WO2021106705A1 - 析出物および/または介在物の抽出方法、析出物および/または介在物の定量分析方法、電解液、ならびに、レプリカ試料の作製方法 - Google Patents

析出物および/または介在物の抽出方法、析出物および/または介在物の定量分析方法、電解液、ならびに、レプリカ試料の作製方法 Download PDF

Info

Publication number
WO2021106705A1
WO2021106705A1 PCT/JP2020/042956 JP2020042956W WO2021106705A1 WO 2021106705 A1 WO2021106705 A1 WO 2021106705A1 JP 2020042956 W JP2020042956 W JP 2020042956W WO 2021106705 A1 WO2021106705 A1 WO 2021106705A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic solution
precipitates
precipitate
adsorbent
metal material
Prior art date
Application number
PCT/JP2020/042956
Other languages
English (en)
French (fr)
Inventor
誠也 菅原
成駿 佐伯
渡辺 学
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=76129390&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2021106705(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US17/779,664 priority Critical patent/US20230003624A1/en
Priority to CN202080080471.1A priority patent/CN114729855A/zh
Priority to EP20894141.9A priority patent/EP4050317A4/en
Priority to KR1020227017031A priority patent/KR20220082076A/ko
Priority to JP2021515243A priority patent/JP6919775B1/ja
Publication of WO2021106705A1 publication Critical patent/WO2021106705A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/06Etching of iron or steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/2806Means for preparing replicas of specimens, e.g. for microscopal analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4055Concentrating samples by solubility techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2028Metallic constituents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N2001/4038Concentrating samples electric methods, e.g. electromigration, electrophoresis, ionisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4055Concentrating samples by solubility techniques
    • G01N2001/4061Solvent extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4088Concentrating samples by other techniques involving separation of suspended solids filtration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for extracting precipitates and / or inclusions, a method for quantitative analysis of precipitates and / or inclusions, an electrolytic solution, and a method for preparing a replica sample.
  • Precipitates and / or inclusions present in the metal material have characteristics (for example, fatigue properties, hot workability, cold work) of the metal material depending on the abundance thereof. It has a significant effect on properties, deep drawability, machinability, electromagnetic properties, etc.).
  • the metal material is a steel material
  • a technique for improving the characteristics of the steel material by utilizing a small amount of precipitate and a technique for controlling the morphology of inclusions have been remarkably developed in recent years.
  • the control of precipitates and the like is strictly performed. For that purpose, it is necessary to quantitatively analyze the precipitates and the like with high accuracy.
  • the precipitate or the like is extracted. Then, the extracted precipitates and the like are filtered using a filter, collected, and quantitatively analyzed. Extraction methods for precipitates and the like can be roughly classified into an acid decomposition method, a halogen method and an electrolysis method. Of these, the electrolytic method (see Patent Document 1) in which the precipitates and the like in the metal material are extracted by electrolysis is often used because the precipitates and the like can be stably extracted.
  • the quantitative analysis value may greatly deviate from the expected value.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a method for extracting precipitates and the like, which can accurately quantitatively analyze the extracted precipitates and / or inclusions (precipitates and the like). To do. Another object of the present invention is to provide a method for quantitative analysis of precipitates and the like using the above extraction method, an electrolytic solution used for the above extraction method, and a method for producing a replica sample using the above electrolytic solution.
  • the present invention provides the following [1] to [15].
  • [1] A method of extracting precipitates and / or inclusions in a metal material by electrolysis using an electrolytic solution, wherein the electrolytic solution is adsorbed on the surface of the precipitates and / or inclusions.
  • [2] The method for extracting precipitates and / or inclusions according to the above [1], wherein the adsorbent is adsorbed on the surface of the matrix metal of the metal material.
  • [3] The method for extracting precipitates and / or inclusions according to the above [1] or [2], wherein the electrolytic solution contains a drug that forms a complex with the matrix metal of the metal material.
  • [6] The method for extracting precipitates and / or inclusions according to any one of the above [1] to [5], wherein the metal material is a steel material.
  • a method for quantitative analysis of precipitates and / or inclusions which quantitatively analyzes the precipitates and / or inclusions extracted by the extraction method according to any one of the above [1] to [6].
  • the adsorbent is a compound having at least one group selected from the group consisting of a thiol group, a sulfide group and a disulfide group.
  • the content of the adsorbent is 0.1 g / L or more with respect to the base electrolytic solution containing the electrolyte and the solvent.
  • the extracted precipitates and the like can be quantitatively analyzed with high accuracy.
  • 3A It is an EDS spectrum obtained from the precipitate 3 in FIG. 3A.
  • 3 is a TEM bright-field image of a precipitate or the like in Comparative Example 3.
  • It is an EDS spectrum obtained from the precipitate 4 in FIG. 4A.
  • It is an EDS spectrum obtained from the precipitate 5 in FIG. 4A.
  • It is an EDS spectrum obtained from the precipitate 6 in FIG. 4A.
  • the present inventor first added 100 g / L of 6-dibutylamino-1,3,5-triazine-2,4-dithiol as an adsorbent to the AA-based electrolytic solution described later.
  • a steel sheet which is a steel material having the component composition shown in Table 1 below (the balance is Fe and unavoidable impurities) was prepared. It was confirmed by using a scanning electron microscope (SEM) that all the precipitates and the like on the steel sheet were MnS.
  • SEM scanning electron microscope
  • X-ray photoelectron spectroscopy (XPS) spectra were obtained for any region on the surface of the dried steel sheet to determine the concentrations of C, N and S.
  • XPS X-ray photoelectron spectroscopy
  • adsorbent that is, 6-dibutylamino-1,3,5-triazine-2,4-dithiol
  • XPS spectra were obtained and the concentrations of C, N and S were determined.
  • Table 2 below shows the concentration (unit: atomic%) of each component on the surface of the steel sheet and the adsorbent.
  • the concentration ratio of each component was almost the same between the surface of the steel sheet and the adsorbent. From this, on the surface of the steel sheet (more specifically, the surface of the matrix metal of the steel sheet and the surface of the precipitates and the like adhering to the surface of the matrix metal), the adsorbent 6-dibutylamino-1,3,5- It can be seen that triazine-2,4-dithiol is adsorbed.
  • the present inventor used this electrolytic solution to perform constant current electrolysis of a steel sheet having the component composition shown in Table 1 above to extract precipitates and the like.
  • the extracted precipitates and the like (MnS) were dissolved with an acid, and Cu was quantitatively analyzed by inductively coupled plasma emission spectrometry (ICP-AES).
  • ICP-AES inductively coupled plasma emission spectrometry
  • the amount of Cu was as small as 0.0001% by mass (see Invention Example 1 described later).
  • the adsorbent was not added to the electrolytic solution, the amount of Cu was as high as 0.0048% by mass (see Comparative Example 1 described later).
  • the adsorbent (6-dibutylamino-1,3,5-triazine-2,4-dithiol) prevents Cu in the electrolytic solution from coming into contact with the precipitate or the like (MnS), and the substitution reaction described above. It can be seen that was able to suppress.
  • the substitution reaction could be suppressed, the present inventor considers it as follows.
  • the adsorption reaction is a reaction in which an adsorbent is adsorbed on the surface of a matrix metal of a metal material.
  • the electrolytic reaction is a reaction in which a matrix metal as a metal material and a metal such as Cu which is solid-solved in the matrix metal are ionized and eluted in an electrolytic solution.
  • the adsorbent is also adsorbed on the surface of the precipitate or the like exposed on the surface of the matrix metal of the metal material. Then, when the surrounding matrix metal such as the precipitate is dissolved, the precipitate or the like adheres to the surface of the matrix metal of the metal material in a state of being covered with the adsorbent. Therefore, even if the Cu ions in the electrolytic solution approach the precipitate or the like, the adsorbent film existing on the surface of the precipitate or the like is prevented from coming into contact with the Cu ions, and the substitution reaction is suppressed.
  • the "metal material” is not particularly limited, and examples thereof include steel materials such as hot-rolled steel sheets and cold-rolled steel sheets.
  • the "matrix metal" of the metal material is an element contained most in the metal material, for example, when the metal material is a steel material, it is Fe.
  • the "precipitate and / or inclusions" (precipitate and the like) in the metal material are not particularly limited, and examples thereof include (Mn, Cu) S and MnS when the metal material is a steel material. ..
  • the electrolytic solution of the present invention is an electrolytic solution for extracting precipitates and / or inclusions in a metal material by electrolysis, and contains an adsorbent adsorbing on the surface of the precipitates and / or inclusions. It is a liquid.
  • the electrolytic solution of the present invention substantially contains an electrolyte.
  • the electrolyte is not particularly limited, and conventionally known electrolytes can be used, and examples thereof include tetramethylammonium chloride, sodium chloride, and potassium bromide.
  • the electrolytic solution of the present invention substantially contains a solvent.
  • a solvent a conventionally known solvent of an electrolytic solution can be used, and examples thereof include a non-aqueous solvent or an aqueous solvent (water), but a non-aqueous solvent is preferable because the adsorbent can be easily dissolved.
  • the non-aqueous solvent include non-aqueous solvents having a hydroxy group such as methanol, ethanol, propanol and butanol.
  • the electrolytic solution of the present invention preferably contains a drug (hereinafter, also simply referred to as “drug”) that forms a complex with the matrix metal of the metal material. This prevents the matrix metal dissolved in the electrolytic solution from reattaching or reprecipitating on the surface of the metal material.
  • the drug is not particularly limited, and examples thereof include acetylacetone, salicylic acid, methyl salicylate, maleic acid, citric acid, and sodium citrate.
  • the content of the drug is not particularly limited, but since it is necessary to form a complex with the matrix metal, the mass ratio to the solvent is preferably 1% or more, more preferably 5% or more, still more preferably 10% or more. On the other hand, from the viewpoint of economic rationality, environmental load and the like, the mass ratio to the solvent is preferably 50% or less, more preferably 30% or less.
  • the electrolytic solution of the present invention is preferably composed mainly of a base electrolytic solution.
  • the base electrolyte contains at least the above-mentioned electrolyte and solvent, and may further contain the above-mentioned chemicals.
  • the base electrolyte is not particularly limited, and is, for example, an AA-based (acetylacetone-tetramethylammonium chloride-methanol) electrolyte, an MS-based (methyl salicylate-salicylic acid-tetramethylammonium chloride) electrolyte, and an MA-based (anhydrous) electrolyte.
  • a non-aqueous solvent-based electrolyte such as maleic acid-tetramethylammonium chloride-methanol) electrolyte; an aqueous solvent-based electrolyte such as citrate electrolyte and hydrochloric acid electrolyte; and the like can be mentioned.
  • the adsorbent contained in the electrolytic solution of the present invention is not particularly limited as long as it is a substance that adsorbs on the surface such as a precipitate.
  • the adsorbent is preferably adsorbed on the surface of the matrix metal of the metal material.
  • the metal material usually has a positive charge, it is more preferable that the adsorbent has a negative surface potential and has an unpaired electron.
  • adsorbent for example, a compound having at least one group selected from the group consisting of a thiol group, a sulfide group and a disulfide group (hereinafter, also referred to as a "specific group" for convenience) can be preferably mentioned. ..
  • the compound having a specific group preferably has an amino group as a substituent.
  • the amino group is not particularly limited, and for example, a primary amino group; a secondary amino group such as an allylamino group or a butylamino group; a diisopropylamino group, a dibutylamino group, a diisobutylamino group, or a di (2-ethylhexyl).
  • Examples thereof include tertiary amino groups such as amino groups, diallylamino groups, and (4-vinylbenzyl-n-propyl) amino groups; among them, tertiary amino groups are preferable.
  • Examples of the compound having a specific group and an amino group include amine thiols such as 2-aminoethanethiol and 2-aminopropanethiol.
  • the compound having a specific group preferably has a bulky structure in order to efficiently cover the surface of the precipitate or the like.
  • a triazine ring is preferably mentioned as a specific example of the bulky structure.
  • Specific examples of compounds having a specific group, an amino group and a triazine ring include 6-diallylamino-1,3,5-triazine-2,4-dithiol and 6- (4-vinylbenzyl-n-propyl) amino-. Examples thereof include 1,3,5-triazine-2,4-dithiol and 6-dibutylamino-1,3,5-triazine-2,4-dithiol. Of these, 6-dibutylamino-1,3,5-triazine-2,4-dithiol is more preferable because it is easily dissolved in a solvent (for example, methanol) and has excellent workability.
  • a solvent for example, methanol
  • the content of the adsorbent in the electrolytic solution of the present invention is preferably 0.1 g / L or more with respect to the base electrolytic solution. Within this range, the adsorbent easily covers the surface of the metal material and easily prevents the contact of Cu. For the reason that such an effect is more excellent, the content of the adsorbent is more preferably 0.2 g / L or more, further preferably 2 g / L or more, still more preferably 10 g / L or more with respect to the base electrolytic solution. Preferably, 50 g / L or more is particularly preferable, and 100 g / L or more is most preferable.
  • the upper limit is not particularly limited, the adsorbent is generally expensive and it is difficult to dissolve the entire amount. Therefore, the content of the adsorbent is preferably 500 g / L or less with respect to the base electrolytic solution.
  • the method for extracting precipitates and / or inclusions of the present invention (hereinafter, also referred to as “extraction method of the present invention” for convenience) is an electrolysis of precipitates and / or inclusions in a metal material using an electrolytic solution.
  • This is a method for extracting a precipitate and / or an inclusion, wherein the electrolytic solution contains an adsorbent that adsorbs to the surface of the precipitate and / or the inclusion.
  • the above-mentioned electrolytic solution of the present invention is an electrolytic solution used in the extraction method of the present invention.
  • test sample ⁇ Preparation of test sample>
  • the metal material is first cut into test pieces of an appropriate size and subjected to polishing, washing, drying and the like.
  • a test piece of a metal material that has been polished or the like is hereinafter also referred to as a "test sample”.
  • test sample When quantitatively analyzing precipitates and the like, it is preferable to measure the mass of the test sample before electrolysis.
  • electrolysis constant potential electrolysis or constant current electrolysis
  • the amount of electrolysis is not particularly limited, but usually, about 0.1 to 1 g of the test sample is electrolyzed.
  • the amount of electrolysis can be appropriately adjusted based on the amount of the electrolytic solution, the electrolysis conditions, the type of the test sample (metal material), the estimated value of the amount of precipitates, and the like.
  • the adsorbent is uniformly dispersed in the electrolytic solution, and it becomes easy to come into contact with the test sample.
  • the precipitates and the like contained in the test sample adhere to the surface of the test sample as an electrolytic residue without being eluted in the electrolytic solution.
  • the precipitate adsorbed on the surface of the test sample suppresses the substitution reaction with Cu in the electrolytic solution by the action of the adsorbent.
  • ⁇ Separation of precipitates, etc.> After a predetermined amount of electrolysis, the remaining part of the test sample is gently removed from the electrolytic solution so that the electrolytic residue (precipitate, etc.) adhering to the remaining part of the test sample does not fall into the electrolytic solution, and the dispersion liquid is immediately taken out. Immerse in. By immersing the remaining part of the test sample in the dispersion liquid, the electrolytic residue (precipitate or the like) adhering to the remaining part of the test sample is separated from the remaining part of the test sample and dispersed in the dispersion liquid.
  • the dispersion liquid is not particularly limited, and conventionally known dispersion liquids can be used, and examples thereof include methanol.
  • the ultrasonic shaking time should be used as a guide.
  • the rest of the test sample is taken out from the dispersion. It is preferable that the rest of the taken-out test sample is thoroughly washed with methanol or the like and dried.
  • the mass of the remainder of the dried test sample is measured and subtracted from the mass of the test sample before electrolysis to obtain the electrolytic mass.
  • the rest of the test sample may not have a metallic luster.
  • the precipitates and the like cannot be completely separated after one separation step, and it is considered that the precipitates and the like remain on the surface of the remaining part of the test sample. is there.
  • the dispersion liquid (dispersion liquid in which the precipitates and the like are dispersed) from which the remainder of the test sample is taken out is filtered using a filter (for example, suction filtration) to collect the precipitates and the like on the filter.
  • a filter for example, suction filtration
  • the pore size of the filter used for collecting the precipitates and the like does not have to be smaller than the expected size of the precipitates and the like, and may be selected according to the average particle size of the precipitates and the like.
  • Quantitative analysis method The method for quantitative analysis of precipitates and / or inclusions of the present invention (hereinafter, also referred to as “quantitative analysis method of the present invention” for convenience) is a method for quantitative analysis of precipitates and / or inclusions extracted by the above-mentioned extraction method of the present invention. Is a quantitative analysis method for precipitates and / or inclusions.
  • the precipitate or the like extracted by the extraction method of the present invention described above is dissolved according to a conventional method and quantitatively analyzed.
  • a conventionally known aqueous acid solution or alkaline aqueous solution can be used for dissolving the precipitate or the like, and an appropriate selection is made according to the target element to be quantitatively analyzed.
  • the quantitative analysis method include inductively coupled plasma emission spectroscopic analysis (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), and atomic absorption spectrometry.
  • ICP-AES inductively coupled plasma emission spectroscopic analysis
  • ICP-MS inductively coupled plasma mass spectrometry
  • atomic absorption spectrometry atomic absorption spectrometry
  • the electrolytic solution of the present invention can be used for preparing a replica sample for observing precipitates and the like with an electron microscope. As a result, precipitates and the like can be analyzed with high accuracy.
  • the surface of a metal material is electrolytically etched using the electrolytic solution of the present invention described above, and precipitates and / or inclusions existing on the surface of the metal material after the electrolytic etching are removed. This is a method for producing a replica sample, which is transferred to a conductive thin film.
  • polishing method is not particularly limited, and the polishing method may be selected according to the material and characteristics of the metal material according to a conventional method.
  • the surface of the test sample (metal material) is electrolytically etched using the electrolytic solution of the present invention.
  • precipitates and the like are exposed on the surface of the test sample.
  • the adsorbent is uniformly dispersed in the electrolytic solution and easily comes into contact with the test sample.
  • the amount of electrolytic etching can be appropriately adjusted based on the amount of electrolytic solution, electrolytic conditions, the type of test sample (metal material), the estimated value of the amount of precipitates, and the like.
  • This transfer collection method may follow a conventional method, and examples thereof include a two-stage replica method generally used for metal materials.
  • the two-stage replica method is roughly as follows. First, an organic film made of acetyl cellulose or the like is softened and dissolved on the surface of the metal material after electrolytic etching with methyl acetate or the like, and then fused. Then, the organic film is peeled off from the metal material. As a result, precipitates and the like are transferred and collected on the surface of the organic film. Next, a conductive thin film is formed on the surface on the side where the precipitates and the like in the organic film after peeling are transferred and collected. Then, the organic film is dissolved using an organic solvent such as methyl acetate. As a result, a sample (replica sample) in which precipitates and the like are transferred and collected on the conductive thin film can be obtained.
  • a carbon-deposited film is preferable for the following reasons.
  • characteristic X-rays are used for composition analysis of collected precipitates and the like. Since carbon has a small X-ray absorption coefficient, it is easy to obtain characteristic X-rays from precipitates and the like by using a carbon vapor deposition film as the conductive thin film.
  • a transmitted electron beam is used when observing and analyzing extremely fine precipitates, etc., but since carbon easily transmits electron beams, the precipitates, etc. can be discriminated by using a carbon vapor deposition film as the conductive thin film. It becomes easy to do.
  • the film thickness of the carbon-deposited film is not particularly limited, and is, for example, 5 nm or more and 30 nm or less.
  • the film thickness of the carbon vapor deposition film is preferably more than 10 nm and less than 20 nm.
  • the replica sample has sufficient suppleness and strength capable of retaining precipitates and the like (and unavoidably extracted adsorbent) transferred from the surface of the metal material.
  • the film thickness of the carbon vapor deposition film is more preferably 11 nm or more, further preferably 12 nm or more.
  • the film thickness of the carbon vapor deposition film is measured by interference spectroscopy.
  • the prepared replica sample is used, for example, for observation using an electron microscope.
  • the conductive thin film of the replica sample is held by, for example, a mesh.
  • the mesh is not particularly limited, but the material of the mesh is preferably different from the elements contained in the precipitate or the like.
  • a steel ingot having the component composition shown in Table 1 above (the balance is Fe and unavoidable impurities) was prepared by vacuum melting.
  • the produced steel ingot was heated to 1200 ° C. and then hot-rolled to produce a hot-rolled steel sheet having a thickness of 3 mm.
  • a sample for cross-section observation was taken from the prepared hot-rolled steel sheet. When the collected sample was observed using a scanning electron microscope (SEM), it was confirmed that all the precipitates and the like were MnS.
  • SEM scanning electron microscope
  • a test piece having a size of 30 mm ⁇ 30 mm was collected from the produced hot-rolled steel sheet, and the surface was polished to obtain a test sample.
  • Electrolytic extraction 10 g of 6-dibutylamino-1,3,5-triazine-2,4-dithiol as an adsorbent in 100 mL of 10% AA-based electrolytic solution (10 mass% acetylacetone-1 mass% tetramethylammonium chloride-methanol)
  • electrolytic solution A content of adsorbent with respect to base electrolytic solution: 100 g / L
  • the test sample was electrolyzed at a constant current under the condition of a current density of 20 mA / cm 2.
  • the rest of the test sample taken out from the electrolytic solution A was immersed in methanol as a dispersion, ultrasonically shaken for 2 minutes, and the rest of the test sample was metallic. It was confirmed that gloss appeared. In this way, the precipitates and the like adhering to the rest of the test sample were separated and dispersed in the dispersion liquid. Then, the rest of the test sample was taken out from the dispersion. Next, the dispersion liquid from which the remainder of the test sample was taken out was filtered through a filter having a pore size of 0.2 ⁇ m, and precipitates and the like were collected on the filter. As the filter, a track-etched membrane filter having a smooth surface was used so that SEM observation (described later) could be easily performed.
  • FIGS. 1A-1C An SEM-EDS mapping image of a precipitate or the like was acquired using an energy dispersive X-ray analysis (EDS) apparatus attached to the SEM.
  • EDS energy dispersive X-ray analysis
  • An electrolytic solution G (content of the adsorbent with respect to the base electrolytic solution: 50 g / L) was prepared by adding 5 g of 2-aminoethanethiol as an adsorbent to 100 mL of a 10% AA-based electrolytic solution. Using the electrolytic solution G, electrolytic extraction and quantitative analysis were performed in the same manner as in Invention Example 1. The results of the quantitative analysis are shown in Table 5 below.
  • Electrolyte I was prepared by adding 1 mL of a silver standard solution (silver concentration: 1 mg / L) manufactured by Kanto Chemical Co., Inc. to 100 mL of MA-based electrolyte.
  • a carbon vapor-deposited film having a film thickness of 15 nm was formed on the surface on the side where the precipitates and the like in the organic film after peeling were transferred and collected. Then, the organic film was dissolved using an organic solvent (methyl acetate). Next, the carbon vapor deposition film was held using a commercially available Ni mesh (mesh size: 150 ⁇ m). In this way, a sample (replica sample) in which precipitates and the like on the surface of the steel piece were transferred and collected on the carbon vapor deposition film was prepared.
  • FIGS. 3A-3D The surface of the prepared replica sample was observed using a transmission electron microscope (TEM) to obtain a TEM bright-field image.
  • the observation conditions were an acceleration voltage of 200 kV and an observation magnification of 10000 times.
  • the precipitate and the like were qualitatively analyzed using the EDS apparatus attached to the TEM.
  • FIGS. 3A-3D The results are shown in FIGS. 3A-3D.
  • FIG. 3A is a TEM bright-field image of the precipitate or the like in Invention Example 8.
  • 3B to 3D are EDS spectra obtained from precipitates 1 to 3 in FIG. 3A, respectively.
  • FIGS. 4A-4D A replica sample was prepared and qualitative analysis was carried out in the same manner as in Invention Example 8 except that the electrolytic solution B (see Comparative Example 1) was used instead of the electrolytic solution A for electrolytic etching. The results are shown in FIGS. 4A-4D.
  • FIG. 4A is a TEM bright-field image of the precipitate or the like in Comparative Example 3.
  • 4B-4D are EDS spectra obtained from precipitates 4-6 in FIG. 4A, respectively.
  • the state of the carbon vapor-deposited film was observed during the preparation of the replica sample. Specifically, the state of the carbon-deposited film was observed at the time when the organic film (acetyl cellulose) was dissolved using an organic solvent and the time when the carbon-deposited film was held using a Ni mesh. "A” when the initial shape of the carbon vapor-deposited film is maintained and ready for observation with an electron microscope, and "B” when a part of the carbon-deposited film is disintegrated. It is shown in Table 8 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

金属材料中の析出物および/または介在物を、電解液を用いた電解により抽出する。上記電解液が、上記析出物および/または上記介在物の表面に吸着する吸着剤を含有する。これにより、抽出した析出物および/または介在物を精度良く定量分析できる。

Description

析出物および/または介在物の抽出方法、析出物および/または介在物の定量分析方法、電解液、ならびに、レプリカ試料の作製方法
 本発明は、析出物および/または介在物の抽出方法、析出物および/または介在物の定量分析方法、電解液、ならびに、レプリカ試料の作製方法に関する。
 金属材料中に存在する析出物および/または介在物(以下、「析出物等」ともいう)は、その存在量によって、金属材料の特性(例えば、疲労的性質、熱間加工性、冷間加工性、深絞り性、被削性、電磁気的性質など)に著しい影響を及ぼす。
 特に、金属材料が鉄鋼材料である場合において、微量な析出物を利用して鉄鋼材料の特性を向上させる技術および介在物の形態を制御する技術が、近年、著しく発展している。
 これに伴い、鉄鋼材料の製造工程において、析出物等の制御が厳格に行なわれている。そのためには、析出物等を高い精度で定量分析することを要する。
 一般的に、金属材料中の析出物等を定量分析するためには、まず、析出物等を抽出する。その後、抽出した析出物等を、フィルタを用いてろ過して捕集し、定量分析する。
 析出物等の抽出方法は、酸分解法、ハロゲン法および電解法に大別できる。
 これらのうち、金属材料中の析出物等を電解により抽出する電解法(特許文献1を参照)は、析出物等を安定的に抽出できることから、多く用いられる。
 加えて、近年、金属材料が更に高機能化するに伴い、100nm以下の極めて微細な析出物等を利用して、金属組織を制御したり、強度などの特性を改善したりすることが、工業的な規模で行なわれている。この場合、極めて微細な析出物等を定量分析したり、その形態を例えば透過型電子顕微鏡を用いて観察し把握したりすることが求められる。
特開2010-151695号公報
 金属材料中の析出物等を電解により抽出(電解抽出)し、抽出した析出物等を定量分析すると、定量分析値が予想値を大きく外れる場合がある。
 本発明は、以上の点を鑑みてなされたものであり、抽出した析出物および/または介在物(析出物等)を精度良く定量分析できる、析出物等の抽出方法を提供することを目的とする。
 更に、本発明は、上記抽出方法を用いた析出物等の定量分析方法、上記抽出方法に用いる電解液、および、上記電解液を用いたレプリカ試料の作製方法を提供することも目的とする。
 本発明者が鋭意検討した結果、以下の構成を採用することにより、上記目的が達成されることが見出された。
 すなわち、本発明は、以下の[1]~[15]を提供する。
 [1]金属材料中の析出物および/または介在物を、電解液を用いた電解により抽出する方法であって、上記電解液が、上記析出物および/または上記介在物の表面に吸着する吸着剤を含有する、析出物および/または介在物の抽出方法。
 [2]上記吸着剤が、上記金属材料のマトリックス金属の表面に吸着する、上記[1]に記載の析出物および/または介在物の抽出方法。
 [3]上記電解液が、上記金属材料のマトリックス金属と錯体を形成する薬剤を含有する、上記[1]または[2]に記載の析出物および/または介在物の抽出方法。
 [4]上記吸着剤が、チオール基、スルフィド基およびジスルフィド基からなる群から選ばれる少なくとも1種の基を有する化合物である、上記[1]~[3]のいずれかに記載の析出物および/または介在物の抽出方法。
 [5]上記電解液における上記吸着剤の含有量が、電解質および溶媒を含有するベース電解液に対して、0.1g/L以上である、上記[1]~[4]のいずれかに記載の析出物および/または介在物の抽出方法。
 [6]上記金属材料が、鉄鋼材料である、上記[1]~[5]のいずれかに記載の析出物および/または介在物の抽出方法。
 [7]上記[1]~[6]のいずれかに記載の抽出方法により抽出した析出物および/または介在物を定量分析する、析出物および/または介在物の定量分析方法。
 [8]金属材料中の析出物および/または介在物を電解により抽出する電解液であって、上記析出物および/または上記介在物の表面に吸着する吸着剤を含有する、電解液。
 [9]上記吸着剤が、上記金属材料のマトリックス金属の表面に吸着する、上記[8]に記載の電解液。
 [10]上記金属材料のマトリックス金属と錯体を形成する薬剤を含有する、上記[8]または[9]に記載の電解液。
 [11]上記吸着剤が、チオール基、スルフィド基およびジスルフィド基からなる群から選ばれる少なくとも1種の基を有する化合物である、上記[8]~[10]のいずれかに記載の電解液。
 [12]上記吸着剤の含有量が、電解質および溶媒を含有するベース電解液に対して、0.1g/L以上である、上記[8]~[11]のいずれかに記載の電解液。
 [13]上記金属材料が、鉄鋼材料である、上記[8]~[12]のいずれかに記載の電解液。
 [14]上記[8]~[13]のいずれかに記載の電解液を用いて金属材料の表面を電解エッチングし、上記電解エッチング後の上記金属材料の表面に存在する析出物および/または介在物を導電性薄膜に転写する、レプリカ試料の作製方法。
 [15]上記導電性薄膜が、カーボン蒸着膜である、上記[14]に記載のレプリカ試料の作製方法。
 本発明によれば、抽出した析出物等を精度良く定量分析できる。
発明例1の析出物等のSEM像である。 発明例1の析出物等のSEM-EDSマッピング像(Mnマッピング像)である。 発明例1の析出物等のSEM-EDSマッピング像(Cuマッピング像)である。 比較例1の析出物等のSEM像である。 比較例1の析出物等のSEM-EDSマッピング像(Mnマッピング像)である。 比較例1の析出物等のSEM-EDSマッピング像(Cuマッピング像)である。 発明例8における析出物等のTEM明視野像である。 図3A中の析出物1から得られたEDSスペクトルである。 図3A中の析出物2から得られたEDSスペクトルである。 図3A中の析出物3から得られたEDSスペクトルである。 比較例3における析出物等のTEM明視野像である。 図4A中の析出物4から得られたEDSスペクトルである。 図4A中の析出物5から得られたEDSスペクトルである。 図4A中の析出物6から得られたEDSスペクトルである。
[本発明者による知見]
 上述したように、金属材料中の析出物等を電解により抽出(電解抽出)し、抽出した析出物等を定量分析すると、定量分析値が予想値を大きく外れる場合がある。
 具体的には、例えば、鉄鋼材料を電解して、MnSなどの析出物等を抽出すると、その定量分析値に誤差が生じる場合がある。
 Cuを含有する鉄鋼材料など金属材料を電解すると、電解液中にマトリックス金属と共にCuが溶出する。
 本発明者は、電解液中にCuが存在すると、MnS中のMnとの置換反応が生じ、MnSがCuSに変化すると考えた。
 そして、本発明者は、鋭意検討した結果、特定の吸着剤を含有する電解液を用いて電解することにより、この置換反応を遮断する方法を見出した。
 具体的には、本発明者は、まず、後述するAA系電解液に、吸着剤として、6-ジブチルアミノ-1,3,5-トリアジン-2,4-ジチオールを100g/L添加した。
 次いで、下記表1に示す成分組成(残部はFeおよび不可避的不純物)を有する鉄鋼材料である鋼板を準備した。この鋼板の析出物等は、全てMnSであることを、走査型電子顕微鏡(SEM)を用いて確認した。
 準備した鋼板を、鏡面研磨し、この電解液に1秒間浸漬し、引き上げた後、メタノールを用いて洗浄し、乾燥させた。乾燥した鋼板表面における任意領域について、X線光電子分光(XPS)スペクトルを得て、C、NおよびSの濃度を求めた。
 同様に、吸着剤(すなわち、6-ジブチルアミノ-1,3,5-トリアジン-2,4-ジチオール)についても、XPSスペクトルを得て、C、NおよびSの濃度を求めた。
 下記表2に、鋼板表面および吸着剤における各成分の濃度(単位:原子%)を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記表2に示すように、鋼板表面と吸着剤とで、各成分の濃度比は、ほぼ同等であった。このことから、鋼板表面(より詳細には、鋼板のマトリックス金属の表面、および、それに付着している析出物等の表面)には、吸着剤である6-ジブチルアミノ-1,3,5-トリアジン-2,4-ジチオールが吸着していることが分かる。
 次に、本発明者は、この電解液を用いて、上記表1に示す成分組成を有する鋼板を定電流電解し、析出物等を抽出した。抽出した析出物等(MnS)を、酸を用いて溶解し、誘導結合プラズマ発光分光分析法(ICP-AES)により、Cuを定量分析した。
 その結果、Cu量は0.0001質量%と非常に少なかった(後述する発明例1を参照)。これに対して、電解液に吸着剤を添加しなかった場合は、Cu量は0.0048質量%と多かった(後述する比較例1を参照)。
 したがって、吸着剤(6-ジブチルアミノ-1,3,5-トリアジン-2,4-ジチオール)によって、電解液中のCuが析出物等(MnS)と接触することを防止し、上述した置換反応を抑制できたことが分かる。
 置換反応を抑制できた理由について、必ずしも明確ではないが、本発明者は、次のように考える。
 吸着剤が存在する電解液中で金属材料を電解すると、吸着反応と電解反応とが、交互に連続的に進行する。
 吸着反応は、吸着剤が金属材料のマトリックス金属の表面に吸着する反応である。
 電解反応は、金属材料のマトリックス金属、および、マトリックス金属に固溶しているCu等の金属がイオン化して、電解液に溶出する反応である。
 吸着反応と電解反応とが、交互に連続的に進行する結果、金属材料のマトリックス金属の表面に露出している析出物等の表面にも吸着剤が吸着する。そして、析出物等の周囲のマトリックス金属が溶解すると、析出物等は、吸着剤に覆われた状態で、金属材料のマトリックス金属の表面に付着する。
 このため、電解液中のCuイオンが析出物等に近づいても、析出物等の表面に存在する吸着剤の膜がCuイオンと接触することを防止し、置換反応が抑制される。
 本発明は、以上の知見に基づいてなされたものである。
 以下、本発明の実施形態(以下、単に「本発明」ともいう)を説明する。
[金属材料など]
 以下の説明において、「金属材料」としては、特に限定されないが、例えば、熱延鋼板、冷延鋼板などの鉄鋼材料が挙げられる。
 金属材料の「マトリックス金属」は、その金属材料中に最も多く含まれる元素であり、例えば、金属材料が鉄鋼材料である場合は、Feである。
 金属材料中の「析出物および/または介在物」(析出物等)としては、特に限定されないが、例えば、金属材料が鉄鋼材料である場合は、(Mn,Cu)S、MnSなどが挙げられる。
[電解液]
 本発明の電解液は、金属材料中の析出物および/または介在物を電解により抽出する電解液であって、上記析出物および/または上記介在物の表面に吸着する吸着剤を含有する、電解液である。
 〈電解質〉
 本発明の電解液は、実質的に、電解質を含有する。
 電解質としては、特に限定されず、従来公知の電解質を使用でき、例えば、塩化テトラメチルアンモニウム、塩化ナトリウム、臭化カリウムなどが挙げられる。
 〈溶媒〉
 本発明の電解液は、実質的に、溶媒を含有する。
 溶媒としては、従来公知の電解液の溶媒を使用でき、非水溶媒または水溶媒(水)が挙げられるが、吸着剤を溶解しやすいという理由から、非水溶媒が好ましい。
 非水溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノールなどのヒドロキシ基を有する非水溶媒が好適に挙げられる。
 〈薬剤〉
 本発明の電解液は、金属材料のマトリックス金属と錯体を形成する薬剤(以下、単に「薬剤」ともいう)を含有することが好ましい。これにより、電解液中に溶解したマトリックス金属が、金属材料の表面に再付着したり再析出したりするのを抑制する。
 薬剤としては、特に限定されず、例えば、アセチルアセトン、サリチル酸、サリチル酸メチル、マレイン酸、クエン酸、クエン酸ナトリウムなどが好適に挙げられる。
 薬剤の含有量は、特に限定されないが、マトリックス金属と錯体を形成することを要するから、溶媒に対する質量比で、1%以上が好ましく、5%以上がより好ましく、10%以上が更に好ましい。
 一方、経済的合理性、環境負荷などの観点から、溶媒に対する質量比で、50%以下が好ましく、30%以下がより好ましい。
 〈ベース電解液〉
 本発明の電解液は、ベース電解液を主体に構成されることが好ましい。
 ベース電解液は、少なくとも上述した電解質および溶媒を含有し、更に、上述した薬剤を含有していてもよい。
 ベース電解液としては、特に限定されず、例えば、AA系(アセチルアセトン-塩化テトラメチルアンモニウム-メタノール)電解液、MS系(サリチル酸メチル-サリチル酸-塩化テトラメチルアンモニウム-メタノール)電解液、MA系(無水マレイン酸-塩化テトラメチルアンモニウム-メタノール)電解液などの非水溶媒系電解液;クエン酸電解液、塩酸電解液などの水溶媒系電解液;等が挙げられる。
 〈吸着剤〉
 本発明の電解液が含有する吸着剤は、析出物等の表面に吸着する物質であれば、特に限定されない。吸着剤は、金属材料のマトリックス金属の表面に吸着することが好ましい。もっとも、金属材料は、通常、正電荷を有することから、吸着剤は、表面電位が負であり、かつ、不対電子を有することがより好ましい。
 このような吸着剤としては、例えば、チオール基、スルフィド基およびジスルフィド基からなる群から選ばれる少なくとも1種の基(以下、便宜的に「特定基」ともいう)を有する化合物が好適に挙げられる。
 特定基を有する化合物は、置換基として、アミノ基を有することが好ましい。
 アミノ基としては、特に限定されず、例えば、第1級アミノ基;アリルアミノ基、ブチルアミノ基などの第2級アミノ基;ジイソプロピルアミノ基、ジブチルアミノ基、ジイソブチルアミノ基、ジ(2-エチルヘキシル)アミノ基、ジアリルアミノ基、(4-ビニルベンジル-n-プロピル)アミノ基などの第3級アミノ基;等が挙げられ、なかでも、第3級アミノ基が好ましい。
 特定基およびアミノ基を有する化合物としては、例えば、2-アミノエタンチオール、2-アミノプロパンチオールなどのアミンチオールが挙げられる。
 特定基を有する化合物は、析出物等の表面を効率的に覆うために、かさ高い構造を有することが好ましい。かさ高い構造の具体例としては、トリアジン環が好適に挙げられる。
 特定基、アミノ基およびトリアジン環を有する化合物の具体例としては、6-ジアリルアミノ-1,3,5-トリアジン-2,4-ジチオール、6-(4-ビニルベンジル-n-プロピル)アミノ-1,3,5-トリアジン-2,4-ジチオール、6-ジブチルアミノ-1,3,5-トリアジン-2,4-ジチオールなどが挙げられる。
 これらのうち、溶媒(例えば、メタノール)に溶解しやすく、作業性にも優れるという理由から、6-ジブチルアミノ-1,3,5-トリアジン-2,4-ジチオールがより好ましい。
 本発明の電解液における吸着剤の含有量は、ベース電解液に対して、0.1g/L以上が好ましい。この範囲であれば、吸着剤が金属材料の表面を覆いやすく、Cuの接触を防止しやすい。
 このような効果がより優れるという理由から、吸着剤の含有量は、ベース電解液に対して、0.2g/L以上がより好ましく、2g/L以上が更に好ましく、10g/L以上がより更に好ましく、50g/L以上が特に好ましく、100g/L以上が最も好ましい。
 一方、上限は特に限定されないが、吸着剤は一般的に高価であり、かつ、全量溶解させることが困難である。このため、吸着剤の含有量は、ベース電解液に対して、500g/L以下が好ましい。
[抽出方法]
 本発明の析出物および/または介在物の抽出方法(以下、便宜的に「本発明の抽出方法」ともいう)は、金属材料中の析出物および/または介在物を、電解液を用いた電解により抽出する方法であって、上記電解液が、上記析出物および/または上記介在物の表面に吸着する吸着剤を含有する、析出物および/または介在物の抽出方法である。
 上述した本発明の電解液は、本発明の抽出方法に用いる電解液である。
 〈被検試料の準備〉
 本発明の抽出方法においては、まず、金属材料を、適当な大きさの試験片に切断し、研磨、洗浄および乾燥などを施すことが好ましい。研磨などを施した金属材料の試験片を、以下、「被検試料」ともいう。
 析出物等を定量分析する場合は、電解前に被検試料の質量を測定することが好ましい。
 〈電解〉
 次いで、本発明の電解液を用いて、被検試料を陽極として、電解(定電位電解または定電流電解)を行なう。
 電解量は、特に限定されないが、通常、被検試料を0.1~1g程度電解する。電解量は、電解液の量、電解条件、被検試料(金属材料)の種類、析出物等の量の推定値などに基づいて、適宜調整できる。
 電解中は、マグネチックスターラー等を用いて、電解液を攪拌することが好ましい。これにより、吸着剤が電解液中に均一に分散して、被検試料と接触しやすくなる。
 電解中、被検試料に含まれる析出物等は、電解液に溶出することなく、電解残渣として、被検試料の表面に付着する。
 被検試料の表面に吸着している析出物は、吸着剤の働きによって、電解液中のCuとの置換反応が抑制されている。
 〈析出物等の分離〉
 所定量の電解後、被検試料の残部に付着している電解残渣(析出物等)を電解液中に脱落させないように、被検試料の残部を、電解液から静かに取り出し、直ちに分散液に浸漬する。
 被検試料の残部を分散液に浸漬することにより、被検試料の残部に付着している電解残渣(析出物等)は、被検試料の残部から分離し、分散液に分散する。
 分散液としては、特に限定されず、従来公知の分散液を使用でき、例えば、メタノールが挙げられる。
 被検試料の残部から析出物等を迅速に全量分離させるためには、被検試料の残部が浸漬された分散液を超音波振とうすることが好ましい。
 被検試料の残部から析出物等が全量分離すると、被検試料の残部が金属光沢を呈するので、超音波振とう時間は、これを目安とする。
 その後、被検試料の残部を分散液から取り出す。取り出した被検試料の残部は、メタノール等を用いて十分に洗浄し、乾燥させることが好ましい。
 析出物等を定量分析する場合は、乾燥した被検試料の残部の質量を測定し、電解前の被検試料の質量から差し引くことにより電解質量を求める。
 1回の分離ステップ(浸漬および好ましくは超音波振とう)では、被検試料の残部が金属光沢を呈しない場合がある。
 具体的には、例えば、析出物等が多いため、1回の分離ステップ後では析出物等を分離しきれず、被検試料の残部の表面に析出物等が残留していると思われる場合である。
 この場合、別途、分散液を準備して、被検試料の残部が金属光沢を呈するまで分離ステップを複数回繰り返すことが好ましい。
 〈析出物等の捕集〉
 被検試料の残部を取り出した分散液(析出物等が分散している分散液)を、フィルタを用いてろ過(例えば、吸引ろ過)することにより、析出物等をフィルタ上に捕集する。
 析出物等のうち、数10nm以下のものは凝集しやすい。このため、析出物等の捕集に用いるフィルタの孔径は、想定される析出物等のサイズ以下にする必要はなく、析出物等の平均粒子径に応じて選択すればよい。
[定量分析方法]
 本発明の析出物および/または介在物の定量分析方法(以下、便宜的に「本発明の定量分析方法」ともいう)は、上述した本発明の抽出方法により抽出した析出物および/または介在物を定量分析する、析出物および/または介在物の定量分析方法である。
 本発明の定量分析方法では、上述した本発明の抽出方法により抽出した析出物等を、定法に従い溶解し、定量分析することが好ましい。
 析出物等の溶解には、従来公知の酸水溶液またはアルカリ水溶液を使用でき、定量分析する対象元素に応じて適宜選択する。
 定量分析の方法としては、例えば、誘導結合プラズマ発光分光分析法(ICP-AES)、誘導結合プラズマ質量分析法(ICP-MS)、原子吸光分析法などが好適に挙げられる。
 本発明の電解液を、析出物等を電子顕微鏡で観察するためのレプリカ試料の作製に用いることができる。これにより、析出物等を精度良く分析できる。
[レプリカ試料の作製方法]
 本発明のレプリカ試料の作製方法は、上述した本発明の電解液を用いて金属材料の表面を電解エッチングし、上記電解エッチング後の上記金属材料の表面に存在する析出物および/または介在物を導電性薄膜に転写する、レプリカ試料の作製方法である。
 〈被検試料の準備〉
 まず、金属材料の表面を研磨することが好ましい。研磨方法は特に限定されず、常法に従って金属材料の材質や特性などに応じた研磨方法を選択すればよい。
 〈電解エッチング〉
 次いで、本発明の電解液を用いて、被検試料(金属材料)の表面を電解エッチングする。これにより、被検試料の表面に析出物等を露出させる。
 電解エッチング中は、マグネチックスターラー等を用いて、電解液を攪拌することが好ましい。これにより、吸着剤が電解液中に均一に分散して被検試料と接触しやすくなる。
 電解エッチング量は、電解液の量、電解条件、被検試料(金属材料)の種類、析出物等の量の推定値などに基づいて、適宜調整できる。
 〈転写〉
 次いで、電解エッチングによって金属材料の表面に露出した析出物等を、導電性薄膜に転写して捕集する。この転写捕集の方法は、常法に従えばよく、例えば、金属材料に一般的に用いられる2段レプリカ法が挙げられる。
 2段レプリカ法は、概略的には、以下のとおりである。
 まず、電解エッチング後の金属材料の表面に、アセチルセルロース等からなる有機皮膜を、酢酸メチル等を用いて軟化溶解させた状態にしてから、融着させる。その後、有機皮膜を金属材料から剥離する。これにより、有機皮膜の表面に析出物等を転写捕集する。
 次いで、剥離後の有機皮膜における析出物等が転写捕集されている側の表面に、導電性薄膜を形成する。その後、酢酸メチルなどの有機溶剤を用いて有機皮膜を溶解する。これにより、導電性薄膜に析出物等が転写捕集された試料(レプリカ試料)が得られる。
 導電性薄膜としては、以下の理由から、カーボン蒸着膜が好ましい。
 一般的に、捕集した析出物等の組成分析には、特性X線が用いられる。カーボンはX線の吸収係数が小さいため、導電性薄膜としてカーボン蒸着膜を用いることにより、析出物等からの特性X線を取得することが容易となる。
 加えて、極めて微細な析出物等を観察分析する場合には透過電子線を用いるが、カーボンは電子線を透過させやすいため、導電性薄膜としてカーボン蒸着膜を用いることにより、析出物等を判別することが容易となる。
 導電性薄膜がカーボン蒸着膜である場合、カーボン蒸着膜の膜厚としては、特に限定されず、例えば、5nm以上30nm以下である。
 もっとも、カーボン蒸着膜の膜厚は、10nm超20nm未満が好ましい。これにより、レプリカ試料は、十分なしなやかさを有しつつ、金属材料の表面から転写された析出物等(および、不可避的に抽出された吸着剤)を保持可能な強度を有する。カーボン蒸着膜の膜厚は、11nm以上がより好ましく、12nm以上が更に好ましい。
 カーボン蒸着膜の膜厚は、干渉分光法によって計測する。
 作製したレプリカ試料は、例えば、電子顕微鏡を用いた観察などに供される。
 このとき、レプリカ試料の導電性薄膜を、例えばメッシュによって保持する。メッシュとしては、特に限定はされないが、メッシュの材質は、析出物等に含まれる元素とは異なることが好ましい。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明は、以下に説明する実施例に限定されない。
[試験1]
 〈発明例1〉
 発明例1では、後述する電解液Aを用いて、被検試料中の析出物等を抽出し、定量分析した。具体的には、以下のとおりである。
 《被検試料の準備》
 上記表1に示す成分組成(残部はFeおよび不可避的不純物)を有する鋼塊を、真空溶解にて作製した。作製した鋼塊を、1200℃に加熱後、熱間圧延することにより、厚さ3mmの熱延鋼板を作製した。
 作製した熱延鋼板から、断面観察用の試料を採取した。採取した試料を、走査型電子顕微鏡(SEM)を用いて観察したところ、析出物等は全てMnSであることを確認した。
 次いで、作製した熱延鋼板から、30mm×30mmサイズの試験片を採取し、表面を研磨して、被検試料とした。
 《電解抽出》
 100mLの10%AA系電解液(10質量%アセチルアセトン-1質量%塩化テトラメチルアンモニウム-メタノール)に、吸着剤として、6-ジブチルアミノ-1,3,5-トリアジン-2,4-ジチオールを10g添加することにより、電解液A(ベース電解液に対する吸着剤の含有量:100g/L)を調製した。
 調製した電解液Aを用いて、被検試料を、電流密度20mA/cmの条件で、定電流電解した。
 被検試料を0.1g電解した後、電解液Aから取り出した被検試料の残部を、分散液であるメタノールに浸漬し、超音波振とうを2分間付与し、被検試料の残部に金属光沢が現れたことを確認した。こうして、被検試料の残部に付着していた析出物等を分離し、分散液に分散させた。その後、被検試料の残部を、分散液から取り出した。
 次いで、被検試料の残部を取り出した分散液を、孔径0.2μmのフィルタでろ過して、析出物等をフィルタ上に捕集した。フィルタとしては、SEM観察(後述)しやすいように、表面が平滑なトラックエッチドメンブレンフィルタを用いた。
 《定量分析》
 捕集した析出物等を、フィルタごとビーカーに入れ、20mLの硝酸を添加し、100℃で30分間加熱して溶解した。加熱後、ビーカーからフィルタを取り出し、フィルタに付着した硝酸を純水で洗い流した。
 ビーカー内の液体について、ICP発光分光分析装置(ICPS-8100、島津製作所社製)を用いて、ICP-AESにより、定量分析し、フィルタ上に捕集した析出物等のMn量およびCu量(単位:質量%)を求めた。求めた値は、鋼中濃度に換算した値である。結果を下記表3に示す。
 《SEM観察》
 析出物等が捕集されたフィルタ(上述した定量分析に用いたものとは別のもの)を乾燥機で乾燥し、次いで、フィルタに導電性を付与するためカーボン蒸着を行なった。
 その後、SEMを用いて、フィルタ上の析出物等を観察した。このとき、SEMに付属するエネルギー分散型X線分析(EDS)装置を用いて、析出物等のSEM-EDSマッピング像を取得した。結果を図1A~図1Cに示す。
 図1Aは、析出等のSEM像を示す。図1Bは、Mnマッピング像を示す。図1Cは、Cuマッピング像を示す(後述する図2A~図2Cも同様)。
 〈比較例1〉
 100mLの10%AA系電解液を、吸着剤を添加しないで、電解液Bとした。
 電解液Aに代えて電解液Bを用いた以外は、発明例1と同様にして、電解抽出、定量分析およびSEM観察を行なった。定量分析の結果を下記表3に示す。SEM観察の結果を図2A~図2Cに示す。
Figure JPOXMLDOC01-appb-T000003
 〈評価結果まとめ〉
 まず、比較例1について、図2A~図2C(比較例1の析出物等のSEM-EDSマッピング像)を見ると、析出物等の表面に、Cuは多く存在していた。このことから、CuによるMnSの置換反応が生じていることが分かる。
 そして、上記表3を見ると、比較例1では、析出物等におけるCu量は0.0048質量%であり、Mn量(0.0037質量%)よりも高い値であった。
 これに対して、発明例1では、図1A~図1C(発明例1の析出物等のSEM-EDSマッピング像)を見ると、析出物等はMnSのみであり、Cuは確認できなかった。
 そして、上記表3に示すように、発明例1における析出物等は、Mn量が0.0101質量%、Cu量が0.0001質量%であり、Cuはほとんど検出されなかった。
 したがって、発明例1は、比較例1よりも、捕集した析出物等をより精度良く定量分析できたと評価できる。
[試験2]
 次に、電解液が含有する吸着剤の量を変化させ、その場合における本発明の効果を確認した。
 〈発明例2~発明例5〉
 100mLのMA系電解液(10質量%無水マレイン酸-1質量%塩化テトラメチルアンモニウム-メタノール)に、吸着剤(6-ジブチルアミノ-1,3,5-トリアジン-2,4-ジチオール)を、それぞれ、0.02g、0.2g、1gおよび5gずつ添加して、電解液C~電解液Fを調製した。
 電解液C~電解液Fを用いて、発明例1と同様にして、電解抽出および定量分析を行なった。定量分析の結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000004
 〈評価結果まとめ〉
 上記表4に示すように、いずれの電解液を用いた場合も、析出物等におけるMn量は、比較例1よりも高い値であり、発明例1と同等の値であった。
 したがって、電解液における吸着剤の含有量が極めて低い場合であっても、捕集した析出物等を精度良く定量分析できたと評価できる。
[試験3]
 次に、電解液が含有する吸着剤の種類を変化させ、その場合における本発明の効果を確認した。
 〈発明例6〉
 100mLの10%AA系電解液に、吸着剤として、2-アミノエタンチオールを5g添加することによりし、電解液G(ベース電解液に対する吸着剤の含有量:50g/L)を調製した。
 電解液Gを用いて、発明例1と同様にして、電解抽出および定量分析を行なった。定量分析の結果を下記表5に示す。
Figure JPOXMLDOC01-appb-T000005
 〈評価結果まとめ〉
 上記表5に示すように、電解液Gを用いた発明例6では、Cu量は比較例1に対して減少しており、Mn量は発明例1と同等であった。
 したがって、発明例1とは異なる吸着剤を用いた発明例6においても、捕集した析出物等を精度良く定量分析できたと評価できる。
[試験4]
 近年、鉄鋼業界を含む各業界において、スクラップの利用促進が進められている。
 ところで、スクラップ中には除去しきれない貴金属が含まれており、それらの貴金属(特に、銀)が、鉄鋼材料などの金属材料中に含まれることが頻発している。
 銀(Ag)は、反応しやすい金属元素であるため、電解によって金属材料の表面に露出した析出物等と反応することにより、抽出した析出物等の定量分析値の誤差が大きくなることが考えられる。
 しかし、本発明の電解液を用いて電解抽出することにより、析出物等の表面に吸着剤が吸着し、銀との反応を抑制できる。以下では、この効果を確認した。
 〈発明例7〉
 100mLのMA系電解液に、吸着剤(6-ジブチルアミノ-1,3,5-トリアジン-2,4-ジチオール)を10g添加し、更に、関東化学社製の銀標準液(銀の濃度:1mg/L)を1mL添加することにより、電解液H(ベース電解液に対する吸着剤の含有量:100g/L)を調製した。
 〈比較例2〉
 100mLのMA系電解液に、関東化学社製の銀標準液(銀の濃度:1mg/L)を1mL添加することにより、電解液Iを調製した。
 電解液Hおよび電解液Iを用いて、発明例1と同様にして、電解抽出および定量分析を行なった。定量分析の結果を下記表6に示す。
Figure JPOXMLDOC01-appb-T000006
 〈評価結果まとめ〉
 上記表6に示すように、比較例2のAg量は0.0500質量%であり、析出物等に含まれていない銀が多量に分析された。
 一方、発明例7においては、Ag量は0.0026質量%とわずかであり、Mn量およびCu量は発明例1と同等の値であった。
 したがって、発明例7は、比較例2と比較して、捕集した析出物等をより精度良く定量分析できたと評価できる。
[試験5]
 〈発明例8〉
 発明例1と同じ電解液Aを用いて、被検試料中の表面に存在する析出物等のレプリカ試料を作製した。具体的には、以下のとおりである。
 《被検試料の準備》
 下記表7に示す成分組成(残部はFeおよび不可避的不純物)を有する溶鋼を、真空脱ガス処理後、連続鋳造によりスラブとした。次いで、得られたスラブを1150℃に加熱し、スケール除去後、板厚40mmまで粗圧延した。得られた粗圧延板を、その表層をスケール除去装置で冷却した後、3.5mm厚まで仕上げ圧延し、700℃でコイルに巻き取り、熱延鋼板とした。得られた熱延鋼板における鏡面研磨後の表面を、SEMを用いて観察したところ、MnSおよびTiMnSが含まれることを確認した。
Figure JPOXMLDOC01-appb-T000007
 《レプリカ試料の作製》
 得られた熱延鋼板から10mm角の鋼片を採取し、酸を用いてスケールのみを除去し、片表面を鏡面研磨した。その後、電解液A(発明例1を参照)を用いて、鋼片に対して、電解厚みは片面あたり表層から1μmとし、電流密度5mA/cmの条件で、電解エッチングを実施した。
 電解エッチング後の鋼片表面に、酢酸メチルを用いて軟化溶解させた有機皮膜(アセチルセルロース)を融着させた。その後、有機皮膜を剥離することで、鋼片表面の析出物等を、有機皮膜の表面に転写捕集した。
 次いで、剥離後の有機皮膜における析出物等が転写捕集されている側の表面に、膜厚15nmのカーボン蒸着膜を形成した。
 その後、有機皮膜を、有機溶剤(酢酸メチル)を用いて溶解した。次いで、カーボン蒸着膜を、市販のNiメッシュ(メッシュサイズ:150μm)を用いて保持した。
 こうして、鋼片表面の析出物等がカーボン蒸着膜に転写捕集された試料(レプリカ試料)を作製した。
 《定性分析》
 作製したレプリカ試料の表面を、透過型電子顕微鏡(TEM)を用いて観察して、TEM明視野像を取得した。観察条件は、加速電圧:200kV、観察倍率:10000倍とした。更に、TEMに付属するEDS装置を用いて、析出物等を定性分析した。結果を図3A~図3Dに示す。
 図3Aは、発明例8における析出物等のTEM明視野像である。図3B~図3Dは、それぞれ、図3A中の析出物1~3から得られたEDSスペクトルである。
 〈比較例3〉
 電解液Aに代えて電解液B(比較例1を参照)を用いて電解エッチングした以外は、発明例8と同様にして、レプリカ試料の作製および定性分析を行なった。結果を図4A~図4Dに示す。
 図4Aは、比較例3における析出物等のTEM明視野像である。図4B~図4Dは、それぞれ、図4A中の析出物4~6から得られたEDSスペクトルである。
 〈評価結果まとめ〉
 発明例8では、図3B~図3Dに示すEDSスペクトルから、析出物等はMnSおよびTiMnSであり、Cuは確認できなかった。
 これに対して、比較例3では、図4B~図4Dに示すEDSスペクトルから、析出物等はCuSおよびTiCuSであることが分かる。
 このことから、電解エッチングに用いる電解液に吸着剤を加えない場合、CuによるMnとの置換反応が生じていることが分かる。
 したがって、発明例8は、比較例3と比較して、レプリカ試料として抽出した微細な析出物等をより精度良く分析できたと評価できる。
[試験6]
 〈発明例9~発明例10〉
 カーボン蒸着膜の膜厚を15nmから、それぞれ、10nmおよび20nmにした以外は、発明例8と同様にして、レプリカ試料を作製した。
 上述した発明例8および発明例9~発明例10について、レプリカ試料の作製途中に、カーボン蒸着膜の状態を観察した。
 具体的には、有機溶剤を用いて有機皮膜(アセチルセルロース)を溶解した時点と、Niメッシュを用いてカーボン蒸着膜を保持した時点とにおいて、カーボン蒸着膜の状態を観察した。
 カーボン蒸着膜の当初形状が維持されており、電子顕微鏡による観察に供せる状態であった場合には「A」を、カーボン蒸着膜の一部に崩壊が見られた場合は「B」を、下記表8に記載した。
Figure JPOXMLDOC01-appb-T000008
 〈評価結果まとめ〉
 上記表8に示すように、発明例9(カーボン蒸着膜の膜厚:10nm)では、有機皮膜を溶解した時点でカーボン蒸着膜の一部崩壊が見られた。
 次に、発明例10(カーボン蒸着膜の膜厚:20nm)では、有機皮膜を溶解した時点ではカーボン蒸着膜の崩壊は見られなかったものの、Niメッシュにより保持した時点でカーボン蒸着膜の一部崩壊が見られた。
 これに対して、発明例8(カーボン蒸着膜の膜厚:15nm)では、どちらの時点においてもカーボン蒸着膜の崩壊は見られなかった。このため、例えばTEM用の観察試料として好適であることが分かった。

Claims (15)

  1.  金属材料中の析出物および/または介在物を、電解液を用いた電解により抽出する方法であって、
     前記電解液が、前記析出物および/または前記介在物の表面に吸着する吸着剤を含有する、析出物および/または介在物の抽出方法。
  2.  前記吸着剤が、前記金属材料のマトリックス金属の表面に吸着する、請求項1に記載の析出物および/または介在物の抽出方法。
  3.  前記電解液が、前記金属材料のマトリックス金属と錯体を形成する薬剤を含有する、請求項1または2に記載の析出物および/または介在物の抽出方法。
  4.  前記吸着剤が、チオール基、スルフィド基およびジスルフィド基からなる群から選ばれる少なくとも1種の基を有する化合物である、請求項1~3のいずれか1項に記載の析出物および/または介在物の抽出方法。
  5.  前記電解液における前記吸着剤の含有量が、電解質および溶媒を含有するベース電解液に対して、0.1g/L以上である、請求項1~4のいずれか1項に記載の析出物および/または介在物の抽出方法。
  6.  前記金属材料が、鉄鋼材料である、請求項1~5のいずれか1項に記載の析出物および/または介在物の抽出方法。
  7.  請求項1~6のいずれか1項に記載の抽出方法により抽出した析出物および/または介在物を定量分析する、析出物および/または介在物の定量分析方法。
  8.  金属材料中の析出物および/または介在物を電解により抽出する電解液であって、
     前記析出物および/または前記介在物の表面に吸着する吸着剤を含有する、電解液。
  9.  前記吸着剤が、前記金属材料のマトリックス金属の表面に吸着する、請求項8に記載の電解液。
  10.  前記金属材料のマトリックス金属と錯体を形成する薬剤を含有する、請求項8または9に記載の電解液。
  11.  前記吸着剤が、チオール基、スルフィド基およびジスルフィド基からなる群から選ばれる少なくとも1種の基を有する化合物である、請求項8~10のいずれか1項に記載の電解液。
  12.  前記吸着剤の含有量が、電解質および溶媒を含有するベース電解液に対して、0.1g/L以上である、請求項8~11のいずれか1項に記載の電解液。
  13.  前記金属材料が、鉄鋼材料である、請求項8~12のいずれか1項に記載の電解液。
  14.  請求項8~13のいずれか1項に記載の電解液を用いて金属材料の表面を電解エッチングし、前記電解エッチング後の前記金属材料の表面に存在する析出物および/または介在物を導電性薄膜に転写する、レプリカ試料の作製方法。
  15.  前記導電性薄膜が、カーボン蒸着膜である、請求項14に記載のレプリカ試料の作製方法。
PCT/JP2020/042956 2019-11-25 2020-11-18 析出物および/または介在物の抽出方法、析出物および/または介在物の定量分析方法、電解液、ならびに、レプリカ試料の作製方法 WO2021106705A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/779,664 US20230003624A1 (en) 2019-11-25 2020-11-18 Method of extracting precipitate and/or inclusion, method of quantitative analysis of precipitate and/or inclusion, electrolyte, and method of producing replica sample
CN202080080471.1A CN114729855A (zh) 2019-11-25 2020-11-18 析出物和/或夹杂物的提取方法、析出物和/或夹杂物的定量分析方法、电解液和复型试样的制作方法
EP20894141.9A EP4050317A4 (en) 2019-11-25 2020-11-18 METHOD FOR EXTRACTION OF PRECIPITY AND/OR INCLUSION, METHOD FOR QUANTITATIVE ANALYSIS OF PRECIPITY AND/OR INCLUSION, ELECTROLYTE AND METHOD FOR PRODUCTION OF REPLICA SAMPLE
KR1020227017031A KR20220082076A (ko) 2019-11-25 2020-11-18 석출물 및/또는 개재물의 추출 방법, 석출물 및/또는 개재물의 정량 분석 방법, 전해액, 그리고, 레플리카 시료의 제작 방법
JP2021515243A JP6919775B1 (ja) 2019-11-25 2020-11-18 析出物および/または介在物の抽出方法、析出物および/または介在物の定量分析方法、電解液、ならびに、レプリカ試料の作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019212278 2019-11-25
JP2019-212278 2019-11-25

Publications (1)

Publication Number Publication Date
WO2021106705A1 true WO2021106705A1 (ja) 2021-06-03

Family

ID=76129390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042956 WO2021106705A1 (ja) 2019-11-25 2020-11-18 析出物および/または介在物の抽出方法、析出物および/または介在物の定量分析方法、電解液、ならびに、レプリカ試料の作製方法

Country Status (6)

Country Link
US (1) US20230003624A1 (ja)
EP (1) EP4050317A4 (ja)
JP (1) JP6919775B1 (ja)
KR (1) KR20220082076A (ja)
CN (1) CN114729855A (ja)
WO (1) WO2021106705A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4299797A3 (en) * 2022-06-29 2024-05-08 Rohm and Haas Electronic Materials LLC Silver electroplating compositions and methods for electroplating rough matt silver

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184537A (ja) * 1994-12-28 1996-07-16 Nippon Steel Corp 鋼中非金属介在物試料の抽出方法
JPH1126273A (ja) * 1997-07-09 1999-01-29 Res Dev Corp Of Japan 原子レベルで制御された表面をもつ金属材料の製造方法
JP2010122793A (ja) * 2008-11-18 2010-06-03 Creator's Head Inc 情報管理システム
JP2010151695A (ja) 2008-11-28 2010-07-08 Jfe Steel Corp 金属材料中の析出物及び/又は介在物の分析方法
WO2017142084A1 (ja) * 2016-02-18 2017-08-24 新日鐵住金株式会社 電解エッチング用装置および金属化合物粒子の抽出方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004317203A (ja) * 2003-04-14 2004-11-11 Nippon Steel Corp 金属中の介在物および析出物の評価方法、および治具
JP5088305B2 (ja) * 2008-11-28 2012-12-05 Jfeスチール株式会社 金属材料中の析出物及び/又は介在物の分析方法
JP6897532B2 (ja) * 2017-12-08 2021-06-30 日本製鉄株式会社 金属化合物粒子の抽出用電解液、およびそれを用いた電解抽出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184537A (ja) * 1994-12-28 1996-07-16 Nippon Steel Corp 鋼中非金属介在物試料の抽出方法
JPH1126273A (ja) * 1997-07-09 1999-01-29 Res Dev Corp Of Japan 原子レベルで制御された表面をもつ金属材料の製造方法
JP2010122793A (ja) * 2008-11-18 2010-06-03 Creator's Head Inc 情報管理システム
JP2010151695A (ja) 2008-11-28 2010-07-08 Jfe Steel Corp 金属材料中の析出物及び/又は介在物の分析方法
WO2017142084A1 (ja) * 2016-02-18 2017-08-24 新日鐵住金株式会社 電解エッチング用装置および金属化合物粒子の抽出方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4299797A3 (en) * 2022-06-29 2024-05-08 Rohm and Haas Electronic Materials LLC Silver electroplating compositions and methods for electroplating rough matt silver

Also Published As

Publication number Publication date
EP4050317A4 (en) 2023-01-18
CN114729855A (zh) 2022-07-08
KR20220082076A (ko) 2022-06-16
US20230003624A1 (en) 2023-01-05
JP6919775B1 (ja) 2021-08-18
EP4050317A1 (en) 2022-08-31
JPWO2021106705A1 (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
JP5098843B2 (ja) 金属試料中の着目元素の固溶含有率を求める方法
RU2703241C1 (ru) Способ извлечения частиц соединения металла, способ анализа частиц соединения металла и используемый для этого электролитический раствор
JP4737278B2 (ja) 金属材料中の析出物および/または介在物の分析方法
RU2698004C1 (ru) Устройство для электролитического травления и растворения и способ для экстракции частиц металлического соединения
EP2163879B1 (en) Method for analysing a metallic material
JP6919775B1 (ja) 析出物および/または介在物の抽出方法、析出物および/または介在物の定量分析方法、電解液、ならびに、レプリカ試料の作製方法
JP2004317203A (ja) 金属中の介在物および析出物の評価方法、および治具
JP2006253420A (ja) 半導体研磨スラリー中の金属の定量方法
JP6897532B2 (ja) 金属化合物粒子の抽出用電解液、およびそれを用いた電解抽出方法
JP7020447B2 (ja) 金属試料中の介在物および/または析出物の分析方法、および、金属試料中の介在物および/または析出物の捕集方法
JP3943488B2 (ja) 鉄鋼試料中の非金属介在物の組成および/または粒径の分析法
JP6943264B2 (ja) 金属試料中の介在物および/または析出物の捕集方法、および、金属試料中の介在物および/または析出物の分析方法、ならびに、電解液
JP7010411B2 (ja) 析出物および/または介在物の抽出方法、析出物および/または介在物の定量分析方法、ならびに、電解液
JP2010127789A (ja) 金属材料中の析出物および/または介在物の定量方法
JP6969222B2 (ja) Cu添加鋼板
JP6958577B2 (ja) 金属試料中の析出物および/または介在物の分析方法
JP2009008586A (ja) 金属試料中の着目元素の固溶含有率を求める方法
JP5324141B2 (ja) 鋼中のCaO含有介在物の分析方法
JP5088305B2 (ja) 金属材料中の析出物及び/又は介在物の分析方法
JP4356869B2 (ja) 銅合金中の晶・析出物の抽出分離方法およびこれに用いる抽出分離用液
Kanna et al. Preparation of an Economic Home-Made Ag/AgCl Electrode from Silver Recovered from Laboratory Wastes
JP2000206108A (ja) 鉄鋼試料中の含Ca酸化物系介在物、含Na酸化物系介在物および含K酸化物系介在物の二次処理用組成物ならびに二次処理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021515243

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894141

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227017031

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020894141

Country of ref document: EP

Effective date: 20220525

NENP Non-entry into the national phase

Ref country code: DE