CN113337252A - 一种纤维素基柔性储热复合材料及其制备方法 - Google Patents

一种纤维素基柔性储热复合材料及其制备方法 Download PDF

Info

Publication number
CN113337252A
CN113337252A CN202110603910.9A CN202110603910A CN113337252A CN 113337252 A CN113337252 A CN 113337252A CN 202110603910 A CN202110603910 A CN 202110603910A CN 113337252 A CN113337252 A CN 113337252A
Authority
CN
China
Prior art keywords
heat storage
cellulose
water
composite material
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110603910.9A
Other languages
English (en)
Other versions
CN113337252B (zh
Inventor
卢锦涛
张涛
赵燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202110603910.9A priority Critical patent/CN113337252B/zh
Publication of CN113337252A publication Critical patent/CN113337252A/zh
Application granted granted Critical
Publication of CN113337252B publication Critical patent/CN113337252B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Abstract

本发明提供了一种纤维素基的柔性储热复合材料及其制备方法,属于包括以下步骤:将油相和水相混合均匀,得到水包油型高内相乳液,其中,所述油相为有机相变材料;所述水相包括水溶性乳化剂、纤维素悬浮液和水,向上述高内相乳液中加入交联剂和催化剂,通过加热可使纤维素乳液实现界面聚合,在界面处形成交联聚合物,再经加热干燥和冷冻干燥后获得储热复合材料。这种储热复合材料的外形可通过聚合时盛放高内相乳液模具实现控制,其内部具有纳米纤维结构,加热干燥后的材料储热密度达200J/g,而冷冻干燥后的材料储热密度可高达250J/g,在室温和40℃以上时具有柔性,可卷曲折叠,导热性能良好。

Description

一种纤维素基柔性储热复合材料及其制备方法
技术领域
本发明属于储热复合材料制备技术领域,尤其是指一种纤维素基柔性储热复合材料及其制备方法。
背景技术
随着日益增长的能源消耗,需要开发更有效的方法来存储能量。相变材料是一种在结晶和熔化过程中表现出大量潜热的物质,由于其温度变化小且具有优良的能量存储和释放性能而受到人们的关注。PCMs可以提高热能的利用效率,已被应用于节能建筑、太阳能储能、热调节纺织品和电子冷却中。为了防止PCMs在实际应用中泄漏,通常对其进行封装和定形。根据大小,封装通常分为纳米(<1μm),微观(1-1000μm),宏观(>1 mm)。微米和纳米封装的相变材料具有良好的结构稳定性和较高的比表面积,因而具有相对较高的传热面积。然而,微纳米封装体系中PCM含量较低,限制了PCM的封装能力(潜热量)。乳液模板多孔聚合物,通常被称为polyHIPEs,由乳液中的连续相合成的聚合物。近年来,已研发出闭孔结构的polyHIPEs,这种结构有利于封装PCM。由于可以同时实现形状稳定和封装,最终得到的PCM封装的单体通常具有高封装能力和高表面体积比。如论文(Puupponen S,Mikkola V,Ala-Nissila T,
Figure BDA0003093567920000011
A,Novel microstructured polyol–polystyrene composites forseasonal heat storage,Appl.Energy 172(2016)96-106;Gui H,Zhang T,Guo Q,Closed-cell,emulsion-templated hydrogels for latent heat storage applications,Polym.Chem.(2018)3970-3973;Zhang T,Xu Z,Chi H,Zhao Y,Closed-cell,phase changematerial-encapsulated monoliths from a reactive surfactant-stabilized highinternal phase emulsion for thermal energy storage,ACS Appl.Polym.Mater.2(2020)2578-2585)以往的研究表明,复合材料的封装效率高、可重复使用性好、稳定性好,有利于潜热的储存。然而,由于聚苯乙烯的脆性,这些PCMs封装的聚苯乙烯复合材料往往是脆性的,这种脆性可能会阻碍其应用且降解性差。
纤维素纳米纤维(CNF)是从木材或农业副产品中生成的材料,由于其资源丰富、可再生、可生物降解、高长宽比和高活性表面基团等优点,在制备多孔材料(通常是气凝胶)方面具有很广泛的应用。
发明内容
为此,本发明所要解决的技术问题在于克服现有技术中如何提高复合材料的柔性。
为解决上述技术问题,一种纤维素基柔性储热复合材料及其制备方法。本发明采用高内相乳液封装制备了纤维素基柔性相变储能的材料,利用该方法制备的相变储能材料具有柔性好、储热大、绿色可持续、操作方法简单等优点。
一种纤维素基柔性储热复合材料的制备方法,其特征在于,包括以下步骤:
(1)将油相加入水相中混匀得到水包油型乳液;其中,所述油相为有机相变材料;所述水相为水溶性乳化剂、纤维素悬浮液和水的混合液;为了获得水包油型乳液,需将油相缓慢的加入水相中,并在乳化剂的作用下得到水包油型乳液。
若将水相加入油相中则无法得到水包油型乳液,且乳液极不稳定,易出现破乳、分层等现象。
(2)向步骤(1)中所得水包油型乳液中加入交联剂,并在催化剂作用下反应,得到所述纤维素基柔性储热复合材料;将所得复合材料进一步加热干燥,加热干燥时间为20-24h;
在本发明的一个实施例中,干燥加热温度为90-100℃。
在本发明的一个实施例中,将所得复合材料进一步冷冻干燥,冷冻干燥时间20-24h。冷冻干燥温度为-30至-40℃。
在本发明的一个实施例中,干燥时间过长会导致材料中相变有机溶剂挥发,影响材料的储热能力。时间过短,材料未完全干燥影响使用。
在本发明的一个实施例中,步骤(1)中所述油相和水相的质量比为2:1~6:1。
在本发明的一个实施例中,步骤(1)中,所述有机相变材料为含有12~24个碳的烷烃有机溶剂。
在本发明的一个实施例中,所述有机相变材料为十二烷、十三烷、十四烷、十五烷、十六烷、十七烷、十八烷、十九烷、二十烷、二十一烷、二十二烷、二十三烷和二十四烷有机溶剂中的一种或多种。
在本发明的一个实施例中,所述有机相变材料为十八烷、十六烷或二十烷。
在本发明的一个实施例中,步骤(1)中,所述水相中的水溶性乳化剂、纤维素悬浮液和水的质量比为1-2:8-10:1-2。
在本发明的一个实施例中,步骤(1)中,所述水溶性乳化剂为泊洛沙姆和/或山梨醇酐单油酸酯。
在本发明的一个实施例中,步骤(1)中,所述纤维素悬浮液为木浆-羧基化纤维素纳米悬浮液或棉花-磺化纤维素纳米悬浮液。
在本发明的一个实施例中,步骤(1)中,所述纤维素悬浮液质量浓度为0.5%-1%。
在本发明的一个实施例中,步骤(2)中,所述交联剂为六亚甲基异氰酸酯和/或聚异氰酸酯交联剂;所述催化剂为二月桂酸二丁基锡和/或三亚乙基二胺。
在本发明的一个实施例中,步骤(2)中,所述交联剂与催化剂质量比为1.0-1.5:0.02-0.04。
本发明还提供一种纤维素基柔性储热复合材料。
本发明的上述技术方案相比现有技术具有以下优点:
本发明以水溶性乳化剂、含纤维素纳米悬浮液和水构成水相,以高级烷烃作为油相,混合均匀后,油相被分散在水相中,形成水包油型高内相乳液;采用高级烷烃作为油相,其成型效果好,不易发生相分离以及不会产生过冷现象,性能稳定且腐蚀性较小。通过添加催化剂和交联剂在乳液的连续相和分散相界面处形成交联聚合物膜,实现对高内相乳液的固化和对相变材料的包覆;与以往通过自由基聚合或聚氨酯反应形成交联聚合物不同,水溶性低聚物上的异氰酸酯和纤维素上的羟基发生反应,从而可获得一种交联均匀聚合物,这种聚合物交联缺陷少,具有良好的伸展性,从而使得复合物具有柔性,可以折叠和卷曲;由于高内相乳液中分散相体积分数可高达99%,赋予复合材料较高的相变材料含量,从而具有较高的能量密度;由于包覆相变材料的聚合物是通过化学交联形成的,从而具有较高的耐热、耐溶剂性等。
本发明制备得到的纤维素基柔性储热复合材料内部具有纳米纤维结构;所得复合材料的储热密度可高达250J/g,样品1在室温下具有柔性,样品2在在40℃以上时具有柔性,可卷曲折叠,折叠角度均大于120°。由于烷烃的长链段的存在以及异氰酸酯基团和纤维素上的羟基通过化学交联,使得纤维素基相变材料具备柔性,导热系数介于0.21-0.23Wm-1 K-1
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合详细附图说明如后。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是本发明实施例1中相变储能材料的折叠卷曲。
图2是本发明实施例1中样品1和样品2中相变储能材料的扫描电镜图。
图3是本发明实施例1中样品1和样品2中相变储能材料的热重图。
图4是本发明实施例1中样品1和样品2中相变储能材料的加热和冷却放热图。
图5是本发明实施例1和对比例3和对比例4的储热能力测试结果图。
图6是对比例1和对比例2中相变储能材料的折叠卷曲。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1
本实施提供了储热复合材料的制备方法,步骤如下:
(1):将16g木浆-羧基化纤维素纳米悬浮液(CNF)(质量浓度为1%)和2g F127和2g去离子水机械搅拌至完全溶解得到水相,将40g十八烷逐滴滴入上述水相中,混合均匀后获得水包油型高内相乳液;
(2):将交联剂1.0g六亚甲基异氰酸酯与0.02g催化剂二月桂酸二丁基锡加入水包油型高内相乳液中,迅速混合均匀,将样品一分为二,其中一份经加热干燥24h后得到样品1和另一份经过冷冻干燥24h后得到样品2,加热温度为100℃,冷冻温度为-30℃。
实施例2
本实施提供了储热复合材料的制备方法,步骤如下:
(1):将16g木浆-羧基化纤维素纳米悬浮液(CNF)(质量浓度为1%)和2g山梨醇酐单油酸酯和2g去离子水械搅拌至完全溶解得到水相,将40g十八烷逐滴滴入上述水相中,混合均匀后获得水包油型高内相乳液;
(2):将交联剂1.0g六亚甲基异氰酸酯与0.02g催化剂二月桂酸二丁基锡加入水包油型高内相乳液中,迅速混合均匀,将样品一分为二,其中一份经加热干燥24h后得到样品1和另一份经过冷冻干燥24h后得到样品2,加热温度为100℃,冷冻温度为-40℃。
实施例3
本实施提供了储热复合材料的制备方法,步骤如下:
(1):将10g棉花-磺化纤维素悬浮液(质量浓度为0.5%)和1g F127和1g去离子水机械搅拌至完全溶解得到水相,将40g十八烷逐滴滴入上述水相中,混合均匀后获得水包油型高内相乳液;
(2):将交联剂1.0g六亚甲基异氰酸酯与0.02g催化剂二月桂酸二丁基锡加入水包油型高内相乳液中,迅速混合均匀,将样品一分为二,其中一份经加热干燥24h后得到样品1和另一份经过冷冻干燥24h后得到样品2,加热温度为90℃,冷冻温度为-30℃。
实施例4
本实施提供了储热复合材料的制备方法,步骤如下:
(1):将16g棉花-磺化纤维素悬浮液(质量浓度为1%)和2g山梨醇酐单油酸酯和2g去离子水机械搅拌至完全溶解得到水相,将40g十八烷逐滴滴入上述水相中,混合均匀后获得水包油型高内相乳液;
(2):将交联剂1.5g六亚甲基异氰酸酯与0.02g催化剂二月桂酸二丁基锡加入水包油型高内相乳液中,迅速混合均匀,将样品一分为二,其中一份经加热干燥24h后得到样品1和另一份经过冷冻干燥24h后得到样品2,加热温度为100℃,冷冻温度为-35℃。
实施例5
本实施提供了储热复合材料的制备方法,步骤如下:
(1):将24g木浆-羧基化纤维素纳米悬浮液(CNF)(质量浓度为0.8%)和3g F127机械和3g去离子水搅拌至完全溶解得到水相,将120g十八烷逐滴滴入上述水相中,混合均匀后获得水包油型高内相乳液;
(2):将交联剂1.0g六亚甲基异氰酸酯与0.04g催化剂二月桂酸二丁基锡加入水包油型高内相乳液中,迅速混合均匀,将样品一分为二,其中一份经加热干燥24h后得到样品1和另一份经过冷冻干燥24h后得到样品2,加热温度为95℃,冷冻温度为-38℃。
实施例6
本实施提供了储热复合材料的制备方法,步骤如下:
(1):将16g木浆-羧基化纤维素纳米悬浮液(CNF)(质量浓度为1%)和2g山梨醇酐单油酸酯机械和2g去离子水水搅拌至完全溶解得到水相,将120g十八烷逐滴滴入上述水相中,混合均匀后获得水包油型高内相乳液;
(2):将交联剂1.0g六亚甲基异氰酸酯与0.02g催化剂二月桂酸二丁基锡加入水包油型高内相乳液中,迅速混合均匀,将样品一分为二,其中一份经加热干燥20h后得到样品1和另一份经过冷冻干燥20h后得到样品2,加热温度为100℃,冷冻温度为-40℃。
实施例7
本实施提供了储热复合材料的制备方法,步骤如下:
(1):将16g棉花-磺化纤维素悬浮液(质量浓度为0.6%)和2g F127机械和2g去离子水搅拌至完全溶解得到水相,将100g十八烷逐滴滴入上述水相中,混合均匀后获得水包油型高内相乳液;
(2):将交联剂1.0g六亚甲基异氰酸酯与0.02g催化剂二月桂酸二丁基锡加入水包油型高内相乳液中,迅速混合均匀,将样品一分为二,其中一份经加热干燥23h后得到样品1和另一份经过冷冻干燥20h后得到样品2,加热温度为90℃,冷冻温度为-30℃。
实施例8
本实施提供了储热复合材料的制备方法,步骤如下:
(1):将18g棉花-磺化纤维素悬浮液(质量浓度为1%)和4g山梨醇酐单油酸酯机械和2g去离子水搅拌至完全溶解得到水相,将100g十八烷逐滴滴入上述水相中,混合均匀后获得水包油型高内相乳液;
(2):将交联剂1.0g六亚甲基异氰酸酯与0.02g催化剂二月桂酸二丁基锡加入水包油型高内相乳液中,迅速混合均匀,将样品一分为二,其中一份经加热干燥22h后得到样品1和另一份经过冷冻干燥20h后得到样品2,加热温度为100℃,冷冻温度为-30℃。
实施例9
本实施提供了储热复合材料的制备方法,步骤如下:
(1):将20g棉花-磺化纤维素悬浮液(质量浓度为1%)和2g山梨醇酐单油酸酯机械和4g去离子水搅拌至完全溶解得到水相,将80g二十四烷逐滴滴入上述水相中,混合均匀后获得水包油型高内相乳液;
(2):将交联剂1.0g聚异氰酸酯交联剂与0.02g催化剂二月桂酸二丁基锡加入水包油型高内相乳液中,迅速混合均匀,将样品一分为二,其中一份经加热干燥22h后得到样品1和另一份经过冷冻干燥21h后得到样品2,加热温度为100℃,冷冻温度为-30℃。
实施例10
本实施提供了储热复合材料的制备方法,步骤如下:
(1):将16g棉花-磺化纤维素悬浮液(质量浓度为0.6%)和2g F127机械和2g去离子水搅拌至完全溶解得到水相,将100g二十烷逐滴滴入上述水相中,混合均匀后获得水包油型高内相乳液;
(2):将交联剂1.0g聚异氰酸酯交联剂与0.02g催化剂二月桂酸二丁基锡加入水包油型高内相乳液中,迅速混合均匀,将样品一分为二,其中一份经加热干燥24h后得到样品1和另一份经过冷冻干燥24h后得到样品2,加热温度为90℃,冷冻温度为-30℃。
实施例11
本实施提供了储热复合材料的制备方法,步骤如下:
(1):将17g木浆-羧基化纤维素纳米悬浮液(CNF)(质量浓度为0.8%)和2g山梨醇酐单油酸酯机械和1g去离子水搅拌至完全溶解得到水相,将40g二十烷逐滴滴入上述水相中,混合均匀后获得水包油型高内相乳液;
(2):将交联剂1.0g聚异氰酸酯交联剂与0.02g催化剂二月桂酸二丁基锡加入水包油型高内相乳液中,迅速混合均匀,将样品一分为二,其中一份经加热干燥20h后得到样品1和另一份经过冷冻干燥22h后得到样品2,加热温度为100℃,冷冻温度为-40℃。
实施例12
本实施提供了储热复合材料的制备方法,步骤如下:
(1):将18g木浆-羧基化纤维素纳米悬浮液(CNF)(质量浓度为0.6%)和2g F127机械和4g去离子水搅拌至完全溶解得到水相,将60g十五烷逐滴滴入上述水相中,混合均匀后获得水包油型高内相乳液;
(2):将交联剂1.0g聚异氰酸酯交联剂与0.02g催化剂二月桂酸二丁基锡加入水包油型高内相乳液中,迅速混合均匀,将样品一分为二,其中一份经加热干燥21h后得到样品1和另一份经过冷冻干燥23h后得到样品2,加热温度为100℃,冷冻温度为-30℃。
实施例13
本实施提供了储热复合材料的制备方法,步骤如下:
(1):将16g木浆-羧基化纤维素纳米悬浮液(CNF)(质量浓度为1%)和2g F127机械和2g去离子水搅拌至完全溶解得到水相,将40g二十二烷逐滴滴入上述水相中,混合均匀后获得水包油型高内相乳液;
(2):将交联剂1.0g六亚甲基异氰酸酯与0.02g催化剂三亚乙基二胺加入水包油型高内相乳液中,迅速混合均匀,将样品一分为二,其中一份经加热干燥22h后得到样品1和另一份经过冷冻干燥24h后得到样品2,加热温度为100℃,冷冻温度为-30℃。
对比例1(和实施例1进行对比,减少了交联剂的用量,交联剂六亚甲基异氰酸酯用量为0.50g)
本实施提供了储热复合材料的制备方法,步骤如下:
(1):将16g木浆-羧基化纤维素纳米悬浮液(CNF)(质量浓度为1%)和2g F127和2g去离子水机械搅拌至完全溶解得到水相,将40g十八烷逐滴滴入上述水相中,混合均匀后获得水包油型高内相乳液;
(2):将交联剂0.5g六亚甲基异氰酸酯与0.02g催化剂二月桂酸二丁基锡加入水包油型高内相乳液中,迅速混合均匀,将样品一分为二,其中一份经加热干燥24h后得到样品1和另一份经过冷冻干燥24h后得到样品2,加热温度为100℃,冷冻温度为-30℃。
对比例2(和实施例1进行对比,增加了交联剂的用量,交联剂六亚甲基异氰酸酯用量为2.0g)
本实施提供了储热复合材料的制备方法,步骤如下:
(1):将16g木浆-羧基化纤维素纳米悬浮液(CNF)(质量浓度为1%)和2g F127和2g去离子水机械搅拌至完全溶解得到水相,将40g十八烷逐滴滴入上述水相中,混合均匀后获得水包油型高内相乳液;
(2):将交联剂2.0g六亚甲基异氰酸酯与0.02g催化剂二月桂酸二丁基锡加入水包油型高内相乳液中,迅速混合均匀,将样品一分为二,其中一份经加热干燥24h后得到样品1和另一份经过冷冻干燥24h后得到样品2,加热温度为100℃,冷冻温度为-30℃。
对比例3(和实施例1进行对比,延长了冷冻干燥时间,冷冻干燥时间为36h)
本实施提供了储热复合材料的制备方法,步骤如下:
(1):将16g木浆-羧基化纤维素纳米悬浮液(CNF)(质量浓度为1%)和2g F127和2g去离子水机械搅拌至完全溶解得到水相,将40g十八烷逐滴滴入上述水相中,混合均匀后获得水包油型高内相乳液;
(2):将交联剂1.0g六亚甲基异氰酸酯与0.02g催化剂二月桂酸二丁基锡加入水包油型高内相乳液中,迅速混合均匀,将样品经过冷冻干燥36h后得到对比样品3,加热温度为100℃,冷冻温度为-30℃。
对比例4(和实施例1进行对比,延长了冷冻干燥时间,冷冻干燥时间为48h)
本实施提供了储热复合材料的制备方法,步骤如下:
1):将16g木浆-羧基化纤维素纳米悬浮液(CNF)(质量浓度为1%)和2g F127和2g去离子水机械搅拌至完全溶解得到水相,将40g十八烷逐滴滴入上述水相中,混合均匀后获得水包油型高内相乳液;
(2):将交联剂1.0g六亚甲基异氰酸酯与0.02g催化剂二月桂酸二丁基锡加入水包油型高内相乳液中,迅速混合均匀,将样品经过冷冻干燥48h后得到对比样品4,加热温度为100℃,冷冻温度为-30℃。
测试例1
将实施例1和对比例1、对比例2中制备得到的相变材料进行柔性测试,发现当交联剂用量为2.00g时,相变材料由于交联度过高,材料出现刚性,从而不能满足柔性相变材料的需求。而对比例2由于交联度过低,材料整体力学性能较差,易碎。由此,通过对比测试,最终确定了交联剂的最佳用量。
测试例2
表1通过差示扫描量热仪对实施例1和对比例3、对比例4中制备得到的相变材料的储热能力进行测试,实施例1冷冻干燥24h后的焓值为250J/g,对比例3冷冻干燥36h后的焓值下降到193.9J/g,对比例4冷冻干燥48h后的焓值下降到86.9J/g。通过对干燥时间的探究,最终确定干燥的最佳时间为20-24h之间,若干燥时间低于20h,材料未完全干燥,影响相变材料的使用。
表1
Figure BDA0003093567920000121
表1通过差示扫描量热仪对实施例的样品和对比例的样品进行了储热焓值测试,并最终确定了干燥时间对储热焓值的影响。经过干燥加热24h后样品的储热焓值为200.1J/g,冷冻干燥24h后样品的储热焓值为250J/g。并通过对相变材料进行反复加热冷却循环一次、十次、一百次后,再对材料进行储热焓值测试,发现材料的储热能力并没有明显的下降,这说明了该相变材料具有优良的可重复使用性。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种纤维素基柔性储热复合材料的制备方法,其特征在于,包括以下步骤:
(1)将油相加入水相中混匀得到水包油型乳液;其中,所述油相为有机相变材料;所述水相为水溶性乳化剂、纤维素悬浮液和水的混合液;
(2)向步骤(1)中所得水包油型乳液中加入交联剂,并在催化剂作用下反应,发应结束后干燥,得到所述纤维素基柔性储热复合材料。
2.根据权利要求1所述的纤维素基柔性储热复合材料的制备方法,其特征在于,步骤(1)中,所述油相和水相的质量比为2:1-6:1。
3.根据权利要求1所述的纤维素基柔性储热复合材料的制备方法,其特征在于,步骤(1)中,所述有机相变材料为含有12~24个碳的烷烃有机溶剂。
4.根据权利要求3所述的纤维素基柔性储热复合材料的制备方法,其特征在于,步骤(1)中,所述有机相变材料为十二烷、十三烷、十四烷、十五烷、十六烷、十七烷、十八烷、十九烷、二十烷、二十一烷、二十二烷、二十三烷和二十四烷有机溶剂中的一种或多种。
5.根据权利要求1所述的纤维素基柔性储热复合材料的制备方法,其特征在于,步骤(1)中,所述水相中水溶性乳化剂、纤维素悬浮液和水的质量比为1-2:8-10:1-2。
6.根据权利要求1所述的纤维素基柔性储热复合材料的制备方法,其特征在于,步骤(1)中,所述水溶性乳化剂为泊洛沙姆和/或山梨醇酐单油酸酯。
7.根据权利要求1中所述的纤维素基柔性储热复合材料的制备方法,其特征在于,步骤(1)中,所述纤维素悬浮液为木浆-羧基化纤维素纳米悬浮液和/或棉花-磺化纤维素纳米悬浮液。
8.根据权利要求1中所述的纤维素基柔性储热复合材料的制备方法,其特征在于,步骤(2)中,所述交联剂为六亚甲基异氰酸酯和/或聚异氰酸酯交联剂;所述催化剂为二月桂酸二丁基锡和/或三亚乙基二胺。
9.根据权利要求1中所述的纤维素基柔性储热复合材料的制备方法,其特征在于,步骤(2)中,所述交联剂与催化剂质量比为1.0-1.5:0.02-0.04。
10.如权利要求1-9中任一项所述的制备方法所得纤维素基柔性储热复合材料。
CN202110603910.9A 2021-05-31 2021-05-31 一种纤维素基柔性储热复合材料及其制备方法 Active CN113337252B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110603910.9A CN113337252B (zh) 2021-05-31 2021-05-31 一种纤维素基柔性储热复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110603910.9A CN113337252B (zh) 2021-05-31 2021-05-31 一种纤维素基柔性储热复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113337252A true CN113337252A (zh) 2021-09-03
CN113337252B CN113337252B (zh) 2022-03-01

Family

ID=77473348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110603910.9A Active CN113337252B (zh) 2021-05-31 2021-05-31 一种纤维素基柔性储热复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113337252B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196064A (zh) * 2021-12-15 2022-03-18 苏州大学 纤维素基多孔绝热材料及其制备方法
CN114214035A (zh) * 2021-11-29 2022-03-22 苏州大学 一种光电驱动纤维素基柔性相变材料及其制备方法
CN114437670A (zh) * 2021-12-20 2022-05-06 苏州大学 一种可再生储热复合材料及其制备方法
CN114703693A (zh) * 2022-03-08 2022-07-05 西北工业大学 一种光热可复写储能纳米纸的制备方法
CN114808192A (zh) * 2022-04-14 2022-07-29 苏州大学 一种乳液基储热纤维及其制备方法
CN115403818A (zh) * 2022-07-26 2022-11-29 东华大学 一种隔热-储热一体化复合材料的制备方法及复合材料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1922248A (zh) * 2004-01-28 2007-02-28 荷兰联合利华有限公司 多孔材料和其生产方法
US20080193653A1 (en) * 2004-07-21 2008-08-14 Enet Co., Ltd. Preparation of Microcapsule Using Phase Change Material
CN101555401A (zh) * 2008-04-10 2009-10-14 中国科学院化学研究所 有机相变储能材料的微胶囊及其制备方法
CN105524290A (zh) * 2015-11-05 2016-04-27 北京理工大学 一种透明的柔性的纤维素材料基固-固相变膜
CN109925985A (zh) * 2019-03-15 2019-06-25 湖州闪思新材料科技有限公司 一种相变材料微胶囊包覆的方法和应用
CN110819311A (zh) * 2019-11-15 2020-02-21 东华大学 一种反相乳液法制备水合盐/石蜡/纤维素海绵复合相变材料的方法
WO2021097663A1 (zh) * 2019-11-19 2021-05-27 南京先进生物材料与过程装备研究院有限公司 一种纳米胶囊化二元复合相变材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1922248A (zh) * 2004-01-28 2007-02-28 荷兰联合利华有限公司 多孔材料和其生产方法
US20080193653A1 (en) * 2004-07-21 2008-08-14 Enet Co., Ltd. Preparation of Microcapsule Using Phase Change Material
CN101555401A (zh) * 2008-04-10 2009-10-14 中国科学院化学研究所 有机相变储能材料的微胶囊及其制备方法
CN105524290A (zh) * 2015-11-05 2016-04-27 北京理工大学 一种透明的柔性的纤维素材料基固-固相变膜
CN109925985A (zh) * 2019-03-15 2019-06-25 湖州闪思新材料科技有限公司 一种相变材料微胶囊包覆的方法和应用
CN110819311A (zh) * 2019-11-15 2020-02-21 东华大学 一种反相乳液法制备水合盐/石蜡/纤维素海绵复合相变材料的方法
WO2021097663A1 (zh) * 2019-11-19 2021-05-27 南京先进生物材料与过程装备研究院有限公司 一种纳米胶囊化二元复合相变材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAO ZHANG: "Closed-cell, phase change material-encapsulated, emulsion-templated monoliths for latent heat storage: Flexibility and rapid preparation", 《APPLIED MATERIALS TODAY》 *
张涛: "基于高内相乳液构筑纤维素基多孔聚合物及其性能研究", 《中国化学会第一届全国纤维素学术研讨会》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214035A (zh) * 2021-11-29 2022-03-22 苏州大学 一种光电驱动纤维素基柔性相变材料及其制备方法
CN114196064A (zh) * 2021-12-15 2022-03-18 苏州大学 纤维素基多孔绝热材料及其制备方法
CN114196064B (zh) * 2021-12-15 2022-12-16 苏州大学 纤维素基多孔绝热材料及其制备方法
CN114437670A (zh) * 2021-12-20 2022-05-06 苏州大学 一种可再生储热复合材料及其制备方法
CN114437670B (zh) * 2021-12-20 2022-11-18 苏州大学 一种可再生储热复合材料及其制备方法
CN114703693A (zh) * 2022-03-08 2022-07-05 西北工业大学 一种光热可复写储能纳米纸的制备方法
CN114703693B (zh) * 2022-03-08 2023-03-10 西北工业大学 一种光热可复写储能纳米纸的制备方法
CN114808192A (zh) * 2022-04-14 2022-07-29 苏州大学 一种乳液基储热纤维及其制备方法
CN115403818A (zh) * 2022-07-26 2022-11-29 东华大学 一种隔热-储热一体化复合材料的制备方法及复合材料
CN115403818B (zh) * 2022-07-26 2023-11-10 东华大学 一种隔热-储热一体化复合材料的制备方法及复合材料

Also Published As

Publication number Publication date
CN113337252B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
CN113337252B (zh) 一种纤维素基柔性储热复合材料及其制备方法
Zhou et al. Synthesis and properties of crosslinking halloysite nanotubes/polyurethane-based solid-solid phase change materials
Alkan et al. Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage
Du et al. Preparation and characterization of flame-retardant nanoencapsulated phase change materials with poly (methylmethacrylate) shells for thermal energy storage
Xia et al. Nano-hybridized form-stable ester@ F-SiO2 phase change materials for melt-spun PA6 fibers engineered towards smart thermal management fabrics
Wang et al. Facile and low energy consumption synthesis of microencapsulated phase change materials with hybrid shell for thermal energy storage
Lu et al. A novel bio-based polyurethane/wood powder composite as shape-stable phase change material with high relative enthalpy efficiency for solar thermal energy storage
Mu et al. Synthesis and thermal properties of cross-linked poly (acrylonitrile-co-itaconate)/polyethylene glycol as novel form-stable change material
EP3733276B1 (en) Method for low temperature microencapsulation of phase change materials
Kong et al. Preparation and thermal performance of polyurethane/PEG as novel form-stable phase change materials for thermal energy storage
Kong et al. Preparation and thermal properties of crosslinked polyurethane/lauric acid composites as novel form stable phase change materials with a low degree of supercooling
Wang et al. Lignin assisted Pickering emulsion polymerization to microencapsulate 1-tetradecanol for thermal management
CN114481358B (zh) 一种调温纤维及其制备方法
Zhou et al. Fabrication and characterization of in situ cross-linked electrospun Poly (vinyl alcohol)/phase change material nanofibers
Huang et al. Novel phase change materials based on fatty acid eutectics and triallyl isocyanurate composites for thermal energy storage
Feng et al. Quasi-monodispersed nanocapsules with form stability at high temperature and under shear force for thermal energy storage
Qiu et al. Preparation, thermal property, and thermal stability of microencapsulated n-octadecane with poly (stearyl methacrylate) as shell
Wan et al. Synthesis and characterization of phase change materials microcapsules with paraffin core/cross-linked hybrid polymer shell for thermal energy storage
Qiu et al. Preparation and thermal properties of microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials
Meng et al. Characterization and thermal conductivity of modified graphite/fatty acid eutectic/PMMA form-stable phase change material
Zhang et al. Microfluidic fabrication of core–sheath composite phase change microfibers with enhanced thermal conductive property
CN108276544A (zh) 一种聚乙二醇/羟丙基甲基纤维素固-固相变材料及其制备方法
Lu et al. Octodecane-cellulose nanofiber flexible composites for latent heat storage
Qiu et al. Microencapsulated paraffin as a phase change material with polyurea/polyurethane/poly (lauryl methacrylate) hybrid shells for thermal energy storage applications
Liu et al. Preparation and characterization of a novel form-stable phase change material for thermal energy storage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Zhang Tao

Inventor after: Lu Jintao

Inventor after: Zhao Yan

Inventor before: Lu Jintao

Inventor before: Zhang Tao

Inventor before: Zhao Yan

GR01 Patent grant
GR01 Patent grant