains excessive impurity lithium ions, which exceeds the standard value of 500PPm.
  • the lithium ion in the salt bath is less than 300PPm;
  • the standard value is to keep the lithium ion in the salt bath lower than 200 ppm; preferably, the standard value is to keep the lithium ion in the salt bath lower than 150 ppm. If the mixed salt bath contains lithium nitrate, the lithium nitrate does not exceed 5wt%.
  • the salt bath extract is used to stabilize the concentration of lithium ions in the salt bath instead of absorbing the lithium ions in the salt bath. To below 300PPm.
  • the dosage of the absorbent is 0.1-2wt% of the salt bath to be purified.
  • the order of the stabilizer is to be administered at the same time as the absorbent or later than the absorbent.
  • the dosage of the absorbent is less than 50% of the mass of the stabilizer; preferably, the dosage of the absorbent is less than 20% of the mass of the stabilizer.
  • the absorbent is a phosphate, such as sodium phosphate and or sodium dihydrogen phosphate, which forms reactive precipitates and suspended particles with impurity lithium ions in the salt bath;
  • the reactive precipitates and suspended particles include: insoluble Li3PO4, insoluble At least one of Li2NaPO4 or insoluble LiNa2PO4. The increasing number of these reactive precipitates and suspended particles will also increase the degree of mixing of the salt bath and reduce the quality of the salt bath.
  • the absorbent is added at the same time as the stabilizer.
  • the stabilizer has siloxy groups and/or has the properties of siloxy groups; for example, it contains at least one of silicon dioxide ⁇ silicic acid ⁇ metasilicate ⁇ silicate containing silicon-oxygen covalent bond kind.
  • the stabilizer may be, for example, at least one of silica sand, silicone oil, diatomaceous earth, and silica gel.
  • the stabilizer will not decompose when adsorbed in the salt bath and will not react with the glass, but the reactive precipitate and suspended particles will be adsorbed on the surface of the stabilizer by the stabilizer.
  • the absorbent and stabilizer can be powder, granule or slurry.
  • the glass substrate was used as the exchange substrate, the salt bath was 87 wt% potassium nitrate + 12 wt% sodium nitrate + 1 wt% lithium nitrate, and the reaction temperature was 480°C.
  • the mass ratio of lithium ions in the salt bath is 1000 ppm, and the preferred concentration range is between 1000 and 1500 ppm.
  • the concentration of lithium ions in the salt bath will gradually exceed this range, in order to maintain the lithium ions in the salt bath in the preferred range.
  • the purified sample containing stabilizer will be added continuously, which can absorb the extra lithium ion in the salt bath and stabilize it at 1000-1500PPm, and multiple additions will not cause glass defects.
  • the exchange substrate is completely immersed in the salt bath during the ion exchange, and the sample at the bottom of the reinforcement is higher than the bottom salt bath by more than 5 mm, preferably 10 mm. And according to the standard value to keep the lithium ion in the salt bath below 300PPm, the absorbent and stabilizer were added; the corresponding purifying agent was added in the comparative example.
  • the absorbent such as sodium phosphate
  • the absorbent such as sodium phosphate
  • the lithium phosphate and sodium phosphate suspended in the salt bath will Reacts with lithium ions or sodium ions on the glass surface to form surface defects. Therefore, the suspended part of sodium phosphate and lithium phosphate is a small part of the absorbent, and the stabilizer reacts on the surface and adsorbs to the surface. The amount is less than the input amount of the absorbent, because the precipitated lithium phosphate part does not affect the performance of the glass surface, so no stabilizer is used to react and adsorb.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

一种盐浴杂质离子提纯方法,包括将盐浴加热到反应温度为350℃~500℃之间、且盐浴为含有硝酸钾和/或硝酸钠和/或硝酸锂的纯盐或者混合盐;使包含有锂离子的交换基板与该盐浴接触、并使交换玻璃基板上的锂离子与盐浴中的钠离子交换并扩散至盐浴中形成盐浴杂质离子;当杂质离子锂离子超过标准值时,投入吸收剂和稳定剂;该吸收剂为磷酸盐;该稳定剂带有硅氧基基团和/或具备硅氧基基团性质。

Description

盐浴杂质离子提纯方法 技术领域
本发明涉及玻璃化学强化生产技术领域,特别涉及玻璃反应盐浴的提纯方法。
背景技术
目前玻璃在化学强化过程中,由于其表面压应力产生过程为盐浴大离子交换盐浴小离子,故在不断的强化过程中会使玻璃中的小离子Na +、Li +不断进入盐浴中形成杂质离子,尤其是Li +的增加,虽然只是PPM级,但是已经严重阻碍正常化学强化的进行,导致后续样品强化后的CS值下降,单体强度降低。
玻璃经过化学强化后,由于盐浴中的大离子取代盐浴中的小离子,玻璃会产生尺寸膨胀,而杂质离子的增加会减弱离子交换量,尤其是Li +的增加,导致严重削弱锂铝硅化学强化玻璃的钠-锂交换程度,从而导致强化后尺寸膨胀迅速减少,盐浴中Li+的增加会导致锂铝硅化学强化玻璃量产尺寸偏下限。
对于上述情况,目前化学强化玻璃工厂采用磷酸盐在盐浴中溶解,磷酸根则与锂离子形成磷酸锂而沉淀。该方法投入会使盐浴产生浑浊,待长时间24-48小时澄清之后在可用,且磷酸锂沉淀,部分磷酸锂颗粒会悬浮在盐浴中并附着在强化玻璃表面,从而使玻璃产生缺陷。过量的磷酸锂会与玻璃基板上的钠形成包含Na3PO4的磷酸盐晶体。清洗后随着大磷酸盐晶体被从玻璃基板上除去,玻璃基板上可以看见表面缺陷,例如,使得玻璃造成凸起点缺陷或者表面雾状腐蚀等不可恢复的永久损伤,降低玻璃机械强度。因此,对盐浴杂质离子的提纯迫在眉睫。
发明内容
本发明涉及玻璃化学强化生产中,本发明的主要目的是提供盐浴再生或提纯除杂方式,吸收盐浴化合物杂质维持盐浴稳定状态,并减少吸收剂附加 对玻璃产品的附加伤害,最终提高制备工艺效率。
为实现上述目的,本发明提供盐浴杂质离子提纯方法,所述盐浴加热到反应温度为350℃~500℃之间、且含有硝酸钾和/或硝酸钠和/或硝酸锂的纯盐或者混合盐;用于使包含有锂离子的交换基板与所述盐浴接触、并使所述锂离子从所述交换基板扩散溶于所述盐浴中;
当杂质离子锂离子浓度超过标准值时,投入吸收剂和稳定剂;
所述吸收剂为磷酸盐;所述稳定剂带有硅氧基团和/或具备硅氧基团性质。
优选地,所述吸收剂为磷酸钠和或磷酸二氢钠,与盐浴中杂质锂离子形成反应性沉淀和悬浮颗粒;所述反应性沉淀和悬浮颗粒包括:不溶性Li3PO4、不溶性Li 2NaPO 4或不溶性LiNa 2PO 4中的至少一种。
优选地,所述反应性沉淀和悬浮性颗粒被所述稳定剂吸附于稳定剂表面。
优选地,所述稳定剂包含,二氧化硅\硅酸\偏硅酸盐\含有硅氧共价键的硅酸盐的至少一种。例如,所述稳定剂为硅砂、硅油、硅藻土、硅胶的至少一种。
优选地,所述吸收剂的投放量为待提纯盐浴的0.1-2wt%。
优选地,所述稳定剂的投放量为吸收剂质量的50%以下。
优选地,所述稳定剂的投放量为吸收剂质量的20%以下。
优选地,所述稳定剂的投放顺序为与吸收剂同时投放或晚于所述吸收剂投放。
优选地,所述标准值为保持盐浴中锂离子低于300PPm。
优选地,所述标准值为保持盐浴中锂离子低于200PPm。
优选地,所述标准值为保持盐浴中锂离子低于150PPm。
优选地,所述提纯盐浴为钾钠混合盐浴或纯钠盐浴,经提纯后盐浴中锂离子低于300PPm。
优选地,所述提纯盐浴为钾钠锂混合盐浴或钠锂盐浴,投入经提纯后将盐浴中锂离子将稳定在规定值正负500PPm之间。
本发明在盐浴中引入杂质离子吸收剂磷酸盐在使用过程中产生的磷酸锂沉淀从而附着在玻璃上产生缺陷的问题。
进一步地,本发明所提供的方案为在杂质离子盐浴中加入吸收剂与稳定剂,吸收剂为磷酸盐,而稳定剂为含硅氧基的稳定剂如硅油,硅藻土,硅胶 等物质,其会主动吸附磷酸锂沉淀物,使其不会沉于与底部,防止沉淀过多导致其悬浮于盐浴中,从而有效解决磷酸盐在除去杂质时产生的玻璃缺陷问题,底部沉淀物难处理问题。进一步的,所述盐浴杂质离子提纯方法离可快速的发挥吸收效果,并且方便快捷取出,减少对生产效率的影响。
对于投入磷酸盐吸收剂导致盐浴浑浊,生产中断,降低效率的问题,我方可按吸收剂与稳定剂以优选的比例同时加入,由于稳定剂的加入,可迅速吸附悬浮物使得盐浴澄清,在短时间内1-2h就可使用。这保证了盐浴的连续强化作业,方便连续式生产,提高了生产效率。
具体实施方式
下面所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在盐浴中交换的出的离子为钠离子和/或锂离子。在多批次强化中,由于在强化中玻璃会不断的析出锂离子导致盐浴中锂离子浓度逐渐上升,会导致盐浴超标,故在强化几批次后会投入提纯物质将锂离子除杂。但是提纯过多后会导致玻璃质量问题,使用具有稳定剂的提纯样品可有效减少此问题。
本发明涉及强化玻璃盐浴工艺,用于解决盐浴中毒后进行再生或减少表面缺陷的方法。
这种盐浴杂质离子提纯方法,包括如下步骤:
步骤1:盐浴准备;盐浴含有硝酸钾和/或硝酸钠和/或硝酸锂的纯盐或者混合盐;
步骤2:含有锂离子的交换基板准备;
步骤3:将所述交换基板浸入、加热到反应温度为350℃~500℃之间的盐浴中;
步骤4:使包含有锂离子的交换基板与所述盐浴接触、并使所述锂离子从所述交换基板扩散溶于所述盐浴中;
当杂质离子锂离子、钠离子浓度超过标准值时,投入吸收剂和稳定剂。其中标准值可例如为,所述提纯盐浴为钾钠锂混合盐浴或钠锂盐浴,投入经提纯后将盐浴中锂离子将稳定在规定值正负500PPm之间,或所述提纯盐浴为 钾钠混合盐浴或纯钠盐浴,经离子交换后盐浴中含有过量杂质锂离子,超过了标准值500PPm,经提纯后盐浴中锂离子低于300PPm;可选地,所述标准值为保持盐浴中锂离子低于200PPm;优选地,所述标准值为保持盐浴中锂离子低于150PPm。如果混合盐浴中其包含硝酸锂,则其硝酸锂不超过5wt%,此时盐浴提存物其使用方法为稳定盐浴中锂离子浓度含量在一定范围,而不是将盐浴中锂离子吸收至300PPm以下。
在实施例当中,所述吸收剂的投放量为待提纯盐浴的0.1-2wt%。所述稳定剂的投放顺序为与吸收剂同时投放或晚于所述吸收剂投放。
所述吸收剂的投放量为稳定剂质量的50%以下;优选地,所述吸收剂的投放量为稳定剂质量的20%以下。
其中,所述吸收剂为磷酸盐,例如为磷酸钠和或磷酸二氢钠,与盐浴中杂质锂离子形成反应性沉淀和悬浮颗粒;所述反应性沉淀和悬浮颗粒包括:不溶性Li3PO4、不溶性Li2NaPO4或不溶性LiNa2PO4中的至少一种。这些反应性沉淀和悬浮颗粒越来越多,也将增加盐浴的混杂程度,降低盐浴品质。
因此,本实施例中吸收剂加入同时配合加入稳定剂。所述稳定剂带有硅氧基基团和/或具备硅氧基基团性质;例如包含,二氧化硅\硅酸\偏硅酸盐\含有硅氧共价键的硅酸盐的至少一种。具体地,稳定剂例如可以是,硅砂、硅油、硅藻土、硅胶的至少一种。
稳定剂在盐浴中吸附不会产生分解,不与玻璃反应,而将所述反应性沉淀和悬浮性颗粒被所述稳定剂吸附于稳定剂表面。
吸收剂与稳定剂可以为粉体、颗粒状、浆体。
以吸收除杂为主要目的实验如下:
Figure PCTCN2020135813-appb-000001
实验工艺:以所述玻璃基材为交换基材,盐浴为87wt%硝酸钾+12wt%硝 酸钠+1wt%硝酸锂,反应温度为480℃。通过换算,锂离子其在盐浴中占质量比为1000PPm,优选的浓度范围为1000-1500PPm之间。由于在强化中玻璃会不断的析出锂离子导致盐浴中锂离子浓度会逐渐超过此范围,为维持盐浴中锂离子处于该优选范围。在连续批次强化过程中会不断加入含稳定剂的提纯样,既可以将盐浴中多出来的锂离子吸收,稳定在1000-1500PPm,且多次加入不会引起玻璃的缺陷。
交换基板在离子交换中全部浸入盐浴中,且在强化最底部的样品距离底部盐浴高出5mm以上,优选为10mm。以及按照标准值为保持盐浴中锂离子低于300PPm执行投放吸收剂和稳定剂;对比例中投入相应的提纯剂。
加入提纯剂后,观察下次强化玻璃的表面缺陷。
平行进行了5次实验、以及2个对比例。
表1:实验参数
Figure PCTCN2020135813-appb-000002
表2提纯效果对比
第X次提纯玻璃表面缺陷情况 实验1 实验2 实验3 实验4 实验5 对比例1 对比例2
0
1
2
3 3-4处凸起点缺陷
4 10处凸起点缺陷
5 14处凸起点缺陷
6 23处凸起点缺陷 表面雾状腐蚀
7 24处凸起点缺陷 表面雾状腐蚀
8 29处凸起点缺陷 表面雾状腐蚀
9 2-3处凸起点缺陷 2-3处凸起点缺陷 2-3处凸起点缺陷 2-3处凸起点缺陷 2-3处凸起点缺陷 33处凸起点缺陷 表面雾状腐蚀
提纯后盐浴离子浓度 115PPm 166PPm 217PPm 118PPm 111PPm 118PPm 125PPm
由上述表可知,实验1~实验5在吸收剂、稳定剂投放、提纯8次后,玻璃表面仍无缺陷。说明盐浴能够对玻璃持续具有强化作用。而对比例1、对比例2当中,提纯剂投放第3-5次,就已经出现多处缺陷或腐蚀。
本申请分析,当投入吸收剂(例如磷酸钠)次数过多时,反应生成的磷酸锂大部分会沉淀,但少部分会悬浮与盐浴中,故悬浮与盐浴中的磷酸锂和磷酸钠会与玻璃表面中的锂离子或者钠离子反应形成表面缺陷物。故悬浮部分的磷酸钠与磷酸锂为吸收剂的少部分,而稳定剂通过表面反应并吸附与其表面。其用量是少于吸收剂的投入量的,因为沉淀的磷酸锂部分不影响玻璃表面性能,故不用稳定剂去反应吸附。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (8)

  1. 一种盐浴杂质离子提纯方法,其特征在于,所述盐浴加热到反应温度为350℃~500℃之间、且含有硝酸钾和/或硝酸钠和/或硝酸锂的纯盐或者混合盐;用于使包含有锂离子的交换基板与所述盐浴接触、并所述交换基板上的锂离子与盐浴中的钠离子交换并扩散至盐浴中形成盐浴杂质离子;
    当杂质离子锂离子浓度超过标准值时,投入吸收剂和稳定剂;
    所述吸收剂为磷酸盐;所述稳定剂带有硅氧基团和/或具备硅氧基团性质。
  2. 根据权利要求1所述的盐浴杂质离子提纯方法,其特征在于,所述吸收剂为磷酸钠和或磷酸二氢钠,与盐浴中杂质锂离子形成反应性沉淀和悬浮颗粒;所述反应性沉淀和悬浮颗粒包括:不溶性Li3PO4、不溶性Li 2NaPO 4或不溶性LiNa 2PO 4中的至少一种。
  3. 根据权利要求1或2所述的盐浴杂质离子提纯方法,其特征在于,所述反应性沉淀和悬浮性颗粒被所述稳定剂吸附于稳定剂表面。
  4. 根据权利要求2所述的盐浴杂质离子提纯方法,其特征在于,所述稳定剂包含,二氧化硅或硅酸或偏硅酸盐或含有硅氧共价键的硅酸盐的至少一种。
  5. 根据权利要求1所述的盐浴杂质离子提纯方法,其特征在于,所述吸收剂的投放量为待提纯盐浴的0.1-2wt%。
  6. 根据权利要求1或2所述的盐浴杂质离子提纯方法,其特征在于,所述稳定剂的投放顺序为与吸收剂同时投放或晚于所述吸收剂投放。
  7. 根据权利要求1所述的盐浴杂质离子提纯方法,其特征在于,所述提纯盐浴为钾钠混合盐浴或纯钠盐浴,经提纯后盐浴中锂离子低于300PPm。
  8. 根据权利要求1所述的盐浴杂质离子提纯方法,其特征在于,所述提纯盐浴为钾钠锂混合盐浴或钠锂盐浴,投入经提纯后将盐浴中锂离子将稳定在规定值正负500PPm之间。
PCT/CN2020/135813 2019-12-11 2020-12-11 盐浴杂质离子提纯方法 WO2021115441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911267944.4A CN110981219B (zh) 2019-12-11 2019-12-11 盐浴杂质离子提纯方法
CN201911267944.4 2019-12-11

Publications (1)

Publication Number Publication Date
WO2021115441A1 true WO2021115441A1 (zh) 2021-06-17

Family

ID=70092365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135813 WO2021115441A1 (zh) 2019-12-11 2020-12-11 盐浴杂质离子提纯方法

Country Status (2)

Country Link
CN (1) CN110981219B (zh)
WO (1) WO2021115441A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110981219B (zh) * 2019-12-11 2022-06-10 重庆鑫景特种玻璃有限公司 盐浴杂质离子提纯方法
CN116768493A (zh) * 2020-09-12 2023-09-19 重庆鑫景特种玻璃有限公司 无硼、无磷高稳定性的离子筛及其制备和应用
CN112608033A (zh) * 2020-09-12 2021-04-06 重庆鑫景特种玻璃有限公司 一种化学强化微晶玻璃及强化方法
CN113200686A (zh) * 2021-05-10 2021-08-03 南通瑞景光电科技有限公司 光学元件的高温热处理方法
CN115477480A (zh) * 2021-06-15 2022-12-16 常熟佳合显示科技有限公司 一种微晶玻璃的强化盐和强化方法
CN113955950A (zh) * 2021-11-01 2022-01-21 江苏铁锚玻璃股份有限公司 锂铝硅玻璃的强化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045979A1 (ja) * 2012-09-18 2014-03-27 旭硝子株式会社 化学強化ガラスの製造方法
CN104640821A (zh) * 2012-09-18 2015-05-20 旭硝子株式会社 玻璃化学强化用熔融盐的再生方法和强化玻璃的制造方法
CN104661977A (zh) * 2012-09-18 2015-05-27 旭硝子株式会社 玻璃强化用熔融盐、强化玻璃的制造方法及玻璃强化用熔融盐的寿命延长方法
CN108290781A (zh) * 2015-11-20 2018-07-17 康宁股份有限公司 再生富锂盐浴的方法
CN110304840A (zh) * 2018-03-27 2019-10-08 蓝思科技股份有限公司 一种含锂玻璃的强化方法及强化组合物
CN110482876A (zh) * 2019-09-23 2019-11-22 醴陵旗滨电子玻璃有限公司 化学强化组合物、化学强化方法及化学强化玻璃
CN110981219A (zh) * 2019-12-11 2020-04-10 深圳市力沣实业有限公司 盐浴杂质离子提纯方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107793043B (zh) * 2016-08-30 2020-07-14 重庆两江新区夏美西科技合伙企业(有限合伙) 提高玻璃化学强化盐浴使用寿命的方法
WO2019046342A2 (en) * 2017-08-30 2019-03-07 Corning Incorporated METHOD FOR REMOVING RESIDUES CONTAINING LITHIUM PHOSPHATE COMPOUNDS FROM A SURFACE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045979A1 (ja) * 2012-09-18 2014-03-27 旭硝子株式会社 化学強化ガラスの製造方法
CN104640821A (zh) * 2012-09-18 2015-05-20 旭硝子株式会社 玻璃化学强化用熔融盐的再生方法和强化玻璃的制造方法
CN104661977A (zh) * 2012-09-18 2015-05-27 旭硝子株式会社 玻璃强化用熔融盐、强化玻璃的制造方法及玻璃强化用熔融盐的寿命延长方法
CN108290781A (zh) * 2015-11-20 2018-07-17 康宁股份有限公司 再生富锂盐浴的方法
CN110304840A (zh) * 2018-03-27 2019-10-08 蓝思科技股份有限公司 一种含锂玻璃的强化方法及强化组合物
CN110482876A (zh) * 2019-09-23 2019-11-22 醴陵旗滨电子玻璃有限公司 化学强化组合物、化学强化方法及化学强化玻璃
CN110981219A (zh) * 2019-12-11 2020-04-10 深圳市力沣实业有限公司 盐浴杂质离子提纯方法

Also Published As

Publication number Publication date
CN110981219A (zh) 2020-04-10
CN110981219B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2021115441A1 (zh) 盐浴杂质离子提纯方法
US10106426B2 (en) Method for the separation of metal ions that are divalent or higher from strong acids or highly acidic media
JP6455441B2 (ja) ガラス化学強化用溶融塩の再生方法
KR20100034011A (ko) 헥사클로로스태네이트 로딩된 음이온 교환제의 재생
WO2021050652A1 (en) Salt bath compositions and methods for regenerating salt bath compositions
CN111099840B (zh) 适用于化学钢化生产的熔盐除杂方法和提高玻璃强度的方法
JP5942141B2 (ja) フッ素除去剤、フッ素含有液の処理方法
CN111713983A (zh) 一种不粘锅用酸性硅溶胶的制备方法
JP6134599B2 (ja) 高純度シリカゾルおよびその製造方法
WO2001047808A1 (fr) Procedes de production de particules de silice, de particules de quartz de synthese et de verre au quartz de synthese
CN108455618B (zh) 一种大规模循环酸洗石英砂的工艺
CN112645340B (zh) 一种使用硅溶胶制备合成二氧化硅粉末的制造方法
US1487205A (en) Process for the removal of fluorine compounds from phosphoric acid
JPS6316329B2 (zh)
TWI732106B (zh) 含四氟硼酸之廢水的處理方法
CN114132935B (zh) 一种硅溶胶的纯化方法
CN112645608B (zh) 无硅盐浴提纯添加剂材料及其使用方法
TW201512127A (zh) 玻璃蝕刻液再生方法及玻璃蝕刻方法
CN108190894B (zh) 一种高纯石英砂的酸洗循环工艺
JP4649677B2 (ja) 高純度シリカ粒子の製造方法、これにより得られた高純度シリカ粒子及びこれを用いた高純度石英ガラス粒子の製造方法
JP4504491B2 (ja) 高純度合成石英粉の製造方法
JP7401031B1 (ja) かご型ケイ酸塩、及びその製造方法
CN114031085B (zh) 一种降低高固含量硅溶胶粘度的方法
JPH0274515A (ja) 高純度シリカの製造法
US2157509A (en) Process for the removal of fluorides from water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900634

Country of ref document: EP

Kind code of ref document: A1