WO2021092763A1 - 一种催化氧化催化剂及其制备方法、mdi盐水中有机物的深度处理方法 - Google Patents

一种催化氧化催化剂及其制备方法、mdi盐水中有机物的深度处理方法 Download PDF

Info

Publication number
WO2021092763A1
WO2021092763A1 PCT/CN2019/117582 CN2019117582W WO2021092763A1 WO 2021092763 A1 WO2021092763 A1 WO 2021092763A1 CN 2019117582 W CN2019117582 W CN 2019117582W WO 2021092763 A1 WO2021092763 A1 WO 2021092763A1
Authority
WO
WIPO (PCT)
Prior art keywords
brine
mdi
catalytic oxidation
catalyst
carrier
Prior art date
Application number
PCT/CN2019/117582
Other languages
English (en)
French (fr)
Inventor
范珍龙
张宏科
高学顺
曾凡雪
王俊俊
周波
衡华
李永锋
邢津铭
Original Assignee
万华化学集团股份有限公司
万华化学(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司, 万华化学(宁波)有限公司 filed Critical 万华化学集团股份有限公司
Priority to EP19952652.6A priority Critical patent/EP4029603A4/en
Priority to PCT/CN2019/117582 priority patent/WO2021092763A1/zh
Publication of WO2021092763A1 publication Critical patent/WO2021092763A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0202Alcohols or phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0279Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the cationic portion being acyclic or nitrogen being a substituent on a ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0287Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing atoms other than nitrogen as cationic centre
    • B01J31/0291Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing atoms other than nitrogen as cationic centre also containing elements or functional groups covered by B01J31/0201 - B01J31/0274
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0292Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate
    • B01J31/0294Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate by polar or ionic interaction with the substrate, e.g. glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2213At least two complexing oxygen atoms present in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0298Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature the ionic liquids being characterised by the counter-anions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Definitions

  • the invention belongs to the technical field of wastewater treatment in chemical engineering and environmental engineering, and more specifically, relates to a catalytic oxidation catalyst and a preparation method thereof, and a deep treatment method of organic matter in diphenylmethane diisocyanate (hereinafter referred to as MDI) brine.
  • MDI diphenylmethane diisocyanate
  • the content of sodium chloride in the MDI brine is 14 to 26%, and the pH is 12 to 14, which contains organic substances such as formic acid, phenol and aniline, which require advanced treatment to meet the acceptance criteria of chlor-alkali. Therefore, there is an urgent need to develop a deep processing technology with strong resistance to fluctuations and high processing efficiency.
  • the treatment technology of MDI brine industry mainly adopts advanced oxidation, adsorption and evaporation methods.
  • the patent document CN 101143753 A discloses a method for advanced treatment of waste brine in the MDI production process.
  • the waste brine is reacted with a chemical oxidant and then sent to the adsorption tower for adsorption; however, there is a large amount of oxidant added and a large amount of adsorbent.
  • Patent document CN 102139976 B discloses a method for treating salty wastewater in the MDI production process, which is acidified by adding strong acid and then subjected to adsorption and neutralization treatment; however, it has low treatment efficiency and low treatment efficiency during the combined process of pH adjustment and activated carbon adsorption.
  • the disadvantages of large amount of adsorbent and high TOC of the effluent will affect the service life of the subsequent chlor-alkali ion membrane, and the water inlet index of the ion membrane needs to be strictly controlled.
  • the purpose of the present invention is to provide a catalytic oxidation catalyst and a preparation method thereof, and a method for advanced treatment of organics in MDI brine in order to solve the problem of catalyst metal loss when the organic matter in MDI brine is deeply treated by the catalytic oxidation method; Adding the catalytic oxidation catalyst of the present invention to the MDI brine can not only effectively improve the brine treatment effect, but also the catalyst can reduce or even avoid the loss of metal in the catalyst while ensuring the improvement of the catalytic oxidation effect.
  • the advanced treatment method is simple and easy to implement, has high treatment efficiency, and does not produce secondary pollution.
  • a catalytic oxidation catalyst comprising a carrier and an active component, the carrier is titanium dioxide (TiO 2 ), and the active component is an organic neutral ligand-metal complex ionic liquid;
  • the content of the active component is 2-20wt% (for example, 3wt%, 5wt%, 7wt%, 10wt%, 12wt%, 14wt%, 16wt%, 18wt%), preferably 4-10wt%.
  • the content of the active component can be understood as the content of the active component as a percentage of the weight of the carrier.
  • the organic neutral ligand-metal complex ionic liquid is EG-CholineCl-NiCl 2 (ethylene glycol-choline chloride nickel chloride) and EG-CholineCl-FeCl 3 (ethylene glycol-choline chloride ferric chloride) mixture.
  • the content of each component in the active ingredient includes:
  • EG-CholineCl-NiCl 2 1.0 ⁇ 10.0wt% (for example, 3wt%, 3.5wt%, 4.5wt%, 5wt%, 6wt%, 8wt%), more preferably 2.0 ⁇ 4.0wt%;
  • EG-CholineCl-FeCl 3 1.0 to 10.0 wt% (for example, 3 wt%, 3.5 wt%, 4.5 wt%, 5 wt%, 6 wt%, 8 wt%), more preferably 2.0 to 4.0 wt%.
  • the organic neutral ligand-metal complex ionic liquid has the characteristics of low melting point, low viscosity, and good solubility. Under certain conditions, it can dissolve metal oxides, metal chlorides, CO 2 , and SO 2 and other substances; at the same time, due to its extremely high polarity, polar substances such as formic acid, phenol, aniline, and benzoic acid can also be dissolved.
  • the organic neutral ligand-metal complex ionic liquid (as an active component) also has high catalytic activity.
  • the ionic liquid can be used for good
  • the characteristics of solubility and high specific surface area of the carrier material reduce the amount of ionic liquid in the catalytic oxidation reaction, improve the catalytic activity, and prolong the service life.
  • EG-CholineCl-NiCl 2 is the main active component
  • EG-CholineCl-FeCl 3 is the modifier (ie, catalyst promoter), Used to modify the performance of the catalyst.
  • the catalytic oxidation catalyst of the present invention is used in the advanced treatment method of organic matter in MDI brine.
  • the active components can improve the removal effect of organic matter, and on the other hand, it can reduce or avoid the loss of main active components and increase the catalyst. The stability.
  • TiO 2 is selected as the carrier, and after it is compounded with the organic neutral ligand-metal complex ionic liquid, the catalyst has the characteristics of high catalytic oxidation efficiency and no metal ion loss.
  • the solid loading of the organic neutral ligand-metal complex ionic liquid has higher loading efficiency and loading stability; because the ionic liquid has excellent solubility It can fundamentally avoid the loss of catalytically active metals, and at the same time greatly improve the removal efficiency of organic matter, so as to meet the index requirements of chlor-alkali ion membrane for organic matter and metal ions.
  • a method for preparing the catalytic oxidation catalyst as described above includes: dissolving the active component in an organic solvent to obtain a solution containing the active component (that is, an impregnation solution), and inert In the presence of a gas atmosphere, the carrier is contacted with the active component-containing solution for impregnation; and the solid obtained after impregnation is dried and calcined to obtain the catalytic oxidation catalyst.
  • the carrier is vacuum pretreated before impregnation.
  • the conditions of the vacuum pretreatment include: a treatment time of 10-60 min (for example, 20 min, 30 min, 40 min, 50 min), and a vacuum degree of 96.0-98.0 KPa (absolute pressure).
  • the organic solvent is selected from small alcohols with a molecular weight of 10-1000 g/mol, more preferably methanol.
  • the amount of the organic solvent mentioned here is such that the active component is completely dissolved to form a solution.
  • the inert gas is nitrogen.
  • the relationship between the amount of active component and the carrier is quantified by volume.
  • the carrier is immersed in an excess of the solution containing the active group.
  • the two can also be impregnated in equal volume.
  • the time and temperature of the impregnation treatment are well known to those skilled in the art.
  • the immersion time is 30 to 240 min (for example, 40 min, 50 min, 65 min, 80 min, 90 min, 100 min, 110 min), preferably 60 to 120 min.
  • the obtained solid product needs to be post-treated, which generally includes drying and roasting steps.
  • the drying conditions include: a temperature of 60-150°C (for example, 80°C, 100°C, 120°C, 140°C), and a time of 1-5h (for example, 2h, 3h, 4h).
  • the firing conditions include: a temperature of 300 to 400°C (for example, 350°C), and a time of 3 to 5 hours (for example, 3.5 hours).
  • the preparation method of the EG-CholineCl-NiCl 2 is:
  • the preparation method of the EG-CholineCl-FeCl 3 is:
  • the prepared EG-CholineCl-NiCl 2 is dissolved in methanol and the obtained EG-CholineCl-FeCl 3 is dissolved in methanol to prepare an impregnation solution; in a nitrogen atmosphere, the obtained impregnation solution is the same as the vacuum pretreatment.
  • the TiO 2 carrier is mixed for impregnation.
  • the carrier is immersed in an excess volume of impregnating solution.
  • the impregnation time is 30-240 min, preferably 60-120 min; then the solid obtained is dried at 60-150°C for 1-5 h, and then at 300- After calcination at 400°C for 3 to 5 hours, a catalytic oxidation catalyst with EG-CholineCl-NiCl 2 and EG-CholineCl-FeCl 3 supported on TiO 2 is obtained.
  • a method for advanced treatment of organic matter in MDI brine which includes the following steps:
  • step (2) Contacting the MDI brine treated in step (1) with a catalytic oxidation catalyst for catalytic oxidation reaction to obtain a highly-treated brine;
  • the catalytic oxidation catalyst is the above-mentioned catalyst, or is prepared by the above-mentioned preparation method.
  • a mixture of EG-CholineCl-NiCl 2 (ethylene glycol-choline chloride nickel chloride) and EG-CholineCl-FeCl 3 (ethylene glycol-choline chloride ferric chloride) is loaded as the active component Catalytic oxidation catalyst on titanium dioxide support.
  • the oxidizer and organic substances such as formic acid, phenol and aniline contained in the brine to be treated are first adsorbed and dissolved on the surface of the catalytic oxidation catalyst.
  • the oxidizer generates active oxygen free radicals under the action of the active components, which in turn reduces
  • the organic substances such as formic acid, phenol and aniline on the surface of the catalyst are oxidized and decomposed to produce CO 2 , H 2 O and small molecular compounds.
  • the catalytic oxidation mechanism is as follows:
  • [O] stands for active oxygen radicals
  • CAT stands for catalysts
  • ORG stands for organics
  • CAT-O stands for active sites on the catalyst
  • the active sites have [O]
  • ORG-O stands for combined with [O] Organic matter.
  • Formula 1 is the process in which the oxidant is catalyzed by the catalyst to produce [O] on the catalyst;
  • Formula 2 is the process of contacting the catalyst with [O] active sites with the organic matter in the MDI brine to be treated, and transferring the [O] to the organic matter Process;
  • Formula 3 is a process in which organic matter combined with [O] is degraded into small molecules or carbon dioxide and water under the action of a catalyst.
  • the composition of the MDI brine includes:
  • TOC ⁇ 60mg/L for example, 0 ⁇ 40mg/L
  • TN ⁇ 5mg/L for example, 0 ⁇ 4mg/L
  • Formic acid ⁇ 60mg/L, for example, 0-50mg/L;
  • TOC here stands for total organic carbon
  • TN stands for total nitrogen
  • step (1) the operating process conditions such as pH value, temperature and treatment time need to be controlled to a certain range, mainly to ensure the efficiency of the subsequent catalytic oxidation reaction, while avoiding the loss of catalyst active components and affecting the downstream brine recovery treatment.
  • the operating process conditions such as pH value, temperature and treatment time need to be controlled to a certain range, mainly to ensure the efficiency of the subsequent catalytic oxidation reaction, while avoiding the loss of catalyst active components and affecting the downstream brine recovery treatment.
  • temperature and treatment time an increase in the reaction temperature and a decrease in the treatment time will help the treatment effect.
  • the operating process conditions of step (1) include: adjusting the pH to 9-14 (for example, 9.5, 10.5, 11, 12, 13.5), preferably 10-13; adding oxidant for treatment and staying time of 0.25- 2h (for example, 0.4h, 0.6h, 0.8h, 1.5h), preferably 0.5 ⁇ 1h; the temperature of adding oxidant treatment is 20 ⁇ 80°C (for example, 25°C, 35°C, 40°C, 50°C, 60°C , 75°C), preferably 30 to 70°C.
  • the pH value of the system can be adjusted by adding an aqueous hydrochloric acid solution.
  • the adjustment of the pH value and the addition of the oxidant can be carried out in any reactor known in the art, preferably an adjustment tank, a stirred tank or a static mixer.
  • the oxidant is selected from liquid chlorine, chlorine gas, sodium hypochlorite or wastewater containing free chlorine, preferably sodium hypochlorite or wastewater containing free chlorine.
  • any reactor known in the art can be selected for realization; for example, it is sent to a catalytic oxidation reactor for reaction.
  • the operating process conditions of step (2) include: the pH value of the system is 9-14, preferably 10-13; the pH value in the reaction system is too low will cause the loss of the catalyst active metals Ni and Fe, and the pH value is too high. High will cause the loss of the impurity metal Al in the catalyst carrier; therefore, the pH value needs to be adjusted.
  • the volumetric space velocity is 1 ⁇ 10h -1 , preferably 3 ⁇ 8h -1 ; if the volumetric space velocity is too high, the oxidant in the reaction system cannot be fully converted into active oxygen radicals, and the characteristic pollution in the MDI brine to be treated cannot be contaminated If the volumetric space velocity is too low, although the catalytic oxidation effect can meet the requirements, the amount of catalyst will increase, leading to higher operating costs.
  • the reaction temperature is 20 to 80°C, preferably 30 to 70°C.
  • the oxidant In a system for advanced treatment of MDI brine, in the absence of a catalyst, the oxidant has a low removal efficiency of organic matter in the MDI brine, and cannot quickly form active oxygen radicals. Under the action of the catalytic oxidation catalyst of the present invention, the oxidant will rapidly form active oxygen free radicals, thereby decomposing organic substances such as formic acid, phenol and aniline, which has a significant treatment effect and can reduce or avoid metal loss in the catalyst.
  • the use of the catalytic oxidation catalyst can improve the removal effect of organic matter in the MDI brine, on the other hand, can reduce the loss of metals in the active components, increase the stability of the catalyst, and avoid secondary The pollution situation arises. It is precisely because the catalyst obtained in the present invention has such performance, it can overcome the technical obstacles in the use of the catalyst in the advanced treatment process of organics in the MDI brine, and can effectively improve the process effect of the advanced treatment of the organics in the MDI brine.
  • the invention can remove most of the organic matter such as formic acid, phenol and aniline in the MDI brine, and at the same time in the treated brine: TOC ⁇ 10mg/L, TN ⁇ 3mg/L, SS ⁇ 1mg/L, Ca+Mg ⁇ 0.02mg /L, Si ⁇ 2.3mg/L, Al, I, Ba, Sr ⁇ 0.1mg/L, Fe ⁇ 0.05mg/L, Ni ⁇ 0.1mg/L, which can meet the acceptance index requirements of chlor-alkali plants.
  • the metal ion content in the MDI brine obtained after the treatment did not increase, that is, the catalytic oxidation catalyst used does not have the problem of metal loss, and all indicators meet the acceptance standard of chlor-alkali ion membrane; a small amount during the catalytic oxidation reaction
  • the exhaust gas meets the external emission index and can be directly discharged for treatment.
  • the obtained deep-treated brine is transported to the ion-exchange membrane caustic soda production device of a chlor-alkali plant to be used as a production raw material to prepare the caustic soda required for MDI production , Chlorine, hydrochloric acid and hydrogen.
  • the invention not only solves the problem of low efficiency of advanced treatment of organic matter in MDI brine, but also overcomes the technical obstacles of catalyst metal loss during the process of using the catalyst, and the advanced treatment method has simple process flow, high organic matter removal efficiency, and operating cost. Low, high degree of automation, and successfully realized the efficient reuse of MDI brine.
  • the organic matter in the brine is oxidized and decomposed into CO 2 , H 2 O and small molecule compounds through a catalytic oxidation process.
  • the catalytic oxidation efficiency is high (catalytic The latter oxidation efficiency can be increased by 30-60%), and the method is simple and easy to operate, low operating cost, and no secondary pollution.
  • EG-CholineCl-NiCl 2 and EG-CholineCl-FeCl 3 are selected for immobilization. After they interact with an oxidant, the oxidant can quickly be converted into a large number of active oxygen free radicals.
  • the qualified brine for example, TOC ⁇ 10mg/L, TN ⁇ 3mg/L, SS ⁇ 1mg/L, Si ⁇ 2.3mg/L, Fe ⁇ 0.05mg/L, Ni ⁇ 0.1mg/L
  • the sodium sulfide resources are recycled and the technology is highly integrated.
  • the catalytic oxidation process of the present invention is not only suitable for the treatment of MDI brine, but also for the advanced treatment of other medium and low-concentration organic wastewater.
  • Brine storage tanks, static mixers, brine transfer pumps, and catalytic oxidation reactors were all purchased from Yantai Keli Chemical Equipment Co., Ltd.;
  • the MDI brine to be processed from the MDI production plant comes from Wanhua Chemical’s MDI plant; the MDI brine to be processed is transported to the brine storage tank, and sampled and analyzed after cooling; among them, the water quality of the MDI brine contains the various groups See Table 1 for the components and their contents:
  • TiO 2 carrier purchased from Sinopharm Chemical Reagent Co., Ltd.;
  • the preparation method of EG-CholineCl-NiCl 2 is: after ethylene glycol and choline chloride (CholineCl) are mixed equimolar, agitated to obtain a homogeneous solution of ethylene glycol and choline chloride (CholineCl); the solution is mixed with NiCl 2 Mix (in which, choline chloride and NiCl 2 are mixed equimolar based on choline chloride in the solution), heated and stirred under the protection of nitrogen, and reacted at 100°C for 4 hours; the viscous liquid obtained after the reaction is heated at 90°C Dry under vacuum for 10 hours to obtain EG-CholineCl-NiCl 2 .
  • the preparation method of EG-CholineCl-FeCl 3 is as follows: After ethylene glycol and choline chloride (CholineCl) are mixed in an equimolar manner, they are stirred to obtain a homogeneous solution of ethylene glycol and choline chloride (CholineCl); and the solution is mixed with FeCl 3 (Among them, based on choline chloride in the solution, choline chloride is mixed with FeCl 3 equimolarly), heated and stirred under nitrogen protection, and reacted at 100°C for 4h; the viscous liquid obtained after the reaction is at 90°C Vacuum drying for 10 hours to obtain EG-CholineCl-FeCl 3 .
  • ICP-MS inductively coupled plasma atomic emission spectrometry-mass spectrometry
  • the vacuum pretreatment time is 10 minutes, and the vacuum degree is 96.0KPa (absolute pressure); meanwhile, a methanol solution containing NiCl 2 with a concentration of 0.20g/mL 10.0 is taken 13.3 mL of a methanol solution containing FeCl 3 with a concentration of 0.15 g/mL in 1 mL was added to a methanol aqueous solution with a methanol concentration of 10 wt% to prepare an immersion solution with a total volume of 30 mL. Then add the above-mentioned impregnating solution to a vacuum impregnation bottle containing TiO 2 carrier and mix it evenly.
  • the TiO 2 carrier is immersed in an excess amount of impregnating solution. After 30 minutes of immersion, the impregnated product is taken out and placed in an oven to dry at 90°C. 2h, then calcined in a muffle furnace at 300°C for 4h to obtain 1# catalyst.
  • the content percentage of NiCl 2 is 10.0 wt%
  • the content percentage of FeCl 3 is 10.0 wt%.
  • the vacuum pretreatment time is 30min, and the vacuum degree is 98.0KPa (absolute pressure).
  • take the methanol containing CholineCl-NiCl 2 with a concentration of 0.20g/mL A solution of 10.0 mL, 6.65 mL of a methanol solution containing CholineCl-FeCl 3 with a concentration of 0.30 g/mL was added to a methanol aqueous solution with a methanol concentration of 10 wt% to prepare an immersion solution with a total volume of 30 mL.
  • the content percentage of CholineCl-NiCl 2 is 10.0 wt%
  • the content percentage of CholineCl-FeCl 3 is 10.0 wt%.
  • the vacuum pretreatment time is 40min, and the vacuum degree is 97.0KPa (absolute pressure); at the same time, a concentration of 0.20g/mL containing EG-CholineCl-NiCl 2 is taken 10.0 mL of the methanol solution, 6.65 mL of a methanol solution containing EG-CholineCl-FeCl 3 with a concentration of 0.30 g/mL, were added to a methanol aqueous solution with a methanol concentration of 10 wt% to prepare an immersion solution with a total volume of 30 mL.
  • the content percentage of EG-CholineCl-NiCl 2 is 10.0 wt%
  • the content percentage of EG-CholineCl-FeCl 3 is 10.0 wt%.
  • the vacuum pretreatment time is 10 minutes and the vacuum degree is 96.0KPa (absolute pressure); at the same time, a concentration of 0.20g/mL containing EG-CholineCl-NiCl 2 is taken 1.0 mL of the methanol solution and 1.4 mL of a methanol solution containing EG-CholineCl-FeCl 3 with a concentration of 0.15 g/mL were added to a methanol aqueous solution with a methanol concentration of 10 wt% to prepare an impregnation solution with a total volume of 20 mL.
  • the content percentage of EG-CholineCl-NiCl 2 is 1.0 wt%
  • the content percentage of EG-CholineCl-FeCl 3 is 1.0 wt%.
  • the vacuum pretreatment time is 30min, and the vacuum degree is 96.0KPa (absolute pressure); at the same time, a concentration of 0.20g/mL containing EG-CholineCl-NiCl 2 is taken 4.0 mL of the methanol solution of EG-CholineCl-FeCl 3 and 8.0 mL of the methanol solution containing EG-CholineCl-FeCl 3 with a concentration of 0.15 g/mL were added to a methanol aqueous solution with a methanol concentration of 10 wt% to prepare an impregnation solution with a total volume of 20 mL.
  • the vacuum impregnating bottle containing the TiO 2 carrier adds the above-mentioned impregnating solution to the vacuum impregnating bottle containing the TiO 2 carrier and mix it evenly.
  • the TiO 2 carrier is immersed in the excess impregnating solution. After immersing for 60 minutes, the impregnated product is taken out and dried in an oven at 90°C. 3h, then calcined in a muffle furnace at 350°C for 4h to obtain 5# catalyst.
  • the content percentage of EG-CholineCl-NiCl 2 is 4.0 wt%
  • the content percentage of EG-CholineCl-FeCl 3 is 6.0 wt%.
  • the content percentage of EG-CholineCl-NiCl 2 is 8.0 wt%
  • the content percentage of EG-CholineCl-FeCl 3 is 3.0 wt%.
  • the vacuum pretreatment time is 40min, and the vacuum degree is 97.0KPa (absolute pressure); at the same time, a concentration of 0.20g/mL containing EG-CholineCl-NiCl 2 is taken 6.0 mL of the methanol solution of EG-CholineCl-FeCl 3 with a concentration of 0.30 g/mL and 6.0 mL of a methanol solution containing EG-CholineCl-FeCl 3 with a methanol concentration of 10 wt% are added to a methanol aqueous solution with a methanol concentration of 10 wt% to prepare an immersion solution with a total volume of 30 mL.
  • the content percentage of EG-CholineCl-NiCl 2 is 6.0 wt%
  • the content percentage of EG-CholineCl-FeCl 3 is 9.0 wt%.
  • the advanced treatment method of organic matter in MDI brine includes the following steps:
  • the TOC of the brine is 6mg/L, the TOC removal rate is 90.0%, the TN content is 0.2mg/L, the formic acid content is 0.1mg/L, the phenol content is 0.1mg/L, and the aniline content is 0.1mg/L.
  • SS is 0mg/L, Si content is 0.2mg/L; Ni and Fe are not detected in the effluent, and there is no metal loss.
  • the advanced treatment method of organic matter in MDI brine includes the following steps:
  • step (1) treated with brine MDI brine feed pump into a catalytic oxidation reactor, # 4 to catalytic oxidation catalyst and reactor; the reaction temperature was 50 °C, LHSV was 5h - 1.
  • the pH value of the system is 11.0; under the action of 4# catalyst, sodium hypochlorite is quickly converted into active oxygen free radicals, and the macromolecular organic matter in the wastewater is decomposed into small molecular compounds, carbon dioxide and water, and the deeply treated brine is obtained.
  • the TOC of the brine is 7mg/L
  • the removal rate of TOC is 88.3%
  • the content of TN is 0.2mg/L
  • the content of formic acid is 0.2mg/L
  • the content of phenol is 0.1mg/L
  • the content of aniline is 0.1mg/L.
  • SS is 0mg/L
  • Si content is 0.2mg/L; Ni and Fe are not detected in the effluent, and there is no metal loss.
  • the advanced treatment method of organic matter in MDI brine includes the following steps:
  • step (1) treated with brine MDI brine feed pump into a catalytic oxidation reactor, the catalytic oxidation reaction # 5 catalyst and reactor; the reaction temperature was 50 °C, LHSV was 5h - 1.
  • the pH value of the system is 11.0; under the action of 5# catalyst, sodium hypochlorite is quickly converted into active oxygen free radicals, and the macromolecular organic matter in the wastewater is decomposed into small molecular compounds, carbon dioxide and water, and the deeply treated brine is obtained.
  • the TOC of the brine is 6mg/L, the TOC removal rate is 90.0%, the TN content is 0.2mg/L, the formic acid content is 0.1mg/L, the phenol content is 0.1mg/L, and the aniline content is 0.1mg/L.
  • SS is 0mg/L, Si content is 0.2mg/L; Ni and Fe are not detected in the effluent, and there is no metal loss.
  • the advanced treatment method of organic matter in MDI brine includes the following steps:
  • step (2) Pass the brine treated in step (1) into the catalytic oxidation reactor via the brine transfer pump, and contact the 6# catalyst in the reactor for catalytic oxidation reaction; the reaction temperature is 50°C, and the volumetric space velocity is 5h -1 , The pH value of the system is 11.0; under the action of 6# catalyst, sodium hypochlorite is quickly converted into active oxygen free radicals, and the macromolecular organic matter in the wastewater is decomposed into small molecular compounds, carbon dioxide and water, and the deeply treated brine is obtained.
  • the TOC of the brine is 6mg/L, the TOC removal rate is 90.0%, the TN content is 0.1mg/L, the formic acid content is 0.1mg/L, the phenol content is 0.1mg/L, and the aniline content is 0.1mg/L.
  • SS is 0mg/L, Si content is 0.2mg/L; Ni and Fe are not detected in the effluent, and there is no metal loss.
  • Example 10 (using 7# catalyst):
  • the advanced treatment method of organic matter in MDI brine includes the following steps:
  • step (2) Pass the brine treated in step (1) into the catalytic oxidation reactor via the brine transfer pump, and contact with the 7# catalyst in the reactor for catalytic oxidation reaction; the reaction temperature is 50°C, and the volumetric space velocity is 5h -1 , The pH value of the system is 11.0; under the action of the 7# catalyst, sodium hypochlorite is quickly converted into active oxygen free radicals, and the macromolecular organic matter in the wastewater is decomposed into small molecular compounds, carbon dioxide and water, and the deeply treated brine is obtained.
  • the TOC of the brine is 6mg/L, the TOC removal rate is 90.0%, the TN content is 0.2mg/L, the formic acid content is 0.1mg/L, the phenol content is 0.1mg/L, and the aniline content is 0.1mg/L.
  • SS is 0mg/L, Si content is 0.2mg/L; Ni and Fe are not detected in the effluent, and there is no metal loss.
  • the advanced treatment method of organic matter in MDI brine includes the following steps:
  • step (1) treated with brine MDI brine feed pump into a catalytic oxidation reactor, the catalytic oxidation reaction # 5 catalyst and reactor; the reaction temperature was 70 °C, LHSV of 7h - 1.
  • the pH value of the system is 12.0; under the action of 5# catalyst, sodium hypochlorite is quickly converted into active oxygen free radicals, and the macromolecular organic matter in the wastewater is decomposed into small molecular compounds, carbon dioxide and water, and the deeply treated brine is obtained.
  • the TOC of the brine is 5mg/L, the TOC removal rate is 88.9%, the TN content is 0.1mg/L, the formic acid content is 0.1mg/L, the phenol content is 0.1mg/L, and the aniline content is 0.1mg/L.
  • SS is 0mg/L, Si content is 0.1mg/L; Ni and Fe are not detected in the effluent, and there is no metal loss.
  • the advanced treatment method of organic matter in MDI brine includes the following steps:
  • step (2) Pass the brine treated in step (1) into the catalytic oxidation reactor via the brine transfer pump, and contact with the 5# catalyst in the reactor for catalytic oxidation reaction; the reaction temperature is 30°C, and the volumetric space velocity is 8h -1 , The pH value of the system is 10.0; under the action of 5# catalyst, sodium hypochlorite is quickly converted into active oxygen free radicals, and the macromolecular organic matter in the wastewater is decomposed into small molecular compounds, carbon dioxide and water, and the deeply treated brine is obtained.
  • the TOC of the brine was 4mg/L, the TOC removal rate was 80.0%, the TN content was 0.05mg/L, no formic acid, phenol and aniline were detected, SS was 0mg/L, and the Si content was 0.1mg/L. No Ni and Fe were detected in the water, and there was no metal loss.
  • the advanced treatment method of organic matter in MDI brine includes the following steps:
  • step (2) Pass the brine treated in step (1) into the catalytic oxidation reactor via the brine transfer pump, and contact the 1# catalyst in the reactor for catalytic oxidation reaction; the reaction temperature is 50°C, and the volumetric space velocity is 5h -1 , The pH value of the system is 11.0; under the action of 1# catalyst, sodium hypochlorite is quickly converted into active oxygen free radicals, and the macromolecular organic matter in the wastewater is decomposed into small molecular compounds, carbon dioxide and water, and the deeply treated brine is obtained.
  • the TOC of the brine is 13mg/L
  • the TOC removal rate is 78.3%
  • the TN content is 1.2mg/L
  • the formic acid content is 0.5mg/L
  • the phenol content is 0.4mg/L
  • the aniline content is 1.8mg/L.
  • SS is 0mg/L
  • Si content is 0.2mg/L
  • Ni 0.2mg/L and Fe 0.4mg/L are detected in the effluent, and there is metal loss.
  • the advanced treatment method of organic matter in MDI brine includes the following steps:
  • step (2) Pass the brine treated in step (1) into the catalytic oxidation reactor via the brine transfer pump, and contact with the 2# catalyst in the reactor for catalytic oxidation reaction; the reaction temperature is 50°C, and the volumetric space velocity is 5h -1 , The pH value of the system is 11.0; under the action of 2# catalyst, sodium hypochlorite is quickly converted into active oxygen free radicals, and the macromolecular organic matter in the wastewater is decomposed into small molecular compounds, carbon dioxide and water, and the deeply treated brine is obtained.
  • the TOC of the brine is 10 mg/L
  • the TOC removal rate is 83.3%
  • the TN content is 0.3 mg/L
  • the formic acid content is 0.2 mg/L
  • the phenol content is 0.1 mg/L
  • the aniline content is 0.6 mg/L.
  • SS is 0mg/L
  • Si content is 0.2mg/L
  • Ni 0.05mg/L and Fe 0.08mg/L are detected in the effluent, and there is metal loss.
  • the organic neutral ligand-metal complex ionic liquid-supported catalyst selected in the present invention can meet the advanced treatment requirements of MDI brine under certain conditions.
  • the treated brine meets the acceptance criteria of the chlor-alkali factory, and is sent to the chlor-alkali factory as a production raw material to further produce chlorine, caustic soda and other chemical raw materials; the sodium chloride content in the wastewater before and after the treatment remains basically unchanged, which can make the sodium chloride Resources are recycled.
  • the catalyst supported by the organic neutral ligand-metal complex ionic liquid obtained in the present invention has an active component loading amount of 1 wt% or more, the effect requirements of the advanced treatment of MDI brine can be achieved. Under the condition of the same deep treatment effect of brine, reasonable control of the active component loading can realize the saving of catalyst preparation cost and ensure the efficiency of use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

一种催化氧化催化剂及其制备方法、MDI盐水中有机物的深度处理方法,该催化剂包括载体和活性组分,载体为二氧化钛,活性组分为有机中性配体-金属络合物类离子液体。该深度处理方法包括:(1)对MDI盐水的pH值进行调节,并加入氧化剂进行处理;(2)将步骤(1)处理后的MDI盐水与催化氧化催化剂接触进行催化氧化反应,得到深度处理后的盐水。催化剂在保证提高催化氧化效果的同时,可减少甚至避免催化剂中金属的流失;深度处理方法简单易行,处理效率高,且不产生二次污染。

Description

一种催化氧化催化剂及其制备方法、MDI盐水中有机物的深度处理方法 技术领域
本发明属于化学工程与环境工程中废水处理技术领域,更具体地说,涉及一种催化氧化催化剂及其制备方法、二苯基甲烷二异氰酸酯(以下简称MDI)盐水中有机物的深度处理方法。
背景技术
MDI装置在缩合反应过程中,通常会使用大量烧碱和纯水对中间产品进行中和洗涤,在此过程中会产生大量中和盐水和水洗水,前期中和盐水和水洗水混合后经萃取、汽提预处理后,再经化学氧化、吸附后送至氯碱处理。现在,为降低盐水量并提高盐浓度,已将中和盐水和水洗水进行分级处理,中和盐水经萃取、汽提、催化氧化处理后送至氯碱,水洗水经萃取、汽提处理后直接送生化处理,从而提升盐和水资源的综合利用率。
MDI盐水中氯化钠含量在14~26%,pH为12~14,其中含甲酸、苯酚和苯胺等有机物,需对其进行深度处理后,才能满足氯碱的接收指标。因此,亟需开发一种抗波动性强、处理效率高的深处理技术。
目前,MDI盐水行业处理技术主要采用高级氧化、吸附和蒸发等手段。例如,专利文件CN 101143753 A公开了一种MDI生产过程中废盐水的深度处理方法,通过将废盐水和化学氧化剂进行反应后送至吸附塔进行吸附;但其存在氧化剂加入量大和吸附剂用量大的缺点。
专利文件CN 102139976 B公开了一种MDI生产过程中含盐废水的处理方法,通过加入强酸进行酸化后进行吸附和中和处理;但其在pH调节与活性炭吸附联用过程中存在处理效率低和吸附剂用量大的缺点,且出水TOC高会影响后续氯碱离子膜的使用寿命,需严格控制离子膜进水指标。
在MDI盐水处理领域,采用催化氧化法进行深度处理的案例很少,主要原因在于催化剂的处理效果不佳和其中的金属流失问题,限制了催化氧化技术的工业应用。如何能攻克这一技术难题,是成功实现MDI盐水的高效回用的关键。
发明内容
本发明的目的在于,针对采用催化氧化法深度处理MDI盐水中有机物时会存在催化剂金属流失的问题,提供一种催化氧化催化剂及其制备方法、MDI盐水中有机物的深度处理方法;通过在深度处理MDI盐水时加入本发明的催化氧化催化剂,不仅可有效提升盐水处理效果,而且该催化剂在保证提高催化氧化效果的同时,可减少甚至避免催化剂中金属的流失。另外,该深度处理方法简单易行,处理效率高,且不产生二次污染。
为了实现上述目的,本发明采用如下的技术方案:
在一个方面,提供一种催化氧化催化剂,包括载体和活性组分,所述载体为二氧化钛(TiO 2),所述活性组分为有机中性配体-金属络合物类离子液体;
所述催化氧化催化剂中,以所述载体的重量为基准计,所述活性组分的含量为2~20wt%(例如,3wt%、5wt%、7wt%、10wt%、12wt%、14wt%、16wt%、18wt%),优选为4~10wt%。
这里的“以所述载体的重量百分含量为基准计,所述活性组分的含量”可以理解为所述活性组分含量为所述载体重量的百分比。
根据本发明提供的催化氧化催化剂,所述有机中性配体-金属络合物类离子液体为EG-CholineCl-NiCl 2(乙二醇-氯化胆碱氯化镍)与EG-CholineCl-FeCl 3(乙二醇-氯化胆碱氯化铁)的混合物。
在优选实施方式中,以所述载体的重量为基准计,所述活性组分中各组分的含量包括:
EG-CholineCl-NiCl 2 1.0~10.0wt%(例如,3wt%、3.5wt%、4.5wt%、5wt%、6wt%、8wt%),更优选2.0~4.0wt%;
EG-CholineCl-FeCl 3 1.0~10.0wt%(例如,3wt%、3.5wt%、4.5wt%、5wt%、6wt%、8wt%),更优选2.0~4.0wt%。
申请人发现,有机中性配体-金属络合物类离子液体具有熔点低、黏度低、溶解性好等特点,在一定条件下,其可溶解金属氧化物、金属氯化物、CO 2、SO 2等物质;同时因其极高的极性,对甲酸、苯酚、苯胺、苯甲酸等极性物质也可溶解。申请人还发现,有机中性配体-金属络合物型离子液体(作为活性组分)也具有很高的催化活性,若将其固载到无机或有机材料 表面,可利用离子液体良好的溶解性和载体材料高比表面积的特点,降低离子液体在催化氧化反应中的用量,提高催化活性,延长使用寿命。
作为活性组分的EG-CholineCl-NiCl 2和EG-CholineCl-FeCl 3混合物中,EG-CholineCl-NiCl 2为主活性组分,EG-CholineCl-FeCl 3为调变剂(即催化剂助剂),用于对催化剂的性能进行修饰。将本发明的催化氧化催化剂用于MDI盐水中有机物的深度处理方法中,一方面,其中的活性组分可以提高有机物的去除效果,另一方面还能减少或避免主活性组分流失,增加催化剂的稳定性。
选用TiO 2作为载体,其与有机中性配体-金属络合物类离子液体复配后,催化剂具有催化氧化效率高、无金属离子流失的特点。申请人通过前期研究发现,将活性炭、硅藻土、Al 2O 3、分子筛等作为载体与所述有机中性配体-金属络合物类离子液体复配后,因存在催化氧化效率低和金属流失的问题,无法满足MDI盐水中有机物的深度处理的使用需求。
相比于常规的活性金属直接负载于载体的技术,有机中性配体-金属络合物类离子液体的固载具有更高负载效率和负载稳定性;因其中的离子液体具有极好的溶解性和催化性,可从根本上避免催化剂活性金属的流失,同时大幅提升有机物去除效率,从而满足氯碱离子膜对有机物和金属离子的指标要求。
在另一个方面,提供一种如上所述的催化氧化催化剂的制备方法,包括:将所述活性组分溶于有机溶剂中,得到含活性组分的溶液(即,浸渍液),并在惰性气体氛围存在下将所述载体与所述含活性组分的溶液接触进行浸渍;再将浸渍后所得固体干燥和焙烧,得到所述催化氧化催化剂。
根据本发明提供的制备方法,一些示例中,在浸渍前,将所述载体进行真空预处理。一些优选实施方式中,所述真空预处理的条件包括:处理时间为10~60min(例如,20min、30min、40min、50min),真空度为96.0~98.0KPa(绝压)。
一些示例中,所述有机溶剂选自分子量为10~1000g/mol的小分子醇,更优选为甲醇。这里所述有机溶剂的用量,以使活性组分完全溶解形成溶液为宜。
一些示例中,所述惰性气体为氮气。
在所述浸渍的过程中,活性组分与载体的用量关系以体积进行量化。一些示例中,所述载体浸渍于过量的所述含活性分组的溶液中。在另一些示例中,也可以将两者进行等体积浸渍。
采用浸渍法制备催化剂时,浸渍处理的时间和温度为本领域技术人员所熟知。一些示例中,所述浸渍的时间为30~240min(例如,40min、50min、65min、80min、90min、100min、110min),优选为60~120min。
浸渍的操作完成后,需要将所得固体产物进行后处理,一般包括干燥和焙烧等工序。一些示例中,所述干燥的条件包括:温度为60~150℃(例如,80℃、100℃、120℃、140℃),时间为1~5h(例如,2h、3h、4h)。一些示例中,所述焙烧的条件包括:温度为300~400℃(例如,350℃),时间为3~5h(例如,3.5h)。
一些示例中,所述EG-CholineCl-NiCl 2的制备方法为:
将乙二醇和氯化胆碱混合(优选将二者按照等摩尔混合),搅拌形成均一、透明的混合液体,再加入NiCl 2(优选氯化胆碱与NiCl 2等摩尔进行配比),在氮气保护下加热搅拌,并在60~150℃(优选80~110℃)下反应1~5h(优选2~4h);将反应后所得粘稠液体在60~150℃下真空干燥5~10h,即得EG-CholineCl-NiCl 2
一些示例中,所述EG-CholineCl-FeCl 3的制备方法为:
将乙二醇和氯化胆碱混合(优选将二者按照等摩尔混合),搅拌形成均一、透明的混合液体,再加入FeCl 3(优选氯化胆碱与FeCl 3等摩尔进行配比),在氮气保护下加热搅拌,并在60~150℃(优选80~110℃)下反应1~5h(优选2~4h);将反应后所得粘稠液体在60~150℃下真空干燥5~10h,即得EG-CholineCl-FeCl 3
一些示例中,将所制得的EG-CholineCl-NiCl 2溶于甲醇以及将所得EG-CholineCl-FeCl 3溶于甲醇,配制成浸渍液;在氮气氛围下,所得浸渍液与真空预处理后的TiO 2载体混合进行浸渍,优选载体浸渍在体积过量的浸渍液中,浸渍时间为30~240min,优选为60~120min;然后将所得固体在60~150℃下干燥1~5h,再在300~400℃焙烧3~5h,即得到EG-CholineCl-NiCl 2和EG-CholineCl-FeCl 3负载于TiO 2上的催化氧化催化 剂。
在又一个方面,提供一种MDI盐水中有机物的深度处理方法,包括如下步骤:
(1)对MDI盐水的pH值进行调节,并加入氧化剂进行处理;
(2)将步骤(1)处理后的MDI盐水与催化氧化催化剂接触进行催化氧化反应,得到深度处理后的盐水;
其中,所述催化氧化催化剂为如上所述的催化剂,或者为如上所述的制备方法制备得到。例如,将EG-CholineCl-NiCl 2(乙二醇-氯化胆碱氯化镍)与EG-CholineCl-FeCl 3(乙二醇-氯化胆碱氯化铁)的混合物作为活性组分负载于二氧化钛载体上的催化氧化催化剂。
在处理MDI盐水时,氧化剂以及待处理盐水中含有的甲酸、苯酚和苯胺等有机物质首先被吸附并溶解在所述催化氧化催化剂表面,氧化剂在活性组分作用下产生活性氧自由基,进而将催化剂表面的甲酸、苯酚和苯胺等有机物氧化分解,生成CO 2、H 2O和小分子化合物,其催化氧化机理如下:
ClO -→Cl -+[O],即CAT+ClO -→CAT-O+Cl -      ①;
ORG+CAT-O→ORG-O+CAT                   ②;
ORG-O+CAT-O→H 2O+CAT+CO 3 2-             ③。
其中,[O]代表活性氧自由基,CAT代表催化剂,ORG代表有机物,CAT-O代表催化剂上的活性位点,活性位点上具有[O],ORG-O代表与[O]相结合的有机物。
式①是氧化剂经催化剂催化而在催化剂上产生[O]的过程;式②是具有[O]活性位点的催化剂与待处理的MDI盐水中有机物进行接触,将[O]转移到有机物上的过程;式③是与[O]相结合的有机物在催化剂作用下降解为小分子或二氧化碳和水的过程。
根据本发明提供的深度处理方法,优选地,步骤(1)中,所述MDI盐水的组成包括:
TOC≤60mg/L,例如,为0~40mg/L;
TN≤5mg/L,例如,为0~4mg/L;
甲酸≤60mg/L,例如,为0~50mg/L;
苯酚≤30mg/L,例如,为0~20mg/L;
苯胺≤10mg/L,例如,为0~5mg/L。
这里的TOC表示总有机碳,TN表示总氮。
步骤(1)中,pH值、温度和处理时间等操作工艺条件需控制至一定范围,主要是为了保证下一步催化氧化反应的效率,同时避免催化剂活性组分流失,影响下游盐水的回收处理。当然,对于温度和处理时间,反应温度升高、处理时间减少会有利于处理效果的提升。一些示例中,步骤(1)的操作工艺条件包括:调节pH值为9~14(例如,9.5、10.5、11、12、13.5),优选为10~13;加入氧化剂处理停留的时间为0.25~2h(例如,0.4h、0.6h、0.8h、1.5h),优选为0.5~1h;加入氧化剂处理的温度为20~80℃(例如,25℃、35℃、40℃、50℃、60℃、75℃),优选为30~70℃。一些示例中,可通过加入盐酸水溶液对体系的pH值进行调节。
pH值的调节和氧化剂的加入过程可以通过本领域公知的任意反应器中进行,优选采用调节槽、搅拌釜或静态混合器。
一些示例中,步骤(1)中,所述氧化剂选自液氯、氯气、次氯酸钠或含游离氯的废水,优选为次氯酸钠或含游离氯的废水。所述氧化剂的加入量以所述MDI盐水中TOC的量计,n(TOC):n(氧化剂中有效氯,以氯气计)=0.2~5(例如,0.4、0.6、0.8、1.0、1.5、1.8、2.5、3.0、4.0、4.5),优选为0.5~2。
将步骤(1)处理后的MDI盐水进行催化氧化反应时,可选用本领域公知的任意反应器实现;例如,将其送至催化氧化反应器进行反应。一些示例中,步骤(2)的操作工艺条件包括:体系pH值为9~14,优选为10~13;反应体系中的pH值过低会导致催化剂活性金属Ni和Fe的流失,pH值过高会导致催化剂载体中杂质金属Al的流失;因此,需要对pH值进行调控。体积空速为1~10h -1,优选为3~8h -1;若体积空速过高,反应体系中的氧化剂无法充分转化为活性氧自由基,无法将待处理的MDI盐水中的特征污染物充分去除,也就无法满足氯碱工序的指标接收要求;若体积空速过低,虽然催化氧化效果可满足要求,但催化剂用量会增大,导致运行成本升高。反应温度为20~80℃,优选为30~70℃。
对MDI盐水进行深度处理的体系中,在无催化剂存在的条件下,氧化剂对MDI盐水中的有机物去除效率较低,无法快速形成活性氧自由基。而在有本发明所述催化氧化催化剂的作用下,氧化剂会快速行成活性氧自由基,从而将甲酸、苯酚和苯胺等有机物分解,处理效果显著,同时可以减少或避免催化剂中金属流失。
本发明的深度处理方法中,采用所述催化氧化催化剂,一方面可以提高MDI盐水中的有机物的去除效果,另一方面可减少活性组分中金属的流失,增加催化剂的稳定性,避免二次污染的情况出现。也正是因为本发明所得催化剂具备如此的性能,能够克服MDI盐水中的有机物深度处理工艺在使用催化剂时存在的技术障碍,可有效改善MDI盐水中的有机物深度处理的工艺效果。
本发明可将MDI盐水中的甲酸、苯酚和苯胺等有机物大部分去除,同时处理后的盐水中:TOC≤10mg/L,TN≤3mg/L,SS≤1mg/L,Ca+Mg≤0.02mg/L,Si≤2.3mg/L,Al、I、Ba、Sr≤0.1mg/L,Fe≤0.05mg/L,Ni≤0.1mg/L,可满足氯碱工厂的接收指标要求。并且,处理后所得MDI盐水中金属离子含量未见升高,即,所采用的催化氧化催化剂不存在金属流失的问题,各项指标都满足氯碱离子膜的接收标准;催化氧化反应过程中的少量废气满足外排指标,可直接排放处理。根据本发明提供的深度处理方法,优选地,步骤(2)结束后,将所得深度处理后的盐水输送至氯碱工厂的离子膜烧碱生产装置,用作生产原料,以制备MDI生产所需的烧碱、氯气、盐酸和氢气。
本发明既解决了MDI盐水有机物的深度处理效率不高的难题,又攻克了该工艺在使用催化剂过程中催化剂金属流失的技术障碍,并且深度处理方法的工艺流程简单、有机物去除效率高、运行成本低、自动化程度高,成功实现了MDI盐水的高效回用。
相对于现有技术,本发明技术方案的有益效果在于以下几个方面:
(1)本发明中MDI盐水的深度处理方法,通过催化氧化工艺将盐水中的有机物氧化分解为CO 2、H 2O和小分子化合物,相比于单独的氧化工艺,催化氧化效率高(催化后的氧化效率可提升30~60%),且方法简单易操作、运行成本低、无二次污染。
(2)本发明的催化氧化催化剂,选择EG-CholineCl-NiCl 2和EG-CholineCl-FeCl 3两种离子液体进行固载化,其与氧化剂作用后,氧化剂可快速转化为大量活性氧自由基,在提高了对废水中有机物的催化氧化效果的同时,不存在金属流失(进出水中金属含量差值≤0.01mg/L);另外,处理合格后的盐水(例如,TOC≤10mg/L,TN≤3mg/L,SS≤1mg/L,Si≤2.3mg/L,Fe≤0.05mg/L,Ni≤0.1mg/L)作为生产原料送至氯碱工厂,进一步生产氯气、片碱等化工原料,氯化钠资源得到循环利用,技术集成度高。
(3)本发明催化氧化工艺,不仅适用于MDI盐水的处理,也适用于其他含中低浓度有机废水的深度处理。
具体实施方式
为了能够详细地理解本发明的技术特征和内容,下面将更详细地描述本发明的优选实施方式。虽然实施例中描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。
1、主要设备型号及原料来源
盐水储罐、静态混合器、盐水输送泵、催化氧化反应器,均购自烟台科立化工设备有限公司;
马弗炉,型号VULCAN 3-1750,购自美国Neytech公司;
取自MDI生产装置的待处理的MDI盐水,来自万华化学MDI装置;将所取待处理的MDI盐水输送至盐水储罐,冷却后进行取样分析;其中,MDI盐水的水质中包含的各组分及其含量见表1:
表1 MDI盐水水质中包含的各组分及其含量
Figure PCTCN2019117582-appb-000001
氯化胆碱、乙二醇、、氯化镍、氯化铁、甲醇和乙醇,分析纯,购自国药集团化学试剂有限公司;
TiO 2载体,购自国药集团化学试剂有限公司;
33wt%盐酸水溶液、次氯酸钠溶液,来自万华化学。
EG-CholineCl-NiCl 2的制备方法为:将乙二醇和氯化胆碱(CholineCl)等摩尔混合后,搅拌得到乙二醇与氯化胆碱(CholineCl)的均匀溶液;将该溶液与NiCl 2混合(其中,以溶液中氯化胆碱计,氯化胆碱与NiCl 2等摩尔混合),并在氮气保护下加热搅拌,在100℃下反应4h;将反应后所得粘稠液体在90℃下真空干燥10h,得EG-CholineCl-NiCl 2
EG-CholineCl-FeCl 3的制备方法为:将乙二醇和氯化胆碱(CholineCl)等摩尔混合后,搅拌得到乙二醇和氯化胆碱(CholineCl)的均匀溶液;将该溶液与FeCl 3混合(其中,以溶液中氯化胆碱计,氯化胆碱与FeCl 3等摩尔混合),并在氮气保护下加热搅拌,在100℃下反应4h;将反应后所得粘稠液体在90℃下真空干燥10h,得EG-CholineCl-FeCl 3
2、主要分析和测试方法
TOC、TN分析仪,德国耶拿公司;
SS和Si分析,采用分光光度计分析,美国哈希公司;
金属离子分析,采用电感耦合等离子体原子发射光谱-质谱分析(ICP-MS);
甲酸、苯酚、苯胺分析,采用液相色谱分析(LC),美国安捷伦公司;
NaCl含量分析,采用离子色谱分析(IC),瑞士万通公司。
对比制备例1(1#催化剂的制备):
取TiO 2样品20g置于浸渍瓶中,进行真空预处理,真空预处理的时间为10min,真空度为96.0KPa(绝压);同时取浓度为0.20g/mL的含有NiCl 2的甲醇溶液10.0mL、浓度为0.15g/mL的含FeCl 3的甲醇溶液13.3mL,加入到甲醇浓度为10wt%的甲醇水溶液中,配制成总体积为30mL的浸渍液。然后将上述浸渍液加入到装有TiO 2载体的真空浸渍瓶中并混合均匀,TiO 2载体浸渍于体积过量的浸渍液中,浸渍30min后,取出浸渍后的产物并置于烘箱内90℃干燥2h,然后在马弗炉内300℃下焙烧4h,得到1#催化剂。
所得1#催化剂中,以载体TiO 2的重量为1计,NiCl 2的含量百分数为10.0wt%,FeCl 3的含量百分数为10.0wt%。
对比制备例2(2#催化剂的制备):
取TiO 2样品20g置于浸渍瓶中,进行真空预处理,真空预处理的时间为30min,真空度为98.0KPa(绝压);同时取浓度为0.20g/mL的含CholineCl-NiCl 2的甲醇溶液10.0mL、浓度为0.30g/mL的含CholineCl-FeCl 3的甲醇溶液6.65mL,加入到甲醇浓度为10wt%的甲醇水溶液中,配制成总体积为30mL的浸渍液。然后将上述浸渍液加入到装有TiO 2载体的真空浸渍瓶中并混合均匀,TiO 2载体浸渍于体积过量的浸渍液中,浸渍210min后,取出浸渍后的产物并置于烘箱内150℃干燥1h,然后在马弗炉内300℃焙烧5h,得到2#催化剂。
所得2#催化剂中,以载体TiO 2的重量为1计,CholineCl-NiCl 2的含量百分数为10.0wt%,CholineCl-FeCl 3的含量百分数为10.0wt%。
制备实施例1(3#催化剂的制备):
取TiO 2样品20g置于浸渍瓶中,进行真空预处理,真空预处理的时间为40min,真空度为97.0KPa(绝压);同时取浓度为0.20g/mL的含EG-CholineCl-NiCl 2的甲醇溶液10.0mL、浓度为0.30g/mL的含EG-CholineCl-FeCl 3的甲醇溶液6.65mL,加入到甲醇浓度为10wt%的甲醇水溶液中,配制成总体积为30mL的浸渍液。然后将上述浸渍液加入到装有TiO 2载体的真空浸渍瓶中并混合均匀,TiO 2载体浸渍于体积过量的浸渍液中,浸渍60min后,取出浸渍后的产物并置于烘箱内120℃干燥2h,然后在马弗炉内300℃焙烧4h,得到3#催化剂。
所得3#催化剂中,以载体TiO 2的重量为1计,EG-CholineCl-NiCl 2的含量百分数为10.0wt%,EG-CholineCl-FeCl 3的含量百分数为10.0wt%。
制备实施例2(4#催化剂的制备):
取TiO 2样品20g置于浸渍瓶中,进行真空预处理,真空预处理的时间为10min,真空度为96.0KPa(绝压);同时取浓度为0.20g/mL的含 EG-CholineCl-NiCl 2的甲醇溶液1.0mL、浓度为0.15g/mL的含EG-CholineCl-FeCl 3的甲醇溶液1.4mL,加入到甲醇浓度为10wt%的甲醇水溶液中,配制成总体积为20mL的浸渍液。然后将上述浸渍液加入到装有TiO 2载体的真空浸渍瓶中并混合均匀,TiO 2载体浸渍于体积过量的浸渍液中,浸渍240min后,取出浸渍后的产物并置于烘箱内150℃干燥5h,然后在马弗炉内400℃焙烧5h,得到4#催化剂。
所得4#催化剂中,以载体TiO 2的重量为1计,EG-CholineCl-NiCl 2的含量百分数为1.0wt%,EG-CholineCl-FeCl 3的含量百分数为1.0wt%。
制备实施例3(5#催化剂的制备):
取TiO 2样品20g置于浸渍瓶中,进行真空预处理,真空预处理的时间为30min,真空度为96.0KPa(绝压);同时取浓度为0.20g/mL的含EG-CholineCl-NiCl 2的甲醇溶液4.0mL、浓度为0.15g/mL的含EG-CholineCl-FeCl 3的甲醇溶液8.0mL,加入到甲醇浓度为10wt%的甲醇水溶液中,配制成总体积为20mL的浸渍液。然后将上述浸渍液加入到装有TiO 2载体的真空浸渍瓶中并混合均匀,TiO 2载体浸渍于体积过量的浸渍液中,浸渍60min后,取出浸渍后的产物并置于烘箱内90℃干燥3h,然后在马弗炉内350℃焙烧4h,得到5#催化剂。
所得5#催化剂中,以载体TiO 2的重量为1计,EG-CholineCl-NiCl 2的含量百分数为4.0wt%,EG-CholineCl-FeCl 3的含量百分数为6.0wt%。
制备实施例4(6#催化剂的制备):
取TiO 2样品20g置于浸渍瓶中,进行真空预处理,真空预处理的时间为40min,真空度为97.0KPa(绝压);同时取浓度为0.10g/mL的含EG-CholineCl-NiCl 2的甲醇溶液16.0mL、浓度为0.20g/mL的含EG-CholineCl-FeCl 3的甲醇溶液3.0mL,加入到甲醇浓度为10wt%的甲醇水溶液中,配制成总体积为30mL的浸渍液。然后将上述浸渍液加入到装有TiO 2载体的真空浸渍瓶中并混合均匀,TiO 2载体浸渍于体积过量的浸渍液中,浸渍90min后,取出并置于烘箱内120℃干燥2h,然后在马弗炉内320℃焙烧3h,得到6#催化剂。
所得6#催化剂中,以载体TiO 2的重量为1计,EG-CholineCl-NiCl 2的含量百分数为8.0wt%,EG-CholineCl-FeCl 3的含量百分数为3.0wt%。
制备实施例5(7#催化剂的制备):
取TiO 2样品20g置于浸渍瓶中,进行真空预处理,真空预处理的时间为40min,真空度为97.0KPa(绝压);同时取浓度为0.20g/mL的含EG-CholineCl-NiCl 2的甲醇溶液6.0mL、浓度为0.30g/mL的含EG-CholineCl-FeCl 3的甲醇溶液6.0mL,加入到甲醇浓度为10wt%的甲醇水溶液中,配制成总体积为30mL的浸渍液。然后将上述浸渍液加入到装有TiO 2载体的真空浸渍瓶中并混合均匀,TiO 2载体浸渍于体积过量的浸渍液中,浸渍60min后,取出并置于烘箱内100℃干燥5h,然后在马弗炉内300℃焙烧5h,得到7#催化剂。
所得7#催化剂中,以载体TiO 2的重量为1计,EG-CholineCl-NiCl 2的含量百分数为6.0wt%,EG-CholineCl-FeCl 3的含量百分数为9.0wt%。
利用如上各制备实施例和制备对比例所得催化剂,对表1所示的MDI盐水中有机物的深度处理。
实施例6(使用3#催化剂):
MDI盐水中有机物的深度处理方法,包括如下步骤:
(1)用33wt%盐酸水溶液调节MDI盐水的pH值至11.0,其TOC为60mg/L,控制体系的温度为50℃;通过静态混合器将该MDI盐水体系与次氯酸钠200mg/L混合进行处理,处理的时间为1h。
(2)将步骤(1)处理后的MDI盐水经盐水输送泵通入催化氧化反应器,与反应器中的3#催化剂接触进行催化氧化反应;反应温度为50℃,体积空速为5h -1,体系的pH值为11.0;在3#催化剂作用下,次氯酸钠快速转化为活性氧自由基,将废水中的大分子有机物分解为小分子化合物、二氧化碳和水,得到深度处理后的盐水。催化氧化后,盐水TOC为6mg/L,TOC去除率为90.0%,TN含量为0.2mg/L,甲酸含量为0.1mg/L,苯酚含量为0.1mg/L,苯胺含量为0.1mg/L,SS为0mg/L,Si含量为0.2mg/L; 出水中未检出Ni、Fe,不存在金属流失。
实施例7(使用4#催化剂):
MDI盐水中有机物的深度处理方法,包括如下步骤:
(1)用33wt%盐酸水溶液调节MDI盐水的pH值至11.0,其TOC为60mg/L,控制体系的温度为50℃;通过静态混合器将该MDI盐水体系与次氯酸钠200mg/L混合进行处理,处理的时间为1h。
(2)将步骤(1)处理后的MDI盐水经盐水输送泵通入催化氧化反应器,与反应器中的4#催化剂接触进行催化氧化反应;反应温度为50℃,体积空速为5h -1,体系的pH值为11.0;在4#催化剂作用下,次氯酸钠快速转化为活性氧自由基,将废水中的大分子有机物分解为小分子化合物、二氧化碳和水,得到深度处理后的盐水。催化氧化后,盐水TOC为7mg/L,TOC去除率为88.3%,TN含量为0.2mg/L,甲酸含量为0.2mg/L,苯酚含量为0.1mg/L,苯胺含量为0.1mg/L,SS为0mg/L,Si含量为0.2mg/L;出水中未检出Ni、Fe,不存在金属流失。
实施例8(使用5#催化剂):
MDI盐水中有机物的深度处理方法,包括如下步骤:
(1)用33wt%盐酸水溶液调节MDI盐水的pH值至11.0,其TOC 60mg/L,控制体系的温度为50℃;通过静态混合器将该MDI盐水体系与次氯酸钠200mg/L混合进行处理,处理的时间为1h。
(2)将步骤(1)处理后的MDI盐水经盐水输送泵通入催化氧化反应器,与反应器中的5#催化剂接触进行催化氧化反应;反应温度为50℃,体积空速为5h -1,体系的pH值为11.0;在5#催化剂作用下,次氯酸钠快速转化为活性氧自由基,将废水中的大分子有机物分解为小分子化合物、二氧化碳和水,得到深度处理后的盐水。催化氧化后,盐水TOC为6mg/L,TOC去除率为90.0%,TN含量为0.2mg/L,甲酸含量为0.1mg/L,苯酚含量为0.1mg/L,苯胺含量为0.1mg/L,SS为0mg/L,Si含量为0.2mg/L;出水中未检出含有Ni、Fe,不存在金属流失。
实施例9(使用6#催化剂):
MDI盐水中有机物的深度处理方法,包括如下步骤:
(1)用33wt%盐酸水溶液调节MDI盐水的pH值至11.0,其TOC 60mg/L,控制体系的温度为50℃;通过静态混合器将该MDI盐水体系与次氯酸钠200mg/L混合进行处理,处理的时间为1h。
(2)将步骤(1)处理后的盐水经盐水输送泵通入催化氧化反应器,与反应器中的6#催化剂接触进行催化氧化反应;反应温度为50℃,体积空速为5h -1,体系的pH值为11.0;在6#催化剂作用下,次氯酸钠快速转化为活性氧自由基,将废水中的大分子有机物分解为小分子化合物、二氧化碳和水,得到深度处理后的盐水。催化氧化后,盐水TOC为6mg/L,TOC去除率为90.0%,TN含量为0.1mg/L,甲酸含量为0.1mg/L,苯酚含量为0.1mg/L,苯胺含量为0.1mg/L,SS为0mg/L,Si含量为0.2mg/L;出水中未检出Ni、Fe,不存在金属流失。
实施例10(使用7#催化剂):
MDI盐水中有机物的深度处理方法,包括如下步骤:
(1)用33wt%盐酸水溶液调节MDI盐水的pH值至11.0,其TOC 60mg/L,控制体系的温度为50℃;通过静态混合器将该MDI盐水体系与次氯酸钠200mg/L混合进行处理,处理的时间为1h。
(2)将步骤(1)处理后的盐水经盐水输送泵通入催化氧化反应器,与反应器中的7#催化剂接触进行催化氧化反应;反应温度为50℃,体积空速为5h -1,体系的pH值为11.0;在7#催化剂作用下,次氯酸钠快速转化为活性氧自由基,将废水中的大分子有机物分解为小分子化合物、二氧化碳和水,得到深度处理后的盐水。催化氧化后,盐水TOC为6mg/L,TOC去除率为90.0%,TN含量为0.2mg/L,甲酸含量为0.1mg/L,苯酚含量为0.1mg/L,苯胺含量为0.1mg/L,SS为0mg/L,Si含量为0.2mg/L;出水中未检出Ni、Fe,不存在金属流失。
实施例11(使用5#催化剂):
MDI盐水中有机物的深度处理方法,包括如下步骤:
(1)用33wt%盐酸水溶液调节MDI盐水的pH值至12.0,其TOC为45mg/L,控制体系的温度为70℃;通过静态混合器将该MDI盐水体系与次氯酸钠150mg/L混合进行处理,处理的时间为2h。
(2)将步骤(1)处理后的MDI盐水经盐水输送泵通入催化氧化反应器,与反应器中的5#催化剂接触进行催化氧化反应;反应温度为70℃,体积空速为7h -1,体系的pH值为12.0;在5#催化剂作用下,次氯酸钠快速转化为活性氧自由基,将废水中的大分子有机物分解为小分子化合物、二氧化碳和水,得到深度处理后的盐水。催化氧化后,盐水TOC为5mg/L,TOC去除率为88.9%,TN含量为0.1mg/L,甲酸含量为0.1mg/L,苯酚含量为0.1mg/L,苯胺含量为0.1mg/L,SS为0mg/L,Si含量为0.1mg/L;出水中未检出Ni、Fe,不存在金属流失。
实施例12(使用5#催化剂):
MDI盐水中有机物的深度处理方法,包括如下步骤:
(1)用33wt%盐酸水溶液调节MDI盐水的pH值至10.0,其TOC为20mg/L,控制体系的温度为30℃;通过静态混合器将该MDI盐水体系与次氯酸钠100mg/L进行处理,处理的时间为0.25h。
(2)将步骤(1)处理后的盐水经盐水输送泵通入催化氧化反应器,与反应器中的5#催化剂接触进行催化氧化反应;反应温度为30℃,体积空速为8h -1,体系的pH值为10.0;在5#催化剂作用下,次氯酸钠快速转化为活性氧自由基,将废水中的大分子有机物分解为小分子化合物、二氧化碳和水,得到深度处理后的盐水。催化氧化后,盐水TOC为4mg/L,TOC去除率为80.0%,TN含量为0.05mg/L,未检出甲酸、苯酚和苯胺,SS为0mg/L,Si含量为0.1mg/L,出水中未检出Ni、Fe,不存在金属流失。
对比例3(使用1#催化剂):
MDI盐水中有机物的深度处理方法,包括如下步骤:
(1)用33wt%盐酸水溶液调节MDI盐水的pH值至11.0,其TOC为60mg/L,控制体系的温度为50℃;通过静态混合器将该MDI盐水体系与 次氯酸钠200mg/L混合进行处理,处理的时间为1h。
(2)将步骤(1)处理后的盐水经盐水输送泵通入催化氧化反应器,与反应器中的1#催化剂接触进行催化氧化反应;反应温度为50℃,体积空速为5h -1,体系的pH值为11.0;在1#催化剂作用下,次氯酸钠快速转化为活性氧自由基,将废水中的大分子有机物分解为小分子化合物、二氧化碳和水,得到深度处理后的盐水。催化氧化后,盐水TOC为13mg/L,TOC去除率为78.3%,TN含量为1.2mg/L,甲酸含量为0.5mg/L,苯酚含量为0.4mg/L,苯胺含量为1.8mg/L,SS为0mg/L,Si含量为0.2mg/L,但出水中检出Ni 0.2mg/L,Fe 0.4mg/L,存在金属流失现象。
对比例4(使用2#催化剂):
MDI盐水中有机物的深度处理方法,包括如下步骤:
(1)用33wt%盐酸水溶液调节MDI盐水的pH值至11.0,其TOC为60mg/L,控制体系的温度为50℃;通过静态混合器将该MDI盐水体系与次氯酸钠200mg/L混合进行处理,处理的时间为1h。
(2)将步骤(1)处理后的盐水经盐水输送泵通入催化氧化反应器,与反应器中的2#催化剂接触进行催化氧化反应;反应温度为50℃,体积空速为5h -1,体系的pH值为11.0;在2#催化剂作用下,次氯酸钠快速转化为活性氧自由基,将废水中的大分子有机物分解为小分子化合物、二氧化碳和水,得到深度处理后的盐水。催化氧化后,盐水TOC为10mg/L,TOC去除率为83.3%,TN含量为0.3mg/L,甲酸含量为0.2mg/L,苯酚含量为0.1mg/L,苯胺含量为0.6mg/L,SS为0mg/L,Si含量为0.2mg/L,但出水中检出Ni 0.05mg/L,Fe 0.08mg/L,存在金属流失现象。
实验结论:
(1)通过对比例3~4和实施例6~12的MDI盐水深度处理结果可知,单独金属负载的催化剂或单独金属络合物类离子液体负载的催化剂均对MDI盐水的处理效果较差,同时存在金属流失的问题;而有机中性配体-金属络合物类离子液体负载催化剂能够成功解决上述问题,可显著降低MDI盐水中甲酸、苯酚和苯胺的含量;
(2)通过实施例6~12的MDI盐水深度处理结果可知,本发明选用的有机中性配体-金属络合物类离子液体负载的催化剂,在一定条件下可实现MDI盐水的深度处理需求,处理后的盐水指标满足氯碱工厂的接收标准,作为生产原料送至氯碱工厂,进一步生产氯气、片碱等化工原料;处理前后废水中的氯化钠含量基本保持不变,可使氯化钠资源得到循环利用。
另外,在本发明所得有机中性配体-金属络合物类离子液体负载的催化剂,活性组分负载量为1wt%及以上时,即可达到MDI盐水深度处理的效果要求。在具备同等盐水深度处理效果的条件下,活性组分负载量的合理控制可实现催化剂制备成本的节约和保证使用效率。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (10)

  1. 一种催化氧化催化剂,包括载体和活性组分,其特征在于,所述载体为二氧化钛,所述活性组分为有机中性配体-金属络合物类离子液体;
    所述催化氧化催化剂中,以所述载体的重量为基准计,所述活性组分的含量为2~20wt%,优选为4~10wt%。
  2. 根据权利要求1所述的催化氧化催化剂,其特征在于,所述有机中性配体-金属络合物类离子液体为EG-CholineCl-NiCl 2与EG-CholineCl-FeCl 3的混合物;
    优选地,以所述载体的重量为基准计,所述活性组分中各组分的含量包括:
    EG-CholineCl-NiCl 2 1.0~10.0wt%,更优选2.0~4.0wt%;
    EG-CholineCl-FeCl 3 1.0~10.0wt%,更优选2.0~4.0wt%。
  3. 一种如权利要求1或2所述的催化氧化催化剂的制备方法,其特征在于,包括:将所述活性组分溶于有机溶剂中,得到含活性组分的溶液,并在惰性气体氛围存在下将所述载体与所述含活性组分的溶液接触进行浸渍;再将浸渍后所得固体干燥和焙烧,得到所述催化氧化催化剂。
  4. 根据权利要求3所述的制备方法,其特征在于,在浸渍前,将所述载体进行真空预处理;优选地,所述真空预处理的条件包括:处理时间为10~60min,真空度为96.0~98.0KPa;
    优选地,所述有机溶剂选自分子量为10~1000g/mol的小分子醇,更优选为甲醇;
    优选地,所述惰性气体为氮气;
    优选地,所述载体浸渍于过量的所述含活性组分的溶液中;
    优选地,所述浸渍的时间为30~240min,更优选为60~120min;
    优选地,所述干燥的条件包括:温度为60~150℃,时间为1~5h;
    优选地,所述焙烧的条件包括:温度为300~400℃,时间为3~5h。
  5. 一种MDI盐水中有机物的深度处理方法,其特征在于,包括如下步骤:
    (1)对MDI盐水的pH值进行调节,并加入氧化剂进行处理;
    (2)将步骤(1)处理后的MDI盐水与催化氧化催化剂接触进行催化氧化反应,得到深度处理后的盐水;
    其中,所述催化氧化催化剂为如权利要求1或2所述,或者为如权利要求3或4所述的制备方法制备得到。
  6. 根据权利要求5所述的深度处理方法,其特征在于,步骤(1)中,所述MDI盐水的组成包括:
    TOC≤60mg/L;
    TN≤5mg/L;
    甲酸≤60mg/L;
    苯酚≤30mg/L;
    苯胺≤10mg/L。
  7. 根据权利要求5或6所述的深度处理方法,其特征在于,步骤(1)的操作工艺条件包括:调节pH值为9~14,优选为10~13;加入氧化剂处理停留的时间为0.25~2h,优选为0.5~1h;加入氧化剂处理的温度为20~80℃,优选为30~70℃。
  8. 根据权利要求5-7中任一项所述的深度处理方法,其特征在于,步骤(1)中,所述氧化剂选自液氯、氯气、次氯酸钠或含游离氯的废水,优选为次氯酸钠或含游离氯的废水;
    所述氧化剂的加入量以所述MDI盐水中TOC的量计,n(TOC):n(氧化剂中有效氯,以氯气计)=0.2~5,优选为0.5~2。
  9. 根据权利要求5-8中任一项所述的深度处理方法,其特征在于,步骤(2)的操作工艺条件包括:体系pH值为9~14,优选为10~13;体积 空速为1~10h -1,优选为3~8h -1;反应温度为20~80℃,优选为30~70℃。
  10. 根据权利要求5-9中任一项所述的深度处理方法,其特征在于,步骤(2)结束后,将所得深度处理后的盐水输送至氯碱工厂的离子膜烧碱生产装置,用作生产原料,以制备MDI生产所需的烧碱、氯气、盐酸和氢气。
PCT/CN2019/117582 2019-11-12 2019-11-12 一种催化氧化催化剂及其制备方法、mdi盐水中有机物的深度处理方法 WO2021092763A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19952652.6A EP4029603A4 (en) 2019-11-12 2019-11-12 CATALYST FOR CATALYTIC OXIDATION, METHOD FOR PRODUCING IT AND METHOD FOR TREATING ORGANIC SUBSTANCES IN MDI SALT SOLUTION
PCT/CN2019/117582 WO2021092763A1 (zh) 2019-11-12 2019-11-12 一种催化氧化催化剂及其制备方法、mdi盐水中有机物的深度处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/117582 WO2021092763A1 (zh) 2019-11-12 2019-11-12 一种催化氧化催化剂及其制备方法、mdi盐水中有机物的深度处理方法

Publications (1)

Publication Number Publication Date
WO2021092763A1 true WO2021092763A1 (zh) 2021-05-20

Family

ID=75911344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117582 WO2021092763A1 (zh) 2019-11-12 2019-11-12 一种催化氧化催化剂及其制备方法、mdi盐水中有机物的深度处理方法

Country Status (2)

Country Link
EP (1) EP4029603A4 (zh)
WO (1) WO2021092763A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113531539A (zh) * 2021-07-20 2021-10-22 浙江红狮环保股份有限公司 一种氯化钠废盐资源化利用的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1389298A (zh) * 2002-05-25 2003-01-08 中国科学院兰州化学物理研究所 微孔材料装载金属络合物-离子液体催化剂
CN101143753A (zh) 2007-08-08 2008-03-19 宁波万华聚氨酯有限公司 Mdi生产过程中产生的废盐水的深度处理方法
CN101338221A (zh) * 2008-08-20 2009-01-07 河北科技大学 离子液体萃取-光催化氧化燃料油脱硫方法
CN102139976A (zh) 2011-02-22 2011-08-03 上海化学工业区中法水务发展有限公司 Mdi生产过程中含盐废水的处理方法
US20130068610A1 (en) * 2009-10-19 2013-03-21 Industrial Technology Research Institute USE OF METHOD FOR ONE STEP SYNTHESIZING AND IMMOBILIZING CRYSTALLINE TiO2 NANO-PARTICLES SIMULTANEOUSLY ON POLYMER MATERIAL
CN107954859A (zh) * 2017-12-11 2018-04-24 万华化学集团股份有限公司 一种分离丙烯酸/三异丁烯共沸物的方法
CN107952462A (zh) * 2017-12-07 2018-04-24 江西师范大学 一种热解低共熔溶剂制备负载型纳米钴催化剂的方法及应用
US20190106799A1 (en) * 2014-10-17 2019-04-11 Ut-Battelle, Llc Aluminum trihalide-neutral ligand ionic liquids and their use in aluminum deposition
CN110327240A (zh) * 2019-06-14 2019-10-15 广东萱嘉医品健康科技有限公司 一种有机酸甜菜碱类离子液体及其制备方法与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9802848B2 (en) * 2009-09-17 2017-10-31 Wanhua Chemical (Ningbo) Co., Ltd. Method for treating waste saline water produced in production process of diphenylmethane diisocyanate (MDI)
CN111151294B (zh) * 2018-11-08 2022-11-08 万华化学集团股份有限公司 一种过氧化物催化氧化催化剂及其用于处理环氧丙烷联产苯乙烯废水的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1389298A (zh) * 2002-05-25 2003-01-08 中国科学院兰州化学物理研究所 微孔材料装载金属络合物-离子液体催化剂
CN101143753A (zh) 2007-08-08 2008-03-19 宁波万华聚氨酯有限公司 Mdi生产过程中产生的废盐水的深度处理方法
CN101338221A (zh) * 2008-08-20 2009-01-07 河北科技大学 离子液体萃取-光催化氧化燃料油脱硫方法
US20130068610A1 (en) * 2009-10-19 2013-03-21 Industrial Technology Research Institute USE OF METHOD FOR ONE STEP SYNTHESIZING AND IMMOBILIZING CRYSTALLINE TiO2 NANO-PARTICLES SIMULTANEOUSLY ON POLYMER MATERIAL
CN102139976A (zh) 2011-02-22 2011-08-03 上海化学工业区中法水务发展有限公司 Mdi生产过程中含盐废水的处理方法
US20190106799A1 (en) * 2014-10-17 2019-04-11 Ut-Battelle, Llc Aluminum trihalide-neutral ligand ionic liquids and their use in aluminum deposition
CN107952462A (zh) * 2017-12-07 2018-04-24 江西师范大学 一种热解低共熔溶剂制备负载型纳米钴催化剂的方法及应用
CN107954859A (zh) * 2017-12-11 2018-04-24 万华化学集团股份有限公司 一种分离丙烯酸/三异丁烯共沸物的方法
CN110327240A (zh) * 2019-06-14 2019-10-15 广东萱嘉医品健康科技有限公司 一种有机酸甜菜碱类离子液体及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4029603A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113531539A (zh) * 2021-07-20 2021-10-22 浙江红狮环保股份有限公司 一种氯化钠废盐资源化利用的方法

Also Published As

Publication number Publication date
EP4029603A4 (en) 2024-01-03
EP4029603A1 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
CN110743623B (zh) 一种催化氧化催化剂及其制备方法、mdi盐水中有机物的深度处理方法
US11059033B2 (en) Catalyst for catalytic oxidation treatment of organic wastewater, preparation method thereof, and application thereof
US9944545B2 (en) Method for sludge-reduced electrocatalytic reduction-oxidation pretreatment of nitrotoluene production wastewater
CN100369673C (zh) 3,4-二氯硝基苯加氢制备3,4-二氯苯胺的催化剂的制备方法
WO2018035883A1 (zh) 一种反渗透浓水的处理方法
CN109553181B (zh) 一种利用三价钼产生自由基的方法及其处理有机废水的方法
CN108191039B (zh) 一种高效复合型芬顿试剂及其制备方法
CN104628118B (zh) 废水催化湿式氧化处理方法
CN103496777B (zh) 一种氨氮废水的预处理方法
CN111085113B (zh) 非光电响应氧化降解氨氮的脱铵超滤膜、制备方法及其在污水脱铵中的应用
WO2021092763A1 (zh) 一种催化氧化催化剂及其制备方法、mdi盐水中有机物的深度处理方法
CN108067213A (zh) 一种用于苯胺精馏残渣资源化利用的催化剂及其制备方法
CN111377523B (zh) 一种有机废水的催化湿式氧化处理方法
Hu et al. Efficient H2O2 generation and bisphenol A degradation in electro-Fenton of O-doped porous biochar cathode derived from spirit-based Distiller’s grains
CN113713855A (zh) 一种海藻酸铁盐-抗坏血酸凝胶球及其制备方法与应用
CN115382579B (zh) 一种乙炔氢氯化铜催化剂及其制备方法和应用
CN108906108B (zh) 一种N-SrTiO3/活性炭处理材料的微波法合成工艺及其应用
CN110743524A (zh) 表面高碱性球状活性炭臭氧催化剂及其应用
CN112607896B (zh) 一种氯乙烯高盐废水的深度处理和回用方法
Zhou et al. A novel SO3•-mediated photoelectrocatalytic system based on MoS2/Fe2O3 and CuNW@ CF for the efficient treatment of sulfurous and nitrogenous oxides
CN111482192B (zh) 一种MnO2-Co2O3-CeO2-SnO2脱铵催化剂、制备方法及应用
CN112916025B (zh) 一种羟基氯铜催化剂、制备方法及应用
CN115582097B (zh) 废液吸附材料、废液处理系统及工艺
WO2022109765A1 (zh) 一种氯乙烯高盐废水的深度处理和回用方法
CN114100650B (zh) 一种臭氧-过氧化氢催化氧化催化剂及其用于处理生化废水的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019952652

Country of ref document: EP

Effective date: 20220415

NENP Non-entry into the national phase

Ref country code: DE