CN107952462A - 一种热解低共熔溶剂制备负载型纳米钴催化剂的方法及应用 - Google Patents

一种热解低共熔溶剂制备负载型纳米钴催化剂的方法及应用 Download PDF

Info

Publication number
CN107952462A
CN107952462A CN201711288983.3A CN201711288983A CN107952462A CN 107952462 A CN107952462 A CN 107952462A CN 201711288983 A CN201711288983 A CN 201711288983A CN 107952462 A CN107952462 A CN 107952462A
Authority
CN
China
Prior art keywords
eutectic solvent
loaded
catalyst
alcohol
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711288983.3A
Other languages
English (en)
Inventor
陶端健
赵鑫
周言
曹志军
吴先路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Normal University
Original Assignee
Jiangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Normal University filed Critical Jiangxi Normal University
Priority to CN201711288983.3A priority Critical patent/CN107952462A/zh
Publication of CN107952462A publication Critical patent/CN107952462A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C221/00Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/38Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/313Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/46Oxygen atoms
    • C07D213/48Aldehydo radicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种热解低共熔溶剂制备负载型纳米钴催化剂的方法及应用。首先制备得到负载了低共熔溶剂的炭黑混合物,然后将其在惰性气体气氛下高温热解得到负载型纳米钴催化剂,并将其应用于以分子氧为氧源的芳香醇液相选择性氧化体系中。与现有技术比,本发明所制备的负载型纳米钴催化剂有效地将高比表的氮掺杂炭骨架和分散均匀的金属钴催化活性中心集成,能够在无碱性、无助剂条件下活化氧气作为氧化剂,绿色高效催化氧化芳香醇得到芳香醛或芳香酮,避免了传统催化剂催化氧化过程需额外借助均相有机碱所造成的难以回收、三废排放等问题。本发明制备得到的催化剂具有高选择性、高活性、高稳定性以及磁性可回收等优点,具有良好的应用价值和前景。

Description

一种热解低共熔溶剂制备负载型纳米钴催化剂的方法及应用
技术领域
本发明属于复合材料领域,涉及一种热解低共熔溶剂制备负载型纳米钴催化剂的方法及其催化氧化应用。
背景技术
在化学工业领域中,有氧氧化芳香醇制备羰基化合物是一类重要的反应。苯甲醇氧化制备苯甲醛是将羟基官能团转化为羰基官能团中最基础的反应,其产物被广泛应用于香料中间体和医药中间体的制备。传统的生产工艺,通常以无机氧化物作为氧化剂(例如,铬酸盐、高锰酸盐、氯酸盐等),且需要提供固体碱(例如,氢氧化钠或碳酸钾)用以加速官能团的转化,使反应能够顺利进行。这些无机氧化剂和固体碱会造成一系列的环境问题和废弃污染物。
近年来,将氧气(理想空气)作为氧化剂已经成为绿色化工过程中一种新兴的环境友好型反应策略,其副产物仅为水,经济高效、清洁安全。现已有多种贵金属催化剂被开发用于以氧气作为氧化剂的反应中,它们具有高效的催化活性和良好的化学稳定性。但是,贵金属催化剂价格昂贵且储备有限,必将成为此类催化剂大规模工业化应用中难以逾越的屏障。近年来,钴、锰、铁、钒、铜等过渡金属逐渐进入研究领域。由于过渡金属通常催化活性较低,难以活化氧气从而实现芳香醇的选择性氧化过程,所以通常是以负载型催化剂的形式出现,即在过渡金属中添加大量的载体以提高其催化活性和选择性。
公开号为CN 104258849 A的中国发明专利申请报道了一种结晶介孔二氧化铈负载钯催化氧化材料的合成方法,这种材料的合成需要模板剂和贵金属。公开号为CN104907095 A的中国发明专利申请报道过一种催化氧化用多功能集成多孔基固态材料的制备方法,在制备过程中涉及到了复杂苛刻的碱类功能基团配体和双功能化有机金属骨架的制备。以上所报道的催化氧化用材料或催化剂都存在方法复杂,价格昂贵等问题,从经济效益和可操作性等方面考虑,都难以实现大规模的应用。
发明内容
本发明的目的在于提供一种热解低共熔溶剂制备负载型纳米钴催化剂的方法及应用。
本发明的目的可通过以下技术解决方案来实现:
首先制备得到负载了低共熔溶剂的炭黑混合物,然后将其在惰性气体气氛下热解得到负载型纳米钴催化剂,并将其应用于以分子氧为氧源的芳香醇液相选择性氧化体系中。本发明制备的负载型纳米钴催化剂,将高比表的氮掺杂炭骨架和分散均匀的金属钴催化活性中心集于一体,能够在无碱性、无助剂条件下活化氧气作为氧化剂,绿色高效催化氧化芳香醇合成芳香醛或芳香酮。
一种热解低共熔溶剂制备负载型纳米钴催化剂的方法(附图1),它由下列步骤组成:
1)在反应釜内分别加入一定摩尔比的N,N-二烷基咪唑盐和水合钴盐,在温度20~30℃下搅拌混合20~30分钟,制备得到蓝色透明的低共熔溶剂;
2)在上述反应釜内,继续加入一定质量的炭黑和有机溶剂,搅拌混合60~100分钟将固液混合物均匀分散,然后除去有机溶剂并干燥,得到负载了低共熔溶剂的炭黑混合物;
3)将上述制备的负载了低共熔溶剂的炭黑混合物放入管式炉内,在惰性气体保护气氛下高温热解处理一定时间,得到热解后的残留物,残留物经水洗干燥后,最终得到负载型纳米钴催化剂。
上述的制备负载型纳米钴催化剂的方法中,所述的N,N-二烷基咪唑盐可以为1-丁基-3-甲基咪唑溴盐、1-己基-3-甲基咪唑溴盐、1-辛基-3-甲基咪唑溴盐、1-癸基-3-甲基咪唑溴盐中的一种;所述的水合钴盐可以为六水合硝酸钴、四水合乙酸钴、六水合氯化钴中的一种。所述的N,N-二烷基咪唑盐与水合钴盐的摩尔比为2~3:1,炭黑与N,N-二烷基咪唑盐的质量比为1:1.5~2.5,有机溶剂与炭黑的质量比为20~10:1。所述的高温热解处理是从初始温度50℃开始,以5~10℃/min的升温速率,升温至700~900℃,恒温2h后,程序降温冷却至室温。
将上述制备方法制得的负载型纳米钴催化剂,用于催化氧化芳香醇的性能测试,具体反应条件为:在100℃反应温度和36h反应时间下,纳米钴催化剂用量为5~20wt%,以甲苯为溶剂,以分子氧为氧化剂,可将芳香醇氧化为芳香醛或芳香酮。此外,反应结束后,通过外加磁场可实现纳米钴催化剂与反应产物的快速和简易分离。
上述的反应底物芳香醇包括苯甲醇、对甲基苯甲醇、对甲氧基苯甲醇、对硝基苯甲醇、对苯二甲醇、对羧基苯甲醇、对羟基苯甲醇、间甲氧基苯甲醇、3-吡啶甲醇、4-甲氧基-1-甲基苯甲醇、1-苯基乙醇、1-(4-甲基苯基)-1-乙醇、1-(4-甲氧基苯基)-1-乙醇、1-(4-氟苯基)-1-乙醇、1-(4-氯苯基)-1-乙醇、1-(4-溴苯基)-1-乙醇、对氨基苯基乙醇中的一种。
本发明的有益效果:提供了一种负载型纳米钴催化剂的制备方法及其催化氧化应用,创新性地热解含钴低共熔溶剂制备出负载型纳米钴催化剂,克服了其他负载型过渡金属催化剂活性较弱且制备工艺复杂,难以大规模用于工业生产的问题,同时也避免了传统催化剂催化氧化过程需额外使用均相有机碱所造成的难以回收、废弃物排放等问题。与现有技术相比,本发明制备得到的催化剂具有高选择性、高活性、高稳定性以及磁性可回收等优点,具有良好的应用价值和前景。
附图说明
图1为负载型纳米钴催化剂的制备流程图。
图2为催化剂Co-N-C-1用于苯甲醇催化氧化的GC-MS谱图。
图3为催化剂Co-N-C-2用于苯甲醇催化氧化的GC-MS谱图。
图4为催化剂Co-N-C-3用于苯甲醇催化氧化的GC-MS谱图
具体实施方式
下面结合附图通过实施例进一步说明本发明,但专利权利并不局限于这些实施例。
实施例中,Co-N-C代表所制备的负载型纳米钴催化剂。
实施例1:
在室温下,在反应釜内,分别加入1-丁基-3-甲基咪唑溴盐([Bmim]Br)4.38g(2.0mmol)和Co(NO3)2·6H2O 1.83g(1.0mmol),搅拌混合25分钟,得到含钴低共熔溶剂;继续向反应釜加入2.0g炭黑和40g溶剂乙醇,搅拌混合80分钟均匀分散固液混合物,除去溶剂后,得到负载了低共熔溶剂的炭黑混合物;将制备好的上述混合物放入管式炉内,在氩气保护气氛下程序升温热解,从初始温度50℃开始,以5℃/min的升温速率,升温至700℃,在700℃下恒温2h后,程序降温冷却至室温,得到热解后的残留物,残留物经水洗干燥后即得到负载型纳米钴催化剂,命名为Co-N-C-1。
实施例2:
在室温下,在反应釜内,分别加入1-乙基-3-甲基咪唑氯盐([Emim]Cl)2.93g(2.0mmol)和Co(NO3)2·6H2O 1.83g(1.0mmol),搅拌混合20分钟,得到含钴低共熔溶剂;继续向反应釜加入2.5g炭黑和40g溶剂乙醇,搅拌混合90分钟均匀分散固液混合物,除去溶剂后,得到负载了低共熔溶剂的炭黑混合物;将制备好的上述混合物放入管式炉内,在氮气保护气氛下程序升温热解,从初始温度50℃开始,以10℃/min的升温速率,升温至750℃,在750℃下恒温2h后,程序降温冷却至室温,得到热解后的残留物,残留物经水洗干燥后即得到负载型纳米钴催化剂,命名为Co-N-C-2。
实施例3:
在室温下,在反应釜内,分别加入1-己基-3-甲基咪唑溴盐([Hmim]Br)4.94g(2.0mmol)和Co(NO3)2·6H2O 1.83g(1.0mmol),搅拌混合30分钟,得到含钴低共熔溶剂;继续向反应釜加入2.0g炭黑和40g溶剂甲醇,搅拌混合60分钟均匀分散固液混合物,除去溶剂后,得到负载了低共熔溶剂的炭黑混合物;将制备好的上述混合物放入管式炉内,在氩气保护气氛下程序升温热解,从初始温度50℃开始,以5℃/min的升温速率,升温至800℃,在800℃下恒温2h后,程序降温冷却至室温,得到热解后的残留物,残留物经水洗干燥后即得到负载型纳米钴催化剂,命名为Co-N-C-3。
实施例4:
在室温下,在50mL反应釜内,分别加入1-辛基-3-甲基咪唑溴盐([Omim]Br)8.25g(3.0mmol)和Co(NO3)2·6H2O 1.83g(1.0mmol),搅拌混合20分钟,得到含钴低共熔溶剂;继续向反应釜加入4.0g炭黑和40g溶剂乙醇,搅拌混合70分钟均匀分散固液混合物,除去溶剂后,得到负载了低共熔溶剂的炭黑混合物;将制备好的上述混合物放入管式炉内,在氩气保护气氛下程序升温热解,从初始温度50℃开始,以10℃/min的升温速率,升温至850℃,在850℃下恒温2h后,程序降温冷却至室温,得到热解后的残留物,残留物经水洗干燥后即得到负载型纳米钴催化剂,命名为Co-N-C-4。
实施例5:
在室温下,在反应釜内,分别加入1-癸基-3-甲基咪唑溴盐([Dmim]Br)6.06g(2.0mmol)和Co(NO3)2·6H2O 1.83g(1.0mmol),搅拌混合30分钟,得到含钴低共熔溶剂;继续向反应釜加入2.0g炭黑和20g溶剂甲醇,搅拌混合60分钟均匀分散固液混合物,除去溶剂后,得到负载了低共熔溶剂的炭黑混合物;将制备好的上述混合物放入管式炉内,在氮气保护气氛下程序升温热解,从初始温度50℃开始,以5℃/min的升温速率,升温至750℃,在750℃下恒温2h后,程序降温冷却至室温,得到热解后的残留物,残留物经水洗干燥后即得到负载型纳米钴催化剂,命名为Co-N-C-5。
实施例6:
在室温下,在反应釜内,分别加入1-丁基-3-甲基咪唑溴盐([Bmim]Br)5.475g(2.5mmol)和Co(OAc)2·4H2O 1.77g(1.0mmol),搅拌混合25分钟,得到含钴低共熔溶剂;继续向反应釜加入2.0g炭黑和35g溶剂乙醇,搅拌混合70分钟均匀分散固液混合物,除去有机溶剂后,得到负载了低共熔溶剂的炭黑混合物;将制备好的上述混合物放入管式炉内,在氮气保护气氛下程序升温热解,从初始温度50℃开始,以10℃/min的升温速率,升温至900℃,在900℃下恒温2h后,程序降温冷却至室温,得到热解后的残留物,残留物经水洗干燥后即得到负载型纳米钴催化剂,命名为Co-N-C-6。
实施例7:
在室温下,在反应釜内,分别加入1-丁基-3-甲基咪唑溴盐([Bmim]Br)4.38g(2.0mmol)和CoCl2·6H2O 1.30g(1.0mmol),搅拌混合20分钟,得到含钴低共熔溶剂;继续向反应釜加入2.0g炭黑和30g溶剂甲醇,搅拌混合80分钟均匀分散固液混合物,除去有机溶剂后,得到负载了低共熔溶剂的炭黑混合物;将制备好的上述混合物放入管式炉内,在氩气保护气氛下程序升温热解,从初始温度50℃开始,以10℃/min的升温速率,升温至800℃,在800℃下恒温2h后,程序降温冷却至室温,得到热解后的残留物,残留物经水洗干燥后即得到负载型纳米钴催化剂,命名为Co-N-C-7。
实施例8:负载型纳米钴催化剂催化氧化苯甲醇测试
在反应釜内,分别加入1.08g苯甲醇,然后加入0.1g催化剂(实施例1-7制备的Co-N-C),再加入30mL甲苯作为溶剂。反应釜密闭抽真空后通入氧气,在反应温度100℃下反应36h,反应结束后,自然冷却至室温,外加磁场(磁铁)即可实现催化剂与反应体系的简易分离。采用气相色谱进行分析,得到苯甲醇的转化率和苯甲醛的产率,详细数据结果见表1。表1结果表明,实施例1-7中制备的Co-N-C催化剂具有优异的催化活性,苯甲醛产率均达到85%以上。
实施例9:负载型纳米钴催化剂催化氧化不同苯甲醇和苯基乙醇测试
在反应釜内,加入10mmol苯甲醇(苯基乙醇)的衍生物,然后加入0.1g催化剂(Co-N-C-1),再加入30mL甲苯作为溶剂。反应釜密闭抽真空后通入氧气,在反应温度100℃下反应36h。反应结束后,自然冷却至室温,外加磁场(磁铁)即可实现催化剂与反应体系的简易分离。采用气相色谱进行分析,得到不同反应底物苯甲醇(苯基乙醇)衍生物的转化率和目标产物的产率,详细数据结果见表2。表2结果可以看出,Co-N-C催化剂可以高效催化氧化不同的苯甲醇和苯基乙醇衍生物,目标产物的产率均在80%以上。
表1.实施例1-7中制备的Co-N-C催化剂催化氧化苯甲醇测试结果
表2.实施例1制备的催化剂(Co-N-C-1)催化氧化苯甲醇和苯基乙醇衍生物测试结果

Claims (7)

1.一种热解低共熔溶剂制备负载型纳米钴催化剂的方法,包括以下步骤:
1)在反应釜内分别加入一定摩尔比的N,N-二烷基咪唑盐和水合钴盐,在温度20~30℃下搅拌混合20~30分钟,制备得到蓝色透明的低共熔溶剂;
2)在上述反应釜内,继续加入一定质量的炭黑和有机溶剂,搅拌混合60~100分钟将固液混合物均匀分散,然后除去有机溶剂并干燥,得到负载了低共熔溶剂的炭黑混合物;
3)将上述制备的负载了低共熔溶剂的炭黑混合物放入管式炉内,在惰性气体保护气氛下热解处理一定时间,得到热解后的残留物,残留物经水洗干燥后,最终得到负载型纳米钴催化剂。
2.根据权利要求1所述的方法,其特征是:所述N,N-二烷基咪唑盐为1-丁基-3-甲基咪唑溴盐、1-己基-3-甲基咪唑溴盐、1-辛基-3-甲基咪唑溴盐、1-癸基-3-甲基咪唑溴盐中的一种;所述的水合钴盐为六水合硝酸钴、四水合乙酸钴、六水合氯化钴中的一种。
3.根据权利要求1所述的方法,其特征是:所述N,N-二烷基咪唑盐与水合钴盐的摩尔比为2~3:1,所述炭黑与N,N-二烷基咪唑盐的质量比为1:1.5~2.5,所述有机溶剂与炭黑的质量比为20~10:1。
4.根据权利要求1所述的方法,其特征是:所述热解处理是从初始温度50℃开始,以5~10℃/min的升温速率,升温至700~900℃,恒温2h后,程序降温冷却至室温。
5.由权利要求1~4中任一项所述的方法制备得到的负载型纳米钴催化剂在催化氧化芳香醇中的应用。
6.根据权利要求5所述的应用,其特征是:在100℃反应温度和36h反应时间下,以甲苯为溶剂,以分子氧为氧化剂,在用量为5~20wt%的负载型纳米钴催化剂的作用下氧化芳香醇,得到芳香醛或芳香酮。
7.根据权利要求5所述的应用,其特征是:所述芳香醇包括苯甲醇、对甲基苯甲醇、对甲氧基苯甲醇、对硝基苯甲醇、对苯二甲醇、对羧基苯甲醇、对羟基苯甲醇、间甲氧基苯甲醇、3-吡啶甲醇、4-甲氧基-1-甲基苯甲醇、1-苯基乙醇、1-(4-甲基苯基)-1-乙醇、1-(4-甲氧基苯基)-1-乙醇、1-(4-氟苯基)-1-乙醇、1-(4-氯苯基)-1-乙醇、1-(4-溴苯基)-1-乙醇、对氨基苯基乙醇中的一种。
CN201711288983.3A 2017-12-07 2017-12-07 一种热解低共熔溶剂制备负载型纳米钴催化剂的方法及应用 Pending CN107952462A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711288983.3A CN107952462A (zh) 2017-12-07 2017-12-07 一种热解低共熔溶剂制备负载型纳米钴催化剂的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711288983.3A CN107952462A (zh) 2017-12-07 2017-12-07 一种热解低共熔溶剂制备负载型纳米钴催化剂的方法及应用

Publications (1)

Publication Number Publication Date
CN107952462A true CN107952462A (zh) 2018-04-24

Family

ID=61958270

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711288983.3A Pending CN107952462A (zh) 2017-12-07 2017-12-07 一种热解低共熔溶剂制备负载型纳米钴催化剂的方法及应用

Country Status (1)

Country Link
CN (1) CN107952462A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108654689A (zh) * 2018-06-22 2018-10-16 南京大学 一种低共熔非腐蚀酸性催化剂、制备方法及其用途
CN110193368A (zh) * 2019-06-21 2019-09-03 河北科技大学 一种尖晶石型催化材料的制备方法
CN110550616A (zh) * 2019-08-26 2019-12-10 河北科技大学 一种含能低共熔溶剂、其应用、其制备的金属掺杂碳量子点及制备方法
CN110743623A (zh) * 2019-11-12 2020-02-04 万华化学集团股份有限公司 一种催化氧化催化剂及其制备方法、mdi盐水中有机物的深度处理方法
CN111151294A (zh) * 2018-11-08 2020-05-15 万华化学集团股份有限公司 一种过氧化物催化氧化催化剂及其用于处理环氧丙烷联产苯乙烯废水的方法
WO2021092763A1 (zh) * 2019-11-12 2021-05-20 万华化学集团股份有限公司 一种催化氧化催化剂及其制备方法、mdi盐水中有机物的深度处理方法
CN113351255A (zh) * 2021-06-16 2021-09-07 青岛理工大学 用于异丁醛氧化制异丁酸的Co络合物催化剂及其应用
CN114618546A (zh) * 2020-12-10 2022-06-14 中国科学院大连化学物理研究所 过渡金属催化剂的制备方法及在制备芳香醛的应用
CN114618548A (zh) * 2020-12-11 2022-06-14 中国科学院大连化学物理研究所 一种钴基催化剂、其制备方法及在催化氧化裂解木质素中的应用
CN114618496A (zh) * 2020-12-10 2022-06-14 中国科学院大连化学物理研究所 过渡金属催化剂的制备方法及在制备呋喃二甲酸的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179449A (zh) * 2016-07-18 2016-12-07 南京工业大学 一种碳氮材料负载的钴催化剂及合成哌马色林中间体的方法
RU2614420C1 (ru) * 2015-12-24 2017-03-28 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Катализатор и способ осуществления реакции Фишера-Тропша с его использованием

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2614420C1 (ru) * 2015-12-24 2017-03-28 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Катализатор и способ осуществления реакции Фишера-Тропша с его использованием
CN106179449A (zh) * 2016-07-18 2016-12-07 南京工业大学 一种碳氮材料负载的钴催化剂及合成哌马色林中间体的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUAN CHEN ET AL.: "One-pot synthesis of cobalt-coordinated N-doped carbon catalysts via co-synthesis of ionic liquids and cobalt porphyrins", 《CHEMICAL COMMUNICATIONS》 *
白翠华: "含氮MOFs衍生复合材料的制备及其催化性能研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108654689A (zh) * 2018-06-22 2018-10-16 南京大学 一种低共熔非腐蚀酸性催化剂、制备方法及其用途
CN108654689B (zh) * 2018-06-22 2021-08-03 南京大学 一种低共熔非腐蚀酸性催化剂、制备方法及其用途
CN111151294A (zh) * 2018-11-08 2020-05-15 万华化学集团股份有限公司 一种过氧化物催化氧化催化剂及其用于处理环氧丙烷联产苯乙烯废水的方法
CN111151294B (zh) * 2018-11-08 2022-11-08 万华化学集团股份有限公司 一种过氧化物催化氧化催化剂及其用于处理环氧丙烷联产苯乙烯废水的方法
CN110193368B (zh) * 2019-06-21 2022-01-28 河北科技大学 一种尖晶石型催化材料的制备方法
CN110193368A (zh) * 2019-06-21 2019-09-03 河北科技大学 一种尖晶石型催化材料的制备方法
CN110550616A (zh) * 2019-08-26 2019-12-10 河北科技大学 一种含能低共熔溶剂、其应用、其制备的金属掺杂碳量子点及制备方法
WO2021092763A1 (zh) * 2019-11-12 2021-05-20 万华化学集团股份有限公司 一种催化氧化催化剂及其制备方法、mdi盐水中有机物的深度处理方法
CN110743623A (zh) * 2019-11-12 2020-02-04 万华化学集团股份有限公司 一种催化氧化催化剂及其制备方法、mdi盐水中有机物的深度处理方法
CN110743623B (zh) * 2019-11-12 2022-08-05 万华化学集团股份有限公司 一种催化氧化催化剂及其制备方法、mdi盐水中有机物的深度处理方法
CN114618546A (zh) * 2020-12-10 2022-06-14 中国科学院大连化学物理研究所 过渡金属催化剂的制备方法及在制备芳香醛的应用
CN114618496A (zh) * 2020-12-10 2022-06-14 中国科学院大连化学物理研究所 过渡金属催化剂的制备方法及在制备呋喃二甲酸的应用
CN114618496B (zh) * 2020-12-10 2023-06-06 中国科学院大连化学物理研究所 过渡金属催化剂的制备方法及在制备呋喃二甲酸的应用
CN114618548A (zh) * 2020-12-11 2022-06-14 中国科学院大连化学物理研究所 一种钴基催化剂、其制备方法及在催化氧化裂解木质素中的应用
CN113351255A (zh) * 2021-06-16 2021-09-07 青岛理工大学 用于异丁醛氧化制异丁酸的Co络合物催化剂及其应用
CN113351255B (zh) * 2021-06-16 2022-10-25 青岛理工大学 用于异丁醛氧化制异丁酸的Co络合物催化剂及其应用

Similar Documents

Publication Publication Date Title
CN107952462A (zh) 一种热解低共熔溶剂制备负载型纳米钴催化剂的方法及应用
Franco et al. Local proton source in electrocatalytic CO2 reduction with [Mn (bpy–R)(CO) 3Br] complexes
Skouta et al. Gold-catalyzed reactions of C–H bonds
Cui et al. Investigation of activated‐carbon‐supported copper catalysts with unique catalytic performance in the hydrogenation of dimethyl oxalate to methyl glycolate
Xu et al. Enantioselective oxidation of racemic secondary alcohols catalyzed by chiral Mn (iii)-salen complexes with N-bromosuccinimide as a powerful oxidant
Kerler et al. Application of CO2-expanded solvents in heterogeneous catalysis: a case study
Gong et al. Bidentate Ru (ii)-NC complexes as catalysts for the dehydrogenative reaction from primary alcohols to carboxylic acids
Feng et al. Ionic Liquid‐Promoted Oxidant‐Free Dehydrogenation of Alcohols with Water‐Soluble Ruthenium Nanoparticles in Aqueous Phase
Kani et al. Effective catalytic oxidation of alcohols and alkenes with monomeric versus dimeric manganese (II) catalysts and t‐BuOOH
Zhan et al. Selective epoxidation of styrene with air catalyzed by CoOx and CoOx/SiO2 without any reductant
Valverde-Gonzalez et al. Amino-functionalized zirconium and cerium MOFs: Catalysts for visible light induced aerobic oxidation of benzylic alcohols and microwaves assisted N-Alkylation of amines
Song et al. Highly selective hydrothermal production of cyclohexanol from biomass-derived cyclohexanone over Cu powder
He et al. Heterogeneous cobalt‐catalyzed direct N‐formylation of isoquinolines with CO2 and H2
Chaudhari et al. Pr2O3 Supported Nano‐layered Ruthenium Catalyzed Acceptorless Dehydrogenative Synthesis of 2‐Substituted Quinolines and 1, 8‐Naphthyridines from 2‐Aminoaryl Alcohols and Ketones
Das et al. Chemoselective and ligand‐free aerobic oxidation of benzylic alcohols to carbonyl compounds using alumina‐supported mesoporous nickel nanoparticle as an efficient recyclable heterogeneous catalyst
Ramesh et al. Ru (II) mediated CH activation of 1-(biphenylazo) naphthol: Synthesis and catalytic evaluation for transfer hydrogenation of ketones
Quintard et al. Didecarboxylative Iron‐Catalyzed Bidirectional Aldolization towards Diversity‐Oriented Ketodiol Synthesis
Bagheri et al. Enhanced Catalytic Performance of Quasi‐HKUST‐1 for the Tandem Imine Formation
Marulasiddeshwara et al. Hydrogenation of carbonyl compounds to alcohols catalyzed by lignin supported palladium nanoparticles
Wang et al. Hydration of terminal alkynes catalyzed by a water-soluble salen-Co (III) complex
CN106732725B (zh) 氧化镁负载氮掺杂碳基过渡金属催化剂的制备及其应用
CN108191619A (zh) 一种分子氧氧化醇类化合物制醛/酮的催化方法
Oseghale et al. Stable and Surface‐active Co Nanoparticles Formed from Cation (x) Promoted Au/x‐Co3O4 (x= Cs) as Selective Catalyst for [2+ 2+ 1] Cyclization Reactions
Chakraborty et al. Fe3O4@ dopa (dopa= dopamine hydrochloride) functionalized Mn (III) Schiff base complex: A promising magnetically separable heterogeneous catalyst for oxidative transformations
Wang et al. Palladium-Catalyzed Semihydrogenation of Alkynes with EtOH: Highly Stereoselective Synthesis of E-and Z-Alkenes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180424