WO2021090641A1 - 炭素繊維束の製造方法 - Google Patents

炭素繊維束の製造方法 Download PDF

Info

Publication number
WO2021090641A1
WO2021090641A1 PCT/JP2020/038446 JP2020038446W WO2021090641A1 WO 2021090641 A1 WO2021090641 A1 WO 2021090641A1 JP 2020038446 W JP2020038446 W JP 2020038446W WO 2021090641 A1 WO2021090641 A1 WO 2021090641A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber bundle
carbon fiber
carbonization treatment
bundle
treatment
Prior art date
Application number
PCT/JP2020/038446
Other languages
English (en)
French (fr)
Inventor
田中文彦
渡邉潤
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020558064A priority Critical patent/JPWO2021090641A1/ja
Publication of WO2021090641A1 publication Critical patent/WO2021090641A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor

Definitions

  • the present invention relates to a production method for producing a high-quality carbon fiber bundle having a high elastic modulus with excellent productivity.
  • polyacrylonitrile-based carbon fibers are their high elastic modulus. Considering increasing the total fineness of carbon fiber bundles in order to increase productivity while further increasing the elastic modulus compared to general-purpose products. Is being promoted (Patent Document 1).
  • the proposed carbon fiber bundle having a high total fineness and a high elastic modulus has a large yarn width (thickness) of the carbon fiber bundle by adding twisting.
  • the carbon fiber bundle is a flame-resistant step of converting a polyacrylonitrile-based carbon fiber precursor fiber bundle into a flame-resistant fiber in an oxidizing atmosphere of 200 to 300 ° C., and reserve carbon in an inert atmosphere of 500 to 1200 ° C. It is industrially produced through a pre-carbonization step of carbonization and a carbonization step of carbonization in an inert atmosphere at 1200 to 3000 ° C. Among them, in order to increase the elastic modulus of the carbon fiber bundle, it is being promoted to apply high tension in the carbonization step. Specifically, for example, Patent Document 2 proposes to apply high tension in the carbonization step during the production of carbon fiber bundles. Patent Document 3 proposes to apply high tension in the carbonization step while twisting in the production of the carbon fiber bundle.
  • Patent Document 4 As a manufacturing facility for manufacturing a carbon fiber bundle, there is a drive roller for transporting the fiber bundle, and an example in which the roller diameter is increased to 60 mm or more is known (Patent Document 4).
  • Patent Document 4 describes that the physical properties are improved as the roller diameter is increased in the flame resistance step, the embodiment only shows an embodiment in which a roller having a diameter of 159 mm is used at most. Further, neither the description regarding the carbonization process having a small breaking strain nor the suggestion of imparting a high tension was given, and attention was not paid to the quality.
  • the present invention provides a method for suppressing the generation of fluff on the fiber bundle during transportation by the drive roller in the case of producing a carbon fiber bundle having a large total fineness and twisted high elastic modulus and a large yarn width. With the goal.
  • the method for producing a carbon fiber bundle of the present invention has any of the following characteristics.
  • (1) The polyacrylonitrile-based carbon fiber precursor fiber bundle is heat-treated in an oxidizing atmosphere at 200 to 300 ° C. to obtain a flame-resistant fiber bundle, and then the flame-resistant fiber bundle has a maximum temperature of 500.
  • Pre-carbonization treatment is performed by heat treatment in an inert atmosphere controlled to be about 1200 ° C. to obtain a pre-carbonized fiber bundle, and then the pre-carbonized fiber bundle has a maximum temperature of 1200 to 3000 ° C.
  • the fiber bundle travels while contacting a drive roller before and after the carbonization treatment, and is obtained.
  • the total fineness A of the carbon fiber bundle is 6000 to 40,000 dtex
  • the maximum twist angle B is 1 to 10 °
  • the tension C of the fiber bundle in the carbonization treatment is 50 to 500 N / bundle
  • the driving rollers before and after the carbonization treatment A method for producing a carbon fiber bundle having a diameter D of 200 to 1000 mm.
  • Pre-carbonization treatment for heat treatment in an inert atmosphere is performed to obtain a pre-carbonized fiber bundle, and then the pre-carbonized fiber bundle is heat-treated in an inert atmosphere at 1200 to 3000 ° C. for carbonization treatment.
  • the fiber bundle travels while in contact with a driving roller before and after the carbonization treatment, and the total fineness A of the obtained carbon fiber bundle is 6000 to 40,000 dtex, and the maximum twist angle B. 1 to 10 °
  • the tension C of the fiber bundle in the carbonization treatment is 50 to 500 N / bundle
  • the diameter D of the drive roller before and after the carbonization treatment is 200 to 1000 mm.
  • the total fineness A of the carbon fiber bundle, the maximum twist angle B of the carbon fiber bundle, the tension C of the fiber bundle in the carbonization treatment, and the diameter D of the driving roller are given by the formula (1). It is preferable to be satisfied. D> C / 2 + (A 0.5 x B) / 10 ... Equation (1) Further, the fiber bundle passing through the driving roller after the carbonization treatment preferably has an elongation of 0.5 to 3.0%.
  • a carbon fiber bundle having a high elastic modulus can be obtained with high quality and high productivity.
  • the polyacrylonitrile-based carbon fiber precursor fiber bundle is heat-treated in an oxidizing atmosphere at 200 to 300 ° C. to obtain a flame-resistant fiber bundle, and then the flame-resistant fiber bundle is 500 to 1200.
  • Pre-carbonization treatment is performed to heat-treat in an inert atmosphere at ° C. to obtain a pre-carbonized fiber bundle, and then the pre-carbonized fiber bundle is heat-treated in an inert atmosphere at 1200 to 3000 ° C.
  • a carbon fiber bundle having a high elasticity can be obtained with high quality and high productivity by paying attention to a carbonization process for treating a fiber bundle having a small breaking strain. It is what achieves that.
  • the total fineness A of the obtained carbon fiber bundle is 6000 to 40,000 dtex, preferably 8,000 to 35,000 dtex, and more preferably 10,000 to 30,000 dtex.
  • the total fineness of the carbon fiber bundle is better as it is related to the productivity of the carbon fiber bundle. Further, since the total fineness of the carbon fiber bundle is indicated by the basis weight (g / m) in the catalog, it can be easily known by converting it into dtex. Since the mass of the carbon fiber bundle changes in the carbonization process, the total fineness changes in the middle of the process, but the mass change after leaving the carbonization furnace is small, and the total fineness of the carbon fiber bundle changes in the carbonization furnace.
  • the productivity of the carbon fiber bundle is high when the total fineness of the carbon fiber bundle is 6000 dtex or more.
  • the quality of the carbon fiber bundle is at a satisfactory level.
  • the total fineness of the carbon fiber bundle can be evaluated by converting it from the mass per 10 m. In order to control the total fineness of the carbon fiber bundle, the single fiber fineness and the number of filaments may be adjusted.
  • the number of filaments per thread of the carbon fiber bundle is preferably 10,000 to 80,000, and more preferably 20,000 to 50,000. It can be said that the productivity of the carbon fiber bundle is high when the number of filaments of the carbon fiber bundle is 10,000 or more. When the number of filaments of the carbon fiber bundle is 80,000 or less, the quality of the carbon fiber bundle is at a satisfactory level.
  • the maximum twist angle B of the obtained carbon fiber bundle is 1 to 10 °, preferably 2 to 9 °, and more preferably 3 to 8 °.
  • the twist angle at the center is close to 0 ° with respect to the radial direction of the fiber bundle, and the outermost layer has the maximum twist angle.
  • the fact that the carbon fiber bundle has a twist means that the focusing property is high, and the maximum twist angle may be adjusted. If the maximum twist angle of the carbon fiber bundle is 1 ° or more, the focusing property is satisfied, and if it is 10 ° or less, tension is easily applied during the carbonization treatment.
  • the fiber bundle is twisted before the carbonization step.
  • the maximum twist angle is calculated by the following equation (2) using the basis weight y (g / m), the density d (g / cm 3 ), and the number of twists T (turn / m) of the used fiber bundle.
  • Twist angle (°) arctan ⁇ (0.01 ⁇ y / ⁇ / d) 0.5 ⁇ 10-6 ⁇ ⁇ ⁇ T ⁇ ⁇ ⁇ (2)
  • a known method for twisting the fiber bundle a known method can be selected. Specifically, a method in which the fiber bundle is once wound around the bobbin and then the bobbin is swiveled in a plane orthogonal to the unwinding direction when the fiber bundle is unwound, or a running fiber without being wound around the bobbin. It can be controlled by a method of bringing a rotating roller or a belt into contact with the bobbin to give a twist. In other words, the maximum twist angle can be evaluated from the basis weight, density and number of twists.
  • the tension C in the carbonization treatment is 50 to 500 N / bundle, preferably 100 to 450 N / bundle, and more preferably 150 to 400 N / bundle.
  • the tension in the carbonization treatment is an important factor for determining the elastic modulus of the carbon fiber bundle. If the tension is 50 N / bundle or more, the elastic modulus is satisfactory, and if the tension is 500 N / bundle or less, the grade of the carbon fiber bundle is good. It is a satisfactory result.
  • the tension in the carbonization treatment can be adjusted by changing the roller speed (stretching ratio) before and after the treatment, and can be evaluated with a tension meter or the like.
  • the fiber bundle travels while in contact with the drive roller before and after the carbonization treatment, but the diameter D of the drive roller before and after the carbonization treatment is preferably 200 to 1000 mm. It is 250 to 800 mm, more preferably 270 to 600 mm.
  • high tension is applied to the thick carbon fiber bundle in the carbonization treatment, and the thick carbon fiber bundle is formed on the drive roller with the inside of the carbon fiber bundle (the side in contact with the drive roller) and carbon.
  • the difference in circumference is large on the outside of the fiber bundle (the side farthest from the drive roller), and distortion occurs even when there is no tension.
  • the larger the radius of curvature of the driving roller that is, the smaller the diameter of the driving roller, the more easily the carbon fiber bundle is distorted and the more fluff is generated.
  • the diameter of the drive roller is 200 mm or more, it is easy to suppress the fluff of the carbon fiber bundle, and if it is 1000 mm or more, the effect of suppressing the fluff is often saturated.
  • suitable points are the carbonization treatment when the total fineness A, the maximum twist angle B, and the tension C of the fiber bundle in the carbonization treatment are within a specific range as described above.
  • the diameter D of the front and rear drive rollers satisfies the relationship of the equation (1). D> C / 2 + (A 0.5 x B) / 10 ... Equation (1)
  • the strain due to the difference in circumference related to the tension in the carbonization treatment and the thickness of the carbon fiber bundle is related to the appearance of fluff in the carbon fiber bundle. It was derived by empirically understanding that the influence of the length difference is alleviated and the fluff of the carbon fiber bundle is less likely to appear.
  • the drive roller before and after the carbonization treatment is a drive roller in which the fiber bundles entering and exiting the carbonization furnace come into contact with each other at the positions closest to the carbonization furnace before and after the carbonization furnace.
  • the number of drive rollers before and after the carbonization treatment is preferably 1 to 10. If the number of drive rollers is 1 or more, the fiber bundle can be conveyed, and if it is 10 or less, the increase in fluff in each drive roller can be suppressed.
  • the “driving roller before and after the carbonization treatment” defined in the present invention means only the driving roller closest to the carbonization furnace among the preferably 1 to 10 driving rollers before and after the carbonization treatment. However, the diameter of the other drive rollers is also preferably 200 to 1000 mm.
  • the elongation of the fiber bundle passing through the driving roller after the carbonization treatment is preferably 0.5 to 3.0%, more preferably 0.5 to 2. It is 0%.
  • the elongation of the fiber bundle can be adjusted by the maximum temperature of the carbonization furnace and the tension C.
  • the elongation of the fiber bundle can be evaluated by a tensile test of a single fiber, and the details will be described later.
  • the fiber bundle that passes through the driving roller after the carbonization treatment the fiber bundle existing on the driving roller after the carbonization treatment may be sampled as it is, or the fiber that has undergone the subsequent surface treatment, sizing agent coating treatment, or the like. Even a bundle is good because there is no change in elongation, and the finally obtained carbon fiber bundle may be used as it is.
  • the standard elongation of the carbon fiber bundle is about 0.7 to 2.2%.
  • the carbon fiber precursor fiber bundle that is the source of the carbon fiber bundle of the present invention can be obtained by spinning a spinning solution of a polyacrylonitrile copolymer.
  • the carbon fiber precursor fiber can be produced by spinning the obtained spinning solution by a wet spinning method or a dry wet spinning method. Specifically, the spinning solution is introduced into a coagulation bath to coagulate it, and the obtained coagulated fibers are passed through a washing step, a drawing step in the bath, an oiling agent application step, and a drying step to allow the carbon fiber precursor fibers. Is obtained. Further, a dry heat stretching step or a steam stretching step may be added to the above steps.
  • the obtained carbon fiber precursor fiber bundle is usually in the form of continuous fibers.
  • the number of filaments per thread is preferably 10,000 to 80,000, and more preferably 20,000 to 50,000.
  • the carbon fiber precursor fiber bundle may be combined as necessary to adjust the number of filaments per thread of the obtained carbon fiber bundle.
  • the carbon fiber precursor fiber bundle described above is flame-resistant, followed by a preliminary carbonization treatment and a carbonization treatment in that order.
  • the flame-resistant treatment of the carbon fiber precursor fiber bundle is carried out in an oxidizing atmosphere such as air, preferably in a temperature range of 200 to 300 ° C.
  • the carbon fiber precursor fiber bundle is flame-resistant within such a temperature range to become a flame-resistant fiber bundle.
  • the flame-resistant treatment is followed by the pre-carbonization treatment of the flame-resistant fiber bundle.
  • the flame-resistant fiber bundles obtained by the flame-resistant treatment have a density of 1.5 to 1 in an inert atmosphere in which the maximum temperature is controlled to be in the range of 500 to 1200 ° C. It is preferable to heat-treat until it reaches 8 g / cm 3.
  • the flame-resistant fiber bundle is pre-carbonized to become a pre-carbonized fiber.
  • the maximum temperature of the inert atmosphere is preferably less than 1200 ° C.
  • the preliminary carbonization fiber is carbonized.
  • the carbonization treatment is performed on the pre-carbonized fibers obtained by the pre-carbonization treatment in an inert atmosphere in which the maximum temperature is controlled to be in the range of 1200 to 3000 ° C.
  • the maximum temperature in the carbonization treatment is preferably high from the viewpoint of increasing the elastic modulus of the obtained carbon fiber bundle, and if the temperature is 1200 ° C. or higher, the elastic modulus is suitable for applications in which rigidity is important as a carbon fiber reinforced composite material. A high carbon fiber bundle is obtained.
  • the maximum temperature of the carbonization treatment is preferably 1500 ° C. or higher. On the other hand, if the maximum temperature of the carbonization treatment is too high, the quality may easily deteriorate.
  • the inert gas used in the inert atmosphere for example, nitrogen, argon, xenon and the like are preferably exemplified, and nitrogen is preferably used from an economical point of view.
  • the carbon fiber bundle obtained by the above-mentioned production method may be further subjected to additional graphitization treatment in an inert atmosphere up to 3000 ° C., and the elastic modulus of the carbon fiber bundle may be appropriately adjusted according to the application.
  • the carbon fiber bundle obtained as described above is preferably surface-treated after the carbonization treatment to introduce a functional group containing an oxygen atom.
  • a functional group containing an oxygen atom As the surface treatment method, vapor phase oxidation, liquid phase oxidation, and liquid phase electrolytic oxidation are used, but liquid phase electrolytic oxidation is preferably used from the viewpoint of high productivity and uniform treatment.
  • the method of liquid phase electrolytic oxidation is not particularly limited, and a known method may be used.
  • the maximum twist angle is calculated by the following equation (2) using the basis weight y (g / m), the density d (g / cm 3 ), and the number of twists T (turn / m) of the used fiber bundle.
  • Twist angle (°) arctan ⁇ (0.01 ⁇ y / ⁇ / d) 0.5 ⁇ 10-6 ⁇ ⁇ ⁇ T ⁇ ⁇ ⁇ (2) ⁇ Total fineness>
  • the fiber bundle to be measured is sampled for a length of 10 m, dried, and then multiplied by 1000 to obtain the total fineness, which is the mass per 10,000 m.
  • a fiber bundle of about 20 cm is divided into approximately four equal parts, and single fibers are sampled in order from the four bundles. At this time, a total of 15 single fibers are sampled, and each bundle is sampled as evenly as possible from the whole.
  • Each of the sampled single fibers is fixed to a 50 mm perforated mount.
  • an epoxy adhesive "Araldite (registered trademark)" fast-curing type manufactured by Nichiban Co., Ltd. is used, and after application, it is allowed to stand at room temperature for 24 hours to be cured.
  • a mount on which a single fiber is fixed is attached to a tensile test device, and a tensile test is performed at a strain rate of 4% / min and a sample size of 15 at each gauge length of 50 mm.
  • the elongation (%) of each single fiber is averaged to obtain the elongation of the fiber bundle.
  • a tensile tester "Tencilon RTF-1210" manufactured by A & D Co., Ltd. was used as the tensile tester.
  • ⁇ Number of fluffs on carbon fiber bundle> Only the fluff generated by the drive roller is evaluated. In particular, among the drive rollers before and after the carbonization furnace, the fluff generated by the drive rollers after the carbonization furnace is evaluated and used as a representative of both. The number of fluffs in the carbon fiber bundle is counted on the entry side and the exit side of the drive roller group after the carbonization furnace. To make the fluff easier to see, count 10 m while illuminating with a floodlight and divide by 10 to obtain the number of fluff per 1 m. In order to remove the fluff generated in the carbonization treatment process, the number of fluffs on the inward side is subtracted from the number of fluffs on the outward side to obtain the final number of fluffs.
  • the polyacrylonitrile copolymer was polymerized by a solution polymerization method using dimethyl sulfoxide as a solvent to obtain a spinning solution.
  • a coagulated fiber bundle was obtained by a dry-wet spinning method in which the obtained spinning solution was once discharged from the spinneret into the air and then introduced into a coagulation bath. Then, the coagulated fiber bundle was washed with water and then stretched in a bath to apply a silicone oil agent, dried, and stretched in pressurized steam to obtain a carbon fiber precursor fiber bundle having a single fiber fineness of 1.1 dtex.
  • the obtained carbon fiber precursor fiber bundle is combined and wound so that the total fineness becomes the value shown in Table 1, and the bobbin is swirled, and the air is twisted so as to have the twist angle shown in Table 1.
  • Atmosphere The flame-resistant treatment was performed in an oven at 230 to 280 ° C., and the fibers were converted into flame-resistant fiber bundles.
  • the obtained flame-resistant fiber bundle was subjected to pre-carbonization treatment in a nitrogen atmosphere at a maximum temperature of 800 ° C. to obtain a pre-carbonized fiber bundle.
  • the pre-carbonized fiber bundle was carbonized under the load shown in Table 1 in a nitrogen atmosphere at a maximum temperature of 1800 ° C. to obtain a carbon fiber bundle.
  • Table 1 shows the elongation of the fiber bundle passing through the driving roller after the carbonization treatment, the evaluation result of the obtained carbon fiber bundle, and the calculation result on the right side of the above formula (1).
  • any of the total fineness, the maximum twist angle, and the load does not fall within the scope of the present invention, and in that case, the number of fluffs of the carbon fiber bundle does not increase. It is a condition that such a problem does not occur.
  • the method for producing a carbon fiber bundle of the present invention can obtain a carbon fiber bundle having a high elastic modulus with high quality and high productivity.
  • a carbon fiber reinforced composite material having a high elastic modulus can be obtained with high productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Fibers (AREA)

Abstract

総繊度が大きく撚りを加えた高弾性率かつ糸幅の大きな炭素繊維束を製造する場合において、駆動ローラーでの搬送中の毛羽発生を抑制する方法を提供するため、ポリアクリロニトリル系炭素繊維前駆体繊維束を200~300℃の酸化性雰囲気中で熱処理する耐炎化処理を行って耐炎化繊維束を得た後、該耐炎化繊維束を最高温度が500~1200℃となるように制御した不活性雰囲気中で熱処理する予備炭素化処理を行って予備炭素化繊維束を得て、次いで、該予備炭素化繊維束を最高温度が1200~3000℃となるように制御した不活性雰囲気中で熱処理する炭素化処理を行って炭素繊維束を得る炭素繊維束の製造方法において、炭素化処理の前後では繊維束は駆動ローラーに接触しながら走行し、得られる炭素繊維束の総繊度Aが6000~40000dtex、最大撚り角Bが1~10°であり、炭素化処理における繊維束の張力Cが50~500N/束であり、炭素化処理前後の駆動ローラーの直径Dが200~1000mmである、炭素繊維束の製造方法とする。

Description

炭素繊維束の製造方法
 本発明は、生産性に優れる高弾性率の炭素繊維束を高品位に製造する製造方法に関するものである。
 ポリアクリロニトリル系炭素繊維の特長の一つとして高弾性率であることが挙げられるが、汎用品よりもさらに弾性率を高めつつも、生産性を高めるために、炭素繊維束の総繊度を高める検討が進められている(特許文献1)。そして、提案されている総繊度の大きい高弾性率の炭素繊維束は、撚りを加えることで炭素繊維束の糸幅(厚み)が大きなものとなってきている。
 ここで、炭素繊維束は、ポリアクリロニトリル系炭素繊維前駆体繊維束を200~300℃の酸化性雰囲気下で耐炎化繊維へ転換する耐炎化工程、500~1200℃の不活性雰囲気下で予備炭素化する予備炭素化工程、1200~3000℃の不活性雰囲気下で炭素化する炭素化工程を経て工業的に製造される。その中でも、炭素繊維束の高弾性率化のために、炭素化工程で高張力を付与することが進められている。具体的に、例えば特許文献2では、炭素繊維束の製造の際に炭素化工程で高張力を付与することが提案されている。特許文献3では、炭素繊維束の製造の際に撚りを加えつつ、炭素化工程で高張力を付与することが提案されている。
 また、炭素繊維束を製造する際の製造設備として、繊維束を搬送するための駆動ローラーがあるが、ローラー径を60mm以上に大きくする例が知られている(特許文献4)。
国際公開第2019/244830号 特開2014-141762号公報 特開2014-141761号公報 特開昭49-92327号公報
 しかしながら、従来の技術には次のような課題がある。
 ポリアクリロニトリル系炭素繊維前駆体繊維束や耐炎化繊維とは異なり、炭素化工程に搬送される繊維束は、予備炭素化工程までの処理によって、破断ひずみが小さいものとなっている。そのため、特許文献1に記載されるように総繊度を高めつつ撚りを加えて高張力で炭素化処理を行うと、炭素化炉内での張力によって、炭素化炉外のローラーの手前においても毛羽が発生した。すなわち、炭素化炉内だけではなく、炭素化炉の外に存在するローラーでの搬送中に毛羽が増加するという課題が新たに発生した。特許文献2および3では、生産性の観点で必須な総繊度が低かったために、通常のローラー搬送で特に問題が生じず、総繊度を大きくしたときの課題について検討されていなかった。特許文献4では、耐炎化工程において、ローラー径を大きくするほど物性が向上することの記載があるものの、実施例でもせいぜい径が159mmのローラーを用いた態様を示すのみである。そして、破断ひずみの小さい炭素化工程に関する記載も、高張力を付与する示唆もなく、品位に関して着目されていなかった。
 そこで、本発明は、総繊度が大きく撚りを加えた高弾性率かつ糸幅の大きな炭素繊維束を製造する場合において、駆動ローラーによる搬送中繊維束への毛羽発生を抑制する方法を提供することを目的とする。
 上記の目的を達成するために、本発明の炭素繊維束の製造方法は以下のいずれかの特徴を有する。
(1)ポリアクリロニトリル系炭素繊維前駆体繊維束を200~300℃の酸化性雰囲気中で熱処理する耐炎化処理を行って耐炎化繊維束を得た後、該耐炎化繊維束を最高温度が500~1200℃となるように制御した不活性雰囲気中で熱処理する予備炭素化処理を行って予備炭素化繊維束を得て、次いで、該予備炭素化繊維束を最高温度が1200~3000℃となるように制御した不活性雰囲気中で熱処理する炭素化処理を行って炭素繊維束を得る炭素繊維束の製造方法において、炭素化処理の前後では繊維束は駆動ローラーに接触しながら走行し、得られる炭素繊維束の総繊度Aが6000~40000dtex、最大撚り角Bが1~10°であり、炭素化処理における繊維束の張力Cが50~500N/束であり、炭素化処理前後の駆動ローラーの直径Dが200~1000mmである、炭素繊維束の製造方法。
(2)ポリアクリロニトリル系炭素繊維前駆体繊維束を200~300℃の酸化性雰囲気中で熱処理する耐炎化処理を行って耐炎化繊維束を得た後、該耐炎化繊維束を500~1200℃の不活性雰囲気中で熱処理する予備炭素化処理を行って予備炭素化繊維束を得て、次いで、該予備炭素化繊維束を1200~3000℃の不活性雰囲気中で熱処理する炭素化処理を行って炭素繊維束を得る炭素繊維束の製造方法において、炭素化処理の前後では繊維束は駆動ローラーに接触しながら走行し、得られる炭素繊維束の総繊度Aが6000~40000dtex、最大撚り角Bが1~10°であり、炭素化処理における繊維束の張力Cが50~500N/束であり、炭素化処理前後の駆動ローラーの直径Dが200~1000mmである、炭素繊維束の製造方法。
 これらの製造方法においては、前記炭素繊維束の総繊度A、前記炭素繊維束の最大撚り角B、前記炭素化処理における繊維束の張力C、および前記駆動ローラーの直径Dが式(1)を満足することが好ましい。
D>C/2+(A0.5×B)/10  ・・・式(1)
 また、前記炭素化処理後の駆動ローラーを通過する繊維束は、伸度が0.5~3.0%であることが好ましい。
 本発明の炭素繊維束の製造方法によれば、高弾性率の炭素繊維束を高品位、かつ高い生産性で得ることができる。
 本発明は、ポリアクリロニトリル系炭素繊維前駆体繊維束を200~300℃の酸化性雰囲気中で熱処理する耐炎化処理を行って耐炎化繊維束を得た後、該耐炎化繊維束を500~1200℃の不活性雰囲気中で熱処理する予備炭素化処理を行って予備炭素化繊維束を得て、次いで、該予備炭素化繊維束を1200~3000℃の不活性雰囲気中で熱処理する炭素化処理を行って炭素繊維束を得る炭素繊維束の製造方法において、破断ひずみが小さい繊維束を処理する炭素化工程に着目することで、高弾性率の炭素繊維束を高品位、かつ高い生産性で得ることを達成するものである。
 本発明の炭素繊維束の製造方法において、得られる炭素繊維束の総繊度Aは、6000~40000dtexであり、好ましくは8000~35000dtexであり、より好ましくは10000~30000dtexである。炭素繊維束の総繊度は、炭素繊維束の生産性に関連するために大きいほど良い。また、炭素繊維束の総繊度は、カタログ上では目付(g/m)で表記されているためにdtexに換算すれば容易に知ることができる。炭素繊維束は、炭素化工程で質量変化するために総繊度は工程途中で変化していくが、炭素化炉を出た後の質量変化は小さく、炭素繊維束の総繊度は炭素化炉を出た直後の総繊度と見なすことができる。すなわち、炭素繊維束の総繊度が6000dtex以上であると炭素繊維束の生産性が高いと言える。炭素繊維束の総繊度が40000dtex以下であれば、炭素繊維束の品位が満足できるレベルとなる。炭素繊維束の総繊度は大きいほど、ローラー上での束の厚みが大きくなることにも注意が必要である(詳細は後述する)。炭素繊維束の総繊度は10mあたりの質量から換算して評価することができる。炭素繊維束の総繊度を制御するためには、単繊維繊度とフィラメント数を調整すれば良い。
 炭素繊維束は、1糸条あたりのフィラメント数は、好ましくは10000~80000本であり、より好ましくは20000~50000本である。炭素繊維束のフィラメント数が10000本以上であると炭素繊維束の生産性が高いと言える。炭素繊維束のフィラメント数が80000本以下であれば、炭素繊維束の品位が満足できるレベルとなる。
 本発明の炭素繊維束の製造方法において、得られる炭素繊維束の最大撚り角Bは、1~10°であり、好ましくは2~9°であり、より好ましくは3~8°である。炭素繊維束を撚った場合、繊維束の径方向に関して中心部の撚り角は0°に近く、最表層が最大撚り角となる。炭素繊維束が撚りを有することは、集束性が高いことを意味し、最大撚り角で調整すれば良い。炭素繊維束の最大撚り角が1°以上であれば集束性が満足するものとなり、10°以下であれば炭素化処理時に張力を付与しやすい。炭素繊維束の最大撚り角は大きいほど炭素繊維束の断面が扁平から円断面化しやすく、ローラー上での束の厚みが大きくなることにも注意が必要である(詳細は後述する)。炭素繊維束に撚りが入った状態とするためには、炭素化工程より前に繊維束に撚りを与える。最大撚り角は、用いた繊維束の目付y(g/m)、密度d(g/cm)、および撚り数T(ターン/m)を用いて、次の式(2)により計算する。
 撚り角(°)=arctan{(0.01×y/π/d)0.5×10-6×π×T} ・・(2)
 繊維束に撚りを与える方法としては、公知のものから選ぶことができる。具体的には、繊維束を一旦ボビンに巻き取った後、該繊維束を巻き出す際にボビンを巻き出し方向に対して直交する面に旋回させる方法や、ボビンに巻き取らず走行中の繊維に対して回転するローラーやベルトを接触させて撚りを付与する方法などにより制御することができる。言い換えると、最大撚り角は目付と密度と撚り数から評価することも可能である。
 本発明の炭素繊維束の製造方法において、炭素化処理における張力Cは50~500N/束であり、好ましくは100~450N/束であり、より好ましくは150~400N/束である。炭素化処理における張力は、炭素繊維束の弾性率を決定する重要な要素であり、張力が50N/束以上であれば弾性率が満足でき、500N/束以下であれば炭素繊維束の品位が満足できる結果である。炭素化処理における張力は、処理前後のローラー速度(延伸比)を変更することで調整でき、張力計などで評価することができる。
 本発明の炭素繊維束の製造方法において、炭素化処理の前後では繊維束が駆動ローラーに接触しながら走行するが、炭素化処理前後の該駆動ローラーの直径Dは200~1000mmであり、好ましくは250~800mmであり、より好ましくは270~600mmである。本発明においては炭素化処理において厚みのある炭素繊維束に高張力が付与されており、厚みのある炭素繊維束は、駆動ローラー上で炭素繊維束内側(駆動ローラーに接している側)と炭素繊維束外側(駆動ローラーから最も離れている側)で周長差が大きく、無張力でも歪みが発生していることになる。したがって、駆動ローラーの曲率半径が大きい、すなわち、駆動ローラーの直径が小さいほど炭素繊維束への歪みが発生しやすく、毛羽が発生しやすい。しかしながら、駆動ローラーの直径が200mm以上あれば、炭素繊維束の毛羽を抑制しやすく、1000mmもあれば毛羽を抑制する効果は飽和していることが多い。
 本発明の炭素繊維束の製造方法において、好適なポイントは、上述したような総繊度A、最大撚り角B、および炭素化処理における繊維束の張力Cが特定の範囲のときに、炭素化処理前後の駆動ローラーの直径Dが式(1)の関係を満足することである。
D>C/2+(A0.5×B)/10  ・・・式(1)
 炭素化処理における張力と炭素繊維束の厚みに関連した周長差による歪みが炭素繊維束における毛羽の出方に関わるが、この式は、駆動ローラーの直径を大きくすることで炭素繊維束の周長差の影響が緩和されて、炭素繊維束の毛羽が出にくくなることを経験的に理解して導き出されたものである。そのため、A、B、Cの条件に応じて駆動ローラーの直径を調整することが好ましい。本発明において、炭素化処理前後の駆動ローラーとは、炭素化炉を出入りする繊維束が、炭素化炉の事前、事後それぞれで炭素化炉に最も近い位置で接触する駆動ローラーのことである。
 本発明の炭素繊維束の製造方法において、炭素化処理前後それぞれの駆動ローラーの個数は好ましくは1~10個である。駆動ローラーの個数が1個以上あれば繊維束の搬送ができ、10個以下であれば各駆動ローラーでの毛羽の増加が抑制できる。本発明において規定する「炭素化処理前後の駆動ローラー」とは、あくまでも炭素化処理前後のそれぞれ好ましくは1~10個の駆動ローラーのうち、炭素化炉に最も近い駆動ローラーのみのことを示す。ただし、その他の駆動ローラーの直径についても好ましくは200~1000mmである。
 本発明の炭素繊維束の製造方法において、炭素化処理後の駆動ローラーを通過する繊維束の伸度は、好ましくは0.5~3.0%であり、より好ましくは0.5~2.0%である。該駆動ローラーを通過する繊維束の伸度が低いものほど、駆動ローラーの直径を調整することで、駆動ローラーによる毛羽発生を抑制する効果を得やすい。繊維束の伸度が0.5%以上であれば強度が高くて工業的に価値があることが多く、3.0%以下であれば弾性率が高いことを意味して工業的に価値があることが多い。該繊維束の伸度は、炭素化炉の最高温度や張力Cにより調整することができる。また、該繊維束の伸度は、単繊維の引張試験で評価することができ、詳細は後述する。炭素化処理後の駆動ローラーを通過する繊維束としては、炭素化処理後の駆動ローラー上に存在する繊維束をそのままサンプリングしても良いし、その後の表面処理、サイジング剤塗布処理などを経た繊維束でも伸度には変化がないために良く、最終的に得られる炭素繊維束をそのまま使用しても良い。炭素繊維束の伸度は、各社のカタログ値から示されるように、概ね0.7~2.2%程度が標準である。
 その他の好適な炭素繊維束の製造方法について述べる。
 本発明の炭素繊維束のもととなる炭素繊維前駆体繊維束は、ポリアクリロニトリル共重合体の紡糸溶液を製糸して得ることができる。得られた紡糸溶液を湿式紡糸法または乾湿式紡糸法により紡糸することにより、炭素繊維前駆体繊維を製造することができる。具体的には、紡糸溶液を凝固浴中に導入して凝固させ、得られた凝固繊維を、水洗工程、浴中延伸工程、油剤付与工程および乾燥工程を通過させることにより、炭素繊維前駆体繊維が得られる。また、上記の工程に乾熱延伸工程や蒸気延伸工程を加えてもよい。
 得られる炭素繊維前駆体繊維束は、通常、連続繊維の形態である。また、その1糸条あたりのフィラメント数は、好ましくは10000~80000本であり、より好ましくは20000~50000本である。本発明において炭素繊維前駆体繊維束は、必要に応じて合糸して、得られる炭素繊維束の1糸条あたりのフィラメント数を調整してもよい。
 本発明の炭素繊維束の製造方法では、前記した炭素繊維前駆体繊維束を耐炎化処理した後、予備炭素化処理、炭素化処理を順に行う。
 炭素繊維前駆体繊維束の耐炎化処理は、空気などの酸化性雰囲気中において、好ましくは200~300℃の温度範囲で行う。炭素繊維前駆体繊維束はかかる温度範囲内で耐炎化処理され、耐炎化繊維束となる。
 本発明では、前記耐炎化処理に引き続いて、耐炎化繊維束の予備炭素化処理を行う。予備炭素化処理においては、耐炎化処理により得られた耐炎化繊維束を、最高温度が500~1200℃の範囲内となるように制御された不活性雰囲気中において、密度1.5~1.8g/cmになるまで熱処理することが好ましい。耐炎化繊維束は予備炭素化処理され、予備炭素化繊維となる。なお、不活性雰囲気の最高温度は、1200℃未満が好ましい。
 さらに、前記予備炭素化処理に引き続いて、予備炭素化繊維の炭素化処理を行う。炭素化処理は、予備炭素化処理により得られた予備炭素化繊維を、最高温度が1200~3000℃の範囲内となるように制御された不活性雰囲気中において行う。炭素化処理における最高温度は、得られる炭素繊維束の弾性率を高める観点からは高い方が好ましく、1200℃以上であれば炭素繊維強化複合材料として剛性を重視する用途に好適な、弾性率の高い炭素繊維束が得られる。炭素化処理の最高温度は、1500℃以上とすることが好ましい。一方、炭素化処理の最高温度が高すぎると品位が低下しやすいことがある。
 本発明において、不活性雰囲気に用いられる不活性ガスとしては、例えば、窒素、アルゴンおよびキセノンなどが好ましく例示され、経済的な観点からは窒素が好ましく用いられる。
 前記製造方法で得られた炭素繊維束は、さらに最高3000℃までの不活性雰囲気において追加の黒鉛化処理を行い、用途に応じて炭素繊維束の弾性率を適宜調整してもよい。
 以上のようにして得られた炭素繊維束は、炭素繊維束とマトリックスとの接着強度を向上させるために、炭素化処理後に表面処理を施し、酸素原子を含む官能基を導入することが好ましい。表面処理方法としては、気相酸化、液相酸化、および液相電解酸化が用いられるが、生産性が高く、均一処理ができるという観点から、液相電解酸化が好ましく用いられる。本発明において、液相電解酸化の方法については特に制約はなく、公知の方法で行えばよい。
 本明細書に記載の各種物性値の測定方法は以下の通りである。なお、特に記載のないものは測定数n=1で評価を行った。
 <最大撚り角>
 最大撚り角は、用いた繊維束の目付y(g/m)と密度d(g/cm)、撚り数T(ターン/m)を用いて、次の式(2)により計算する。
 撚り角(°)=arctan{(0.01×y/π/d)0.5×10-6×π×T} ・・(2)
 <総繊度>
 測定する繊維束について、長さ10m分をサンプリングし、絶乾させた後に測定した質量に1000を掛けることにより、10000mあたりの質量である総繊度を求める。
 <繊維束の伸度>
 20cm程度の繊維束をほぼ4等分し、4つの束から順番に単繊維をサンプリングする。このとき合計15本の単繊維をサンプリングするが、各束において全体からできるだけまんべんなくサンプリングする。サンプリングした単繊維を、それぞれ、50mmの穴あき台紙に固定する。固定にはニチバン株式会社製のエポキシ系接着剤“アラルダイト(登録商標)”速硬化タイプを用い、塗布後、室温で24時間静置して硬化させる。単繊維を固定した台紙を引張試験装置に取り付け、50mmの各ゲージ長にて、歪速度4%/分、試料数15で引張試験をおこなう。各単繊維の伸度(%)を平均して、繊維束の伸度とする。
 なお、本実施例では、引張試験装置として株式会社エー・アンド・デイ製の引張試験機“テンシロンRTF-1210”を用いた。
 <炭素繊維束の毛羽数>
 駆動ローラーで発生する毛羽のみを対象として評価する。特に炭素化炉前後の駆動ローラーのうち、炭素化炉後の駆動ローラーで発生する毛羽を評価して両方の代表とする。炭素繊維束の毛羽数は炭素化炉後の駆動ローラー群の入側と出側でそれぞれ毛羽をカウントする。毛羽を見やすくするために、投光器で照らしながら10m分カウントして10で割ることで1mあたりの毛羽数とする。炭素化処理過程で生成した毛羽を除くために、出側の毛羽数から入側の毛羽数を差し引いて最終的な毛羽数とする。
 以下、本発明を実施例に基づき詳細に説明するが、本発明はこれらに限定されるものではない。
 以下に記載する実施例1~9および比較例1~8、参考例1~3は、次の包括的実施例に記載の実施方法において、表1に記載の各条件を用いて行ったものである。
 [包括的実施例]
 ポリアクリロニトリル共重合体を、ジメチルスルホキシドを溶媒として溶液重合法により重合させ、紡糸溶液を得た。次いで、得られた紡糸溶液を紡糸口金から一旦空気中に吐出し、その後凝固浴に導入する乾湿式紡糸法により、凝固繊維束を得た。そして、その凝固繊維束を水洗した後、浴中で延伸し、シリコーン油剤の付与、乾燥、加圧水蒸気中での延伸を行い、単繊維繊度1.1dtexの炭素繊維前駆体繊維束を得た。
 得られた炭素繊維前駆体繊維束を総繊度が表1に記載の値となるように合糸して巻き取ったボビンを旋回させ、表1の撚り角となるように撚りを加えながら、空気雰囲気230~280℃のオーブン中で耐炎化処理し、耐炎化繊維束に転換した。得られた耐炎化繊維束を、最高温度800℃の窒素雰囲気中において、予備炭素化処理を行い、予備炭素化繊維束を得た。次いで、かかる予備炭素化繊維束を、最高温度1800℃の窒素雰囲気中において、表1に示す荷重で炭素化処理を行い、炭素繊維束を得た。そのときの炭素化処理前後の駆動ローラーは8個ずつであり、それら全てのローラー径は表1に示す値とした。炭素化処理後の駆動ローラーを通過する繊維束の伸度、得られた炭素繊維束の評価結果、および前記式(1)の右辺の計算結果を表1に記載する。
 なお、参考例1~3は、総繊度、最大撚り角、および荷重のいずれかが本発明の範囲に入っておらず、その場合では炭素繊維束の毛羽数が増えないために、本発明のような課題は生じない条件である。
Figure JPOXMLDOC01-appb-T000001
 また、参考例4~12として、前記[包括的実施例]において総繊度が26000dtexとなるように合糸して耐炎化繊維束(伸度:4.0%)を得て、その耐炎化繊維束を用いて、室温で、表2に示す撚り角、荷重、およびローラー径で毛羽数の評価を行った(予備炭素化処理および炭素化処理は実施していない)。結果を表2に記載する。これら耐炎化繊維束においては、ローラー径の影響は小さく、本発明のような効果は発揮されない。
Figure JPOXMLDOC01-appb-T000002
 本発明の炭素繊維束の製造方法は、高弾性率の炭素繊維束を高品位、かつ高い生産性で得ることができる。本発明の炭素繊維束を用いることにより、高弾性率な炭素繊維強化複合材料を高い生産性で得ることができる。

Claims (4)

  1.  ポリアクリロニトリル系炭素繊維前駆体繊維束を200~300℃の酸化性雰囲気中で熱処理する耐炎化処理を行って耐炎化繊維束を得た後、該耐炎化繊維束を最高温度が500~1200℃となるように制御した不活性雰囲気中で熱処理する予備炭素化処理を行って予備炭素化繊維束を得て、次いで、該予備炭素化繊維束を最高温度が1200~3000℃となるように制御した不活性雰囲気中で熱処理する炭素化処理を行って炭素繊維束を得る炭素繊維束の製造方法において、炭素化処理の前後では繊維束は駆動ローラーに接触しながら走行し、得られる炭素繊維束の総繊度Aが6000~40000dtex、最大撚り角Bが1~10°であり、炭素化処理における繊維束の張力Cが50~500N/束であり、炭素化処理前後の駆動ローラーの直径Dが200~1000mmである、炭素繊維束の製造方法。
  2.  ポリアクリロニトリル系炭素繊維前駆体繊維束を200~300℃の酸化性雰囲気中で熱処理する耐炎化処理を行って耐炎化繊維束を得た後、該耐炎化繊維束を500~1200℃の不活性雰囲気中で熱処理する予備炭素化処理を行って予備炭素化繊維束を得て、次いで、該予備炭素化繊維束を1200~3000℃の不活性雰囲気中で熱処理する炭素化処理を行って炭素繊維束を得る炭素繊維束の製造方法において、炭素化処理の前後では繊維束は駆動ローラーに接触しながら走行し、得られる炭素繊維束の総繊度Aが6000~40000dtex、最大撚り角Bが1~10°であり、炭素化処理における繊維束の張力Cが50~500N/束であり、炭素化処理前後の駆動ローラーの直径Dが200~1000mmである、炭素繊維束の製造方法。
  3.  前記炭素繊維束の総繊度A、前記炭素繊維束の最大撚り角B、前記炭素化処理における繊維束の張力C、および前記駆動ローラーの直径Dが式(1)を満足する、請求項1または2に記載の炭素繊維束の製造方法。
     D>C/2+(A0.5×B)/10  ・・・式(1)
  4.  前記炭素化処理後の駆動ローラーを通過する繊維束は、伸度が0.5~3.0%である、請求項1~3のいずれかに記載の炭素繊維束の製造方法。
PCT/JP2020/038446 2019-11-06 2020-10-12 炭素繊維束の製造方法 WO2021090641A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020558064A JPWO2021090641A1 (ja) 2019-11-06 2020-10-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-201230 2019-11-06
JP2019201230 2019-11-06

Publications (1)

Publication Number Publication Date
WO2021090641A1 true WO2021090641A1 (ja) 2021-05-14

Family

ID=75849922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038446 WO2021090641A1 (ja) 2019-11-06 2020-10-12 炭素繊維束の製造方法

Country Status (3)

Country Link
JP (1) JPWO2021090641A1 (ja)
TW (1) TW202129106A (ja)
WO (1) WO2021090641A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042597A1 (ja) * 2021-09-15 2023-03-23 東レ株式会社 炭素繊維束およびその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269726A (ja) * 1998-03-19 1999-10-05 Toray Ind Inc 炭素繊維の製造方法
JP2005256201A (ja) * 2004-03-10 2005-09-22 Toray Ind Inc 熱処理炉および耐炎化方法
WO2019203088A1 (ja) * 2018-04-16 2019-10-24 東レ株式会社 炭素繊維束とその製造方法、プリプレグおよび炭素繊維強化複合材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269726A (ja) * 1998-03-19 1999-10-05 Toray Ind Inc 炭素繊維の製造方法
JP2005256201A (ja) * 2004-03-10 2005-09-22 Toray Ind Inc 熱処理炉および耐炎化方法
WO2019203088A1 (ja) * 2018-04-16 2019-10-24 東レ株式会社 炭素繊維束とその製造方法、プリプレグおよび炭素繊維強化複合材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042597A1 (ja) * 2021-09-15 2023-03-23 東レ株式会社 炭素繊維束およびその製造方法

Also Published As

Publication number Publication date
JPWO2021090641A1 (ja) 2021-05-14
TW202129106A (zh) 2021-08-01

Similar Documents

Publication Publication Date Title
US8129017B2 (en) Carbon fiber strand and process for producing the same
JP6702511B1 (ja) 炭素繊維およびその製造方法
JP6020201B2 (ja) 炭素繊維束およびその製造方法
JP6950526B2 (ja) 炭素繊維束およびその製造方法
JP2009191425A (ja) 炭素繊維の製造方法
JP7342700B2 (ja) 炭素繊維束およびその製造方法
JP2017160563A (ja) 炭素繊維用前駆体繊維束とその製造方法および炭素繊維の製造方法
WO2021090641A1 (ja) 炭素繊維束の製造方法
US20200385892A1 (en) Carbon fiber bundle and method for producing the same
JPWO2019172246A1 (ja) 炭素繊維およびその製造方法
JP2019151956A (ja) 炭素繊維束および炭素繊維ならびに炭素繊維束の製造方法
JPH01306619A (ja) 高強度高弾性率炭素繊維
JP3448994B2 (ja) 炭素繊維束およびその製造方法
WO2023042597A1 (ja) 炭素繊維束およびその製造方法
JP7286988B2 (ja) 炭素繊維束およびその製造方法
WO2023008273A1 (ja) 炭素繊維束およびその製造方法
JP7358793B2 (ja) 炭素繊維束の製造方法
WO2023090310A1 (ja) 炭素繊維束およびその製造方法
WO2024090012A1 (ja) 炭素繊維束、トウプレグ、炭素繊維強化複合材料および圧力容器、および炭素繊維束の製造方法
JP2024119732A (ja) 炭素繊維束、トウプレグ、炭素繊維強化複合材料、圧力容器および炭素繊維束の製造方法
JP2023017173A (ja) 炭素繊維束およびその製造方法
JP2001131832A (ja) 炭素繊維の製造方法
JP2022113763A (ja) 炭素繊維束の製造方法
JP2023146345A (ja) 炭素繊維束及び炭素繊維束の製造方法
JPH11269727A (ja) ポリアクリロニトリル系黒鉛化繊維束およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020558064

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886111

Country of ref document: EP

Kind code of ref document: A1