WO2021095412A1 - 化学機械研磨用組成物及び化学機械研磨方法 - Google Patents

化学機械研磨用組成物及び化学機械研磨方法 Download PDF

Info

Publication number
WO2021095412A1
WO2021095412A1 PCT/JP2020/038474 JP2020038474W WO2021095412A1 WO 2021095412 A1 WO2021095412 A1 WO 2021095412A1 JP 2020038474 W JP2020038474 W JP 2020038474W WO 2021095412 A1 WO2021095412 A1 WO 2021095412A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
chemical mechanical
mechanical polishing
composition
mass
Prior art date
Application number
PCT/JP2020/038474
Other languages
English (en)
French (fr)
Inventor
山田 裕也
鵬宇 王
紀彦 杉江
康孝 亀井
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN202080076095.9A priority Critical patent/CN114630880A/zh
Priority to US17/776,227 priority patent/US20220389280A1/en
Priority to JP2021502913A priority patent/JP6892033B1/ja
Publication of WO2021095412A1 publication Critical patent/WO2021095412A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation

Definitions

  • the present invention relates to a composition for chemical mechanical polishing and a chemical polishing method.
  • the wiring layer consisting of wiring and plugs formed in the semiconductor device is becoming finer.
  • a method of flattening the wiring layer by chemical mechanical polishing (hereinafter, also referred to as “CMP”) has been used.
  • CMP chemical mechanical polishing
  • the ultimate purpose of such CMP is to flatten the surface to be polished after polishing to obtain a defect-free and corrosion-free surface. Therefore, the composition for chemical mechanical polishing used in CMP is evaluated based on characteristics such as material removal rate, surface defect product rate after polishing, and prevention of metal corrosion after polishing.
  • semiconductor substrates containing conductive metals such as tungsten and cobalt can be polished at high speed and flatly, and surface defects after polishing can be reduced.
  • a composition for mechanical polishing and a chemical mechanical polishing method are required.
  • One aspect of the chemical mechanical polishing composition according to the present invention is (A) Silica particles having a functional group represented by the following general formula (1) and (B) At least one selected from the group consisting of carboxylic acids having unsaturated bonds and salts thereof, and Contains. -COO - M + ... (1) (M + represents a monovalent cation.)
  • the content of the component (A) is 0.1% by mass or more and 10% by mass or less.
  • the content of the component (B) can be 0.0001% by mass or more and 0.02% by mass or less.
  • the component (A) can be silica particles in which the functional group represented by the general formula (1) is fixed on the surface thereof via a covalent bond.
  • the component (B) can have an acid dissociation constant (pKa) of 4.5 or more at 25 ° C. in at least one dissociation stage.
  • the component (B) is acrylic acid, methaconic acid, crotonic acid, 2-butenoic acid, 2-methyl-3-butenoic acid, 2-hexenoic acid, 3-methyl-2-hexenoic acid, maleic acid, fumaric acid, One or more selected from citraconic acid, mesaconic acid, 2-pentenedioic acid, itaconic acid, allylmalonic acid, isopropyridene succinic acid, 2,4-hexadiendioic acid, acetylenedicarboxylic acid, and salts thereof. it can.
  • an organic acid other than the component (B) can be contained.
  • the chemical mechanical polishing composition can contain an oxidizing agent.
  • the pH can be 2 or more and 5 or less.
  • One aspect of the chemical mechanical polishing method according to the present invention is The step of polishing a semiconductor substrate with the composition for chemical mechanical polishing according to any one of the above is included.
  • the semiconductor substrate can include a moiety containing at least one selected from the group consisting of silicon oxide and tungsten.
  • a semiconductor substrate containing a conductor metal such as tungsten or cobalt can be polished at high speed and flatly, and surface defects after polishing can be reduced.
  • FIG. 1 is a cross-sectional view schematically showing an object to be treated used for chemical mechanical polishing according to the present embodiment.
  • FIG. 2 is a cross-sectional view schematically showing an object to be processed after the first polishing step.
  • FIG. 3 is a cross-sectional view schematically showing the object to be processed after the second polishing step.
  • FIG. 4 is a perspective view schematically showing a chemical mechanical polishing apparatus.
  • composition for chemical mechanical polishing is (A) silica particles having a functional group represented by the following general formula (1) (in the present specification, simply “( (Also referred to as “A) component”) and (B) at least one selected from the group consisting of a carboxylic acid having an unsaturated bond and a salt thereof (also simply referred to as "(B) component” in the present specification). And contains. -COO - M + ... (1) (M + represents a monovalent cation.)
  • each component contained in the chemical mechanical polishing composition according to the present embodiment will be described in detail.
  • composition for chemical mechanical polishing contains (A) silica particles having a functional group represented by the following general formula (1) as an abrasive grain component. -COO - M + ... (1)
  • M + represents a monovalent cation.
  • Examples of the monovalent cation represented by M + but not limited to, for example, H +, Li +, Na +, K +, include NH 4 +. That is, the component (A) can be rephrased as "silica particles having at least one functional group selected from the group consisting of (A) a carboxy group and a salt thereof".
  • the "salt of a carboxy group” is a functional group in which a hydrogen ion contained in a carboxy group (-COOH) is replaced with a monovalent cation such as Li + , Na + , K + , NH 4 + or the like. It means that.
  • the component (A) is a silica particle in which a functional group represented by the general formula (1) is fixed on the surface thereof via a covalent bond, and the functional group represented by the general formula (1) is fixed on the surface thereof. It does not include substances in which a compound having is physically or ionicly adsorbed.
  • the component (A) used in the present embodiment can be produced, for example, as follows.
  • silica particles are prepared.
  • the silica particles include fumed silica and colloidal silica, but colloidal silica is preferable from the viewpoint of reducing polishing defects such as scratches.
  • colloidal silica for example, those produced by the method described in JP-A-2003-109921 can be used.
  • the component (A) that can be used in the present embodiment can be produced.
  • a method of modifying the surface of silica particles will be illustrated, but the present invention is not limited to this specific example.
  • the methods described in JP-A-2005-162533 or JP-A-2010-269985 can be applied.
  • the silica particles and a carboxy group-containing silane coupling agent for example, (3-triethoxysilyl) propyl succinic anhydride
  • the contained silane coupling agent can be covalently bonded.
  • silica particles in which the carboxy group is fixed via a covalent bond can be obtained.
  • the lower limit of the average particle size of the component (A) is preferably 15 nm, more preferably 30 nm.
  • the upper limit of the average particle size of the component (A) is preferably 100 nm, more preferably 70 nm.
  • a semiconductor substrate containing a conductor metal such as tungsten or cobalt may be polished at a practical polishing rate while suppressing the occurrence of polishing defects.
  • the average particle size of the component (A) is obtained by measuring the produced composition for chemical mechanical polishing with a particle size measuring device by a dynamic light scattering method.
  • Examples of the particle size measuring device by the dynamic light scattering method include a nanoparticle analyzer “DelsaNano S” manufactured by Beckman Coulter, and "Zetasizer nano zs” manufactured by Malvern.
  • the average particle size measured by the dynamic light scattering method represents the average particle size of the secondary particles formed by aggregating a plurality of primary particles.
  • the zeta potential of the component (A) is a negative potential in the composition for chemical mechanical polishing when the pH of the composition for chemical mechanical polishing is 1 or more and 6 or less, and the negative potential is preferably ⁇ 10 mV or less. ..
  • the electrostatic repulsive force between the particles effectively prevents the particles from agglomerating with each other, and there are cases where a positively charged substrate can be selectively polished during chemical mechanical polishing.
  • Examples of the zeta potential measuring device include "ELSZ-1" manufactured by Otsuka Electronics Co., Ltd., "Zetasizer nano zs” manufactured by Malvern, and the like.
  • the zeta potential of the component (A) can be appropriately adjusted by increasing or decreasing the amount of the above-mentioned carboxy group-containing silane coupling agent added.
  • the lower limit of the content of the component (A) is preferably 0.1% by mass, more preferably 0.5% by mass, when the total mass of the composition for chemical mechanical polishing is 100% by mass. , Particularly preferably 1% by mass.
  • the upper limit of the content of the component (A) is preferably 10% by mass, more preferably 8% by mass, and particularly preferably 8% by mass when the total mass of the composition for chemical mechanical polishing is 100% by mass. It is 5% by mass.
  • composition for chemical mechanical polishing contains at least one selected from the group consisting of (B) a carboxylic acid having an unsaturated bond and a salt thereof.
  • the component (B) is coordinated with metal ions derived from a conductor metal such as tungsten or cobalt, so that these can be easily removed from the surface to be polished. It is presumed that this will reduce the occurrence of polishing defects.
  • the component (B) used in the present embodiment preferably has an acid dissociation constant (pKa) of 4.5 or more at 25 ° C. in at least one dissociation stage.
  • the "acid dissociation constant (pKa)" in the present invention uses the pKa value of the second carboxy group as an index for an organic acid having two carboxy groups, and the third for an organic acid having three or more carboxy groups.
  • the pKa value of the carboxy group of is used as an index.
  • the acid dissociation constant (pKa) is 5 or more, it becomes easier to coordinate to the metal ions derived from the conductor metal generated in CMP, and these can be efficiently removed from the surface to be polished. It is presumed that the occurrence of defects will be further reduced.
  • the acid dissociation index (pKa) is, for example, (a) The Journal of Physical Chemistry vol. It can be measured by the method described in 68, number6, page1560 (1964), (b) a method using an automatic potential difference titrator (COM-980Win, etc.) manufactured by Hiranuma Sangyo Co., Ltd., and (c) The Chemical Society of Japan. You can use the acid dissociation index described in the Chemistry Handbook (Revised 3rd Edition, June 25, 1984, published by Maruzen Co., Ltd.), and (d) databases such as pKaBASE manufactured by Compudrug. it can.
  • Such component (B) examples include acrylic acid, methacrylic acid, crotonic acid, 2-butenoic acid, 2-methyl-3-butenoic acid, 2-hexenoic acid, 3-methyl-2-hexenoic acid and the like.
  • Dicarboxylic acids and salts thereof can be mentioned, and one or more selected from these can be mentioned. Among these, one or more selected from the group consisting of acrylic acid, methacrylic acid, and salts thereof is preferable.
  • the lower limit of the content of the component (B) is preferably 0.0001% by mass, more preferably 0.0005% by mass, when the total mass of the chemical mechanical polishing composition is 100% by mass. , Particularly preferably 0.001% by mass.
  • the upper limit of the content of the component (B) is preferably 0.02% by mass, more preferably 0.015% by mass, when the total mass of the chemical mechanical polishing composition is 100% by mass. , Particularly preferably 0.013% by mass.
  • the composition for chemical mechanical polishing according to this embodiment contains a liquid medium.
  • the liquid medium include a mixed medium of water, water and alcohol, a mixed medium containing an organic solvent compatible with water and water, and the like. Among these, it is preferable to use a mixed medium of water, water and alcohol, and it is more preferable to use water.
  • the water is not particularly limited, but pure water is preferable. Water may be blended as the remainder of the constituent material of the composition for chemical mechanical polishing, and the content of water is not particularly limited.
  • composition for chemical mechanical polishing includes, if necessary, an oxidizing agent, an organic acid other than the component (B), a surfactant, a water-soluble polymer, an anticorrosive agent, a pH adjuster, etc. Additives may be further included. Hereinafter, each additive will be described.
  • the composition for chemical mechanical polishing according to the present embodiment may contain an oxidizing agent.
  • an oxidizing agent a metal such as tungsten or cobalt is oxidized to promote a complex reaction with the polishing liquid component, so that a fragile modified layer can be created on the surface to be polished, so that the polishing speed is increased. May improve.
  • oxidizing agent examples include ammonium persulfate, potassium persulfate, hydrogen peroxide, ferric nitrate, cerium diammonium nitrate, potassium hypochlorite, ozone, potassium periodate, peracetic acid and the like.
  • ammonium persulfate, potassium persulfate, and hydrogen peroxide are preferable, and hydrogen peroxide is more preferable, in consideration of oxidizing power and ease of handling.
  • These oxidizing agents may be used alone or in combination of two or more.
  • the content of the oxidizing agent is preferably 0.1 when the total mass of the composition for chemical mechanical polishing is 100% by mass. It is about 5% by mass, more preferably 0.3 to 4% by mass, and particularly preferably 0.5 to 3% by mass. Since the oxidizing agent is easily decomposed in the composition for chemical mechanical polishing, it is desirable to add the oxidizing agent immediately before the polishing step of CMP.
  • the composition for chemical mechanical polishing according to the present embodiment may contain an organic acid other than the component (B).
  • an organic acid other than the component (B) the organic acid may be coordinated to the surface to be polished to improve the polishing speed and suppress the precipitation of metal salts during polishing. Further, by coordinating an organic acid other than the component (B) to the surface to be polished, damage due to etching and corrosion of the surface to be polished may be reduced.
  • organic acids are not particularly limited, but are, for example, malonic acid, citric acid, malic acid, tartaric acid, oxalic acid, lactic acid, iminodiacetic acid, trimellitic acid, glycine, alanine, aspartic acid, glutamic acid, and lysine.
  • Amino acids such as arginine, tryptophan, histidine, aromatic amino acids, heterocyclic amino acids, and salts thereof. These organic acids may be used alone or in combination of two or more.
  • the content of the organic acid other than the component (B) is 100, which is the total mass of the composition for chemical mechanical polishing. In terms of mass%, it is preferably 0.01 to 5% by mass, more preferably 0.03 to 1% by mass, and particularly preferably 0.1 to 0.5% by mass.
  • the composition for chemical mechanical polishing according to the present embodiment may contain a surfactant.
  • a surfactant By containing a surfactant, it may be possible to impart an appropriate viscosity to the composition for chemical mechanical polishing.
  • the viscosity of the chemical mechanical polishing composition is preferably adjusted to be 0.5 mPa ⁇ s or more and less than 10 mPa ⁇ s at 25 ° C.
  • the surfactant is not particularly limited, and examples thereof include anionic surfactants, cationic surfactants, and nonionic surfactants.
  • anionic surfactant examples include carboxylic acid salts such as fatty acid soap and alkyl ether sulfonates; sulfonates such as alkylbenzene sulfonates, alkylnaphthalene sulfonates and ⁇ -olefin sulfonates; higher alcohol sulfates. Sulfates such as ester salts, alkyl ether sulfates and polyoxyethylene alkyl phenyl ether sulfates; fluorine-containing surfactants such as perfluoroalkyl compounds and the like can be mentioned.
  • the cationic surfactant include an aliphatic amine salt and an aliphatic ammonium salt.
  • nonionic surfactant examples include a nonionic surfactant having a triple bond such as acetylene glycol, an acetylene glycol ethylene oxide adduct, and an acetylene alcohol; a polyethylene glycol type surfactant and the like. These surfactants may be used alone or in combination of two or more.
  • the content of the surfactant is preferably 0 when the total mass of the composition for chemical mechanical polishing is 100% by mass. It is .001 to 5% by mass, more preferably 0.001 to 3% by mass, and particularly preferably 0.01 to 1% by mass.
  • the composition for chemical mechanical polishing according to the present embodiment may contain a water-soluble polymer.
  • the water-soluble polymer has the effect of adsorbing to the surface of the surface to be polished and reducing polishing friction. Due to this effect, the occurrence of polishing defects on the surface to be polished may be reduced.
  • water-soluble polymer examples include poly (meth) acrylamide, poly (meth) acrylic acid, polyvinyl alcohol, polyvinylpyrrolidone, hydroxyethyl cellulose, carboxymethyl cellulose, and a copolymer of (meth) acrylic acid and maleic acid.
  • the weight average molecular weight (Mw) of the water-soluble polymer is preferably 1,000 to 1,000,000, more preferably 3,000 to 800,000.
  • the weight average molecular weight (Mw) in the present specification refers to a polyethylene glycol-equivalent weight average molecular weight measured by GPC (gel permeation chromatography).
  • the content of the water-soluble polymer is preferably 100% by mass when the total mass of the composition for chemical mechanical polishing is 100% by mass. Is 0.01 to 1% by mass, more preferably 0.03 to 0.5% by mass.
  • the content of the water-soluble polymer depends on the weight average molecular weight (Mw) of the water-soluble polymer, but the viscosity of the composition for chemical mechanical polishing at 25 ° C. is 0.5 mPa ⁇ s or more and less than 10 mPa ⁇ s. It is preferable to adjust so as to be.
  • Mw weight average molecular weight
  • the viscosity of the chemical mechanical polishing composition at 25 ° C. is 0.5 mPa ⁇ s or more and less than 10 mPa ⁇ s, it is easy to polish the wiring material etc. at high speed, and since the viscosity is appropriate, it is stably chemical on the polishing cloth.
  • a composition for mechanical polishing can be supplied.
  • the composition for chemical mechanical polishing according to the present embodiment may contain an anticorrosive agent.
  • the anticorrosive agent include benzotriazole and its derivatives.
  • the benzotriazole derivative refers to one in which one or more hydrogen atoms contained in benzotriazole are replaced with, for example, a carboxy group, a methyl group, an amino group, a hydroxy group or the like.
  • Specific examples of the benzotriazole derivative include 4-carboxybenzotriazole, 7-carboxybenzotriazole, benzotriazole butyl ester, 1-hydroxymethylbenzotriazole, 1-hydroxybenzotriazole, and salts thereof.
  • the content of the anticorrosive agent is preferably 1% by mass when the total mass of the composition for chemical mechanical polishing is 100% by mass. It is less than, more preferably 0.001 to 0.1% by mass.
  • the composition for chemical mechanical polishing according to the present embodiment may further contain a pH adjuster, if necessary.
  • the pH adjuster include bases such as potassium hydroxide, ethylenediamine, monoethanolamine, TMAH (tetramethylammonium hydroxide), TEAH (tetraethylammonium hydroxide), and ammonia; phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, and salts thereof. , And one or more of these can be used.
  • the pH of the chemical mechanical polishing composition according to the present embodiment is not particularly limited, but is preferably 2 or more and 5 or less, and more preferably 2 or more and 4 or less.
  • the pH is in the above range, the dispersibility of the component (A) in the composition for chemical mechanical polishing is improved, and the storage stability of the composition for chemical mechanical polishing is improved, which is preferable.
  • the pH of the chemical mechanical polishing composition according to the present embodiment is adjusted by, for example, appropriately increasing or decreasing the content of the component (B), an organic acid other than the component (B), a pH adjuster, or the like. be able to.
  • the pH refers to a hydrogen ion index, the value of which is a commercially available pH meter (for example, a tabletop pH meter manufactured by HORIBA, Ltd.) under the conditions of 25 ° C. and 1 atm. , Can be measured.
  • a commercially available pH meter for example, a tabletop pH meter manufactured by HORIBA, Ltd.
  • the chemical mechanical polishing composition according to the present embodiment is suitable as a polishing material for chemical mechanical polishing of a semiconductor substrate having a plurality of types of materials constituting a semiconductor device.
  • the semiconductor substrate has a conductive metal such as tungsten and cobalt, an insulating film material such as a silicon oxide film, a silicon nitride film, and amorphous silicon, and a barrier metal material such as titanium, titanium nitride, and tantalum nitride. May be.
  • a particularly suitable polishing target for the chemical mechanical polishing composition according to the present embodiment is a processed body such as a semiconductor substrate provided with a wiring layer containing tungsten.
  • Specific examples thereof include a silicon oxide film having a via hole and a tungsten film provided on the silicon oxide film via a barrier metal film.
  • composition for chemical mechanical polishing can be prepared by dissolving or dispersing each of the above-mentioned components in a liquid medium such as water.
  • the method for dissolving or dispersing is not particularly limited, and any method may be applied as long as it can be uniformly dissolved or dispersed. Further, the mixing order and mixing method of each of the above-mentioned components are not particularly limited.
  • composition for chemical mechanical polishing according to the present embodiment can be prepared as a concentrated type stock solution and diluted with a liquid medium such as water at the time of use.
  • the polishing method according to an embodiment of the present invention includes a step of polishing a semiconductor substrate using the above-mentioned chemical mechanical polishing composition.
  • a specific example of the chemical mechanical polishing method according to the present embodiment will be described in detail with reference to the drawings.
  • FIG. 1 is a cross-sectional view schematically showing an object to be processed suitable for use in the chemical mechanical polishing method according to the present embodiment.
  • the object to be processed 100 is formed by going through the following steps (1) to (4).
  • the substrate 10 is prepared.
  • the substrate 10 may be composed of, for example, a silicon substrate and a silicon oxide film formed on the silicon substrate. Further, a functional device such as a transistor (not shown) may be formed on the substrate 10. Next, a silicon oxide film 12 which is an insulating film is formed on the substrate 10 by a thermal oxidation method.
  • the silicon oxide film 12 is patterned. Using the obtained pattern as a mask, a via hole 14 is formed on the silicon oxide film 12 by a photolithography method.
  • a barrier metal film 16 is formed on the surface of the silicon oxide film 12 and the inner wall surface of the via hole 14 by applying sputtering or the like. Since the electrical contact between tungsten and silicon is not very good, good electrical contact is realized by interposing a barrier metal film.
  • the barrier metal film 16 include titanium and / or titanium nitride.
  • the object to be processed 100 is formed.
  • FIG. 2 is a cross-sectional view schematically showing an object to be processed at the end of the first polishing step.
  • the tungsten film 18 is polished using the above-mentioned chemical mechanical polishing composition until the barrier metal film 16 is exposed.
  • FIG. 3 is a cross-sectional view schematically showing an object to be processed at the end of the second polishing step.
  • the silicon oxide film 12, the barrier metal film 16 and the tungsten film 18 are polished using the above-mentioned chemical mechanical polishing composition.
  • the above-mentioned composition for chemical mechanical polishing is suitable as a polishing material for chemical mechanical polishing of a semiconductor substrate having a plurality of types of materials constituting a semiconductor device. Therefore, since the composition for chemical mechanical polishing having the same composition can be used in the first polishing step and the second polishing step of the chemical mechanical polishing method according to the present embodiment, the throughput of the production line is improved.
  • FIG. 4 is a perspective view schematically showing the polishing apparatus 300.
  • the semiconductor substrate is supplied with the slurry (composition for chemical mechanical polishing) 44 from the slurry supply nozzle 42, and the turntable 48 to which the polishing pad 46 is attached is rotated. This is performed by bringing the carrier head 52 holding the 50 into contact with the carrier head 52.
  • FIG. 4 also shows the water supply nozzle 54 and the dresser 56.
  • the polishing load of the carrier head 52 can be selected within the range of 10 to 980 hPa, preferably 30 to 490 hPa.
  • the rotation speed of the turntable 48 and the carrier head 52 can be appropriately selected within the range of 10 to 400 rpm, preferably 30 to 150 rpm.
  • the flow rate of the slurry (composition for chemical mechanical polishing) 44 supplied from the slurry supply nozzle 42 can be selected within the range of 10 to 1,000 mL / min, and is preferably 50 to 400 mL / min.
  • polishing equipment examples include, for example, Ebara Corporation, model “EPO-112", “EPO-222”; Lapmaster SFT, model “LGP-510", “LGP-552”; Applied Materials. , Model “Mirra”, “Reflection”; manufactured by G & P TECHNOLOGY, model “POLI-400L”; manufactured by AMAT, model “Reflexion LK” and the like.
  • aqueous dispersion B Tetramethoxysilane in a mixture of 787.9 g of pure water, 786.0 g of 25% ammonia water (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and 12924 g of methanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
  • a mixed solution of 1522.2 g and 413.0 g of methanol manufactured by Tokyo Kasei Kogyo Co., Ltd. was added dropwise over 55 minutes while maintaining the solution temperature at 35 ° C. to obtain a hydrolyzed silica sol dispersion. This sol was heated and concentrated to 2900 ml under normal pressure.
  • the obtained amino-modified silica particles were dried at 70 ° C. for 12 hours.
  • malonic acid manufactured by Tokyo Chemical Industry Co., Ltd.
  • NMP N-methyl-2-pyrrolidone
  • Aqueous Dispersion C Amino-modified silica particles were obtained by the same method as in "3.1.2. Preparation of Aqueous Dispersion B" above. The obtained amino-modified silica particles were vacuum dried at 70 ° C. for 12 hours. Weigh 1.4 g of citric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) into a three-necked flask with nitrogen flow in advance, and add 20.0 ml of N-methyl-2-pyrrolidone (NMP) to completely complete the citric acid. Stirred until dissolved.
  • NMP N-methyl-2-pyrrolidone
  • Aqueous Dispersion D 2000 g of PL-3 (19.5% colloidal silica manufactured by Fuso Chemical Industry Co., Ltd.) was placed in a flask having a capacity of 2000 cm 3 and heated to 60 ° C. Subsequently, 12.0 g of (3-triethoxysilyl) propyl succinic anhydride was added as a silane coupling agent, heated at 60 ° C., and the reaction was continued for 4 hours. After cooling, an aqueous dispersion D of carboxylic acid-modified silica particles was obtained.
  • Aqueous Dispersion E 2000 g of PL-3 (19.5% colloidal silica manufactured by Fuso Chemical Industry Co., Ltd.) was placed in a flask having a capacity of 2000 cm 3 and heated to 60 ° C. Subsequently, 18.0 g of (3-triethoxysilyl) propyl succinic anhydride was added as a silane coupling agent, heated at 60 ° C., and the reaction was continued for 4 hours. After cooling, an aqueous dispersion E of carboxylic acid-modified silica particles was obtained.
  • the flask was volume 2000 cm 3 of aqueous dispersion F, ammonia water 70g of 25% strength by weight, ion-exchanged water 40 g, ethanol 175g and tetraethoxysilane 21g were charged and heated with stirring to 60 ° C. at 180 rpm. The mixture was stirred at 60 ° C. for 1 hour and then cooled to obtain a colloidal silica / alcohol dispersion. Next, the operation of removing the alcohol content while adding ion-exchanged water to the dispersion at 80 ° C. was repeated several times by an evaporator to remove the alcohol in the dispersion, and a silica dispersion having a solid content concentration of 15% was prepared. did.
  • acetic acid 5 g was added to 50 g of ion-exchanged water, and 5 g of a mercapto group-containing silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KBE803") was gradually added dropwise while stirring. After 30 minutes, 1000 g of the prepared silica dispersion was added, and stirring was continued for another 1 hour. Then, 200 g of 31% hydrogen peroxide solution was added and left at room temperature for 48 hours to obtain an aqueous dispersion F containing silica particles having a sulfo group.
  • a mercapto group-containing silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KBE803
  • a mixed solution of 787.9 g of pure water, 786.0 g of 26% ammonia water, and 12924 g of methanol is mixed with 1522.2 g of tetramethoxysilane and 413.0 g of methanol while keeping the liquid temperature at 35 ° C. It was added dropwise over 55 minutes. Then, under normal pressure, heat concentration was performed up to 2900 ml. While further heating and distilling this concentrated solution under normal pressure, pure water was added dropwise while keeping the volume constant, and when it was confirmed that the column top temperature reached 100 ° C. and the pH became 8 or less, it was pure. The dropping of water was completed, and a silica dispersion was prepared.
  • a mixed solution of 19.0 g of methanol and 1.0 g of 3-aminopropyltriethoxysilane was added dropwise to 540 g of the prepared silica dispersion over 10 minutes while maintaining the liquid temperature, and then reflux was performed under normal pressure for 2 hours. .. Then, pure water was added dropwise while keeping the volume constant, and when the temperature at the top of the column reached 100 ° C., the addition of pure water was completed to obtain an aqueous dispersion G containing silica particles having an amino group.
  • compositions for chemical mechanical polishing Using hydrogen peroxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., 30% aqueous solution) as an oxidizing agent, each component is placed in a polyethylene container so as to have the compositions shown in Tables 1 to 3. Was added, and potassium hydroxide was added as needed to adjust the pH to the pH shown in Tables 1 to 3, and the total amount of all the components was adjusted to 100 parts by mass with pure water. , Compositions for chemical mechanical polishing of each Example and each Comparative Example were prepared.
  • the thickness of the tungsten film is determined by measuring the resistance with a DC 4-probe method using a resistivity measuring machine (manufactured by KLA Tencor, model "OmniMap RS100"), and the sheet resistance value and the volume resistivity of tungsten are as follows. Calculated by the formula.
  • ⁇ Film thickness ( ⁇ ) [Volume resistivity of tungsten film ( ⁇ ⁇ m) ⁇ Sheet resistance value ( ⁇ )] ⁇ 10 10
  • the evaluation criteria for the polishing speed test are as follows. Tables 1 to 3 show the results of the polishing rate of the tungsten film, the results of the polishing rate of the silicon oxide film, and the evaluation results thereof. (Evaluation criteria) "A" ... When the tungsten polishing rate is 100 ⁇ / min or more and the p-TEOS polishing rate is 200 ⁇ / min or more, the polishing rates of both are sufficiently high, so that the polishing of other material films is performed in the actual polishing of the semiconductor substrate. It was judged to be good "A” because the speed balance with and was easily secured and it was practical. -"B" ...
  • the tungsten polishing rate is less than 100 ⁇ / min or the p-TEOS polishing rate is less than 200 ⁇ / min, it is difficult to put it into practical use because the polishing rate of both or one of them is low, and it is judged as defective "B”. ..
  • the total number of defects having a size of 90 nm or more was counted using a defect inspection device (manufactured by KLA Tencor Co., Ltd., model “Surfscan SP1”).
  • the evaluation criteria are as follows.
  • the total number of defects per wafer and the evaluation results thereof are also shown in Tables 1 to 3. (Evaluation criteria) -"A" ... A case where the total number of defects per wafer was less than 500 was judged to be good "A”.
  • Tables 1 to 3 below show the composition of the chemical mechanical polishing composition of each example and each comparative example, and each evaluation result.
  • -PL-3 Made by Fuso Chemical Industry Co., Ltd., trade name "PL-3", colloidal silica, average particle size 70 nm ⁇ Unsaturated carboxylic acid> -Acrylic acid: Made by Tokyo Chemical Industry Co., Ltd., Product name "Acrylic Acid (stabilized with MEHQ)" -Methacrylic acid: Made by Tokyo Chemical Industry Co., Ltd., trade name “Methacrylic Acid (stabilized with MEHQ)” -2-Methyl-3-butenoic acid: manufactured by Tokyo Chemical Industry Co., Ltd., trade name "2-Methyl-3-butenoic Acid” ⁇ Organic acid> -Citric acid: Made by Tokyo Chemical Industry Co., Ltd., trade name "Citrus Acid” -Tartaric acid: Made by Tokyo Chemical Industry Co., Ltd., Product name "L- (+)-Tartaridic Acid” ⁇ Malonic acid: Made by Tokyo Chemical Industry Co., Ltd., trade name "Malonic Acid” -Ma
  • the tungsten film and the p-TEOS film can be polished at a practical polishing rate, and the p-TEOS film after polishing can be polished. It was possible to reduce the occurrence of surface defects.
  • the present invention includes a configuration substantially the same as the configuration described in the embodiment (for example, a configuration having the same function, method and result, or a configuration having the same purpose and effect).
  • the present invention also includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention also includes a configuration that exhibits the same effects as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the present invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Silicon Compounds (AREA)

Abstract

タングステンやコバルト等の導電体金属を含む半導体基板を高速かつ平坦に研磨することができるとともに、研磨後の表面欠陥を低減できる化学機械研磨組成物、及び化学機械研磨方法を提供する。 本発明に係る化学機械研磨用組成物は、(A)下記一般式(1)で表される官能基を有するシリカ粒子と、(B)不飽和結合を有するカルボン酸及びその塩よりなる群から選択される少なくとも1種と、を含有する。 -COO ・・・・・(1) (Mは1価の陽イオンを表す。)

Description

化学機械研磨用組成物及び化学機械研磨方法
 本発明は、化学機械研磨用組成物及び化学研磨方法に関する。
 半導体装置内に形成される配線及びプラグ等からなる配線層の微細化が進んでいる。これに伴い、配線層を化学機械研磨(以下、「CMP」ともいう。)により平坦化する手法が用いられている。このようなCMPの最終的な目的は、研磨後に、被研磨面を平坦化し、無欠陥かつ無腐食の表面を得ることである。そのため、CMPで使用される化学機械研磨用組成物は、材料除去速度、研磨後の表面欠陥品率、及び研磨後の金属腐食防止等の特性により評価される。
 近年、配線層の更なる微細化により、導電体金属としてタングステン(W)やコバルト(Co)が適用され始めている。そのため、余剰に積層されたタングステンやコバルトをCMPにより効率的に除去しつつ、かつ、タングステンやコバルトの腐食を抑制し、良好な表面状態を形成できることが要求されている。このようなタングステンやコバルトの化学機械研磨に関し、種々の添加剤を含有する化学機械研磨用組成物が提案されている(例えば、特許文献1及び特許文献2参照)。
特表2017-514295号公報 特開2016-030831号公報
 タングステンやコバルト等の導電体金属を含む半導体ウエハの普及に伴い、タングステンやコバルト等の導電体金属を含む半導体基板を高速かつ平坦に研磨することができるとともに、研磨後の表面欠陥を低減できる化学機械研磨用組成物、及び化学機械研磨方法が要求されている。
 本発明に係る化学機械研磨用組成物の一態様は、
 (A)下記一般式(1)で表される官能基を有するシリカ粒子と、
 (B)不飽和結合を有するカルボン酸及びその塩よりなる群から選択される少なくとも1種と、
を含有する。
 -COO ・・・・・(1)
 (Mは1価の陽イオンを表す。)
 前記化学機械研磨用組成物の一態様において、
 化学機械研磨用組成物の全質量を100質量%としたときに、
 前記(A)成分の含有量が0.1質量%以上10質量%以下であり、
 前記(B)成分の含有量が0.0001質量%以上0.02質量%以下であることができる。
 前記化学機械研磨用組成物のいずれかの態様において、
 前記(A)成分は、その表面に前記一般式(1)で表される官能基が共有結合を介して固定されたシリカ粒子であることができる。
 前記化学機械研磨用組成物のいずれかの態様において、
 前記(B)成分が、少なくとも一つの解離段における25℃での酸解離指数(pKa)が4.5以上であることができる。
 前記化学機械研磨用組成物のいずれかの態様において、
 前記(B)成分が、アクリル酸、メタクリル酸、クロトン酸、2-ブテン酸、2-メチル-3-ブテン酸、2-ヘキセン酸、3-メチル-2-ヘキセン酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、2-ペンテン二酸、イタコン酸、アリルマロン酸、イソプロピリデンコハク酸、2,4-ヘキサジエン二酸、アセチレンジカルボン酸、及びこれらの塩から選択される1種以上であることができる。
 前記化学機械研磨用組成物のいずれかの態様において、
 さらに、前記(B)成分以外の有機酸を含有することができる。
 前記化学機械研磨用組成物のいずれかの態様において、
 さらに、酸化剤を含有することができる。
 前記化学機械研磨用組成物のいずれかの態様において、
 pHが2以上5以下であることができる。
 本発明に係る化学機械研磨方法の一態様は、
 前記いずれかの態様の化学機械研磨用組成物を用いて半導体基板を研磨する工程を含む。
 前記化学機械研磨方法の一態様において、
 前記半導体基板が、酸化シリコン及びタングステンよりなる群から選択される少なくとも1種を含有する部位を備えることができる。
 本発明に係る化学機械研磨用組成物によれば、タングステンやコバルト等の導電体金属を含む半導体基板を高速かつ平坦に研磨することができるとともに、研磨後の表面欠陥を低減することができる。
図1は、本実施形態に係る化学機械研磨に用いる被処理体を模式的に示す断面図である。 図2は、第1研磨工程後の被処理体を模式的に示す断面図である。 図3は、第2研磨工程後の被処理体を模式的に示す断面図である。 図4は、化学機械研磨装置を模式的に示した斜視図である。
 以下、本発明の好適な実施形態について詳細に説明する。なお、本発明は、下記の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含む。
 本明細書において、「X~Y」のように記載された数値範囲は、数値Xを下限値として含み、かつ、数値Yを上限値として含むものとして解釈される。
 1.化学機械研磨用組成物
 本発明の一実施形態に係る化学機械研磨用組成物は、(A)下記一般式(1)で表される官能基を有するシリカ粒子(本明細書において、単に「(A)成分」ともいう。)と、(B)不飽和結合を有するカルボン酸及びその塩よりなる群から選択される少なくとも1種(本明細書において、単に「(B)成分」ともいう。)と、を含有する。
 -COO ・・・・・(1)
 (Mは1価の陽イオンを表す。)
 以下、本実施形態に係る化学機械研磨用組成物に含まれる各成分について詳細に説明する。
 1.1.(A)成分
 本実施形態に係る化学機械研磨用組成物は、砥粒成分として、(A)下記一般式(1)で表される官能基を有するシリカ粒子を含有する。
 -COO ・・・・・(1)
 (Mは1価の陽イオンを表す。)
 Mで表される1価の陽イオンとしては、これらに限定されないが、例えば、H、Li、Na、K、NH が挙げられる。すなわち、(A)成分は、「(A)カルボキシ基及びその塩よりなる群から選択される少なくとも1種の官能基を有するシリカ粒子」と言い換えることもできる。ここで、「カルボキシ基の塩」とは、カルボキシ基(-COOH)に含まれている水素イオンをLi、Na、K、NH 等の1価の陽イオンで置換した官能基のことをいう。(A)成分は、その表面に上記一般式(1)で表される官能基が共有結合を介して固定されたシリカ粒子であり、その表面に上記一般式(1)で表される官能基を有する化合物が物理的あるいはイオン的に吸着したようなものは含まれない。
 本実施形態において使用される(A)成分は、例えば、以下のようにして製造することができる。
 まず、シリカ粒子を用意する。シリカ粒子としては、例えば、ヒュームドシリカ、コロイダルシリカ等が挙げられるが、スクラッチ等の研磨欠陥を低減する観点から、コロイダルシリカが好ましい。コロイダルシリカは、例えば、特開2003-109921号公報等に記載された方法で製造されたものを使用することができる。このようなシリカ粒子の表面を修飾することにより、本実施形態で使用可能な(A)成分を製造することができる。以下にシリカ粒子の表面を修飾する方法を例示するが、本発明はこの具体例により何ら限定されるものではない。
 シリカ粒子の表面修飾としては、特開2005-162533号公報又は特開2010-269985号公報に記載された方法を適用することができる。例えば、シリカ粒子とカルボキシ基含有シランカップリング剤(例えば、(3-トリエトキシシリル)プロピルコハク酸無水物)とを混合して、十分に攪拌することにより、前記シリカ粒子の表面に前記カルボキシ基含有シランカップリング剤を共有結合させることができる。更に加熱して加水分解することにより、カルボキシ基が共有結合を介して固定されたシリカ粒子を得ることができる。
 (A)成分の平均粒子径の下限値は、好ましくは15nmであり、より好ましくは30nmである。(A)成分の平均粒子径の上限値は、好ましくは100nmであり、より好ましくは70nmである。(A)成分の平均粒子径が前記範囲であると、タングステンやコバルト等の導電体金属を含む半導体基板を、研磨欠陥の発生を抑制しつつ実用的な研磨速度で研磨できる場合がある。(A)成分の平均粒子径は、製造された化学機械研磨用組成物を動的光散乱法による粒子径測定装置で測定することによって得られる。動的光散乱法による粒子径測定装置としては、ベックマン・コールター社製のナノ粒子アナライザー「DelsaNano S」、Malvern社製の「Zetasizer nano zs」等が挙げられる。なお、動的光散乱法を用いて測定した平均粒子径は、一次粒子が複数個凝集して形成された二次粒子の平均粒子径を表している。
 (A)成分のゼータ電位は、化学機械研磨用組成物のpHが1以上6以下の場合、化学機械研磨用組成物中において負電位であり、その負電位は-10mV以下であることが好ましい。-10mV以下の負電位であると、粒子間の静電反発力によって効果的に粒子同士の凝集を防ぐとともに、化学機械研磨の際に正電荷を帯びる基板を選択的に研磨できる場合がある。なお、ゼータ電位測定装置としては、大塚電子株式会社製の「ELSZ-1」、Malvern社製の「Zetasizer nano zs」等が挙げられる。(A)成分のゼータ電位は、前述したカルボキシ基含有シランカップリング剤の添加量を増減することにより適宜調整することができる。
 (A)成分の含有量の下限値は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.1質量%であり、より好ましくは0.5質量%であり、特に好ましくは1質量%である。(A)成分の含有量の上限値は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは10質量%であり、より好ましくは8質量%であり、特に好ましくは5質量%である。(A)成分の含有量が前記範囲であると、タングステンやコバルト等の導電体金属を含む半導体基板を、研磨欠陥の発生を抑制しつつ実用的な研磨速度で研磨できる場合がある。
 1.2.(B)成分
 本実施形態に係る化学機械研磨用組成物は、(B)不飽和結合を有するカルボン酸及びその塩よりなる群から選択される少なくとも1種を含有する。(B)成分を含有することにより、(B)成分がタングステンやコバルト等の導電体金属に由来する金属イオンに配位するため、これらを被研磨面から容易に除去することができる。これにより、研磨欠陥の発生が低減されると推測される。
 本実施形態において使用される(B)成分は、少なくとも一つの解離段における25℃での酸解離指数(pKa)が4.5以上であることが好ましい。本発明における「酸解離指数(pKa)」は、2個のカルボキシ基を有する有機酸では2個目のカルボキシ基のpKa値を指標とし、3個以上のカルボキシ基を有する有機酸では3個目のカルボキシ基のpKa値を指標とする。酸解離指数(pKa)が5以上であると、CMPにおいて発生する導電体金属に由来する金属イオンへ配位することがより容易となり、これらを被研磨面から効率よく除去することできるので、研磨欠陥の発生がより低減されると推測される。
 なお、酸解離指数(pKa)は、例えば(a)The Journal of Physical Chemistry vol.68, number6, page1560 (1964)記載の方法、(b)平沼産業株式会社製の電位差自動滴定装置(COM-980Win等)を用いる方法等により測定することができ、また、(c)日本化学会編の化学便覧(改訂3版、昭和59年6月25日、丸善株式会社発行)に記載の酸解離指数、(d)コンピュドラッグ(Compudrug)社製のpKaBASE等のデータベース等を利用することができる。
 このような(B)成分としては、例えば、アクリル酸、メタクリル酸、クロトン酸、2-ブテン酸、2-メチル-3-ブテン酸、2-ヘキセン酸、3-メチル-2-ヘキセン酸等の不飽和モノカルボン酸;マレイン酸、フマル酸、シトラコン酸、メサコン酸、2-ペンテン二酸、イタコン酸、アリルマロン酸、イソプロピリデンコハク酸、2,4-ヘキサジエン二酸、アセチレンジカルボン酸等の不飽和ジカルボン酸、及びこれらの塩を挙げることができ、これらから選択される1種以上であることができる。これらの中でも、アクリル酸、メタクリル酸、及びこれらの塩よりなる群から選択される1種以上であることが好ましい。
 (B)成分の含有量の下限値は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.0001質量%であり、より好ましくは0.0005質量%であり、特に好ましくは0.001質量%である。(B)成分の含有量の上限値は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.02質量%であり、より好ましくは0.015質量%であり、特に好ましくは0.013質量%である。(B)成分の含有量が前記範囲であると、(B)成分が導電体金属に由来する金属イオンへ配位することにより、これらを被研磨面から効率よく除去することできるので、研磨欠陥の発生がより低減されると推測される。
 1.3.液状媒体
 本実施形態に係る化学機械研磨用組成物は、液状媒体を含有する。液状媒体としては、水、水及びアルコールの混合媒体、水及び水との相溶性を有する有機溶媒を含む混合媒体等が挙げられる。これらの中でも、水、水及びアルコールの混合媒体を用いることが好ましく、水を用いることがより好ましい。水としては、特に制限されるものではないが、純水が好ましい。水は、化学機械研磨用組成物の構成材料の残部として配合されていればよく、水の含有量については特に制限はない。
 1.4.その他の添加剤
 本実施形態に係る化学機械研磨用組成物は、必要に応じて、酸化剤、(B)成分以外の有機酸、界面活性剤、水溶性高分子、防蝕剤、pH調整剤等の添加剤をさらに含有してもよい。以下、各添加剤について説明する。
<酸化剤>
 本実施形態に係る化学機械研磨用組成物は、酸化剤を含有してもよい。酸化剤を含有することにより、タングステンやコバルト等の金属を酸化して研磨液成分との錯化反応を促すことにより、被研磨面に脆弱な改質層を作り出すことができるため、研磨速度が向上する場合がある。
 酸化剤としては、例えば、過硫酸アンモニウム、過硫酸カリウム、過酸化水素、硝酸第二鉄、硝酸二アンモニウムセリウム、次亜塩素酸カリウム、オゾン、過ヨウ素酸カリウム、過酢酸等が挙げられる。これらの酸化剤のうち、酸化力及び取り扱いやすさを考慮すると、過硫酸アンモニウム、過硫酸カリウム、過酸化水素が好ましく、過酸化水素がより好ましい。これらの酸化剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態に係る化学機械研磨用組成物が酸化剤を含有する場合において、酸化剤の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.1~5質量%であり、より好ましくは0.3~4質量%であり、特に好ましくは0.5~3質量%である。なお、酸化剤は、化学機械研磨用組成物中で分解されやすいため、CMPの研磨工程を行う直前に添加されることが望ましい。
<有機酸>
 本実施形態に係る化学機械研磨用組成物は、(B)成分以外の有機酸を含有してもよい。(B)成分以外の有機酸を含有することにより、有機酸が被研磨面に配位して研磨速度が向上するとともに、研磨中における金属塩の析出を抑制できる場合がある。また、(B)成分以外の有機酸が被研磨面に配位することで、被研磨面のエッチング及び腐食によるダメージを低減できる場合がある。
 このような有機酸としては、特に制限されないが、例えば、マロン酸、クエン酸、リンゴ酸、酒石酸、シュウ酸、乳酸、イミノジ酢酸、トリメリット酸の他、グリシン、アラニン、アスパラギン酸、グルタミン酸、リシン、アルギニン、トリプトファン、ヒスチジン、芳香族アミノ酸、複素環型アミノ酸等のアミノ酸、及びこれらの塩が挙げられる。これらの有機酸は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態に係る化学機械研磨用組成物が(B)成分以外の有機酸を含有する場合において、(B)成分以外の有機酸の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.01~5質量%であり、より好ましくは0.03~1質量%であり、特に好ましくは0.1~0.5質量%である。
<界面活性剤>
 本実施形態に係る化学機械研磨用組成物は、界面活性剤を含有してもよい。界面活性剤を含有することにより、化学機械研磨用組成物に適度な粘性を付与できる場合がある。化学機械研磨用組成物の粘度は、25℃において0.5mPa・s以上10mPa・s未満となるように調整することが好ましい。
 界面活性剤としては、特に制限されず、アニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤等が挙げられる。
 アニオン性界面活性剤としては、例えば、脂肪酸石鹸、アルキルエーテルカルボン酸塩等のカルボン酸塩;アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、α-オレフィンスルホン酸塩等のスルホン酸塩;高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸塩;パーフルオロアルキル化合物等の含フッ素系界面活性剤等が挙げられる。カチオン性界面活性剤としては、例えば、脂肪族アミン塩、脂肪族アンモニウム塩等が挙げられる。非イオン性界面活性剤としては、例えば、アセチレングリコール、アセチレングリコールエチレンオキサイド付加物、アセチレンアルコール等の三重結合を有する非イオン性界面活性剤;ポリエチレングリコール型界面活性剤等が挙げられる。これらの界面活性剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態に係る化学機械研磨用組成物が界面活性剤を含有する場合において、界面活性剤の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.001~5質量%であり、より好ましくは0.001~3質量%であり、特に好ましくは0.01~1質量%である。
<水溶性高分子>
 本実施形態に係る化学機械研磨用組成物は、水溶性高分子を含有してもよい。水溶性高分子には、被研磨面の表面に吸着して研磨摩擦を低減させる効果がある。この効果により、被研磨面における研磨欠陥の発生を低減できる場合がある。
 水溶性高分子としては、ポリ(メタ)アクリルアミド、ポリ(メタ)アクリル酸、ポリビニルアルコール、ポリビニルピロリドン、ヒドロキシエチルセルロース、カルボキシメチルセルロース、(メタ)アクリル酸とマレイン酸の共重合体等が挙げられる。
 水溶性高分子の重量平均分子量(Mw)は、好ましくは1,000~1,000,000であり、より好ましくは3,000~800,000である。水溶性高分子の重量平均分子量が前記範囲にあると、配線材料等の被研磨面に吸着しやすくなり、研磨摩擦をより低減できる場合がある。その結果、被研磨面における研磨欠陥の発生をより効果的に低減できる場合がある。なお、本明細書中における「重量平均分子量(Mw)」とは、GPC(ゲルパーミエーションクロマトグラフィー)によって測定されたポリエチレングリコール換算の重量平均分子量のことを指す。
 本実施形態に係る化学機械研磨用組成物が水溶性高分子を含有する場合において、水溶性高分子の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.01~1質量%であり、より好ましくは0.03~0.5質量%である。
 なお、水溶性高分子の含有量は、水溶性高分子の重量平均分子量(Mw)にも依存するが、化学機械研磨用組成物の25℃における粘度が0.5mPa・s以上10mPa・s未満となるように調整することが好ましい。化学機械研磨用組成物の25℃における粘度が0.5mPa・s以上10mPa・s未満であると、配線材料等を高速で研磨しやすく、粘度が適正であるため研磨布上に安定して化学機械研磨用組成物を供給することができる。
<防蝕剤>
 本実施形態に係る化学機械研磨用組成物は、防蝕剤を含有してもよい。防蝕剤としては、例えば、ベンゾトリアゾール及びその誘導体が挙げられる。ここで、ベンゾトリアゾール誘導体とは、ベンゾトリアゾールの有する1個又は2個以上の水素原子を、例えば、カルボキシ基、メチル基、アミノ基、ヒドロキシ基等で置換したものをいう。ベンゾトリアゾール誘導体の具体例としては、4-カルボキシルベンゾトリアゾール、7-カルボキシベンゾトリアゾール、ベンゾトリアゾールブチルエステル、1-ヒドロキシメチルベンゾトリアゾール、1-ヒドロキシベンゾトリアゾール、及びこれらの塩等が挙げられる。
 本実施形態に係る化学機械研磨用組成物が防蝕剤を含有する場合において、防蝕剤の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは1質量%以下であり、より好ましくは0.001~0.1質量%である。
<pH調整剤>
 本実施形態に係る化学機械研磨用組成物は、さらに必要に応じてpH調整剤を含有してもよい。pH調整剤としては、水酸化カリウム、エチレンジアミン、モノエタノールアミン、TMAH(テトラメチルアンモニウムヒドロキシド)、TEAH(テトラエチルアンモニウムヒドロキシド)、アンモニア等の塩基;リン酸、硫酸、塩酸、硝酸、これらの塩が挙げられ、これらの1種以上を用いることができる。
 1.5.pH
 本実施形態に係る化学機械研磨用組成物のpHは、特に制限されないが、好ましくは2以上5以下であり、より好ましくは2以上4以下である。pHが前記範囲にあると、化学機械研磨用組成物中の(A)成分の分散性が向上することで、化学機械研磨用組成物の貯蔵安定性が良好となるため好ましい。
 なお、本実施形態に係る化学機械研磨用組成物のpHは、例えば、前記(B)成分、前記(B)成分以外の有機酸、pH調整剤等の含有量を適宜増減することにより調整することができる。
 本発明において、pHとは、水素イオン指数のことを指し、その値は、25℃、1気圧の条件下で市販のpHメーター(例えば、株式会社堀場製作所製、卓上型pHメーター)を用いて、測定することができる。
 1.6.用途
 本実施形態に係る化学機械研磨用組成物は、半導体装置を構成する複数種の材料を有する半導体基板を化学機械研磨するための研磨材料として好適である。例えば、前記半導体基板は、タングステンやコバルト等の導電体金属の他、シリコン酸化膜、シリコン窒化膜、アモルファスシリコン等の絶縁膜材料や、チタン、窒化チタン、窒化タンタル等のバリアメタル材料を有していてもよい。
 本実施形態に係る化学機械研磨用組成物の特に好適な研磨対象は、タングステンを含む配線層が設けられた半導体基板等の被処理体である。具体的には、ヴィアホールを有するシリコン酸化膜と、前記シリコン酸化膜上にバリアメタル膜を介して設けられたタングステン膜と、を含む被処理体が挙げられる。本実施形態に係る化学機械研磨用組成物を用いることによって、タングステン膜を高速かつ平坦に研磨できるだけでなく、タングステン膜とシリコン酸化膜等の絶縁膜とが共存する被研磨面に対しても研磨欠陥の発生を抑制しながら高速かつ平坦に研磨することができる。
 1.7.化学機械研磨用組成物の調製方法
 本実施形態に係る化学機械研磨用組成物は、水等の液状媒体に上述の各成分を溶解又は分散させることにより調製することができる。溶解又は分散させる方法は、特に制限されず、均一に溶解又は分散できればどのような方法を適用してもよい。また、上述の各成分の混合順序や混合方法についても特に制限されない。
 また、本実施形態に係る化学機械研磨用組成物は、濃縮タイプの原液として調製し、使用時に水等の液状媒体で希釈して使用することもできる。
 2.化学機械研磨方法
 本発明の一実施形態に係る研磨方法は、上述した化学機械研磨用組成物を用いて、半導体基板を研磨する工程を含む。以下、本実施形態に係る化学機械研磨方法の一具体例について、図面を用いながら詳細に説明する。
 2.1.被処理体
 図1は、本実施形態に係る化学機械研磨方法の使用に適した被処理体を模式的に示した断面図である。被処理体100は、以下の工程(1)~工程(4)を経ることにより形成される。
 (1)まず、図1に示すように、基体10を用意する。基体10は、例えばシリコン基板とその上に形成されたシリコン酸化膜とから構成されていてもよい。さらに、基体10には、(図示しない)トランジスタ等の機能デバイスが形成されていてもよい。次に、基体10の上に、熱酸化法を用いて絶縁膜であるシリコン酸化膜12を形成する。
 (2)次いで、シリコン酸化膜12をパターニングする。得られたパターンをマスクとして、フォトリソグラフィー法によりシリコン酸化膜12にヴィアホール14を形成する。
 (3)次いで、スパッタ等を適用してシリコン酸化膜12の表面及びヴィアホール14の内壁面にバリアメタル膜16を形成する。タングステンとシリコンとの電気的接触があまり良好でないため、バリアメタル膜を介在させることで良好な電気的接触を実現している。バリアメタル膜16としては、チタン及び/又は窒化チタンが挙げられる。
 (4)次いで、CVD法を適用してタングステン膜18を堆積させる。
 以上の工程により、被処理体100が形成される。
 2.2.化学機械研磨方法
 2.2.1.第1研磨工程
 図2は、第1研磨工程終了時での被処理体を模式的に示した断面図である。第1研磨工程では、図2に示すように、上述の化学機械研磨用組成物を用いてバリアメタル膜16が露出するまでタングステン膜18を研磨する。
 2.2.2.第2研磨工程
 図3は、第2研磨工程終了時での被処理体を模式的に示した断面図である。第2研磨工程では、図3に示すように、上述の化学機械研磨用組成物を用いてシリコン酸化膜12、バリアメタル膜16及びタングステン膜18を研磨する。第2研磨工程を経ることにより、被研磨面の平坦性に優れた次世代型の半導体装置200を製造することができる。
 なお、上記の通り、上述の化学機械研磨用組成物は、半導体装置を構成する複数種の材料を有する半導体基板を化学機械研磨するための研磨材料として好適である。そのため、本実施形態に係る化学機械研磨方法の第1研磨工程及び第2研磨工程において、同一組成の化学機械研磨用組成物を用いることができるので、生産ラインのスループットが向上する。
 2.3.化学機械研磨装置
 上述の第1研磨工程及び第2研磨工程には、例えば図4に示すような研磨装置300を用いることができる。図4は、研磨装置300を模式的に示した斜視図である。上述の第1研磨工程及び第2研磨工程は、スラリー供給ノズル42からスラリー(化学機械研磨用組成物)44を供給し、かつ研磨布46が貼付されたターンテーブル48を回転させながら、半導体基板50を保持したキャリアーヘッド52を当接させることにより行う。なお、図4には、水供給ノズル54及びドレッサー56も併せて示してある。
 キャリアーヘッド52の研磨荷重は、10~980hPaの範囲内で選択することができ、好ましくは30~490hPaである。また、ターンテーブル48及びキャリアーヘッド52の回転数は10~400rpmの範囲内で適宜選択することができ、好ましくは30~150rpmである。スラリー供給ノズル42から供給されるスラリー(化学機械研磨用組成物)44の流量は、10~1,000mL/分の範囲内で選択することができ、好ましくは50~400mL/分である。
 市販の研磨装置としては、例えば、荏原製作所社製、型式「EPO-112」、「EPO-222」;ラップマスターSFT社製、型式「LGP-510」、「LGP-552」;アプライドマテリアル社製、型式「Mirra」、「Reflexion」;G&P TECHNOLOGY社製、型式「POLI-400L」;AMAT社製、型式「Reflexion LK」等が挙げられる。
 3.実施例
 以下、本発明を実施例により説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、本実施例における「部」及び「%」は、特に断らない限り質量基準である。
 3.1.シリカ粒子水分散体の調製
 3.1.1.水分散体Aの調製
 容量2000cmのフラスコに、PL-3(扶桑化学工業株式会社製、19.5%コロイダルシリカ)を2000g入れ、60℃になるまで加熱した。その後、(3-トリエトキシシリル)プロピルコハク酸無水物(東京化成工業株式会社製)6.0gを加え、60℃で加熱、4時間反応を続けた。冷却後、カルボン酸修飾シリカ粒子の水分散体Aを得た。
 3.1.2.水分散体Bの調製
 純水787.9g、25%アンモニア水(富士フイルム和光純薬株式会社製)786.0g、メタノール(富士フイルム和光純薬株式会社製)12924gの混合液に、テトラメトキシシラン(東京化成工業株式会社製)1522.2gとメタノール413.0gの混合液を、液温35℃に保ちつつ55分かけて滴下して、加水分解したシリカゾル分散液を得た。このゾルを常圧下にて、2900mlまで加熱濃縮を行った。この濃縮液をさらに、常圧下、加熱蒸留しつつ、容量を一定に保ちつつ純水を滴下し、塔頂温が100℃に達し、且つpHが8以下になったのを確認した時点で純水の滴下を終了して、シリカゾルを得た。作成したシリカゾル540gに、メタノール19.0gと3-アミノプロピルトリメトキシシラン1.0gの混合液を、液温を保ちつつ10分かけて滴下した後、常圧下、2時間還流を行った。その後、容量を一定に保ちつつ純水を滴下し、塔頂温が100℃に達した時点で純水の滴下を終了して、アミノ修飾シリカ粒子の水分散体を得た。得られた水分散体を150℃、24時間の真空乾燥を行い、アミノ修飾シリカ粒子を得た。
 得られたアミノ修飾シリカ粒子を70℃、12時間の乾燥を行った。マロン酸(東京化成工業株式会社製)1.4gを、あらかじめ窒素フローした三つ口フラスコに量り取り、20.0mlのN-メチル-2-ピロリドン(NMP、富士フイルム和光純薬株式会社製)を加えて、マロン酸が完全に溶解するまで攪拌した。この反応溶液にアミノ修飾シリカ粒子2.0gを加えて1時間の攪拌を行い、続いて、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル(東京化成工業株式会社製)を6.2g、トリエチルアミン(富士フイルム和光純薬株式会社製)を1.4ml加えて、室温で24時間攪拌した。この反応溶液を一晩静置し、粒子を沈殿させ上澄み溶液を捨てた後、NMPで粒子を数回洗浄し、カルボン酸修飾シリカ粒子を得た。回収した粒子は100℃、12時間の真空乾燥を行い、溶媒を除去した。純水を適量加えて20%のカルボン酸修飾シリカ粒子の水分散体Bを得た。
 3.1.3.水分散体Cの調製
 上記「3.1.2.水分散体Bの調製」と同様の方法にてアミノ修飾シリカ粒子を得た。得られたアミノ修飾シリカ粒子を70℃、12時間の真空乾燥を行った。クエン酸(東京化成工業株式会社製)1.4gを、あらかじめ窒素フローした三つ口フラスコに量り取り、20.0mlのN-メチル-2-ピロリドン(NMP)を加えて、クエン酸が完全に溶解するまで攪拌した。この反応溶液にアミノ修飾シリカ粒子2.0gを加えて1時間の攪拌を行い、続いて、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルを5.7g、トリエチルアミン)を1.3ml加えて、室温で24時間攪拌した。この反応溶液を一晩静置し、粒子を沈殿させ上澄み溶液を捨てた後、NMPで粒子を数回洗浄し、カルボン酸修飾シリカ粒子を得た。回収した粒子は100℃、12時間の真空乾燥を行い、溶媒を除去した。純水を適量加え20%のカルボン酸修飾シリカ粒子の水分散体C得た。
 3.1.4.水分散体Dの調製
 容量2000cmのフラスコに、PL-3(扶桑化学工業株式会社製、19.5%コロイダルシリカ)を2000g入れ、60℃になるまで加熱した。続けてシランカップリング剤として(3-トリエトキシシリル)プロピルコハク酸無水物12.0gを加え、60℃で加熱、4時間反応を続けた。冷却後、カルボン酸修飾シリカ粒子の水分散体Dを得た。
 3.1.5.水分散体Eの調製
 容量2000cmのフラスコに、PL-3(扶桑化学工業株式会社製、19.5%コロイダルシリカ)を2000g入れ、60℃になるまで加熱した。続けてシランカップリング剤として(3-トリエトキシシリル)プロピルコハク酸無水物18.0gを加え、60℃で加熱、4時間反応を続けた。冷却後、カルボン酸修飾シリカ粒子の水分散体Eを得た。
 3.1.6.水分散体Fの調製
 容量2000cmのフラスコに、25質量%濃度のアンモニア水70g、イオン交換水40g、エタノール175g及びテトラエトキシシラン21gを投入し、180rpmで撹拌しながら60℃に昇温した。60℃のまま1時間撹拌した後冷却し、コロイダルシリカ/アルコール分散体を得た。次いで、エバポレータにより、80℃でこの分散体にイオン交換水を添加しながらアルコール分を除去する操作を数回繰り返すことにより分散体中のアルコールを除き、固形分濃度15%のシリカ分散液を調製した。
 イオン交換水50gに酢酸5gを投入し、撹拌しながらさらにメルカプト基含有シランカップリング剤(信越化学工業株式会社製、商品名「KBE803」)5gを徐々に滴下した。30分後、調製しておいたシリカ分散液を1000g添加し、さらに1時間撹拌を継続した。その後、31%過酸化水素水を200g投入し、48時間室温にて放置することにより、スルホ基を有するシリカ粒子を含む水分散体Fを得た。
 3.1.7.水分散体Gの調製
 純水787.9g、26%アンモニア水786.0g、メタノール12924gの混合液に、テトラメトキシシラン1522.2gとメタノール413.0gの混合液を、液温35℃に保ちつつ55分かけて滴下した。その後、常圧下にて、2900mlまで加熱濃縮を行った。この濃縮液をさらに、常圧下、加熱蒸留しつつ、容量を一定に保ちつつ純水を滴下し、塔頂温が100℃に達し、且つpHが8以下になったのを確認した時点で純水の滴下を終了し、シリカ分散液を調製した。
 調製したシリカ分散液540gに、メタノール19.0gと3-アミノプロピルトリエトキシシラン1.0gの混合液を、液温を保ちつつ10分かけて滴下した後、常圧下、2時間還流を行った。その後、容量を一定に保ちつつ純水を滴下し、塔頂温が100℃に達した時点で純水の滴下を終了して、アミノ基を有するシリカ粒子を含む水分散体Gを得た。
 3.2.化学機械研磨用組成物の調製
 酸化剤として過酸化水素(富士フイルム和光純薬株式会社製、30%水溶液)を用い、ポリエチレン製容器に、表1~表3に示す組成となるように各成分を添加し、さらに水酸化カリウムを必要に応じて加えて表1~表3に示すpHとなるように調整し、全成分の合計量が100質量部となるように純水で調整することにより、各実施例及び各比較例の化学機械研磨用組成物を調製した。
 3.3.評価方法
 3.3.1.研磨速度試験
 上記で得られた化学機械研磨用組成物を用いて、直径12インチのCVD-W膜300nm付きウエハ又は直径12インチのp-TEOS膜(シリコン酸化膜)300nm付きウエハを被研磨体として、下記の研磨条件で60秒間の化学機械研磨試験を行った。
<研磨条件>
・研磨装置:AMAT社製、型式「Reflexion LK」
・研磨パッド:富士紡ホールディングス株式会社製、「多硬質ポリウレタン製パッド;H800-type1(3-1S)775」
・化学機械研磨用組成物供給速度:300mL/分
・定盤回転数:100rpm
・ヘッド回転数:90rpm
・ヘッド押し付け圧:2.5psi
・研磨速度(Å/分)=(研磨前の膜の厚さ-研磨後の膜の厚さ)/研磨時間
 なお、タングステン膜の厚さは、抵抗率測定機(ケーエルエー・テンコール社製、型式「OmniMap RS100」)により直流4探針法で抵抗を測定し、このシート抵抗値とタングステンの体積抵抗率から下記式によって算出した。
・膜の厚さ(Å)=[タングステン膜の体積抵抗率(Ω・m)÷シート抵抗値(Ω)]×1010
 研磨速度試験の評価基準は下記の通りである。タングステン膜の研磨速度結果、シリコン酸化膜の研磨速度結果、及びその評価結果を表1~表3に併せて示す。
(評価基準)
・「A」…タングステン研磨速度が100Å/分以上かつp-TEOS研磨速度が200Å/分以上である場合、両者の研磨速度が十分に大きいため、実際の半導体基板の研磨において他材料膜の研磨との速度バランスが容易に確保でき、実用的であるから良好「A」と判断した。
・「B」…タングステン研磨速度が100Å/分未満またはp-TEOS研磨速度200Å/分未満である場合、両者もしくはいずれか一方の研磨速度が小さいため、実用困難であり不良「B」と判断した。
 3.3.2.欠陥評価
 被研磨体である直径12インチのp-TEOS膜付きウエハを、下記条件で2分間研磨を行った。
<研磨条件>
・研磨装置:AMAT社製、型式「Reflexion LK」
・研磨パッド:富士紡ホールディングス株式会社製、「多硬質ポリウレタン製パッド;H800-type1(3-1S)775」
・化学機械研磨用組成物供給速度:300mL/分
・定盤回転数:100rpm
・ヘッド回転数:90rpm
・ヘッド押し付け圧:2.5psi
 上記で研磨が行われたp-TEOS膜付きウエハについて、欠陥検査装置(ケーエルエー・テンコール社製、型式「Surfscan SP1」)を用いて、90nm以上の大きさの欠陥総数をカウントした。評価基準は以下の通りである。ウエハ当たりの欠陥総数及びその評価結果を表1~表3に併せて示す。
(評価基準)
・「A」…ウエハ当たりの欠陥総数が500個未満である場合を良好「A」と判断した。
・「B」…ウエハ当たりの欠陥総数が500個以上である場合を不良「B」と判断した。
 3.4.評価結果
 下表1~下表3に、各実施例及び各比較例の化学機械研磨用組成物の組成並びに各評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上表1~上表3中の各成分は、それぞれ下記の商品又は試薬を用いた。なお、上表1~上表3中の砥粒の含有量は、各水分散体の固形分濃度を表す。
<砥粒>
・水分散体A~G:上記で調製したシリカ粒子の水分散体A~G
・PL-3:扶桑化学工業株式会社製、商品名「PL-3」、コロイダルシリカ、平均粒子径70nm
<不飽和カルボン酸>
・アクリル酸:東京化成工業株式会社製、商品名「Acrylic Acid(stabilized with MEHQ)」
・メタクリル酸:東京化成工業株式会社製、商品名「Methacrylic Acid(stabilized with MEHQ)」
・2-メチル-3-ブテン酸:東京化成工業株式会社製、商品名「2-Methyl-3-butenoic Acid」
<有機酸>
・クエン酸:東京化成工業株式会社製、商品名「Citric Acid」
・酒石酸:東京化成工業株式会社製、商品名「L-(+)-Tartaric Acid」
・マロン酸:東京化成工業株式会社製、商品名「Malonic Acid」
・リンゴ酸:東京化成工業株式会社製、商品名「DL-Apple Acid」
・ヒスチジン:東京化成工業株式会社製、商品名「L-Histidine」
・アルギニン:東京化成工業株式会社製、商品名「L-(+)-Arginine」
<水溶性高分子>
・ポリアクリル酸:東亜合成株式会社製、商品名「ジュリマーAC-10L」、Mw=20,000~30,000
<pH調整剤>
・モノエタノールアミン:東京化成工業株式会社製、商品名「2-Aminoethanol」
・TEAH:東京化成工業株式会社製、商品名「Tetraethylammonium Hydroxide(10% in Water)」、テトラエチルアンモニウムヒドロキシド
 実施例1~25の化学機械研磨用組成物を用いた場合には、いずれもタングステン膜及びp-TEOS膜を実用的な研磨速度で研磨することができ、かつ、研磨後におけるp-TEOS膜の表面欠陥の発生を低減することができた。
 本発明は、上述した実施形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
10…基体、12…シリコン酸化膜、14…ヴィアホール、16…バリアメタル膜、18…タングステン膜、42…スラリー供給ノズル、44…化学機械研磨用組成物(スラリー)、46…研磨布、48…ターンテーブル、50…半導体基板、52…キャリアーヘッド、54…水供給ノズル、56…ドレッサー、100…被処理体、200…半導体装置、300…化学機械研磨装置

Claims (10)

  1.  (A)下記一般式(1)で表される官能基を有するシリカ粒子と、
     (B)不飽和結合を有するカルボン酸及びその塩よりなる群から選択される少なくとも1種と、
    を含有する、化学機械研磨用組成物。
     -COO ・・・・・(1)
     (Mは1価の陽イオンを表す。)
  2.  化学機械研磨用組成物の全質量を100質量%としたときに、
     前記(A)成分の含有量が0.1質量%以上10質量%以下であり、
     前記(B)成分の含有量が0.0001質量%以上0.02質量%以下である、請求項1に記載の化学機械研磨用組成物。
  3.  前記(A)成分が、その表面に前記一般式(1)で表される官能基が共有結合を介して固定されたシリカ粒子である、請求項1または請求項2に記載の化学機械研磨用組成物。
  4.  前記(B)成分が、少なくとも一つの解離段における25℃での酸解離指数(pKa)が4.5以上である、請求項1ないし請求項3のいずれか一項に記載の化学機械研磨用組成物。
  5.  前記(B)成分が、アクリル酸、メタクリル酸、クロトン酸、2-ブテン酸、2-メチル-3-ブテン酸、2-ヘキセン酸、3-メチル-2-ヘキセン酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、2-ペンテン二酸、イタコン酸、アリルマロン酸、イソプロピリデンコハク酸、2,4-ヘキサジエン二酸、アセチレンジカルボン酸、及びこれらの塩から選択される1種以上である、請求項1ないし請求項3のいずれか一項に記載の化学機械研磨用組成物。
  6.  さらに、前記(B)成分以外の有機酸を含有する、請求項1ないし請求項5のいずれか一項に記載の化学機械研磨用組成物。
  7.  さらに、酸化剤を含有する、請求項1ないし請求項6のいずれか一項に記載の化学機械研磨用組成物。
  8.  pHが2以上5以下である、請求項1ないし請求項7のいずれか一項に記載の化学機械研磨用組成物。
  9.  請求項1ないし請求項8のいずれか一項に記載の化学機械研磨用組成物を用いて半導体基板を研磨する工程を含む、化学機械研磨方法。
  10.  前記半導体基板が、酸化シリコン及びタングステンよりなる群から選択される少なくとも1種を含有する部位を備える、請求項9に記載の化学機械研磨方法。
PCT/JP2020/038474 2019-11-15 2020-10-12 化学機械研磨用組成物及び化学機械研磨方法 WO2021095412A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080076095.9A CN114630880A (zh) 2019-11-15 2020-10-12 化学机械研磨用组合物以及化学机械研磨方法
US17/776,227 US20220389280A1 (en) 2019-11-15 2020-10-12 Chemical mechanical polishing composition and chemical mechanical polishing method
JP2021502913A JP6892033B1 (ja) 2019-11-15 2020-10-12 化学機械研磨用組成物及び化学機械研磨方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-206903 2019-11-15
JP2019206903 2019-11-15

Publications (1)

Publication Number Publication Date
WO2021095412A1 true WO2021095412A1 (ja) 2021-05-20

Family

ID=75912610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038474 WO2021095412A1 (ja) 2019-11-15 2020-10-12 化学機械研磨用組成物及び化学機械研磨方法

Country Status (5)

Country Link
US (1) US20220389280A1 (ja)
JP (1) JP6892033B1 (ja)
CN (1) CN114630880A (ja)
TW (1) TWI743989B (ja)
WO (1) WO2021095412A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269857A (ja) * 2000-03-24 2001-10-02 Fujitsu Ltd 研磨用組成物
JP2010041024A (ja) * 2008-02-06 2010-02-18 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2011003665A (ja) * 2009-06-17 2011-01-06 Jsr Corp 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法
JP2012040671A (ja) * 2010-08-23 2012-03-01 Fujimi Inc 研磨用組成物及びそれを用いた研磨方法
JP2013033897A (ja) * 2010-12-22 2013-02-14 Jsr Corp 化学機械研磨方法
US20190211228A1 (en) * 2018-01-09 2019-07-11 Cabot Microelectronics Corporation Tungsten bulk polishing method with improved topography
JP2019169687A (ja) * 2018-03-26 2019-10-03 株式会社フジミインコーポレーテッド 研磨用組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007021002A1 (de) * 2007-05-04 2008-11-06 Wacker Chemie Ag Dispergierbare Nanopartikel
US9309448B2 (en) * 2010-02-24 2016-04-12 Basf Se Abrasive articles, method for their preparation and method of their use
WO2015129342A1 (ja) * 2014-02-26 2015-09-03 株式会社フジミインコーポレーテッド 研磨用組成物
US10253216B2 (en) * 2016-07-01 2019-04-09 Versum Materials Us, Llc Additives for barrier chemical mechanical planarization
JP6819280B2 (ja) * 2016-12-27 2021-01-27 Jsr株式会社 化学機械研磨用組成物および化学機械研磨方法
US10907073B2 (en) * 2017-01-11 2021-02-02 Fujimi Incorporated Polishing composition
US10647887B2 (en) * 2018-01-08 2020-05-12 Cabot Microelectronics Corporation Tungsten buff polishing compositions with improved topography
JP7141837B2 (ja) * 2018-03-23 2022-09-26 株式会社フジミインコーポレーテッド 研磨用組成物、研磨用組成物の製造方法、研磨方法、および半導体基板の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269857A (ja) * 2000-03-24 2001-10-02 Fujitsu Ltd 研磨用組成物
JP2010041024A (ja) * 2008-02-06 2010-02-18 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2011003665A (ja) * 2009-06-17 2011-01-06 Jsr Corp 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法
JP2012040671A (ja) * 2010-08-23 2012-03-01 Fujimi Inc 研磨用組成物及びそれを用いた研磨方法
JP2013033897A (ja) * 2010-12-22 2013-02-14 Jsr Corp 化学機械研磨方法
US20190211228A1 (en) * 2018-01-09 2019-07-11 Cabot Microelectronics Corporation Tungsten bulk polishing method with improved topography
JP2019169687A (ja) * 2018-03-26 2019-10-03 株式会社フジミインコーポレーテッド 研磨用組成物

Also Published As

Publication number Publication date
TWI743989B (zh) 2021-10-21
JP6892033B1 (ja) 2021-06-18
CN114630880A (zh) 2022-06-14
TW202128941A (zh) 2021-08-01
US20220389280A1 (en) 2022-12-08
JPWO2021095412A1 (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
JP5472585B2 (ja) 化学機械研磨用水系分散体および化学機械研磨方法
TW201723139A (zh) 一種化學機械拋光液及其應用
JP2005158867A (ja) 化学機械研磨用水系分散体を調製するためのセット
TWI825146B (zh) 化學機械研磨用水系分散體及其製造方法、以及化學機械研磨方法
TWI814885B (zh) 化學機械研磨用水系分散體及其製造方法
TWI814880B (zh) 化學機械研磨用水系分散體
JP6892035B1 (ja) 化学機械研磨用組成物及び化学機械研磨方法
JP6892033B1 (ja) 化学機械研磨用組成物及び化学機械研磨方法
JP7375515B2 (ja) 化学機械研磨用組成物及び化学機械研磨方法
WO2021095415A1 (ja) 化学機械研磨用組成物及び化学機械研磨方法
JP6892034B1 (ja) 化学機械研磨用組成物及び化学機械研磨方法
JP7375483B2 (ja) 化学機械研磨用組成物及び化学機械研磨方法
WO2021111863A1 (ja) 化学機械研磨用組成物及び化学機械研磨方法
WO2023085007A1 (ja) 化学機械研磨用組成物および研磨方法
TWI837428B (zh) 化學機械研磨用組成物及化學機械研磨方法
WO2023085009A1 (ja) 化学機械研磨用組成物および研磨方法
WO2023085008A1 (ja) 化学機械研磨用組成物およびその製造方法、ならびに研磨方法
WO2021124771A1 (ja) 化学機械研磨用組成物、化学機械研磨方法、及び化学機械研磨用粒子の製造方法
JP2023072344A (ja) 化学機械研磨用組成物および研磨方法
JP2020017556A (ja) 化学機械研磨用水系分散体及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021502913

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886242

Country of ref document: EP

Kind code of ref document: A1