WO2021097663A1 - 一种纳米胶囊化二元复合相变材料 - Google Patents

一种纳米胶囊化二元复合相变材料 Download PDF

Info

Publication number
WO2021097663A1
WO2021097663A1 PCT/CN2019/119430 CN2019119430W WO2021097663A1 WO 2021097663 A1 WO2021097663 A1 WO 2021097663A1 CN 2019119430 W CN2019119430 W CN 2019119430W WO 2021097663 A1 WO2021097663 A1 WO 2021097663A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
change material
nano
binary composite
graphene oxide
Prior art date
Application number
PCT/CN2019/119430
Other languages
English (en)
French (fr)
Inventor
李玉光
Original Assignee
南京先进生物材料与过程装备研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京先进生物材料与过程装备研究院有限公司 filed Critical 南京先进生物材料与过程装备研究院有限公司
Priority to PCT/CN2019/119430 priority Critical patent/WO2021097663A1/zh
Publication of WO2021097663A1 publication Critical patent/WO2021097663A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa

Definitions

  • the invention relates to the technical field of composite materials, in particular to a nano-encapsulated binary composite phase change material.
  • Nano-encapsulated phase change materials are solid particles that are stable under normal conditions, which are physically or chemically coated with synthetic polymer materials or inorganic compounds using capsule technology. Such solid particles can be at a very narrow temperature. Absorb or release considerable latent heat of phase change within the range, and has a more significant heat storage and temperature adjustment function. By selecting an appropriate capsule material, it can effectively improve the leakage, phase separation, and volume expansion of the phase change energy storage material during the solid-liquid phase transition. , Corrosion, poor thermal stability and other issues.
  • the existing methods for preparing microencapsulated phase change energy storage materials can be divided into interfacial polymerization method, in-situ polymerization method and spray drying method.
  • the interfacial polymerization method is to emulsify or disperse the phase change energy storage material in the continuous phase in which the shell material monomer is dissolved, and then disperse the water-soluble monomer aqueous solution or the organic solvent containing the oil-soluble reactant into the organic phase or the water phase. After adding the emulsifier, the two monomers will move from the dispersed phase and the continuous phase to the interface, and polymerize quickly on the interface to obtain microcapsules.
  • US patent US.6270836 introduces a microcapsule synthesized by interfacial polymerization method with paraffin compound as the core and polyurea-polyurethane as the shell, the product is uniformly distributed, and the phase transition enthalpy is slightly smaller than that of the paraffin compound.
  • the particle size of the microcapsule product prepared by the interfacial polymerization method is affected by temperature, stirring speed, reaction vessel shape, emulsifier type and concentration, etc., and the process conditions are complicated and difficult to control.
  • the in-situ polymerization method is a method in which the monomers and initiators forming the capsule wall are all located inside or outside the emulsified droplets of the phase change energy storage material, and the polymerization reaction occurs on the surface of the droplets to obtain microcapsules.
  • US patent US.0076826 discloses a microcapsule prepared by in-situ polymerization method with paraffin compound as the core and melamine-formaldehyde resin as the shell. Although the microcapsule phase change energy storage material has certain anti-leakage ability, In the process of production and use, the harmful gas formaldehyde will still be released, causing harm to health and production equipment.
  • the capsule materials used in this method are all thermosetting resins, which are easy to be squeezed and partially broken during the processing process, and eventually reach failure.
  • the spray drying method is to pass the mixture of the core material and the shell material into a heating chamber or a cooling chamber, quickly remove the solvent and solidify to obtain microcapsules.
  • the core material of the existing nano-encapsulated binary composite phase change material has disadvantages such as dispersion performance, unstable structure, low latent heat of phase change, and so on. Therefore, it is necessary to provide a nano-encapsulated binary composite phase change material.
  • nano-encapsulated binary composite phase change material is provided.
  • the present invention is realized through the following schemes:
  • the phase change material includes a core material and a capsule wall covering the core material.
  • the core material includes a solvent and reduced graphene oxide polydimethylsiloxane modified phase change material;
  • the phase change material is prepared by the following steps:
  • the first step, preparation of core material heating 8-20 parts by mass of solvent at 70°C, adding 1-2 parts by mass of reduced graphene oxide polydimethylsiloxane modified phase change material into the solvent, ultrasonic Keep for 0.5-2 hours after auxiliary dispersion;
  • the second step is emulsification; 0.3-1 part of emulsifier is added to the solution prepared in the first step, and the pH value is adjusted to 4 and then dispersed under the assistance of ultrasound;
  • the third step, heat preservation reaction add 10-40 parts by mass of the capsule wall material, heat up to 90°C, stir and react for 2 hours, then add 1-5 parts by mass of urea, filter and wash after cooling to obtain a binary composite phase change Material emulsion
  • the fourth step is to prepare the powdered nano-encapsulated binary composite phase change material: add dropwise to the binary composite phase change material emulsion obtained in the third step to break the emulsion, and then centrifuge to obtain the product, and use petroleum ether to clean the product After many times of drying, the powdered nano-encapsulated binary composite phase change material is obtained.
  • the capsule wall is one or several of polyurea, melamine-formaldehyde resin, isocyanate, and urea-formaldehyde resin.
  • the solvent is one or several of dodecanol, myristyl alcohol, cetyl alcohol, stearyl alcohol, lauric acid, and stearic acid.
  • the preparation method of the reduced graphene oxide polydimethylsiloxane modified phase change material is as follows:
  • step B Mix the reduced graphene oxide prepared in step A with distilled water uniformly, then add N,N dimethylformamide, then sodium carbonate, stir evenly, add calcium chloride dropwise, stir at room temperature for 1 hour and then stand still. Take precipitation for later use;
  • step C Dissolve the cellulose ester film in N,N dimethylformamide, add it to step B to prepare the precipitate, stir at 60°C for 1 hour, filter the precipitate and add hydrochloric acid solution to remove calcium carbonate, and then filter with suction after it is neutral , Dry, and burn in a muffle furnace at 600°C for 1 hour under the protection of N 2 to prepare porous reduced graphene oxide.
  • the porous reduced graphene oxide and polydimethylsiloxane are in a mass ratio of 2:1 at 250°C.
  • step B the mass ratio of the reduced graphene oxide: distilled water: N, N dimethylformamide is 2:200:1800, and the mass ratio of the reduced graphene oxide: sodium carbonate: calcium chloride is 2 :16:15.
  • step C the mass ratio of the N, N dimethylformamide: cellulose ester film is 1:100.
  • the frequency of the ultrasonic wave is 15-20 kHz, and the sound energy density of the ultrasonic wave is 0.04-0.06 W/cm 2 .
  • the emulsifier is one of styrene-maleic anhydride copolymer, polyvinyl alcohol, and sodium lauryl sulfate.
  • the emulsion breaking is a sodium chloride ethanol solution, wherein the mass percentage concentration of sodium chloride is 8%, and the volume percentage concentration of ethanol is 5%.
  • the nano-encapsulated binary composite phase change material of the present invention has superior thermal conductivity, stable structure, can play a role for a long time, has good compatibility with building materials, and does not affect the relevant mechanical properties of the building materials.
  • the phase change material includes a core material and a capsule wall covering the core material.
  • the core material includes a solvent and reduced graphene oxide polydimethylsiloxane modified phase change material;
  • the phase change material is prepared by the following steps:
  • the first step, preparation of core material heating 8-20 parts by mass of solvent at 70°C, adding 1-2 parts by mass of reduced graphene oxide polydimethylsiloxane modified phase change material into the solvent, ultrasonic Keep for 0.5-2 hours after auxiliary dispersion;
  • the second step is emulsification; 0.3-1 part of emulsifier is added to the solution prepared in the first step, and the pH value is adjusted to 4 and then dispersed under the assistance of ultrasound;
  • the third step, heat preservation reaction add 10-40 parts by mass of the capsule wall material, heat up to 90°C, stir and react for 2 hours, then add 1-5 parts by mass of urea, filter and wash after cooling to obtain a binary composite phase change Material emulsion
  • the fourth step is to prepare a powdered nano-encapsulated binary composite phase change material: add dropwise to the binary composite phase change material emulsion obtained in the third step to break the emulsion, and then centrifuge to obtain the product, and use petroleum ether to clean the product After many times of drying, the powdered nano-encapsulated binary composite phase change material is obtained.
  • the capsule wall is one or several of polyurea, melamine-formaldehyde resin, isocyanate, and urea-formaldehyde resin.
  • the solvent is one or several of dodecanol, myristyl alcohol, cetyl alcohol, stearyl alcohol, lauric acid, and stearic acid.
  • the preparation method of the reduced graphene oxide polydimethylsiloxane modified phase change material is as follows:
  • step B Mix the reduced graphene oxide prepared in step A with distilled water uniformly, then add N,N dimethylformamide, then sodium carbonate, stir evenly, add calcium chloride dropwise, stir at room temperature for 1 hour and then stand still. Take precipitation for later use;
  • step C Dissolve the cellulose ester film in N,N dimethylformamide, add it to step B to prepare the precipitate, stir at 60°C for 1 hour, filter the precipitate and add hydrochloric acid solution to remove calcium carbonate, and then filter with suction when it is neutral , Dry, and burn in a muffle furnace at 600°C for 1 hour under the protection of N 2 to prepare porous reduced graphene oxide.
  • the porous reduced graphene oxide and polydimethylsiloxane are in a mass ratio of 2:1 at 250°C.
  • the graphene sheet layer of the reduced graphene oxide polydimethylsiloxane modified phase change material completely wraps the calcium carbonate, and the added cellulose ester film can completely retain the structure after the reaction.
  • the calcium carbonate is removed by acidification.
  • the cellulose ester film is removed by calcination to form a porous structure of reduced graphene oxide polyene.
  • the hydrophobicity of the porous reduced graphene oxide polyene modified by polydimethylsiloxane is obviously increased. This is due to polydimethylsiloxane.
  • some of the Si-O bonds are broken and re-crosslinked to form a coating on the surface of the graphene, which reduces the surface energy of the porous reduced graphene oxide poly.
  • step B the mass ratio of the reduced graphene oxide: distilled water: N, N dimethylformamide is 2:200:1800, and the mass ratio of the reduced graphene oxide: sodium carbonate: calcium chloride is 2 :16:15.
  • step C the mass ratio of the N, N dimethylformamide: cellulose ester film is 1:100.
  • the frequency of the ultrasonic wave is 15-20 kHz, and the sound energy density of the ultrasonic wave is 0.04-0.06 W/cm 2 .
  • the emulsifier is one of styrene-maleic anhydride copolymer, polyvinyl alcohol, and sodium lauryl sulfate.
  • the emulsion breaking is a sodium chloride ethanol solution, wherein the mass percentage concentration of sodium chloride is 8%, and the volume percentage concentration of ethanol is 5%.
  • the phase change material includes a core material and a capsule wall covering the core material.
  • the core material includes a solvent and reduced graphene oxide polydimethylsiloxane modified phase change material;
  • the phase change material is prepared by the following steps:
  • the first step, the preparation of the core material 20 parts by mass of the solvent is heated at 70°C, 1.5 parts by mass of the reduced graphene oxide polydimethylsiloxane modified phase change material is added to the solvent, and it is maintained after ultrasonic assisted dispersion. 0.5 hours;
  • the second step emulsification; add 1 part by mass of emulsifier to the solution prepared in the first step, and adjust the pH to 4 and then perform dispersion with the aid of ultrasound;
  • the third step heat preservation reaction: adding 25 parts by mass of the capsule wall material, heating to 90°C, stirring and reacting for 2 hours, then adding 1 part by mass of urea, filtering and washing after cooling to obtain a binary composite phase change material emulsion;
  • the fourth step is to prepare a powdered nano-encapsulated binary composite phase change material: add dropwise to the binary composite phase change material emulsion obtained in the third step to break the emulsion, and then centrifuge to obtain the product, and use petroleum ether to clean the product After many times of drying, the powdered nano-encapsulated binary composite phase change material is obtained.
  • the phase change material includes a core material and a capsule wall covering the core material.
  • the core material includes a solvent and reduced graphene oxide polydimethylsiloxane modified phase change material;
  • the phase change material is prepared by the following steps:
  • the first step, preparation of core material heating 8 parts by mass of solvent at 70°C, adding 2 parts by mass of reduced graphene oxide polydimethylsiloxane modified phase change material into the solvent, and maintaining after ultrasonic assisted dispersion 1 hour;
  • the second step is emulsification; 0.3 parts of emulsifier is added to the solution prepared in the first step, and the pH value is adjusted to 4 and then dispersed under the assistance of ultrasound;
  • the third step, heat preservation reaction adding 40 parts by mass of the capsule wall material, heating to 90°C, stirring and reacting for 2 hours, then adding 3 parts by mass of urea, filtering and washing after cooling to obtain a binary composite phase change material emulsion;
  • the fourth step is to prepare a powdered nano-encapsulated binary composite phase change material: add dropwise to the binary composite phase change material emulsion obtained in the third step to break the emulsion, and then centrifuge to obtain the product, and use petroleum ether to clean the product After many times of drying, the powdered nano-encapsulated binary composite phase change material is obtained.
  • the phase change material includes a core material and a capsule wall covering the core material.
  • the core material includes a solvent and reduced graphene oxide polydimethylsiloxane modified phase change material;
  • the phase change material is prepared by the following steps:
  • the first step, preparation of the core material heating 15 parts by mass of solvent at 70°C, adding 1 part by mass of reduced graphene oxide polydimethylsiloxane modified phase change material into the solvent, and maintaining after ultrasonic assisted dispersion 2 hours;
  • the second step emulsification; add 0.6 part of emulsifier to the solution prepared in the first step, and adjust the pH value to 4 and then disperse with the aid of ultrasound;
  • the third step insulation reaction: adding 10 parts by mass of the capsule wall material, heating to 90°C, stirring and reacting for 2 hours, then adding 5 parts by mass of urea, filtering and washing after cooling to obtain a binary composite phase change material emulsion;
  • the fourth step is to prepare a powdered nano-encapsulated binary composite phase change material: add dropwise to the binary composite phase change material emulsion obtained in the third step to break the emulsion, and then centrifuge to obtain the product, and use petroleum ether to clean the product After many times of drying, the powdered nano-encapsulated binary composite phase change material is obtained.
  • phase change material is prepared by the following steps:
  • the first step, preparation of the core material heating 15 parts by mass of the solvent at 70°C, adding 1 part by mass of graphite to the solvent, and maintaining for 2 hours after ultrasonic assisted dispersion;
  • the second step emulsification; add 0.6 part of emulsifier to the solution prepared in the first step, and adjust the pH value to 4 and then disperse with the aid of ultrasound;
  • the third step insulation reaction: adding 10 parts by mass of the capsule wall material, heating to 90°C, stirring and reacting for 2 hours, then adding 5 parts by mass of urea, filtering and washing after cooling to obtain a binary composite phase change material emulsion;
  • the fourth step is to prepare the powdered nano-encapsulated binary composite phase change material: add dropwise to the binary composite phase change material emulsion obtained in the third step to break the emulsion, and then centrifuge to obtain the product, and use petroleum ether to clean the product After many times of drying, the powdered nano-encapsulated binary composite phase change material is obtained.
  • Example 1 189.17
  • Example 2 195.35
  • Example 3 186.25 Comparison 106.31
  • the present invention adopts selective reduction of graphene oxide polydimethylsiloxane modified phase change material as the core material, and the microencapsulated phase change material prepared by the method of the present invention has a phase change latent heat value of about 180J/g, and The latent heat value of phase change of domestic microencapsulated phase change materials is generally 110J/g, and the latent heat value of phase change of imported products is 151.6J/g.
  • the nanoencapsulated binary composite phase change material of the present invention is prepared with existing technology The phase change latent heat value of the microencapsulated phase change material is greatly improved.
  • the nano-encapsulated binary composite phase change material of the present invention is used as a phase change energy storage material, and its particles have good fluidity, and the shell layer on the surface after coating is dense and uniform.
  • the nano-encapsulated binary composite phase change material of the present application is prepared The equipment and operation required for the material are simple and easy to mass-produce; adding urea to absorb the formaldehyde in the sac wall material maximizes the utilization rate of the material, and also avoids the generation of a large amount of formaldehyde gas, protects the surrounding environment, and improves the production site Safety level.
  • the nano-encapsulated binary composite phase change material of the present invention has a capsule wall made of polyurea, melamine-formaldehyde resin, isocyanate, and urea-formaldehyde resin, which has good toughness and will not break during processing.
  • the nano-encapsulated binary composite phase change material of the present application can not only be added to concrete mortar, but also can be applied to energy utilization and heat exchange fields such as cooling circulating fluid, waste heat exchange fluid, and energy-saving building materials.
  • the core material of this application is reduced graphene oxide polydimethylsiloxane modified phase change material, using porous reduced graphene oxide as the carrier material, its chemical properties are stable, and the reducing agent reduces the oxygen groups of graphene oxide Successfully removed, while retaining the graphene carbocyclic structure; this is conducive to subsequent polydimethylsiloxane vapor deposition modification, further improving the hydrophobicity and lipophilicity of porous reduced graphene oxide, and the content of adsorbed palmitic acid reaches 80.2% Moreover, the crystal properties of the adsorbed palmitic acid have not changed. The decrease in crystallinity makes the strength weaker.
  • the latent heat of phase change is compared with that of inorganic phase change materials such as alumina. It has a higher latent heat of phase change.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

一种纳米胶囊化二元复合相变材料,该相变材料包括芯材和包覆芯材的囊壁,所述芯材包括溶剂、还原氧化石墨烯聚二甲基硅氧烷改性相变材料;该相变材料由以下步骤制备:第一步、芯材制备;第二步、乳化;第三步、保温反应;第四步、制备粉末状的纳米胶囊化二元复合相变材料。该纳米胶囊化二元复合相变材料的导热性能优越,结构稳定,可以长期发挥作用,与建筑材料的相容性好,不会影响建筑材料的相关力学性能。

Description

一种纳米胶囊化二元复合相变材料 技术领域
本发明涉及复合材料技术领域,尤其是一种纳米胶囊化二元复合相变材料。
背景技术
纳米胶囊化相变材料是采用胶囊技术将固液相变材料用合成高分子材料或无机化合物以物理或化学方法包覆起来的常态下稳定的固体微粒,这种固体微粒可在很窄的温度范围内吸收或释放可观的相变潜热,具有较显著的蓄热调温功能,通过选择适当的囊材可有效改善相变储能材料在发生固液相变时的泄漏、相分离、体积膨胀、有腐蚀性、热稳定性差等问题。
现有制备微胶囊化相变储能材料的方法可分为界面聚合法、原位聚合法和喷雾干燥法。其中界面聚合法是将相变储能材料在溶有形成壳材料单体的连续相中乳化或分散,然后将水溶性单体的水溶液或含油溶性反应物的有机溶剂分散到有机相或水相中,加入乳化剂后这两种单体会分别从分散相和连续相向界面移动并迅速在界面上发生聚合反应得到微胶囊。美国专利US.6270836介绍的一种通过界面聚合法合成的以链烷烃化合物为核、聚脲-聚氨酯为壳的微胶囊,产品分布均匀,相变焓略小于链烷烃化合物。但界面聚合法制得的微胶囊产品粒径受温度、搅拌速度、反应容器形状、乳化剂种类及其浓度等影响,工艺条件复杂且不易控制。原位聚合法是形成囊壁的单体及引发剂全部位于相变储能 材料乳化液滴的内部或外部,在液滴表面发生聚合反应从而得到微胶囊的方法。美国专利US.0076826公开的一种利用原位聚合法制备的以链烷烃化合物为核、三聚氰胺-甲醛树脂为壳的微胶囊,尽管该微胶囊相变储能材料具有一定的抗泄露能力,但在生产和使用过程中仍会释放出有害气体甲醛,对身体健康和生产设备造成伤害;同时此方法所用的囊材均为热固性树脂,在加工过程中易被挤压而部分破裂,最终达不到预期的包覆效果。喷雾干燥法是将芯材料和壳材料的混合物通入加热室或冷却室,快速脱除溶剂后凝固得到微胶囊。
现有的纳米胶囊化二元复合相变材料的芯材存在分散性能、结构不稳定,相变潜热不高等缺点,因此,需要提供一种纳米胶囊化二元复合相变材料。
发明内容
为了克服现有技术中的缺陷,提供一种纳米胶囊化二元复合相变材料。
本发明通过下述方案实现:
一种纳米胶囊化二元复合相变材料,该相变材料包括芯材和包覆芯材的囊壁,所述芯材包括溶剂、还原氧化石墨烯聚二甲基硅氧烷改性相变材料;
该相变材料由以下步骤制备:
第一步、芯材制备:将8-20质量份的溶剂在70℃下加热,向溶剂内加入1-2质量份的还原氧化石墨烯聚二甲基硅氧烷改性相变材料,超声波辅助分散后保持0.5-2小时;
第二步、乳化;在第一步制备的溶液中加入乳化剂0.3-1份,并且调节pH值至4后在超声波辅助下进行分散;
第三步、保温反应:加入10-40质量份的囊壁材料后升温至90℃,搅拌反应2小时,然后加入1-5质量份的尿素,冷却后过滤、洗涤,得到二元复合相变材料乳液;
第四步、制备粉末状的纳米胶囊化二元复合相变材料:向第三步得到的二元复合相变材料乳液中滴加破乳液,再通过离心分离得到产物,利用石油醚将产物清洗多次后烘干,即得到粉末状的纳米胶囊化二元复合相变材料。
所述囊壁为聚脲、三聚氰胺甲醛树脂、异氰酸酯、脲醛树脂中的一种或者数种。
所述溶剂为十二醇、十四醇、十六醇、十八醇、月桂酸、硬脂酸中的一种或者数种。
第一步中,所述还原氧化石墨烯聚二甲基硅氧烷改性相变材料的制备方法如下所述:
A、将氧化石墨烯超声波处理1小时,滴加氨水调节氧化石墨烯水溶液pH值大于10;向氧化石墨烯中继续加入水合联氨,混合均匀后置于100℃的油浴锅中冷凝回流24小时;用无水乙醇、除盐水对冷凝回流的产物离心洗涤直至上清液无色,在105℃环境中烘干,得到还原氧化石墨烯;
B、将步骤A制备的还原氧化石墨烯与蒸馏水混合均匀,然后加入N,N二甲基甲酰胺,然后加入碳酸钠,搅拌均匀后滴加氯化钙,室温下搅拌1小时后静置,取沉淀备用;
C、将纤维素酯膜溶于N,N二甲基甲酰胺,加入步骤B制备沉淀中,在60℃ 下搅拌1小时,过滤后取沉淀加入盐酸溶液除去碳酸钙,至中性后抽滤、干燥,N 2保护下在马弗炉内600℃灼烧1小时制得多孔还原氧化石墨烯,将多孔还原氧化石墨烯与聚二甲基硅氧烷按照质量比2:1在250℃下进行气相沉积,得到二甲基硅氧烷改性多孔石墨烯,将所述二甲基硅氧烷改性多孔石墨烯投入到熔融的棕榈酸中,其中二甲基硅氧烷改性多孔石墨烯与棕榈酸的质量比为1:100,真空保持12小时,干燥后得到还原氧化石墨烯聚二甲基硅氧烷改性相变材料。
在步骤B中,所述还原氧化石墨烯:蒸馏水:N,N二甲基甲酰胺的质量比为2:200:1800,所述还原氧化石墨烯:碳酸钠:氯化钙的质量比为2:16:15。
在步骤C中,所述N,N二甲基甲酰胺:纤维素酯膜的质量比为1:100。
在第二步中,所述超声波的频率为15~20kHz,所述超声波的声能密度为0.04~0.06W/cm 2
在第二步中,所述乳化剂为苯乙烯-马来酸酐共聚物、聚乙烯醇、十二烷基硫酸钠中的一种。
在第四步中,所述破乳液为氯化钠乙醇溶液,其中氯化钠的质量百分比浓度为8%,乙醇的体积百分比浓度为5%。
本发明的有益效果为:
本发明一种纳米胶囊化二元复合相变材料的导热性能优越,结构稳定,可以长期发挥作用,与建筑材料的相容性好,不会影响建筑材料的相关力学性能。
具体实施方式
下面结合具体实施例对本发明进一步说明:
一种纳米胶囊化二元复合相变材料,该相变材料包括芯材和包覆芯材的囊壁,所述芯材包括溶剂、还原氧化石墨烯聚二甲基硅氧烷改性相变材料;
该相变材料由以下步骤制备:
第一步、芯材制备:将8-20质量份的溶剂在70℃下加热,向溶剂内加入1-2质量份的还原氧化石墨烯聚二甲基硅氧烷改性相变材料,超声波辅助分散后保持0.5-2小时;
第二步、乳化;在第一步制备的溶液中加入乳化剂0.3-1份,并且调节pH值至4后在超声波辅助下进行分散;
第三步、保温反应:加入10-40质量份的囊壁材料后升温至90℃,搅拌反应2小时,然后加入1-5质量份的尿素,冷却后过滤、洗涤,得到二元复合相变材料乳液;
第四步、制备粉末状的纳米胶囊化二元复合相变材料:向第三步得到的二元复合相变材料乳液中滴加破乳液,再通过离心分离得到产物,利用石油醚将产物清洗多次后烘干,即得到粉末状的纳米胶囊化二元复合相变材料。
所述囊壁为聚脲、三聚氰胺甲醛树脂、异氰酸酯、脲醛树脂中的一种或者数种。
所述溶剂为十二醇、十四醇、十六醇、十八醇、月桂酸、硬脂酸中的一种或者数种。
第一步中,所述还原氧化石墨烯聚二甲基硅氧烷改性相变材料的制备方法如下所述:
A、将氧化石墨烯超声波处理1小时,滴加氨水调节氧化石墨烯水溶液pH值大于10;向氧化石墨烯中继续加入水合联氨,混合均匀后置于100℃的油浴锅中冷凝回流24小时;用无水乙醇、除盐水对冷凝回流的产物离心洗涤直至上清液无色,在105℃环境中烘干,得到还原氧化石墨烯;
B、将步骤A制备的还原氧化石墨烯与蒸馏水混合均匀,然后加入N,N二甲基甲酰胺,然后加入碳酸钠,搅拌均匀后滴加氯化钙,室温下搅拌1小时后静置,取沉淀备用;
C、将纤维素酯膜溶于N,N二甲基甲酰胺,加入步骤B制备沉淀中,在60℃下搅拌1小时,过滤后取沉淀加入盐酸溶液除去碳酸钙,至中性后抽滤、干燥,N 2保护下在马弗炉内600℃灼烧1小时制得多孔还原氧化石墨烯,将多孔还原氧化石墨烯与聚二甲基硅氧烷按照质量比2:1在250℃下进行气相沉积,得到二甲基硅氧烷改性多孔石墨烯,将所述二甲基硅氧烷改性多孔石墨烯投入到熔融的棕榈酸中,其中二甲基硅氧烷改性多孔石墨烯与棕榈酸的质量比为1:100,真空保持12小时,干燥后得到还原氧化石墨烯聚二甲基硅氧烷改性相变材料。
还原氧化石墨烯聚二甲基硅氧烷改性相变材料的石墨烯片层将碳酸钙完全包裹,加入的纤维素酯膜可将反应后的结构完整保留下来,酸化除去碳酸钙,再经煅烧除去纤维素酯膜,形成还原氧化石墨烯聚烯多孔结构,经过聚二甲基硅氧烷修饰后的多孔还原氧化石墨烯聚的疏水性明显增加,这是由于聚二甲基硅氧烷在250℃时,部分Si-O键断裂,并在石墨烯表面重新交联形成涂层,降低了多孔还原氧化石墨烯聚的表面能。
在步骤B中,所述还原氧化石墨烯:蒸馏水:N,N二甲基甲酰胺的质量比为2:200:1800,所述还原氧化石墨烯:碳酸钠:氯化钙的质量比为2:16:15。
在步骤C中,所述N,N二甲基甲酰胺:纤维素酯膜的质量比为1:100。
在第二步中,所述超声波的频率为15~20kHz,所述超声波的声能密度为0.04~0.06W/cm 2
在第二步中,所述乳化剂为苯乙烯-马来酸酐共聚物、聚乙烯醇、十二烷基硫酸钠中的一种。
在第四步中,所述破乳液为氯化钠乙醇溶液,其中氯化钠的质量百分比浓度为8%,乙醇的体积百分比浓度为5%。
下面结合具体的实施例和对比例对本申请做进一步的阐述:
实施例1
一种纳米胶囊化二元复合相变材料,该相变材料包括芯材和包覆芯材的囊壁,所述芯材包括溶剂、还原氧化石墨烯聚二甲基硅氧烷改性相变材料;
该相变材料由以下步骤制备:
第一步、芯材制备:将20质量份的溶剂在70℃下加热,向溶剂内加入1.5质量份的还原氧化石墨烯聚二甲基硅氧烷改性相变材料,超声波辅助分散后保持0.5小时;
第二步、乳化;在第一步制备的溶液中加入1质量份的乳化剂,并且调节pH值至4后在超声波辅助下进行分散;
第三步、保温反应:加入25质量份的囊壁材料后升温至90℃,搅拌反应2 小时,然后加入1质量份的尿素,冷却后过滤、洗涤,得到二元复合相变材料乳液;
第四步、制备粉末状的纳米胶囊化二元复合相变材料:向第三步得到的二元复合相变材料乳液中滴加破乳液,再通过离心分离得到产物,利用石油醚将产物清洗多次后烘干,即得到粉末状的纳米胶囊化二元复合相变材料。
实施例2
一种纳米胶囊化二元复合相变材料,该相变材料包括芯材和包覆芯材的囊壁,所述芯材包括溶剂、还原氧化石墨烯聚二甲基硅氧烷改性相变材料;
该相变材料由以下步骤制备:
第一步、芯材制备:将8质量份的溶剂在70℃下加热,向溶剂内加入2质量份的还原氧化石墨烯聚二甲基硅氧烷改性相变材料,超声波辅助分散后保持1小时;
第二步、乳化;在第一步制备的溶液中加入乳化剂0.3份,并且调节pH值至4后在超声波辅助下进行分散;
第三步、保温反应:加入40质量份的囊壁材料后升温至90℃,搅拌反应2小时,然后加入3质量份的尿素,冷却后过滤、洗涤,得到二元复合相变材料乳液;
第四步、制备粉末状的纳米胶囊化二元复合相变材料:向第三步得到的二元复合相变材料乳液中滴加破乳液,再通过离心分离得到产物,利用石油醚将产物清洗多次后烘干,即得到粉末状的纳米胶囊化二元复合相变材料。
实施例3
一种纳米胶囊化二元复合相变材料,该相变材料包括芯材和包覆芯材的囊壁,所述芯材包括溶剂、还原氧化石墨烯聚二甲基硅氧烷改性相变材料;
该相变材料由以下步骤制备:
第一步、芯材制备:将15质量份的溶剂在70℃下加热,向溶剂内加入1质量份的还原氧化石墨烯聚二甲基硅氧烷改性相变材料,超声波辅助分散后保持2小时;
第二步、乳化;在第一步制备的溶液中加入乳化剂0.6份,并且调节pH值至4后在超声波辅助下进行分散;
第三步、保温反应:加入10质量份的囊壁材料后升温至90℃,搅拌反应2小时,然后加入5质量份的尿素,冷却后过滤、洗涤,得到二元复合相变材料乳液;
第四步、制备粉末状的纳米胶囊化二元复合相变材料:向第三步得到的二元复合相变材料乳液中滴加破乳液,再通过离心分离得到产物,利用石油醚将产物清洗多次后烘干,即得到粉末状的纳米胶囊化二元复合相变材料。
对比例
一种纳米胶囊化二元复合相变材料,该相变材料由以下步骤制备:
第一步、芯材制备:将15质量份的溶剂在70℃下加热,向溶剂内加入1质量份的石墨,超声波辅助分散后保持2小时;
第二步、乳化;在第一步制备的溶液中加入乳化剂0.6份,并且调节pH值 至4后在超声波辅助下进行分散;
第三步、保温反应:加入10质量份的囊壁材料后升温至90℃,搅拌反应2小时,然后加入5质量份的尿素,冷却后过滤、洗涤,得到二元复合相变材料乳液;
第四步、制备粉末状的纳米胶囊化二元复合相变材料:向第三步得到的二元复合相变材料乳液中滴加破乳液,再通过离心分离得到产物,利用石油醚将产物清洗多次后烘干,即得到粉末状的纳米胶囊化二元复合相变材料。
将本发明申请实施例1-3和对比例制备的粉末状的纳米胶囊化二元复合相变材料添加至混凝土砂浆中,控制添加的量为混凝土砂浆质量的0.3%,待添加完成后,对其进行搅拌直至混合均匀后,进行浇筑即可。经检测,其相变潜热和详见表1。本实施例中相变潜热用Diamond差示扫描量热议,升温速率为5℃/分钟,在室温-150℃测量。具体检测方法和过程参考相关标准进行,对于本领域技术来讲此为公知技术,在此不再赘述。
表1 不同实施例和对比例的相变潜热
  相变潜热(J/g)
实施例1 189.17
实施例2 195.35
实施例3 186.25
对比例 106.31
本发明通过选择还原氧化石墨烯聚二甲基硅氧烷改性相变材料作为芯材,使用本发明方法制备的微胶囊化相变材料,其相变潜热值在180J/g左右,而现有国产的微胶囊化相变材料的相变潜热值一般为110J/g,进口的产品相变潜热值为151.6J/g,本发明的纳米胶囊化二元复合相变材料与现有技术制备的微胶囊化相变材料的相变潜热值相比有很大程度的提高。
本发明的纳米胶囊化二元复合相变材料作为一种相变储能材料,其颗粒的流动性好,包覆后表面上壳层致密均匀,制备本申请的纳米胶囊化二元复合相变材料所需设备及操作简单,易于大规模生产;加入尿素吸收囊壁材料中的甲醛,实现了物料利用率的最大化,也避免产生大量甲醛气体,保护了周围的环境,提升了制备现场的安全水平。本发明的纳米胶囊化二元复合相变材料,其囊壁为为聚脲、三聚氰胺甲醛树脂、异氰酸酯、脲醛树脂,具有很好的韧性,加工时不会破裂。本申请的纳米胶囊化二元复合相变材料不但可以加入混凝土砂浆中,还可以应用于冷却循环液、废热交换液和节能建筑材料等能量利用和热交换领域。
本申请的芯材为还原氧化石墨烯聚二甲基硅氧烷改性相变材料,以多孔的还原氧化石墨烯作为载体材料,其化学性质稳定,且还原剂将氧化石墨烯的氧基团成功去除,而保留了石墨烯碳环结构;这有利于后续聚二甲基硅氧烷气相沉积改性,进一步提高了多孔还原氧化石墨烯的疏水性和亲油性,吸附棕榈酸的含量达80.2%,而且吸附的棕榈酸的晶体性质并没有改变,结晶度下降使其强度变弱,纳米胶囊化二元复合相变材料在熔融和结晶过程中,相变潜热与氧 化铝等无机相变材料相比较具有更高的相变潜热。
尽管已经对本发明的技术方案做了较为详细的阐述和列举,应当理解,对于本领域技术人员来说,对上述实施例做出修改或者采用等同的替代方案,这对本领域的技术人员而言是显而易见,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (9)

  1. 一种纳米胶囊化二元复合相变材料,其特征在于,该相变材料包括芯材和包覆芯材的囊壁,所述芯材包括溶剂、还原氧化石墨烯聚二甲基硅氧烷改性相变材料;
    该相变材料由以下步骤制备:
    第一步、芯材制备:将8-20质量份的溶剂在70℃下加热,向溶剂内加入1-2质量份的还原氧化石墨烯聚二甲基硅氧烷改性相变材料,超声波辅助分散后保持0.5-2小时;
    第二步、乳化;在第一步制备的溶液中加入乳化剂0.3-1份,并且调节pH值至4后在超声波辅助下进行分散;
    第三步、保温反应:加入10-40质量份的囊壁材料后升温至90℃,搅拌反应2小时,然后加入1-5质量份的尿素,冷却后过滤、洗涤,得到二元复合相变材料乳液;
    第四步、制备粉末状的纳米胶囊化二元复合相变材料:向第三步得到的二元复合相变材料乳液中滴加破乳液,再通过离心分离得到产物,利用石油醚将产物清洗多次后烘干,即得到粉末状的纳米胶囊化二元复合相变材料。
  2. 根据权利要求1所述的一种纳米胶囊化二元复合相变材料,其特征在于:所述囊壁为聚脲、三聚氰胺甲醛树脂、异氰酸酯、脲醛树脂中的一种或者数种。
  3. 根据权利要求1所述的一种纳米胶囊化二元复合相变材料,其特征在于:所述溶剂为十二醇、十四醇、十六醇、十八醇、月桂酸、硬脂酸中的一种或者数种。
  4. 根据权利要求1所述的一种纳米胶囊化二元复合相变材料,其特征在于,第一步中,所述还原氧化石墨烯聚二甲基硅氧烷改性相变材料的制备方法如下所述:
    A、将氧化石墨烯超声波处理1小时,滴加氨水调节氧化石墨烯水溶液pH值大于10;向氧化石墨烯中继续加入水合联氨,混合均匀后置于100℃的油浴锅中冷凝回流24小时;用无水乙醇、除盐水对冷凝回流的产物离心洗涤直至上清液无色,在105℃环境中烘干,得到还原氧化石墨烯;
    B、将步骤A制备的还原氧化石墨烯与蒸馏水混合均匀,然后加入N,N二甲基甲酰胺,然后加入碳酸钠,搅拌均匀后滴加氯化钙,室温下搅拌1小时后静置,取沉淀备用;
    C、将纤维素酯膜溶于N,N二甲基甲酰胺,加入步骤B制备沉淀中,在60℃下搅拌1小时,过滤后取沉淀加入盐酸溶液除去碳酸钙,至中性后抽滤、干燥,N2保护下在马弗炉内600℃灼烧1小时制得多孔还原氧化石墨烯,将多孔还原氧化石墨烯与聚二甲基硅氧烷按照质量比2:1在250℃下进行气相沉积,得到二甲基硅氧烷改性多孔石墨烯,将所述二甲基硅氧烷改性多孔石墨烯投入到熔融的棕榈酸中,其中二甲基硅氧烷改性多孔石墨烯与棕榈酸的质量比为1:100,真空保持12小时,干燥后得到还原氧化石墨烯聚二甲基硅氧烷改性相变材料。
  5. 根据权利要求4所述的一种纳米胶囊化二元复合相变材料,其特征在于:在步骤B中,所述还原氧化石墨烯:蒸馏水:N,N二甲基甲酰胺的质量比为2:200:1800,所述还原氧化石墨烯:碳酸钠:氯化钙的质量比为2:16:15。
  6. 根据权利要求4所述的一种纳米胶囊化二元复合相变材料,其特征在于:在步骤C中,所述N,N二甲基甲酰胺:纤维素酯膜的质量比为1:100。
  7. 根据权利要求1所述的一种纳米胶囊化二元复合相变材料,其特征在于:在第二步中,所述超声波的频率为15~20kHz,所述超声波的声能密度为0.04~0.06W/cm 2
  8. 根据权利要求1所述的一种纳米胶囊化二元复合相变材料,其特征在于:在第二步中,所述乳化剂为苯乙烯-马来酸酐共聚物、聚乙烯醇、十二烷基硫酸钠中的一种。
  9. 根据权利要求1所述的一种纳米胶囊化二元复合相变材料,其特征在于:在第四步中,所述破乳液为氯化钠乙醇溶液,其中氯化钠的质量百分比浓度为8%,乙醇的体积百分比浓度为5%。
PCT/CN2019/119430 2019-11-19 2019-11-19 一种纳米胶囊化二元复合相变材料 WO2021097663A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119430 WO2021097663A1 (zh) 2019-11-19 2019-11-19 一种纳米胶囊化二元复合相变材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119430 WO2021097663A1 (zh) 2019-11-19 2019-11-19 一种纳米胶囊化二元复合相变材料

Publications (1)

Publication Number Publication Date
WO2021097663A1 true WO2021097663A1 (zh) 2021-05-27

Family

ID=75981108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119430 WO2021097663A1 (zh) 2019-11-19 2019-11-19 一种纳米胶囊化二元复合相变材料

Country Status (1)

Country Link
WO (1) WO2021097663A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337252A (zh) * 2021-05-31 2021-09-03 苏州大学 一种纤维素基柔性储热复合材料及其制备方法
CN113512351A (zh) * 2021-09-15 2021-10-19 广东大自然家居科技研究有限公司 一种水性自修复木器漆及其制备方法
CN113667269A (zh) * 2021-09-15 2021-11-19 中国科学院兰州化学物理研究所 一种具有三维网络夹层结构的光响应智能摩擦复合材料及其制备方法和应用
CN113858373A (zh) * 2021-11-03 2021-12-31 阜阳大可新材料股份有限公司 一种带有储热功能的新型纤维板
CN113926400A (zh) * 2020-06-29 2022-01-14 顺启和(深圳)科技有限公司 微胶囊制备方法和蓄冷剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104650816A (zh) * 2015-02-06 2015-05-27 桂林电子科技大学 一种低温相变储能微胶囊及其制备方法
WO2016024658A1 (ko) * 2014-08-14 2016-02-18 울산대학교 산학협력단 탄소나노물질을 포함하는 상전이 복합체 및 이의 제조방법
CN108729029A (zh) * 2018-05-22 2018-11-02 成都新柯力化工科技有限公司 一种可调温的建筑装饰塑料复合薄膜及制备方法
CN109735306A (zh) * 2019-03-12 2019-05-10 宁波石墨烯创新中心有限公司 一种石墨烯/相变微胶囊复合材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024658A1 (ko) * 2014-08-14 2016-02-18 울산대학교 산학협력단 탄소나노물질을 포함하는 상전이 복합체 및 이의 제조방법
CN104650816A (zh) * 2015-02-06 2015-05-27 桂林电子科技大学 一种低温相变储能微胶囊及其制备方法
CN108729029A (zh) * 2018-05-22 2018-11-02 成都新柯力化工科技有限公司 一种可调温的建筑装饰塑料复合薄膜及制备方法
CN109735306A (zh) * 2019-03-12 2019-05-10 宁波石墨烯创新中心有限公司 一种石墨烯/相变微胶囊复合材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIANG WEI-DONG , ZHANG GUO-DONG ,LIU YE , CHEN PIN-SONG , ZHU ZHAO-QI: "Polydimethylsiloxane-Modified Super Hydrophobic Porous Graphene Filled with Palmitic Acid as a Phase Change Energy Storage Material", NEW CARBON MATERIALS, vol. 30, no. 5, 15 October 2015 (2015-10-15), pages 466 - 470, XP055813278, ISSN: 1007-8827, DOI: 10.19869/j.ncm.1007-8827.2015.05.009 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113926400A (zh) * 2020-06-29 2022-01-14 顺启和(深圳)科技有限公司 微胶囊制备方法和蓄冷剂
CN113337252A (zh) * 2021-05-31 2021-09-03 苏州大学 一种纤维素基柔性储热复合材料及其制备方法
CN113337252B (zh) * 2021-05-31 2022-03-01 苏州大学 一种纤维素基柔性储热复合材料及其制备方法
CN113512351A (zh) * 2021-09-15 2021-10-19 广东大自然家居科技研究有限公司 一种水性自修复木器漆及其制备方法
CN113667269A (zh) * 2021-09-15 2021-11-19 中国科学院兰州化学物理研究所 一种具有三维网络夹层结构的光响应智能摩擦复合材料及其制备方法和应用
CN113512351B (zh) * 2021-09-15 2022-01-18 广东大自然家居科技研究有限公司 一种水性自修复木器漆及其制备方法
CN113858373A (zh) * 2021-11-03 2021-12-31 阜阳大可新材料股份有限公司 一种带有储热功能的新型纤维板

Similar Documents

Publication Publication Date Title
WO2021097663A1 (zh) 一种纳米胶囊化二元复合相变材料
CN105399889B (zh) 一种相变储能材料的杂化壁材纳米胶囊及其制备方法
KR101812351B1 (ko) 가교제로서 폴리비닐 단량체를 갖는 마이크로캡슐
JP2010512986A (ja) マイクロカプセル
CN105924569B (zh) 一种多核包裹型复合微球的制备方法
CN105368423B (zh) 一种采油用无铬复合树脂凝胶类调剖剂及制备方法与用途
CN114618111B (zh) 一种全氟己酮灭火微胶囊及其制备方法
Sánchez-Silva et al. Poly (urea-formaldehyde) microcapsules containing commercial paraffin: in situ polymerization study
CN107400503A (zh) 一种具有双层壁材结构的石墨烯相变储能微胶囊的制备方法
CN111286312A (zh) 一种油井用缓释型缓蚀阻垢剂胶囊及其制备方法
CN107722943A (zh) 一种石蜡相变微胶囊的制备方法
CN112574465A (zh) 一种含化学发泡剂的可膨胀微球及其制备方法
CN109082267B (zh) 一种添加二氧化锰颗粒改善正十八烷/聚苯乙烯相变微胶囊热性能的方法
TW200916486A (en) Kontinuierliches polymerisationsverfahren
BR112014018052B1 (pt) processo para a fabricação de uma pasta fluida de cal
WO2017155989A1 (en) Methods for providing polyvinyl chloride particles for preparing chlorinated polyvinyl chloride
CN113403050A (zh) 一种纳米封堵剂及其制备方法
CN105884377A (zh) 一种硅烷偶联剂对碳化硅粉体的表面改性方法
Rosen et al. Encapsulating an inorganic phase change material within emulsion-templated polymers: Thermal energy storage and release
JP2001288201A (ja) セルロースエーテルの、酸触媒を作用させる、加水分解解重合方法
CN101412628A (zh) 一种利用微波制备聚丙烯酸系陶瓷减水剂及其方法
CN105273111B (zh) 一种减少聚氯乙烯生产中汽提装置结垢的方法
CN112295516A (zh) 一种相变微胶囊及其制备方法
CN110683567A (zh) 一种亚微米级氢氧化镁的制备方法
CN102634325A (zh) 一种包裹高价金属离子缓交联凝胶堵水堵漏材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953601

Country of ref document: EP

Kind code of ref document: A1