WO2021100608A1 - ゴム組成物及びその製造方法 - Google Patents

ゴム組成物及びその製造方法 Download PDF

Info

Publication number
WO2021100608A1
WO2021100608A1 PCT/JP2020/042284 JP2020042284W WO2021100608A1 WO 2021100608 A1 WO2021100608 A1 WO 2021100608A1 JP 2020042284 W JP2020042284 W JP 2020042284W WO 2021100608 A1 WO2021100608 A1 WO 2021100608A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose nanofibers
weight
rubber composition
rubber
cellulose
Prior art date
Application number
PCT/JP2020/042284
Other languages
English (en)
French (fr)
Inventor
齋藤 俊裕
直之 石田
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to US17/773,705 priority Critical patent/US20220380581A1/en
Priority to CN202080080318.9A priority patent/CN114729161B/zh
Priority to DE112020005670.8T priority patent/DE112020005670T5/de
Publication of WO2021100608A1 publication Critical patent/WO2021100608A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L11/00Compositions of homopolymers or copolymers of chloroprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2311/00Characterised by the use of homopolymers or copolymers of chloroprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a rubber composition and a method for producing the same.
  • Chloroprene rubber is used in a wide range of applications because it has a good balance of physical properties among various synthetic rubbers.
  • Tensile stress is an index of elasticity, and these can usually be improved by blending reinforcing materials such as carbon black and silica, but these granular reinforcing materials have a reinforcing effect depending on their particle size and specific surface area. There is a limit to.
  • reinforcing by blending a reinforcing material, the hardness of the vulcanized rubber also increases remarkably at the same time, and the processability into a rubber product decreases. Therefore, there is a limit to the reinforcing effect in order to maintain an appropriate rubber hardness. ..
  • the chloroprene polymer is known to be obtained by polymerizing chloroprene in the presence of an emulsifier in an aqueous emulsion containing an emulsifier and an initiator.
  • this polymerization reaction is carried out in the presence of an alkali metal salt of a carboxylic acid in a strong alkaline atmosphere, but since cellulose is hydrolyzed in a strong alkali, much consideration is given to chloroprene latex, which is a strong alkali. The reality is that it has not been done.
  • the present invention has been made in view of this problem, and an object of the present invention is to provide a chloroprene rubber composition exhibiting excellent tensile stress with low strain and a method for producing the same.
  • each aspect of the present invention is [1] to [5] shown below.
  • [1] A rubber composition containing 1.2 to 3.0 parts by weight of cellulose nanofibers with respect to 100 parts by weight of chloroprene rubber, and 100% tensile stress (M100) of a vulcanized sheet obtained by vulcanizing the rubber composition. ) Is 1.5 MPa / part by weight or more with respect to the amount of cellulose nanofibers added.
  • the amount of increase in M100 is obtained by subtracting the value of M100 of the vulcanization sheet containing cellulose nanofibers from the value of M100 of the vulcanization sheet containing cellulose nanofibers and dividing by the amount of cellulose nanofibers contained. Calculated.
  • [2] The rubber composition according to the above [1], wherein the surface tension of a 1 wt% aqueous solution of cellulose nanofibers is 60 mN / m or less.
  • the rubber composition of the present invention By using the rubber composition of the present invention, it is possible to obtain a vulcanized rubber that exhibits excellent tensile stress with low strain.
  • the rubber composition according to one aspect of the present invention contains 1.2 to 3.0 parts by weight of cellulose nanofibers with respect to 100 parts by weight of chloroprene rubber, and is a vulcanized sheet obtained by vulcanizing the rubber composition.
  • the increase width of 100% tensile stress (M100) is 1.5 MPa / part by weight or more with respect to the amount of cellulose nanofibers added.
  • Chloroprene rubber can be obtained by emulsion polymerization of chloroprene or chloroprene and a monomer copolymerizable therewith.
  • Examples of the monomer copolymerizable with chloroprene include 2,3-dichloro-1,3-butadiene, 2-cyano-1,3-butadiene, 1-chloro-1,3-butadiene, 1,3-.
  • Butadiene, styrene, acrylonitrile, methyl methacrylate, methacrylic acid, acrylic acid and the like can be mentioned, and one or more of them can be used in combination, but it is not always necessary and it is used in a timely manner according to the required physical properties.
  • the amount of the copolymerizable monomer is not particularly limited, but 30 parts by weight or less is generally used with respect to 100 parts by weight of the chloroprene rubber so as not to impair the characteristics of the chloroprene rubber.
  • the chloroprene rubber preferably contains 3 to 7% by weight of either or both of a carboxylic acid and an alkali metal salt of the carboxylic acid. Within this range, the emulsion stability during chloroprene polymerization is excellent, and problems such as poor freezing do not occur when the rubber is taken out from the latex by freeze-drying.
  • Examples of the carboxylic acid or the alkali metal salt of the carboxylic acid include loginic acid or the alkali metal salt thereof, a fatty acid or the alkali metal salt thereof, polycarboxylic acid or the alkali metal salt thereof, and the like.
  • Examples of the alkali metal salt include lithium, sodium, potassium, cesium and the like. These may be one kind or may contain two or more kinds, but from the viewpoint of polymerization stability, cohesiveness at the time of drying, and rubber performance, an alkali metal salt of rosin acid and a potassium salt of rosin acid are further used. Is preferably included.
  • the above-mentioned monomer is mixed with an emulsifier, water, a polymerization initiator, a chain transfer agent, other stabilizers, etc., polymerized at a predetermined temperature, and polymerized at a predetermined polymerization conversion rate.
  • an emulsifier water, a polymerization initiator, a chain transfer agent, other stabilizers, etc.
  • polymerized at a predetermined temperature polymerized at a predetermined polymerization conversion rate.
  • examples thereof include a method of adding a terminator to terminate the polymerization.
  • the alkali metal salt of the above carboxylic acid can be used.
  • the amount of the emulsifier is not particularly limited, but considering the stability of the chloroprene latex obtained after polymerization, 3 to 7 parts by weight is preferable with respect to 100 parts by weight of the chloroprene rubber.
  • free radical substances such as peroxides such as potassium persulfate and ammonium persulfate, and inorganic or organic peroxides such as hydrogen peroxide and tertiary butyl hydroperoxide may be used. It can. In addition, these may be used alone or in a combined redox system with a reducing substance such as thiosulfate, thiosulfite, hydrosulfite, or organic amine.
  • the polymerization temperature is not particularly limited, but is preferably in the range of 10 to 50 ° C.
  • the polymerization end time is not particularly limited, but from the viewpoint of productivity, the polymerization is carried out so that the conversion rate of the monomer is 60% or more and 95%. Is common. If it is 60% or less, the production amount is small and the solid content of latex is low, the drying cost of water is high, and if it is 95% or more, the polymerization time becomes very long.
  • the polymerization terminator is not particularly limited as long as it is a commonly used terminator, and for example, phenothiazine, 2,6-t-butyl-4-methylphenol, hydroxylamine and the like can be used.
  • the Mooney viscosity of the raw material rubber is not particularly limited as long as it satisfies the high elastic stress of the present invention, but is preferably 20 to 80 in consideration of kneading workability.
  • the Mooney viscosity is measured at an angular velocity of 2 revolutions / minute at a temperature of 100 ° C., starting 1 minute after preheating, and reading the value 4 minutes after the start of measurement.
  • Cellulose nanofibers are defibrated cellulose fibers contained in wood from an average fiber diameter of several nanometers to several tens of nanometers.
  • Cellulose defibration treatment is mainly performed by mechanical treatment and chemical treatment to add various functional groups, and by using mechanical treatment together, aggregation of cellulose nanofibers is suppressed and it is carried out to a finer single nano level. There is something.
  • cellulose nanofibers having a surface tension of 60 mN / m or less in a 1 wt% aqueous solution of cellulose nanofibers.
  • examples of such cellulose nanofibers include cellulose nanofibers which are defibrated only by mechanical treatment without performing chemical treatment and have amphipathic properties.
  • the dispersed state of the cellulose nanofibers in the rubber is improved, the tensile stress of the obtained vulcanized rubber is improved, and the handleability is improved. Will also be good. Therefore, it is preferable to use cellulose that does not contain a carboxylate and a carboxylic acid.
  • Amphiphile means that cellulose nanofibers have both a hydrophilic part having a large affinity for water and a hydrophobic part having a small affinity, and as described in Japanese Patent No. 5419120, water suspension. It can be obtained by causing the samples to collide with each other at high speed. By having amphipathic properties, the affinity between the hydrophobic rubber and cellulose becomes high, and a large improvement effect of tensile stress can be obtained with a smaller mixing amount. Generally, the surface tension of pure water is about 72 mN / m, but the greater the hydrophobicity, the smaller the surface tension. If the aqueous solution of cellulose nanofibers has a concentration of 1 wt% and is 60 mN / m or less, it has amphipathic properties and has a high affinity with rubber.
  • the content of cellulose nanofibers is 1.2 to 3.0 parts by weight with respect to 100 parts by weight of chloroprene rubber, and further 1.5 to 2.5 parts by weight. Part is preferable.
  • the cellulose nanofiber content is 1.2 parts by weight or more, a high tensile stress with respect to hardness can be obtained. Further, when the cellulose nanofiber content is 3.0 parts by weight or less, the handleability at the time of mixing the cellulose nanofibers is improved.
  • the rubber composition can be obtained by mixing an aqueous dispersion of cellulose nanofibers with a latex of chloroprene rubber to prepare a mixed solution of cellulose nanofiber dispersed rubber latex and removing water from the mixture.
  • the chloroprene rubber latex is obtained by emulsifying and dispersing chloroprene rubber with an alkali metal salt of a carboxylic acid, and the production method thereof is not particularly limited and can be copolymerized with a chloroprene monomer or a chloroprene monomer.
  • a reaction solution obtained by emulsion polymerization of various monomers or a solution obtained by dissolving chloroprene rubber in a solvent and then emulsifying and dispersing it with an alkali metal salt of carboxylic acid can be used.
  • An aqueous dispersion of cellulose nanofibers is made by defibrating wood, pulp, etc. to a predetermined fiber diameter and fiber length by mechanical treatment.
  • the rubber composition is prepared by mixing an aqueous dispersion of cellulose nanofibers with chloroprene rubber latex to obtain a cellulose nanofiber dispersed rubber latex mixture, removing water from the chloroprene rubber, washing with water, and then drying. Can be manufactured.
  • the method of mixing the aqueous dispersion of chloroprene rubber latex and cellulose nanofibers is not particularly limited, and an aqueous dispersion of chloroprene latex and cellulose nanofibers can be obtained by using a propeller-type stirrer, a homomixer, a high-pressure homogenizer, or the like. It can be obtained by mixing until the appearance is uniform (no lumps or the like).
  • Methods for removing water from the cellulose nanofiber-dispersed rubber latex mixture include heat drying, coagulation with acid and salt, and freeze-drying, but emulsifiers, coagulation liquid, and water remain inside the rubber. Since drying becomes difficult, the freeze-drying method in which rubber is precipitated (freeze-solidified) by freezing, excess emulsifiers and the like are washed with water and then dried with hot air is the most efficient and easy to dry. Further, it is more preferable to freeze-dry the cellulose nanofiber-dispersed rubber latex mixture at a pH of 10 or less so that the rubber can be easily precipitated.
  • the viscosity of the cellulose nanofiber-dispersed rubber latex mixture is preferably 1000 mPa ⁇ s or less, and more preferably 600 mPa or less.
  • the viscosity exceeds 1000 mPa ⁇ s, the compatibility in the current manufacturing equipment is remarkably lowered, and it becomes difficult to obtain a rubber composition.
  • the obtained cellulose nanofiber-containing rubber composition can be made into a vulcanized rubber by blending and kneading various compounding agents in the same manner as ordinary chloroprene rubber and heating.
  • the obtained vulcanized rubber shows excellent tensile stress with low strain, and 100% tensile stress is greatly improved with respect to the amount of cellulose nanofiber added.
  • the 100% tensile stress is improved by 1.5 MPa or more with respect to the addition of 1 part by weight of the cellulose nanofibers, the 100% tensile stress can be increased while suppressing the hardness.
  • the increase in 100% tensile stress (M100) of the vulcanized sheet obtained by vulcanizing the rubber composition is from the value of M100 of the vulcanized sheet containing cellulose nanofibers to the value of M100 of the vulcanized sheet not containing cellulose nanofibers. Is calculated by subtracting. Further, the amount of increase in M100 per part by weight of the cellulose nanofibers is obtained by dividing by the amount of the cellulose nanofibers contained.
  • ⁇ Creation of mercaptan-modified chloroprene rubber latex As a monomer mixture, 3.5 parts by weight of potassium loginate, 0.7 parts by weight of sodium salt of a condensate of naphthalene sulfonic acid and formaldehyde, 0.25 parts by weight of sodium hydroxide and n- It is mixed and stirred with an emulsified aqueous solution containing 0.2 parts by weight of dodecyl mercaptan and 90 parts by weight of water to emulsify, and a polymerization catalyst consisting of 0.04 parts by weight of potassium persulfate and 5 parts by weight of water is added to this at a constant rate by a pump. Polymerization was carried out.
  • the polymerization was carried out by adding a polymerization catalyst until the polymerization conversion rate reached 70%, to which 0.01 part by weight of t-butylcatechol, 0.02 part by weight of sodium dodecylbenzenesulfonate, 0.5 part by weight of chloroprene and 0 part by water. Polymerization was stopped by adding a polymerization terminator consisting of 5.5 parts by weight. Unreacted chloroprene was removed and recovered by steam stripping under reduced pressure to obtain a mercaptan-modified chloroprene rubber latex.
  • ⁇ Preparation of cellulose nanofiber-containing rubber composition A predetermined amount of an aqueous dispersion of cellulose nanofibers was added to chloroprene rubber latex and mixed with an autohomo mixer (manufactured by PRIMIX) at 2,000 rpm for 10 minutes to prepare a cellulose nanofiber dispersed rubber latex mixture. .. Then, the pH was adjusted to 6.5 with 15 wt% dilute acetic acid, and then the polymer was precipitated by freeze-coagulation, washed with water, and then dried with hot air.
  • Viscosity measurement> The viscosity of the cellulose nanofiber dispersion was measured with a Bismetron viscometer (manufactured by Shibaura Semtech Co., Ltd .: VD2).
  • ⁇ Measurement of cellulose nanofiber content> The cellulose nanofiber-containing rubber composition was dissolved in 200 times the amount of chloroform for 24 hours to remove the chloroprene rubber. The solution was filtered through a 100-mesh wire mesh and dried with hot air in an oven at 100 ° C. to obtain cellulose nanofibers. The weight was measured and the amount of cellulose nanofibers contained in the chloroprene rubber composition was calculated.
  • stearic acid manufactured by Nichiyu Co., Ltd .: beads stearic acid Tsubaki
  • anti-aging agent manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd .: Sunnock
  • plasticizer Nippon Sun Oil Co., Ltd.
  • Sansen 415 5 parts by weight of zinc oxide (Sakai Chemical Industry Co., Ltd .: 2 types), 1 part by weight of ethylene thiourea (Sanshin Chemical Industry Co., Ltd .: Sun Cellar 22
  • Example 1 As the cellulose nanofibers, Chuetsu Pulp Industry Co., Ltd .: Nanoforest S was used and mixed with the chloroprene rubber latex so that the cellulose nanofibers became 2.0 parts by weight with respect to 100 parts by weight of the solid-converted chloroprene rubber. A rubber latex dispersion containing cellulose nanofibers was obtained by stirring for 10 minutes by the above method. The viscosity of the dispersion was 540 mPa ⁇ s, there was no problem in handling, and a rubber composition was obtained by freeze-drying. Nanoforest S was an amphipathic cellulose nanofiber produced by mechanical defibration means, and the surface tension of 1 wt% of the aqueous dispersion of the cellulose nanofiber was 55 mN / m.
  • a vulcanized product of this rubber composition was prepared according to the above method, and the hardness and 100% tensile stress (M100) were measured.
  • the results are shown in Table 1. From Table 1, since the hardness is 73 and M100 is 7.3 MPa, the increase width of M100 is 3.8 MPa, and the content of cellulose nanofibers is 2.0 parts by weight, so that M100 increases per 1 part by weight of cellulose nanofibers. The width was 1.9 MPa / part by weight, and the value of M100 with respect to the hardness was high, which was a good result.
  • Example 2 A cellulose nanofiber-containing rubber latex dispersion was obtained in the same manner as in Example 1 except that the mixing amount of the cellulose nanofibers was 2.8 parts by weight with respect to 100 parts by weight of the solid-converted chloroprene rubber.
  • the viscosity of the dispersion was 870 mPa ⁇ s, there was no problem in handling, and a rubber composition was obtained by freeze-drying.
  • a vulcanized product was prepared from this rubber composition, and the hardness and M100 were measured. Similar to Example 1, the increase width of M100 per 1 part by weight of the cellulose nanofiber was 1.9 MPa / part by weight, and the value of M100 with respect to the hardness was high, which was a good result.
  • Example 3 A cellulose nanofiber-containing rubber latex dispersion was obtained in the same manner as in Example 1 except that the mixing amount of the cellulose nanofibers was 1.5 parts by weight with respect to 100 parts by weight of the solid-converted chloroprene rubber.
  • the viscosity of the dispersion was 340 mPa ⁇ s, there was no problem in handling, and a rubber composition was obtained by freeze-drying.
  • a vulcanized product was prepared from this rubber composition, and the hardness and M100 were measured. Similar to Example 1, the increase width of M100 per 1 part by weight of the cellulose nanofiber was 1.8 MPa / part by weight, and the value of M100 with respect to the hardness was high, which was a good result.
  • Comparative Example 1 A rubber composition and a vulcanized product were prepared in the same manner as in Example 1 except that the cellulose nanofibers were not mixed, and the hardness and M100 were measured. Both hardness and M100 were low.
  • Comparative Example 2 A cellulose nanofiber-containing rubber latex dispersion was obtained in the same manner as in Example 1 except that the mixing amount of the cellulose nanofibers was 0.9 parts by weight with respect to 100 parts by weight of the solid-converted chloroprene rubber.
  • the viscosity of the dispersion was 210 mPa ⁇ s, there was no problem in handling, and a rubber composition was obtained by freeze-drying.
  • a vulcanized product was prepared from this rubber composition, and the hardness and M100 were measured. The amount of increase in M100 per part by weight of cellulose nanofibers and the value of M100 with respect to hardness were both low.
  • Comparative Example 3 A rubber latex dispersion containing cellulose nanofibers was obtained in the same manner as in Example 1 except that the mixing amount of the cellulose nanofibers was 3.5 parts by weight with respect to 100 parts by weight of the solid-converted chloroprene rubber. The viscosity of the dispersion was 1210 mPa ⁇ s, and the handleability was poor, so that a rubber composition could not be obtained.
  • Comparative Example 4 A rubber latex solution containing cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that the cellulose nanofibers used were KY-100G manufactured by Daicel Finechem Co., Ltd. KY-100G is a hydrophilic cellulose nanofiber produced by mechanical defibration means, and the surface tension of 1 wt% of the aqueous dispersion of the cellulose nanofiber was 70 mN / m. The viscosity of the dispersion was 390 mPa ⁇ s, there was no problem in handling, and a rubber composition was obtained by freeze-drying. A vulcanized product was prepared from this rubber composition, and the hardness and M100 were measured. The amount of increase in M100 per part by weight of cellulose nanofibers and the value of M100 with respect to hardness were both low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

弾性と低損失性に優れるゴム組成物を提供する クロロプレンゴム100重量部に対し、セルロースナノファイバーを1.2~3.0重量部含むゴム組成物であって、前記ゴム組成物を加硫した加硫シートの100%引張応力(M100)の上昇幅がセルロースナノファイバーの添加量に対して、1.5MPa/重量部以上であることを特徴とする、ゴム組成物を用いる。 なお、M100の上昇幅は、セルロースナノファイバーを含む加硫シートのM100の値から、セルロースナノファイバーを含まない加硫シートのM100の値を差し引き、含まれるセルロースナノファイバーの量で除することにより算出される。

Description

ゴム組成物及びその製造方法
 本発明は、ゴム組成物及びその製造方法に関するものである
 クロロプレンゴムは、各種合成ゴムの中でも各物性のバランスが良好であるため幅広い用途に使用されている。末端の変性内容により、汎用のメルカプタン変性、動特性に優れる硫黄変性などがあり、後者はより力学物性に優れるが、近年の高性能化や使用環境の激化により、更なる高弾性化、耐熱性改善が要望されている。
 弾性の指標としては引張応力が挙げられ、通常カーボンブラックやシリカなどの補強材を配合することでこれらを向上することができるが、これらの粒状補強材は、その粒子径や比表面積により補強効果に限界がある。また、補強材の配合による補強では、加硫ゴムの硬さも同時に著しく上昇しゴム製品への加工性が低下するため、適切なゴムの硬さを維持するためには、補強効果に限界がある。
 一方で、繊維形状の補強材が提案されており、セルロースを配合したタイヤ等が提案されている(例えば、特許文献1)。しかし、疎水性のゴムに対し、親水性のセルロースは分散性が劣るため補強効果が低い。その対策として、ナノオーダーのセルロースと、それを分散するための分散剤や固定するためのシランカップリング剤を天然ゴムラテックスに配合したタイヤが提案されている(例えば、特許文献2、3)。しかし、これらの方法では分散剤等のゴムとセルロースを分散するための薬剤が別途必要であり、コストが高くなる。また、クロロプレンゴムへの検討はあまりされていないのが実情である。
 一方クロロプレン重合体はクロロプレンを乳化剤の存在下で乳化剤および開始剤を含有する水性乳濁液中で重合して得られることが知られている。一般にこの重合反応はカルボン酸のアルカリ金属塩の存在下、強アルカリ雰囲気下にて実施されるが、セルロースは強アルカリ下では加水分解してしまうため、強アルカリであるクロロプレンラテックスへの検討はあまりされていないのが実情である。
日本国特開2006-206864号公報 日本国特開2009-191197号公報 日本国特開2009-191198号公報
 本発明はこの問題点に鑑みてなされたものであり、その目的は、低歪で優れた引張応力を示すクロロプレンゴム組成物及びその製造方法を提供するものである。
 本発明者は、このような背景の下、上記課題を解決するため鋭意検討した結果、クロロプレンゴムとセルロースナノファイバーを含むゴム組成物を用いることで、低硬度でありながら低歪で優れた引張応力を示すことを見出した。即ち、本発明の各態様は、以下に示す[1]~[5]である。
[1]クロロプレンゴム100重量部に対し、セルロースナノファイバーを1.2~3.0重量部含むゴム組成物であって、前記ゴム組成物を加硫した加硫シートの100%引張応力(M100)の上昇幅がセルロースナノファイバーの添加量に対して、1.5MPa/重量部以上であることを特徴とするゴム組成物。
 なお、M100の上昇幅は、セルロースナノファイバーを含む加硫シートのM100の値から、セルロースナノファイバーを含まない加硫シートのM100の値を差し引き、含まれるセルロースナノファイバーの量で除することにより算出される。
[2]セルロースナノファイバーの1wt%水溶液の表面張力が60mN/m以下であることを特徴とする上記[1]に記載のゴム組成物。
[3]セルロースナノファイバーがカルボン酸塩およびカルボン酸を含まず、かつ機械的処理のみにより解繊されたことを特徴とする上記[1]又は[2]に記載のゴム組成物。
[4]クロロプレンゴムラテックスに、セルロースナノファイバーの水分散液を混合しセルロースナノファイバー分散ゴムラテックス混合液とした後、クロロプレンゴムを凍結凝固し、更に水洗した後、乾燥することを特徴とする上記[1]~[3]のいずれかに記載のゴム組成物の製造方法。
[5]前記セルロースナノファイバー分散ゴムラテックス混合液の粘度が1000mPa・s以下であることを特徴とする上記[4]に記載のゴム組成物の製造方法。
 本発明のゴム組成物を用いることで、低歪で優れた引張応力を示す加硫ゴムを得ることができる。
 以下、本発明について詳細に説明する。
 本発明の一態様であるゴム組成物は、クロロプレンゴム100重量部に対し、セルロースナノファイバーを1.2~3.0重量部含むものであって、ゴム組成物を加硫した加硫シートの100%引張応力(M100)の上昇幅がセルロースナノファイバーの添加量に対して、1.5MPa/重量部以上である。
 クロロプレンゴムは、クロロプレン、又はクロロプレン及びこれと共重合可能な単量体を乳化重合することにより得ることができる。
 クロロプレンと共重合可能な単量体としては、例えば、2,3-ジクロロ-1,3-ブタジエン、2-シアノ-1,3-ブタジエン、1-クロロ-1,3-ブタジエン、1,3-ブタジエン、スチレン、アクリロニトリル、メチルメタクリレート、メタクリル酸、アクリル酸等が挙げられ、このうち1種類以上を併用して用いることが可能であるが、必ずしも必要ではなく、要求物性に応じて適時使用する。共重合可能な単量体の量は特に限定するものではないが、クロロプレンゴムの特性を損なわない程度としてクロロプレンゴム100重量部に対し一般的に30重量部以下が用いられる。
 クロロプレンゴムは、カルボン酸及びカルボン酸のアルカリ金属塩のいずれかまたは両方を3~7重量%含むことが好ましい。この範囲であれば、クロロプレン重合時の乳化安定性に優れ、また、ラテックスから凍結乾燥にてゴムを取り出す際に凍結不良などの不具合が生じない。
 カルボン酸またはカルボン酸のアルカリ金属塩としては、ロジン酸またはそのアルカリ金属塩、脂肪酸またはそのアルカリ金属塩、ポリカルボン酸またはそのアルカリ金属塩等があげられる。アルカリ金属塩としては、例えば、リチウム、ナトリウム、カリウム、セシウム等があげられる。これらは、1種類でも良く、2種類以上を含んでいても良いが、重合安定性、乾燥時の凝集性、及びゴムの性能の観点からロジン酸のアルカリ金属塩、更にはロジン酸のカリウム塩を含むことが好ましい。
 クロロプレンゴムの乳化重合では、例えば、上記の単量体を乳化剤、水、重合開始剤、連鎖移動剤、その他安定剤等を混合し、所定温度にて重合を行い、所定の重合転化率で重合停止剤を添加し重合を停止する方法があげられる。
 乳化剤としては、上記のカルボン酸のアルカリ金属塩が使用できる。
 乳化剤の量は特に限定するものではないが、重合後に得られるクロロプレンラテックスの安定性を考慮するとクロロプレンゴム100重量部に対し、3~7重量部が好ましい。
 重合開始剤としては、公知のフリーラジカル性物質、例えば、過硫酸カリウム、過硫酸アンモニウム等の過酸化物、過酸化水素、ターシャリーブチルヒドロパーオキサイド等の無機又は有機過酸化物等を用いることができる。また、これらは単独又は還元性物質、例えば、チオ硫酸塩、チオ亜硫酸塩、ハイドロサルファイト、有機アミン等との併用レドックス系で用いても良い。
 重合温度は特に限定するものではないが、10~50℃の範囲が好ましい。
 本発明の一態様であるゴム組成物の製造方法では、重合終了時期は特に限定するものでは無いが、生産性の面から、単量体の転化率が60%以上95%まで重合を行うことが一般的である。60%以下では生産量が少なくラテックスの固形分が低く、水の乾燥コストが高くなり、95%以上では重合時間が非常に長くなる。
 重合停止剤としては、通常用いられる停止剤であれば特に限定するものでなく、例えば、フェノチアジン、2,6-t-ブチル-4-メチルフェノール、ヒドロキシルアミン等が使用できる。
 原料ゴムのムーニー粘度は、本発明の高弾性応力を満足させるものであれば特に限定はしないが、混練作業性を考慮すると20~80が好ましい。ムーニー粘度の測定は、角速度2回転/分で温度100℃において予熱1分後に測定を開始し、測定開始4分後の値を読みとる。
 セルロースナノファイバーは、木材に含まれるセルロースの繊維を平均繊維径数ナノ~数十ナノレベルまで解繊したものである。セルロースの解繊処理は主に機械的処理によるものと、化学処理により各種官能基を付与し、機械処理を併用することでセルロースナノファイバー同士の凝集を抑制し、より細いシングルナノレベルまで実施するものがある。
 本発明では、セルロースナノファイバーの1wt%水溶液の表面張力が60mN/m以下であるセルロースナノファイバーを用いることが好ましい。このようなセルロースナノファイバーとしては、化学処理を実施せず機械処理のみにより解繊し、両親媒性を有するセルロースナノファイバーが挙げられる。セルロースナノファイバーを化学処理せず、カルボン酸塩およびカルボン酸を有さないことで、ゴム中でのセルロースナノファイバーの分散状態が良好となり、得られる加硫ゴムの引張応力が向上し、ハンドリング性も良好となる。そのため、セルロースにはカルボン酸塩及びカルボン酸を含まないものを用いることが好ましい。両親媒性とは、セルロースナノファイバーが水との親和性が大きい親水部と小さい疎水部の両方を持ち合せていることで、特許第5419120号公報などに記載されているように、水懸濁試料を高速で対向衝突させることにより得ることが可能である。両親媒性を有することで、疎水性であるゴムとセルロースの親和性が高くなり、より少ない混合量で引張応力の大きな向上効果が得られる。一般的に純水の表面張力は約72mN/mであるが、疎水性が大きくなるほど表面張力は小さくなる。セルロースナノファイバーの水溶液は1wt%濃度で60mN/m以下であれば、両親媒性を有しゴムとの親和性が高くなる。
 本発明の一態様であるゴム組成物において、セルロースナノファイバーの含有量は、クロロプレンゴム100重量部に対して1.2~3.0重量部であり、さらには1.5~2.5重量部が好ましい。セルロースナノファイバー含有量を1.2重量部以上とすることで硬度に対して高い引張り応力が得られる。さらに、セルロースナノファイバー含有量が3.0重量部以下とすることでセルロースナノファイバー混合時のハンドリング性が良好となる。
 ゴム組成物は、クロロプレンゴムのラテックスにセルロースナノファイバーの水分散体を混合し、セルロースナノファイバー分散ゴムラテックス混合液を作製し、そこから水を除去することにより得ることができる。
 クロロプレンゴムラテックスは、クロロプレンゴムが、カルボン酸のアルカリ金属塩で乳化・分散されたもので、その製造方法は特に制限されるものではなく、クロロプレン単量体、又はクロロプレン単量体と共重合可能な単量体を乳化重合した反応液や、クロロプレンゴムを溶剤に溶解後、カルボン酸のアルカリ金属塩で乳化・分散した液を用いることができる。
 セルロースナノファイバーの水分散体は、木材やパルプ等を機械処理にて所定の繊維径・繊維長に解繊したものである。
 上記ゴム組成物は、クロロプレンゴムラテックスに、セルロースナノファイバーの水分散液を混合しセルロースナノファイバー分散ゴムラテックス混合液とした後、クロロプレンゴムから水を除去し、更に水洗した後、乾燥することにより製造することができる。
 クロロプレンゴムラテックスとセルロースナノファイバーの水分散体を混合する方法としては、特に制限はなく、プロペラ型の攪拌装置や、ホモミキサー、高圧ホモジナイザーなどを用い、クロロプレンラテックスとセルロースナノファイバーの水分散体が外観上均一(塊等が無いこと)になるまで混合とすることで得ることができる。
 セルロースナノファイバー分散ゴムラテックス混合液からの水の除去方法(乾燥方法)としては、加熱乾燥や、酸や塩による凝集および凍結乾燥があるが、乳化剤や凝固液および水分がゴムの内部に残存し、乾燥が困難となるため、凍結によりゴムを析出(凍結凝固)させ、余分な乳化剤等を水洗除去してから熱風乾燥する凍結乾燥法が最も効率的で乾燥も容易である。更には、ゴムが析出しやすくなるよう、セルロースナノファイバー分散ゴムラテックス混合液のpHを10以下として凍結乾燥することが更に好ましい。
 セルロースナノファイバー分散ゴムラテックス混合液から凍結凝固させ乾燥する方法において、セルロースナノファイバー分散ゴムラテックス混合液の粘度は1000mPa・s以下であることが好ましく、更には600mPa以下が好ましい。粘度が1000mPa・sを超える場合、現行の製造設備における適合性が著しく低下し、ゴム組成物を得ることが困難となる。
 得られたセルロースナノファイバー含有ゴム組成物は、通常のクロロプレンゴム同様に各種配合剤を配合混練し、加熱により加硫ゴムとすることができる。
 得られた加硫ゴムは低歪で優れた引張応力を示し、セルロースナノファイバーの添加量に対して100%引張応力が大きく向上する。特にセルロースナノファイバー1重量部の添加に対して100%引張り応力が1.5MPa以上向上すれば、硬度を抑えたまま100%引張応力を高めることができる。
 ゴム組成物を加硫した加硫シートの100%引張応力(M100)の上昇幅は、セルロースナノファイバーを含む加硫シートのM100の値から、セルロースナノファイバーを含まない加硫シートのM100の値を差し引いて算出される。さらに含まれるセルロースナノファイバーの量で除して、セルロースナノファイバー1重量部あたりのM100上昇幅を求める。
 以下、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
 <メルカプタン変性クロロプレンゴムラテックスの作成>
 単量体混合物としてクロロプレン100重量部に対してロジン酸カリウム3.5重量部、ナフタレンスルホン酸とホルムアルデヒドとの縮合物のナトリウム塩0.7重量部、水酸化ナトリウム0.25重量部及びn-ドデシルメルカプタン0.2重量部、水90重量部を含む乳化水溶液と混合攪拌し乳化させ、これに過硫酸カリウム0.04重量部、水5重量部からなる重合触媒をポンプにより一定速度で添加し重合を行なった。重合は重合転化率70%になるまで重合触媒を添加して行ない、ここにt-ブチルカテコール0.01重量部、ドデシルベンゼンスルホン酸ナトリウム0.02重量部、クロロプレン0.5重量部、水0.5重量部からなる重合停止剤を添加して重合を停止させた。減圧下でスチームストリッピングにより未反応のクロロプレンを除去回収し、メルカプタン変性クロロプレンゴムラテックスを得た。
 <セルロースナノファイバー含有ゴム組成物の作成>
 クロロプレンゴムラテックスに、セルロースナノファイバーの水分散体を所定量添加し、オートホモミキサー(プライミックス社製:PRIMIX)にて2,000rpmで10分間混合しセルロースナノファイバー分散ゴムラテックス混合液を作成した。その後、15重量%希酢酸を用いてpHを6.5に調整し、ついで凍結凝固によりポリマーを析出させ、水洗した後、熱風乾燥させた。
 <表面張力測定>
 セルロースナノファイバー水分散体の表面張力は、表面張力計(協和界面科学(株)社製:DY-300)にて測定した。
 <粘度測定>
 セルロースナノファイバー分散液の粘度は、ビスメトロン粘度計(芝浦セムテック(株)社製:VD2)にて測定した。
 <セルロースナノファイバー含有量の測定>
 セルロースナノファイバー含有ゴム組成物を200倍量のクロロホルムに24時間溶解させ、クロロプレンゴムを除去した。溶解液を100メッシュの金網でろ過して、100℃のオーブンで熱風乾燥させセルロースナノファイバーを得た。重量を測定しクロロプレンゴム組成物に含まれるセルロースナノファイバーの量を算出した。
 <ゴムコンパウンドの作製>
 セルロースナノファイバー含有クロロプレンゴム組成物のクロロプレンゴム成分100重量部に対し、カーボンブラック(東海カーボン(株)製:シーストSO)40重量部、酸化マグネシウム(協和化学工業(株)製:キョーワマグ150)4重量部、ステアリン酸(日油(株)製:ビーズステアリン酸つばき)0.5重量部、老化防止剤(大内新興化学工業(株)製:サンノック)1重量部、可塑剤(日本サン石油(株)製:サンセン415)15重量部、酸化亜鉛(堺化学工業(株) :2種)5重量部、エチレンチオウレア(三新化学工業(株)製:サンセラー22-C)1重量部をオープンロール混練機にて添加し、セルロースナノファイバー含有クロロプレンゴムコンパウンドを得た。
<加硫物の作成>
 得られたゴムコンパウンドを160℃で15分プレス加硫し、加硫シートを作成した。
 <加硫物の硬度測定>
 得られた加硫シートの硬さをJIS K6253(2012)に従い、評価した。デュロメータにはタイプAを選択した。
 <加硫物の力学物性測定>
 得られた加硫シートの100%引張応力(M100)をJIS-K-6251(2012年度版)に従い、引張速度500mm/分、23℃の条件にて評価した。
 実施例1
 セルロースナノファイバーとして、中越パルプ工業(株)社製:ナノフォレストSを用いて、クロロプレンゴムラテックスにセルロースナノファイバーが固形換算したクロロプレンゴム100重量部に対し2.0重量部となるよう混合し、10分間上記の方法で撹拌してセルロースナノファイバー含有ゴムラテックス分散液を得た。分散液の粘度は540mPa・sであり、ハンドリングに問題はなく、凍結乾燥によりゴム組成物を得た。ナノフォレストSは、機械的解繊手段によって製造された両親媒性のセルロースナノファイバーであり、セルロースナノファイバーの水分散体の1wt%における表面張力は55mN/mであった。
 このゴム組成物を上記方法に従って加硫物を作製し、硬度および100%引張応力(M100)の測定を実施した。結果を表1に示す。表1から、硬度は73、M100は7.3MPaのためM100の上昇幅は3.8MPaで、セルロースナノファイバーの含有量は2.0重量部であるからセルロースナノファイバー1重量部あたりのM100上昇幅は1.9MPa/重量部であり、硬度に対するM100の値が高く良好な結果であった。
 実施例2
 セルロースナノファイバーの混合量を、固形換算したクロロプレンゴム100重量部に対し2.8重量部となる量にした以外は実施例1と同様にしてセルロースナノファイバー含有ゴムラテックス分散液を得た。分散液の粘度は870mPa・sであり、ハンドリングに問題はなく、凍結乾燥によりゴム組成物を得た。このゴム組成物から加硫物を作製し、硬度およびM100の測定を実施した。実施例1と同様にセルロースナノファイバー1重量部あたりのM100上昇幅は1.9MPa/重量部であり、硬度に対するM100の値が高く良好な結果であった。
 実施例3
 セルロースナノファイバーの混合量を、固形換算したクロロプレンゴム100重量部に対し1.5重量部となる量にした以外は実施例1と同様にしてセルロースナノファイバー含有ゴムラテックス分散液を得た。分散液の粘度は340mPa・sであり、ハンドリングに問題はなく、凍結乾燥によりゴム組成物を得た。このゴム組成物から加硫物を作製し、硬度およびM100の測定を実施した。実施例1と同様にセルロースナノファイバー1重量部あたりのM100上昇幅は1.8MPa/重量部であり、硬度に対するM100の値が高く良好な結果であった。
 比較例1
 セルロースナノファイバーを混合しなかった以外は実施例1と同様にしてゴム組成物および加硫物を作製し、硬度およびM100の測定を実施した。硬度およびM100どちらも低い結果であった。
 比較例2
 セルロースナノファイバーの混合量を、固形換算したクロロプレンゴム100重量部に対し0.9重量部となる量にした以外は実施例1と同様にしてセルロースナノファイバー含有ゴムラテックス分散液を得た。分散液の粘度は210mPa・sであり、ハンドリングに問題はなく、凍結乾燥によりゴム組成物を得た。このゴム組成物から加硫物を作製し、硬度およびM100の測定を実施した。セルロースナノファイバー1重量部あたりのM100上昇幅、硬度に対するM100の値はともに低かった。
 比較例3
 セルロースナノファイバーの混合量を、固形換算したクロロプレンゴム100重量部に対し3.5重量部となる量にした以外は実施例1と同様にしてセルロースナノファイバー含有ゴムラテックス分散液を得たが、分散液の粘度は1210mPa・sであり、ハンドリング性が劣るためゴム組成物を得ることができなかった。
 比較例4
 使用するセルロースナノファイバーをダイセルファインケム(株)社製:KY-100Gにした以外は実施例1と同様にしてセルロースナノファイバー分散含有ゴムラテックス液を得た。KY-100Gは機械的解繊手段によって製造された親水性のセルロースナノファイバーであり、セルロースナノファイバーの水分散体の1wt%における表面張力は70mN/mであった。分散液の粘度は390mPa・sであり、ハンドリングに問題はなく、凍結乾燥によりゴム組成物を得た。このゴム組成物から加硫物を作製し、硬度およびM100の測定を実施した。セルロースナノファイバー1重量部あたりのM100上昇幅、硬度に対するM100の値はともに低かった。
Figure JPOXMLDOC01-appb-T000001
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく、様々な変更や修正を加えることができることは当業者にとって明らかである。
 なお、2019年11月19日に出願された日本特許出願2019-209097号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (5)

  1. クロロプレンゴム100重量部に対し、セルロースナノファイバーを1.2~3.0重量部含むゴム組成物であって、前記ゴム組成物を加硫した加硫シートの100%引張応力(M100)の上昇幅がセルロースナノファイバーの添加量に対して、1.5MPa/重量部以上であることを特徴とする、ゴム組成物。
     なお、M100の上昇幅は、セルロースナノファイバーを含む加硫シートのM100の値から、セルロースナノファイバーを含まない加硫シートのM100の値を差し引き、含まれるセルロースナノファイバーの量で除することにより算出される。
  2. セルロースナノファイバーが1wt%水溶液の表面張力が60mN/m以下であることを特徴とする請求項1に記載のゴム組成物。
  3. セルロースナノファイバーがカルボン酸塩およびカルボン酸を含まず、かつ機械的処理のみにより解繊されたことを特徴とする請求項1又は2に記載のゴム組成物。
  4. クロロプレンゴムラテックスに、セルロースナノファイバーの水分散液を混合しセルロースナノファイバー分散ゴムラテックス混合液とした後、クロロプレンゴムを凍結凝固し、更に水洗した後、乾燥することを特徴とする請求項1~3のいずれかに記載のゴム組成物の製造方法。
  5. 前記セルロースナノファイバー分散ゴムラテックス混合液の粘度が1000mPa・s以下であることを特徴とする請求項4に記載のゴム組成物の製造方法。
PCT/JP2020/042284 2019-11-19 2020-11-12 ゴム組成物及びその製造方法 WO2021100608A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/773,705 US20220380581A1 (en) 2019-11-19 2020-11-12 Rubber composition and production method therefor
CN202080080318.9A CN114729161B (zh) 2019-11-19 2020-11-12 橡胶组合物及其制造方法
DE112020005670.8T DE112020005670T5 (de) 2019-11-19 2020-11-12 Kautschukzusammensetzung und Verfahren zur Herstellung derselben

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-209097 2019-11-19
JP2019209097 2019-11-19

Publications (1)

Publication Number Publication Date
WO2021100608A1 true WO2021100608A1 (ja) 2021-05-27

Family

ID=75964283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042284 WO2021100608A1 (ja) 2019-11-19 2020-11-12 ゴム組成物及びその製造方法

Country Status (5)

Country Link
US (1) US20220380581A1 (ja)
JP (1) JP2021080449A (ja)
CN (1) CN114729161B (ja)
DE (1) DE112020005670T5 (ja)
WO (1) WO2021100608A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056055A1 (ja) * 2016-09-26 2018-03-29 バンドー化学株式会社 ゴム組成物及びそれを用いた伝動ベルト
WO2018070387A1 (ja) * 2016-10-13 2018-04-19 日本製紙株式会社 ゴム組成物の製造方法
JP2019104896A (ja) * 2017-12-08 2019-06-27 東ソー株式会社 ゴム組成物及びその製造方法
JP2020111626A (ja) * 2019-01-08 2020-07-27 東ソー株式会社 クロロプレンラテックス組成物及び塗布方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236892A (en) 1975-09-18 1977-03-22 Kansai Paint Co Ltd Antiidecaying enamel source treatment composition
JP3998692B2 (ja) 2004-12-27 2007-10-31 横浜ゴム株式会社 ゴム/短繊維マスターバッチ及びその製造方法並びにそれらのマスターバッチを用いた空気入りタイヤ
JP5178228B2 (ja) 2008-02-15 2013-04-10 株式会社ブリヂストン ゴム組成物及びその製造方法
JP5465389B2 (ja) 2008-02-15 2014-04-09 株式会社ブリヂストン ゴム組成物及びその製造方法
JP7319061B2 (ja) * 2018-03-30 2023-08-01 豊田合成株式会社 ゴム組成物、ウェザーストリップ、及びホース
JP6458323B1 (ja) 2018-07-13 2019-01-30 株式会社北電子 遊技機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056055A1 (ja) * 2016-09-26 2018-03-29 バンドー化学株式会社 ゴム組成物及びそれを用いた伝動ベルト
WO2018070387A1 (ja) * 2016-10-13 2018-04-19 日本製紙株式会社 ゴム組成物の製造方法
JP2019104896A (ja) * 2017-12-08 2019-06-27 東ソー株式会社 ゴム組成物及びその製造方法
JP2020111626A (ja) * 2019-01-08 2020-07-27 東ソー株式会社 クロロプレンラテックス組成物及び塗布方法

Also Published As

Publication number Publication date
US20220380581A1 (en) 2022-12-01
CN114729161A (zh) 2022-07-08
CN114729161B (zh) 2024-05-10
JP2021080449A (ja) 2021-05-27
DE112020005670T5 (de) 2022-09-01

Similar Documents

Publication Publication Date Title
JP5489521B2 (ja) ゴム組成物及びその製造方法
JP2009263417A (ja) ゴム組成物及びその製造方法
JP7192381B2 (ja) ゴム組成物及びその製造方法
JP5481225B2 (ja) 接着剤用共重合体ラテックス
JP2021059695A (ja) 表面処理ナノセルロースマスターバッチ
JP5064295B2 (ja) 硫黄変性クロロプレン重合体の製造方法
JPH11335490A (ja) 水性エマルションおよびその製造方法
JPH11116622A (ja) 硫黄変性クロロプレン重合体の製造方法
JP7470894B2 (ja) ゴム発泡体、その製造方法及びその用途
WO2021100608A1 (ja) ゴム組成物及びその製造方法
JP2018111770A (ja) ゲル状体及びゲル状体の製造方法並びに複合材料及び複合材料の製造方法
JP2006143826A (ja) クロロプレンゴム及びその製造方法、並びにクロロプレンゴム組成物
JP2023124014A (ja) ゴム組成物及びその製造方法
JP5549856B2 (ja) 高弾性硫黄変性クロロプレンゴムの製造方法
JP4665273B2 (ja) 高弾性硫黄変性クロロプレンゴム
JP2020200907A (ja) 伝動ベルト
JP2022067609A (ja) ゴム組成物及び加硫ゴム
WO2014077236A1 (ja) キサントゲン変性クロロプレンゴム及びその製造方法
JP7304752B2 (ja) 接着剤用共重合体ラテックスおよび接着剤組成物
JP2023023570A (ja) ゴム組成物及び加硫ゴム
JP2022067231A (ja) ゴム組成物及び加硫ゴム
JP3858365B2 (ja) 耐動的疲労性に優れたクロロプレンゴム組成物用クロロプレンゴム、クロロプレンゴム組成物及びそれを用いてなる自動車用ブーツ
JPWO2020137297A1 (ja) クロロプレン重合体ラテックス及びその製造方法
JP5681169B2 (ja) 接着剤用共重合体ラテックス
JP7235009B2 (ja) アクリルゴムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889867

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20889867

Country of ref document: EP

Kind code of ref document: A1