WO2021106691A1 - 電気化学セル - Google Patents

電気化学セル Download PDF

Info

Publication number
WO2021106691A1
WO2021106691A1 PCT/JP2020/042857 JP2020042857W WO2021106691A1 WO 2021106691 A1 WO2021106691 A1 WO 2021106691A1 JP 2020042857 W JP2020042857 W JP 2020042857W WO 2021106691 A1 WO2021106691 A1 WO 2021106691A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical cell
outer container
cell
electrochemical
laminate
Prior art date
Application number
PCT/JP2020/042857
Other languages
English (en)
French (fr)
Inventor
孝明 福島
航 加藤
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US17/779,557 priority Critical patent/US20230006296A1/en
Priority to EP20892658.4A priority patent/EP4068474A1/en
Priority to JP2021561334A priority patent/JP7358507B2/ja
Priority to CN202080082469.8A priority patent/CN114762176A/zh
Publication of WO2021106691A1 publication Critical patent/WO2021106691A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to an electrochemical cell.
  • Patent Document 1 An example of the prior art is described in Patent Document 1.
  • the electrochemical cell of the present disclosure includes a cell laminate formed by laminating a plurality of plate-shaped single cells having a power generation element and a package for accommodating the power generation element, and an outer container for accommodating the cell laminate. .. A part of the outer container protrudes outward to a surface region located between the outer edge portion of the outer container and the outer peripheral portion of the cell laminate when viewed in the stacking direction of the cell laminate. At least one rib is provided.
  • the electrochemical cell module of the present disclosure includes a plurality of the electrochemical cells, a current collecting member for electrically connecting the plurality of electrochemical cells to each other, and a housing for accommodating the plurality of electrochemical cells. ..
  • FIG. 1 is a plan view showing an example of an embodiment of the electrochemical cell of the present disclosure.
  • FIG. 2 is a cross-sectional view taken along the cutting plane line AA of FIG.
  • FIG. 3 is a cross-sectional view taken along the cutting plane line BB of FIG.
  • FIG. 4 is a plan view showing a single cell included in the electrochemical cell of FIG.
  • FIG. 5 is a cross-sectional view taken along the cut plane line CC of FIG.
  • FIG. 6 is an exploded perspective view showing an example of an embodiment of the electrochemical cell module of the present disclosure.
  • an electrochemical cell which is a basic configuration of the electrochemical cell of the present disclosure
  • an electrochemical cell in which a cell body functioning as a battery is housed in an outer container is known (see, for example, Patent Document 1). ..
  • Such an electrochemical cell has a connection terminal that is connected to an external device.
  • the connection terminal is provided from the inside of the outer container to the outside of the outer container, and is connected to the cell body inside the outer container.
  • the outer container is easily deformed by an impact or the like, and the cell body housed in the outer container may be displaced. As a result, the durability of the electrochemical cell may be lowered due to deformation of the connection portion between the connection terminal and the cell body.
  • FIG. 1 is a plan view showing an example of an embodiment of the electrochemical cell of the present disclosure
  • FIG. 2 is a cross-sectional view taken along the cutting plane line AA of FIG. 1
  • FIG. 3 is FIG. It is sectional drawing which cut at the cut plane line BB.
  • FIG. 4 is a plan view showing a single cell in the electrochemical cell of FIG. 1
  • FIG. 5 is a cross-sectional view cut along the cutting plane line CC of FIG.
  • the electrochemical cell 1 of the present embodiment includes a cell laminate 10 and an outer container 20.
  • the cell laminate 10 is a stack of a plurality of single cells 11.
  • the single cell 11 has a plate shape and is a member of the smallest unit that functions as a battery in the electrochemical cell 1.
  • the single cell 11 has a main surface 11a and the other main surface 11b on the opposite side of the main surface 11a.
  • the single cell 11 has, for example, a rectangular shape, a square shape, a circular shape, or the like when viewed from the stacking direction of the cell laminated body 10 (the left-right direction in FIG. 2, hereinafter simply referred to as the first direction). It may have an elliptical shape or the like, or it may have another shape. In the present embodiment, for example, as shown in FIG. 4, the single cell 11 has a substantially rectangular shape when viewed from the first direction.
  • the dimensions of the single cell 11 when viewed from the first direction are, for example, a long side length of 50 mm to 500 mm and a short side length of 50 mm to 300 mm.
  • the thickness of the single cell 11 in the first direction is, for example, 0.1 mm to 2 mm.
  • the single cell 11 has a power generation element 12, a package 13, a positive electrode terminal 14, and a negative electrode terminal 15.
  • the power generation element 12 is a member for storing and releasing electricity by utilizing an electrochemical reaction.
  • the power generation element 12 has, for example, a positive electrode 12a, a negative electrode 12b, and a separator 12c located between the positive electrode 12a and the negative electrode 12b.
  • the power generation element 12 can exchange cations and anions between the positive electrode 12a and the negative electrode 12b via the separator 12c.
  • the power generation element 12 can conduct electricity to the external device by electrically connecting the positive electrode 12a and the negative electrode 12b to the external device.
  • the positive electrode 12a and the negative electrode 12b are, for example, electrochemically active substances.
  • the positive electrode 12a and the negative electrode 12b may have, for example, an active substance and an electrolytic solution.
  • an electrolytic solution for example, a solvent or a solvent mixture to which a salt is added can be used.
  • the positive electrode 12a is, for example, nickel cobalt aluminum-based lithium composite oxide (NCA), spinel-based lithium manganate (LMO), lithium iron phosphate (LFP), lithium cobalt oxide (LCO), nickel cobalt manganese-based lithium composite oxide. (NCM) and the like may be included.
  • the positive electrode 12a may contain a solid compound known to those skilled in the art, which is used in, for example, a nickel hydrogen battery, a nickel cadmium battery, and the like.
  • the positive electrode 12a may contain, for example, Mg-doped LiCoO 2 , LiNiO 2, and the like.
  • the negative electrode 12b may contain, for example, a carbon-based material such as graphite, hard carbon, soft carbon, carbon nanotubes, and graphene.
  • the negative electrode 12b may contain a titanium-based oxide such as lithium titanate or titanium dioxide.
  • the negative electrode 12b may contain, for example, a transition metal compound containing iron, cobalt, copper, manganese, nickel and the like.
  • the electrolytic solution may be, for example, a solvent to which a lithium salt is added.
  • the lithium salt used in the electrolytic solution include LiPF 6 , LiBF 4 , LiClO 4, and LiFSI.
  • the solvent used in the electrolytic solution include propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), dimethoxyethane (DME), diethyl carbonate (DEC), tetrahydrofuran (THF), and triethylene glycol dimethyl ether. (Triglime) and the like.
  • the separator 12c is a member for reducing the possibility that the positive electrode 12a and the negative electrode 12b are short-circuited.
  • the separator 12c may have, for example, fine holes through which cations and anions pass.
  • a porous insulating material can be used as the separator 12c. Examples of the porous insulating material used in the separator 12c include polyolefin, polyvinyl chloride and the like.
  • the shape of the power generation element 12 when viewed from the first direction may be, for example, a rectangular shape, a square shape, a circular shape, an elliptical shape, or any other shape.
  • the power generation element 12 has a rectangular shape when viewed from the first direction.
  • the dimensions of the power generation element 12 when viewed from the first direction are, for example, a long side length of 50 mm to 500 mm and a short side length of 50 mm to 300 mm.
  • the thickness of the power generation element 12 in the first direction is, for example, 0.1 mm to 2 mm.
  • the plurality of single cells 11 are electrically connected in parallel. Thereby, the capacity of the electrochemical cell 1 can be increased.
  • the plurality of single cells 11 may be electrically connected in series. In this case, the voltage of the electrochemical cell 1 can be increased.
  • the packaging body 13 is a member for electrically insulating the power generation element 12 from the external environment and protecting the power generation element 12 from the external environment.
  • the package 13 covers the entire power generation element 12 and houses the power generation element 12.
  • the package 13 has, for example, a flat bag shape.
  • the package 13 is formed by welding two laminated films, for example.
  • the packaging body 13 may be formed, for example, by forming a laminated film into a flat bag shape.
  • the shape of the package 13 when viewed from the first direction may be, for example, a rectangular shape, a square shape, or any other shape. In the present embodiment, for example, as shown in FIG. 4, the package 13 has a rectangular shape when viewed from the first direction.
  • the packaging body 13 has, for example, an insulating material. As a result, the possibility that the external environment and the power generation element 12 are short-circuited via the package 13 can be reduced, so that the power generation element 12 can be protected from the external environment.
  • the package 13 has, for example, a resin material.
  • the resin material for example, polyethylene terephthalate, polyethylene, or the like can be used. As a result, the possibility that the power generation element 12 comes into contact with oxygen, moisture, or the like in the air can be reduced, so that the power generation element 12 can be protected from the external environment.
  • the package 13 may have, for example, a multi-layer structure.
  • the package 13 may have, for example, a thermosetting resin material and a heat-resistant resin material.
  • the thermosetting resin material is, for example, a resin material having a melting temperature of less than 150 ° C.
  • the thermosetting resin material for example, polyethylene, polypropylene, or the like can be used.
  • the heat-resistant resin material is, for example, a resin material having a melting temperature of 150 ° C. or higher and 300 ° C. or lower.
  • As the heat-resistant resin material for example, polyethylene terephthalate or polyethylene naphthalate can be used.
  • the positive electrode terminal 14 and the negative electrode terminal 15 are members for taking out the electricity stored in the power generation element 12 to the outside of the package 13.
  • the positive electrode terminal 14 and the negative electrode terminal 15 are located from the inside of the package 13 to the outside of the package 13.
  • the positive electrode terminal 14 is electrically connected to the positive electrode 12a and electrically insulated from the negative electrode 12b and the negative electrode terminal 15.
  • the positive electrode terminal 14 is made of, for example, a metal material. Examples of the metal material used for the positive electrode terminal 14 include aluminum.
  • the positive electrode terminal 14 has a first positive electrode terminal portion 14a located inside the package 13 and a second positive electrode terminal portion 14b located outside the package 13.
  • the first positive electrode terminal portion 14a is in contact with the positive electrode 12a.
  • the first positive electrode terminal portion 14a is located between the package 13 and the positive electrode 12a.
  • the second positive electrode terminal portion 14b is connected to the connection terminal of the electrochemical cell 1.
  • the second positive electrode terminal portion 14b may have, for example, a rectangular plate shape, a square plate shape, or the like, or may have any other shape. In the present embodiment, for example, as shown in FIG. 4, the second positive electrode terminal portion 14b has a rectangular shape when viewed from the first direction.
  • the dimensions of the second positive electrode terminal portion 14b when viewed from the first direction are, for example, a long side length of 30 mm to 100 mm and a short side length of 10 mm to 100 mm.
  • the thickness of the second positive electrode terminal portion 14b in the first direction is, for example, 3 to 30 ⁇ m.
  • the negative electrode terminal 15 is electrically connected to the negative electrode 12b and is electrically insulated from the positive electrode 12a and the positive electrode terminal 14.
  • the negative electrode terminal 15 is made of, for example, a metal material. Examples of the metal material used for the negative electrode terminal 15 include copper.
  • the negative electrode terminal 15 has a first negative electrode terminal portion 15a located inside the package 13 and a second negative electrode terminal portion 15b located outside the package 13.
  • the first negative electrode terminal portion 15a is in contact with the negative electrode 12b.
  • the first negative electrode terminal portion 15a is located between the package 13 and the negative electrode 12b.
  • the second negative electrode terminal portion 15b is connected to the connection terminal of the electrochemical cell 1.
  • the second negative electrode terminal portion 15b may have, for example, a rectangular plate shape, a square plate shape, or the like, or may have any other shape. In the present embodiment, for example, as shown in FIG. 4, the second negative electrode terminal portion 15b has a rectangular shape when viewed from the first direction.
  • the dimensions of the second negative electrode terminal portion 15b when viewed from the first direction are, for example, a long side length of 30 mm to 100 mm and a short side length of 10 mm to 100 mm.
  • the thickness of the second negative electrode terminal portion 15b in the first direction is, for example, 3 to 30 ⁇ m.
  • the second positive electrode terminal portion 14b and the second negative electrode terminal portion 15b may extend outward from one side of the package 13 when viewed from the first direction, for example, as shown in FIG.
  • the second positive electrode terminal portion 14b and the second negative electrode terminal portion 15b may extend outward from different sides of the package 13 when viewed from the first direction.
  • the outer container 20 is a member for protecting the cell laminate 10 from the external environment.
  • the external environment is, for example, oxygen and moisture in the air.
  • the outer container 20 covers the entire cell laminate 10 and houses the cell laminate 10.
  • the outer container 20 may have, for example, a cylindrical shape, a bag shape, or the like, or may have any other shape.
  • the outer container 20 may be formed by welding two members into a bag shape, or may have one member formed into a bag shape.
  • the shape of the outer container 20 when viewed in the first direction may be, for example, a rectangular shape, a square shape, or any other shape. In the present embodiment, for example, as shown in FIG. 1, the outer container 20 has a rectangular shape when viewed in the first direction.
  • the outer container 20 is arranged so that the long side direction and the short side direction of the outer container 20 substantially coincide with the long side direction and the short side direction of the cell laminate 10 when viewed in the first direction. ing.
  • the dimensions of the outer container 20 when viewed from the first direction are, for example, a long side length of 50 mm to 600 mm and a short side length of 50 mm to 400 mm.
  • the thickness of the portion of the outer container 20 that overlaps with the cell laminate 10 when viewed in the first direction is, for example, 50 to 300 ⁇ m.
  • the electrochemical cell 1 is provided with a connection terminal 30.
  • the connection terminal 30 is a member for taking out the electricity stored in the cell laminate 10 to the outside of the outer container 20.
  • the connection terminal 30 includes a first connection terminal 31 and a second connection terminal 32.
  • the first connection terminal 31 and the second connection terminal 32 are located from the inside of the outer container 20 to the outside of the outer container 20.
  • a plurality of positive electrode terminals 14 connected to each other are joined to a portion of the first connection terminal 31 located inside the outer container 20.
  • a plurality of negative electrode terminals 15 connected to each other are connected to a portion of the second connection terminal 32 located inside the outer container 20.
  • the first connection terminal 31 and the second connection terminal 32 have, for example, a metal material. Examples of the metal material used for the first connection terminal 31 and the second connection terminal 32 include copper, aluminum and the like.
  • the outer container 20 has, for example, an insulating material. As a result, the possibility that the external environment and the cell laminate 10 are short-circuited via the outer container 20 can be reduced, so that the cell laminate 10 can be protected from the external environment.
  • the insulating material for example, a resin material such as polyethylene terephthalate or polyethylene can be used.
  • the outer container 20 has, for example, a multi-layer structure.
  • the outer container 20 may have, for example, a three-layer structure.
  • the outer container 20 may have, for example, a first insulating layer, a moisture-proof layer, and a second insulating layer.
  • the moisture-proof layer is located between the first insulating layer and the second insulating layer.
  • the moisture-proof layer may be covered with a first insulating layer and a second insulating layer.
  • the moisture-proof layer may be in direct contact with the first insulating layer and the second insulating layer.
  • the first insulating layer may be the outermost layer in the outer container 20 having a three-layer structure.
  • the first insulating layer may have, for example, a resin material such as polyethylene terephthalate or polyethylene naphthalate.
  • the moisture-proof layer is a member that reduces the possibility that oxygen, moisture, etc. that have penetrated the first insulating layer reach the second insulating layer.
  • the moisture-proof layer may have a metal material such as copper or aluminum.
  • the second insulating layer may have a resin material such as polyethylene or polypropylene.
  • the outer container 20 may be provided with a liquid layer 21 that transmits external pressure to the single cell 11.
  • the liquid layer 21 is located between two adjacent single cells 11.
  • the liquid layer 21 may be in direct contact with both of two adjacent single cells 11.
  • the liquid layer 21 can be located inside the recesses even when the recesses are present on the main surface 11a and the other main surface 11b of the single cell 11, so that the two adjacent single cells 11 are adjacent to each other. Pressure can be applied evenly to.
  • the two adjacent single cells 11 can carry out a charge / discharge reaction without making the interfacial resistance non-uniform, so that they are less likely to deteriorate, and thus the life of the electrochemical cell 1 can be improved. ..
  • the liquid layer 21 may be located between the cell laminate 10 and the outer container 20, for example, as shown in FIGS. 2 and 3. As a result, the cell laminate 10 is less likely to be misaligned in the outer container 20, so that the joint portion between the connection terminal 30, the positive electrode terminal 14 and the negative electrode terminal 15 is less likely to be damaged.
  • the liquid layer 21 may be, for example, an organic solvent.
  • the organic solvent used for the liquid layer 21 include ethylene carbonate and ⁇ -butyrolactone.
  • the liquid layer 21 may be made of a low molecular weight polymer material having fluidity such as polyethylene oxide.
  • the liquid layer 21 may be made of a silicon-based polymer material such as silicone.
  • the liquid layer 21 may be made of a water-absorbent material such as a water-absorbent polymer. As a result, the liquid layer 21 can absorb the water that has entered the outer container 20, so that it is difficult for the water to enter the inside of the single cell 11. As a result, the life of the electrochemical cell 1 can be improved.
  • the water-absorbent polymer used for the liquid layer 21 include polyacrylonitrile.
  • the liquid layer 21 may have an inorganic material such as a porous filler.
  • the liquid layer 21 can absorb the water that has entered the outer container 20, so that it is difficult for the water to enter the inside of the single cell 11. As a result, the life of the electrochemical cell 1 can be improved.
  • the porous filler used in the liquid layer 21 for example, zeolite or the like can be used.
  • the liquid layer 21 may have a metal filler that reacts with oxygen and water.
  • oxygen and water that have entered the outer container 20 react with the metal filler, making it difficult for the oxygen and water to enter the single cell 11.
  • the life of the electrochemical cell 1 can be improved.
  • the metal filler used for the liquid layer 21 include iron, copper, aluminum and the like.
  • the liquid layer 21 may have a material having a higher thermal conductivity than the electrolytic solution of the power generation element 12. As a result, the heat generated in the single cell 11 is easily transferred to the liquid layer 21, so that the heat is less likely to be trapped in the single cell 11. As a result, the life of the electrochemical cell 1 can be improved.
  • the liquid layer 21 may have a material having a higher viscosity than the electrolytic solution of the power generation element 12.
  • the outer container 20 is provided with at least one rib 20c.
  • the rib 20c forms a surface region 20b between the outer edge portion 20a of the outer container 20 and the outer peripheral portion 10a of the cell laminate 10 in the outer container 20 when viewed from the first direction. positioned.
  • the rib 20c is formed by a part of the surface region 20b projecting outward.
  • the rib 20c does not have to protrude along the first direction, and may protrude in a direction intersecting the first direction.
  • the rib 20c may be provided on the main surface 20d of the outer container 20 or the other main surface 20e, or may be provided on both the main surface 20d and the other main surface 20e of the outer container 20.
  • the outer container 20 having the rib 20c can be formed by, for example, the following method. First, a bag-shaped exterior body that becomes the outer container 20 and has at least a part of opening is prepared. Next, a rib precursor that rises outward, for example, is formed at a predetermined position on the exterior body. After that, the outer container 20 having the rib 20c can be formed by arranging the cell laminate 10, the liquid layer 21, and the like in the outer body and welding the opening of the outer body in a state where the outer body is evacuated.
  • the rib 20c is provided in the outer container 20, for example, when the outer container 20 receives an impact or the like, the outer container 20 is less likely to be deformed. Therefore, the cells are laminated in the outer container 20. It is possible to reduce the misalignment of the body 10 and the possibility that the single cells 11 in the cell laminated body 10 are misaligned with each other. As a result, the joint portion between the connection terminal 30, the positive electrode terminal 14 and the negative electrode terminal 15 is less likely to be damaged, and the durability of the electrochemical cell 1 can be improved.
  • the rib 20c may include a rib 20c1 extending along the outer peripheral portion 10a of the cell laminate 10, as shown in FIG. 1, for example.
  • the outer container 20 is less likely to be deformed, so that the cell laminate 10 in the outer container 20 may be displaced, and the single cell in the cell laminate 10 may be displaced.
  • the possibility that the 11s are misaligned can be further reduced.
  • the joint portion between the connection terminal 30, the positive electrode terminal 14 and the negative electrode terminal 15 is less likely to be damaged, and the durability of the electrochemical cell 1 can be improved.
  • the rib 20c may include a rib 20c2 extending along a corner portion of the outer peripheral portion 10a, for example, as shown in FIG.
  • the electrochemical cell 1 is susceptible to impact on the corner portion of the outer edge portion 20a of the outer container 20 during transportation, assembly of the electrochemical cell module, and the like.
  • the outer container 20 is less likely to be deformed. Therefore, the possibility that the cell laminated body 10 in the outer container 20 is misaligned and the possibility that the single cells 11 in the cell laminated body 10 are misaligned can be further reduced. As a result, the joint portion between the connection terminal 30, the positive electrode terminal 14 and the negative electrode terminal 15 is less likely to be damaged, and the durability of the electrochemical cell 1 can be improved.
  • the ribs 20c2 may be provided at each of the four corners of the outer peripheral portion 10a.
  • the outer container 20 is more difficult to be deformed, so that the cell laminate 10 in the outer container 20 may be displaced, and the cell laminate 10 is simply displaced.
  • the possibility that the cells 11 are misaligned can be further reduced.
  • the joint portion between the connection terminal 30, the positive electrode terminal 14 and the negative electrode terminal 15 is less likely to be damaged, and the durability of the electrochemical cell 1 can be improved.
  • the rib 20c may include a rib 20c3 extending from a corner portion of the outer peripheral portion 10a of the cell laminate 10 toward the outer edge portion 20a of the outer container 20.
  • the rib 20c may extend over the entire circumference of the outer peripheral portion 10a.
  • the outer container 20 is less likely to be deformed, so that the cell laminate 10 in the outer container 20 may be displaced, and the single cell in the cell laminate 10 may be displaced.
  • the possibility that the 11s are misaligned can be further reduced.
  • the joint portion between the connection terminal 30, the positive electrode terminal 14 and the negative electrode terminal 15 is less likely to be damaged, and the durability of the electrochemical cell 1 can be improved.
  • FIG. 6 is an exploded perspective view showing an example of an embodiment of the electrochemical cell module of the present disclosure.
  • the electrochemical cell module 3 of the present embodiment includes a plurality of electrochemical cells 1, a current collecting member 40, and a housing 50.
  • the plurality of electrochemical cells 1 are laminated with each other in a predetermined second direction.
  • the plurality of electrochemical cells 1 are laminated so that their outer shapes substantially match when viewed from the second direction, forming the electrochemical cell laminated body 2.
  • the electrochemical cell laminate 2 has a substantially rectangular parallelepiped shape, and the first connection terminal 31 and the second connection terminal 32 of the plurality of electrochemical cells 1 are the upper surfaces of the electrochemical cell laminate 2. It protrudes from 2a.
  • the current collecting member 40 is a member that electrically connects a plurality of electrochemical cells 1 to each other.
  • the current collecting member 40 may electrically connect a plurality of electrochemical cells 1 in parallel. That is, the current collecting member 40 may electrically connect the first connection terminals 31 of the plurality of electrochemical cells 1 to each other and electrically connect the second connection terminals 32 of the plurality of electrochemical cells 1 to each other. ..
  • the capacity of the electrochemical cell module 3 can be increased.
  • the current collecting member 40 may electrically connect the first connection terminal 31 and the second connection terminal 32 of the plurality of electrochemical cells 1 so that the plurality of electrochemical cells 1 are electrically connected in series. Good. As a result, the voltage of the electrochemical cell module 3 can be increased.
  • the housing 50 is a member for accommodating the electrochemical cell laminate 2 (that is, a plurality of electrochemical cells 1) and protecting the electrochemical cell laminate 2 from the external environment.
  • the housing 50 may be a member for protecting the electrochemical cell laminate 2 from an external force received from the external environment.
  • the housing 50 is, for example, as shown in FIG. 6, a rectangular parallelepiped box body having one open side.
  • the housing 50 may be formed, for example, by forming one member into a rectangular parallelepiped shape having one side open.
  • the housing 50 may be formed by joining two or more members, for example.
  • the housing 50 may have, for example, a metal material.
  • the rigidity of the housing 50 is increased, and it is possible to make it difficult for the external force received from the external environment to be transmitted to the electrochemical cell laminate 2.
  • the electrochemical cell laminate 2 can be protected from the external environment.
  • the metal material used for the housing 50 for example, aluminum, stainless steel, or the like may be used.
  • the heat generated in the electrochemical cell laminate 2 is easily transferred to the housing 50, so that the heat is less likely to be trapped in the electrochemical cell laminate 2.
  • the life of the electrochemical cell 1 can be improved.
  • the housing 50 may have, for example, a plurality of members.
  • the plurality of members may include, for example, two main face plates 51, two side plate 52, and a bottom plate 53.
  • the main face plate 51, the side plate 52, and the bottom plate 53 may contain a metal material and a resin material.
  • the two main face plates 51 are members for protecting the end faces 2b and 2c of the electrochemical cell laminate 2 in the second direction.
  • the two main face plates 51 face the end faces 2b and 2c of the electrochemical cell laminate 2 respectively.
  • the main face plate 51 may have a rectangular shape when viewed from the second direction. In this case, the main face plate 51 may have, for example, a long side of 200 mm to 600 mm and a short side of 50 mm to 300 mm. Further, the main face plate 51 may have a thickness of, for example, 0.5 mm to 5 mm.
  • the main face plate 51 may have, for example, a metal material.
  • the metal material used for the main face plate 51 include aluminum and stainless steel.
  • the main face plate 51 may have, for example, a resin material.
  • the resin material used for the main face plate 51 include a heat-resistant resin material such as polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the two side plates 52 are members that are connected to the upper surface 2a of the electrochemical cell laminate 2 and protect the side surfaces 2d and 2e along the second direction.
  • the two side plates 52 face the side surfaces 2d and 2e of the electrochemical cell laminate 2 respectively.
  • the side plate 52 may be in contact with at least one of the side surfaces 2d and 2e of the electrochemical cell laminate 2. As a result, the heat generated in the electrochemical cell 1 is easily transferred to the outside through the side plate 52, so that the life of the electrochemical cell 1 can be improved. Further, when the electrochemical cell module 3 of the present embodiment includes the electrochemical cell 1 of the above embodiment, the side plate 52 is in contact with at least one of the side surfaces 2d and 2e of the electrochemical cell laminate 2. Even so, the deformation of the outer container 20 can be suppressed, and the misalignment of the cell laminate 10 in the outer container 20 can be suppressed, so that the decrease in the durability of the electrochemical cell 1 can be suppressed.
  • the side plate 52 may have a rectangular shape when viewed from a direction perpendicular to the side surfaces 2d and 2e of the electrochemical cell laminate 2.
  • the side plate 52 may have, for example, a long side of 200 mm to 600 mm and a short side of 50 mm to 300 mm.
  • the side plate 52 may have a thickness of, for example, 0.5 mm to 5 mm.
  • the side plate 52 may have, for example, a metal material.
  • the metal material used for the side plate 52 include aluminum and stainless steel.
  • the side plate 52 may have, for example, a resin material.
  • the resin material used for the side plate 52 include a heat-resistant resin material such as polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the bottom plate 53 is a member for protecting the lower surface 2f on the side opposite to the upper surface 2a of the electrochemical cell laminate 2.
  • the bottom plate 53 may be formed by bending a part of the main face plate 51 or the side plate 52.
  • the bottom plate 53 may be in contact with the lower surface 2f on the side opposite to the upper surface 2a of the electrochemical cell laminate 2. As a result, the heat generated in the electrochemical cell 1 is easily transferred to the outside through the bottom plate 53, so that the life of the electrochemical cell 1 can be improved.
  • the electrochemical cell module 3 of the present embodiment includes the electrochemical cell 1 of the above embodiment, even when the bottom plate 53 is in contact with the lower surface 2f of the electrochemical cell laminate 2. Since the deformation of the outer container 20 can be suppressed and the misalignment of the cell laminate 10 in the outer container 20 can be reduced, the deterioration of the durability of the electrochemical cell 1 can be suppressed.
  • the bottom plate 53 may have a rectangular shape when viewed from a direction perpendicular to the lower surface 2f of the electrochemical cell laminate 2.
  • the bottom plate 53 may have, for example, a long side of 200 mm to 600 mm and a short side of 50 mm to 300 mm.
  • the bottom plate 53 may have a thickness of, for example, 0.5 mm to 5 mm.
  • the bottom plate 53 may have, for example, a metal material.
  • the metal material used for the bottom plate 53 include aluminum and stainless steel.
  • the bottom plate 53 may have, for example, a resin material.
  • the resin material used for the bottom plate 53 include a heat-resistant resin material such as polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the electrochemical cell laminate 2 may be held in the housing 50 by pressing the end faces 2b and 2c in the second direction.
  • the electrochemical cell laminate 2 may be pressed and held by the pressing plate 54 and the elastic body 55.
  • the pressing plate 54 for example, a metal material may be used. As a result, the heat generated from the electrochemical cell 1 can be easily transferred to the outside. As a result, the life of the electrochemical cell 1 can be improved.
  • the metal material used for the pressing plate 54 include aluminum, stainless steel and the like.
  • the pressing plate 54 for example, an insulating resin material may be used. As a result, the electrochemical cell 1 and the external environment can be electrically insulated, so that the possibility of a short circuit between the electrochemical cell 1 and the external environment can be reduced.
  • the resin material used for the pressing plate 54 include thermosetting resins such as epoxy resin, phenol resin, and melamine resin.
  • the pressing plate 54 for example, a resin material and a metal material may be used.
  • the resin material may be used, for example, in the portion of the pressing plate 54 that comes into contact with the electrochemical cell laminate 2.
  • the electrochemical cell 1 and the pressing plate 54 can be electrically insulated from each other.
  • the possibility that the electrochemical cell 1 and the external environment are short-circuited can be reduced.
  • a metal material for the pressing plate 54 it is possible to prevent the pressing plate from being damaged.
  • the elastic body 55 is located between the pressing plate 54 and the main surface plate 51 of the housing 50.
  • the elastic body 55 is provided to apply pressure to the electrochemical cell 1 by applying pressure to the pressing plate 54.
  • a spring can be used as the elastic body 55.
  • the spring may have a spiral shape, for example. Further, the spring may have a bent plate shape, for example.
  • the spring may have, for example, a metallic material. Examples of the metal material used for the spring include steel, stainless steel and the like.
  • the dimensions of the spring may be, for example, in the case of a spiral shape, the diameter may be 5 mm to 50 mm, the length may be 10 mm to 50 mm, and the pitch may be 1 mm to 10 mm.
  • a plate-shaped rubber material may be used as the elastic body 55.
  • the rubber material may have the same shape as the pressing plate 54, for example.
  • the rubber material may be, for example, natural rubber or synthetic rubber.
  • pressure may be applied to the end faces 2b and 2c in the second direction by the housing 50.
  • the housing 50 may apply pressure by, for example, screwing the main face plate 51 and the side plate 52 so that the main face plate 51 presses the end faces 2b and 2c of the electrochemical cell laminate 2.
  • the electrochemical cell module 3 by providing the electrochemical cell 1, it is possible to provide an electrochemical cell module having excellent durability. Further, according to the electrochemical cell module 3, the highly rigid housing 50 makes it difficult for the external force received from the external environment to be transmitted to the electrochemical cell 1. Therefore, it becomes possible to provide an electrochemical cell module having further excellent durability.
  • the electrochemical cell system of one embodiment of the present disclosure includes the electrochemical cell module of the above-described embodiment and a control unit for controlling the electrochemical cell module.
  • the control unit may be built in the electrochemical cell module as a control IC that protects the battery from overcharging or overdischarging.
  • a protection circuit may be constructed as a program in the control IC.
  • This protection circuit cuts off the current and forcibly stops the flow of the charging current when the battery voltage is preset and tries to exceed the battery voltage when fully charged. Further, when the battery voltage at the time of discharging becomes less than the preset dischargeable voltage, the discharge current is forcibly cut off. Furthermore, if such a protection circuit operates and the power supply is suddenly cut off, the equipment (electric power consumer) that was supplying power from the electrochemical cell module will be seriously hindered. When the battery voltage drops to the dischargeable voltage so that such a state does not occur, warning information such as "The battery is low. Please charge.” Is notified by image display and sound. It is configured to warn the user, save the data in a memory or the like in response to the warning signal at this time, and stop the operation.
  • precharging quick charging or constant current charging, constant voltage charging, and full charge determination are executed in this order.
  • precharging a small current is applied in the initial stage, and when a certain voltage is reached, charging with a certain amount of current (constant current charging) is performed, and a constant current constant voltage (Constant Voltage) that shifts from a constant current to a constant voltage is performed.
  • ConstantCurrent; CVCC ConstantCurrent
  • the electrochemical cell of the present disclosure includes a cell laminate formed by laminating a plurality of plate-shaped single cells having a power generation element and a package for accommodating the power generation element, and an outer container for accommodating the cell laminate. .. A part of the outer container protrudes outward to a surface region located between the outer edge portion of the outer container and the outer peripheral portion of the cell laminate when viewed in the stacking direction of the cell laminate. At least one rib is provided.
  • the electrochemical cell module of the present disclosure includes a plurality of the electrochemical cells, a current collecting member for electrically connecting the plurality of electrochemical cells to each other, and a housing for accommodating the plurality of electrochemical cells. ..
  • the electrochemical cell system of the present disclosure includes at least one of the above-mentioned electrochemical cell modules and a control unit for controlling the above-mentioned electrochemical cell module.
  • the electrochemical cell of the present disclosure it is possible to suppress the deformation of the outer container and reduce the misalignment of the cell laminate in the outer container. This makes it possible to improve the durability of the electrochemical cell. Further, according to the electrochemical cell module and the electrochemical cell system of the present disclosure, it is possible to provide an electrochemical cell module having excellent durability by providing the above-mentioned electrochemical cell.
  • Electrochemical cell 2 Electrochemical cell laminate 2a Top surface 2b, 2c End surface 2d, 2e Side surface 2f Bottom surface 3 Electrochemical cell module 10 Cell laminate 10a Outer circumference 11 Single cell 11a Main surface 11b Other main surface 12 Power generation element 12a Positive electrode 12b Negative electrode 12c Separator 13 Package 14 Positive electrode terminal 14a 1st positive electrode terminal 14b 2nd positive electrode terminal 15 Negative electrode terminal 15a 1st negative electrode terminal 15b 2nd negative electrode terminal 20 Outer container 20a Outer edge 20b Surface area 20c, 20c1, 20c2 , 20c3 rib 20d main surface 20e other main surface 21 liquid layer 30 connection terminal 31 first connection terminal 32 second connection terminal 40 current collector 50 housing 51 main surface plate 52 side plate 53 bottom plate 54 pressing plate 55 elastic body

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本開示の電気化学セルは、発電要素および発電要素を収容する包装体を有する板状の単セルを複数積層して成るセル積層体と、セル積層体を収容する外容器と、を備える。外容器は、セル積層体の積層方向に見て外容器の外縁部とセル積層体の外周部との間に位置する表面領域に、表面領域の一部が外方に突出した少なくとも1つのリブが設けられている。

Description

電気化学セル
 本開示は、電気化学セルに関する。
 従来技術の一例は、特許文献1に記載されている。
特許第5287104号公報
 本開示の電気化学セルは、発電要素および前記発電要素を収容する包装体を有する板状の単セルを複数積層してなるセル積層体と、前記セル積層体を収容する外容器と、を備える。前記外容器は、前記セル積層体の積層方向に見て前記外容器の外縁部と前記セル積層体の外周部との間に位置する表面領域に、該表面領域の一部が外方に突出した少なくとも1つのリブが設けられている。
 本開示の電気化学セルモジュールは、複数の上記電気化学セルと、前記複数の電気化学セルを互いに電気的に接続する集電部材と、前記複数の電気化学セルを収容する筐体と、を備える。
 本開示の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
図1は、本開示の電気化学セルの実施形態の一例を示す平面図である。 図2は、図1の切断面線A-Aで切断した断面図である。 図3は、図1の切断面線B-Bで切断した断面図である。 図4は、図1の電気化学セルが備える単セルを示す平面図である。 図5は、図4の切断面線C-Cで切断した断面図である。 図6は、本開示の電気化学セルモジュールの実施形態の一例を示す分解斜視図である。
 本開示の電気化学セルの基礎となる構成である電気化学セルとして、電池として機能するセル本体を外容器内に収納して成る電気化学セルが知られている(例えば、特許文献1を参照)。そのような電気化学セルは、外部装置に接続される接続端子を有している。接続端子は、外容器内から外容器外にかけて設けられ、外容器内でセル本体に接続されている。
 本開示の電気化学セルの基礎となる電気化学セルは、衝撃等によって外容器が変形しやすく、外容器内に収納されたセル本体が位置ずれすることがあった。その結果、接続端子とセル本体との接続部分が変形する等して、電気化学セルの耐久性が低下することがあった。
 以下、図面を用いて本開示の実施形態に係る電気化学セルについて説明する。
 図1は、本開示の電気化学セルの実施形態の一例を示す平面図であり、図2は、図1の切断面線A-Aで切断した断面図であり、図3は、図1の切断面線B-Bで切断した断面図である。図4は、図1の電気化学セルにおける単セルを示す平面図であり、図5は、図4の切断面線C-Cで切断した断面図である。
 本実施形態の電気化学セル1は、セル積層体10と外容器20とを備える。セル積層体10は、複数の単セル11を積層したものである。単セル11は、板状であり、電気化学セル1内で電池として機能する最小の単位の部材である。
 単セル11は、主面11a、および主面11aとは反対側の他方主面11bを有する。単セル11は、セル積層体10の積層方向(図2における左右方向であり、以下、単に、第1方向とも言う)から見たときの形状が、例えば、矩形状、正方形状、円形状、楕円形状等であってもよく、その他の形状であってもよい。本実施形態では、例えば図4に示すように、単セル11は、第1方向から見たときに、略矩形状である。第1方向から見たときの単セル11の寸法は、例えば、長辺の長さが50mm~500mmであり、短辺の長さが50mm~300mmである。また、第1方向における単セル11の厚みは、例えば、0.1mm~2mmである。
 単セル11は、発電要素12、包装体13、正極端子14および負極端子15を有する。発電要素12は、電気化学反応を利用して電気を蓄え、放出するための部材である。発電要素12は、例えば、正極12a、負極12bおよび正極12aと負極12bとの間に位置するセパレータ12cを有している。発電要素12は、セパレータ12cを介して、正極12aと負極12bとの間で陽イオンおよび陰イオンを交換することができる。発電要素12は、正極12aおよび負極12bを外部装置と電気的に接続することによって、外部装置に電気を流すことができる。
 正極12aおよび負極12bは、例えば、電気化学的に活性な物質である。正極12aおよび負極12bは、例えば、活性物質および電解液を有していてもよい。電解液としては、例えば、溶剤または溶剤混合液に塩を加えたものを用いることができる。
 正極12aは、例えば、ニッケルコバルトアルミニウム系リチウム複合酸化物(NCA)、スピネル系マンガン酸リチウム(LMO)、リン酸鉄リチウム(LFP)、コバルト酸リチウム(LCO)、ニッケルコバルトマンガン系リチウム複合酸化物(NCM)等を含んでいてもよい。正極12aは、例えば、ニッケル水素バッテリ、ニッケルカドミウムバッテリ等で用いられる、当業者にとって既知の固体化合物を含んでいてもよい。正極12aは、例えば、MgがドープされたLiCoO、LiNiO等を含んでいてもよい。
 負極12bは、例えば、黒鉛、ハードカーボン、ソフトカーボン、カーボンナノチューブ、グラフェン等の炭素系材料を含んでいてもよい。負極12bは、例えば、チタン酸リチウム、二酸化チタン等のチタン系酸化物を含んでいてもよい。負極12bは、例えば、鉄、コバルト、銅、マンガン、ニッケル等を含有する遷移金属化合物を含んでいてもよい。
 電解液は、電気化学セル1がリチウムイオン電池である場合、例えば、溶剤にリチウム塩を加えたものを用いることができる。電解液に用いられるリチウム塩としては、例えば、LiPF、LiBF、LiClO4、LiFSI等が挙げられる。電解液に用いられる溶剤としては、例えば、炭酸プロピレン(PC)、炭酸エチレン(EC)、炭酸ジメチル(DMC)、ジメトキシエタン(DME)、炭酸ジエチル(DEC)、テトラヒドロフラン(THF)、トリエチレングリコールジメチルエーテル(Triglyme)等が挙げられる。
 セパレータ12cは、正極12aと負極12bとが短絡する可能性を低減するための部材である。セパレータ12cは、例えば、陽イオンおよび陰イオンが通過するための微細な穴が開いていてもよい。セパレータ12cとしては、例えば、多孔質の絶縁材料を用いることができる。セパレータ12cで用いられる多孔質の絶縁材料としては、例えば、ポリオレフィン、塩化ポリビニル等が挙げられる。
 発電要素12は、第1方向から見たときの形状が、例えば、矩形状、正方形状、円形状、楕円形状等であってもよく、その他の形状であってもよい。本実施形態では、例えば図4に示すように、発電要素12は、第1方向から見たときに、矩形状である。第1方向から見たときの発電要素12の寸法は、例えば、長辺の長さが50mm~500mmであり、短辺の長さが50mm~300mmである。また、第1方向における発電要素12の厚みは、例えば、0.1mm~2mmである。
 本実施形態では、複数の単セル11は電気的に並列に接続されている。これにより、電気化学セル1の容量を大きくすることができる。なお、複数の単セル11は電気的に直列に接続されていてもよい。この場合、電気化学セル1の電圧を高めることができる。
 包装体13は、外部環境から発電要素12を電気的に絶縁し、外部環境から発電要素12を保護するための部材である。包装体13は、発電要素12全体を覆い、発電要素12を収容している。包装体13は、例えば、平たい袋形状である。包装体13は、例えば、2つのラミネートフィルムを溶着して形成されている。包装体13は、例えば、ラミネートフィルムを平たい袋形状にすることで形成されていてもよい。包装体13は、第1方向から見たときの形状が、例えば、矩形状、正方形状等であってもよく、その他の形状であってもよい。本実施形態では、例えば図4に示すように、包装体13は、第1方向から見たときに、矩形状である。
 包装体13は、例えば、絶縁材料を有している。これにより、外部環境と発電要素12とが包装体13を介して短絡する可能性を低減できるため、発電要素12を外部環境から保護することができる。包装体13は、例えば、樹脂材料を有している。樹脂材料としては、例えば、ポリエチレンテレフタラートまたはポリエチレン等を用いることができる。これにより、空気中の酸素や水分等に発電要素12が触れる可能性を低減することができるため、発電要素12を外部環境から保護することができる。
 包装体13は、例えば、多層構造を有していてもよい。包装体13は、例えば、熱接着性樹脂材料および耐熱性樹脂材料を有していてもよい。熱接着性樹脂材料は、例えば、融解する温度が150℃未満の樹脂材料である。熱接着性樹脂材料としては、例えば、ポリエチレンまたはポリプロピレン等を用いることができる。耐熱性樹脂材料は、例えば、融解する温度が150℃以上300℃以下の樹脂材料である。耐熱性樹脂材料としては、例えば、ポリエチレンテレフタラートまたはポリエチレンナフタレートを用いることができる。
 正極端子14および負極端子15は、発電要素12に蓄えられた電気を包装体13の外に取り出すための部材である。正極端子14および負極端子15は、包装体13内から包装体13外にかけて位置している。
 正極端子14は、正極12aに電気的に接続され、負極12bおよび負極端子15から電気的に絶縁されている。正極端子14は、例えば、金属材料から成る。正極端子14に用いられる金属材料としては、例えば、アルミニウムが挙げられる。
 正極端子14は、包装体13内に位置する第1正極端子部14a、および包装体13外に位置する第2正極端子部14bを有する。第1正極端子部14aは、正極12aに接触している。第1正極端子部14aは、包装体13と正極12aとの間に位置している。第2正極端子部14bは、電気化学セル1の接続端子に接続される。第2正極端子部14bは、例えば、矩形板状、正方形板状等の形状であってもよく、その他の形状であってもよい。本実施形態では、例えば図4に示すように、第2正極端子部14bは、第1方向から見たときに、矩形状である。第1方向から見たときの第2正極端子部14bの寸法は、例えば、長辺の長さが30mm~100mmであり、短辺の長さが10mm~100mmである。また、第1方向における第2正極端子部14bの厚みは、例えば、3~30μmである。
 負極端子15は、負極12bに電気的に接続され、正極12aおよび正極端子14から電気的に絶縁されている。負極端子15は、例えば、金属材料から成る。負極端子15に用いられる金属材料としては、例えば、銅が挙げられる。
 負極端子15は、包装体13内に位置する第1負極端子部15a、および包装体13外に位置する第2負極端子部15bを有する。第1負極端子部15aは、負極12bに接触している。第1負極端子部15aは、包装体13と負極12bとの間に位置している。第2負極端子部15bは、電気化学セル1の接続端子に接続される。第2負極端子部15bは、例えば、矩形板状、正方形板状等の形状であってもよく、その他の形状であってもよい。本実施形態では、例えば図4に示すように、第2負極端子部15bは、第1方向から見たときに、矩形状である。第1方向から見たときの第2負極端子部15bの寸法は、例えば、長辺の長さが30mm~100mmであり、短辺の長さが10mm~100mmである。また、第1方向における第2負極端子部15bの厚みは、例えば、3~30μmである。
 第2正極端子部14bと第2負極端子部15bとは、例えば図4に示すように、第1方向から見たときに、包装体13の1つの辺から外方に延びていてもよい。第2正極端子部14bと第2負極端子部15bとは、第1方向から見たときに、包装体13の相異なる辺から外方に延びていてもよい。
 外容器20は、外部環境からセル積層体10を保護するための部材である。外部環境とは、例えば、空気中の酸素および水分等である。外容器20は、セル積層体10全体を覆い、セル積層体10を収容している。外容器20は、例えば、円筒形状、袋形状等であってもよく、その他の形状であってもよい。外容器20は、例えば、2つの部材を溶着して袋形状にしたものであってもよく、1つの部材を袋形状にしたものであってもよい。外容器20は、第1方向に見たときの形状が、例えば、矩形状、正方形状等であってもよく、その他の形状であってもよい。本実施形態では、例えば図1に示すように、外容器20は、第1方向に見たときに、矩形状である。また、外容器20は、第1方向に見たときに、外容器20の長辺方向および短辺方向が、セル積層体10の長辺方向および短辺方向にそれぞれ略一致するように配置されている。第1方向から見たときの外容器20の寸法は、例えば、長辺の長さが50mm~600mmであり、短辺の長さが50mm~400mmである。また、外容器20の、第1方向に見たときにセル積層体10と重なる部分の厚みは、例えば、50~300μmである。
 電気化学セル1は、接続端子30を備えている。接続端子30は、セル積層体10に蓄えられた電気を外容器20外に取り出すための部材である。接続端子30は、第1接続端子31および第2接続端子32を含んでいる。第1接続端子31および第2接続端子32は、外容器20内から外容器20外にかけて位置している。第1接続端子31の、外容器20内に位置する部分には、互いに接続された複数の正極端子14が接合されている。第2接続端子32の、外容器20内に位置する部分には、互いに接続された複数の負極端子15が接続されている。第1接続端子31および第2接続端子32は、例えば、金属材料を有している。第1接続端子31および第2接続端子32に用いられる金属材料としては、例えば、銅、アルミニウム等が挙げられる。
 外容器20は、例えば、絶縁材料を有している。これにより、外部環境とセル積層体10とが外容器20を介して短絡する可能性を低減することができるため、セル積層体10を外部環境から保護することができる。絶縁材料としては、例えば、ポリエチレンテレフタラートまたはポリエチレン等の樹脂材料を用いることができる。
 外容器20は、例えば、多層構造を有している。外容器20は、例えば、三層構造を有していてもよい。外容器20は、例えば、第1絶縁層、防湿層および第2絶縁層を有していてもよい。防湿層は、第1絶縁層と第2絶縁層との間に位置している。防湿層は、第1絶縁層および第2絶縁層によって覆われていてもよい。防湿層は、第1絶縁層および第2絶縁層に直接接触していてもよい。
 第1絶縁層は、三層構造の外容器20における最外層であってもよい。第1絶縁層は、例えば、ポリエチレンテレフタラート、ポリエチレンナフタレート等の樹脂材料を有していてもよい。防湿層は、第1絶縁層を浸透してきた酸素や水分等が第2絶縁層に到達する可能性を低減する部材である。防湿層は、例えば、銅、アルミニウム等の金属材料を有していてもよい。第2絶縁層は、例えば、ポリエチレン、ポリプロピレン等の樹脂材料を有していてもよい。
 外容器20内には、外部からの圧力を単セル11に伝える液体層21が設けられていてもよい。液体層21は、隣り合う2つの単セル11の間に位置している。液体層21は、隣り合う2つの単セル11の両方に直接接触していてもよい。これにより、液体層21は、単セル11の主面11aおよび他方主面11bに凹部が存在する場合であっても、該凹部の内部に位置することができるため、隣り合う2つの単セル11に圧力を均等に加えることができる。換言すると、隣り合う2つの単セル11は、界面抵抗が不均一になることなく充放電反応を行うことができるため、劣化しにくくなり、ひいては、電気化学セル1の寿命を向上させることができる。
 液体層21は、例えば図2,3に示すように、セル積層体10と外容器20との間に位置していてもよい。これにより、外容器20内でセル積層体10が位置ずれしにくくなるため、接続端子30と正極端子14および負極端子15との接合部分が破損しにくくなる。
 液体層21は、例えば、有機溶媒であってもよい。液体層21に用いられる有機溶媒としては、例えば、エチレンカーボネイト、γ-ブチロラクトン等が挙げられる。液体層21は、例えば、ポリエチレンオキシド等の流動性を有する低分子量の高分子材料から成っていてもよい。液体層21は、例えば、シリコーン等のケイ素系の高分子材料から成っていてもよい。
 液体層21は、例えば、吸水性ポリマー等の吸水性材料から成っていてもよい。これにより、液体層21が外容器20内に侵入してきた水分を吸収することができるため、単セル11の内部に水分が侵入しにくくすることができる。ひいては、電気化学セル1の寿命を向上させることができる。液体層21に用いられる吸水性ポリマーとしては、例えば、ポリアクリロニトリル等が挙げられる。
 液体層21は、例えば、多孔質フィラー等の無機材料を有していてもよい。これにより、液体層21が外容器20内に侵入してきた水分を吸収することができるため、単セル11の内部に水分が侵入しにくくすることができる。ひいては、電気化学セル1の寿命を向上させることができる。液体層21に用いられる多孔質フィラーとしては、例えば、ゼオライト等を用いることができる。
 液体層21は、酸素および水と反応する金属フィラーを有していてもよい。これにより、外容器20内に侵入した酸素および水が、金属フィラーと反応し、単セル11に侵入しにくくなる。ひいては、電気化学セル1の寿命を向上させることができる。液体層21に用いられる金属フィラーとしては、例えば、鉄、銅、アルミニウム等が挙げられる。
 液体層21は、発電要素12の電解液と比較して、熱伝導度が大きい材料を有していてもよい。これにより、単セル11で発生した熱が液体層21に伝わりやすくなるため、単セル11に熱がこもりにくくなる。ひいては、電気化学セル1の寿命を向上させることができる。
 液体層21は、発電要素12の電解液と比較して、粘度が大きい材料を有していてもよい。これにより、外容器20内でセル積層体10が位置ずれしにくくなるため、接続端子30と正極端子14および負極端子15との接合部分が破損しにくくなる。ひいては、電気化学セル1の寿命を向上させることができる。
 実施形態の電気化学セル1では、例えば図1~3に示すように、外容器20に少なくとも1つのリブ20cが設けられている。リブ20cは、例えば図1に示すように、第1方向から見たときに、外容器20における、外容器20の外縁部20aとセル積層体10の外周部10aとの間の表面領域20bに位置している。リブ20cは、表面領域20bの一部が外方に突出することによって形成されている。リブ20cは、第1方向に沿って突出している必要はなく、第1方向と交差する方向に突出していてもよい。また、リブ20cは、外容器20の主面20dまたは他方主面20eに設けられていてもよく、外容器20の主面20dおよび他方主面20eの両方に設けられていてもよい。
 リブ20cを有する外容器20は、例えば、次の方法で形成することができる。先ず、外容器20と成る、少なくとも一部が開口した袋状の外装体を準備する。次に、外装体の所定の位置に例えば外方に向かって隆起するリブ前駆体を形成する。その後、外装体内にセル積層体10、液体層21等を配置し、外装体内を真空引きした状態で外装体の開口を溶着することで、リブ20cを有する外容器20を形成することができる。
 電気化学セル1は、外容器20にリブ20cが設けられていることにより、例えば外容器20が衝撃等を受けた際に、外容器20が変形しにくくなるため、外容器20内におけるセル積層体10の位置ずれ、およびセル積層体10における単セル11同士が位置ずれする可能性を低減できる。これにより、接続端子30と正極端子14および負極端子15との接合部分が破損しにくくなり、電気化学セル1の耐久性を向上させることができる。
 リブ20cは、例えば図1に示すように、セル積層体10の外周部10aに沿って延びるリブ20c1を含んでいてもよい。これにより、例えば外容器20が衝撃を受けた際に、外容器20が一層変形しにくくなるため、外容器20内におけるセル積層体10が位置ずれする可能性、およびセル積層体10における単セル11同士が位置ずれする可能性をより低減できる。ひいては、接続端子30と正極端子14および負極端子15との接合部分が破損しにくくなり、電気化学セル1の耐久性を向上させることができる。
 リブ20cは、例えば図1に示すように、外周部10aの角部に沿って延びるリブ20c2を含んでいてもよい。電気化学セル1は、搬送時、電気化学セルモジュールの組立時等に、外容器20の外縁部20aの角部に衝撃を受けやすい。例えば図1に示すように、外縁部20aの角部の内方に位置する、外周部10aの角部にリブ20c2が設けられていることにより、例えば外容器20が衝撃を受けた際に、外容器20が一層変形しにくくなる。このため、外容器20内におけるセル積層体10が位置ずれする可能性、およびセル積層体10における単セル11同士が位置ずれする可能性をより低減できる。ひいては、接続端子30と正極端子14および負極端子15との接合部分が破損しにくくなり、電気化学セル1の耐久性を向上させることができる。
 なお、リブ20c2は、外周部10aの4つの角部のそれぞれに設けられていてもよい。これにより、例えば外容器20が衝撃を受けた際に、外容器20がより一層変形しにくくなるため、外容器20内におけるセル積層体10が位置ずれする可能性、およびセル積層体10における単セル11同士が位置ずれする可能性をより低減できる。ひいては、接続端子30と正極端子14および負極端子15との接合部分が破損しにくくなり、電気化学セル1の耐久性を向上させることができる。
 リブ20cは、セル積層体10の外周部10aの角部から外容器20の外縁部20aに向かって延びるリブ20c3を含んでいてもよい。これにより、例えば外容器20が衝撃を受けた際に、外容器20が一層変形しにくくなるため、外容器20内におけるセル積層体10が位置ずれする可能性、およびセル積層体10における単セル11同士が位置ずれする可能性をより低減できる。ひいては、接続端子30と正極端子14および負極端子15との接合部分が破損しにくくなり、電気化学セル1の耐久性を向上させることができる。
 リブ20cは、外周部10aの全周にわたって延びていてもよい。これにより、例えば外容器20が衝撃を受けた際に、外容器20が一層変形しにくくなるため、外容器20内におけるセル積層体10が位置ずれする可能性、およびセル積層体10における単セル11同士が位置ずれする可能性をより低減できる。ひいては、接続端子30と正極端子14および負極端子15との接合部分が破損しにくくなり、電気化学セル1の耐久性を向上させることができる。
 次に、本開示の実施形態に係る電気化学セルモジュールについて説明する。図6は、本開示の電気化学セルモジュールの実施形態の一例を示す分解斜視図である。
 本実施形態の電気化学セルモジュール3は、複数の電気化学セル1と、集電部材40と、筐体50とを備える。
 複数の電気化学セル1は、予め定められた第2方向に互いに積層されている。複数の電気化学セル1は、第2方向から見たときに、それらの外形が略一致するように積層され、電気化学セル積層体2を構成している。電気化学セル積層体2は、例えば図6に示すように、略直方体形状であり、複数の電気化学セル1の第1接続端子31および第2接続端子32は、電気化学セル積層体2の上面2aから突出している。
 集電部材40は、複数の電気化学セル1を互いに電気的に接続する部材である。集電部材40は、複数の電気化学セル1を電気的に並列に接続してもよい。すなわち、集電部材40は、複数の電気化学セル1の第1接続端子31同士を電気的に接続し、複数の電気化学セル1の第2接続端子32同士を電気的に接続してもよい。これにより、電気化学セルモジュール3の容量を大きくすることができる。
 集電部材40は、複数の電気化学セル1が電気的に直列に接続されるように、複数の電気化学セル1の第1接続端子31および第2接続端子32を電気的に接続してもよい。これにより、これにより、電気化学セルモジュール3の電圧を高めることができる。
 筐体50は、電気化学セル積層体2(すなわち、複数の電気化学セル1)を収容し、外部環境から電気化学セル積層体2を保護するための部材である。筐体50は、外部環境から受ける外力から電気化学セル積層体2を保護するための部材であってもよい。本実施形態では、筐体50は、例えば図6に示すように、一面が開口した直方体形状の箱体である。筐体50は、例えば、1つの部材を一面が開口した直方体形状にすることで形成されていてもよい。筐体50は、例えば、2つ以上の部材が結合されて形成されていてもよい。
 筐体50は、例えば、金属材料を有していてもよい。これにより、筐体50の剛性が高くなり、外部環境から受ける外力を電気化学セル積層体2に伝わりにくくすることができる。その結果、電気化学セル積層体2を外部環境から保護することができる。筐体50に用いられる金属材料として、例えば、アルミニウム、ステンレス等が用いられてもよい。これにより、電気化学セル積層体2で発生した熱が筐体50に伝わりやすくなるため、電気化学セル積層体2に熱がこもりにくくなる。その結果、電気化学セル1の寿命を向上させることができる。
 筐体50は、例えば、複数の部材を有していてもよい。複数の部材は、例えば、2つの主面板51と、2つの側面板52と、底面板53とを含んでいてもよい。主面板51、側面板52および底面板53は、金属材料および樹脂材料を含んでいてもよい。
 2つの主面板51は、電気化学セル積層体2の第2方向における端面2b,2cを保護するための部材である。2つの主面板51は、電気化学セル積層体2の端面2b,2cにそれぞれ対向している。主面板51は、第2方向から見たときに、矩形状であってもよい。この場合、主面板51は、例えば、長辺が200mm~600mm、短辺が50mm~300mmであってもよい。また、主面板51は、例えば、厚みが0.5mm~5mmであってもよい。
 主面板51は、例えば、金属材料を有していてもよい。主面板51に用いられる金属材料としては、例えば、アルミニウム、ステンレス等が挙げられる。これにより、電気化学セル1で発生した熱が、主面板51を介して、外部へ伝わりやすくなるため、電気化学セル1の寿命を向上させることができる。
 主面板51は、例えば、樹脂材料を有していてもよい。主面板51に用いられる樹脂材料としては、例えば、ポリエチレンテレフタラート(PET)等の耐熱性樹脂材料が挙げられる。これにより、電気化学セル1と外部環境とを電気的に絶縁することができるため、電気化学セル1と外部環境とが短絡する可能性を低減することができる。ひいては、電気化学セル1の寿命を向上させることができる。
 2つの側面板52は、電気化学セル積層体2の上面2aに連なり且つ第2方向に沿った側面2d,2eを保護するための部材である。2つの側面板52は、電気化学セル積層体2の側面2d,2eにそれぞれ対向している。
 側面板52は、電気化学セル積層体2の側面2d,2eの少なくとも一方に接触していてもよい。これにより、電気化学セル1で発生した熱が、側面板52を介して、外部へ伝わりやすくなるため、電気化学セル1の寿命を向上させることができる。また、本実施形態の電気化学セルモジュール3は、上記実施形態の電気化学セル1を備えることにより、側面板52が電気化学セル積層体2の側面2d,2eの少なくとも一方に接触している場合であっても、外容器20の変形を抑制し、外容器20内におけるセル積層体10の位置ずれを低減することができるため、電気化学セル1の耐久性の低下を抑制できる。
 側面板52は、電気化学セル積層体2の側面2d,2eに垂直な方向から見たときに、矩形状であってもよい。この場合、側面板52は、例えば、長辺が200mm~600mm、短辺が50mm~300mmであってもよい。また、側面板52は、例えば、厚みが0.5mm~5mmであってもよい。
 側面板52は、例えば、金属材料を有していてもよい。側面板52に用いられる金属材料としては、例えば、アルミニウム、ステンレス等が挙げられる。これにより、電気化学セル1で発生した熱が、側面板52を介して、外部へ伝わりやすくなるため、電気化学セル1の寿命を向上させることができる。
 側面板52は、例えば、樹脂材料を有していてもよい。側面板52に用いられる樹脂材料としては、例えば、ポリエチレンテレフタラート(PET)等の耐熱性樹脂材料が挙げられる。これにより、電気化学セル1と外部環境とを電気的に絶縁することができるため、電気化学セル1と外部環境とが短絡する可能性を低減することができる。ひいては、電気化学セル1の寿命を向上させることができる。
 底面板53は、電気化学セル積層体2の上面2aとは反対側の下面2fを保護するための部材である。底面板53は、主面板51または側面板52の一部を折り曲げて形成されていてもよい。
 底面板53は、電気化学セル積層体2の上面2aとは反対側の下面2fに接触していてもよい。これにより、電気化学セル1で発生した熱が、底面板53を介して、外部へ伝わりやすくなるため、電気化学セル1の寿命を向上させることができる。また、本実施形態の電気化学セルモジュール3は、上記実施形態の電気化学セル1を備えることにより、底面板53が電気化学セル積層体2の下面2fに接触している場合であっても、外容器20の変形を抑制し、外容器20内におけるセル積層体10の位置ずれを低減することができるため、電気化学セル1の耐久性の低下を抑制できる。
 底面板53は、電気化学セル積層体2の下面2fに垂直な方向から見たときに、矩形状であってもよい。この場合、底面板53は、例えば、長辺が200mm~600mm、短辺が50mm~300mmであってもよい。また、底面板53は、例えば、厚みが0.5mm~5mmであってもよい。
 底面板53は、例えば、金属材料を有していてもよい。底面板53に用いられる金属材料としては、例えば、アルミニウム、ステンレス等が挙げられる。これにより、電気化学セル1で発生した熱が、底面板53を介して、外部へ伝わりやすくなるため、電気化学セル1の寿命を向上させることができる。
 底面板53は、例えば、樹脂材料を有していてもよい。底面板53に用いられる樹脂材料としては、例えば、ポリエチレンテレフタラート(PET)等の耐熱性樹脂材料が挙げられる。これにより、電気化学セル1と外部環境とを電気的に絶縁することができるため、電気化学セル1と外部環境とが短絡する可能性を低減することができる。ひいては、電気化学セル1の寿命を向上させることができる。
 電気化学セル積層体2は、筐体50内で、第2方向における端面2b,2cが押圧されて保持されていてもよい。電気化学セル積層体2は、押圧板54と弾性体55とによって押圧されて保持されていてもよい。
 押圧板54として、例えば、金属材料が用いられてもよい。これにより、電気化学セル1から発生した熱を外部へ伝わりやすくすることができる。その結果、電気化学セル1の寿命を向上させることができる。押圧板54に用いられる金属材料としては、例えば、アルミニウム、ステンレス等が挙げられる。
 押圧板54として、例えば、絶縁性の樹脂材料が用いられてもよい。これにより、電気化学セル1と外部環境とを電気的に絶縁することができるため、電気化学セル1と外部環境とが短絡する可能性を低減することができる。押圧板54に用いられる樹脂材料としては、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂等の熱硬化性樹脂が挙げられる。
 押圧板54として、例えば、樹脂材料と金属材料とが用いられてもよい。樹脂材料は、例えば、押圧板54における電気化学セル積層体2に接触する部分に用いられてもよい。これにより、電気化学セル1と押圧板54とを電気的に絶縁することができる。その結果、電気化学セル1と外部環境とが短絡する可能性を低減することができる。また、押圧板54に金属材料を用いることで、押圧板を破損しにくくすることができる。
 弾性体55は、押圧板54と筐体50の主面板51との間に位置している。弾性体55は、押圧板54に圧力を加えることにより、電気化学セル1に圧力を加えるために設けられている。弾性体55は、例えば、バネを用いることができる。バネは、例えば、らせん形状であってもよい。また、バネは、例えば、曲がった板形状であってもよい。バネは、例えば、金属材料を有していてもよい。バネに用いられる金属材料としては、例えば、鋼、ステンレス等が挙げられる。バネの寸法は、例えば、らせん形状の場合、直径が5mm~50mmであり、長さが、10mm~50mmであり、ピッチが1mm~10mmであってもよい。
 弾性体55として、例えば、板状のゴム材料が用いられてもよい。ゴム材料は、例えば、押圧板54と同じ形状であってもよい。ゴム材料は、例えば、天然ゴムであってもよく、合成ゴムであってもよい。
 また、電気化学セル積層体2は、筐体50によって、第2方向における端面2b,2cに圧力が加えられていてもよい。筐体50は、例えば、主面板51と側面板52とをねじ止めすることで、主面板51が電気化学セル積層体2の端面2b,2cを押圧することで圧力を加えてもよい。
 電気化学セルモジュール3によれば、電気化学セル1を備えることにより、耐久性に優れる電気化学セルモジュールを提供することができる。また、電気化学セルモジュール3によれば、高剛性の筐体50によって、外部環境から受ける外力を電気化学セル1に伝わりにくくすることができる。このため、耐久性に一層優れる電気化学セルモジュールを提供することが可能になる。
(電気化学セルシステム)
 本開示の一実施形態の電気化学セルシステムは、前述の実施形態の電気化学セルモジュールと、電気化学セルモジュールを制御する制御部と、を備える。制御部は、電気化学セルモジュールに、過充電や過放電から電池を保護する制御ICとして内蔵されてもよい。制御ICには、保護回路がプログラムとして構築されてもよい。
 この保護回路は、電池電圧が予め設定されて満充電時の電池電圧を越えようとすると、電流を遮断して充電電流の流れを強制的に停止させる。また、放電時の電池電圧が予め設定された放電可能電圧未満になると、放電電流を強制的に遮断するように構成される。さらに、このような保護回路が動作して、突然電源が遮断されてしまうと、電気化学セルモジュールから電源電力を供給していた設備(電力需要家)に大きな支障を与えることになるため、そのような状態が発生しないように、電池電圧が放電可能電圧まで低下すると、例えば「電池残量が少なくなりました。充電して下さい。」などの警告情報を画像表示および音響などによって報知し、使用者に警告し、このときの警告信号に応答してデータをメモリなどに保存し、動作を停止させるように構成される。
 保護回路が実行する充電シーケンスとしては、例えば、プリチャージ、急速充電または定電流充電、定電圧充電、満充電判定をこの順序で実行する。プリチャージでは、初期段階は小さな電流を流し込み、一定の電圧に達したら、一定の大きさの電流による充電(定電流充電)を行ない、定電流から定電圧にシフトする定電流定電圧(Constant Voltage Constant Current;CVCC)制御を実行する。満充電近くまで電池電圧が上昇したら、一定の電圧で充電を行う。定電圧充電の期間では、電池の内部電圧が上昇するにつれて、充電電流が自然に減少し、電流値が一定の電流まで減少したら充電完了と判断して、充電を終了するように構成される。
 本開示は次の実施の形態が可能である。
 本開示の電気化学セルは、発電要素および前記発電要素を収容する包装体を有する板状の単セルを複数積層してなるセル積層体と、前記セル積層体を収容する外容器と、を備える。前記外容器は、前記セル積層体の積層方向に見て前記外容器の外縁部と前記セル積層体の外周部との間に位置する表面領域に、該表面領域の一部が外方に突出した少なくとも1つのリブが設けられている。
 本開示の電気化学セルモジュールは、複数の上記電気化学セルと、前記複数の電気化学セルを互いに電気的に接続する集電部材と、前記複数の電気化学セルを収容する筐体と、を備える。
 本開示の電気化学セルシステムは、少なくとも1つの上記電気化学セルモジュールと、前記電気化学セルモジュールを制御する制御部と、を備える。
 本開示の電気化学セルによれば、外容器の変形を抑制し、外容器内におけるセル積層体の位置ずれを低減することができる。これにより、電気化学セルの耐久性を向上させることが可能になる。また、本開示の電気化学セルモジュールおよび電気化学セルシステムによれば、上記の電気化学セルを備えることにより、耐久性に優れる電気化学セルモジュールを提供することが可能になる。
 以上、本開示の実施形態について詳細に説明したが、また、本開示は上述の実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。上記各実施形態をそれぞれ構成する全部または一部を、適宜、矛盾しない範囲で組み合わせ可能であることは、言うまでもない。
 1   電気化学セル
 2   電気化学セル積層体
 2a  上面
 2b,2c 端面
 2d,2e 側面
 2f  下面
 3   電気化学セルモジュール
 10  セル積層体
 10a 外周部
 11  単セル
 11a 主面
 11b 他方主面
 12  発電要素
 12a 正極
 12b 負極
 12c セパレータ
 13  包装体
 14  正極端子
 14a 第1正極端子部
 14b 第2正極端子部
 15  負極端子
 15a 第1負極端子部
 15b 第2負極端子部
 20  外容器
 20a 外縁部
 20b 表面領域
 20c,20c1,20c2,20c3 リブ
 20d 主面
 20e 他方主面
 21  液体層
 30  接続端子
 31  第1接続端子
 32  第2接続端子
 40  集電部材
 50  筐体
 51  主面板
 52  側面板
 53  底面板
 54  押圧板
 55  弾性体

Claims (9)

  1.  発電要素および前記発電要素を収容する包装体を有する板状の単セルを複数積層して成るセル積層体と、
     前記セル積層体を収容する外容器であって、前記セル積層体の積層方向に見て前記外容器の外縁部と前記セル積層体の外周部との間に位置する表面領域に、該表面領域の一部が外方に突出した少なくとも1つのリブが設けられている外容器と、を備える電気化学セル。
  2.  前記少なくとも1つのリブは、前記外周部に沿って延びるリブを含む、請求項1に記載の電気化学セル。
  3.  前記積層方向に見たときに、前記セル積層体は、矩形状であり、前記少なくとも1つのリブは、前記外周部の角部に沿って延びるリブを含む、請求項1または2に記載の電気化学セル。
  4.  前記少なくとも1つのリブは、前記外周部の4つの角部のそれぞれに沿って延びる4つのリブを含む、請求項3に記載の電気化学セル。
  5.  前記少なくとも1つのリブは、前記外周部の角部から前記外縁部に向かって延びるリブを含む、請求項3または4に記載の電気化学セル。
  6.  前記少なくとも1つのリブは、前記外周部の全周にわたって延びるリブを含む、請求項1~5のいずれかに記載の電気化学セル。
  7.  前記発電要素は、正極、負極、および前記正極と前記負極との間に位置するセパレータを有する、請求項1~6のいずれかに記載の電気化学セル。
  8.  複数の、請求項1~7のいずれかに記載の電気化学セルと、
     前記複数の電気化学セルを互いに電気的に接続する集電部材と、
     前記複数の電気化学セルを収容する筐体と、を備える電気化学セルモジュール。
  9.  請求項8に記載の少なくとも1つの電気化学セルモジュールと、
     前記電気化学セルモジュールを制御する制御部と、を備える電気化学セルシステム。
PCT/JP2020/042857 2019-11-27 2020-11-17 電気化学セル WO2021106691A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/779,557 US20230006296A1 (en) 2019-11-27 2020-11-17 Electrochemical cell
EP20892658.4A EP4068474A1 (en) 2019-11-27 2020-11-17 Electrochemical cell
JP2021561334A JP7358507B2 (ja) 2019-11-27 2020-11-17 電気化学セル
CN202080082469.8A CN114762176A (zh) 2019-11-27 2020-11-17 电化学电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-214401 2019-11-27
JP2019214401 2019-11-27

Publications (1)

Publication Number Publication Date
WO2021106691A1 true WO2021106691A1 (ja) 2021-06-03

Family

ID=76130214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042857 WO2021106691A1 (ja) 2019-11-27 2020-11-17 電気化学セル

Country Status (5)

Country Link
US (1) US20230006296A1 (ja)
EP (1) EP4068474A1 (ja)
JP (1) JP7358507B2 (ja)
CN (1) CN114762176A (ja)
WO (1) WO2021106691A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129665U (ja) * 1989-04-03 1990-10-25
JP2000058010A (ja) * 1998-07-29 2000-02-25 Samsung Display Devices Co Ltd 二次電池のケ―ス及びその製造方法
JP2012018866A (ja) * 2010-07-09 2012-01-26 Nisshin Steel Co Ltd 電池用ケースの製造方法及び電池用ケース
JP5287104B2 (ja) 2008-09-30 2013-09-11 大日本印刷株式会社 電気化学セル
WO2016084273A1 (ja) * 2014-11-28 2016-06-02 三洋電機株式会社 電源装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5466906B2 (ja) * 2009-09-18 2014-04-09 パナソニック株式会社 電池モジュール
JP5741692B2 (ja) * 2011-08-02 2015-07-01 株式会社村田製作所 電池
JP6315572B2 (ja) * 2014-06-04 2018-04-25 セイコーインスツル株式会社 電気化学セル
JP6622072B2 (ja) * 2015-12-01 2019-12-18 株式会社エンビジョンAescジャパン リチウムイオン二次電池
CN109216776B (zh) * 2017-06-30 2022-10-25 远景Aesc日本有限公司 电化学器件
JP7022311B2 (ja) * 2018-01-19 2022-02-18 トヨタ自動車株式会社 電池モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129665U (ja) * 1989-04-03 1990-10-25
JP2000058010A (ja) * 1998-07-29 2000-02-25 Samsung Display Devices Co Ltd 二次電池のケ―ス及びその製造方法
JP5287104B2 (ja) 2008-09-30 2013-09-11 大日本印刷株式会社 電気化学セル
JP2012018866A (ja) * 2010-07-09 2012-01-26 Nisshin Steel Co Ltd 電池用ケースの製造方法及び電池用ケース
WO2016084273A1 (ja) * 2014-11-28 2016-06-02 三洋電機株式会社 電源装置

Also Published As

Publication number Publication date
JP7358507B2 (ja) 2023-10-10
CN114762176A (zh) 2022-07-15
EP4068474A1 (en) 2022-10-05
US20230006296A1 (en) 2023-01-05
JPWO2021106691A1 (ja) 2021-06-03

Similar Documents

Publication Publication Date Title
JP4173674B2 (ja) 電気化学デバイスモジュール
US7935439B2 (en) Pouch type lithium secondary battery
JP4926534B2 (ja) 巻取型電極組立体及びこれを備えるリチウム二次電池
JP5534264B2 (ja) 蓄電デバイス
JP5010250B2 (ja) 電池積層体および電池パック
US20210351456A1 (en) Battery pack and battery system
US20080182168A1 (en) Battery module
KR102288544B1 (ko) 이차 전지 및 그 제조 방법
JP4797385B2 (ja) 電池パック
CN113767521A (zh) 电池、电池组以及车辆
JP4053802B2 (ja) 電気化学デバイス
KR100635743B1 (ko) 이차 전지
JP4397175B2 (ja) 蓄電素子
JP7320619B2 (ja) 電気化学セルおよび電気化学セルモジュール
KR101825007B1 (ko) 파우치형 이차전지 및 그 제조방법
WO2021106691A1 (ja) 電気化学セル
CN111697166B (zh) 袋型二次电池及包括该电池的电池模块
JP3985616B2 (ja) 積層型電池を用いた組電池
JP7424819B2 (ja) 電気化学セルモジュールおよび電気化学セルシステム
US20230099793A1 (en) Pouch type rechargeable-battery
JP2000100404A (ja) 非水電解質電池および電池パック
JPH11233076A (ja) 組電池
JP7208201B2 (ja) 電池ケースおよび該電池ケースを備えた二次電池
US20220320693A1 (en) Power storage device
WO2023106214A1 (ja) 電解液、二次電池および半固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561334

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020892658

Country of ref document: EP

Effective date: 20220627