WO2021096075A1 - 아크릴로니트릴 이량체 제조 방법 - Google Patents

아크릴로니트릴 이량체 제조 방법 Download PDF

Info

Publication number
WO2021096075A1
WO2021096075A1 PCT/KR2020/013977 KR2020013977W WO2021096075A1 WO 2021096075 A1 WO2021096075 A1 WO 2021096075A1 KR 2020013977 W KR2020013977 W KR 2020013977W WO 2021096075 A1 WO2021096075 A1 WO 2021096075A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
acrylonitrile
catalyst
dimer
acrylonitrile dimer
Prior art date
Application number
PCT/KR2020/013977
Other languages
English (en)
French (fr)
Inventor
박세흠
김지하
안유진
오완규
정현철
안정헌
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200125786A external-priority patent/KR20210056895A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080006198.8A priority Critical patent/CN113133312B/zh
Priority to EP20880345.2A priority patent/EP3862342B1/en
Priority to US17/292,951 priority patent/US20220306571A1/en
Publication of WO2021096075A1 publication Critical patent/WO2021096075A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/32Separation; Purification; Stabilisation; Use of additives
    • C07C253/34Separation; Purification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for preparing an acrylonitrile dimer, and more particularly, to a method for producing a high yield of acrylonitrile by effectively separating a phosphorus catalyst used as a catalyst in an acrylonitrile dimerization reaction. .
  • the dimerization reaction of acrylonitrile (AN) is, in the presence of a catalyst, acrylonitrile monomer is mixed with a proton donating solvent such as isopropyl alcohol (IPA) and toluene. It is a process of dimerization by reacting in a solvent containing an inert solvent such as TOL).
  • a catalyst acrylonitrile monomer is mixed with a proton donating solvent such as isopropyl alcohol (IPA) and toluene. It is a process of dimerization by reacting in a solvent containing an inert solvent such as TOL).
  • the catalyst is separated by applying heat using the characteristics of a phosphorus-based catalyst having a boiling point higher than that of a reactant or reaction product, and the catalyst is separated from the acrylonitrile dimerization reaction product by the distillation method.
  • a side reaction of acrylonitrile dimerization products proceeds due to heat to generate an acrylonitrile trimer and a multimer, so that the yield of the acrylonitrile dimer is lowered.
  • the liquid-liquid extraction method refers to an unreacted acrylonitrile monomer, isopropyl alcohol and toluene from a reaction product including an acrylonitrile dimer, an unreacted acrylonitrile monomer, isopropyl alcohol, toluene, and a catalyst through distillation.
  • the problem to be solved in the present invention is to solve the problems mentioned in the technology behind the background of the present invention by separating the phosphorus catalyst from the acrylonitrile dimerization reaction product by a simple method to obtain an acrylonitrile dimer in a high yield. It is to provide a method of manufacturing.
  • an unreacted acrylonitrile monomer and an alcohol solvent are distilled from the acrylonitrile dimerization reaction product including an acrylonitrile dimer, an unreacted acrylonitrile monomer, a non-polar solvent, an alcohol solvent, and a phosphorus catalyst.
  • the phosphorus-based catalyst is solidified by mixing water containing an acid with the remaining mixture containing an acrylonitrile dimer, a non-polar solvent, and a phosphorus catalyst, and then separated by a simple method using a filter.
  • the present invention provides a dimerization reaction by supplying an acrylonitrile monomer, a non-polar solvent, an alcohol solvent, and a phosphorus catalyst to a dimerization reactor and supplying it to a distillation column; Supplying an acrylonitrile monomer, a non-polar solvent, and an alcohol solvent to a dimerization reactor in the distillation column, and supplying an acrylonitrile dimer and a phosphorus catalyst to an extraction device; Supplying water containing an acid component to the extraction device to oxidize and inactivate the phosphorus-based catalyst; And separating the deactivated phosphorus-based catalyst and the acrylonitrile dimer.
  • an acrylonitrile dimer of the present invention unreacted through distillation from an acrylonitrile dimerization reaction product comprising an acrylonitrile dimer, an unreacted acrylonitrile monomer, a non-polar solvent, an alcohol solvent, and a phosphorus catalyst.
  • an acrylonitrile dimerization reaction product comprising an acrylonitrile dimer, an unreacted acrylonitrile monomer, a non-polar solvent, an alcohol solvent, and a phosphorus catalyst.
  • the quality of the acrylonitrile dimer can be improved.
  • FIG. 1 is a process flow diagram of a method for producing an acrylonitrile dimer according to an embodiment of the present invention.
  • a method for producing an acrylonitrile dimer is provided.
  • the method for producing an acrylonitrile dimer supplying an acrylonitrile monomer, a non-polar solvent, an alcohol solvent, and a phosphorus catalyst to a dimerization reactor to perform a dimerization reaction and supply to a distillation column; Supplying an acrylonitrile monomer, a non-polar solvent, and an alcohol solvent to a dimerization reactor in the distillation column, and supplying an acrylonitrile dimer and a phosphorus catalyst to an extraction device; Supplying water containing an acid component to the extraction device to oxidize and inactivate the phosphorus-based catalyst; And it may provide a method for producing an acrylonitrile dimer comprising the step of separating the deactivated phosphorus-based catalyst and the acrylonitrile dimer.
  • raw material components, products, etc. may be moved in the form of a stream.
  • The'stream' may refer to a flow of a fluid in a process, and may also refer to a fluid that flows in a pipe.
  • the'stream' may mean both the fluid itself and the flow of the fluid flowing in a pipe connecting each device.
  • the fluid may mean gas or liquid.
  • the dimerization reaction of the acrylonitrile (AN) is a process of dimerization by reacting an acrylonitrile monomer in a solvent in the presence of a catalyst.
  • the present invention it is intended to provide a method for simply separating and reusing a catalyst from an acrylonitrile dimerization reaction product at low cost.
  • the acrylonitrile dimerization reaction may be performed by supplying an acrylonitrile monomer, a non-polar solvent, an alcohol solvent, and a phosphorus catalyst to the dimerization reactor 100 to perform a dimerization reaction.
  • the acrylonitrile dimerization reaction can be prepared by a conventional method known in the art. For example, by supplying an appropriate amount of an acrylonitrile monomer, a non-polar solvent, an alcohol solvent, and a phosphorus catalyst to the dimerization reactor 100, the acrylonitrile dimerization reaction may be performed in an optimum temperature range and pressure range.
  • a non-polar solvent, an alcohol solvent, and a phosphorus catalyst may be supplied to the dimerization reactor 100 in a volume ratio of about 10:3:1. It is not limited.
  • the acrylonitrile dimerization reaction is in a temperature range of 0 °C to 100 °C, 0 °C to 80 °C or 0 °C to 60 °C and 1 bar to 5 bar, 1 bar to 4 bar or It can be carried out in a pressure range of 1 bar to 3 bar.
  • the non-polar solvent supplied to the dimerization reactor 100 is, for example, at least one selected from the group consisting of toluene, chlorobenzene, benzene, dichloromethane, and 1,4-dioxane.
  • the non-polar solvent may be toluene.
  • the alcohol solvent supplied to the dimerization reactor 100 may include, for example, at least one selected from the group consisting of isopropyl alcohol, methyl alcohol, and cyclohexane alcohol.
  • the alcohol solvent may be isopropyl alcohol.
  • the phosphorus catalyst supplied to the dimerization reactor 100 is It can be represented by the following formula (1).
  • R represents a C 1 to C 5 alkyl group, a C 6 to C 12 aryl group or a C 1 to C 8 cycloalkyl group,
  • R 1 to R 3 each represent hydrogen, an alkyl group having 1 to 5 carbon atoms, an amino group or an alkoxy group,
  • n and m are each independently an integer of 1 to 2.
  • the phosphorus catalyst may be represented by the following Formula 1-1.
  • R is a methyl group, an ethyl group, an isopropyl group or a cyclohexyl group,
  • R 2 is hydrogen, methyl or ethyl.
  • the phosphorus-based catalyst may be represented by Formula 1-2 below.
  • an acrylonitrile monomer is dimerized in the presence of a non-polar solvent, an alcohol solvent, and a phosphorus catalyst to prepare an acrylonitrile dimer.
  • the reaction product through the acrylonitrile dimerization reaction may include an acrylonitrile dimer, an unreacted acrylonitrile monomer, a non-polar solvent, an alcohol solvent, a phosphorus catalyst, and a heavy by-product (Heavies).
  • the reaction product through the dimerization reaction may be supplied to the distillation column 200.
  • the distillation column 200 is for separating an unreacted acrylonitrile monomer, an alcohol solvent, and a non-polar solvent from a reaction product through a dimerization reaction. Specifically, the reaction product through the dimerization reaction is supplied to the distillation column 200, and in the distillation column 200, an acrylonitrile monomer, a non-polar solvent, and an alcohol solvent are circulated to the dimerization reactor 100, and acrylic The ronitrile dimer and the phosphorus catalyst can be supplied to the extraction device 300.
  • the non-polar solvent in the reaction product through the dimerization reaction may be partially or completely circulated from the distillation column 200 to the dimerization reactor 100, and also from the distillation column 200. Some or all may be supplied to the extraction device 300.
  • the content of the alcohol solvent in the extraction device 300 may be 1% by weight or less.
  • the content of the alcohol solvent in the extraction device 300 may be 0.001% by weight to 1% by weight, 0.1% by weight to 1% by weight, or 0.5% by weight to 1% by weight, preferably 0% by weight. It can be close.
  • it may be easy to solidify and separate the phosphorus-based catalyst in a step to be described later.
  • the phosphorus catalyst in order to separate the phosphorus catalyst from the mixture of the acrylonitrile dimer and the phosphorus catalyst supplied to the extraction device 300, the phosphorus catalyst is solidified through oxidation and deactivation of the phosphorus catalyst in a step to be described later. Phosphorus catalyst can be separated.
  • the phosphorus catalyst solidified through the oxidation and deactivation is re-dissolution in the alcohol solvent. , Separation through solidification of the phosphorus-based catalyst may be difficult.
  • the alcohol solvent is preferentially separated from the reaction product through the dimerization reaction, and then the alcohol solvent is separated in the step to be described later.
  • the content of the non-polar solvent in the extraction device 300 may be 5% by weight or less.
  • the content of the non-polar solvent in the extraction device 300 may be 0.001% by weight to 5% by weight, 0.001% by weight to 3% by weight, or 0.5% by weight to 1% by weight, preferably 0% by weight. It can be close.
  • a separation process using a filter of the phosphorus-based catalyst solidified in a step to be described later can be easily performed.
  • the phosphorus catalyst solidified through oxidation and deactivation in the steps to be described later is not re-dissolved, The solid phosphorus catalyst can be easily separated.
  • the alcohol solvent in the solidification process through oxidation and deactivation of the phosphorus catalyst, the alcohol solvent must be pre-separated in the mixture containing the phosphorus catalyst, but the mixture containing the phosphorus catalyst in the solidification process through oxidation and deactivation of the phosphorus catalyst. Even if the non-polar solvent is present in, the solidified phosphorus catalyst can be easily separated.
  • the operating temperature of the distillation column 200 may be 40°C to 150°C.
  • the operating temperature of the distillation column 200 may be 50°C to 150°C, 50°C to 120°C, or 80°C to 120°C.
  • the operating pressure of the distillation column 200 may be 0.001 bar to 3 bar.
  • the operating pressure of the distillation column 200 may be 0.001 bar to 2 bar, 0.01 bar to 2 bar, or 0.01 bar to 1.5 bar.
  • the acrylonitrile dimer and the phosphorus catalyst are not distilled, and the unreacted acrylonitrile monomer and an alcohol solvent to the top of the distillation column 200, and Part or all of the non-polar solvent can be effectively separated from the acrylonitrile dimer and the phosphorus catalyst.
  • Heavy by-products may be included among the components separated into the lower part of the distillation column 200. Therefore, the heavy by-products may be removed using a filter before supplying to the extraction device 300.
  • the heavy by-product may include an acrylonitrile polymer and a solid by-product.
  • the extraction device 300 may be for separating a phosphorus catalyst from a mixture containing an acrylonitrile dimer, a non-polar solvent, and a phosphorus catalyst.
  • Water containing an acid component may be supplied to the extraction device 300.
  • the phosphorus catalyst may be oxidized and deactivated.
  • Water containing the acid component may be supplied to the extraction device 300 in an amount of 2 equivalents or more compared to the phosphorus-based catalyst.
  • water containing the acid component may be supplied to the extraction device 300 in an amount of 2 to 5 equivalents, 2 to 4 equivalents, or 2 to 3 equivalents compared to the phosphorus-based catalyst.
  • the water containing the acid component is, for example, from the group consisting of an aqueous hydrochloric acid solution, an aqueous sulfuric acid solution, and an aqueous nitric acid solution. It may include at least one selected.
  • water containing an acid component may be an aqueous hydrochloric acid solution.
  • the water containing the acid component may be separated from the extraction device 300 and discharged, and the water containing the discharged acid component may be resupplied to the extraction device 300 and circulated.
  • the oxidized and deactivated phosphorus catalyst may be represented by the following formula (2).
  • R 1 to R 3 each represent hydrogen, an alkyl group having 1 to 5 carbon atoms, an amino group or an alkoxy group,
  • n and m are each independently an integer of 1 to 2.
  • the oxidized phosphorus catalyst may be represented by Chemical Formula 2, in which case R 1 and R 3 may be hydrogen, and R 2 may be hydrogen, a methyl group, or an ethyl group.
  • the oxidized and deactivated phosphorus-based catalyst may be in a solid state.
  • the phosphorus-based catalyst deactivated in a solid state has the advantage that it can be separated by a simple method using a filter.
  • the filter may be a filtration net, and the filtration net may have a mesh size capable of filtering the solid inactivated phosphorus-based catalyst, thereby filtering a liquid material and a solid-state inactivated phosphorus-based catalyst Can be filtered.
  • the deactivated phosphorus catalyst may be reused as a catalyst for an acrylonitrile dimerization reaction in the dimerization reactor 100 through a separate activation step.
  • the inactivated phosphorus catalyst represented by Formula 2 is reacted with an inorganic phosphorus halide compound to synthesize a phosphorus catalyst represented by Formula 1, a compound represented by the following Formula 3 After conversion to, by reacting with an alcohol solvent, it can be reactivated with the phosphorus catalyst represented by the formula (1).
  • R 1 to R 3 each represent hydrogen, an alkyl group having 1 to 5 carbon atoms, an amino group or an alkoxy group,
  • R 4 represents a halogen element
  • n is an integer of 1 to 2.
  • the intermediate compound may be represented by Formula 3, wherein R 1 and R 3 are hydrogen, R 2 is hydrogen, a methyl group or an ethyl group, and R 4 may be chlorine (Cl).
  • R 1 and R 3 are hydrogen
  • R 2 is hydrogen, a methyl group or an ethyl group
  • R 4 may be chlorine (Cl).
  • R 1 and R 3 are hydrogen
  • R 2 is hydrogen, a methyl group or an ethyl group
  • R 4 may be chlorine (Cl).
  • R 1 and R 3 are hydrogen
  • R 2 is hydrogen, a methyl group or an ethyl group
  • R 4 may be chlorine (Cl).
  • the inorganic phosphorus halide may be PCl 3
  • the alcohol solvent may include at least one selected from the group consisting of isopropyl alcohol, methyl alcohol, and cyclohexane alcohol, but is not limited thereto.
  • the remaining components obtained by separating the deactivated phosphorus catalyst in the extraction device 300, the acrylonitrile dimer and the non-polar solvent are separated by a separate distillation column (not shown) to separate each component. It can be provided. Specifically, the acrylonitrile dimer is separated and recovered from the separate distillation column (not shown), and the non-polar solvent is separated and circulated to the dimerization reactor 100 to participate in the dimerization reaction of acrylonitrile again. have.
  • the acrylonitrile dimer recovered by separating from the distillation column is 1 selected from the group consisting of 1,4-dicyanobutene and 2-methyleneglutaronitrile. It may contain more than one species.
  • the purity of the acrylonitrile dimer recovered by separating from the distillation column may be 95% or more.
  • the purity of the acrylonitrile dimer recovered by separating from the distillation column (not shown) may be 70% to 100%, 75% to 100%, or 80% to 100%.
  • a distillation column (not shown), a condenser (not shown), a reboiler (not shown), a pump (not shown), a compressor (not shown) , A mixer (not shown) and a separator (not shown) may be additionally installed.
  • the reaction product of the acrylonitrile dimerization reaction completed is supplied to the distillation column 200 to recycle some or all of the acrylonitrile monomer, isopropyl alcohol, and toluene to the dimerization reactor 100, and the acrylonitrile dimer, Toluene and phosphorus-based catalysts were supplied to the extraction device 300 after removing heavy (Heavies) by-products using a filter.
  • an aqueous hydrochloric acid (HCl) solution (35 to 37% by weight) was separately supplied in an amount of 2 equivalents compared to the phosphorus catalyst, and the phosphorus catalyst was oxidized and inactivated as shown in Formula 2-1 below.
  • the aqueous hydrochloric acid solution was circulated in the extraction device 300, and the conversion rate of the phosphorus-based catalyst represented by Formula 1-2 to Formula 2-1 below was determined by gas chromatography (GC)/flame ionization detector.
  • GC gas chromatography
  • FID flame ionization detector
  • Injection type Split (ratio:45.6) Injector temperature 260 °C Carrier gas N2 (Total flow: 42.4 mL/min)
  • Column HP-5MS (0.25 mm ID x 30.0 mL, 0.25 ⁇ m FT) Oven temperature 100°C, 3 min Rate 40°C ⁇ 130°C (15°C/min), 135°C ⁇ 280°C (5°C/min) Detector temperature 350°C, FID Injection volume 1 ⁇ l
  • the solid inactivated phosphorus catalyst was separated using a filter, and the acrylonitrile dimer was separated from the mixture of acrylonitrile dimer and toluene, and the final product, 1,4-dicyanobutene.
  • (1,4-dicyanobutene, DCB) and 2-methyleneglutaronitrile (MGN) were obtained.
  • Example 1 without supplying the reaction product of acrylonitrile dimerization to the distillation column 200, that is, without performing the process of separating isopropyl alcohol from the reaction product of acrylonitrile dimerization is completed.
  • Example 1 The same as in Example 1, except that a mixture of acrylonitrile dimer, toluene, isopropyl alcohol, and phosphorus catalyst was removed using a filter to remove heavy by-products and then supplied to the extraction device 300. It was carried out by the method.
  • a hydrochloric acid (HCl) aqueous solution (35 to 37% by weight) is separately supplied to the extraction device 300 to which the mixture from which the heavy by-product is removed is supplied in an amount of 2 equivalents compared to the phosphorus catalyst to oxidize the phosphorus catalyst as shown in Formula 2-1 To inactivate.
  • the phosphorus catalyst solidified by oxidation and deactivation as in Chemical Formula 2-1 was re-dissolved in isopropyl alcohol present in the mixture, and thus could not be separated as a solid phosphorus catalyst.
  • the phosphorus catalyst is solidified by adding an aqueous hydrochloric acid solution (i.e., water containing an acid) to the reaction product in which the alcohol solvent is not separated first, the solidified phosphorus catalyst is re-dissolved in the alcohol solvent and recovered in a solid state. It was confirmed that is impossible.
  • an aqueous hydrochloric acid solution i.e., water containing an acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 아크릴로니트릴 이량체 제조 방법에 관한 것으로, 아크릴로니트릴 단량체, 무극성 용매, 알코올 용매 및 인계 촉매를 이량화 반응기에 공급하여 이량화 반응시켜 증류 컬럼으로 공급하는 단계; 상기 증류 컬럼에서 아크릴로니트릴 단량체, 무극성 용매 및 알코올 용매는 이량화 반응기로 공급하고, 아크릴로니트릴 이량체 및 인계 촉매를 추출 장치로 공급하는 단계; 상기 추출 장치에 산 성분을 포함하는 물을 공급하여 인계 촉매를 산화시켜 불활성화시키는 단계; 및 상기 불활성화된 인계 촉매 및 아크릴로니트릴 이량체를 분리하는 단계를 포함하는 아크릴로니트릴 이량체 제조 방법을 제공한다.

Description

아크릴로니트릴 이량체 제조 방법
관련출원과의 상호인용
본 출원은 2019년 11월 11일자 한국특허출원 제10-2019-0143198호 및 2020년 09월 28일자 한국특허출원 제10-2020-0125786호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 아크릴로니트릴 이량체 제조방법에 관한 것으로, 보다 상세하게는 아크릴로니트릴 이량화 반응에 있어서, 촉매로서 사용된 인계 촉매를 효과적으로 분리하여 고수율의 아크릴로니트릴을 제조하는 방법에 관한 것이다.
아크릴로니트릴(Acrylonitrile, AN)의 이량화(dimerization) 반응은, 촉매의 존재 하에, 아크릴로니트릴 단량체를 이소프로필 알코올(isopropyl alcohol, IPA)과 같은 양성자 주개(proton donating) 용매와 톨루엔(toluene, TOL)과 같은 불활성(inert) 용매를 포함하는 용매 내에서 반응시켜 이량화시키는 공정이다.
종래에는 상기 아크릴로니트릴 이량화 반응에서 반응 후 아크릴로니트릴 이량체, 미반응 아크릴로니트릴 단량체, 이소프로필 알코올, 톨루엔 및 촉매를 포함하는 반응 생성물로부터 증류(distillation) 방법 또는 액액 추출(liquid-liquid extraction, LLE) 방법을 통해 촉매를 분리하기 위한 연구가 진행되어 왔다.
구체적으로, 상기 증류 방법은 비점이 반응물이나 반응 생성물보다 높은 인계 촉매의 특성을 이용하여 열을 가해 분리하는 방법으로 촉매를 분리하는 것으로, 상기 증류 방법으로 아크릴로니트릴 이량화 반응 생성물로부터 촉매를 분리하는 경우, 열로 인해 아크릴로니트릴 이량화 생성물들의 부반응이 진행되어 아크릴로니트릴 삼량체 및 다량체 등이 생성되어 아크릴로니트릴 이량체의 수율이 낮아지는 문제점이 있다.
또한, 상기 액액 추출 방법이란, 증류를 통해 아크릴로니트릴 이량체, 미반응 아크릴로니트릴 단량체, 이소프로필 알코올, 톨루엔 및 촉매를 포함하는 반응 생성물로부터 미반응 아크릴로니트릴 단량체, 이소프로필 알코올 및 톨루엔을 분리하여 아크릴로니트릴 이량화 반응에 재사용하고, 아크릴로니트릴 이량체 및 촉매를 포함하는 혼합물에 촉매를 용해시키기 위한 별도의 유기 용매를 공급하여 촉매를 추출한 후, 상기 촉매를 아크릴로니트릴 이량화 반응에 재사용하는 것으로, 상기 액액 추출 방법으로 아크릴로니트릴 이량화 반응 생성물로부터 촉매를 분리하는 경우, 촉매에 대한 용해율이 높은 용매를 선별하는데 어려움이 있었다.
따라서, 상기 아크릴로니트릴 이량화 반응 생성물로부터 촉매를 간단하게 분리하여 재사용하기 위한 방법에 대한 연구가 필요한 실정이다.
본 발명에서 해결하고자 하는 과제는, 상기 발명의 배경이 되는 기술에서 언급한 문제들을 해결하기 위하여, 아크릴로니트릴 이량화 반응 생성물로부터 인계 촉매를 간단한 방법으로 분리하여 아크릴로니트릴 이량체를 고수율로 제조하는 방법을 제공하는 것이다.
즉, 본 발명은 아크릴로니트릴 이량체, 미반응 아크릴로니트릴 단량체, 무극성 용매, 알코올 용매 및 인계 촉매를 포함하는 아크릴로니트릴 이량화 반응 생성물로부터 증류를 통해 미반응 아크릴로니트릴 단량체와 알코올 용매를 먼저 분리하여 이량화 반응기로 순환시키고, 아크릴로니트릴 이량체, 무극성 용매 및 인계 촉매를 포함하는 나머지 혼합물에 산이 포함된 물을 혼합하여 상기 인계 촉매를 고체화시킨 후 필터를 이용한 간단한 방법으로 분리할 수 있다.
상기의 과제를 해결하기 위한 본 발명의 일 실시예에 따르면, 본 발명은 아크릴로니트릴 단량체, 무극성 용매, 알코올 용매 및 인계 촉매를 이량화 반응기에 공급하여 이량화 반응시켜 증류 컬럼으로 공급하는 단계; 상기 증류 컬럼에서 아크릴로니트릴 단량체, 무극성 용매 및 알코올 용매는 이량화 반응기로 공급하고, 아크릴로니트릴 이량체 및 인계 촉매를 추출 장치로 공급하는 단계; 상기 추출 장치에 산 성분을 포함하는 물을 공급하여 인계 촉매를 산화시켜 불활성화시키는 단계; 및 상기 불활성화된 인계 촉매 및 아크릴로니트릴 이량체를 분리하는 단계를 포함하는 아크릴로니트릴 이량체 제조 방법을 제공한다.
본 발명의 아크릴로니트릴 이량체 제조 방법에 따르면, 아크릴로니트릴 이량체, 미반응 아크릴로니트릴 단량체, 무극성 용매, 알코올 용매 및 인계 촉매를 포함하는 아크릴로니트릴 이량화 반응 생성물로부터 증류를 통해 미반응 아크릴로니트릴 단량체, 알코올 용매 및 무극성 용매의 일부 또는 전부를 먼저 분리하고, 아크릴로니트릴 이량체 및 인계 촉매에 산 성분을 포함하는 물을 혼합하여 상기 인계 촉매를 고체화시킨 후 필터를 이용한 간단하게 효과적인 방법으로 분리할 수 있다.
또한, 상기 인계 촉매를 분리하기 위한 용매로서 물을 사용함으로써, 비용을 절감할 수 있다.
또한, 상기 아크릴로니트릴 이량체를 고순도로 분리함으로써, 아크릴로니트릴 이량체의 품질을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 아크릴로니트릴 이량체 제조 방법의 공정 흐름도이다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 하기 도 1을 참조하여 더욱 상세하게 설명한다.
본 발명에 따르면, 아크릴로니트릴 이량체 제조 방법이 제공된다. 상기 아크릴로니트릴 이량체 제조 방법으로, 아크릴로니트릴 단량체, 무극성 용매, 알코올 용매 및 인계 촉매를 이량화 반응기에 공급하여 이량화 반응시켜 증류 컬럼으로 공급하는 단계; 상기 증류 컬럼에서 아크릴로니트릴 단량체, 무극성 용매 및 알코올 용매는 이량화 반응기로 공급하고, 아크릴로니트릴 이량체 및 인계 촉매를 추출 장치로 공급하는 단계; 상기 추출 장치에 산 성분을 포함하는 물을 공급하여 인계 촉매를 산화시켜 불활성화시키는 단계; 및 상기 불활성화된 인계 촉매 및 아크릴로니트릴 이량체를 분리하는 단계를 포함하는 아크릴로니트릴 이량체 제조 방법을 제공할 수 있다.
본 발명의 일 실시예에 따르면, 아크릴로니트릴 이량체 제조를 위한 단계에서, 원료 성분, 생성물 등은 스트림(stream) 형태로 이동할 수 있다. 상기 '스트림'은 공정 내 유체(fluid)의 흐름을 의미하는 것일 수 있고, 또한, 배관 내에서 흐르는 유체 자체를 의미하는 것일 수 있다. 구체적으로, 상기 '스트림'은 각 장치를 연결하는 배관 내에서 흐르는 유체 자체 및 유체의 흐름을 동시에 의미하는 것일 수 있다. 또한, 상기 유체는 기체(gas) 또는 액체(liquid)를 의미할 수 있다.
상기 아크릴로니트릴(Acrylonitrile, AN)의 이량화(dimerization) 반응은, 촉매의 존재 하에, 아크릴로니트릴 단량체를 용매 내에서 반응시켜 이량화시키는 공정이다.
종래에는 상기 아크릴로니트릴 이량화 반응에서 반응 후 아크릴로니트릴 이량체, 미반응 아크릴로니트릴 단량체, 이소프로필 알코올, 톨루엔 및 촉매를 포함하는 반응 생성물로부터 증류(distillation) 방법 또는 유기 용매를 이용한 액액 추출(liquid-liquid extraction, LLE) 방법을 통해 촉매를 분리하기 위한 연구가 진행되어 왔다.
그러나, 상기 증류 방법으로 아크릴로니트릴 이량화 반응 생성물로부터 촉매를 분리하는 경우, 아크릴로니트릴 이량화 생성물들의 부반응이 진행되어 아크릴로니트릴 삼량체 및 다량체 등이 생성되어 아크릴로니트릴 이량체의 수율이 낮아지는 문제가 있었으며, 상기 액액 추출 방법으로 아크릴로니트릴 이량화 반응 생성물로부터 촉매를 분리하는 경우, 촉매에 대한 용해율이 높은 용매를 선별하는데 어려움이 있었다.
이에 대해, 본 발명에서는 아크릴로니트릴 이량화 반응 생성물로부터 촉매를 간단하게 저비용으로 분리하여 재사용하기 위한 방법을 제공하고자 한다.
본 발명의 일 실시예에 따르면, 상기 아크릴로니트릴 이량화 반응은, 아크릴로니트릴 단량체, 무극성 용매, 알코올 용매 및 인계 촉매를 이량화 반응기(100)에 공급하여 이량화 반응시키는 방법으로 수행될 수 있다.
본 발명의 일 실시예에 따르면, 상기 아크릴로니트릴 이량화 반응은 본 기술분야에서 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들어, 아크릴로니트릴 단량체, 무극성 용매, 알코올 용매 및 인계 촉매를 적정량 이량화 반응기(100)에 공급하여 최적의 온도 범위 및 압력 범위에서 아크릴로니트릴 이량화 반응을 수행할 수 있다.
본 발명의 일 실시예에 따르면, 상기 아크릴로니트릴 이량화 반응에 있어서, 무극성 용매, 알코올 용매 및 인계 촉매는 약 10:3:1의 부피비로 이량화 반응기(100)에 공급될 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따르면, 상기 아크릴로니트릴 이량화 반응은 0 ℃ 내지 100 ℃, 0 ℃ 내지 80 ℃ 또는 0 ℃ 내지 60 ℃의 온도 범위 및 1 bar 내지 5 bar, 1 bar 내지 4 bar 또는 1 bar 내지 3 bar의 압력 범위에서 수행될 수 있다. 상기 온도 및 압력 범위에서 아크릴로니트릴 이량화 반응을 수행하는 경우, 우수한 전환율로 아크릴로니트릴 이량체를 제조할 수 있다.
본 발명의 일 실시예에 따르면, 상기 이량화 반응기(100)로 공급되는 무극성 용매는 예를 들어, 톨루엔, 클로로벤젠, 벤젠, 디클로로메탄 및 1,4-다이옥산으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적인 예로서, 상기 무극성 용매는 톨루엔일 수 있다.
본 발명의 일 실시예에 따르면, 상기 이량화 반응기(100)로 공급되는 알코올 용매는 예를 들어, 이소프로필 알코올, 메틸 알코올 및 사이클로헥산 알코올로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적인 예로서, 상기 알코올 용매는 이소프로필 알코올일 수 있다.
본 발명의 일 실시예에 따르면, 상기 이량화 반응기(100)로 공급되는 인계 촉매는 하기 화학식 1로 나타낼 수 있다.
[화학식 1]
Figure PCTKR2020013977-appb-img-000001
상기 화학식 1에서,
R은 탄소수 1 내지 5의 알킬기, 탄소수 6 내지 12의 아릴기 또는 탄소수 1 내지 8의 사이클로알킬기를 나타내고,
R 1 내지 R 3은 각각 수소, 탄소수 1 내지 5의 알킬기, 아미노기 또는 알콕시기를 나타내며,
n 및 m은 각각 독립적으로 1 내지 2의 정수이다.
구체적인 예로서, 상기 인계 촉매는, 하기 화학식 1-1로 나타낼 수 있다.
[화학식 1-1]
Figure PCTKR2020013977-appb-img-000002
상기 화학식 1-1에서,
R은 메틸기, 에틸기, 이소프로필기 또는 사이클로헥실기이고,
R 2는 수소, 메틸기 또는 에틸기이다.
보다 구체적인 예로, 상기 인계 촉매는, 하기 화학식 1-2로 나타낼 수 있다.
[화학식 1-2]
Figure PCTKR2020013977-appb-img-000003
본 발명의 일 실시예에 따르면, 상기 이량화 반응기(100) 내에서 무극성 용매, 알코올 용매 및 인계 촉매의 존재 하에 아크릴로니트릴 단량체가 이량화 반응하여 아크릴로니트릴 이량체를 제조할 수 있다. 구체적으로, 상기 아크릴로니트릴 이량화 반응을 통한 반응 생성물은, 아크릴로니트릴 이량체, 미반응 아크릴로니트릴 단량체, 무극성 용매, 알코올 용매, 인계 촉매 및 중질 부산물(Heavies)을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 이량화 반응을 통한 반응 생성물은 증류 컬럼(200)으로 공급될 수 있다.
상기 증류 컬럼(200)은 이량화 반응을 통한 반응 생성물로부터 미반응 아크릴로니트릴 단량체, 알코올 용매 및 무극성 용매를 분리하기 위한 것이다. 구체적으로, 상기 이량화 반응을 통한 반응 생성물은 증류 컬럼(200)으로 공급되고, 상기 증류 컬럼(200)에서 아크릴로니트릴 단량체, 무극성 용매 및 알코올 용매는 이량화 반응기(100)로 순환시키고, 아크릴로니트릴 이량체 및 인계 촉매는 추출 장치(300)로 공급할 수 있다.
이 때, 상기 이량화 반응을 통한 반응 생성물 내 무극성 용매는, 상기 증류 컬럼(200)으로부터 그 일부 또는 전부가 이량화 반응기(100)로 순환될 수 있으며, 또한, 상기 증류 컬럼(200)으로부터 그 일부 또는 전부가 추출 장치(300)로 공급될 수 있다.
상기 추출 장치(300) 내 알코올 용매의 함량은 1 중량% 이하일 수 있다. 예를 들어, 상기 추출 장치(300) 내 알코올 용매의 함량은 0.001 중량% 내지 1 중량%, 0.1 중량% 내지 1 중량% 또는 0.5 중량% 내지 1 중량% 일 수 있으며, 바람직하게는 0 중량%에 가까울 수 있다. 상기 추출 장치(300) 내 알코올 용매의 함량을 상기 범위로 제어함으로써, 후술할 단계에서 인계 촉매를 고체화하여 분리하는 것이 용이할 수 있다.
구체적인 예로, 상기 추출 장치(300)로 공급된 아크릴로니트릴 이량체 및 인계 촉매의 혼합물로부터 인계 촉매를 분리하기 위해서는, 후술할 단계에서 상기 인계 촉매의 산화 및 불활성화를 통하여 고체화시킨 후 고체 상태의 인계 촉매를 분리할 수 있다. 그러나, 이 때, 아크릴로니트릴 이량체 및 인계 촉매의 혼합물에 상기 알코올 용매가 혼합되어 있을 경우에는, 상기 산화 및 불활성화를 통하여 고체화된 인계 촉매가 상기 알코올 용매에 재 용해(re-dissolution) 됨으로써, 상기 인계 촉매의 고체화를 통한 분리가 어려워질 수 있다.
즉, 상기 이량화 반응을 통한 반응 생성물로부터 인계 촉매를 분리하기 위해서는, 전술한 바와 같이 상기 이량화 반응을 통한 반응 생성물로부터 알코올 용매를 우선적으로 분리 후, 후술할 단계에서 상기 알코올 용매가 분리된 반응 생성물 내 인계 촉매의 산화 및 불활성화를 통하여 고체화시킴으로써, 고체 상태의 인계 촉매를 용이하게 분리할 수 있다.
상기 추출 장치(300) 내 무극성 용매의 함량은 5 중량% 이하일 수 있다. 예를 들어, 상기 추출 장치(300) 내 무극성 용매의 함량은 0.001 중량% 내지 5 중량%, 0.001 중량% 내지 3 중량% 또는 0.5 중량% 내지 1 중량%일 수 있으며, 바람직하게는 0 중량%에 가까울 수 있다. 상기 추출 장치(300) 내 무극성 용매의 함량을 상기 범위로 제어함으로써, 후술할 단계에서 고체화된 인계 촉매의 필터를 이용한 분리 과정이 용이하게 수행될 수 있다.
구체적인 예로, 상기 알코올 용매가 분리된, 아크릴로니트릴 이량체 및 인계 촉매의 혼합물에 상기 무극성 용매가 혼합되어 있더라도, 후술할 단계에서 산화 및 불활성화를 통하여 고체화된 인계 촉매가 재 용해되지 않기 때문에, 고체 상태의 인계 촉매를 용이하게 분리할 수 있다.
즉, 상기 인계 촉매의 산화 및 불활성화 통한 고체화 과정에서 인계 촉매가 포함된 혼합물 내에 상기 알코올 용매는 선 분리된 상태여야 하지만, 상기 인계 촉매의 산화 및 불활성화 통한 고체화 과정에서 인계 촉매가 포함된 혼합물 내에 상기 무극성 용매가 존재하더라도 고체화된 인계 촉매를 용이하게 분리할 수 있다.
상기 증류 컬럼(200)의 운전 온도는 40 ℃ 내지 150 ℃일 수 있다. 예를 들어, 상기 증류 컬럼(200)의 운전 온도는 50 ℃ 내지 150 ℃, 50 ℃ 내지 120 ℃ 또는 80 ℃ 내지 120 ℃일 수 있다. 또한, 상기 증류 컬럼(200)의 운전 압력은 0.001 bar 내지 3 bar일 수 있다. 예를 들어, 상기 증류 컬럼(200)의 운전 압력은 0.001 bar 내지 2 bar, 0.01 bar 내지 2 bar 또는 0.01 bar 내지 1.5 bar 일 수 있다. 상기 증류 컬럼(200) 운전 온도 및 운전 압력을 상기 범위로 제어함으로써, 아크릴로니트릴 이량체 및 인계 촉매가 증류되지 않고, 증류 컬럼(200)의 상부로 미반응 아크릴로니트릴 단량체와 알코올 용매, 및 무극성 용매의 일부 또는 전부를, 하부로는 아크릴로니트릴 이량체 및 인계 촉매를 효과적으로 분리할 수 있다.
상기 증류 컬럼(200) 하부로 분리된 성분 중에는 중질 부산물이 포함되어 있을 수 있다. 따라서, 추출 장치(300)로 공급하기 전에 상기 중질 부산물을 필터를 이용하여 제거할 수 있다. 예를 들어, 상기 중질 부산물은 아크릴로니트릴 중합체 및 고체 부산물 등을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 추출 장치(300)는 아크릴로니트릴 이량체, 무극성 용매 및 인계 촉매를 포함하는 혼합물로부터 인계 촉매를 분리하기 위한 것일 수 있다.
상기 추출 장치(300)로는 산 성분을 포함하는 물이 공급될 수 있다. 상기 산 성분을 포함하는 물과 인계 촉매가 혼합되는 경우, 상기 인계 촉매는 산화되며 불활성화될 수 있다.
상기 산 성분을 포함하는 물은 인계 촉매 대비 2 당량 이상으로 추출 장치(300)에 공급될 수 있다. 예를 들어, 상기 산 성분을 포함하는 물은 인계 촉매 대비 2 당량 내지 5 당량, 2 당량 내지 4 당량 또는 2 당량 내지 3 당량으로 추출 장치(300)에 공급될 수 있다. 상기 함량으로 산 성분을 포함하는 물을 추출 장치(300)로 공급함으로써, 인계 촉매를 효율적으로 산화시킬 수 있다.
상기 추출 장치(300)에 산 성분을 포함하는 물을 공급하여 인계 촉매를 산화시켜 불활성화시키는 단계에서, 상기 산 성분을 포함하는 물은 예를 들어, 염산 수용액, 황산 수용액 및 질산 수용액으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적인 예로서, 본 발명에 있어서, 산 성분을 포함하는 물은 염산 수용액일 있다.
상기 산 성분을 포함하는 물은 추출 장치(300)로부터 분리되어 배출될 수 있으며, 상기 배출된 산 성분을 포함하는 물은 추출 장치(300)로 재공급되어 순환할 수 있다.
상기 산화되어 불활성화된 인계 촉매는 하기 화학식 2로 나타낼 수 있다.
[화학식 2]
Figure PCTKR2020013977-appb-img-000004
상기 화학식 2에서,
R 1 내지 R 3은 각각 수소, 탄소수 1 내지 5의 알킬기, 아미노기 또는 알콕시기를 나타내며,
n 및 m은 각각 독립적으로 1 내지 2의 정수이다.
구체적인 예로서, 상기 산화된 인계 촉매는 상기 화학식 2로 나타낼 수 있는데, 이 때, 상기 R 1 및 R 3은 수소이고, R 2는 수소, 메틸기 또는 에틸기일 수 있다.
이와 같이, 산화되어 불활성화된 인계 촉매는, 고체 상태일 수 있다. 이와 같이, 고체 상태로 불활성화된 인계 촉매는 필터를 사용하는 간단한 방법으로 분리할 수 있다는 장점이 있다. 예를 들어, 상기 필터는 여과망일 수 있으며, 상기 여과망은 상기 고체 상태의 불활성화된 인계 촉매를 거를 수 있는 메쉬 크기를 가질 수 있어, 액상 물질을 여과하고, 고체 상태의 불활성화된 인계 촉매를 거를 수 있다.
본 발명의 일 실시예에 따르면, 상기 불활성화된 인계 촉매는 별도의 활성화 단계를 거쳐 이량화 반응기(100)에서 아크릴로니트릴 이량화 반응을 위한 촉매로서 재사용할 수 있다.
예를 들어, 상기 활성화 단계는 상기 화학식 2로 표시되는 불활성화된 인계 촉매를 무기 인 할라이드 화합물과 반응시켜 상기 화학식 1로 표시되는 인계 촉매를 합성할 수 있는 중간체인, 하기 화학식 3으로 표시되는 화합물로 전환시켜준 후, 알코올 용매와 반응시킴으로써 상기 화학식 1로 표시되는 인계 촉매로 다시 활성화시킬 수 있다.
[화학식 3]
Figure PCTKR2020013977-appb-img-000005
상기 화학식 3에서,
R 1 내지 R 3은 각각 수소, 탄소수 1 내지 5의 알킬기, 아미노기 또는 알콕시기를 나타내고,
R 4는 할로겐 원소를 나타내며,
n은 1 내지 2의 정수이다.
구체적인 예로서, 상기 중간체인 화합물은 상기 화학식 3으로 나타낼 수 있는데, 이 때, 상기 R 1 및 R 3은 수소이고, R 2는 수소, 메틸기 또는 에틸기이며, 상기 R 4는 염소(Cl)일 수 있으며, 이에 한정되는 것은 아니다.
보다 구체적인 예로서, 상기 무기 인 할라이드는 PCl 3일 수 있고, 상기 알코올 용매는 이소프로필 알코올, 메틸 알코올 및 사이클로헥산 알코올로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으며, 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따르면, 추출 장치(300)에서 불활성화된 인계 촉매를 분리한 나머지 성분인 아크릴로니트릴 이량체 및 무극성 용매는 각각의 성분을 분리하기 위하여 별도의 증류 컬럼(미도시)을 구비할 수 있다. 구체적으로, 상기 별도의 증류 컬럼(미도시)으로부터 아크릴로니트릴 이량체는 분리하여 회수하고, 무극성 용매는 분리하여 이량화 반응기(100)로 순환시켜 아크릴로니트릴의 이량화 반응에 다시 참여시킬 수 있다.
상기 증류 컬럼(미도시)에서 분리하여 회수된 아크릴로니트릴 이량체는 1,4-디시아노부텐(1,4-dicyanobutene) 및 2-메틸렌글루타로니트릴(2-methyleneglutaronitrile)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
상기 증류 컬럼(미도시)에서 분리하여 회수된 아크릴로니트릴 이량체의 순도는 95% 이상일 수 있다. 예를 들어, 상기 증류 컬럼(미도시)에서 분리하여 회수된 아크릴로니트릴 이량체의 순도는 70 % 내지 100 %, 75 % 내지 100 % 또는 80 % 내지 100 %일 수 있다. 이와 같이, 본 발명에 따른 방법으로 아크릴로니트릴의 이량화 반응과, 상기 아크릴로니트릴 이량화 반응에서 사용된 촉매를 효과적으로 분리함으로써, 아크릴로니트릴 이량체를 고순도로 제조할 수 있다.
본 발명의 일 실시예에 따르면, 상기 아크릴로이량체 제조 방법에서는 필요한 경우, 증류 컬럼(미도시), 응축기(미도시), 재비기(미도시), 펌프(미도시), 압축기(미도시), 혼합기(미도시) 및 분리기(미도시) 등을 추가적으로 더 설치할 수 있다.
이상, 본 발명에 따른 아크릴로이량체 제조 방법을 기재 및 도면에 도시하였으나, 상기의 기재 및 도면의 도시는 본 발명을 이해하기 위한 핵심적인 구성만을 기재 및 도시한 것으로, 상기 기재 및 도면에 도시한 공정 및 장치 이외에, 별도로 기재 및 도시하지 않은 공정 및 장치는 본 발명에 따른 아크릴로이량체 제조 방법을 실시하기 위해 적절히 응용되어 이용될 수 있다.
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 통상의 기술자에게 있어서 명백한 것이며, 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
실시예
실시예 1
도 1에 도시된 공정 흐름도와 같이, 이량화 반응기(100)에 아크릴로니트릴 단량체(AN) 3 mL, 톨루엔 용매(Tol) 10 mL, 이소프로필 알코올(ROH) 1 mL 및 하기 화학식 1-2의 인계 촉매를 AN 대비 5 mol%를 공급하여 상압 및 60 ℃의 온도 조건에서 아크릴로니트릴 이량화 반응을 수행하였다.
[화학식 1-2]
Figure PCTKR2020013977-appb-img-000006
이 때, 상기 아크릴로니트릴 이량화 반응에서 사용한 촉매, 단량체 및 용매는 하기 표 1과 같다.
종류 용도 제조사 분자량(g/mol) 밀도(g/mL) 비점(℃)
에틸 디페닐포스피나이트(97%) 인계 촉매 Sigma-Aldrich 230.25 1.07 152
아크릴로니트릴 단량체 Sigma-Aldrich 53.064 0.81 77
톨루엔 용매 Sigma-Aldrich 92.141 0.87 111
이소프로필 알코올 용매 Sigma-Aldrich 60.096 0.786 82.6
반응이 완료된 아크릴로니트릴 이량화 반응 생성물을 증류 컬럼(200)으로 공급하여 아크릴로니트릴 단량체, 이소프로필 알코올 및 톨루엔의 일부 또는 전부를 이량화 반응기(100)로 재순환시키고, 아크릴로니트릴 이량체, 톨루엔 및 인계 촉매는 필터를 이용하여 중질(Heavies) 부산물을 제거한 후 추출 장치(300)로 공급하였다.
추출 장치(300)에서는 별도로 염산(HCl) 수용액(35 내지 37 중량%)을 인계 촉매 대비 2 당량으로 공급하여 인계 촉매를 하기 화학식 2-1과 같이 산화시켜 불활성화시켰다. 이 때, 상기 염산 수용액은 추출 장치(300)에 순환시켰으며, 상기 화학식 1-2로 나타내는 인계 촉매가 하기 화학식 2-1로 전환된 전환율은 가스 크로마토그래피(gas chromatography, GC)/불꽃이온화검출기(flame ionization detector, FID) 분석(Shidmadz GC-2030)을 통해 측정한 결과 70% 이상으로 확인하였다.
[화학식 2-1]
Figure PCTKR2020013977-appb-img-000007
이 때, 상기 GC/FID 분석 조건은 하기 표 2와 같다.
Injection type Split (ratio:45.6)
Injector temperature 260 ℃
Carrier gas N2 (Total flow: 42.4 mL/min)
Column HP-5MS (0.25 mm ID x 30.0 mL, 0.25 ㎛ FT)
Oven temperature 100℃, 3 min
Rate 40℃~130℃ (15℃/min), 135℃~280℃ (5℃/min)
Detector temperature 350℃, FID
Injection volume 1 ㎕
그런 다음, 필터를 이용하여 고체의 불활성화된 인계 촉매를 분리하고, 아크릴로니트릴 이량체 및 톨루엔의 혼합물로부터 아크릴로니트릴 이량체를 분리하여, 최종 제품(product)인 1,4-디시아노부텐(1,4-dicyanobutene, DCB) 및 2-메틸렌글루타로니트릴(2-methyleneglutaronitrile, MGN)을 얻을 수 있었다.
비교예 1
실시예 1에서, 반응이 완료된 아크릴로니트릴 이량화 반응 생성물을 증류 컬럼(200)으로 공급하지 않고, 즉, 반응이 완료된 아크릴로니트릴 이량화 반응 생성물로부터 이소프로필 알코올을 분리하는 과정을 수행하지 않고, 아크릴로니트릴 이량체, 톨루엔, 이소프로필 알코올 및 인계 촉매가 혼합된 혼합물을 필터를 이용하여 중질(Heavies) 부산물을 제거한 후 추출 장치(300)로 공급하 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
상기 중질 부산물이 제거된 혼합물이 공급된, 추출 장치(300)에는 별도로 염산(HCl) 수용액(35 내지 37 중량%)을 인계 촉매 대비 2 당량으로 공급하여 인계 촉매를 상기 화학식 2-1과 같이 산화시켜 불활성화시켰다.
이 경우, 상기 화학식 2-1과 같이 산화 및 불활성화되어 고체화된 인계 촉매는 상기 혼합물 내에 존재하는 이소프로필 알코올에 재 용해되어, 고체 상태의 인계 촉매로서 분리할 수 없었다.
이와 같이, 알코올 용매를 우선적으로 분리하지 않은 반응 생성물에 염산 수용액(즉, 산을 포함하는 물)을 투입하여 인계 촉매를 고체화시킬 경우, 고체화된 인계 촉매는 알코올 용매에 재 용해되어 고체 상태로 회수가 불가능함을 확인하였다.

Claims (11)

  1. 아크릴로니트릴 단량체, 무극성 용매, 알코올 용매 및 인계 촉매를 이량화 반응기에 공급하여 이량화 반응시켜 증류 컬럼으로 공급하는 단계;
    상기 증류 컬럼에서 아크릴로니트릴 단량체, 무극성 용매 및 알코올 용매는 이량화 반응기로 공급하고, 아크릴로니트릴 이량체 및 인계 촉매를 추출 장치로 공급하는 단계;
    상기 추출 장치에 산 성분을 포함하는 물을 공급하여 인계 촉매를 산화시켜 불활성화시키는 단계; 및
    상기 불활성화된 인계 촉매 및 아크릴로니트릴 이량체를 분리하는 단계를 포함하는 아크릴로니트릴 이량체 제조 방법.
  2. 제1항에 있어서,
    상기 인계 촉매는 하기 화학식 1로 나타내는 것인 아크릴로니트릴 이량체 제조 방법:
    [화학식 1]
    Figure PCTKR2020013977-appb-img-000008
    상기 화학식 1에서,
    R은 탄소수 1 내지 5의 알킬기 또는 탄소수 1 내지 8의 사이클로알킬기를 나타내고,
    R 1 내지 R 3은 각각 수소, 탄소수 1 내지 5의 알킬기, 아미노기 또는 알콕시기를 나타내며,
    n 및 m은 각각 독립적으로 1 내지 2의 정수이다.
  3. 제1항에 있어서,
    상기 추출 장치 내 알코올 용매의 함량은 1 중량% 이하인 아크릴로니트릴 이량체 제조 방법.
  4. 제1항에 있어서,
    상기 추출 장치 내 무극성 용매의 함량은 5 중량% 이하인 아크릴로니트릴 이량체 제조 방법.
  5. 제1항에 있어서,
    상기 산 성분을 포함하는 물은 인계 촉매 대비 2 당량 이상으로 공급하는 것인 아크릴로니트릴 이량체 제조 방법.
  6. 제1항에 있어서,
    상기 추출 장치에 산 성분을 포함하는 물을 공급하여 인계 촉매를 산화시켜 불활성화시키는 단계에서, 산 성분을 포함하는 물은 염산 수용액, 황산 수용액 및 질산 수용액으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것인 아크릴로니트릴 이량체 제조 방법.
  7. 제1항에 있어서,
    상기 불활성화된 인계 촉매는 하기 화학식 2로 나타내는 것인 아크릴로니트릴 이량체 제조 방법:
    [화학식 2]
    Figure PCTKR2020013977-appb-img-000009
    상기 화학식 2에서,
    R 1 내지 R 3은 각각 수소, 탄소수 1 내지 5의 알킬기, 아미노기 또는 알콕시기를 나타내며,
    n 및 m은 각각 독립적으로 1 내지 2의 정수이다.
  8. 제1항에 있어서,
    상기 불활성화된 인계 촉매는 고체인 것인 아크릴로니트릴 이량체 제조 방법.
  9. 제1항에 있어서,
    상기 불활성화된 인계 촉매 및 아크릴로니트릴 이량체를 분리하는 단계는 필터를 이용하여 수행하는 것인 아크릴로니트릴 이량체 제조 방법.
  10. 제1항에 있어서,
    상기 분리된 인계 촉매는 이량화 반응기에서 재사용하는 것인 아크릴로니트릴 이량체 제조 방법.
  11. 제1항에 있어서,
    상기 증류 컬럼의 운전 온도는 40 ℃ 내지 150 ℃이고, 운전 압력은 0.001 bar 내지 3 bar인 아크릴로니트릴 이량체 제조 방법.
PCT/KR2020/013977 2019-11-11 2020-10-14 아크릴로니트릴 이량체 제조 방법 WO2021096075A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080006198.8A CN113133312B (zh) 2019-11-11 2020-10-14 丙烯腈二聚体的制备方法
EP20880345.2A EP3862342B1 (en) 2019-11-11 2020-10-14 Method for preparing acrylonitrile dimers
US17/292,951 US20220306571A1 (en) 2019-11-11 2020-10-14 Method of producing acrylonitrile dimer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0143198 2019-11-11
KR20190143198 2019-11-11
KR10-2020-0125786 2020-09-28
KR1020200125786A KR20210056895A (ko) 2019-11-11 2020-09-28 아크릴로니트릴 이량체 제조 방법

Publications (1)

Publication Number Publication Date
WO2021096075A1 true WO2021096075A1 (ko) 2021-05-20

Family

ID=75913045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013977 WO2021096075A1 (ko) 2019-11-11 2020-10-14 아크릴로니트릴 이량체 제조 방법

Country Status (1)

Country Link
WO (1) WO2021096075A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102915A (en) * 1976-05-10 1978-07-25 Imperial Chemical Industries Limited Dimerization process
US4422981A (en) * 1981-03-25 1983-12-27 Mitsubishi Petrochemical Company Limited Process for production of 2-methyleneglutaronitrile
US4639539A (en) * 1984-12-24 1987-01-27 Monsanto Company Dimerization process improvements
US4952541A (en) * 1989-09-01 1990-08-28 Monsanto Company Acrylonitrile dimerization process and method of treating residual catalyst
KR100374680B1 (ko) * 1997-07-24 2003-03-04 로디아 쉬미 기체 또는 액체 중에 함유된 유기인 화합물의 제거방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102915A (en) * 1976-05-10 1978-07-25 Imperial Chemical Industries Limited Dimerization process
US4422981A (en) * 1981-03-25 1983-12-27 Mitsubishi Petrochemical Company Limited Process for production of 2-methyleneglutaronitrile
US4639539A (en) * 1984-12-24 1987-01-27 Monsanto Company Dimerization process improvements
US4952541A (en) * 1989-09-01 1990-08-28 Monsanto Company Acrylonitrile dimerization process and method of treating residual catalyst
KR100374680B1 (ko) * 1997-07-24 2003-03-04 로디아 쉬미 기체 또는 액체 중에 함유된 유기인 화합물의 제거방법

Similar Documents

Publication Publication Date Title
WO2019050281A1 (ko) 에스터 조성물의 제조 시스템 및 이를 이용한 에스터 조성물의 제조 방법
WO2016093562A1 (ko) 고분자 수지에 고정된 이온성 액체계 촉매 및 이를 이용한 n,n'-치환 우레아의 제조 방법
WO2021172898A1 (ko) 프로필렌 글리콜 메틸 에테르 아세테이트 제조 장치 및 제조 방법
WO2021096075A1 (ko) 아크릴로니트릴 이량체 제조 방법
WO2015012550A1 (ko) 메틸올알칸알의 제조방법
WO2020130313A1 (ko) 페놀계 부산물 분해 방법
WO2020130314A1 (ko) 페놀계 부산물의 분해 방법 및 이의 분해 장치
WO2018124613A1 (ko) 방향족 탄산디에스테르 제조방법
WO2021118010A1 (ko) 아크릴로니트릴 이량체 제조 방법
WO2010032974A2 (ko) 아데포비어디피복실의 개선된 제조방법
WO2019022426A1 (ko) 광촉매를 이용한 n-치환 말레이미드의 제조방법
WO2011096729A2 (en) Novel method of preparing secondary amine compound using microflow reactor
WO2018097690A1 (ko) 메탄올 및 아세톤의 제거 유닛 및 이를 포함하는 페놀 및 비스페놀 a의 제조 시스템
WO2021145598A1 (ko) 아크릴로니트릴 이량체 제조 방법
KR20210056895A (ko) 아크릴로니트릴 이량체 제조 방법
WO2022080621A1 (ko) 아크릴로니트릴 이량체의 제조 방법
WO2022092484A1 (ko) 아크릴로니트릴 이량체의 제조 방법
WO2017023124A1 (ko) 크로마놀 유도체의 신규한 제조방법
WO2024038972A1 (ko) 올레핀의 올리고머화 반응기 내 고분자 제거방법
WO2022080751A1 (ko) 아크릴로니트릴 이량체의 제조 방법
WO2022255575A1 (ko) 이소프로필 알코올 제조방법
WO2018128390A1 (ko) 5-(3,6-다이하이드로-2,6-다이옥소-4-트리플루오로메틸-1(2h)-피리미디닐)페닐싸이올 화합물의 제조 방법
WO2024043443A1 (ko) 이소프로필 알코올의 제조 방법
WO2023063525A1 (ko) 아크릴산 제조방법
WO2022158872A1 (ko) 라우로락탐의 정제방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020880345

Country of ref document: EP

Effective date: 20210506

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE