WO2021103476A1 - 空调器的压缩机冷却装置及其控制方法 - Google Patents

空调器的压缩机冷却装置及其控制方法 Download PDF

Info

Publication number
WO2021103476A1
WO2021103476A1 PCT/CN2020/094895 CN2020094895W WO2021103476A1 WO 2021103476 A1 WO2021103476 A1 WO 2021103476A1 CN 2020094895 W CN2020094895 W CN 2020094895W WO 2021103476 A1 WO2021103476 A1 WO 2021103476A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
liquid storage
cooling device
pressure
compressor cooling
Prior art date
Application number
PCT/CN2020/094895
Other languages
English (en)
French (fr)
Inventor
邓善营
张捷
王书森
殷志文
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021103476A1 publication Critical patent/WO2021103476A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices

Definitions

  • the invention belongs to the technical field of heat exchange equipment, and specifically relates to a compressor cooling device of an air conditioner and a control method thereof.
  • the compressor is the core of the refrigerant circulation system of the air conditioner.
  • the temperature of the compressor will continue to rise. If the temperature of the compressor is not lowered in time, the electronic components such as the inverter and motor of the compressor are easily burned out, which will cause the entire air conditioner to fail to function properly. run. In view of this, the compressor must ensure that sufficient refrigerant enters the compressor cooling port during operation to cool the compressor.
  • the commonly used compressor cooling scheme is to add a liquid spray pipeline connected to the cooling port of the compressor in the pipeline system of the air conditioner.
  • the liquid spray pipeline is provided with a refrigerant pump to cool the compressor. Enough refrigerant enters the port.
  • the disadvantage of the above embodiment is that the refrigerant pump will wear out and produce iron filings when the refrigerant pump is operating, and these iron filings will be delivered to the refrigerant inlet of the compressor along with the refrigerant. After long-term operation, the refrigerant inlet of the compressor will be blocked, which will affect the normal circulation of the refrigerant.
  • the present invention provides an air conditioner A compressor cooling device, the air conditioner includes a compressor, the compressor cooling device includes a liquid storage member capable of storing a refrigerant, a heating member, a control module, and a first pressure detecting member, the heating member and the first pressure
  • the detection components are respectively communicatively connected with the control module, the inside of the liquid storage component is connected to the cooling port of the compressor through a cooling pipeline, and the first pressure detection component can detect the pressure in the liquid storage component
  • the heating member can heat the refrigerant in the liquid storage member, and the control module is configured to be able to control the activation of the heating member when the pressure in the liquid storage member is lower than a set pressure.
  • the air conditioner further includes an evaporator in communication with the compressor, and the compressor cooling device further includes a second pressure detecting member provided on the evaporator, The second pressure detecting member is used to detect the suction pressure of the evaporator, the control module is also communicatively connected with the second pressure detecting member, and the control module can have a low pressure in the liquid storage member
  • the heating member is controlled to start when the product of the suction pressure and a preset value, wherein the preset value is greater than one.
  • the air conditioner further includes a condenser
  • the compressor cooling device further includes an on-off valve
  • the liquid storage member is connected to the condenser through a liquid inlet pipe, so The on-off valve is arranged on the liquid inlet pipeline.
  • the on-off valve is a flow regulating valve
  • the compressor cooling device further includes a liquid level gauge arranged on the liquid storage member, the liquid level gauge and the The flow regulating valve is respectively connected to the control module in communication, and the control module can also adjust the opening degree of the flow regulating valve according to the height of the liquid level in the liquid storage member, so as to make the liquid level in the liquid storage member Maintain at the set height.
  • the flow regulating valve is an electronic ball valve.
  • the compressor cooling device further includes a filter arranged on the cooling pipeline.
  • the compressor cooling device further includes a safety valve provided on the liquid storage member.
  • the present invention also provides a method for controlling a compressor cooling device of an air conditioner.
  • the compressor cooling device is any compressor cooling device described above, and the control method includes: when the compressor is running , Obtain the temperature of the compressor; obtain the pressure of the liquid storage member through the first pressure detection member; if the temperature of the compressor is always higher than the set temperature within a preset time and the liquid storage member If the pressure is lower than the set pressure, the heating member is activated.
  • the set pressure is a product of a preset value and the suction pressure of the evaporator of the air conditioner, wherein the preset value is greater than one.
  • the compressor cooling device includes a flow regulating valve
  • the control method further includes: obtaining the liquid level in the liquid storage member under the condition that the cooling pipeline is circulating. ; If the liquid level is lower than the set height, increase the opening of the on-off valve.
  • the liquid storage component of the compressor cooling device of the present invention can store refrigerant for cooling the compressor, so as to supply low-temperature refrigerant to the compressor to cool the compressor.
  • the compressor cooling device further includes a heating member. When the liquid storage component is in a low pressure state, it can increase the pressure inside the liquid storage component by activating the heating component, so as to form a significant pressure difference between the liquid storage component and the compressor position, thereby prompting the refrigerant in the liquid storage component to flow into and compress The cooling port of the machine.
  • the compressor cooling device of the present invention does not need to be subject to environmental restrictions, and can increase the pressure difference by the heating member even when the pressure difference between the liquid storage member and the compressor position is insufficient in a low temperature environment. Compared with the existing compressor cooling device, the adaptability of the compressor cooling device of the present invention to the operating environment is greatly improved.
  • the compressor cooling device of the present invention further includes a second pressure detecting member provided on the evaporator of the air conditioner, and the second pressure detecting member is used to detect the suction pressure value of the evaporator.
  • the compressor cooling device can activate the heating member when the pressure value in the liquid storage member is lower than the product of the suction pressure value of the evaporator and the preset value.
  • the pressure standard is set based on the suction pressure of the evaporator, so as to set the minimum refrigerant delivery condition that the pressure value of the liquid storage component meets, so that the timing of refrigerant delivery can be controlled more accurately.
  • the liquid storage component is connected to the condenser of the air conditioner through the liquid inlet pipeline, and the compressor cooling device further includes an on-off valve arranged on the liquid inlet pipeline.
  • the liquid storage component can be refilled through the condenser, and there is no need to provide a separate refrigerant replenishment pipeline for the liquid storage component.
  • the on-off valve is a flow regulating valve.
  • the compressor cooling device also includes a liquid level gauge arranged on the liquid storage member, so that the compressor cooling device can control the opening of the flow regulating valve to replenish the liquid according to the liquid level in the liquid storage member, so that the liquid in the liquid storage member can be refilled.
  • the surface is maintained at the set height. While meeting the liquid supply demand of the compressor cooling device, it also optimizes the overall volume of the compressor cooling device, reduces the layout space of the compressor cooling device, and improves the adaptability of the compressor cooling device to the installation environment.
  • the simultaneous refilling and discharging of the liquid can increase the flow efficiency of the refrigerant in the liquid storage member, so that the liquid storage member can increase the pressure difference through the heating member while avoiding the heating of the same part of the refrigerant for too long and the temperature increase Too large, to ensure the cooling capacity of the low temperature refrigerant.
  • the compressor cooling device of the present invention further includes a filter arranged on the cooling pipeline to filter impurities in the refrigerant through the filter to prevent impurities in the refrigerant from depositing and accumulating at the cooling port of the compressor and affecting the flow of the refrigerant. degree.
  • a safety valve is provided on the liquid storage member to avoid excessive pressure in the liquid storage member, so that the liquid storage member will not be dangerous due to continuous pressure increase even when the heating member fails, which improves the performance of the compressor cooling device. safety.
  • Fig. 1 is a system configuration diagram of the compressor cooling device of the present invention.
  • the terms “upper”, “inner”, “outer” and other terms indicating the direction or positional relationship are based on the direction or positional relationship shown in the drawings, which is only for convenience The description does not indicate or imply that the device or element must have a specific orientation, be configured and operate in a specific orientation, and therefore cannot be understood as a limitation of the present invention.
  • the terms “first” and “second” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installation e.g., it may be a fixed connection or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • FIG. 1 is a system structure diagram of the compressor cooling device of the present invention.
  • the air conditioner includes a compressor 1, a condenser 2, an evaporator 3, and an electronic expansion valve 4.
  • the compressor 1, the condenser 2, the evaporator 3, and the electronic expansion valve 4 are connected to form a closed-loop pipeline structure through the refrigerant delivery pipeline, so that the refrigerant can circulate in the closed-loop structure to meet the heat exchange requirements of the air conditioner.
  • the air conditioner also includes a compressor cooling device 5 for cooling the compressor 1.
  • the compressor cooling device 5 When the temperature of the motor or the inverter of the compressor 1 is too high, the compressor cooling device 5 will be activated to deliver a low-temperature refrigerant to the compressor 1 in order to cool the compressor 1.
  • the compressor cooling device 5 includes a control module, a liquid storage component 51, a heating component 52 and a first pressure detection component 53.
  • the liquid storage member 51 stores a low-temperature refrigerant inside.
  • the liquid storage member 51 is provided with a refrigerant outlet communicating with the inside, and the compressor 1 is provided with a cooling port that allows the refrigerant to flow in.
  • the cooling pipeline is connected between the refrigerant outlet and the cooling port, so that the low temperature refrigerant in the liquid storage member 51 It can flow into the compressor 1 along the cooling pipeline and reduce the temperature of the inverter or the motor of the compressor 1.
  • the heating member 52 can heat the refrigerant in the liquid storage member 51.
  • the first pressure detecting member 53 can detect the pressure in the liquid storage member 51.
  • the control module is configured to be able to control the heating member 52 to start when the pressure in the liquid storage member 51 is lower than the set pressure.
  • the set pressure is a set pressure value as a reference standard.
  • the setting standard for the set pressure is: in the case where the pressure in the liquid storage member 51 is greater than or equal to the set pressure, the pressure of the liquid storage member 51 is higher than the pressure at the position of the compressor 1, and the liquid storage member 51 and the compressor The pressure difference between 1 can encourage the refrigerant in the liquid storage member 51 to flow into the compressor 1.
  • the first pressure detecting member 53 is any member capable of directly or indirectly detecting the internal pressure of the liquid storage member 51, such as a pressure sensor.
  • the compressor cooling device 5 of the present invention relies on pressure to deliver the refrigerant, and does not need to be equipped with a power device such as a liquid pump, which prevents the generation of excess wear impurities in the cooling pipeline during the operation of the power device, which will block the compressor 1 The problem with the cooling port.
  • the compressor cooling device 5 of the present invention does not need to be restricted by the external temperature environment. Under the real-time monitoring of the first pressure detection component 53, if the external environment temperature is appropriate and there is a significant pressure difference between the liquid storage component 51 and the compressor 1 position itself, the low-temperature refrigerant can be compressed from the liquid storage component 51 without starting the heating device.
  • the heating member 52 can be controlled by the control module to start, thereby The pressure inside the liquid storage member 51 is increased by heating until the refrigerant output demand of the liquid storage member 51 is met.
  • the compressor cooling device 5 has strong adaptability to the operating environment and can smoothly realize the supply of low-temperature refrigerant under different temperature environments. Conveying, and will not mix the refrigerant in the cooling pipeline with abrasion impurities, ensuring the low-temperature refrigerant flow into the compressor 1, and preventing the compressor 1 from slow cooling efficiency and insufficient cooling due to insufficient refrigerant flow occur.
  • the compressor cooling device 5 further includes a timer connected to the heating member 52.
  • the control module controls the heating member 52 to start, the heating member 52 will be automatically turned off after heating for a set time under the control of a timer.
  • the set time can be set according to actual heating requirements (such as the gap between the pressure of the liquid storage member 51 and the set pressure), the ultimate pressure that the liquid storage member 51 can withstand in a normal state, and the like.
  • control module when the control module receives the pressure value in the liquid storage member 51 transmitted by the first pressure detection member 53 after the heating member 52 is activated, the control module can also determine the pressure in the liquid storage member 51. The change in the pressure value controls the heating member 52 to turn off. For example, the control module can also control the heating member 52 to turn off when the pressure in the liquid storage member 51 is not lower than the set pressure within a set time.
  • the compressor cooling device 5 of the present invention further includes a second pressure detecting member 54 provided on the evaporator 3.
  • the second pressure detecting member 54 is used to detect the suction pressure of the evaporator 3.
  • the control module is also communicatively connected with the second pressure detecting member 54.
  • the above-mentioned set pressure is the product of the suction pressure of the evaporator 3 and the preset value.
  • the control module can control the heating member 52 to start when the pressure in the liquid storage member 51 is lower than the product of the suction pressure and the preset value, wherein, The default value is greater than 1.
  • the suction pressure of the evaporator 3 can represent the pressure at the position of the compressor 1.
  • setting a dynamic set pressure based on the suction pressure of the evaporator 3 can take the change of the suction pressure of the evaporator 3 as a key factor.
  • the pressure requirement of the liquid storage component 51 can be changed based on the actual pressure at the position of the compressor 1, thereby enabling the activation timing of the heating component 52 to be more accurately grasped.
  • the preset value can be set according to the actual operating environment of the compressor cooling device 5, heating timing requirements, cooling requirements, and other factors, and the preset value mainly set can meet the refrigerant output demand of the compressor cooling device 5.
  • the second pressure detecting member 54 is a pressure sensor.
  • the liquid storage member 51 is provided with a separate liquid inlet pipe, which is connected between the refrigerant supply source and the liquid storage member 51, so that the liquid can be stored through the liquid inlet pipe.
  • the refrigerant is replenished in the component 51.
  • the liquid inlet pipeline is connected to the condenser 2 of the air conditioner, so that the refrigerant in the condenser 2 can flow into the liquid storage component 51 through the liquid inlet pipeline to replenish the liquid storage component 51.
  • the compressor cooling device 5 also includes an on-off valve, which is arranged on the liquid inlet pipeline to control the on-off of the liquid inlet pipeline.
  • the compressor cooling device 5 further includes a liquid level gauge 56 provided on the liquid storage member 51.
  • the liquid level gauge 56 can measure the liquid level of the refrigerant stored in the liquid storage member 51.
  • the level gauge 56 and the flow regulating valve 55 are respectively connected to the control module in communication, and the control module can also adjust the opening of the flow regulating valve 55 according to the height of the liquid level in the liquid storage member 51, for example, when the liquid level in the liquid storage member 51 When the height is much lower than the set height, increase the opening of the flow regulating valve 55 to quickly replenish the liquid storage member 51.
  • the opening degree is to prevent the refrigerant replenishment in the liquid storage member 51 from being too large, so that the liquid level in the liquid storage member 51 is maintained at a set height.
  • the control module adjusts the flow adjustment valve 55 based on the control logic of the above-mentioned flow adjustment valve 55, and the liquid storage member 51 outputs while replenishing liquid, so that the storage The liquid level of the refrigerant in the liquid member 51 is maintained at a set height.
  • the control module controls the flow regulating valve 55 to adjust the opening degree to be closed.
  • the above-mentioned flow regulating valve 55 is an electronic ball valve.
  • the compressor cooling device 5 further includes a filter 57 arranged on the cooling pipeline to filter impurities in the refrigerant flowing through the cooling pipeline.
  • a filter 57 arranged on the cooling pipeline to filter impurities in the refrigerant flowing through the cooling pipeline.
  • the compressor cooling device 5 further includes a safety valve 58 provided on the liquid storage member 51.
  • the safety valve 58 When the pressure in the liquid storage member 51 is too high and exceeds the safety standard, the safety valve 58 is opened to reduce the pressure of the liquid storage member 51 to avoid the risk of explosion due to the excessive pressure in the liquid storage member 51.
  • the above-mentioned safety valve 58 can either be activated manually based on the first pressure detection component 53 to detect and issue an alarm message, or it can be in communication with the control module, and the first pressure detection component 53 detects that the pressure in the liquid storage component 51 is too high. At this time, the safety valve 58 is automatically opened by the control module to relieve the pressure of the liquid storage component 51.
  • the present invention also provides a control method, which includes:
  • the heating member 52 is activated.
  • the set pressure is a product of a preset value and the suction pressure of the evaporator 3, wherein the preset value is greater than one.
  • the foregoing preset time is 20 seconds, and the foregoing preset value is 1.5.
  • the heating member 52 is controlled to start.
  • the pressure of the liquid storage member 51 is always less than 1.5 times the suction pressure for at least 5 consecutive seconds before the default is that the pressure of the liquid storage member 51 is lower than the set pressure, that is, the liquid storage member The inside of 51 is in a low pressure state.
  • the heating is turned off Component 52, the waste heat from the heating component 52 is sufficient to support the flow of the remaining low-temperature refrigerant in demand.
  • the solenoid valve at the cooling port of the compressor 1 is closed, and the cooling pipeline is in a blocked state.
  • the opening degree of the on-off valve that is, the flow regulating valve 55
  • the opening degree of the flow regulating valve 55 is increased from zero to the first opening degree
  • the opening degree of the flow regulating valve 55 is increased from zero to the second opening degree, where,
  • the first opening degree is greater than the second opening degree.
  • the compressor cooling device 5 of the present invention can use the pressure difference as a power for conveying low-temperature refrigerant, and can increase the pressure difference by heating when the pressure difference is insufficient.
  • the compressor cooling device 5 of the present invention can realize the normal delivery of low-temperature refrigerant without providing pumps, and avoids problems such as poor working reliability of pumps and clogging of the cooling port of the compressor 1 with worn iron filings.
  • the compressor cooling device 5 of the present invention is not restricted by the low temperature environment, and has good adaptability to the operating environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

本发明属于换热设备技术领域,具体涉及一种空调器的压缩机冷却装置及其控制方法。本发明的压缩机冷却装置包括储液构件和加热构件。在储液构件内处于低压状态时,该压缩机冷却装置能够通过启动加热构件的方式提升储液构件内部的压力,使得储液构件与压缩机位置形成明显压差,进而促使储液构件内的冷媒流入压缩机的冷却口。无需设置泵类装置即可实现低温冷媒的正常输送,避免了泵类装置工作可靠性差、磨损铁屑堵塞压缩机冷却口等问题的出现。同时,本发明的压缩机冷却装置能够通过加热构件增大储液构件与压缩机位置之间的压差,不会受到低温环境的限制,对运行环境的适应性好。

Description

空调器的压缩机冷却装置及其控制方法 技术领域
本发明属于换热设备技术领域,具体涉及一种空调器的压缩机冷却装置及其控制方法。
背景技术
压缩机是空调器的冷媒循环系统的核心。在空调器运行时,压缩机的温度会不断升高,如果不及时将压缩机的温度降下来,则压缩机的变频器、电机等电子元件极易被烧坏,从而导致整个空调器不能正常运行。鉴于此,压缩机在运行时必须确保有充足的制冷剂进入压缩机冷却口,以便对压缩机进行降温。
目前,常用的压缩机降温方案为:在空调器的管路系统中添加一条连通至压缩机的冷却口的液喷管路,该液喷管路上设置有制冷剂泵,从而使压缩机的冷却口进入足够的制冷剂。上述实施方式的弊端在于:制冷剂泵运转时会磨损并产生铁屑,这些铁屑会随同冷媒一起被输送到压缩机的冷媒入口处。长期运行后会造成压缩机的冷媒入口堵塞,影响冷媒的正常流通。
相应地,本领域需要一种新的空调器的压缩机冷却装置及其控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有的压缩机冷却系统中的动力泵运转时会产生磨损铁屑、堵塞压缩机的冷却口的问题,本发明提供了一种空调器的压缩机冷却装置,所述空调器包括压缩机,所述压缩机冷却装置包括能够存储冷媒的储液构件、加热构件、控制模块和第一压力检测构件,所述加热构件和所述第一压力检测构件分别与所述控制模块通信连接,所述储液构件的内部通过冷却管路连通至所述压缩机的冷却口,所述第一压力检测构件能够检测所述储液构件内的压力,所述加热构件能够加热所述储液构件内的冷 媒,所述控制模块设置为能够在所述储液构件内的压力低于设定压力时控制所述加热构件启动。
在上述压缩机冷却装置的优选技术方案中,所述空调器还包括与所述压缩机连通的蒸发器,所述压缩机冷却装置还包括设置于所述蒸发器上的第二压力检测构件,所述第二压力检测构件用于检测所述蒸发器的吸气压力,所述控制模块还与所述第二压力检测构件通信连接,所述控制模块能够在所述储液构件内的压力低于所述吸气压力和预设值的乘积时控制所述加热构件启动,其中,所述预设值大于1。
在上述压缩机冷却装置的优选技术方案中,所述空调器还包括冷凝器,所述压缩机冷却装置还包括开关阀,所述储液构件通过进液管路连通至所述冷凝器,所述开关阀设置于所述进液管路上。
在上述压缩机冷却装置的优选技术方案中,所述开关阀为流量调节阀,所述压缩机冷却装置还包括设置于所述储液构件上的液位计,所述液位计和所述流量调节阀分别与所述控制模块通信连接,所述控制模块还能够根据所述储液构件内的液位高度调节所述流量调节阀的开度,以便使所述储液构件内的液位维持在设定高度。
在上述压缩机冷却装置的优选技术方案中,所述流量调节阀为电子球阀。
在上述压缩机冷却装置的优选技术方案中,所述压缩机冷却装置还包括设置于所述冷却管路上的过滤器。
在上述压缩机冷却装置的优选技术方案中,所述压缩机冷却装置还包括设置于所述储液构件上的安全阀。
另外,本发明还提供一种空调器的压缩机冷却装置的控制方法,所述压缩机冷却装置为上述任一种压缩机冷却装置,所述控制方法包括:在所述压缩机运行的情形下,获取所述压缩机的温度;通过所述第一压力检测构件获取所述储液构件的压力;如果所述压缩机的温度在预设时间内始终高于设定温度并且所述储液构件的压力低于设定压力,则启动所述加热构件。
在上述控制方法的优选技术方案中,所述设定压力为预设值和所述空调器的蒸发器的吸气压力的乘积,其中,所述预设值大于1。
在上述控制方法的优选技术方案中,所述压缩机冷却装置包括流量调节阀,所述控制方法还包括:在所述冷却管路流通的情形下,获取所述储液构件内的液位高度;如果所述液位高度低于设定高度,则增大所述开关阀的开度。
本领域技术人员能够理解的是,本发明的压缩机冷却装置的储液构件能够存储冷却压缩机的冷媒,以便向压缩机供应低温冷媒进而冷却压缩机。该压缩机冷却装置还包括加热构件。在储液构件内处于低压状态时,其能够通过启动加热构件的方式提升储液构件内部的压力,以便使储液构件与压缩机位置形成明显压差,从而促使储液构件内的冷媒流入压缩机的冷却口。通过上述设置,无需设置泵类装置即可实现低温冷媒的正常输送,避免了泵类装置工作可靠性差、产生磨损铁屑堵塞压缩机冷却口等问题的出现。同时,本发明的压缩机冷却装置无需受到环境限制,即使在低温环境下储液构件与压缩机位置之间的压差不足时也能够通过加热构件增大压差。与现有压缩机冷却装置相比,本发明的压缩机冷却装置对运行环境的适应性得到极大提升。
优选地,本发明的压缩机冷却装置还包括设置于空调器的蒸发器上的第二压力检测构件,第二压力检测构件用于检测蒸发器的吸气压力值。该压缩机冷却装置能够在储液构件内的压力值低于蒸发器的吸气压力值和预设值的乘积时启动加热构件。基于蒸发器的吸气压力设定压力标准,以便设定储液构件的压力值所符合的最低冷媒输送条件,使得冷媒输送的时机掌控得更加精确。
优选地,储液构件通过进液管路连通至空调器的冷凝器,压缩机冷却装置还包括设置于进液管路上的开关阀。储液构件能够通过冷凝器进行补液,无需为储液构件单独设置冷媒补液管路,通过将压缩机冷却装置的管路结构与空调器的冷媒循环管路合理结合,实现了压缩机冷却装置的管路结构的优化。
进一步地,开关阀为流量调节阀。压缩机冷却装置还包括设置于储液构件上的液位计,以便压缩机冷却装置能够根据储液构件内的液位高度控制流量调节阀的开度进行补液,从而使储液构件内的液面维持在设定高度。在满足压缩机冷却装置的供液需求的同时还优 化了压缩机冷却装置的整体体积,减小了压缩机冷却装置的布置空间,提升了压缩机冷却装置对安装环境的适应性。此外,补液和出液的同时进行能够增大储液构件内的冷媒流通效率,使得储液构件能够在通过加热构件增大压差的同时避免相同部分的冷媒的被加热时间过长、升温幅度过大,保证了低温冷媒的冷却能力。
优选地,本发明的压缩机冷却装置还包括设置于冷却管路上的过滤器,以便通过该过滤器过滤冷媒中的杂质,避免冷媒中的杂质在压缩机的冷却口沉淀堆积、影响冷媒的流畅度。
优选地,储液构件上设置有安全阀,以便避免储液构件内压力过高,使得储液构件即使在加热构件故障时也不会因为持续增压而出现危险,提升了压缩机冷却装置的安全性。
附图说明
下面参照附图来描述本发明的优选实施方式。
图1是本发明的压缩机冷却装置的系统结构图。
附图中:1、压缩机;2、冷凝器;3、蒸发器;4、电子膨胀阀;5、压缩机冷却装置;51、储液构件;52、加热构件;53、第一压力检测构件;54、第二压力检测构件;55、流量调节阀;56、液位计;57、过滤器;58、安全阀。
具体实施方式
本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。
需要说明的是,在本发明的描述中,术语“上”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“连通”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
首先参阅图1,图1是本发明的压缩机冷却装置的系统结构图。如图1所示,空调器包括压缩机1、冷凝器2、蒸发器3和电子膨胀阀4。压缩机1、冷凝器2、蒸发器3和电子膨胀阀4通过冷媒输送管路连通成闭环管路结构,以便供冷媒在该闭环结构中循环流动、满足空调器的换热需求。该空调器还包括用于为压缩机1降温的压缩机冷却装置5。在压缩机1的电机或变频器温度过高时,压缩机冷却装置5就会启动,向压缩机1输送低温冷媒,以便为压缩机1进行降温。具体地,压缩机冷却装置5包括控制模块、储液构件51、加热构件52和第一压力检测构件53。其中,储液构件51内部存储有低温冷媒。储液构件51上设置有与内部连通的冷媒出口,压缩机1上设置有允许冷媒流入的冷却口,冷却管路连通至冷媒出口与冷却口之间,以便使储液构件51内的低温冷媒能够沿冷却管路流入压缩机1内、降低压缩机1的变频器或者电机的温度。加热构件52能够加热储液构件51内的冷媒。第一压力检测构件53能够检测储液构件51内的压力。控制模块设置为能够在储液构件51内的压力低于设定压力时控制加热构件52启动。
在上述实施方式中,设定压力为一个设定的、作为参照标准的压力值。设定压力的设定标准为:在储液构件51内的压力大于或等于设定压力的情形下,储液构件51的压力高于压缩机1位置的压力,并且储液构件51与压缩机1之间的压差能够促使储液构件51内的冷媒流入压缩机1。第一压力检测构件53为任意能够直接或间接检测储液构件51内部压力的构件,如压力传感器。
本领域技术人员能够理解的是,本发明的压缩机冷却装置5依赖压强输送冷媒,无需设置液泵等动力装置,杜绝了动力装置运转时使冷却管路内产生多余磨损杂质进而堵塞压缩机1的冷却口的问题。 同时,本发明的压缩机冷却装置5无需受到外界温度环境的限制。在第一压力检测构件53的实时监测下,如果外界环境温度适宜、储液构件51与压缩机1位置本身存在明显压差,则无需启动加热装置即可实现低温冷媒从储液构件51至压缩机1间的流动;如果外界环境温度较低、储液构件51与压缩机1位置之间的压差难以满足储液构件51的冷媒输出需求,则可通过控制模块控制加热构件52启动,从而通过加热方式使储液构件51内部的压力上升,直至满足储液构件51的冷媒输出需求。
通过上述设置,打破了传统压缩机冷却装置5对动力装置或者外界温度环境的限制,使得压缩机冷却装置5具备极强的运行环境适应性、在不同温度环境下均能够顺利实现低温冷媒的供给输送,而且不会使冷却管路内的冷媒中混有磨损杂质,保证了进入压缩机1内的低温冷媒流量,防止了压缩机1因冷媒流量不足而冷却效率慢、冷却程度不足等情况的发生。
在一种可能的情形下,压缩机冷却装置5还包括与加热构件52相连的计时器。在控制模块控制加热构件52启动时,加热构件52会在计时器的控制下加热设定时间后自动关闭。其中,设定时间可以根据实际加热需求(如储液构件51的压力与设定压力之间的差距)、储液构件51内部在正常状态下可承受的极限压力等进行设定。
在一种优选的实施方式中,在控制模块接收到第一压力检测构件53传送的、在启动加热构件52后的储液构件51内的压力值时,控制模块还能够根据储液构件51内的压力值变化情况控制加热构件52关闭。例如,控制模块还能够在储液构件51内的压力于设定时间内始终不低于设定压力时控制加热构件52关闭。
进一步地,本发明的压缩机冷却装置5还包括设置于蒸发器3上的第二压力检测构件54。第二压力检测构件54用于检测蒸发器3的吸气压力。控制模块还与第二压力检测构件54通信连接。上述设定压力为蒸发器3的吸气压力和预设值的乘积,控制模块能够在储液构件51内的压力低于吸气压力和预设值的乘积时控制加热构件52启动,其中,预设值大于1。
在上述实施方式中,鉴于蒸发器3与压缩机1的连通关系,蒸发器3的吸气压力即可代表压缩机1位置的压力。与设定一个适用于所有冷却环境的固定值作为设定压力相比,基于蒸发器3的吸气压力设置一个动态的设定压力,能够将蒸发器3的吸气压力的变化作为关键因素计入压缩机冷却装置5的运行方案之中,使得储液构件51的压力要求能够基于压缩机1位置的实际压力而改变,进而使加热构件52的启动时机能够被更加精确的把握。增大了压缩机冷却装置5与运行环境的紧密联动性,使得压缩机冷却装置5的运行可靠性得到提升。此外,预设值可以根据压缩机冷却装置5的实际运行环境以及加热时机需求、冷却需求等因素进行设定,主要设定的预设值能够满足压缩机冷却装置5的冷媒输出需求即可。作为示例,第二压力检测构件54为压力传感器。
在一种可能的实施方式中,储液构件51设置有单独的进液管路,该进液管路连通至冷媒供应源头与储液构件51之间,以便通过该进液管路为储液构件51内补充冷媒。
优选地,进液管路与空调器的冷凝器2连通设置,以便冷凝器2中的冷媒能够通过进液管路流入储液构件51内、为储液构件51补液。压缩机冷却装置5还包括开关阀,该开关阀设置于进液管路上,以便控制进液管路的通断。通过上述设置,使得进液管路能够合并至空调器的管路系统中,无需为储液构件51设置单独的冷媒供应源头,缩减了压缩机冷却装置5的占用空间,保证了压缩机冷却装置5对安装环境的适应性。
进一步地,上述开关阀为流量调节阀55。压缩机冷却装置5还包括设置于储液构件51上的液位计56。液位计56能够测量储液构件51内存储的冷媒的液面高度。液位计56和流量调节阀55分别与控制模块通信连接,控制模块还能够根据储液构件51内的液位高度调节流量调节阀55的开度,如,当储液构件51内的液位高度远低于设定高度时,增大流量调节阀55的开度,以便为储液构件51快速补液,当储液构件51内的液位高度接近设定高度时,调小流量调节阀55的开度,以避免储液构件51内冷媒补充量过大,从而使储液构件51内的液位维持在设定高度。在储液构件51供应低温冷媒时,储液构件51 内的冷媒持续向外输出,控制模块基于上述流量调节阀55的控制逻辑调节流量调节阀55,储液构件51一边补液一边输出,使得储液构件51内的冷媒的液面维持在设定高度。当储液构件51停止输出冷媒时,其中的冷媒的液面逐渐达到设定高度,控制模块控制流量调节阀55将开度调节至关闭。作为示例,上述流量调节阀55为电子球阀。
优选地,压缩机冷却装置5还包括设置于冷却管路上的过滤器57,以便对流经冷却管路的冷媒中的杂质进行过滤。通过设置过滤器57,使得储液构件51中即使在补液过程中进入带有杂质的冷媒,该杂质也不会随着冷媒流至压缩机1的冷却口,使得压缩机1的冷却口在压缩机冷却装置5长期运行后也不会被杂质堵塞。
优选地,压缩机冷却装置5还包括设置于储液构件51上的安全阀58。在储液构件51内的压力过高、超过安全标准时,安全阀58开启以使储液构件51降压,以避免储液构件51内的压力过高出现爆裂危险。上述安全阀58既可以基于第一压力检测构件53进行检测并发出警报信息从而通过人工方式启动,也可以与控制模块通信连接,在第一压力检测构件53检测到储液构件51内压力过高时,通过控制模块自动开启安全阀58为储液构件51泄压。
基于上述压缩机冷却装置5,本发明还提供一种控制方法,该控制方法包括:
在压缩机1运行的情形下,获取压缩机1的温度;
通过第一压力检测构件53获取储液构件51的压力;
如果压缩机1的温度在预设时间内始终高于设定温度并且储液构件51的压力低于设定压力,则启动加热构件52。
进一步地,设定压力为预设值和蒸发器3的吸气压力的乘积,其中,预设值大于1。
作为示例,上述预设时间为20秒,上述预设值为1.5。当压缩机1运行时,如果检测到储液构件51的压力小于1.5倍的吸气压力并且20秒内压缩机1温度始终不小于50℃,则控制加热构件52启动。其中,为了避免压力检测构件的检测误差,在连续至少5秒内储液构件51的压力始终小于1.5倍的吸气压力才默认为储液构件51的压力低于设定压力,即储液构件51的内部处于低压状态。当压缩机1的 温度冷却后,如果检测到连续至少5秒内储液构件51的压力始终大于1.5倍的吸气压力并且在20秒内压缩机1的温度始终不大于44℃,则关闭加热构件52,加热构件52发出的余热足以支持剩余需求量的低温冷媒流动。当压缩机1的温度达到安全温度时,压缩机1冷却口处的电磁阀关闭,冷却管路处于截断状态。
进一步地,在冷却管路处于流通状态、压缩机1被冷却的情形下,获取储液构件51内的液位高度;
如果储液构件51内的冷媒的液位高度低于设定高度,则增大开关阀(即流量调节阀55)的开度。
更具体地,在储液构件51内的冷媒的液位高度低于设定高度的情形下,“增大流量调节阀55的开度”具体包括:
获取储液构件51内的冷媒的液位高度与设定高度的高度差;
如果该高度差大于等于设定高度差,则将流量调节阀55的开度从零增大至第一开度;
如果该高度差小于设定高度差,则将流量调节阀55的开度从零增大至第二开度,其中,
第一开度大于第二开度。
综上所述,本发明的压缩机冷却装置5能够利用压差作为输送低温冷媒的动力,并且能够在压差不足时通过加热方式增大压差。一方面,本发明的压缩机冷却装置5无需设置泵类装置即可实现低温冷媒的正常输送,避免了泵类装置工作可靠性差、磨损铁屑堵塞压缩机1冷却口等问题的出现。另一方面,本发明的压缩机冷却装置5不会受到低温环境的限制,对运行环境的适应性好。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种空调器的压缩机冷却装置,其特征在于,所述空调器包括压缩机,所述压缩机冷却装置包括能够存储冷媒的储液构件、加热构件、控制模块和第一压力检测构件,
    所述加热构件和所述第一压力检测构件分别与所述控制模块通信连接,所述储液构件的内部通过冷却管路连通至所述压缩机的冷却口,所述第一压力检测构件能够检测所述储液构件内的压力,所述加热构件能够加热所述储液构件内的冷媒,所述控制模块设置为能够在所述储液构件内的压力低于设定压力时控制所述加热构件启动。
  2. 根据权利要求1所述的压缩机冷却装置,其特征在于,所述空调器还包括与所述压缩机连通的蒸发器,所述压缩机冷却装置还包括设置于所述蒸发器上的第二压力检测构件,所述第二压力检测构件用于检测所述蒸发器的吸气压力,所述控制模块还与所述第二压力检测构件通信连接,所述控制模块能够在所述储液构件内的压力低于所述吸气压力和预设值的乘积时控制所述加热构件启动,
    其中,所述预设值大于1。
  3. 根据权利要求1所述的压缩机冷却装置,其特征在于,所述空调器还包括冷凝器,所述压缩机冷却装置还包括开关阀,所述储液构件通过进液管路连通至所述冷凝器,所述开关阀设置于所述进液管路上。
  4. 根据权利要求3所述的压缩机冷却装置,其特征在于,所述开关阀为流量调节阀,所述压缩机冷却装置还包括设置于所述储液构件上的液位计,所述液位计和所述流量调节阀分别与所述控制模块通信连接,
    所述控制模块还能够根据所述储液构件内的液位高度调节所述流量调节阀的开度,以便使所述储液构件内的液位维持在设定高度。
  5. 根据权利要求4所述的压缩机冷却装置,其特征在于,所述流量调节阀为电子球阀。
  6. 根据权利要求1所述的压缩机冷却装置,其特征在于,所述压缩机冷却装置还包括设置于所述冷却管路上的过滤器。
  7. 根据权利要求1所述的压缩机冷却装置,其特征在于,所述压缩机冷却装置还包括设置于所述储液构件上的安全阀。
  8. 一种空调器的压缩机冷却装置的控制方法,其特征在于,所述压缩机冷却装置为权利要求3至7中任一项所述的压缩机冷却装置,所述控制方法包括:
    在所述压缩机运行的情形下,获取所述压缩机的温度;
    通过所述第一压力检测构件获取所述储液构件的压力;
    如果所述压缩机的温度在预设时间内始终高于设定温度并且所述储液构件的压力低于设定压力,则启动所述加热构件。
  9. 根据权利要求8所述的控制方法,其特征在于,所述设定压力为预设值和所述空调器的蒸发器的吸气压力的乘积,其中,所述预设值大于1。
  10. 根据权利要求9所述的控制方法,其特征在于,所述压缩机冷却装置包括流量调节阀,所述控制方法还包括:
    在所述冷却管路流通的情形下,获取所述储液构件内的液位高度;
    如果所述液位高度低于设定高度,则增大所述开关阀的开度。
PCT/CN2020/094895 2019-11-29 2020-06-08 空调器的压缩机冷却装置及其控制方法 WO2021103476A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911205276.2A CN112880123B (zh) 2019-11-29 2019-11-29 空调器的压缩机冷却装置及其控制方法
CN201911205276.2 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021103476A1 true WO2021103476A1 (zh) 2021-06-03

Family

ID=76039647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094895 WO2021103476A1 (zh) 2019-11-29 2020-06-08 空调器的压缩机冷却装置及其控制方法

Country Status (2)

Country Link
CN (1) CN112880123B (zh)
WO (1) WO2021103476A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114198950A (zh) * 2021-11-22 2022-03-18 青岛海尔空调电子有限公司 压缩机的供液系统
CN114353394A (zh) * 2022-01-04 2022-04-15 烽火通信科技股份有限公司 一种机房空调低温启动控制方法、装置、设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114198922B (zh) * 2021-11-22 2023-08-15 青岛海尔空调电子有限公司 压缩机的供液系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205561324U (zh) * 2016-01-28 2016-09-07 苏州必信空调有限公司 一种制冷系统
JP2017072291A (ja) * 2015-10-06 2017-04-13 株式会社デンソー 冷凍サイクル装置
CN109556256A (zh) * 2018-10-17 2019-04-02 青岛海尔空调电子有限公司 空调器
CN209054812U (zh) * 2018-11-26 2019-07-02 青岛北冰洋冷暖能源科技有限公司 一种磁悬浮冷水机组压缩机冷却系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010225956B2 (en) * 2009-03-19 2012-11-15 Daikin Industries, Ltd. Air conditioning apparatus
CN203454502U (zh) * 2013-07-30 2014-02-26 广东美的暖通设备有限公司 智能除霜空调系统
CN104964343B (zh) * 2015-06-12 2018-09-11 广东美的暖通设备有限公司 一种提高压缩机运行可靠性的装置和方法
CN107014096A (zh) * 2017-05-25 2017-08-04 克莱门特捷联制冷设备(上海)有限公司 一种极低温环境下的工艺冷却用风冷式单冷机组
CN108709344A (zh) * 2018-04-28 2018-10-26 青岛海尔空调器有限总公司 用于空调器控制的方法及空调器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072291A (ja) * 2015-10-06 2017-04-13 株式会社デンソー 冷凍サイクル装置
CN205561324U (zh) * 2016-01-28 2016-09-07 苏州必信空调有限公司 一种制冷系统
CN109556256A (zh) * 2018-10-17 2019-04-02 青岛海尔空调电子有限公司 空调器
CN209054812U (zh) * 2018-11-26 2019-07-02 青岛北冰洋冷暖能源科技有限公司 一种磁悬浮冷水机组压缩机冷却系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114198950A (zh) * 2021-11-22 2022-03-18 青岛海尔空调电子有限公司 压缩机的供液系统
CN114198950B (zh) * 2021-11-22 2023-12-26 青岛海尔空调电子有限公司 压缩机的供液系统
CN114353394A (zh) * 2022-01-04 2022-04-15 烽火通信科技股份有限公司 一种机房空调低温启动控制方法、装置、设备及存储介质
CN114353394B (zh) * 2022-01-04 2023-12-22 烽火通信科技股份有限公司 一种机房空调低温启动控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN112880123B (zh) 2021-12-28
CN112880123A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2021103476A1 (zh) 空调器的压缩机冷却装置及其控制方法
US10571077B2 (en) Cooled-hydrogen supply station and a cooling apparatus for hydrogen
CN212431402U (zh) 气悬浮压缩机的电机冷却系统和制冷系统
US9625197B2 (en) Constant-temperature liquid circulation apparatus and operation method thereof
JP5716208B1 (ja) 水素ガス冷却装置
WO2006087794A1 (ja) 極低温ケーブルの循環冷却システム
JP5816422B2 (ja) 冷凍装置の排熱利用システム
US6386280B1 (en) Thermostatic coolant circulating device
JP2005308149A (ja) 需要機器連動式低温液化ガス供給装置
JP2013242055A (ja) 給湯装置
WO2021233460A1 (zh) 空调压缩机内冷冻油油温控制系统及控制方法
US10502470B2 (en) System and method to maintain evaporator superheat during pumped refrigerant economizer operation
CN103154630B (zh) 热泵式热水供给机
JP4928357B2 (ja) 冷却システム
JP2021046987A (ja) 冷水製造システム
JP2014159938A (ja) 給湯装置
CN113803910A (zh) 气悬浮压缩机的电机冷却系统和制冷系统
CN114198919B (zh) 气悬浮机组系统
JP6208633B2 (ja) ヒートポンプ式給湯機
CN214194741U (zh) 一种集成精密恒温水系统
JP2013217563A (ja) ヒートポンプ式液体加熱装置およびヒートポンプ式給湯機
CN110821788A (zh) 一种储油装置及包含其的压缩机、供油量调节方法
KR101693842B1 (ko) 공냉식 칠러 및 이의 제어방법
CN116937018A (zh) 一种储能电池的控温设备
JP2021046985A (ja) 冷水製造システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893249

Country of ref document: EP

Kind code of ref document: A1