WO2021095186A1 - 鋼材 - Google Patents

鋼材 Download PDF

Info

Publication number
WO2021095186A1
WO2021095186A1 PCT/JP2019/044612 JP2019044612W WO2021095186A1 WO 2021095186 A1 WO2021095186 A1 WO 2021095186A1 JP 2019044612 W JP2019044612 W JP 2019044612W WO 2021095186 A1 WO2021095186 A1 WO 2021095186A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
mns
steel
contained
Prior art date
Application number
PCT/JP2019/044612
Other languages
English (en)
French (fr)
Inventor
淳子 今村
慎 長澤
児玉 正行
久斉 矢頭
鶴田 明宏
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to PCT/JP2019/044612 priority Critical patent/WO2021095186A1/ja
Priority to KR1020227011948A priority patent/KR20220062365A/ko
Priority to JP2020515046A priority patent/JP6813127B1/ja
Priority to CN201980101647.4A priority patent/CN114599808B/zh
Publication of WO2021095186A1 publication Critical patent/WO2021095186A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to steel materials.
  • Exhaust gas containing water vapor, sulfur oxides, hydrogen chloride, etc. is generated in the incinerators of boiler furnaces and waste incinerators.
  • this exhaust gas is cooled in an exhaust gas chimney or the like, it condenses into sulfuric acid and hydrochloric acid, which causes significant corrosion of the steel materials constituting the exhaust gas flow path, as known as sulfuric acid dew point corrosion and hydrochloric acid dew point corrosion.
  • Patent Documents 1 to 4 propose steel materials having excellent sulfuric acid dew point corrosion resistance to which Cu, Sb, Co, Cr and the like are added.
  • Patent Document 5 proposes a highly corrosion-resistant stainless steel to which Cr, Ni and the like are added.
  • Japanese Unexamined Patent Publication No. 2001-164335 Japanese Unexamined Patent Publication No. 2003-213367 Japanese Unexamined Patent Publication No. 2007-239094 Japanese Unexamined Patent Publication No. 2012-57221 Japanese Unexamined Patent Publication No. 7-316745
  • Steel materials containing Cu, Sb, Cr, etc. exhibit excellent corrosion resistance in a sulfuric acid corrosion environment such as an exhaust gas chimney. However, in order to extend the life of boilers and incineration equipment, further improvement in corrosion resistance is expected.
  • An object of the present invention is to solve the above problems and to provide a steel material having excellent corrosion resistance in a sulfuric acid corrosive environment and a hydrochloric acid corrosive environment, and also having excellent hot workability and cold workability.
  • the present invention has been made to solve the above problems, and the following steel materials are the gist of the present invention.
  • the chemical composition is mass%. C: 0.0010% or more and less than 0.010%, Si: 0.03 to 0.60%, Mn: 0.10 to 1.50%, Cu: 0.05-0.50%, Sb: 0.02 to 0.30%, Ni: 0.02 to 0.50%, Cr: 0.02 to 0.09%, Al: 0.005 to 0.080%, N: 0.008% or less, P: 0.025% or less, S: 0.001 to 0.015%, O: 0.0005 to 0.0035%, Mo: 0 to 0.50%, W: 0 to 0.50%, Sn: 0 to 0.30%, As: 0 to 0.30%, Co: 0 to 0.30%, Bi: 0 to 0.010%, Ti: 0 to 0.050%, Nb: 0 to 0.10%, V: 0 to 0.10%, Zr: 0 to 0.050%, Ta: 0 to 0.050%, B: 0 to 0.010%, Ca: 0 to 0.010%, Mg: 0 to 0.010%, M
  • the DI defined by the following equation (ii) is 1.00 to 3.00.
  • the Ceq defined by the following equation (iii) is 0.100 to 0.220.
  • the number density of MnS containing MnS and MnS oxide in the steel material the number density of MnS having a maximum length of 2.0 ⁇ m or more is less than 10.0 / mm 2 , and the maximum length is 2.0 ⁇ m or more.
  • the ratio of the number densities of MnS oxides having a maximum length of 2.0 ⁇ m or more is 0.10 or more.
  • CI (Cu / 64) / (S / 32) ...
  • DI (Cu / 64) / (Ni / 59) ...
  • the chemical composition is mass%. Mo: 0.01-0.50%, W: 0.01-0.50%, Sn: 0.01 to 0.30%, As: 0.01-0.30%, Co: 0.01 to 0.30%, and Bi: 0.001 to 0.010%, Contains one or more selected from, The steel material according to (1) above.
  • the chemical composition is mass%.
  • the chemical composition is mass%.
  • MnS can be made harmless by making it finer and combining it with oxygen to form an MnS oxide.
  • C is an element that improves the strength of the steel material. However, in order to ensure cold workability while improving corrosion resistance, it is necessary to reduce the C content as much as possible. Therefore, the C content is set to 0.0010% or more and less than 0.010%. When strength is required, the C content is preferably 0.0030% or more. The C content is preferably 0.0090% or less, more preferably 0.0080% or less.
  • Si 0.03 to 0.60%
  • Si is an element that contributes to deoxidation and improvement of strength and controls the morphology of oxides. However, when Si is excessively contained, the oxide increases and the corrosion resistance is impaired. Therefore, the Si content is set to 0.03 to 0.60%.
  • the Si content is preferably 0.05% or more, more preferably 0.10% or more.
  • the Si content is preferably 0.40% or less, and preferably 0.30% or less.
  • Mn 0.10 to 1.50%
  • Mn is an element that improves strength and toughness. However, when Mn is excessively contained, coarse MnS is generated, and the corrosion resistance and mechanical properties are deteriorated. Therefore, the Mn content is set to 0.10 to 1.50%.
  • the Mn content is preferably 0.30% or more, and more preferably 0.50% or more.
  • the Mn content is preferably 1.20% or less, more preferably 1.00% or less, and even more preferably 0.80% or less.
  • Cu 0.05-0.50%
  • Cu is an element that remarkably exhibits corrosion resistance to sulfuric acid and hydrochloric acid when contained at the same time as Sb. However, when Cu is excessively contained, the hot workability is lowered and the productivity is impaired. Therefore, the Cu content is set to 0.05 to 0.50%.
  • the Cu content is preferably 0.10% or more, 0.15% or more, or 0.20% or more.
  • the Cu content is preferably 0.40% or less, more preferably 0.30% or less.
  • Sb 0.02 to 0.30%
  • Sb is an element that remarkably exhibits corrosion resistance to sulfuric acid and hydrochloric acid when contained at the same time as Cu. However, when Sb is excessively contained, the hot workability is lowered and the productivity is impaired. Therefore, the Sb content is set to 0.02 to 0.30%.
  • the Sb content is preferably 0.03% or more, more preferably 0.06% or more, and further preferably 0.10% or more.
  • the Sb content is preferably 0.20% or less, more preferably 0.15% or less.
  • Ni 0.02 to 0.50%
  • Ni is an element that improves corrosion resistance in an acid-corrosive environment, and in addition, has the effect of improving manufacturability in steel containing Cu.
  • Cu has a great effect of improving corrosion resistance, but it is easily segregated, and when it is contained alone, it may promote cracking after casting.
  • Ni has the effect of reducing the surface segregation of Cu.
  • Ni is an expensive element, and a large amount of Ni causes an increase in steelmaking cost. Therefore, the Ni content is set to 0.02 to 0.50%.
  • the Ni content is preferably 0.05% or more, more preferably 0.10% or more, and even more preferably 0.15% or more.
  • the Ni content is preferably 0.30% or less, and preferably 0.25% or less.
  • Cr 0.02 to 0.09% Cr is an element having the effect of improving hardenability, strength, and sulfuric acid resistance. However, Cr reduces the hydrochloric acid resistance. Therefore, the Cr content needs to be strictly limited and is set to 0.02 to 0.09%.
  • the Cr content is preferably 0.03% or more, more preferably 0.05% or more, and even more preferably 0.06% or more. Further, the Cr content is preferably 0.08% or less.
  • Al 0.005 to 0.080% Al is added as an antacid. However, when Al is excessively contained, the corrosion resistance is impaired due to the increase in inclusions. Therefore, the Al content is set to 0.005 to 0.080%.
  • the Al content is preferably 0.010% or more, and more preferably 0.020% or more.
  • the Al content is preferably 0.070% or less, more preferably 0.050% or less.
  • N is an impurity and reduces the mechanical properties and productivity of the steel material. Therefore, the upper limit of the N content is set to 0.008% or less.
  • the N content is preferably 0.006% or less, more preferably 0.004% or less.
  • the N content may be 0%, but an extreme reduction leads to an increase in steelmaking cost. Therefore, the N content may be 0.001% or more.
  • N has an effect of contributing to improvement of mechanical properties and the like by precipitating as a fine nitride. If the effect is desired, the N content may be 0.002% or more.
  • P 0.025% or less
  • P is an impurity and reduces the mechanical properties and productivity of steel materials. Therefore, the upper limit of the P content is set to 0.025% or less.
  • the P content is preferably 0.020% or less, more preferably 0.015% or less.
  • the P content is preferably reduced as much as possible, that is, the content may be 0%, but an extreme reduction leads to an increase in steelmaking cost. Therefore, the P content may be 0.001% or more.
  • S 0.001 to 0.015%
  • S is generally an impurity and reduces the mechanical properties and productivity of the steel material.
  • S has an effect of improving corrosion resistance in an acid-corrosive environment by containing Cu and Sb at the same time. Therefore, the S content is set to 0.001 to 0.015%.
  • the S content is preferably 0.003% or more, or 0.005% or more.
  • the S content is preferably 0.013% or less, more preferably 0.011% or less.
  • O 0.0005 to 0.0035%
  • O is an element that has the effect of detoxifying MnS by binding to MnS and preventing deterioration of corrosion resistance and mechanical properties.
  • the O content is set to 0.0005 to 0.0035%.
  • the O content is preferably 0.0010% or more, more preferably 0.0015% or more.
  • the O content is preferably 0.0030% or less, more preferably 0.0025% or less.
  • Mo 0 to 0.50% Since Mo is an element that improves corrosion resistance in an acid-corrosive environment by being contained at the same time as Cu and Sb, it may be contained as necessary. However, since Mo is an expensive element, excessive content causes a decrease in economic efficiency. Therefore, the Mo content is set to 0.50% or less.
  • the Mo content is preferably 0.40% or less, more preferably 0.30% or less, and even more preferably 0.20% or less. When the above effect is desired, the Mo content is preferably 0.01% or more, 0.02% or more, 0.05% or more, or 0.10% or more.
  • W 0 to 0.50% Since W is an element that improves corrosion resistance in an acid-corrosive environment by being contained at the same time as Cu and Sb like Mo, it may be contained as necessary. However, since W is an expensive element, excessive content causes a decrease in economic efficiency. Therefore, the W content is set to 0.50% or less.
  • the W content is preferably 0.40% or less, more preferably 0.30% or less, and even more preferably 0.20% or less. When the above effect is desired, the W content is preferably 0.01% or more, 0.02% or more, 0.05% or more, or 0.10% or more.
  • Sn 0 to 0.30% Since Sn is an element that improves corrosion resistance in an acid-corrosive environment when it is contained at the same time as Cu, it may be contained if necessary. However, if Sn is contained in excess, the hot workability is lowered. Therefore, the Sn content is set to 0.30% or less.
  • the Sn content is preferably 0.25% or less, more preferably 0.20% or less, and even more preferably 0.15% or less. When the above effect is desired, the Sn content is preferably 0.01% or more, more preferably 0.02% or more, and further preferably 0.05% or more. ..
  • the As content is set to 0.30% or less.
  • the As content is preferably 0.20% or less, and more preferably 0.10% or less.
  • the As content is preferably 0.01% or more, more preferably 0.02% or more, and further preferably 0.05% or more. ..
  • Co 0 to 0.30%
  • Co has no significant effect as compared with Sb and Sn, it may be contained as necessary because it is an element that improves corrosion resistance in an acid-corrosive environment. However, if Co is excessively contained, the economic efficiency is lowered. Therefore, the Co content is set to 0.30% or less.
  • the Co content is preferably 0.20% or less, more preferably 0.10% or less.
  • the Co content is preferably 0.01% or more, more preferably 0.02% or more, and further preferably 0.05% or more. ..
  • Bi 0 to 0.010%
  • Bi has no significant effect as compared with Sb and Sn, it may be contained as necessary because it is an element that improves corrosion resistance in an acid-corrosive environment. However, if Bi is excessively contained, the hot workability is lowered. Therefore, the Bi content is set to 0.010% or less.
  • the Bi content is preferably 0.007% or less, more preferably 0.005% or less.
  • the Bi content is preferably 0.001% or more, more preferably 0.002% or more, and further preferably 0.005% or more. ..
  • Ti 0 to 0.050% Since Ti is an element that forms a nitride and contributes to the refinement of crystal grains and the improvement of strength, it may be contained if necessary. However, when Ti is excessively contained, the nitride becomes coarse and the mechanical properties deteriorate. Therefore, the Ti content is set to 0.050% or less.
  • the Ti content is preferably 0.040% or less, more preferably 0.030% or less, and even more preferably 0.020% or less. When the above effect is desired, the Ti content is preferably 0.001% or more, more preferably 0.002% or more, and further preferably 0.005% or more. ..
  • Nb 0 to 0.10%
  • Nb is an element that forms a nitride and contributes to the refinement of crystal grains and the improvement of strength, and therefore may be contained as necessary.
  • the Nb content is set to 0.10% or less.
  • the Nb content is preferably 0.050% or less, more preferably 0.030% or less, and even more preferably 0.020% or less.
  • the Nb content is preferably 0.001% or more, more preferably 0.002% or more, and further preferably 0.005% or more. ..
  • V 0 to 0.10%
  • V is an element that forms a nitride and contributes to the refinement of crystal grains and the improvement of strength, and therefore may be contained as necessary.
  • the V content is set to 0.10% or less.
  • the V content is preferably 0.050% or less, more preferably 0.030% or less, and even more preferably 0.020% or less.
  • the V content is preferably 0.005% or more.
  • Zr 0 to 0.050%
  • Zr is an element that forms a nitride and contributes to the refinement of crystal grains and the improvement of strength, and therefore may be contained as necessary.
  • Zr is an expensive element, and a large amount of Zr causes an increase in steelmaking cost.
  • the Zr content is set to 0.050% or less.
  • the Zr content is preferably 0.040% or less, more preferably 0.030% or less, and even more preferably 0.020% or less. When the above effect is desired, the Zr content is preferably 0.005% or more.
  • Ta 0 to 0.050%
  • Ta is an element that contributes to the improvement of strength, and although the mechanism is not always clear, it also contributes to the improvement of corrosion resistance, and therefore may be contained as necessary.
  • Ta is an expensive element, and its content in a large amount causes an increase in steelmaking cost. Therefore, the Ta content is set to 0.050% or less.
  • the Ta content is preferably 0.040% or less, more preferably 0.030% or less, and even more preferably 0.020% or less. When the above effect is desired, the Ta content is preferably 0.001% or more, and more preferably 0.005% or more.
  • B 0 to 0.010% Since B is an element that improves hardenability and enhances strength, it may be contained if necessary. However, even if B is excessively contained, the effect may be saturated and the toughness of the base material and HAZ may decrease. Therefore, the B content is set to 0.010% or less.
  • the B content is preferably 0.0050% or less, more preferably 0.0030% or less, and even more preferably 0.0020% or less.
  • the B content is preferably 0.0003% or more, and more preferably 0.0005% or more.
  • one or more selected from Ca, Mg, and REM may be contained in the range shown below for the purpose of deoxidation and control of inclusions. Good. Since these elements are not always essential in steel materials, the lower limit of the content is 0%. The reasons for limiting each element will be described.
  • Ca 0 to 0.010%
  • Ca is an element mainly used for controlling the morphology of sulfides, and may be contained as necessary in order to form fine oxides. However, excessive addition of Ca may impair mechanical properties. Therefore, the Ca content is set to 0.010% or less.
  • the Ca content is preferably 0.005% or less, more preferably 0.003% or less.
  • the Ca content is preferably 0.0005% or more, more preferably 0.001% or more, and further preferably 0.002% or more. ..
  • Mg 0 to 0.010% Mg may be contained if necessary in order to form a fine oxide. However, excessive addition of Mg leads to an increase in steelmaking cost. Therefore, the Mg content is set to 0.010% or less.
  • the Mg content is preferably 0.005% or less, more preferably 0.003% or less.
  • the Mg content is preferably 0.0001% or more, more preferably 0.0003% or more, and further preferably 0.0005% or more. ..
  • REM 0 to 0.010% REM (rare earth element) is an element mainly used for deoxidation, and may be contained as necessary in order to form a fine oxide. However, excessive addition of REM leads to an increase in steelmaking cost. Therefore, the REM content is set to 0.010% or less.
  • the REM content is preferably 0.005% or less, more preferably 0.003% or less.
  • the REM content is preferably 0.0001% or more, more preferably 0.0003% or more, and further preferably 0.0005% or more. ..
  • REM is a general term for a total of 17 elements of Sc, Y and lanthanoid, and the content of REM means the total amount of the above elements.
  • Lanthanoids are industrially added in the form of misch metal.
  • the balance is Fe and impurities.
  • the impurity is a component mixed by raw materials such as ores and scraps and other factors in the industrial production of steel materials, and is allowed as long as it does not adversely affect the steel material according to the present invention. means.
  • the acid resistance corrosion index CI is an index derived to suppress inclusions that are likely to be corrosion origins while generating CuS in steel. Cu and S are required to produce CuS in steel, but the balance of Cu and S is important. In order to significantly improve the corrosion resistance in an acid corrosion environment, the acid corrosion resistance index CI is set to 17.0 to 30.0.
  • the acid resistance corrosion index CI is preferably 18.0 or more, more preferably 19.0 or more, and further preferably 20.0 or more.
  • the acid corrosion resistance index CI is preferably 28.0 or less, more preferably 26.0 or less, and even more preferably 24.0 or less.
  • the red heat embrittlement index DI is an index for suppressing surface cracks due to Cu segregating at grain boundaries or the surface of the base metal by containing Ni, and is important for ensuring hot workability. If the Ni content is too small with respect to the Cu content, the hot workability deteriorates. On the other hand, it is preferable to reduce the reddish embrittlement index DI in order to ensure hot workability, but if the value is too low, the effect is saturated. Further, when Cu is insufficient, the effect of improving the corrosion resistance in an acid-corroded environment becomes insufficient. From the viewpoint of achieving both hot workability and corrosion resistance, the red heat embrittlement index DI is set to 1.00 to 3.00.
  • the red embrittlement index DI is preferably 1.25 or more, and more preferably 1.50 or more, from the viewpoint of improving corrosion resistance. Further, from the viewpoint of improving hot workability, the red heat embrittlement index DI is preferably 2.80 or less, and more preferably 2.60 or less.
  • Ceq 0.100 to 0.220
  • Ceq is an index showing deterioration of cold workability due to an increase in hardness. If Ceq is excessive, cold workability cannot be ensured. On the other hand, if Ceq is too low, the mechanical properties will be insufficient. Therefore, Ceq is set to 0.100 to 0.220.
  • Ceq is preferably 0.110 or more, and more preferably 0.120 or more. Further, Ceq is preferably 0.210 or less, and more preferably 0.200 or less.
  • the steel material according to the present invention contains MnS and MnS oxides in the steel material.
  • the number density of MnS having a maximum length of 2.0 ⁇ m or more is less than 10.0 / mm 2.
  • the ratio of the number density of MnS oxides having a maximum length of 2.0 ⁇ m or more to the number density of MnS having a maximum length of 2.0 ⁇ m or more is 0.10 or more.
  • MnS having a maximum length of less than 2.0 ⁇ m has almost no effect on the corrosion resistance of steel materials, inclusions having a maximum length of 2.0 ⁇ m or more are targeted in the present invention.
  • MnS having a maximum length of 2.0 ⁇ m or more is simply referred to as MnS
  • MnS oxide having a maximum length of 2.0 ⁇ m or more is simply referred to as MnS oxide.
  • MnS As described above, the formation of MnS is unavoidable in the steel material of the present invention. However, MnS becomes a starting point of corrosion and deteriorates corrosion resistance in an acid-corroded environment. Therefore, it is necessary to limit the number density of MnS to less than 10.0 / mm 2.
  • the number density of MnS is preferably 8.0 / mm 2 or less, and more preferably 6.0 / mm 2 or less.
  • the ratio of the number density of MnS oxides to the number density of MnS is set to 0.10 or more.
  • the above ratio is preferably 0.12 or more, and more preferably 0.15 or more.
  • the number density of MnS and the number density of MnS oxide are measured by energy dispersive X-ray analysis (EDS) provided in a scanning electron microscope (SEM). The measurement magnification is 1000 times, and the maximum lengths of MnS and MnS oxides detected in the visual field are measured. Then, the number density is obtained by counting the number of inclusions having a maximum length of 2.0 ⁇ m or more and dividing by the visual field area.
  • EDS energy dispersive X-ray analysis
  • SEM scanning electron microscope
  • inclusions are identified by EDS, and inclusions having a total content of Mn and S of 90% by mass or more are determined to be MnS, a peak of O is detected, and the total content of Mn, S and O is contained. Inclusions having an amount of 90% by mass or more are judged to be MnS oxides.
  • the steel material according to the present embodiment includes steel plates, shaped steels, steel pipes, and the like manufactured by hot rolling and, if necessary, cold rolling. Above all, the steel material according to the present invention can be suitably used as a thin plate used for fin materials and the like. Therefore, the thickness of the steel material is preferably 0.5 to 2.5 mm, more preferably 0.7 to 2.3 mm, and even more preferably 1.0 to 1.6 mm.
  • the steel material according to the present embodiment is produced by melting steel by a conventional method, adjusting the components, hot rolling the steel pieces obtained by casting, and cold rolling if necessary. ..
  • the heating temperature is relatively low, and specifically, it is preferably 1000 to 1130 ° C.
  • the heating temperature before hot rolling should be 1080 ° C. or less. More preferred.
  • the next process such as cutting or coil winding is added to the hot-rolled steel sheet after hot rolling. At that time, the temperature of the steel sheet drops, but it is desirable that the time from the completion of hot rolling to reaching 400 ° C. is 4 hours or more.
  • cold rolling may be performed to obtain a cold-rolled steel sheet. Further, heat treatment may be performed after the cold rolling.
  • the steel pipe When manufacturing a steel pipe from the obtained steel plate, the steel pipe may be formed into a tubular shape and welded, and for example, a UO steel pipe, an electrosewn steel pipe, a forge welded steel pipe, a spiral steel pipe, or the like can be obtained.
  • the present invention will be described in more detail with reference to Examples.
  • the conditions in the examples shown below are one-condition examples adopted for confirming the feasibility and effect of the present invention, and the present invention is not limited to this one-condition example. Further, the present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
  • a test piece for SEM observation was cut out from each of the obtained steel plates, and the number density of inclusions was measured by the EDS provided in the SEM.
  • the measurement magnification shall be 1000 times, the maximum lengths of MnS and MnS oxides detected in the visual field shall be measured, the number of inclusions having a maximum length of 2.0 ⁇ m or more, respectively, shall be counted and divided by the visual field area. Then, the number density was calculated.
  • a test piece having a plate thickness of 1 mm, a width of 25 mm, and a length of 25 mm was collected from each steel plate from the central portion of the plate thickness and finished by wet # 400 polishing to prepare a test piece for corrosion resistance evaluation.
  • the corrosion resistance was evaluated by a sulfuric acid immersion test and a hydrochloric acid immersion test.
  • the test piece was immersed in a 50% sulfuric acid aqueous solution at 70 ° C. for 6 hours
  • the hydrochloric acid immersion test the test piece was immersed in a 10% hydrochloric acid aqueous solution at 80 ° C. for 5 hours.
  • the corrosion rate was calculated from the corrosion weight loss of the test piece by the sulfuric acid immersion test and the hydrochloric acid immersion test.
  • the corrosion rate by sulfuric acid immersion test is less than 15.0mg / cm 2 / h, it determines that the excellent resistance to sulfuric acid
  • the corrosion rate with hydrochloric acid immersion test is 10.0 mg / cm 2 / When it was h or less, it was judged that the hydrochloric acid resistance was excellent.
  • a tensile test piece having a thickness of 1 mm was prepared in accordance with JIS Z 2241: 2011, and a tensile test was performed to determine the tensile strength and total elongation. Those having a tensile strength of 350 MPa or more were evaluated as ⁇ , and those having a tensile strength of less than 350 MPa were evaluated as x. The total elongation was used as an index of cold workability, and those with 30% or more were marked with ⁇ , and those with less than 30% were marked with x.
  • Tables 5 and 6 summarize the measurement results of the number density of inclusions and the evaluation results of the sulfuric acid immersion test, the hydrochloric acid immersion test, the hot workability and the tensile test.
  • Test Nos. That satisfy all the provisions of the present invention. In 1 to 26, excellent results were obtained in all the performance evaluation tests. On the other hand, Test No. which is a comparative example. In 27 to 36, at least one of sulfuric acid resistance, hydrochloric acid resistance, hot workability and cold workability was deteriorated.
  • the steel material of the present invention is a boiler for burning heavy oil, fossil fuels such as coal, gas fuels such as liquefied natural gas, general wastes such as municipal waste, industrial wastes such as waste oil, plastics and exhaust tires, and sewage sludge. It can be used for smoke exhaust equipment.
  • a gas-gas heater consisting of a flue duct, a casing, a heat exchanger, and two heat exchangers (heat recovery device and reheater) of smoke exhaust equipment, a desulfurization device, an electrostatic collector, and an attracting blower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

化学組成が、質量%で、C:0.0010%以上0.010%未満、Si:0.03~0.60%、Mn:0.10~1.50%、Cu:0.05~0.50%、Sb:0.02~0.30%、Ni:0.02~0.50%、Cr:0.02~0.09%、Al:0.005~0.080%、N:0.008%以下、P:0.025%以下、S:0.001~0.015%、O:0.0005~0.0035%、Mo:0~0.50%、W:0~0.50%、Sn:0~0.30%、As:0~0.30%、Co:0~0.30%、Bi:0~0.010%、Ti:0~0.050%、Nb:0~0.10%、V:0~0.10%、Zr:0~0.050%、Ta:0~0.050%、B:0~0.010%、Ca:0~0.010%、Mg:0~0.010%、REM:0~0.010%、残部:Feおよび不純物であり、CI:17.0~30.0、DI:1.00~3.00、Ceq:0.100~0.220であり、鋼材中にMnSおよびMnS酸化物を含み、MnSの個数密度が10.0/mm2未満であり、MnSの個数密度に対する、MnS酸化物の個数密度の比が0.10以上である、鋼材。

Description

鋼材
 本発明は、鋼材に関する。
 ボイラーの火炉および廃棄物焼却施設の焼却炉等では、水蒸気、硫黄酸化物、塩化水素等を含む排ガスが発生する。この排ガスは、排ガス煙突等において冷却されると、凝縮して硫酸および塩酸となり、硫酸露点腐食および塩酸露点腐食として知られるように、排ガス流路を構成する鋼材に対し、著しい腐食を引き起こす。
 このような問題に対し、耐硫酸・塩酸露点腐食鋼および高耐食ステンレス鋼が提案されている。例えば、特許文献1~4では、Cu、Sb、Co、Crなどを添加した耐硫酸露点腐食性に優れた鋼材が提案されている。また、特許文献5では、CrおよびNiなどを添加した高耐食ステンレス鋼が提案されている。
特開2001-164335号公報 特開2003-213367号公報 特開2007-239094号公報 特開2012-57221号公報 特開平7-316745号公報
 Cu、Sb、Cr等を含有する鋼材は、排ガス煙突のような硫酸腐食環境において、優れた耐食性を発揮する。しかし、ボイラーおよび焼却設備を長寿命化するために、さらなる耐食性の向上が期待されている。
 また、排ガス煙突に加えて、ガス化溶融炉、熱交換器、ガス-ガスヒータ、脱硫装置、電気集塵機等に使用される鋼材、特に伝熱材(フィン材)に使用される鋼材には、施工性および生産性の観点から、耐食性だけでなく、熱間加工性および冷間加工性も要求される。
 本発明は、上記の問題を解決し、硫酸腐食環境および塩酸腐食環境において優れた耐食性を有し、かつ、熱間加工性および冷間加工性に優れた鋼材を提供することを目的とする。
 本発明は、上記課題を解決するためになされたものであり、下記の鋼材を要旨とする。
 (1)化学組成が、質量%で、
 C:0.0010%以上0.010%未満、
 Si:0.03~0.60%、
 Mn:0.10~1.50%、
 Cu:0.05~0.50%、
 Sb:0.02~0.30%、
 Ni:0.02~0.50%、
 Cr:0.02~0.09%、
 Al:0.005~0.080%、
 N:0.008%以下、
 P:0.025%以下、
 S:0.001~0.015%、
 O:0.0005~0.0035%、
 Mo:0~0.50%、
 W:0~0.50%、
 Sn:0~0.30%、
 As:0~0.30%、
 Co:0~0.30%、
 Bi:0~0.010%、
 Ti:0~0.050%、
 Nb:0~0.10%、
 V:0~0.10%、
 Zr:0~0.050%、
 Ta:0~0.050%、
 B:0~0.010%、
 Ca:0~0.010%、
 Mg:0~0.010%、
 REM:0~0.010%、
 残部:Feおよび不純物であり、
 下記(i)式で定義されるCIが17.0~30.0であり、
 下記(ii)式で定義されるDIが1.00~3.00であり、
 下記(iii)式で定義されるCeqが0.100~0.220であり、
 鋼材中にMnSおよびMnS酸化物を含み、最大長さが2.0μm以上のMnSの個数密度が10.0/mm未満であり、かつ最大長さが2.0μm以上のMnSの個数密度に対する、最大長さが2.0μm以上のMnS酸化物の個数密度の比が0.10以上である、
 鋼材。
 CI=(Cu/64)/(S/32)  ・・・(i)
 DI=(Cu/64)/(Ni/59)  ・・・(ii)
 Ceq=C+Mn/6+(Cu+Ni)/5+(Cr+Mo+V)/15  ・・・(iii)
 但し、上記式中の元素記号は、鋼材中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
 (2)前記化学組成が、質量%で、
 Mo:0.01~0.50%、
 W:0.01~0.50%、
 Sn:0.01~0.30%、
 As:0.01~0.30%、
 Co:0.01~0.30%、および
 Bi:0.001~0.010%、
 から選択される1種以上を含有する、
 上記(1)に記載の鋼材。
 (3)前記化学組成が、質量%で、
 Ti:0.001~0.050%、
 Nb:0.001~0.10%、
 V:0.005~0.10%、
 Zr:0.005~0.050%、
 Ta:0.001~0.050%、および
 B:0.0003~0.010%、
 から選択される1種以上を含有する、
 上記(1)または(2)に記載の鋼材。
 (4)前記化学組成が、質量%で、
 Ca:0.0005~0.010%、
 Mg:0.0001~0.010%、および
 REM:0.0001~0.010%、
 から選択される1種以上を含有する、
 上記(1)から(3)までのいずれかに記載の鋼材。
 本発明によれば、酸腐食環境において良好な耐食性を有し、熱間加工性および冷間加工性の双方に優れた鋼材を提供することが可能となる。
 本発明者らは前記した課題を解決するために、鋼材の耐食性、熱間加工性、冷間加工性を詳細に調査した結果、以下の知見を得るに至った。
 本発明者らの検討により、Cu、Sbを含む鋼の耐食性向上には、鋼中にCuSを生成させることが有効であることが分かった。CuSを鋼中に生成させるためにはCuおよびSが必要であるが、Sは介在物を形成しやすく、鋼材表面で腐食起点となりやすい。そのため、CuおよびSのバランスが重要であり、下記(i)式で定義される耐酸性腐食指数CIの値を適正な範囲とすることが必要であることが分かった。
 CI=(Cu/64)/(S/32)  ・・・(i)
 また、Cuは耐食性に有効であるが表面赤熱脆性を生じ、鋼中の固溶限を超えたCuが結晶粒界または地鉄表面に偏析して表面割れの原因となる。CuとともにNiを含有させることでCuの表面偏析を抑制する。すなわち、CuとNiとを同時に含有させることで、耐食性を維持しつつ表面割れの防止につながる。そこで、CuとNiとの関係についてさらに検討を行い、安定的な製造性を維持するためには、下記(ii)式で定義される赤熱脆化指数DIの値を適正な範囲にすることが必要であることが分かった。
 DI=(Cu/64)/(Ni/59)  ・・・(ii)
 さらに、耐食性を向上させつつ、冷間加工性を確保するため、C含有量を0.010%未満とし、下記(iii)式で定義されるCeqを適正な範囲にすることが重要であるという知見を得た。
 Ceq=C+Mn/6+(Cu+Ni)/5+(Cr+Mo+V)/15  ・・・(iii)
 上述のように、本発明においては、SはCuおよびSbとともに含有させることで耐食性を向上させる効果を有するため、極端な低減は好ましくない。その一方で、鋼の強度および靱性を確保する上で必須の元素であるMnがMnSを形成すると、酸腐食環境での耐食性を劣化させる。
 Cu含有量をS含有量との関係において適正に調整することで、多くのSをCuSとして固定することができる。しかしながら、特にフィン材等に使用される鋼材は非常に薄く、腐食の影響を受けやすいため、わずかなMnSの混入を極力低減する必要がある。
 この問題を解決するため本発明者らがさらなる検討を重ねた結果、MnSを微細化するとともに、酸素と結合させ、MnS酸化物とすることで無害化できることを見出した。
 また、本発明におけるC含有量の低い成分系においては、そのメカニズムは明らかではないものの、Crは耐硫酸性を向上させる効果を有する反面、耐塩酸性を劣化させることが分かった。そのため、耐硫酸性および耐塩酸性を両立させるためには、Cr含有量を厳密に制限する必要があることを見出した。
 本発明は、上記知見に基づいてなされたものである。以下、本発明の各要件について詳しく説明する。
 (A)化学組成
 各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
 C:0.0010%以上0.010%未満
 Cは、鋼材の強度を向上させる元素である。しかしながら、耐食性を向上させつつ、冷間加工性を確保するためには、C含有量を極力低減する必要がある。そのため、C含有量は0.0010%以上0.010%未満とする。強度が要求される場合は、C含有量は0.0030%以上であるのが好ましい。また、C含有量は0.0090%以下であるのが好ましく、0.0080%以下であるのがより好ましい。
 Si:0.03~0.60%
 Siは、脱酸および強度の向上に寄与し、酸化物の形態を制御する元素である。しかしながら、Siが過剰に含有された場合、酸化物が増加し、耐食性を損なう。そのため、Si含有量は0.03~0.60%とする。Si含有量は0.05%以上であるのが好ましく、0.10%以上であるのがより好ましい。また、Si含有量は0.40%以下であるのが好ましく、0.30%以下であるのが好ましい。
 Mn:0.10~1.50%
 Mnは、強度および靱性を向上させる元素である。しかしながら、Mnが過剰に含有された場合、粗大なMnSが生成し、耐食性および機械特性が劣化する。そのため、Mn含有量は0.10~1.50%とする。Mn含有量は0.30%以上であるのが好ましく、0.50%以上であるのがより好ましい。また、Mn含有量は1.20%以下であるのが好ましく、1.00%以下であるのがより好ましく、0.80%以下であるのがさらに好ましい。
 Cu:0.05~0.50%
 Cuは、Sbと同時に含有させると、硫酸および塩酸に対する耐食性を顕著に発現する元素である。しかしながら、Cuが過剰に含有された場合、熱間加工性が低下し、生産性を損なう。そのため、Cu含有量は0.05~0.50%とする。Cu含有量は0.10%以上、0.15%以上、または0.20%以上であるのが好ましい。また、Cu含有量は0.40%以下であるのが好ましく、0.30%以下であるのがより好ましい。
 Sb:0.02~0.30%
 Sbは、Cuと同時に含有させると、硫酸および塩酸に対する耐食性を顕著に発現する元素である。しかしながら、Sbが過剰に含有された場合、熱間加工性が低下し、生産性を損なう。そのため、Sb含有量は0.02~0.30%とする。Sb含有量は0.03%以上であるのが好ましく、0.06%以上であるのがより好ましく、0.10%以上であるのがさらに好ましい。また、Sb含有量は0.20%以下であるのが好ましく、0.15%以下であるのがより好ましい。
 Ni:0.02~0.50%
 Niは、酸腐食環境での耐食性を向上させる元素であり、加えてCuを含有する鋼において、製造性を高める効果を有する。Cuは、耐食性を向上させる効果が大きいが、偏析し易く、単独で含有させると鋳造後の割れを助長する場合がある。これに対して、NiはCuの表面偏析を軽減する作用がある。Niを含有させることで、Cuの偏析および鋳片割れの抑制に加えて、偏析に起因する局部腐食の発生も抑制されるため、耐食性を向上させる効果が得られる。しかしながら、Niは高価な元素であり、多量の含有は製鋼コストの増大を招く。そのため、Ni含有量を0.02~0.50%とする。Ni含有量は0.05%以上であるのが好ましく、0.10%以上であるのがより好ましく、0.15%以上であるのがさらに好ましい。また、Ni含有量は0.30%以下であるのが好ましく、0.25%以下であるのが好ましい。
 Cr:0.02~0.09%
 Crは、焼入れ性を高めて強度を向上させるとともに、耐硫酸性を向上させる効果を有する元素である。しかしながら、Crは耐塩酸性を低下させる。そのため、Cr含有量は厳密に制限する必要があり、0.02~0.09%とする。Cr含有量は0.03%以上であるのが好ましく、0.05%以上であるのがより好ましく、0.06%以上であるのがさらに好ましい。また、Cr含有量は0.08%以下であるのが好ましい。
 Al:0.005~0.080%
 Alは、脱酸剤として添加される。しかしながら、Alが過剰に含有された場合、介在物の増加によって耐食性を損なう。そのため、Al含有量は0.005~0.080%とする。Al含有量は0.010%以上であるのが好ましく、0.020%以上であるのがより好ましい。また、Al含有量は0.070%以下であるのが好ましく、0.050%以下であるのがより好ましい。
 N:0.008%以下
 Nは、不純物であり、鋼材の機械特性および生産性を低下させる。そのため、N含有量に上限を設けて0.008%以下とする。N含有量は0.006%以下であるのが好ましく、0.004%以下であるのがより好ましい。なお、N含有量は0%でもよいが、極度の低減は製鋼コストの増大を招く。そのため、N含有量は0.001%以上としてもよい。また、Nは、微細な窒化物として析出することで機械特性等の向上に寄与する効果を有する。その効果を得たい場合は、N含有量は0.002%以上としてもよい。
 P:0.025%以下
 Pは、不純物であり、鋼材の機械特性および生産性を低下させる。そのため、P含有量に上限を設けて0.025%以下とする。P含有量は0.020%以下であるのが好ましく、0.015%以下であるのがより好ましい。なお、P含有量は可能な限り低減することが好ましく、つまり含有量が0%でもよいが、極度の低減は製鋼コストの増大を招く。そのため、P含有量は0.001%以上としてもよい。
 S:0.001~0.015%
 Sは、一般的に不純物であり、鋼材の機械特性および生産性を低下させる。しかしながら、本発明において、Sは、CuおよびSbと同時に含有させることにより、酸腐食環境での耐食性を向上させる効果を有する。そのため、S含有量は0.001~0.015%とする。S含有量は0.003%以上、または0.005%以上であるのが好ましい。また、S含有量は0.013%以下であるのが好ましく、0.011%以下であるのがより好ましい。
 O:0.0005~0.0035%
 Oは、MnSと結合することで、MnSを無害化し、耐食性および機械特性の悪化を防ぐ効果を有する元素である。しかしながら、Oが過剰に含有された場合、酸腐食環境において腐食の起点となる粗大な酸化物を生成する。そのため、O含有量は0.0005~0.0035%とする。O含有量は0.0010%以上であるのが好ましく、0.0015%以上であるのがより好ましい。また、O含有量は0.0030%以下であるのが好ましく、0.0025%以下であるのがより好ましい。
 本発明の鋼の化学組成において、上記の元素に加えて、酸腐食環境での耐食性を向上させるために、さらにMo、W、Sn、As、Co、Biから選択される1種以上を、以下に示す範囲において含有させてもよい。なお、これらの元素は、鋼材において必ずしも必須ではないことから、含有量の下限値は0%である。各元素の限定理由について説明する。
 Mo:0~0.50%
 Moは、CuおよびSbと同時に含有させることにより、酸腐食環境での耐食性を向上させる元素であるため、必要に応じて含有させてもよい。しかしながら、Moは高価な元素であるため、過剰な含有は経済性の低下を招く。そのため、Mo含有量は0.50%以下とする。Mo含有量は0.40%以下であるのが好ましく、0.30%以下であるのがより好ましく、0.20%以下であるのがさらに好ましい。なお、上記の効果を得たい場合には、Mo含有量は0.01%以上、0.02%以上、0.05%以上、または0.10%以上であるのが好ましい。
 W:0~0.50%
 Wは、Moと同様にCuおよびSbと同時に含有させることにより、酸腐食環境での耐食性を向上させる元素であるため、必要に応じて含有させてもよい。しかしながら、Wは高価な元素であるため、過剰な含有は経済性の低下を招く。そのため、W含有量は0.50%以下とする。W含有量は0.40%以下であるのが好ましく、0.30%以下であるのがより好ましく、0.20%以下であるのがさらに好ましい。なお、上記の効果を得たい場合には、W含有量は0.01%以上、0.02%以上、0.05%以上、または0.10%以上であるのが好ましい。
 Sn:0~0.30%
 Snは、Cuと同時に含有させると酸腐食環境での耐食性を向上させる元素であるため、必要に応じて含有させてもよい。しかしながら、Snが過剰に含有された場合、熱間加工性が低下する。そのため、Sn含有量は0.30%以下とする。Sn含有量は0.25%以下であるのが好ましく、0.20%以下であるのがより好ましく、0.15%以下であるのがさらに好ましい。なお、上記の効果を得たい場合には、Sn含有量は0.01%以上であるのが好ましく、0.02%以上であるのがより好ましく、0.05%以上であるのがさらに好ましい。
 As:0~0.30%
 Asは、SbおよびSnに比べて顕著な効果はないが、酸腐食環境における耐食性の向上に有効な元素であるため、必要に応じて含有させてもよい。しかしながら、Asが過剰に含有された場合、熱間加工性が低下する。そのため、As含有量は0.30%以下とする。As含有量は0.20%以下であるのが好ましく、0.10%以下であるのがより好ましい。なお、上記の効果を得たい場合には、As含有量は0.01%以上であるのが好ましく、0.02%以上であるのがより好ましく、0.05%以上であるのがさらに好ましい。
 Co:0~0.30%
 Coは、SbおよびSnに比べて顕著な効果はないが、酸腐食環境における耐食性を向上させる元素であるため、必要に応じて含有させてもよい。しかしながら、Coが過剰に含有された場合、経済性が低下する。そのため、Co含有量は0.30%以下とする。Co含有量は0.20%以下であるのが好ましく、0.10%以下であるのがより好ましい。なお、上記の効果を得たい場合には、Co含有量は0.01%以上であるのが好ましく、0.02%以上であるのがより好ましく、0.05%以上であるのがさらに好ましい。
 Bi:0~0.010%
 Biは、SbおよびSnに比べて顕著な効果はないが、酸腐食環境における耐食性を向上させる元素であるため、必要に応じて含有させてもよい。しかしながら、Biが過剰に含有された場合、熱間加工性が低下する。そのため、Bi含有量は0.010%以下とする。Bi含有量は0.007%以下であるのが好ましく、0.005%以下であるのがより好ましい。なお、上記の効果を得たい場合には、Bi含有量は0.001%以上であるのが好ましく、0.002%以上であるのがより好ましく、0.005%以上であるのがさらに好ましい。
 本発明の鋼の化学組成において、上記の元素に加えて、機械特性等を向上させるために、さらにTi、Nb、V、Zr、Ta、Bから選択される1種以上を、以下に示す範囲において含有させてもよい。なお、これらの元素は、鋼材において必ずしも必須ではないことから、含有量の下限値は0%である。各元素の限定理由について説明する。
 Ti:0~0.050%
 Tiは、窒化物を形成し、結晶粒の微細化および強度の向上に寄与する元素であるため、必要に応じて含有させてもよい。しかしながら、Tiが過剰に含有された場合、窒化物が粗大になり、機械特性が劣化する。そのため、Ti含有量は0.050%以下とする。Ti含有量は0.040%以下であるのが好ましく、0.030%以下であるのがより好ましく、0.020%以下であるのがさらに好ましい。なお、上記の効果を得たい場合には、Ti含有量は0.001%以上であるのが好ましく、0.002%以上であるのがより好ましく、0.005%以上であるのがさらに好ましい。
 Nb:0~0.10%
 Nbは、Tiと同様に、窒化物を形成し、結晶粒の微細化および強度の向上に寄与する元素であるため、必要に応じて含有させてもよい。しかしながら、Nbが過剰に含有された場合、窒化物が粗大になり、機械特性が劣化する。そのため、Nb含有量は0.10%以下とする。Nb含有量は0.050%以下であるのが好ましく、0.030%以下であるのがより好ましく、0.020%以下であるのがさらに好ましい。なお、上記の効果を得たい場合には、Nb含有量は0.001%以上であるのが好ましく、0.002%以上であるのがより好ましく、0.005%以上であるのがさらに好ましい。
 V:0~0.10%
 Vは、Ti、Nbと同様に、窒化物を形成し、結晶粒の微細化および強度の向上に寄与する元素であるため、必要に応じて含有させてもよい。しかしながら、Vが過剰に含有された場合、窒化物が粗大になり、機械特性が劣化する。そのため、V含有量は0.10%以下とする。V含有量は0.050%以下であるのが好ましく、0.030%以下であるのがより好ましく、0.020%以下であるのがさらに好ましい。なお、上記の効果を得たい場合には、V含有量は0.005%以上であるのが好ましい。
 Zr:0~0.050%
 Zrは、Ti、Nb、Vと同様に、窒化物を形成し、結晶粒の微細化および強度の向上に寄与する元素であるため、必要に応じて含有させてもよい。しかしながら、Zrは高価な元素であり、多量の含有は製鋼コストの増大を招く。加えて、Zrが過剰に含有された場合、窒化物が粗大になり、機械特性が劣化する。そのため、Zr含有量は0.050%以下とする。Zr含有量は0.040%以下であるのが好ましく、0.030%以下であるのがより好ましく、0.020%以下であるのがさらに好ましい。なお、上記の効果を得たい場合には、Zr含有量は0.005%以上であるのが好ましい。
 Ta:0~0.050%
 Taは、強度の向上に寄与する元素であり、また、メカニズムは必ずしも明らかでないが、耐食性の向上にも寄与するため、必要に応じて含有させてもよい。しかしながら、Taは高価な元素であり、多量の含有は製鋼コストの増大を招く。そのため、Ta含有量は0.050%以下とする。Ta含有量は0.040%以下であるのが好ましく、0.030%以下であるのがより好ましく、0.020%以下であるのがさらに好ましい。なお、上記の効果を得たい場合には、Ta含有量は0.001%以上であるのが好ましく、0.005%以上であるのがより好ましい。
 B:0~0.010%
 Bは焼入性を向上させ、強度を高める元素であるため、必要に応じて含有させてもよい。しかしながら、Bを過剰に含有させても効果が飽和し、母材およびHAZの靱性が低下する場合がある。そのため、B含有量は0.010%以下とする。B含有量は0.0050%以下であるのが好ましく、0.0030%以下であるのがより好ましく、0.0020%以下であるのがさらに好ましい。なお、上記の効果を得たい場合には、B含有量は0.0003%以上であるのが好ましく、0.0005%以上であるのがより好ましい。
 本発明の鋼の化学組成において、上記の元素に加えて、脱酸および介在物の制御を目的として、Ca、Mg、REMから選択される1種以上を、以下に示す範囲において含有させてもよい。なお、これらの元素は、鋼材において必ずしも必須ではないことから、含有量の下限値は0%である。各元素の限定理由について説明する。
 Ca:0~0.010%
 Caは、主に硫化物の形態の制御に用いられる元素であり、また、微細な酸化物を形成させるために、必要に応じて含有させてもよい。しかしながら、Caを過剰に添加すると、機械特性が損なわれるおそれがある。そのため、Ca含有量は0.010%以下とする。Ca含有量は0.005%以下であるのが好ましく、0.003%以下であるのがより好ましい。なお、上記の効果を得たい場合には、Ca含有量は0.0005%以上であるのが好ましく、0.001%以上であるのがより好ましく、0.002%以上であるのがさらに好ましい。
 Mg:0~0.010%
 Mgは、微細な酸化物を形成させるために、必要に応じて含有させてもよい。しかしながら、Mgを過剰に添加することは製鋼コストの増大を招く。そのため、Mg含有量は0.010%以下とする。Mg含有量は0.005%以下であるのが好ましく、0.003%以下であるのがより好ましい。なお、上記の効果を得たい場合には、Mg含有量は0.0001%以上であるのが好ましく、0.0003%以上であるのがより好ましく、0.0005%以上であるのがさらに好ましい。
 REM:0~0.010%
 REM(希土類元素)は、主に脱酸に用いられる元素であり、微細な酸化物を形成させるために、必要に応じて含有させてもよい。しかしながら、REMを過剰に添加することは製鋼コストの増大を招く。そのため、REM含有量は0.010%以下とする。REM含有量は0.005%以下であるのが好ましく、0.003%以下であるのがより好ましい。なお、上記の効果を得たい場合には、REM含有量は0.0001%以上であるのが好ましく、0.0003%以上であるのがより好ましく、0.0005%以上であるのがさらに好ましい。
 ここで、REMは、Sc、Yおよびランタノイドの合計17元素の総称であり、REMの含有量は上記元素の合計量を意味する。なお、ランタノイドは、工業的には、ミッシュメタルの形で添加される。
 本発明の鋼材の化学組成において、残部はFeおよび不純物である。ここで不純物とは、鋼材を工業的に製造する際に、鉱石、スクラップ等の原料その他の要因により混入する成分であって、本発明に係る鋼材に悪影響を与えない範囲で許容されるものを意味する。
 CI:17.0~30.0
 耐酸性腐食指数CIは、鋼中にCuSを生成させつつ、腐食起点となりやすい介在物を抑制するために導出された指標である。CuSを鋼中に生成させるためにはCuおよびSが必要であるが、CuおよびSのバランスが重要である。酸腐食環境での耐食性を顕著に向上させるには、耐酸性腐食指数CIは17.0~30.0とする。耐酸性腐食指数CIは、18.0以上であるのが好ましく、19.0以上であるのがより好ましく、20.0以上であるのがさらに好ましい。また、耐酸性腐食指数CIは、28.0以下であるのが好ましく、26.0以下であるのがより好ましく、24.0以下であるのがさらに好ましい。
 耐酸性腐食指数CIは、下記(i)式で定義されるように、Cu原子の数とS原子の数との比である。すなわち、Cu/64、S/32は、それぞれ、Cu、Sの含有量を各元素の質量数で除した項である。
 CI=(Cu/64)/(S/32)  ・・・(i)
 DI:1.00~3.00
 赤熱脆化指数DIは、結晶粒界または地鉄表面に偏析するCuによる表面割れを、Niを含有させることにより抑制するための指標であり、熱間加工性を確保するために重要である。Cu含有量に対してNi含有量が少な過ぎると熱間加工性が低下する。一方、赤熱脆化指数DIを小さくすることが、熱間加工性を確保するためには好ましいが、その値が低すぎても効果が飽和する。また、Cuが不足すると、酸腐食環境での耐食性の向上の効果が不十分になる。熱間加工性および耐食性を両立する観点から、赤熱脆化指数DIは1.00~3.00とする。赤熱脆化指数DIは、耐食性向上の観点からは、1.25以上であるのが好ましく、1.50以上であるのがより好ましい。また、熱間加工性向上の観点からは、赤熱脆化指数DIは、2.80以下であるのが好ましく、2.60以下であるのがより好ましい。
 赤熱脆化指数DIは、下記(ii)式で定義されるように、Cu原子の数と、Ni原子の数との比である。すなわち、Cu/64、Ni/59は、それぞれ、Cu、Niの含有量を各元素の質量数で除した項である。
 DI=(Cu/64)/(Ni/59)  ・・・(ii)
 Ceq:0.100~0.220
 Ceqは、硬さの上昇による冷間加工性の劣化を示す指標である。Ceqが過剰であると冷間加工性が確保できなくなる。一方、Ceqが低すぎると機械特性が不十分になる。そのため、Ceqは0.100~0.220とする。Ceqは0.110以上であるのが好ましく、0.120以上であるのがより好ましい。また、Ceqは0.210以下であるのが好ましく、0.200以下であるのがより好ましい。Ceqは、下記(iii)式で定義される。
 Ceq=C+Mn/6+(Cu+Ni)/5+(Cr+Mo+V)/15  ・・・(iii)
 なお、上記(i)~(iii)式中の元素記号は、鋼材中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
 (B)介在物
 本発明に係る鋼材は、鋼材中にMnSおよびMnS酸化物を含む。そして、最大長さが2.0μm以上のMnSの個数密度が10.0/mm未満である。加えて、最大長さが2.0μm以上のMnSの個数密度に対する、最大長さが2.0μm以上のMnS酸化物の個数密度の比が0.10以上である。
 なお、最大長さが2.0μm未満のMnSは鋼材の耐食性にはほとんど影響を与えないため、本発明においては、最大長さが2.0μm以上の介在物を対象とすることとする。以下の説明では、最大長さが2.0μm以上のMnSを単にMnSと呼び、最大長さが2.0μm以上のMnS酸化物を単にMnS酸化物と呼ぶ。
 上述のように、本発明の鋼材において、MnSの形成は避けられない。しかしながら、MnSは腐食の起点となり酸腐食環境での耐食性を劣化させる。そのため、MnSの個数密度を10.0/mm未満に制限する必要がある。MnSの個数密度は8.0/mm以下であるのが好ましく、6.0/mm以下であるのがより好ましい。
 一方、MnおよびSの含有量の極端な低減は、本発明の鋼材においては、強度、靱性および耐食性を向上させる観点から好ましくない。これらを両立するためには、MnSを無害化する必要がある。MnSが酸素と結合し、MnS酸化物となると無害化され、腐食の起点とはなりづらくなる。そのことから、本発明においては、MnSの個数密度に対する、MnS酸化物の個数密度の比を0.10以上とする。上記の比は0.12以上であるのが好ましく、0.15以上であるのがより好ましい。
 MnSの個数密度、およびMnS酸化物の個数密度は、走査電子顕微鏡(SEM)が備えるエネルギー分散型X線分析(EDS)により測定する。測定倍率は1000倍とし、視野内に検出されるMnSおよびMnS酸化物の最大長さを測定する。そして、それぞれ最大長さが2.0μm以上である介在物の個数を数え、視野面積で除することで、個数密度を求める。
 介在物の同定は、EDSにより行い、MnとSとの合計含有量が90質量%以上である介在物をMnSと判断し、さらにOのピークが検出され、MnとSとOとの合計含有量が90質量%以上である介在物をMnS酸化物と判断する。
 (C)製造方法
 本発明の一実施形態に係る鋼材の製造方法について説明する。本実施形態に係る鋼材には、熱間圧延を施し、さらに必要に応じて冷間圧延を施して製造される鋼板、形鋼、鋼管等が含まれる。中でも、本発明に係る鋼材は、フィン材等に使用される薄板として好適に用いることができる。そのため、鋼材の厚さは、0.5~2.5mmであることが好ましく、0.7~2.3mmであることがより好ましく、1.0~1.6mmであることがさらに好ましい。
 本実施形態に係る鋼材は、常法で鋼を溶製し、成分の調整後、鋳造して得られた鋼片を熱間圧延し、さらに必要に応じて冷間圧延を施して製造される。CuSの生成を促進し、MnSの生成を極力抑制するとともに、不可避的に鋼材中に存在するMnSおよびMnS酸化物の個数密度の比を上述した範囲に制御するためには、熱間圧延前の加熱温度を比較的低温とすることが重要であり、具体的には1000~1130℃とすることが好ましい。
 熱間圧延前の加熱温度を低くすることで、MnSの成長を抑制するとともに、圧延時に微細化することが可能となる。微細化されたMnSは相対的に表面積が大きいため、酸素と結合しやすくなり、MnS酸化物となりやすくなる。MnSの個数密度を6.0/mm未満とし、MnSに対するMnS酸化物の個数密度の比を0.12以上とするためには、熱間圧延前の加熱温度は1080℃以下とすることがより好ましい。
 熱間圧延後の熱延鋼板に対しては、切断またはコイル巻取り等の次工程が加えられる。その際、鋼板は温度低下するが、熱延完了から400℃に達するまでの時間は4時間以上であることが望ましい。熱間圧延後、冷間圧延して冷延鋼板としてもよい。さらに冷間圧延後には熱処理を施してもよい。
 得られた鋼板から鋼管を製造する場合は、鋼板を管状に成形して溶接すればよく、例えば、UO鋼管、電縫鋼管、鍛接鋼管、スパイラル鋼管等にすることができる。
 以下、実施例によって本発明をより具体的に説明する。なお、以下に示す実施例での条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。また本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 表1および2に示す化学組成を有する鋼(A1~26,B1~12)を溶製し、鋼塊に対して表3および4に示す条件で熱間圧延を行い、厚さが20mmの熱延鋼板を製造した。熱延後に巻き取りを模擬した冷却を行った後、さらに冷間圧延を行い、厚さが1.3mmの冷延鋼板とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 得られた各鋼板からSEM観察用の試験片を切り出し、SEMが備えるEDSにより介在物の個数密度の測定を行った。測定倍率は1000倍とし、視野内に検出されるMnSおよびMnS酸化物の最大長さを測定し、それぞれ最大長さが2.0μm以上である介在物の個数を数え、視野面積で除することで、個数密度を求めた。
 さらに、得られた各鋼板を用いて、以下に示す各種の性能評価試験を行った。
<耐硫酸性、耐塩酸性>
 各鋼板から板厚1mm、幅25mm、長さ25mmの試験片を板厚中央部から採取し、湿式#400研磨で仕上げ、耐食性評価用の試験片とした。耐食性の評価は硫酸浸漬試験および塩酸浸漬試験によって行った。硫酸浸漬試験では、試験片を70℃の50%硫酸水溶液に6時間浸漬し、塩酸浸漬試験では、試験片を80℃の10%塩酸水溶液中に5時間浸漬した。
 その後、硫酸浸漬試験および塩酸浸漬試験による試験片の腐食減量から、それぞれ腐食速度を算出した。本実施例においては、硫酸浸漬試験による腐食速度が15.0mg/cm/h以下である場合に、耐硫酸性に優れると判断し、塩酸浸漬試験による腐食速度が10.0mg/cm/h以下である場合に、耐塩酸性に優れると判断した。
<熱間加工性>
 上記条件で圧延した熱間圧延材の表面を外観目視し、割れが生じていたものを×、割れが生じていないものを〇として、熱間加工性を評価した。
<引張強さおよび全伸び>
 JIS Z 2241:2011に準拠して、厚さ1mmの引張試験片を作製し、引張試験を行い、引張強さおよび全伸びを求めた。引張強さが350MPa以上のものを○、350MPa未満のものを×とした。全伸びは冷間加工性の指標とし、30%以上のものを○、30%未満のものを×とした。
 表5および6に、介在物の個数密度の測定結果、ならびに耐硫酸浸漬試験、耐塩酸浸漬試験、熱間加工性および引張試験の評価結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5および6に示すように、本発明の規定をすべて満足する試験No.1~26では、いずれの性能評価試験においても優れた結果となった。これに対して、比較例である試験No.27~36では、耐硫酸性、耐塩酸性、熱間加工性および冷間加工性の少なくともいずれかにおいて、悪化する結果となった。
 本発明の鋼材は、重油、石炭等の化石燃料、液化天然ガスなどのガス燃料、都市ごみなどの一般廃棄物、廃油、プラスチック、排タイヤ等の産業廃棄物および下水汚泥等を燃焼させるボイラーの排煙設備に使用することができる。具体的には、排煙設備の煙道ダクト、ケーシング、熱交換器、2基の熱交換器(熱回収器および再加熱器)で構成されるガス-ガスヒータ、脱硫装置、電気集塵機、誘引送風機、回転再生式空気予熱器のバスケット材および伝熱エレメント板などに好適に使用することができる。

 

Claims (4)

  1.  化学組成が、質量%で、
     C:0.0010%以上0.010%未満、
     Si:0.03~0.60%、
     Mn:0.10~1.50%、
     Cu:0.05~0.50%、
     Sb:0.02~0.30%、
     Ni:0.02~0.50%、
     Cr:0.02~0.09%、
     Al:0.005~0.080%、
     N:0.008%以下、
     P:0.025%以下、
     S:0.001~0.015%、
     O:0.0005~0.0035%、
     Mo:0~0.50%、
     W:0~0.50%、
     Sn:0~0.30%、
     As:0~0.30%、
     Co:0~0.30%、
     Bi:0~0.010%、
     Ti:0~0.050%、
     Nb:0~0.10%、
     V:0~0.10%、
     Zr:0~0.050%、
     Ta:0~0.050%、
     B:0~0.010%、
     Ca:0~0.010%、
     Mg:0~0.010%、
     REM:0~0.010%、
     残部:Feおよび不純物であり、
     下記(i)式で定義されるCIが17.0~30.0であり、
     下記(ii)式で定義されるDIが1.00~3.00であり、
     下記(iii)式で定義されるCeqが0.100~0.220であり、
     鋼材中にMnSおよびMnS酸化物を含み、最大長さが2.0μm以上のMnSの個数密度が10.0/mm未満であり、かつ最大長さが2.0μm以上のMnSの個数密度に対する、最大長さが2.0μm以上のMnS酸化物の個数密度の比が0.10以上である、
     鋼材。
     CI=(Cu/64)/(S/32)  ・・・(i)
     DI=(Cu/64)/(Ni/59)  ・・・(ii)
     Ceq=C+Mn/6+(Cu+Ni)/5+(Cr+Mo+V)/15  ・・・(iii)
     但し、上記式中の元素記号は、鋼材中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
  2.  前記化学組成が、質量%で、
     Mo:0.01~0.50%、
     W:0.01~0.50%、
     Sn:0.01~0.30%、
     As:0.01~0.30%、
     Co:0.01~0.30%、および
     Bi:0.001~0.010%、
     から選択される1種以上を含有する、
     請求項1に記載の鋼材。
  3.  前記化学組成が、質量%で、
     Ti:0.001~0.050%、
     Nb:0.001~0.10%、
     V:0.005~0.10%、
     Zr:0.005~0.050%、
     Ta:0.001~0.050%、および
     B:0.0003~0.010%、
     から選択される1種以上を含有する、
     請求項1または請求項2に記載の鋼材。
  4.  前記化学組成が、質量%で、
     Ca:0.0005~0.010%、
     Mg:0.0001~0.010%、および
     REM:0.0001~0.010%、
     から選択される1種以上を含有する、
     請求項1から請求項3までのいずれかに記載の鋼材。

     
PCT/JP2019/044612 2019-11-13 2019-11-13 鋼材 WO2021095186A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/044612 WO2021095186A1 (ja) 2019-11-13 2019-11-13 鋼材
KR1020227011948A KR20220062365A (ko) 2019-11-13 2019-11-13 강재
JP2020515046A JP6813127B1 (ja) 2019-11-13 2019-11-13 鋼材
CN201980101647.4A CN114599808B (zh) 2019-11-13 2019-11-13 钢材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/044612 WO2021095186A1 (ja) 2019-11-13 2019-11-13 鋼材

Publications (1)

Publication Number Publication Date
WO2021095186A1 true WO2021095186A1 (ja) 2021-05-20

Family

ID=74096289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044612 WO2021095186A1 (ja) 2019-11-13 2019-11-13 鋼材

Country Status (4)

Country Link
JP (1) JP6813127B1 (ja)
KR (1) KR20220062365A (ja)
CN (1) CN114599808B (ja)
WO (1) WO2021095186A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075258A1 (ja) * 2022-10-06 2024-04-11 日本製鉄株式会社 継目無鋼管

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4379084A1 (en) * 2021-07-30 2024-06-05 Hyundai Steel Company Steel sheet for hot pressing and aluminum-coated blank manufactured using same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249823A (ja) * 2001-02-22 2002-09-06 Kawasaki Steel Corp 快削鋼の製造方法
JP2004169048A (ja) * 2002-11-15 2004-06-17 Nippon Steel Corp 溶接熱影響部靭性に優れた原油油槽用鋼
JP2008231544A (ja) * 2007-03-23 2008-10-02 Sumitomo Metal Ind Ltd 非調質鋼材およびその製造方法
JP2011246767A (ja) * 2010-05-27 2011-12-08 Sumitomo Metal Ind Ltd 焼付硬化性冷延鋼板およびその製造方法
JP2013060653A (ja) * 2011-04-11 2013-04-04 Jfe Steel Corp 方向性電磁鋼板の製造方法および方向性電磁鋼板の評価方法
WO2014091604A1 (ja) * 2012-12-13 2014-06-19 新日鐵住金株式会社 溶接用鋼材
JP2015132004A (ja) * 2014-01-15 2015-07-23 新日鐵住金株式会社 溶接熱影響部靱性に優れた鋼材

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153981B2 (ja) 1994-05-23 2001-04-09 新日本製鐵株式会社 硫酸と塩酸を同時に生成する露点環境中で優れた耐食性を示す高合金ステンレス鋼
JP3530439B2 (ja) 1999-12-06 2004-05-24 新日本製鐵株式会社 高加工性・良溶接性耐硫酸露点腐食鋼板
JP4319817B2 (ja) 2001-11-19 2009-08-26 新日本製鐵株式会社 耐塩酸腐食性および耐硫酸腐食性に優れた低合金鋼およびその溶接継手
JP2004068039A (ja) * 2002-08-01 2004-03-04 Nippon Steel Corp 耐硫酸露点腐食性、耐高温酸化性、高温強度に優れた鋼
JP5186769B2 (ja) 2006-02-13 2013-04-24 新日鐵住金株式会社 耐硫酸露点腐食鋼
JP4868916B2 (ja) * 2006-04-04 2012-02-01 株式会社神戸製鋼所 耐食性に優れた船舶用鋼材
JP5818418B2 (ja) 2010-09-09 2015-11-18 日新製鋼株式会社 耐硫酸及び塩酸露点腐食鋼並びに排ガス流路構成部材
KR101417294B1 (ko) * 2012-06-21 2014-07-08 주식회사 포스코 복합내식성 및 용접성이 우수한 열연강판 및 그 제조방법
CN103421941A (zh) * 2013-08-19 2013-12-04 南京钢铁股份有限公司 提高抗海洋大气腐蚀结构用钢板耐腐蚀性能的热处理方法
CN106103769B (zh) * 2014-12-18 2017-10-24 新日铁住金株式会社 钢材、使用该钢材的船舶的压载舱和船舱、以及具备该压载舱或船舱的船舶
WO2019116520A1 (ja) * 2017-12-14 2019-06-20 新日鐵住金株式会社 鋼材
JP6954105B2 (ja) * 2017-12-26 2021-10-27 日本製鉄株式会社 鋼材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249823A (ja) * 2001-02-22 2002-09-06 Kawasaki Steel Corp 快削鋼の製造方法
JP2004169048A (ja) * 2002-11-15 2004-06-17 Nippon Steel Corp 溶接熱影響部靭性に優れた原油油槽用鋼
JP2008231544A (ja) * 2007-03-23 2008-10-02 Sumitomo Metal Ind Ltd 非調質鋼材およびその製造方法
JP2011246767A (ja) * 2010-05-27 2011-12-08 Sumitomo Metal Ind Ltd 焼付硬化性冷延鋼板およびその製造方法
JP2013060653A (ja) * 2011-04-11 2013-04-04 Jfe Steel Corp 方向性電磁鋼板の製造方法および方向性電磁鋼板の評価方法
WO2014091604A1 (ja) * 2012-12-13 2014-06-19 新日鐵住金株式会社 溶接用鋼材
JP2015132004A (ja) * 2014-01-15 2015-07-23 新日鐵住金株式会社 溶接熱影響部靱性に優れた鋼材

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075258A1 (ja) * 2022-10-06 2024-04-11 日本製鉄株式会社 継目無鋼管

Also Published As

Publication number Publication date
KR20220062365A (ko) 2022-05-16
CN114599808B (zh) 2023-07-21
JP6813127B1 (ja) 2021-01-13
CN114599808A (zh) 2022-06-07
JPWO2021095186A1 (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
JP7135420B2 (ja) 鋼材
JP7348463B2 (ja) 鋼材
JP6813127B1 (ja) 鋼材
JP7099041B2 (ja) 鋼材
JP7385106B2 (ja) 鋼材
JP7269467B2 (ja) 鋼材
JP7127355B2 (ja) 鋼材
JP7124432B2 (ja) 鋼材
JP7127354B2 (ja) 鋼材
JP2022044093A (ja) 鋼材
JP7218524B2 (ja) 鋼材
JP7014042B2 (ja) 鋼材
JP6813128B1 (ja) 鋼材
JP6787530B1 (ja) 鋼材
JP6743996B1 (ja) 鋼材
CN114641586B (zh) 热轧钢材
JP7415140B2 (ja) 鋼材
JP2020045539A (ja) 鋼材
JP2022044092A (ja) 鋼材
JP7091968B2 (ja) 鋼材
JP7277749B2 (ja) 鋼材
JP2021085047A (ja) 鋼材
JP2023066027A (ja) 鋼材
JP2023066026A (ja) 鋼材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020515046

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227011948

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952282

Country of ref document: EP

Kind code of ref document: A1