WO2022109765A1 - 一种氯乙烯高盐废水的深度处理和回用方法 - Google Patents

一种氯乙烯高盐废水的深度处理和回用方法 Download PDF

Info

Publication number
WO2022109765A1
WO2022109765A1 PCT/CN2020/131014 CN2020131014W WO2022109765A1 WO 2022109765 A1 WO2022109765 A1 WO 2022109765A1 CN 2020131014 W CN2020131014 W CN 2020131014W WO 2022109765 A1 WO2022109765 A1 WO 2022109765A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
tio
toc
adsorption
catalytic oxidation
Prior art date
Application number
PCT/CN2020/131014
Other languages
English (en)
French (fr)
Inventor
范珍龙
王凯
吴雪峰
张宏科
周波
曾凡雪
王俊俊
Original Assignee
万华化学集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司 filed Critical 万华化学集团股份有限公司
Priority to PCT/CN2020/131014 priority Critical patent/WO2022109765A1/zh
Publication of WO2022109765A1 publication Critical patent/WO2022109765A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Definitions

  • the present application relates to the technical field of chemical engineering and environmental engineering wastewater treatment, and more particularly, to a method for advanced treatment and reuse of vinyl chloride high-salt wastewater.
  • Vinyl chloride (VCM) is the most important raw material for the production of polyvinyl chloride (PVC).
  • PVC polyvinyl chloride
  • acetylene method mixed alkyne method
  • ethylene method is currently the most widely used production process in the industry due to its low production cost, high product quality and less pollution.
  • EDC 1,2-dichloroethane
  • the wastewater mainly comes from the bottom of the quench tower after the oxychlorination reactor.
  • the wastewater mainly contains NaCl, vinyl chloride, ethylene dichloride and reaction by-products, etc., which belongs to high-salt and refractory wastewater.
  • the NaCl content of VCM wastewater is 1.5-3.0 wt%, and the total organic carbon (TOC) is 800-2500 mg/L. It has the characteristics of high salt content, large water quality fluctuation and high organic content. At present, it is generally mixed with low-salt production wastewater and domestic sewage in the industry to be diluted and sent to biochemical treatment. After qualified treatment, it is directly discharged for treatment, which cannot realize the recovery of NaCl and water resources in wastewater, resulting in a certain waste of resources.
  • TOC total organic carbon
  • Invention patent CN 108191152 B discloses a VCM wastewater treatment device.
  • the wastewater is treated by a series of processes such as coagulation and flocculation, high-efficiency precipitation, microbial biochemical reaction, reverse osmosis concentration, and evaporative crystallization, which improves the recycling rate of materials and reduces the amount of three wastes generated.
  • coagulation and flocculation high-efficiency precipitation
  • microbial biochemical reaction microbial biochemical reaction
  • reverse osmosis concentration evaporative crystallization
  • the purpose of this application is to provide a method for advanced treatment and reuse of VCM high-salt wastewater.
  • the treatment method is simple and easy to implement, has high treatment efficiency, can realize the resource reuse of waste brine, and does not generate secondary pollution.
  • a method for advanced treatment and reuse of VCM high-salt wastewater comprising the following steps:
  • step (2) After the wastewater obtained in step (1) is filtered and pretreated, it is mixed with an oxidizing agent, and the pH is adjusted to 10.5 to 13.5, and then sent to a catalytic oxidation reactor from the bottom of the reactor. Oxidative decomposition into carbon dioxide and water;
  • step (3) the waste gas obtained in step (2) is directly discharged after gas-liquid separation, and the effluent from the catalytic oxidation is sent to a chlor-alkali device as a raw material after being protected by adsorption, and is used to produce chemical raw materials such as chlorine, hydrogen, lye and caustic soda.
  • the VCM high-salt wastewater preferably meets the following conditions: TOC ⁇ 2500mg/L, preferably 10-2000mg/L; SS ⁇ 1500mg/L, preferably 20-1000mg/L; Cu 2 + ⁇ 2.0mg/L, preferably 0.5-1.5mg/L; NaCl 1.5-3.0wt%, preferably 2.0-3.0wt%.
  • the reagents used for pH adjustment are hydrochloric acid solution and NaOH solution
  • the coagulant is one of polyaluminum chloride, polyferric chloride, aluminum chloride or ferric chloride, etc. or Various, preferably polyaluminum chloride.
  • the flocculant is one or more of cationic polyacrylamide, anionic polyacrylamide or non-ionic polyacrylamide, preferably anionic polyacrylamide.
  • the reaction conditions of the step (1) include: reaction temperature of 15 to 60°C, pH of 6.0 to 10.5, coagulant addition of 50 to 500 mg/L (based on the amount of waste water), and flocculant addition of 1 ⁇ 5mg/L (based on the amount of waste water), preferably, the reaction temperature is 20 ⁇ 50 °C, pH 7.0 ⁇ 10.0, coagulant addition 100 ⁇ 300mg/L (based on the amount of waste water), flocculant addition 1 ⁇ 2mg/L (based on the amount of wastewater), the amount of coagulant and flocculant added is determined according to the size of the floc sediment and the SS content of the supernatant after standing.
  • the step (1) can be carried out in any reactor known in the art.
  • equipment such as static mixer, adjustment tank, adjustment tank or adjustment tank can be selected, and static mixer is preferred;
  • the coagulation and flocculation sedimentation process can be carried out in equipment such as coagulation tank, flocculation tank and inclined plate sedimentation tank.
  • the sedimentation sludge return and sludge dewatering equipment you can choose plate and frame sludge dehydrator or centrifugal sludge dehydrator, preferably centrifugal sludge dehydrator.
  • the wastewater filtration equipment in the step (2), can be a sand filter, a multi-media filter, an activated carbon filter, a filter bag, a wire mesh filter, a microfiltration filter, and an ultrafiltration filter One or more of them, preferably a multi-media filter.
  • the oxidant is one or more of NaClO, Cl 2 and ClO 2 , preferably NaClO, from chlor-alkali industrial wastewater, and the available chlorine content is 2-10wt%.
  • Chlor-alkali industrial wastewater mainly contains NaOH, Na 2 CO 3 and low concentration of NaClO (under weak alkaline conditions, NaHCO 3 also exists). Due to the low content of available chlorine, the chlor-alkali industrial wastewater is difficult to take out as a product. The direct discharge of the chlor-alkali industrial wastewater not only causes a lot of waste of brine resources and environmental hazards, but also requires a large amount of reducing agent to be reduced, and the treatment cost is extremely high.
  • the use of NaClO in the chlor-alkali industrial wastewater for oxidation reaction to reduce the TOC in the VCM salt-containing wastewater not only saves the pharmaceutical cost of the reducing agent used in the chlor-alkali industrial wastewater treatment, but also effectively utilizes the effective substances in the chlor-alkali industrial wastewater.
  • the organic matter in the wastewater is deeply oxidized and removed to achieve the purpose of treating waste with waste; at the same time, it can also realize the reuse of brine resources in VCM wastewater and chlor-alkali industrial wastewater, avoiding economic waste, alleviating environmental pressure, and significantly improving economic benefits.
  • the mixing of the filtered VCM waste water and the oxidant can be accomplished by a static mixer, a mixing reactor and other equipment, preferably a static mixer.
  • the pH is further adjusted to 10.5-13.5 by NaOH solution, preferably 11.0-13.0.
  • the wastewater is transported to the catalytic oxidation reactor, and the sodium hypochlorite oxidant, under the action of the catalyst, generates active oxygen radicals with strong oxidizing properties to further degrade the organic matter.
  • the reaction temperature is 30-50° C.
  • the liquid phase space velocity is 1-3 h -1 .
  • the catalyst mainly includes TiO 2 and Ni and Fe supported on the titania in the form of oxides; based on the weight of the TiO 2 , the catalyst contains The content of the following components is: Ni 2.0-10.0wt%, preferably 3.0-8.0wt%; Fe 1.0-3.0wt%, preferably 2.0-3.0wt%, Ni and Fe are the main active components, and TiO2 is the carrier.
  • the catalyst comprises a Ce-modified TiO 2 carrier and Ni and Fe supported on the Ce-modified TiO 2 carrier in the form of oxides, and the Ce-modified TiO 2 is based on the weight of the TiO 2 .
  • the content of Ce in the TiO 2 carrier is 1.0-2.0 wt %, preferably 1.2-1.5 wt %.
  • TiO2 has good stability under both acidic and basic conditions, and is widely used in the processing of catalysts. However, its small specific surface area limits its wider application. After being modified by Ce, the structural properties of the TiO2 carrier can be improved, the specific surface area of the carrier can be increased, and its strength can be improved. At the same time, Ce has good oxygen storage and release properties, and the generation of active oxygen radicals on the main active components of the catalyst by the oxidant is the key to the degradation of organic compounds.
  • the carrier of the catalyst is a Ce-modified TiO2 carrier
  • an oxidant such as sodium hypochlorite
  • the active oxygen radicals generated by the oxidant on the main active component of the catalyst can migrate to the Ce-modified TiO2 carrier in time
  • the storage on the Ce increases the sites of active oxygen radicals and increases the reaction sites, which can greatly improve the oxidation efficiency in the catalytic oxidation process and improve the removal effect of organic matter.
  • the carrier of the catalyst is Ce-modified TiO 2 and the oxidant is NaClO
  • ClO - generates active oxygen radicals on NiO x
  • the structure of NiO x -CeO 2 -TiO 2 can timely convert the active oxygen generated on NiO x
  • the free radicals migrate to CeO 2 , thereby increasing the number of reaction sites, effectively degrading organic matter, and improving the TOC removal rate.
  • Its catalytic oxidation mechanism is as follows:
  • [O] represents active oxygen radicals
  • CAT represents catalyst
  • ORG represents organic matter
  • CAT-O represents the active site on the catalyst with [O] on the active site
  • ORG-O represents the compound combined with [O] organic matter.
  • Formula 1 is the process in which sodium hypochlorite is catalyzed by the catalyst to generate [O] on the catalyst
  • Formula 2 is the process in which the catalyst with [O] active sites contacts with organic matter to transfer [O] to organic matter
  • Formula 3 is the process with [O] ]
  • the combined organic matter is degraded into small molecules or carbon dioxide and water under the action of a catalyst.
  • the Ni, Fe and Ce are from one or more of nitrates, hydrochlorides, carbonates or acetates containing corresponding metal elements, preferably nitrates.
  • the preparation method of above-mentioned catalyst comprises the following steps:
  • the drying temperature is 100-130°C
  • the drying time is 2-5h
  • the roasting temperature is 450-550°C
  • the roasting time is 3-6h
  • vacuum pretreatment is performed before TiO 2 impregnation, and the vacuum pretreatment time is: 10 ⁇ 30min, the vacuum degree is 96.0 ⁇ 98.0kPa;
  • step (2) adding the dipping solution containing Ni salt and Fe salt to the Ce-modified TiO 2 carrier obtained in step (1), impregnating it for 30-120 min, and then drying and calcining the obtained solid to prepare the catalyst
  • the preferred drying temperature is 100-130°C
  • the drying time is 2-5h
  • the roasting temperature is 450-550°C
  • the roasting time is 3-6h.
  • the solutions of the immersion liquid in the steps (1) and (2) are all from one or more of water, methanol and ethanol, preferably water and/or ethanol, more preferably An aqueous ethanol solution with an ethanol concentration of 10 to 40 wt %.
  • the catalyst in the catalytic oxidation reactor is packed in two layers, the lower catalyst mainly performs the catalytic oxidation reaction of sodium hypochlorite, and the upper catalyst mainly decomposes the incompletely reacted sodium hypochlorite to ensure the reaction
  • the effective chlorine content of the outlet water is less than or equal to 0.5mg/L.
  • the waste gas obtained in the step (2) is directly discharged after gas-liquid separation, which can be carried out in any equipment known in the art, preferably a gas-liquid separation tank is used to condense The liquid is returned to the catalytic oxidation reactor.
  • the adsorption material used in the adsorption process is one or more of macroporous adsorption resin, activated carbon or molecular sieve, preferably macroporous adsorption resin.
  • the adsorption reaction conditions are: pH of 1.0-8.0, adsorption temperature of 15-60°C, and liquid-phase space velocity of 1-10 h -1 , preferably, the pH of The adsorption temperature is 2.0-5.0, the adsorption temperature is 20-50°C, and the liquid phase space velocity is 1-5h -1 .
  • 4wt% NaOH solution or methanol solution at 80°C can be used for regeneration, and pure water is used for adsorption after regeneration.
  • the tower is cleaned until pH ⁇ 12 or TOC ⁇ 15mg/L, the catalytic effluent can continue to be adsorbed, and the regeneration liquid is returned to the catalytic oxidation reactor feed water.
  • the macroporous adsorption resin adsorption tower needs to control the available chlorine in the influent water to be less than or equal to 0.5 mg/L, so as to ensure the service life of the resin.
  • the macroporous adsorption resin is a copolymer of polyvinyl aromatic monomer and monovinyl aromatic monomer prepared by conventional suspension polymerization technology, and is characterized in that the aqueous phase Add activated carbon.
  • the preparation steps are: preparing an oil phase at room temperature: mixing the polyvinyl aromatic monomer, monovinyl aromatic monomer, porogen and initiator evenly; preparing an aqueous phase at room temperature: mixing pure water, powdered activated carbon, dispersed
  • the oil phase/water phase mass ratio is 1:5 ⁇ 1:2, and the polymerization temperature is 60 ⁇ 95 °C, the polymerization time is 4-12h, after the reaction, the porogen is extracted by the extractant, and then the macroporous adsorption resin is obtained after washing with water.
  • the polyvinyl aromatic monomers are divinylbenzene (i.e. ortho-, meta- and para-divinylbenzene and mixtures thereof), trivinylbenzene, divinylbenzene Mixtures of one or more of vinyltoluene, divinylxylene, divinylnaphthalene, and derivatives thereof such as chlorodivinylbenzene, dichlorodivinylbenzene, bromodivinylbenzene , preferably divinylbenzene and/or trivinylbenzene, and the polyvinyl aromatic monomer is 20-60wt% of the oil phase mass in the conventional suspension polymerization step, preferably 25-55wt% of the oil phase mass.
  • divinylbenzene i.e. ortho-, meta- and para-divinylbenzene and mixtures thereof
  • trivinylbenzene divinylbenzene Mixtures of one or more of vinyltoluene, divinylxylene, diviny
  • the monovinyl aromatic monomers are styrene, C1-C4 alkyl substituted styrenes such as methylstyrene, ethylstyrene, and derivatives thereof such as chlorostyrene, dichlorostyrene, A mixture of one or more of brominated styrene, preferably a mixture of one or more of styrene, methyl styrene, and ethyl styrene, and the monovinyl aromatic monomer is conventional
  • the mass of the oil phase is 5-15 wt %, preferably 7-13 wt % of the mass of the oil phase.
  • the porogen is a mixture of one or more of toluene, xylene, ethylbenzene, white oil, and solvent oil, preferably one or more of toluene, white oil, and solvent oil.
  • the pore agent accounts for 25-75 wt % of the mass of the oil phase in the conventional suspension polymerization step, preferably 38-63 wt % of the mass of the oil phase.
  • Described initiator is dibenzoyl peroxide and/or azobisisobutyronitrile, and monomer (including polyvinyl aromatic monomer and vinyl aromatic monomer)/initiator mass ratio is 300:1 ⁇ 25:1, preferably 200:1 ⁇ 50:1.
  • the added amount of the powdered activated carbon accounts for 0.5-5 wt% of the water phase quality, preferably 1-2 wt% of the water phase quality, the mesh number is 200-500 mesh, and needs to be washed with pure water for several times before use.
  • Described dispersant is the mixture of one or more in polyvinyl alcohol, gelatin, hydroxypropyl methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, preferably polyvinyl alcohol and/or gelatin,
  • the dosage of the dispersant accounts for 0.05-0.5 wt% of the mass of the water phase, preferably 0.1-0.4 wt% of the mass of the aqueous phase.
  • inorganic salts such as sodium chloride, potassium chloride, and calcium chloride can be added as dispersing aids, and the dispersing aids account for 1-10 wt% of the mass of the water phase.
  • the synthetic auxiliary agent is a mixture of one or more of methylene blue, sodium nitrite and sodium thiosulfate, preferably methylene blue, and the concentration in the aqueous phase is 1-100 mg/L, preferably 20-80 mg/L. L.
  • an extractant of porogen is added to extract the porogen, and the extractant of the porogen is selected from acetone, methylal, A mixture of one or more of methanol and ethanol, preferably acetone and/or methylal, and the mass ratio of the extractant of the porogen to the copolymer main body is 1:1 to 10:1, preferably 2.5:1 to 7.5:1.
  • the polymerized units may also contain a mixture of polar vinyl monomers such as one or more of acrylonitrile, methyl methacrylate, and methyl acrylate.
  • Such monomers do not contain the above-mentioned polyvinyl aromatic monomers and monovinyl aromatic monomers.
  • the above monomers are added in the conventional suspension polymerization process, and do not exceed 50wt% of the oil phase mass in the conventional suspension polymerization step, preferably 0-30wt% of the oil phase mass.
  • the macroporous adsorption resin described in step (3) has a particle size distribution of 300-1500 ⁇ m after drying.
  • the dried BET specific surface area is 300-1500 m 2 /g
  • the BET average pore diameter is 3.0-15.0 nm
  • the BET pore volume is 0.5-2.5 mL/g.
  • macroporous adsorption resin is used as the adsorbent, and by adding powder activated carbon into the preparation process of the macroporous adsorption resin, the adsorption effect of the macroporous adsorption resin can be greatly improved.
  • the specific surface area depends on the van der Waals force and hydrogen bond between the network segment and the adsorbed molecule (adsorbate) to play the role of separation and purification. However, it has large specific surface area, good mechanical strength, stable chemical properties, and is easy to desorb and regenerate. The desorption and regeneration can be realized by using 4% NaOH solution or methanol at 80°C, and the service cycle is long.
  • the resin absorbs water and sends chlor-alkali as the raw material
  • the chlor-alkali reception indicators for the brine are: TOC ⁇ 10mg/L, SS ⁇ 5mg/L, Cu ⁇ 0.5mg/L, NaCl ⁇ 1.5wt%.
  • the advanced treatment and reuse method of vinyl chloride high-salt wastewater described in the present application is simple and easy to implement, has a high degree of automation and high treatment efficiency, can realize the resource reuse of waste brine, and does not generate secondary pollution. It not only avoids the problems of complicated biochemical treatment process and difficult treatment of biochemical sludge after dilution, but also realizes the reuse of NaCl resources.
  • the sodium hypochlorite wastewater is used as an oxidant to treat waste with waste, and the recycling of chlorine resources in the park is successfully realized, which is an environment-friendly wastewater treatment process.
  • Examples 9 to 13 and Comparative Examples 1-2 of the present application the devices used are as follows: transfer pump, static mixer, coagulation tank, flocculation tank, inclined plate sedimentation tank, multi-media filter, catalytic oxidation reactor,
  • the gas-liquid separation tank and adsorption tower were purchased from Yantai Keli Chemical Equipment Co., Ltd.
  • Vinyl chloride wastewater chlor-alkali industrial wastewater, NaOH solution, hydrochloric acid solution, Wanhua Chemical Group Co., Ltd.;
  • Polyaluminum chloride analytically pure, was purchased from Tianjin Kemeiou Chemical Reagent Co., Ltd.;
  • Nickel nitrate, ferric nitrate and cerium nitrate, analytically pure, were purchased from Xilong Chemical Co., Ltd.;
  • Powdered activated carbon was purchased from Yantai Tongyi Co., Ltd.
  • ICP-MS Inductively Coupled Plasma Atomic Emission Spectroscopy-Mass Spectrometry
  • the BET specific surface area, BET adsorption average pore diameter and pore volume were analyzed using an automatic rapid specific surface area and mesopore/micropore analyzer, Micromeritics, USA.
  • the vacuum pretreatment time is 30 min and the vacuum degree is 96.0 kPa.
  • the content of the following components is as follows: Ni 5.0wt%, Fe 2.0wt%.
  • the vacuum pretreatment time is 30min and the vacuum degree is 96.0kPa.
  • 30mL of cerium nitrate aqueous solution containing Ce 0.01g/mL is taken and added to the ethanol concentration of 20wt%.
  • the total volume of the immersion solution is 30 mL in the ethanol aqueous solution.
  • the above impregnation solution was added into a vacuum impregnation bottle with TiO 2 carrier, and the above TiO 2 carrier was impregnated after mixing evenly. After immersion for 80 min, it was taken out and dried in an oven at 110 °C for 3 h, and then placed in a muffle furnace at 470 °C. After calcination at °C for 4h, the Ce-modified TiO 2 carrier was obtained. In the prepared Ce-modified TiO 2 carrier, based on the weight of TiO 2 , the content of Ce is 1.5 wt %.
  • the content of the following components is as follows: Ni 5.0 wt %, Fe 2.0 wt %.
  • the vacuum pretreatment time is 10min, and the vacuum degree is 98.0kPa.
  • 20mL of cerium nitrate aqueous solution containing Ce 0.01g/mL is taken and added to the ethanol concentration of 10wt%.
  • the total volume of the immersion solution was 20 mL in the ethanol aqueous solution.
  • the above impregnation solution was added into a vacuum impregnation bottle with TiO 2 carrier, and the above TiO 2 carrier was impregnated after mixing evenly. After immersion for 120 min, it was taken out and dried in an oven at 130 °C for 5 h, and then placed in a muffle furnace for 550 °C. After calcination at °C for 6h, the Ce-modified TiO 2 carrier was obtained.
  • the content of Ce is 1.0 wt %.
  • the contents of the following components are as follows: Ni 2.0 wt %, Fe 1.0 wt %.
  • the vacuum pretreatment time is 30min and the vacuum degree is 97.0kPa.
  • 40mL of cerium nitrate aqueous solution containing Ce 0.01g/mL is taken and added to the ethanol concentration of 40wt%.
  • the total volume of the immersion solution is 40 mL in the ethanol aqueous solution.
  • the above-mentioned impregnation solution was added into the vacuum impregnation bottle with TiO 2 carrier, and the above-mentioned TiO 2 carrier was impregnated after mixing evenly. After calcination at °C for 3h, the Ce-modified TiO 2 carrier was obtained. In the prepared Ce-modified TiO 2 carrier, based on the weight of TiO 2 , the Ce content was 2.0 wt %.
  • the contents of the following components are as follows: Ni 10.0 wt %, Fe 3.0 wt %.
  • the oil phase and the water phase were mixed in a mass ratio of 1:4, the reaction temperature was controlled at 75°C, and the resin was obtained by filtration after 8 hours of reaction, and the mass ratio of the porogen extractant acetone to the copolymer main body was 5:1 Add the extractant acetone, and finally get the 1# macroporous adsorption resin after washing with water.
  • the particle size distribution of the macroporous adsorption resin after drying is 500-2000 ⁇ m, the BET specific surface area after drying is 260 m 2 /g, the BET average pore size is 18 nm, and the BET pore volume is 0.4 mL/g.
  • the oil phase and the water phase were mixed in a mass ratio of 1:4, the reaction temperature was controlled at 75°C, and the resin was obtained by filtration after 8 hours of reaction, and the mass ratio of the porogen extractant acetone to the copolymer main body was 5:1 Add the extractant acetone, and finally get the 2# macroporous adsorption resin after washing with water.
  • the particle size distribution of the macroporous adsorption resin after drying is 500-1200 ⁇ m
  • the BET specific surface area after drying is 1300 m 2 /g
  • the BET average pore size is 8.0 nm
  • the BET pore volume is 2.2 mL/g.
  • the oil phase and the water phase are mixed according to the mass ratio of 1:5, the reaction temperature is controlled at 60 ° C, and the resin can be obtained by filtration after 4 hours of reaction, and the mass ratio of the porogen extractant acetone to the copolymer main body is 1:1 Add the extractant acetone, and finally get the 3# macroporous adsorption resin after washing with water.
  • the particle size distribution of the macroporous adsorbent resin after drying is 300-1000 ⁇ m
  • the BET specific surface area after drying is 300 m 2 /g
  • the BET average pore size is 15.0 nm
  • the BET pore volume is 0.5 mL/g.
  • the particle size distribution of the macroporous adsorbent resin after drying is 800-1500 ⁇ m, the BET specific surface area after drying is 1500 m 2 /g, the BET average pore size is 3.0 nm, and the BET pore volume is 2.5 mL/g.
  • Step (1) VCM high-salt wastewater is mixed with 32wt% NaOH solution in a static mixer by a wastewater pump, and the pH is adjusted to 8.5, and then the removal of SS is completed in the coagulation tank, flocculation tank and inclined plate sedimentation tank, and the reaction
  • the conditions are: 50°C, pH 8.5, polyaluminum chloride 200mg/L, polyacrylamide 2mg/L, effluent TOC 589mg/L, SS 13mg/L, Cu 0.2mg/L.
  • the reaction conditions are: 50°C, liquid phase space velocity 3h -1 , catalytic effluent TOC 35mg/L, available chlorine 17.8mg/L.
  • Step (3) the waste gas obtained in step (2) is directly discharged after gas-liquid separation, and the effluent of catalytic oxidation cannot directly enter the resin adsorption tower due to the high residual effective chlorine.
  • Example 9 Treatment of VCM high-salt wastewater (2# catalyst and 2# macroporous adsorption resin)
  • Step (1) VCM high-salt wastewater is mixed with 32wt% NaOH solution in a static mixer by a wastewater pump, and the pH is adjusted to 8.5, and then the removal of SS is completed in the coagulation tank, flocculation tank and inclined plate sedimentation tank, and the reaction
  • the conditions are: 50°C, pH 8.5, polyaluminum chloride 200mg/L, polyacrylamide 2mg/L, effluent TOC 589mg/L, SS 13mg/L, Cu 0.2mg/L.
  • the reaction conditions are: 50°C, liquid phase space velocity 3h -1 , catalytic effluent TOC 13mg/L, available chlorine 0.3mg/L.
  • Step (3) the waste gas obtained in step (2) is directly discharged after gas-liquid separation, and the effluent from catalytic oxidation is adsorbed by 2# macroporous adsorption resin and then sent to chlor-alkali for further treatment.
  • the resin adsorption conditions are: 50 ° C, liquid phase air Speed 10h -1 , pH 1.0, resin adsorption tower effluent TOC 5mg/L, SS 3mg/L, Cu 0.1mg/L.
  • Example 10 Treatment of VCM high-salt wastewater (3# catalyst and 2# macroporous adsorption resin)
  • Step (1) VCM high-salt wastewater is mixed with 32wt% NaOH solution in a static mixer by a wastewater transfer pump, the pH is adjusted to 10.5, and then the removal of SS is completed in the coagulation tank, flocculation tank and inclined plate sedimentation tank, and the reaction
  • the conditions are: 60°C, pH 6.0, polyaluminum chloride 500mg/L, polyacrylamide 5mg/L, effluent TOC 1250mg/L, SS 18mg/L, Cu 0.3mg/L.
  • the reaction conditions are: 60°C, liquid phase space velocity 5h -1 , catalytic effluent TOC 14mg/L, available chlorine 0.1mg/L.
  • Step (3) the waste gas obtained in step (2) is directly discharged after gas-liquid separation, and the effluent from catalytic oxidation is adsorbed by 2# macroporous adsorption resin and then sent to chlor-alkali for further treatment.
  • the resin adsorption conditions are: 60 ° C, liquid phase air Speed 10h -1 , pH 5.0, resin adsorption tower effluent TOC 6mg/L, SS 2mg/L, Cu 0.1mg/L.
  • Example 11 Treatment of VCM high-salt wastewater (4# catalyst and 2# macroporous adsorption resin)
  • Step (1) VCM high-salt wastewater is mixed with 32wt% NaOH solution in a static mixer by a wastewater transfer pump, and the pH is adjusted to 6.0, and then the removal of SS is completed in the coagulation tank, flocculation tank and inclined plate sedimentation tank, and the reaction
  • the conditions are: 15°C, pH 6.0, polyaluminum chloride 50mg/L, polyacrylamide 1mg/L, effluent TOC 1380mg/L, SS 17mg/L, Cu 0.5mg/L.
  • the reaction conditions are: 15°C, liquid phase space velocity of 1h -1 , catalytic effluent TOC 19mg/L, available chlorine 0.5mg/L.
  • Step (3) the waste gas obtained in step (2) is directly discharged after gas-liquid separation, and the effluent from catalytic oxidation is adsorbed by 2# macroporous adsorption resin and then sent to chlor-alkali for further treatment.
  • the resin adsorption conditions are: 15 ° C, liquid phase air Speed 1h -1 , pH 8.0, resin adsorption tower effluent TOC 8mg/L, SS 2mg/L, Cu 0.1mg/L.
  • Example 12 Treatment of VCM high-salt wastewater (4# catalyst and 3# macroporous adsorption resin)
  • Step (1) VCM high-salt wastewater is mixed with 32wt% NaOH solution in a static mixer by a wastewater transfer pump, and the pH is adjusted to 6.0, and then the removal of SS is completed in the coagulation tank, flocculation tank and inclined plate sedimentation tank, and the reaction
  • the conditions are: 15°C, pH 6.0, polyaluminum chloride 50mg/L, polyacrylamide 1mg/L, effluent TOC 1380mg/L, SS 17mg/L, Cu 0.5mg/L.
  • the reaction conditions are: 15°C, liquid phase space velocity of 1h -1 , catalytic effluent TOC 19mg/L, available chlorine 0.5mg/L.
  • Step (3) the waste gas obtained in step (2) is directly discharged after gas-liquid separation, and the effluent from catalytic oxidation is adsorbed by 3# macroporous adsorption resin and then sent to chlor-alkali for further treatment.
  • the resin adsorption conditions are: 15 ° C, liquid phase air Speed 1h -1 , pH 8.0, resin adsorption tower effluent TOC 8mg/L, SS 2mg/L, Cu 0.1mg/L.
  • Example 13 Treatment of VCM high-salt wastewater (4# catalyst and 4# macroporous adsorption resin)
  • Step (1) VCM high-salt wastewater is mixed with 32wt% NaOH solution in a static mixer by a wastewater transfer pump, pH is adjusted to 6.0, and then the removal of SS is completed in the coagulation tank, flocculation tank and inclined plate sedimentation tank, and the reaction
  • the conditions are: 15°C, pH 6.0, polyaluminum chloride 50mg/L, polyacrylamide 1mg/L, effluent TOC 1380mg/L, SS 17mg/L, Cu 0.5mg/L.
  • the reaction conditions are: 15°C, liquid phase space velocity of 1h -1 , catalytic effluent TOC 19mg/L, available chlorine 0.5mg/L.
  • Step (3) the waste gas obtained in step (2) is directly discharged after gas-liquid separation, and the effluent from catalytic oxidation is adsorbed by 4# macroporous adsorption resin and then sent to chlor-alkali for further treatment.
  • the resin adsorption conditions are: 15 ° C, liquid phase air Speed 1h -1 , pH 8.0, resin adsorption tower effluent TOC 7mg/L, SS 2mg/L, Cu 0.1mg/L.
  • Comparative example 2 Treatment of VCM high-salt wastewater (4# catalyst and 1# macroporous adsorption resin)
  • Step (1) VCM high-salt wastewater is mixed with 32wt% NaOH solution in a static mixer by a wastewater transfer pump, and the pH is adjusted to 6.0, and then the removal of SS is completed in the coagulation tank, flocculation tank and inclined plate sedimentation tank, and the reaction
  • the conditions are: 15°C, pH 6.0, polyaluminum chloride 50mg/L, polyacrylamide 1mg/L, effluent TOC 1380mg/L, SS 17mg/L, Cu 0.5mg/L.
  • the reaction conditions are: 15°C, liquid phase space velocity of 1h -1 , catalytic effluent TOC 19mg/L, available chlorine 0.5mg/L.
  • Step (3) the waste gas obtained in step (2) is directly discharged after gas-liquid separation, and the effluent from catalytic oxidation is adsorbed by 1# macroporous adsorption resin and then sent to chlor-alkali for further treatment.
  • the resin adsorption conditions are: 15 ° C, liquid phase air Speed 1h -1 , pH 8.0, resin adsorption tower effluent TOC 15mg/L, SS 2mg/L, Cu 0.3mg/L, unable to meet the chlor-alkali acceptance index.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本文公布一种氯乙烯高盐废水的深度处理和回用方法。将氯乙烯高盐废水经过混凝剂和絮凝剂处理,将废水中的悬浮固体(SS)处理至≤20mg/L,同时降低废水中的部分TOC和Cu含量;然后将废水经过滤预处理后,与氧化剂混合,并送入催化氧化反应器,通过催化氧化反应,将废水中的有机物氧化分解为二氧化碳和水;最后将得到的废气经气液分离后直接外排,催化氧化出水经吸附保护后送氯碱作为原料,用来生产氯气、氢气、碱液等化工原料。所述处理方法简单易行,处理效率高,能够实现废盐水的资源化回用,并且不产生二次污染。

Description

一种氯乙烯高盐废水的深度处理和回用方法 技术领域
本申请涉及化学工程与环境工程废水处理技术领域,更具体地说,涉及一种氯乙烯高盐废水的深度处理和回用方法。
背景技术
氯乙烯(VCM)是生产聚氯乙烯(PVC)的最主要原料。目前主要有三种合成工艺,分别是乙炔法、混合炔烃法和乙烯法。其中乙烯法因其生产成本低、产品质量高且污染少等特点,是目前行业上应用范围最广的生产工艺。在乙烯法生产工艺中,乙烯首先经氯化或氧氯化反应生成1,2-二氯乙烷(EDC),然后EDC裂解生成VCM。废水主要来自于氧氯化反应器后的急冷塔塔底。废水中主要含NaCl、氯乙烯、二氯乙烷及反应副产物等,属于高盐难处理废水。
VCM废水的NaCl含量在1.5~3.0wt%,总有机碳(TOC)在800~2500mg/L,具有盐含量高、水质波动大和有机物含量高等特点。目前行业上一般将其与低盐生产废水和生活污水混合稀释后送生化处理,处理合格后直接外排处理,无法实现对废水中NaCl和水资源的回收,造成一定的资源浪费。
发明专利CN 108191152 B公开了一种VCM废水处理装置。通过对过量原料及中间产物的回收,废水经混凝絮凝、高效沉淀、微生物生化反应、反渗透浓缩、蒸发结晶等一系列工艺处理后,提高了物料的回收利用率,并减少了三废产生量。但其未能实现VCM含盐废水完全回用,同时采用生化工艺处理高盐废水,存在运行稳定性不高和生化污泥处理难度大等问题。综上,VCM含盐废水亟需一种能够实现盐水资源化全回用的高效技术。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于提供一种VCM高盐废水的深度处理和回用方法。所述处理方法简单易行,处理效率高,能够实现废盐水的资源化回用,并且不产生二次污染。
为解决以上技术问题,本申请采用的技术方案如下:
一种VCM高盐废水的深度处理和回用方法,包括如下步骤:
(1)首先调节VCM高盐废水pH至6.0~10.5,并投加混凝剂和絮凝剂,通过混凝絮凝和高效沉淀工艺将废水中的悬浮固体(SS)处理至≤20mg/L,同时降低废水中的部分TOC和Cu含量;
(2)将步骤(1)得到的废水经过滤预处理后,与氧化剂混合,并调节pH至10.5~13.5后从反应器底部送入催化氧化反应器,通过催化氧化反应,将废水中的有机物氧化分解为二氧化碳和水;
(3)将步骤(2)得到的废气经气液分离后直接外排,催化氧化出水经吸附保护后送氯碱装置作为原料,用来生产氯气、氢气、碱液和片碱等化工原料。
本申请所述的步骤(1)中,所述VCM高盐废水优选满足以下条件:TOC≤2500mg/L,优选10~2000mg/L;SS≤1500mg/L,优选20~1000mg/L;Cu 2+≤2.0mg/L,优选0.5~1.5mg/L;NaCl 1.5~3.0wt%,优选2.0~3.0wt%。
本申请所述的步骤(1)中,pH调节所用的试剂为盐酸溶液和NaOH溶液,混凝剂为聚合氯化铝、聚合氯化铁、氯化铝或氯化铁等中的一种或多种,优选聚合氯化铝。絮凝剂为阳离子聚丙烯酰胺、阴离子聚丙烯酰胺或非离子型聚丙烯酰胺中的一种或多种,优选阴离子聚丙烯酰胺。
本申请中,所述的步骤(1)的反应条件包括:反应温度15~60℃、pH  6.0~10.5、混凝剂加入量50~500mg/L(基于废水的量)、絮凝剂加入量1~5mg/L(基于废水的量),优选地,其反应温度为20~50℃、pH 7.0~10.0、混凝剂加入量100~300mg/L(基于废水的量)、絮凝剂加入量1~2mg/L(基于废水的量),混凝剂和絮凝剂的加入量根据产生絮体沉淀物大小及静置后上清液SS含量来确定。
本申请中,所述的步骤(1)可以在本领域公知的任意反应器内进行。pH调节可选择静态混合器、调节池、调节罐或调节槽等设备,优选静态混合器;混凝絮凝沉淀过程可选择混凝池、絮凝池和斜板沉淀池等设备内进行,同时有必要的沉淀污泥回流和污泥脱水设备,可选择板框污泥脱水机或离心式污泥脱水机,优选离心式污泥脱水机。
本申请中,所述步骤(2)中,所述的废水过滤设备可以是砂滤器、多介质过滤器、活性炭过滤器、滤袋、金属丝网过滤器、微滤过滤器、超滤过滤器中的一种或多种,优选多介质过滤器。
本申请中,所述步骤(2)中,所述的氧化剂为NaClO、Cl 2和ClO 2中的一种或多种,优选为NaClO,来自氯碱工业废水,有效氯含量在2~10wt%。
氯碱工业废水中主要含NaOH、Na 2CO 3和低浓度的NaClO(在弱碱条件下,也会存在NaHCO 3)。由于其中有效氯含量较低,该氯碱工业废水难以作为产品外卖。而该氯碱工业废水直接排放,不仅造成盐水资源的大量浪费和环境危害,而且需投加大量的还原剂将其还原,处理成本极高。利用氯碱工业废水中的NaClO进行氧化反应从而降低VCM含盐废水中的TOC,不仅节省了氯碱工业废水处理中使用的还原剂的药剂费用,有效利用氯碱工业废水中的有效物质,将VCM含盐废水中的有机物深度氧化去除,达到以废治废的目的;同时亦可实现VCM废水和氯碱工业废水中盐水资源的再利用,避免经济浪费、缓解环境压 力、显著提升经济效益。
本申请中,所述步骤(2)中,过滤后的VCM废水与氧化剂混合可通过静态混合器、混合反应釜等设备完成,优选静态混合器。同时氧化剂加入量以有效氯和TOC的摩尔比计应确保2:1≤n(有效氯):n(TOC)≤3:1,优选n(有效氯):n(TOC)=2:1。再通过NaOH溶液进一步调节pH至10.5~13.5,优选为11.0~13.0。废水输送至催化氧化反应器,次氯酸钠氧化剂在催化剂作用下,产生强氧化性的活性氧自由基,进一步降解有机物,其反应条件为:反应温度为15~60℃、液相空速为1~5h -1,优选地,其反应温度为30~50℃、液相空速为1~3h -1。通过催化氧化反应,大部分有机物被矿化为二氧化碳和水,少量有机物被分解为乙酸、丙酸等小分子化合物。
本申请所述步骤(2)中,所述的催化剂为主要包括TiO 2和以氧化物形态负载于所述二氧化钛上的Ni和Fe;以所述TiO 2的重量为基准计,所述催化剂中以下成分的含量为:Ni 2.0~10.0wt%,优选3.0~8.0wt%;Fe 1.0~3.0wt%,优选2.0~3.0wt%,Ni、Fe为主活性组分,TiO 2为载体。优选地,所述催化剂包括Ce改性TiO 2载体和以氧化物形态负载于所述Ce改性TiO 2载体上的Ni和Fe,以所述TiO 2的重量为基准计,所述Ce改性TiO 2载体中Ce的含量为1.0~2.0wt%,优选为1.2~1.5wt%。
TiO 2在酸性和碱性条件下都具有较好的稳定性,被广泛应用于催化剂的加工过程中。但其比表面积较小,限制了其更广泛的应用。经Ce改性后,可改进TiO 2载体的结构性能,增大载体的比表面积,提高其强度。同时Ce具有良好的储存与释放氧性能,而氧化剂在催化剂的主活性组分上产生活性氧自由基是降解有机物的关键。当催化剂的载体为Ce改性TiO 2载体时,催化剂对氧化剂(如次氯酸钠)进行催化氧化时,氧化剂在催化剂的主活性组分上产生的活性氧自 由基可以及时迁移至Ce改性TiO 2载体的Ce上进行储存,使得活性氧自由基的位点增多,增加了反应位点,可大幅提升催化氧化过程中的氧化效率,提高对有机物的去除效果。
比如,当催化剂的载体为Ce改性TiO 2,氧化剂为NaClO时,ClO -在NiO x上产生活性氧自由基,NiO x-CeO 2-TiO 2的结构能够及时将NiO x上产生的活性氧自由基迁移至CeO 2上,进而提高反应位点个数,有效降解有机物,提升TOC去除率。其催化氧化机理如下:
ClO -→Cl -+[O],即CAT+NaClO→CAT-O+NaCl    ①;
ORG+CAT-O→ORG-O+CAT                    ②;
ORG-O+CAT-O→CO 3 2-+H 2O+CAT               ③。
其中,[O]代表活性氧自由基,CAT代表催化剂,ORG代表有机物,CAT-O代表催化剂上的活性位点,活性位点上具有[O],ORG-O代表与[O]相结合的有机物。式①是次氯酸钠经催化剂催化而在催化剂上产生[O]的过程;式②是具有[O]活性位点的催化剂与有机物接触将[O]转移到有机物上的过程;式③是与[O]相结合的有机物在催化剂作用下降解为小分子或者二氧化碳和水的过程。
优选地,所述Ni、Fe、Ce分别来自含有相应金属元素的硝酸盐、盐酸盐、碳酸盐或醋酸盐中的一种或多种,优选硝酸盐。
上述催化剂的制备方法包括以下步骤:
(1)将含有Ce盐的浸渍液加入到TiO 2中,对TiO 2浸渍30~120min,然后将所得固体干燥、焙烧,制得Ce改性TiO 2载体;优选采用等体积浸渍工艺进行浸渍;优选干燥温度为100~130℃,干燥时间为2~5h,焙烧温度为450~550℃,焙烧时间为3~6h;进一步优选TiO 2浸渍前进行真空预处理,所述的真空预处理时间为10~30min,真空度为96.0~98.0kPa;
(2)将含有Ni盐和Fe盐的浸渍液加入到步骤(1)制得的Ce改性TiO 2载体中,对其浸渍30~120min,然后将所得固体干燥,焙烧,制得所述催化剂;优选采用等体积浸渍工艺进行浸渍;优选干燥温度为100~130℃,干燥时间为2~5h,焙烧温度为450~550℃,焙烧时间为3~6h。
优选地,上述催化剂的制备方法中,所述步骤(1)和(2)中的浸渍液的溶液均来自水、甲醇和乙醇中的一种或多种,优选水和/或乙醇,更优选乙醇浓度为10~40wt%的乙醇水溶液。
本申请中,所述步骤(2)中,所述的催化氧化反应器内催化剂分两层填装,下层催化剂主要进行次氯酸钠催化氧化反应,上层催化剂主要将未完全反应的次氯酸钠进行分解,保证反应器出水有效氯含量≤0.5mg/L。
本申请中,所述步骤(3)中,所述的步骤(2)得到的废气经气液分离后直接外排,可在本领域公知的任意设备中进行,优选采用气液分离罐,凝液回流到催化氧化反应器。
本申请中,所述步骤(3)中,所述的吸附过程使用的吸附材料为大孔吸附树脂、活性炭或分子筛中的一种或多种,优选大孔吸附树脂。
本申请中,所述步骤(3)中,所述的吸附反应条件为:pH为1.0~8.0、吸附温度为15~60℃、液相空速为1~10h -1,优选地,其pH为2.0~5.0、吸附温度为20~50℃、液相空速为1~5h -1,吸附饱和后,可采用80℃的4wt%NaOH溶液或甲醇溶液进行再生,再生后用纯水对吸附塔进行清洗,直至pH≤12或者TOC≤15mg/L,便可继续对催化出水进行吸附,再生液返回至催化氧化反应器进水。
本申请中,所述步骤(3)中,所述的大孔吸附树脂吸附塔需控制进水有效氯≤0.5mg/L,从而确保树脂的使用寿命。
优选地,本申请所述步骤(3)中,所述的大孔吸附树脂为采用常规悬浮聚合技术制备多乙烯基芳香族单体和单乙烯基芳香族单体的共聚物,特征在于水相中加入活性炭。制备步骤为:常温下配制油相:将多乙烯基芳香族单体、单乙烯基芳香族单体、致孔剂、引发剂混合均匀;常温下配制水相:将纯水、粉末活性炭、分散剂、任选的分散助剂、合成助剂混合均匀,然后将油相和水相混合进行聚合反应,其中油相/水相质量比为1:5~1:2,聚合温度为60~95℃,聚合时间为4~12h,反应后经提取剂提取致孔剂,再经水洗后即得到大孔吸附树脂。
上述大孔吸附树脂的制备方法中,所述的多乙烯基芳香族单体为二乙烯基苯(即邻-、间-和对-二乙烯基苯及其混合物)、三乙烯基苯、二乙烯基甲苯、二乙烯基二甲苯、二乙烯基萘,及其衍生物例如氯代二乙烯基苯、二氯代二乙烯基苯、溴代二乙烯基苯中的一种或多种的混合物,优选为二乙烯基苯和/或三乙烯基苯,所述的多乙烯基芳香族单体为常规悬浮聚合步骤中油相质量的20~60wt%,优选为油相质量的25~55wt%。
所述的单乙烯基芳香族单体为苯乙烯、C1~C4烷基取代的苯乙烯如甲基苯乙烯、乙基苯乙烯,及其衍生物例如氯代苯乙烯、二氯代苯乙烯、溴代苯乙烯中的一种或多种的混合物,优选为苯乙烯、甲基苯乙烯、乙基苯乙烯中的一种或多种的混合物,所述的单乙烯基芳香族单体为常规悬浮聚合步骤中油相质量的5~15wt%,优选为油相质量的7~13wt%。
所述的致孔剂为甲苯、二甲苯、乙苯、白油、溶剂油中的一种或多种的混合物,优选为甲苯、白油、溶剂油中的一种或多种的混合物,致孔剂占常规悬浮聚合步骤中油相质量的25~75wt%,优选为油相质量的38~63wt%。
所述的引发剂为过氧化二苯甲酰和/或偶氮二异丁腈,单体(包括多乙烯基芳 香族单体和乙烯基芳香族单体)/引发剂质量比为300:1~25:1,优选为200:1~50:1。
所述的粉末活性炭加入量占水相质量的0.5~5wt%,优选为水相质量的1~2wt%,目数在200~500目,处理前需用纯水冲洗数次后使用。
所述的分散剂为聚乙烯醇、明胶、羟丙基甲基纤维素、羟乙基纤维素、羟丙基纤维素中的一种或多种的混合物,优选为聚乙烯醇和/或明胶,分散剂用量占水相质量的0.05~0.5wt%,优选为水相质量的0.1~0.4wt%。在有些情况下,可加入氯化钠、氯化钾、氯化钙等无机盐作为分散助剂,分散助剂占水相质量的1~10wt%。
所述的合成助剂为亚甲基蓝、亚硝酸钠、硫代硫酸钠中的一种或多种的混合物,优选为亚甲基蓝,在水相中的浓度为1~100mg/L,优选为20~80mg/L。
多乙烯基芳香族单体和单乙烯基芳香族单体的共聚物水洗后,加入致孔剂的提取剂提取致孔剂,所述的致孔剂的提取剂选自丙酮、甲缩醛、甲醇、乙醇中的一种或多种的混合物,优选为丙酮和/或甲缩醛,所述的致孔剂的提取剂与共聚物主体的质量比为1:1~10:1,优选为2.5:1~7.5:1。
在有些情况下,聚合单元中还可以含有极性乙烯基单体例如丙烯腈、甲基丙烯酸甲酯、丙烯酸甲酯中的一种或多种的混合物。这类单体中不含有上述的多乙烯基芳香族单体和单乙烯基芳香族单体。上述单体于常规悬浮聚合过程加入,不超过常规悬浮聚合步骤中油相质量的50wt%,优选为油相质量的0~30wt%。
优选地,步骤(3)中所述的大孔吸附树脂,干燥后的粒径分布为300~1500μm。干燥后的BET比表面积为300~1500m 2/g,BET平均孔径为3.0~15.0nm,BET孔容为0.5~2.5mL/g。
本申请中,所述步骤(3)中,采用大孔吸附树脂作为吸附剂,通过将粉末 活性炭加入大孔吸附树脂的制备工艺中,可大幅提升大孔吸附树脂的吸附效果,通过其巨大的比表面积,依靠网状链段和被吸附分子(吸附质)之间的范德华力、氢键等发挥分离纯化作用。但其比表面积大、机械强度好、化学性质稳定,同时易于脱附再生。采用80℃的4%NaOH溶液或甲醇即可实现其脱附再生,使用周期长。
本申请中,所述步骤(3)中,树脂吸附出水送氯碱作为原料,氯碱对该股盐水的接收指标为:TOC≤10mg/L、SS≤5mg/L、Cu≤0.5mg/L、NaCl≥1.5wt%。
本申请所述的氯乙烯高盐废水的深度处理和回用方法简单易行,自动化程度和处理效率高,能够实现废盐水的资源化回用,并且不产生二次污染。既避免了稀释后生化处理工艺复杂、生化污泥难处理的问题,又实现了NaCl资源回用。同时将次氯酸钠废水作为氧化剂,以废治废,成功实现园区氯资源的循环使用,是一种环境友好型废水处理工艺。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
以下通过具体实施例对本申请技术方案及其效果做进一步说明。以下实施例仅用于说明本申请的内容,并不用于限制本申请的保护范围。应用本申请的构思对本申请进行的简单改变都在本申请要求保护的范围内。
本申请的实施例9~13及对比例1-2中,所用的装置如下:输送泵、静态混合器、混凝池、絮凝池、斜板沉淀池、多介质过滤器、催化氧化反应器、气液分离罐、吸附塔,均购自烟台科立化工设备有限公司。
马弗炉,型号VULCAN 3-1750,购自美国Neytech公司。
本申请的实施例1~13及对比例1-2中,所用的药品原料如下:
氯乙烯废水、氯碱工业废水、NaOH溶液、盐酸溶液,万华化学集团股份有 限公司;
聚合氯化铝,分析纯,购自天津市科密欧化学试剂有限公司;
聚丙烯酰胺,型号AN923SH,购自法国爱森公司;
硝酸镍、硝酸铁和硝酸铈,分析纯,购自西陇化工股份有限公司;
乙醇、二氧化钛、二乙烯基苯、乙烯基苯、甲苯、偶氮二异丁腈、聚乙烯醇、NaCl、亚甲基蓝和丙酮等,分析纯,购自国药集团化学试剂有限公司;
粉末活性炭,购自烟台通一有限公司。
TOC、TN分析仪,德国耶拿公司;
悬浮固体分析,采用分光光度计分析,美国哈希公司;
金属离子分析,采用电感耦合等离子体原子发射光谱-质谱分析(ICP-MS);
NaCl含量分析,采用离子色谱分析(IC),瑞士万通公司;
粒径分析,采用粒度测试仪,丹东百特公司;
BET比表面积、BET吸附平均孔径和和孔容分析,采用全自动快速比表面积及介孔/微孔分析仪,美国Micromeritics公司。
实施例1:1#催化剂的制备
取TiO 2样品20g置于浸渍瓶中,进行真空预处理,真空预处理时间为30min,真空度为96.0kPa。
同时取含Ni 0.10g/mL硝酸镍水溶液10.0mL,含Fe 0.15g/mL硝酸铁水溶液2.7mL,加入到乙醇浓度为20wt%的乙醇水溶液中,配制成总体积为12.7mL的浸渍液。将上述浸渍液加入到装有TiO 2载体的真空浸渍瓶中并混合均匀,对上述TiO 2载体进行等体积浸渍,浸渍90min后,取出并置于烘箱内120℃干燥4h,然后在马弗炉内500℃焙烧5h,得到1#催化剂。
所得1#催化剂中,以其中TiO 2的重量为基准计,以下成分的含量如下:Ni  5.0wt%,Fe 2.0wt%。
实施例2:2#催化剂的制备
取TiO 2样品20g置于浸渍瓶中,进行真空预处理,真空预处理时间为30min,真空度为96.0kPa,同时取含Ce 0.01g/mL的硝酸铈水溶液30mL,加入到乙醇浓度为20wt%的乙醇水溶液中,配置成总体积为30mL的浸渍液。将上述浸渍液加入到装有TiO 2载体的真空浸渍瓶中,混合均匀后对上述TiO 2载体进行浸渍,浸渍80min后,取出并置于烘箱内110℃干燥3h,然后在马弗炉内470℃焙烧4h,制得Ce改性TiO 2载体。所制得的Ce改性TiO 2载体中,以TiO 2的重量为基准计,Ce的含量为1.5wt%。
同时取含Ni 0.10g/mL硝酸镍水溶液10.0mL,含Fe 0.15g/mL硝酸铁水溶液2.7mL,加入到乙醇浓度为20wt%的乙醇水溶液中,配制成总体积为12.7mL的浸渍液。将上述浸渍液加入到装有上述Ce改性TiO 2载体的真空浸渍瓶中并混合均匀,对上述Ce改性TiO 2载体进行浸渍,浸渍90min后,取出并置于烘箱内120℃干燥4h,然后在马弗炉内500℃焙烧5h,得到2#催化剂。
所得2#催化剂中,以其中TiO 2的重量为基准计,以下成分的含量如下:Ni5.0wt%,Fe 2.0wt%。
实施例3:3#催化剂的制备
取TiO 2样品20g置于浸渍瓶中,进行真空预处理,真空预处理时间为10min,真空度为98.0kPa,同时取含Ce 0.01g/mL的硝酸铈水溶液20mL,加入到乙醇浓度为10wt%的乙醇水溶液中,配置成总体积为20mL的浸渍液。将上述浸渍液加入到装有TiO 2载体的真空浸渍瓶中,混合均匀后对上述TiO 2载体进 行浸渍,浸渍120min后,取出并置于烘箱内130℃干燥5h,然后在马弗炉内550℃焙烧6h,制得Ce改性TiO 2载体。所制得的Ce改性TiO 2载体中,以TiO 2的重量为基准计,Ce的含量为1.0wt%。
同时取含Ni 0.10g/mL硝酸镍水溶液4.0mL,含Fe 0.15g/mL硝酸铁水溶液1.3mL,加入到乙醇浓度为10wt%的乙醇水溶液中,配制成总体积为5.3mL的浸渍液。将上述浸渍液加入到装有上述Ce改性TiO 2载体的真空浸渍瓶中并混合均匀,对上述Ce改性TiO 2载体进行浸渍,浸渍30min后,取出并置于烘箱内100℃干燥2h,然后在马弗炉内450℃焙烧3h,得到3#催化剂。
所得3#催化剂中,以其中TiO 2的重量为基准计,以下成分的含量如下:Ni2.0wt%,Fe 1.0wt%。
实施例4:4#催化剂的制备
取TiO 2样品20g置于浸渍瓶中,进行真空预处理,真空预处理时间为30min,真空度为97.0kPa,同时取含Ce 0.01g/mL的硝酸铈水溶液40mL,加入到乙醇浓度为40wt%的乙醇水溶液中,配置成总体积为40mL的浸渍液。将上述浸渍液加入到装有TiO 2载体的真空浸渍瓶中,混合均匀后对上述TiO 2载体进行浸渍,浸渍30min后,取出并置于烘箱内100℃干燥2h,然后在马弗炉内450℃焙烧3h,制得Ce改性TiO 2载体。所制得的Ce改性TiO 2载体中,以TiO 2的重量为基准计,Ce的含量为2.0wt%。
同时取含Ni 0.10g/mL硝酸镍水溶液20.0mL,含Fe 0.15g/mL硝酸铁水溶液4.0mL,加入到乙醇浓度为40wt%的乙醇水溶液中,配制成总体积为24.0mL的浸渍液。将上述浸渍液加入到装有上述Ce改性TiO 2载体的真空浸渍瓶中并混合均匀,对上述Ce改性TiO 2载体进行浸渍,浸渍120min后,取出并置于烘 箱内130℃干燥5h,然后在马弗炉内550℃焙烧6h,得到4#催化剂。
所得4#催化剂中,以其中TiO 2的重量为基准计,以下成分的含量如下:Ni10.0wt%,Fe 3.0wt%。
实施例5:1#大孔吸附树脂的制备
常温下配制油相:将二乙烯基苯单体、苯乙烯单体和甲苯按40:10:50的质量比进行混合,并加入少量偶氮二异丁腈引发剂,单体和引发剂的质量比为150:1。
常温下配制水相:将聚乙烯醇、NaCl和纯水按0.3:5:94.7的质量比进行混合,并加入少量亚甲基蓝合成助剂,加入量50mg/L。
将油相和水相按照1:4的质量比混合,控制反应温度75℃,反应8h后过滤即可获得树脂,并按致孔剂的提取剂丙酮与共聚物主体的质量比为5:1加入提取剂丙酮,最后水洗后即可获得1#大孔吸附树脂。大孔吸附树脂干燥后的粒径分布为500~2000μm,干燥后的BET比表面积为260m 2/g,BET平均孔径为18nm,BET孔容为0.4mL/g。
实施例6:2#大孔吸附树脂的制备
常温下配制油相:将二乙烯基苯单体、苯乙烯单体和甲苯按40:10:50的质量比进行混合,并加入少量偶氮二异丁腈引发剂,单体和引发剂的质量比为150:1。
常温下配制水相:将粉末活性炭、聚乙烯醇、NaCl和纯水按2:0.3:5:92.7的质量比进行混合,并加入少量亚甲基蓝合成助剂,加入量50mg/L。
将油相和水相按照1:4的质量比混合,控制反应温度75℃,反应8h后过滤 即可获得树脂,并按致孔剂的提取剂丙酮与共聚物主体的质量比为5:1加入提取剂丙酮,最后水洗后即可获得2#大孔吸附树脂。大孔吸附树脂干燥后的粒径分布为500~1200μm,干燥后的BET比表面积为1300m 2/g,BET平均孔径为8.0nm,BET孔容为2.2mL/g。
实施例7:3#大孔吸附树脂的制备
常温下配制油相:将二乙烯基苯单体、苯乙烯单体和甲苯按20:5:75的质量比进行混合,并加入少量偶氮二异丁腈引发剂,单体和引发剂的质量比为300:1。
常温下配制水相:将粉末活性炭、聚乙烯醇、NaCl和纯水按0.5:0.05:1:98.45的质量比进行混合,并加入少量亚甲基蓝合成助剂,加入量1mg/L。
将油相和水相按照1:5的质量比混合,控制反应温度60℃,反应4h后过滤即可获得树脂,并按致孔剂的提取剂丙酮与共聚物主体的质量比为1:1加入提取剂丙酮,最后水洗后即可获得3#大孔吸附树脂。大孔吸附树脂干燥后的粒径分布为300~1000μm,干燥后的BET比表面积为300m 2/g,BET平均孔径为15.0nm,BET孔容为0.5mL/g。
实施例8:4#大孔吸附树脂的制备
常温下配制油相:将二乙烯基苯单体、苯乙烯单体和甲苯按60:15:25的质量比进行混合,并加入少量偶氮二异丁腈引发剂,单体和引发剂的质量比为25:1。
常温下配制水相:将粉末活性炭、聚乙烯醇、NaCl和纯水按5:0.5:10:84.5的质量比进行混合,并加入少量亚甲基蓝合成助剂,加入量100mg/L。
将油相和水相按照1:2的质量比混合,控制反应温度95℃,反应12h后过滤即可获得树脂,并按致孔剂的提取剂丙酮与共聚物主体的质量比为10:1加入 提取剂丙酮,最后水洗后即可获得4#大孔吸附树脂。大孔吸附树脂干燥后的粒径分布为800~1500μm,干燥后的BET比表面积为1500m 2/g,BET平均孔径为3.0nm,BET孔容为2.5mL/g。
在以下的实施例中,VCM高盐废水的取样分析结果见表1。
表1 VCM高盐废水水质组成
Figure PCTCN2020131014-appb-000001
对比例1:VCM高盐废水的处理(1#催化剂)
步骤(1):VCM高盐废水通过废水输送泵与32wt%NaOH溶液在静态混合器内混合,将pH调节至8.5,然后在混凝池、絮凝池和斜板沉淀池内完成SS的去除,反应条件为:50℃、pH 8.5、聚合氯化铝200mg/L、聚丙烯酰胺2mg/L,沉淀池出水TOC 589mg/L、SS 13mg/L、Cu 0.2mg/L。
步骤(2):将步骤(1)得到的废水经多介质过滤器过滤后,SS可从13mg/L 降低至5mg/L,然后与氯碱工业废水混合,n(NaClO):n(TOC)=2:1,并通过32wt%NaOH溶液将pH调节至11.5后,从反应器底部送入催化氧化反应器,通过1#催化剂作用下,将有机物氧化分解为二氧化碳和水,同时将残留次氯酸钠分解,反应条件为:50℃、液相空速3h -1,催化出水TOC 35mg/L,有效氯17.8mg/L。
步骤(3):将步骤(2)得到的废气经气液分离后直接外排,催化氧化出水因残留有效氯较高,无法直接进树脂吸附塔。
实施例9:VCM高盐废水的处理(2#催化剂和2#大孔吸附树脂)
步骤(1):VCM高盐废水通过废水输送泵与32wt%NaOH溶液在静态混合器内混合,将pH调节至8.5,然后在混凝池、絮凝池和斜板沉淀池内完成SS的去除,反应条件为:50℃、pH 8.5、聚合氯化铝200mg/L、聚丙烯酰胺2mg/L,沉淀池出水TOC 589mg/L、SS 13mg/L、Cu 0.2mg/L。
步骤(2):将步骤(1)得到的废水经多介质过滤器过滤后,SS可从13mg/L降低至5mg/L,然后与氯碱工业废水混合,n(NaClO):n(TOC)=2:1,并通过32wt%NaOH溶液将pH调节至11.5后,从反应器底部送入催化氧化反应器,通过2#催化剂作用下,将有机物氧化分解为二氧化碳和水,同时将残留次氯酸钠分解,反应条件为:50℃、液相空速3h -1,催化出水TOC 13mg/L,有效氯0.3mg/L。
步骤(3):将步骤(2)得到的废气经气液分离后直接外排,催化氧化出水经2#大孔吸附树脂吸附后送氯碱进一步处理,树脂吸附条件为:50℃、液相空速10h -1、pH 1.0,树脂吸附塔出水TOC 5mg/L、SS 3mg/L、Cu 0.1mg/L。
实施例10:VCM高盐废水的处理(3#催化剂和2#大孔吸附树脂)
步骤(1):VCM高盐废水通过废水输送泵与32wt%NaOH溶液在静态混合器内混合,将pH调节至10.5,然后在混凝池、絮凝池和斜板沉淀池内完成SS的去除,反应条件为:60℃、pH 6.0、聚合氯化铝500mg/L、聚丙烯酰胺5mg/L,沉淀池出水TOC 1250mg/L、SS 18mg/L、Cu 0.3mg/L。
步骤(2):将步骤(1)得到的废水经多介质过滤器过滤后,SS可从18mg/L降低至6mg/L,然后与氯碱工业废水混合,n(NaClO):n(TOC)=2:1,并通过32wt%NaOH溶液将pH调节至10.5后,从反应器底部送入催化氧化反应器,通过3#催化剂作用下,将有机物氧化分解为二氧化碳和水,同时将残留次氯酸钠分解,反应条件为:60℃、液相空速5h -1,催化出水TOC 14mg/L,有效氯0.1mg/L。
步骤(3):将步骤(2)得到的废气经气液分离后直接外排,催化氧化出水经2#大孔吸附树脂吸附后送氯碱进一步处理,树脂吸附条件为:60℃、液相空速10h -1、pH 5.0,树脂吸附塔出水TOC 6mg/L、SS 2mg/L、Cu 0.1mg/L。
实施例11:VCM高盐废水的处理(4#催化剂和2#大孔吸附树脂)
步骤(1):VCM高盐废水通过废水输送泵与32wt%NaOH溶液在静态混合器内混合,将pH调节至6.0,然后在混凝池、絮凝池和斜板沉淀池内完成SS的去除,反应条件为:15℃、pH 6.0、聚合氯化铝50mg/L、聚丙烯酰胺1mg/L,沉淀池出水TOC 1380mg/L、SS 17mg/L、Cu 0.5mg/L。
步骤(2):将步骤(1)得到的废水经多介质过滤器过滤后,SS可从17mg/L降低至6mg/L,然后与氯碱工业废水混合,n(NaClO):n(TOC)=2:1,并通过32wt%NaOH溶液将pH调节至13.5后,从反应器底部送入催化氧化反应器,通过4# 催化剂作用下,将有机物氧化分解为二氧化碳和水,同时将残留次氯酸钠分解,反应条件为:15℃、液相空速1h -1,催化出水TOC 19mg/L,有效氯0.5mg/L。
步骤(3):将步骤(2)得到的废气经气液分离后直接外排,催化氧化出水经2#大孔吸附树脂吸附后送氯碱进一步处理,树脂吸附条件为:15℃、液相空速1h -1、pH 8.0,树脂吸附塔出水TOC 8mg/L、SS 2mg/L、Cu 0.1mg/L。
实施例12:VCM高盐废水的处理(4#催化剂和3#大孔吸附树脂)
步骤(1):VCM高盐废水通过废水输送泵与32wt%NaOH溶液在静态混合器内混合,将pH调节至6.0,然后在混凝池、絮凝池和斜板沉淀池内完成SS的去除,反应条件为:15℃、pH 6.0、聚合氯化铝50mg/L、聚丙烯酰胺1mg/L,沉淀池出水TOC 1380mg/L、SS 17mg/L、Cu 0.5mg/L。
步骤(2):将步骤(1)得到的废水经多介质过滤器过滤后,SS可从17mg/L降低至6mg/L,然后与氯碱工业废水混合,n(NaClO):n(TOC)=2:1,并通过32wt%NaOH溶液将pH调节至13.5后,从反应器底部送入催化氧化反应器,通过4#催化剂作用下,将有机物氧化分解为二氧化碳和水,同时将残留次氯酸钠分解,反应条件为:15℃、液相空速1h -1,催化出水TOC 19mg/L,有效氯0.5mg/L。
步骤(3):将步骤(2)得到的废气经气液分离后直接外排,催化氧化出水经3#大孔吸附树脂吸附后送氯碱进一步处理,树脂吸附条件为:15℃、液相空速1h -1、pH 8.0,树脂吸附塔出水TOC 8mg/L、SS 2mg/L、Cu 0.1mg/L。
实施例13:VCM高盐废水的处理(4#催化剂和4#大孔吸附树脂)
步骤(1):VCM高盐废水通过废水输送泵与32wt%NaOH溶液在静态混合器内混合,将pH调节至6.0,然后在混凝池、絮凝池和斜板沉淀池内完成SS 的去除,反应条件为:15℃、pH 6.0、聚合氯化铝50mg/L、聚丙烯酰胺1mg/L,沉淀池出水TOC 1380mg/L、SS 17mg/L、Cu 0.5mg/L。
步骤(2):将步骤(1)得到的废水经多介质过滤器过滤后,SS可从17mg/L降低至6mg/L,然后与氯碱工业废水混合,n(NaClO):n(TOC)=2:1,并通过32wt%NaOH溶液将pH调节至13.5后,从反应器底部送入催化氧化反应器,通过4#催化剂作用下,将有机物氧化分解为二氧化碳和水,同时将残留次氯酸钠分解,反应条件为:15℃、液相空速1h -1,催化出水TOC 19mg/L,有效氯0.5mg/L。
步骤(3):将步骤(2)得到的废气经气液分离后直接外排,催化氧化出水经4#大孔吸附树脂吸附后送氯碱进一步处理,树脂吸附条件为:15℃、液相空速1h -1、pH 8.0,树脂吸附塔出水TOC 7mg/L、SS 2mg/L、Cu 0.1mg/L。
对比例2:VCM高盐废水的处理(4#催化剂和1#大孔吸附树脂)
步骤(1):VCM高盐废水通过废水输送泵与32wt%NaOH溶液在静态混合器内混合,将pH调节至6.0,然后在混凝池、絮凝池和斜板沉淀池内完成SS的去除,反应条件为:15℃、pH 6.0、聚合氯化铝50mg/L、聚丙烯酰胺1mg/L,沉淀池出水TOC 1380mg/L、SS 17mg/L、Cu 0.5mg/L。
步骤(2):将步骤(1)得到的废水经多介质过滤器过滤后,SS可从17mg/L降低至6mg/L,然后与氯碱工业废水混合,n(NaClO):n(TOC)=2:1,并通过32wt%NaOH溶液将pH调节至13.5后,从反应器底部送入催化氧化反应器,通过4#催化剂作用下,将有机物氧化分解为二氧化碳和水,同时将残留次氯酸钠分解,反应条件为:15℃、液相空速1h -1,催化出水TOC 19mg/L,有效氯0.5mg/L。
步骤(3):将步骤(2)得到的废气经气液分离后直接外排,催化氧化出水经1#大孔吸附树脂吸附后送氯碱进一步处理,树脂吸附条件为:15℃、液相 空速1h -1、pH 8.0,树脂吸附塔出水TOC 15mg/L、SS 2mg/L、Cu 0.3mg/L,无法满足氯碱接收指标。

Claims (10)

  1. 一种氯乙烯高盐废水的深度处理和回用方法,包括以下步骤:
    (1)首先调节氯乙烯高盐废水pH至6.0~10.5,并投加混凝剂和絮凝剂,将废水中的悬浮固体处理至≤20mg/L,同时降低废水中的TOC和Cu含量;
    (2)将步骤(1)得到的废水经过滤预处理后,与氧化剂混合,并调节pH至10.5~13.5后从反应器底部送入催化氧化反应器,通过催化氧化反应,将废水中的有机物氧化分解为二氧化碳和水;
    (3)将步骤(2)得到的废气经气液分离后直接外排,催化氧化出水经吸附保护后送氯碱装置作为原料,用来生产氯气、氢气、碱液和片碱。
  2. 根据权利要求1所述的方法,其中,所述氯乙烯高盐废水中含有TOC≤2500mg/L,优选10~2000mg/L;悬浮固体≤1500mg/L,优选20~1000mg/L;Cu 2+≤2.0mg/L,优选0.5~1.5mg/L;NaCl 1.5~3.0wt%,优选2.0~3.0wt%。
  3. 根据权利要求1或2所述的方法,其中,所述的氧化剂为ClO 2、Cl 2或氯碱工业副产的次氯酸钠废水,有效氯含量在2~10wt%。
  4. 根据权利要求1-3中任一项所述的方法,其中,所述的催化氧化反应的催化剂为包括TiO 2载体和以氧化物形态负载于所述TiO 2上的Ni和Fe;以所述TiO 2的重量为基准计,所述催化剂中以下成分的含量为:Ni 2.0~10.0wt%,优选3.0~8.0wt%;Fe 1.0~3.0wt%,优选2.0~3.0wt%。
  5. 根据权利要求4所述的方法,其中,所述TiO 2载体为Ce改性TiO 2载体,以所述TiO 2的重量为基准计,所述Ce改性TiO 2载体中Ce的含量为1.0~2.0wt%,优选为1.2~1.5wt%。
  6. 根据权利要求1-5中任一项所述的方法,其中,步骤(2)中,氧化剂的加入量为2:1≤n(有效氯):n(TOC)≤3:1,优选n(有效氯):n(TOC)=2:1;反应pH 10.5~13.5,优选为11.0~13.0;反应温度15~60℃、液相空速1~5h -1,优选 地,其反应温度为30~50℃、液相空速1~3h -1
  7. 根据权利要求1-6中任一项所述的方法,其中,步骤(3)中,所述的吸附使用大孔树脂吸附,吸附的条件为:pH为1.0~8.0、吸附温度为15~60℃、液相空速为1~10h -1,优选地,其pH为2.0~5.0、吸附温度为30~50℃、液相空速为1~5h -1
  8. 根据权利要求7所述的方法,其中,所述的大孔吸附树脂为活性炭改性大孔吸附树脂,其制备方法包括:常温下配制油相:将多乙烯基芳香族单体、单乙烯基芳香族单体、致孔剂、引发剂混合均匀;常温下配制水相:将纯水、粉末活性炭、分散剂、任选的分散助剂、合成助剂混合均匀,然后将油相和水相混合进行聚合反应,其中,油相/水相质量比为1:5~1:2,聚合温度为60~95℃,聚合时间为4~12h。
  9. 根据权利要求8所述的方法,其中,所述的粉末活性炭加入量占水相质量的0.5~5wt%,优选为水相质量的1~2wt%,目数在200~500目。
  10. 根据权利要求8或9所述的方法,其中,大孔吸附树脂干燥后的粒径分布为300~1500μm,干燥后的BET比表面积为300~1500m 2/g,BET平均孔径为3.0~15.0nm,BET孔容为0.5~2.5mL/g。
PCT/CN2020/131014 2020-11-24 2020-11-24 一种氯乙烯高盐废水的深度处理和回用方法 WO2022109765A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/131014 WO2022109765A1 (zh) 2020-11-24 2020-11-24 一种氯乙烯高盐废水的深度处理和回用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/131014 WO2022109765A1 (zh) 2020-11-24 2020-11-24 一种氯乙烯高盐废水的深度处理和回用方法

Publications (1)

Publication Number Publication Date
WO2022109765A1 true WO2022109765A1 (zh) 2022-06-02

Family

ID=81755203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131014 WO2022109765A1 (zh) 2020-11-24 2020-11-24 一种氯乙烯高盐废水的深度处理和回用方法

Country Status (1)

Country Link
WO (1) WO2022109765A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4430123A1 (de) * 1994-08-25 1996-02-29 Zueblin Ag Verfahren zur selektiven Strippung eines Schadstoffgemisches
CN1915511A (zh) * 2006-08-17 2007-02-21 南京工业大学 降解水中氯代有机污染物的双金属催化剂及其制备方法和应用
CN101531419A (zh) * 2009-04-13 2009-09-16 杭州浙大易泰环境科技有限公司 一种强化金属还原脱氯处理氯代烯烃废水的方法
CN102059132A (zh) * 2010-12-02 2011-05-18 华东理工大学 用于非均相Fenton体系的负载型固体催化剂及其在水处理中的应用
CN104150682A (zh) * 2014-06-27 2014-11-19 李开明 一种乙烯氧氯化法氯乙烯生产废水的处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4430123A1 (de) * 1994-08-25 1996-02-29 Zueblin Ag Verfahren zur selektiven Strippung eines Schadstoffgemisches
CN1915511A (zh) * 2006-08-17 2007-02-21 南京工业大学 降解水中氯代有机污染物的双金属催化剂及其制备方法和应用
CN101531419A (zh) * 2009-04-13 2009-09-16 杭州浙大易泰环境科技有限公司 一种强化金属还原脱氯处理氯代烯烃废水的方法
CN102059132A (zh) * 2010-12-02 2011-05-18 华东理工大学 用于非均相Fenton体系的负载型固体催化剂及其在水处理中的应用
CN104150682A (zh) * 2014-06-27 2014-11-19 李开明 一种乙烯氧氯化法氯乙烯生产废水的处理方法

Similar Documents

Publication Publication Date Title
US10696574B2 (en) Method for treating reverse osmosis concentrated water
Wang et al. Metal–organic frameworks MIL-88A with suitable synthesis conditions and optimal dosage for effective catalytic degradation of Orange G through persulfate activation
WO2018035882A1 (zh) 一种用于催化氧化处理有机废水的催化剂及其制备方法和用途
CN112892475B (zh) 铁改性生物炭及其制备方法与应用
CN111943230A (zh) 一种工业废水副产盐资源化处理方法
CN108144589B (zh) 一种树脂及其制备方法,以及使用该树脂处理废水的方法
Yan et al. Catalytic ozonation for the degradation of polyvinyl alcohol in aqueous solution using catalyst based on copper and manganese
CN108057455A (zh) 臭氧催化氧化催化剂及其制备方法和应用
WO2013123780A1 (zh) 一种深度处理焦化废水生化尾水的方法
CN110743623B (zh) 一种催化氧化催化剂及其制备方法、mdi盐水中有机物的深度处理方法
CN111377523B (zh) 一种有机废水的催化湿式氧化处理方法
CN112607896B (zh) 一种氯乙烯高盐废水的深度处理和回用方法
Chen et al. High flux Fe/activated carbon membranes for efficient degradation of organic pollutants in water by activating sodium persulfate
Shams et al. Tailoring the topology of ZIF-67 metal-organic frameworks (MOFs) adsorbents to capture humic acids
CN113828285A (zh) 一种低浓度含氟废水深度处理的滤料及其制备方法
Li et al. Magnetic spent coffee biochar (Fe-BC) activated peroxymonosulfate system for humic acid removal from water and membrane fouling mitigation
WO2022109765A1 (zh) 一种氯乙烯高盐废水的深度处理和回用方法
Shao et al. Calcium-based catalyst for ozone catalytic oxidation for advanced treatment of high salt organic wastewater
CN111377520B (zh) 一种有机废水处理工艺
CN107021582B (zh) 一种垃圾渗滤液预处理工艺
CN113117749B (zh) 一种催化去除煤化工高含盐废水中cod复合催化膜的制备方法及其应用
CN113373463B (zh) 一种由环氧树脂生产过程所产生的氯化钠废水制备烧碱的方法
CN111377521B (zh) 一种利用臭氧催化氧化处理有机废水的方法
Zhang et al. Sequencing batch photocatalytic H 2 O 2 production over a magnetic resorcinol–formaldehyde polymer for on-site water purification by UV light irradiation
CN112960796A (zh) 废水中磺胺二甲基嘧啶的去除方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962656

Country of ref document: EP

Kind code of ref document: A1