WO2021085868A1 - 열가소성 수지 조성물 및 이로부터 제조된 성형품 - Google Patents

열가소성 수지 조성물 및 이로부터 제조된 성형품 Download PDF

Info

Publication number
WO2021085868A1
WO2021085868A1 PCT/KR2020/013019 KR2020013019W WO2021085868A1 WO 2021085868 A1 WO2021085868 A1 WO 2021085868A1 KR 2020013019 W KR2020013019 W KR 2020013019W WO 2021085868 A1 WO2021085868 A1 WO 2021085868A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
weight
flame retardant
based flame
Prior art date
Application number
PCT/KR2020/013019
Other languages
English (en)
French (fr)
Inventor
박지권
정현문
김연경
이선애
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to US17/626,919 priority Critical patent/US20220275194A1/en
Priority to EP20881218.0A priority patent/EP4053202A4/en
Priority to CN202080060020.1A priority patent/CN114286843A/zh
Priority to JP2022505460A priority patent/JP2023500010A/ja
Publication of WO2021085868A1 publication Critical patent/WO2021085868A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • C08K5/03Halogenated hydrocarbons aromatic, e.g. C6H5-CH2-Cl
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/136Phenols containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • C08K5/5353Esters of phosphonic acids containing also nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the present invention relates to a thermoplastic resin composition and a molded article manufactured therefrom. More specifically, the present invention relates to a thermoplastic resin composition having excellent flame retardancy, impact resistance, and the like, and a molded article manufactured therefrom.
  • Polypropylene resin has excellent chemical resistance, weather resistance, processability, etc., making it easy to manufacture injection-molded products, films, and blow-molded products, and is a material widely used in fields such as automobiles, building materials, and electrical parts.
  • thermoplastic resin composition Since polypropylene resin is a flammable material due to its chemical structure, various organic or inorganic flame retardants are added in combination to impart flame retardant properties. However, as interest in environmental issues emerges, regulations on existing halogen-based flame retardants are gradually strengthening, and thus reduction or exclusion of halogen-based flame retardants is required in order to use the thermoplastic resin composition as an eco-friendly material.
  • thermoplastic resin composition when only a non-halogen-based flame retardant is applied to the thermoplastic resin composition, there is a problem that the flame retardancy is significantly lowered compared to when the halogen-based flame retardant is applied.
  • the flame retardancy of the thermoplastic resin composition when an excessive amount of the flame retardant is used, there is a concern that mechanical properties and the like may be deteriorated.
  • thermoplastic resin composition excellent in flame retardancy, impact resistance, and balance of properties thereof.
  • the background technology of the present invention is disclosed in Korean Patent Registration No. 10-1863421 and the like.
  • An object of the present invention is to provide a thermoplastic resin composition excellent in flame retardancy and impact resistance.
  • Another object of the present invention is to provide a molded article formed from the thermoplastic resin composition.
  • thermoplastic resin composition comprises about 100 parts by weight of an ethylene-propylene block copolymer; About 0.3 to about 5 parts by weight of a metal phosphinate compound; About 0.5 to about 5 parts by weight of a phosphorus nitrogen-based flame retardant; And about 0.01 to about 0.2 parts by weight of a bromine-based flame retardant.
  • the ethylene-propylene block copolymer may include about 20 to about 60% by weight of ethylene and about 40 to about 80% by weight of propylene.
  • the ethylene-propylene block copolymer may include about 60 to about 95% by weight of a propylene homopolymer and about 5 to about 40% by weight of a rubber component ethylene-propylene copolymer.
  • the ethylene-propylene block copolymer has a melt-flow index (MI) of about 5 to about, measured at 230° C. and a load of 2.16 kg, according to ASTM D1238. It may be 100 g/10 minutes.
  • MI melt-flow index
  • the metal phosphinate compound may be represented by the following Formula 1:
  • R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms
  • M is Al, Zn, Mg, Ca, Sb, Sn, Ge, Ti, Fe, Zr, Ce, Bi, Sr, Mn, Li, or Na
  • n is an integer of 1 to 4.
  • the phosphorus nitrogen-based flame retardant is melamine polyphosphate, melam pyrophosphate, melem pyrophosphate, melon pyrophosphate, melamine pyrophosphate, dimelamine pyrophosphate, melamine polyphosphate, melamine polyphosphate, melon poly Phosphate and/or melem polyphosphate and/or a mixed multisalt thereof and/or ammonium hydrogen phosphate, ammonium dihydrogen phosphate, ammonium polyphosphate.
  • the bromine-based flame retardant is tetrabromobisphenol A bis (2,3-dibromopropyl ether), tetrabromo bisphenol A, decabromo diphenyl oxide, decabrominated Diphenyl ethane, 1,2-bis (2,4,6-tribromophenyl) ethane, octabromo-1,3,3-trimethyl-1-phenylindane and 2,4,6-tris (2,4 ,6-tribromophenoxy)-1,3,5-triazine.
  • the weight ratio of the metal phosphinate compound and the phosphorus nitrogen-based flame retardant may be about 1:0.2 to about 1:5.
  • the weight ratio of the metal phosphinate compound and the bromine-based flame retardant may be about 1: 0.01 to about 1: 0.6.
  • the weight ratio of the phosphorus nitrogen-based flame retardant and the bromine-based flame retardant may be about 1: 0.01 to about 1: 0.4.
  • thermoplastic resin composition may have a flame retardancy of V-2 of a 1.5 mm-thick injection specimen measured by UL-94 vertical test method.
  • the thermoplastic resin composition may have a GWIT (Glow Wire Ignitability Temperature) of about 730° C. or more of a 100 mm ⁇ 100 mm ⁇ 1.5 mm size specimen measured according to UL746A, and GWFI (Glow Wire Flammability Index) may be about 870°C or higher.
  • GWIT Low Wire Ignitability Temperature
  • GWFI Low Wire Flammability Index
  • the thermoplastic resin composition may have a halogen content of about 100 to about 900 ppm in 15 mg of a specimen measured by ion chromatography according to KS C IEC 62321-3-2.
  • the thermoplastic resin composition may have a notched Izod impact strength of about 7 to about 30 kgf ⁇ cm/cm of a 6.4 mm thick specimen measured according to ASTM D256.
  • Another aspect of the invention relates to a molded article.
  • the molded article is characterized in that it is formed from the thermoplastic resin composition according to any one of the above 1 to 14.
  • the present invention has the effect of the invention to provide a thermoplastic resin composition excellent in flame retardancy, impact resistance, and the like, and a molded article formed therefrom.
  • thermoplastic resin composition according to the present invention comprises (A) an ethylene-propylene block copolymer; (B) phosphinate compound; (C) a phosphorus nitrogen-based flame retardant; And (D) a brominated flame retardant.
  • the ethylene-propylene block copolymer according to an embodiment of the present invention is light and has excellent mechanical properties, and an ethylene-propylene block copolymer (block polypropylene) used in a conventional thermoplastic resin composition may be used.
  • the ethylene-propylene block copolymer may be a resin obtained by stepwise polymerization of a propylene homopolymerization portion and an ethylene-propylene copolymerization portion in a reactor.
  • the ethylene-propylene block copolymer is about 20 to about 60% by weight of ethylene, such as about 30 to about 50% by weight, and about 40 to about 80% by weight of propylene, such as about 50 to about 70% by weight. May contain %. In the above range, the moldability and impact resistance of the thermoplastic resin composition may be excellent.
  • the ethylene-propylene block copolymer is a continuous phase (matrix) of about 60 to about 95% by weight of a propylene homopolymer, for example, about 70 to about 90% by weight, and a dispersed ethylene-propylene copolymer of rubber component From about 5 to about 40% by weight, for example from about 10 to about 30% by weight.
  • a dispersed ethylene-propylene copolymer of rubber component From about 5 to about 40% by weight, for example from about 10 to about 30% by weight.
  • the stiffness and impact resistance of the thermoplastic resin composition may be excellent.
  • the ethylene-propylene block copolymer has a melt-flow index (MI) of about 5 to about 100 g/10 minutes, measured at 230° C. and 2.16 kg load condition, according to ASTM D1238, For example, it may be about 15 to about 50 g/10 minutes. Within the above range, the thermoplastic resin composition may have excellent impact resistance and the like.
  • MI melt-flow index
  • the metal phosphinate compound according to an embodiment of the present invention is applied together with a phosphorus nitrogen-based flame retardant and a bromine-based flame retardant, so that even a small content can improve the flame retardancy and heat resistance of the ethylene-propylene block copolymer (thermoplastic resin) composition.
  • a compound represented by the following formula (1) can be used.
  • R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms
  • M is Al, Zn, Mg, Ca, Sb, Sn, Ge, Ti, Fe, Zr, Ce, Bi, Sr, Mn, Li, or Na
  • n is an integer of 1 to 4.
  • the metal phosphinate compound may be aluminum diethyl phosphinate or zinc diethyl phosphinate.
  • the metal phosphinate compound may be included in an amount of about 0.3 to about 5 parts by weight, for example, about 0.5 to about 4 parts by weight, based on about 100 parts by weight of the ethylene-propylene block copolymer.
  • the content of the metal phosphinate compound is less than about 0.3 parts by weight, based on about 100 parts by weight of the ethylene-propylene block copolymer, there is a possibility that the flame retardancy of the thermoplastic resin composition may decrease, and when it exceeds about 5 parts by weight , There is a concern that the impact resistance of the thermoplastic resin composition and the like may be deteriorated.
  • the phosphorus nitrogen-based flame retardant according to an embodiment of the present invention is applied together with the metal phosphinate compound and the bromine-based flame retardant, so that the flame retardancy of the ethylene-propylene block copolymer (thermoplastic resin) composition can be improved even with a small content.
  • thermoplastic resin thermoplastic resin
  • the phosphorus nitrogen-based flame retardant is melamine polyphosphate, melam pyrophosphate, melem pyrophosphate, melon pyrophosphate, melamine pyrophosphate, dimelamine pyrophosphate, melamine polyphosphate, melamine polyphosphate, melon polyphosphate and/or melem Polyphosphate and/or a mixed polyphosphate thereof and/or one or more of ammonium hydrogen phosphate, ammonium dihydrogen phosphate, and ammonium polyphosphate may be included.
  • melamine polyphosphate, ammonium polyphosphate, or the like may be used as the phosphorus nitrogen-based flame retardant.
  • the phosphorus nitrogen-based flame retardant may be included in an amount of about 0.5 to about 5 parts by weight, for example, about 1 to about 4 parts by weight, based on about 100 parts by weight of the ethylene-propylene block copolymer.
  • the content of the phosphorus nitrogen-based flame retardant is less than about 0.5 parts by weight based on about 100 parts by weight of the ethylene-propylene block copolymer, there is a possibility that the flame retardancy of the thermoplastic resin composition may decrease, and when it exceeds about 5 parts by weight, thermoplastic There is a fear that the impact resistance and the like of the resin composition may be deteriorated.
  • the weight ratio (B:C) of the metal phosphinate compound (B) and the phosphorus nitrogen-based flame retardant (C) is about 1: 0.2 to about 1: 5, for example, about 1: 0.3 to about 1: May be 4.
  • the thermoplastic resin composition may have more excellent flame retardancy and impact resistance.
  • the bromine-based flame retardant according to an embodiment of the present invention is applied together with the metal phosphinate compound and the phosphorus nitrogen-based flame retardant, so that the flame retardancy of the ethylene-propylene block copolymer (thermoplastic resin) composition can be improved even with a small content.
  • thermoplastic resin thermoplastic resin
  • the bromine-based flame retardant is tetrabromobisphenol A bis (2,3-dibromopropyl ether), tetrabromo bisphenol A, decabromo diphenyl oxide, decabrominated diphenyl ethane, 1 ,2-bis(2,4,6-tribromophenyl) ethane, octabromo-1,3,3-trimethyl-1-phenylindane, 2,4,6-tris(2,4,6-tribro Mophenoxy)-1,3,5-triazine, combinations thereof, and the like can be used.
  • the bromine-based flame retardant may be included in an amount of about 0.01 to about 0.2 parts by weight, for example, about 0.05 to about 0.13 parts by weight, based on about 100 parts by weight of the ethylene-propylene block copolymer.
  • the content of the brominated flame retardant is less than about 0.01 parts by weight, based on about 100 parts by weight of the ethylene-propylene block copolymer, there is a concern that the flame retardancy of the thermoplastic resin composition may decrease, and when it exceeds about 0.2 parts by weight, thermoplastic Since the bromine content of the resin composition exceeds 900 ppm, it may not comply with international environmental standards (RoHS), and there is a concern that impact resistance and the like may be deteriorated.
  • RoHS international environmental standards
  • the weight ratio (B:D) of the metal phosphinate compound (B) and the bromine-based flame retardant (D) is about 1: 0.01 to about 1: 0.6, for example about 1: 0.02 to about 1: Can be 0.5. In the above range, the flame retardancy of the thermoplastic resin composition may be more excellent.
  • the weight ratio (C:D) of the phosphorus nitrogen-based flame retardant (C) and the bromine-based flame retardant (D) is about 1: 0.01 to about 1: 0.4, for example about 1: 0.02 to about 1: 0.1 days I can.
  • the flame retardancy of the thermoplastic resin composition may be more excellent, and may comply with international environmental standards (RoHS).
  • the thermoplastic resin composition according to an embodiment of the present invention may further include an additive included in a conventional thermoplastic resin composition.
  • the additives include impact modifiers, antioxidants, anti-drip agents, lubricants, release agents, nucleating agents, antistatic agents, stabilizers, pigments, dyes, mixtures thereof, and the like, but are not limited thereto.
  • the content may be about 0.001 to about 40 parts by weight, for example, about 0.1 to about 10 parts by weight, based on about 100 parts by weight of the ethylene-propylene block copolymer.
  • thermoplastic resin composition according to an embodiment of the present invention is in the form of pellets obtained by mixing the constituents and melt-extruding at about 180 to about 280°C, for example, about 200 to about 260°C using a conventional twin screw extruder. I can.
  • thermoplastic resin composition may have a flame retardancy of V-2 or more of a 1.5 mm-thick injection specimen measured by the UL-94 vertical test method.
  • the thermoplastic resin composition may have a GWIT (Glow Wire Ignitability Temperature) of about 730°C or more, for example, about 750 to about 800°C, of a 100 mm ⁇ 100 mm ⁇ 1.5 mm-sized specimen measured according to UL746A.
  • GWFI Low Wire Flammability Index
  • GWFI Glass Wire Flammability Index
  • the thermoplastic resin composition has a halogen content of about 100 to about 900 ppm, for example about 200 to about 850 ppm in 15 mg of a specimen measured by ion chromatography according to KS C IEC 62321-3-2.
  • a halogen content of about 100 to about 900 ppm, for example about 200 to about 850 ppm in 15 mg of a specimen measured by ion chromatography according to KS C IEC 62321-3-2.
  • the thermoplastic resin composition has a notched Izod impact strength of a 6.4 mm thick specimen measured according to ASTM D256 from about 7 to about 30 kgf ⁇ cm/cm, for example, about 8 to about 20 kgf ⁇ cm/ can be cm.
  • the molded article according to the present invention is formed from the thermoplastic resin composition.
  • the antimicrobial thermoplastic resin composition may be prepared in the form of pellets, and the prepared pellets may be manufactured into various molded products (products) through various molding methods such as injection molding, extrusion molding, vacuum molding, and casting molding. Such a molding method is well known by those of ordinary skill in the field to which the present invention belongs.
  • the molded products have excellent flame retardancy, impact resistance, and balance of their properties, and have a halogen content of 900 ppm or less and satisfy the international environmental standard RoHS (Restriction of Hazardous Substances), so various electric and electronic parts, especially connector parts. Useful as, etc.
  • RoHS Restriction of Hazardous Substances
  • thermoplastic resin (A) thermoplastic resin
  • Aluminum diethyl phosphinate (manufacturer: Clariant, product name: OP1230) was used.
  • Tetrabromobisphenol A bis(2,3-dibromopropyl ether) (manufacturer: Suzuhiro chemical, product name: FCP-680G) was used.
  • Bisphenol A diphosphate (manufacturer: DAIHACHI, product name: CR-741) was used.
  • Halogen content (unit: ppm): In accordance with KS C IEC 62321-3-2, the halogen content in 15 mg of the specimen was measured by ion chromatography (manufacturer: DIONEX, product name: IC-5000S).
  • Notched Izod impact strength (unit: kgf ⁇ cm/cm): According to ASTM D256, the notched Izod impact strength of a 6.4 mm thick specimen was measured.
  • Example One 2 3 4 5 6 7 (A1) (parts by weight) 100 100 100 100 100 100 100 100 (A2) (parts by weight) - - - - - - - (A3) (parts by weight) - - - - - - (B) (parts by weight) 0.5 One 4 One 1.5 One One (C) (parts by weight) 2 2 1.5 One 4 One 2 (D) (parts by weight) 0.1 0.1 0.1 0.05 0.1 0.05 0.13 (E) (parts by weight) - - - - - - - - - - - Flame retardancy V-2 V-2 V-2 V-2 V-2 V-2 V-2 V-2 V-2 GWIT (°C) 750 775 775 750 775 750 775 GWFI (°C) 900 960 960 900 960 Halogen content (ppm) 650 650 630 330 630 330 845 Notch Izod impact strength (kgf ⁇ cm/cm)
  • thermoplastic resin composition of the present invention has excellent flame retardancy (UL94, GWIT, GWFR), impact resistance (notched Izod impact strength), etc. Substances).
  • thermoplastic resin composition when the phosphorus nitrogen-based flame retardant is applied in excess of the content range of the present invention (Comparative Example 6), it can be seen that the flame retardancy and impact resistance of the thermoplastic resin composition are deteriorated, and when a bromine-based flame retardant is not applied (Comparative Example 7), it can be seen that the flame retardancy of the thermoplastic resin composition is lowered, and when the bromine-based flame retardant is applied beyond the content range of the present invention (Comparative Example 8), the halogen content of the thermoplastic resin composition is greatly increased. In addition, it can be seen that it is inadequate to international environmental standards. In addition, when a phosphorus-based flame retardant is applied instead of the phosphorus-nitrogen-based flame retardant (C) (Comparative Example 9), it can be seen that the flame retardancy of the thermoplastic resin composition is lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명의 열가소성 수지 조성물은 에틸렌-프로필렌 블록 공중합체 약 100 중량부; 금속 포스피네이트 화합물 약 0.3 내지 약 5 중량부; 인질소계 난연제 약 0.5 내지 약 5 중량부; 및 브롬계 난연제 약 0.01 내지 약 0.2 중량부;를 포함하는 것을 특징으로 한다. 상기 열가소성 수지 조성물은 난연성, 내충격성 등이 우수하다.

Description

열가소성 수지 조성물 및 이로부터 제조된 성형품
본 발명은 열가소성 수지 조성물 및 이로부터 제조된 성형품에 관한 것이다. 보다 구체적으로 본 발명은 난연성, 내충격성 등이 우수한 열가소성 수지 조성물 및 이로부터 제조된 성형품에 관한 것이다.
폴리프로필렌 수지는 내약품성, 내후성, 가공성 등이 우수하여, 사출 성형품, 필름, 블로우 성형품의 형태로의 제조가 용이하고, 자동차, 건축재료, 전기부품 등의 분야에 폭넓게 사용되는 재료이다.
폴리프로필렌 수지는 화학적 구조상 인화성 물질이므로, 난연 특성을 부여하기 위해 각종 유기계 또는 무기계 난연제의 병용 첨가가 이루어지고 있다. 다만, 환경 문제에 대한 관심이 대두되면서, 기존 할로겐계 난연제에 대한 규제가 점차 강화되고 있어, 열가소성 수지 조성물을 친환경 소재로 사용하기 위해서는 할로겐계 난연제의 저감 또는 배제가 요구되고 있다.
그러나, 열가소성 수지 조성물에 비할로겐계 난연제만을 적용할 경우, 할로겐계 난연제 적용 시에 비해 난연성이 크게 저하된다는 문제점이 있다. 또한, 열가소성 수지 조성물의 난연성 향상을 위하여, 난연제를 과량 사용 시, 기계적 물성 등이 저하될 우려가 있다.
따라서, 난연성, 내충격성, 이들의 물성 발란스 등이 우수한 열가소성 수지 조성물의 개발이 필요한 실정이다.
본 발명의 배경기술은 대한민국 등록특허 10-1863421호 등에 개시되어 있다.
본 발명의 목적은 난연성, 내충격성 등이 우수한 열가소성 수지 조성물을 제공하기 위한 것이다.
본 발명의 다른 목적은 상기 열가소성 수지 조성물로부터 형성된 성형품을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
1. 본 발명의 하나의 관점은 열가소성 수지 조성물에 관한 것이다. 상기 열가소성 수지 조성물은 에틸렌-프로필렌 블록 공중합체 약 100 중량부; 금속 포스피네이트 화합물 약 0.3 내지 약 5 중량부; 인질소계 난연제 약 0.5 내지 약 5 중량부; 및 브롬계 난연제 약 0.01 내지 약 0.2 중량부;를 포함하는 것을 특징으로 한다.
2. 상기 1 구체예에서, 상기 에틸렌-프로필렌 블록 공중합체는 에틸렌 약 20 내지 약 60 중량% 및 프로필렌 약 40 내지 약 80 중량%를 포함할 수 있다.
3. 상기 1 또는 2 구체예에서, 상기 에틸렌-프로필렌 블록 공중합체는 프로필렌 단독중합체 약 60 내지 약 95 중량% 및 고무성분의 에틸렌-프로필렌 공중합체 약 5 내지 약 40 중량%를 포함할 수 있다.
4. 상기 1 내지 3 구체예에서, 상기 에틸렌-프로필렌 블록 공중합체는 ASTM D1238에 의거하여, 230℃, 2.16 kg 하중 조건에서 측정한 용융흐름지수(Melt-flow Index: MI)가 약 5 내지 약 100 g/10분일 수 있다.
5. 상기 1 내지 4 구체예에서, 상기 금속 포스피네이트 화합물은 하기 화학식 1로 표시될 수 있다:
[화학식 1]
Figure PCTKR2020013019-appb-I000001
상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 6의 알킬기 또는 탄소수 6 내지 12의 아릴기이고, M은 Al, Zn, Mg, Ca, Sb, Sn, Ge, Ti, Fe, Zr, Ce, Bi, Sr, Mn, Li, 또는 Na이며, n은 1 내지 4의 정수이다.
6. 상기 1 내지 5 구체예에서, 상기 인질소계 난연제는 멜라민 폴리포스페이트, 멜람 피로포스페이트, 멜렘 피로포스페이트, 멜론 피로포스페이트, 멜라민 피로포스페이트, 디멜라민 피로포스페이트, 멜라민 폴리포스페이트, 멜람 폴리포스페이트, 멜론 폴리포스페이트 및/또는 멜렘 폴리포스페이트 및/또는 이의 혼합된 다중염 및/또는 암모늄 하이드로겐 포스페이트, 암모늄 디하이드로겐 포스페이트, 암모늄 폴리포스페이트 중 1종 이상을 포함할 수 있다.
7. 상기 1 내지 6 구체예에서, 상기 브롬계 난연제는 테트라브로모비스페놀 A 비스(2,3-디브로모프로필 에테르), 테트라브로모 비스페놀 A, 데카브로모 디페닐옥사이드, 데카브로미네이티드디페닐 에탄, 1,2-비스(2,4,6-트리브로모페닐) 에탄, 옥타브로모-1,3,3-트리메틸-1-페닐인단 및 2,4,6-트리스(2,4,6-트리브로모페녹시)-1,3,5-트리아진 중 1종 이상을 포함할 수 있다.
8. 상기 1 내지 7 구체예에서, 상기 금속 포스피네이트 화합물 및 상기 인질소계 난연제의 중량비는 약 1 : 0.2 내지 약 1 : 5일 수 있다.
9. 상기 1 내지 8 구체예에서, 상기 금속 포스피네이트 화합물 및 상기 브롬계 난연제의 중량비는 약 1 : 0.01 내지 약 1 : 0.6일 수 있다.
10. 상기 1 내지 9 구체예에서, 상기 인질소계 난연제 및 상기 브롬계 난연제의 중량비는 약 1 : 0.01 내지 약 1 : 0.4일 수 있다.
11. 상기 1 내지 10 구체예에서, 상기 열가소성 수지 조성물은 UL-94 vertical test 방법으로 측정한 1.5 mm 두께 사출 시편의 난연도가 V-2일 수 있다.
12. 상기 1 내지 11 구체예에서, 상기 열가소성 수지 조성물은 UL746A에 의거하여 측정한 100 mm × 100 mm × 1.5 mm 크기 시편의 GWIT(Glow Wire Ignitability Temperature)가 약 730℃ 이상일 수 있고, GWFI(Glow Wire Flammability Index)가 약 870℃ 이상일 수 있다.
13. 상기 1 내지 12 구체예에서, 상기 열가소성 수지 조성물은 KS C IEC 62321-3-2에 의거하여, 이온크로마토그래피로 측정한 시편 15 mg 중의 할로겐 함량이 약 100 내지 약 900 ppm일 수 있다.
14. 상기 1 내지 13 구체예에서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여, 측정한 6.4 mm 두께 시편의 노치 아이조드 충격강도가 약 7 내지 약 30 kgf·cm/cm일 수 있다.
15. 본 발명의 다른 관점은 성형품에 관한 것이다. 상기 성형품은 상기 1 내지 14 중 어느 하나에 따른 열가소성 수지 조성물로부터 형성되는 것을 특징으로 한다.
본 발명은 난연성, 내충격성 등이 우수한 열가소성 수지 조성물 및 이로부터 형성된 성형품을 제공하는 발명의 효과를 갖는다.
이하, 본 발명을 상세히 설명하면, 다음과 같다.
본 발명에 따른 열가소성 수지 조성물은 (A) 에틸렌-프로필렌 블록 공중합체; (B) 포스피네이트 화합물; (C) 인질소계 난연제; 및 (D) 브롬계 난연제;를 포함한다.
본 명세서에서, 수치범위를 나타내는 "a 내지 b"는 "≥a 이고 ≤b"으로 정의한다.
(A) 에틸렌-프로필렌 블록 공중합체
본 발명의 일 구체예에 따른 에틸렌-프로필렌 블록 공중합체는 가볍고, 기계적 물성 등이 우수한 것으로서, 통상의 열가소성 수지 조성물에 사용되는 에틸렌-프로필렌 블록 공중합체(블록 폴리프로필렌)를 사용할 수 있다. 예를 들면, 상기 에틸렌-프로필렌 블록 공중합체는 프로필렌 단독중합 부분과 에틸렌-프로필렌 공중합 부분이 반응기 내에서 단계적으로 중합된 수지일 수 있다.
구체예에서, 상기 에틸렌-프로필렌 블록 공중합체는 에틸렌 약 20 내지 약 60 중량%, 예를 들면 약 30 내지 약 50 중량% 및 프로필렌 약 40 내지 약 80 중량%, 예를 들면 약 50 내지 약 70 중량%를 포함할 수 있다. 상기 범위에서 열가소성 수지 조성물의 성형성, 내충격성 등이 우수할 수 있다.
구체예에서, 상기 에틸렌-프로필렌 블록 공중합체는 연속상(매트릭스)인 프로필렌 단독중합체 약 60 내지 약 95 중량%, 예를 들면 약 70 내지 약 90 중량% 및 분산상인 고무성분의 에틸렌-프로필렌 공중합체 약 5 내지 약 40 중량%, 예를 들면 약 10 내지 약 30 중량%를 포함할 수 있다. 상기 범위에서 열가소성 수지 조성물의 강성, 내충격성 등이 우수할 수 있다.
구체예에서, 상기 에틸렌-프로필렌 블록 공중합체는 ASTM D1238에 의거하여, 230℃, 2.16 kg 하중 조건에서 측정한 용융흐름지수(Melt-flow Index: MI)가 약 5 내지 약 100 g/10분, 예를 들면 약 15 내지 약 50 g/10분일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성 등이 우수할 수 있다.
(B) 금속 포스피네이트 화합물
본 발명의 일 구체예에 따른 금속 포스피네이트 화합물은 인질소계 난연제 및 브롬계 난연제와 함께 적용되어, 적은 함량으로도 에틸렌-프로필렌 블록 공중합체(열가소성 수지) 조성물의 난연성, 내열성 등을 향상시킬 수 있는 것으로서, 하기 화학식 1로 표시되는 화합물을 사용할 수 있다.
[화학식 1]
Figure PCTKR2020013019-appb-I000002
상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 6의 알킬기 또는 탄소수 6 내지 12의 아릴기이고, M은 Al, Zn, Mg, Ca, Sb, Sn, Ge, Ti, Fe, Zr, Ce, Bi, Sr, Mn, Li, 또는 Na이며, n은 1 내지 4의 정수이다.
구체예에서, 상기 금속 포스피네이트 화합물로는 알루미늄 디에틸 포스피네이트, 아연 디에틸포스피네이트를 사용할 수 있다.
구체예에서, 상기 금속 포스피네이트 화합물은 상기 에틸렌-프로필렌 블록 공중합체 약 100 중량부에 대하여, 약 0.3 내지 약 5 중량부, 예를 들면 약 0.5 내지 약 4 중량부로 포함될 수 있다. 상기 금속 포스피네이트 화합물의 함량이 상기 에틸렌-프로필렌 블록 공중합체 약 100 중량부에 대하여, 약 0.3 중량부 미만일 경우, 열가소성 수지 조성물의 난연성 등이 저하될 우려가 있고, 약 5 중량부를 초과할 경우, 열가소성 수지 조성물의 내충격성 등이 저하될 우려가 있다.
(C) 인질소계 난연제
본 발명의 일 구체예에 따른 인질소계 난연제는 상기 금속 포스피네이트 화합물 및 브롬계 난연제와 함께 적용되어, 적은 함량으로도 에틸렌-프로필렌 블록 공중합체(열가소성 수지) 조성물의 난연성을 향상시킬 수 있는 것으로서, 통상의 열가소성 수지 조성물에 사용되는 인질소계 난연제를 사용할 수 있다.
구체예에서, 상기 인질소계 난연제로는 멜라민 폴리포스페이트, 멜람 피로포스페이트, 멜렘 피로포스페이트, 멜론 피로포스페이트, 멜라민 피로포스페이트, 디멜라민 피로포스페이트, 멜라민 폴리포스페이트, 멜람 폴리포스페이트, 멜론 폴리포스페이트 및/또는 멜렘 폴리포스페이트 및/또는 이의 혼합된 다중염 및/또는 암모늄 하이드로겐 포스페이트, 암모늄 디하이드로겐 포스페이트, 암모늄 폴리포스페이트 중 1종 이상을 포함할 수 있다. 예를 들면, 상기 인질소계 난연제로는 멜라민 폴리포스페이트, 암모늄 폴리포스페이트 등을 사용할 수 있다.
구체예에서, 상기 인질소계 난연제는 상기 에틸렌-프로필렌 블록 공중합체 약 100 중량부에 대하여, 약 0.5 내지 약 5 중량부, 예를 들면 약 1 내지 약 4 중량부로 포함될 수 있다. 상기 인질소계 난연제의 함량이 상기 에틸렌-프로필렌 블록 공중합체 약 100 중량부에 대하여, 약 0.5 중량부 미만일 경우, 열가소성 수지 조성물의 난연성 등이 저하될 우려가 있고, 약 5 중량부를 초과할 경우, 열가소성 수지 조성물의 내충격성 등이 저하될 우려가 있다.
구체예에서, 상기 금속 포스피네이트 화합물(B) 및 상기 인질소계 난연제(C)의 중량비(B:C)는 약 1 : 0.2 내지 약 1 : 5, 예를 들면 약 1 : 0.3 내지 약 1 : 4일 수 있다. 상기 범위에서 열가소성 수지 조성물의 난연성, 내충격성 등이 더 우수할 수 있다.
(D) 브롬계 난연제
본 발명의 일 구체예에 따른 브롬계 난연제는 상기 금속 포스피네이트 화합물 및 인질소계 난연제와 함께 적용되어, 적은 함량으로도 에틸렌-프로필렌 블록 공중합체(열가소성 수지) 조성물의 난연성을 향상시킬 수 있는 것으로서, 통상의 열가소성 수지 조성물에 사용되는 브롬계 난연제를 사용할 수 있다.
구체예에서, 상기 브롬계 난연제로는 테트라브로모비스페놀 A 비스(2,3-디브로모프로필 에테르), 테트라브로모 비스페놀 A, 데카브로모 디페닐옥사이드, 데카브로미네이티드디페닐 에탄, 1,2-비스(2,4,6-트리브로모페닐) 에탄, 옥타브로모-1,3,3-트리메틸-1-페닐인단, 2,4,6-트리스(2,4,6-트리브로모페녹시)-1,3,5-트리아진, 이들의 조합 등을 사용할 수 있다.
구체예에서, 상기 브롬계 난연제는 상기 에틸렌-프로필렌 블록 공중합체 약 100 중량부에 대하여, 약 0.01 내지 약 0.2 중량부, 예를 들면 약 0.05 내지 약 0.13 중량부로 포함될 수 있다. 상기 브롬계 난연제의 함량이 상기 에틸렌-프로필렌 블록 공중합체 약 100 중량부에 대하여, 약 0.01 중량부 미만일 경우, 열가소성 수지 조성물의 난연성 등이 저하될 우려가 있고, 약 0.2 중량부를 초과할 경우, 열가소성 수지 조성물의 브롬 함량이 900 ppm을 초과하여 국제환경규격(RoHS)에 부합하지 않을 수 있고, 내충격성 등이 저하될 우려가 있다.
구체예에서, 상기 금속 포스피네이트 화합물(B) 및 상기 브롬계 난연제(D)의 중량비(B:D)는 약 1 : 0.01 내지 약 1 : 0.6, 예를 들면 약 1 : 0.02 내지 약 1 : 0.5일 수 있다. 상기 범위에서 열가소성 수지 조성물의 난연성 등이 더 우수할 수 있다.
구체예에서, 상기 인질소계 난연제(C) 및 상기 브롬계 난연제(D)의 중량비(C:D)는 약 1 : 0.01 내지 약 1 : 0.4, 예를 들면 약 1 : 0.02 내지 약 1 : 0.1일 수 있다. 상기 범위에서 열가소성 수지 조성물의 난연성 등이 더 우수할 수 있고, 국제환경규격(RoHS)에 부합할 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 통상의 열가소성 수지 조성물에 포함되는 첨가제를 더욱 포함할 수 있다. 상기 첨가제로는 충격보강제, 산화 방지제, 적하 방지제, 활제, 이형제, 핵제, 대전방지제, 안정제, 안료, 염료, 이들의 혼합물 등을 예시할 수 있으나, 이에 제한되지 않는다. 상기 첨가제 사용 시, 그 함량은 상기 에틸렌-프로필렌 블록 공중합체 약 100 중량부에 대하여, 약 0.001 내지 약 40 중량부, 예를 들면 약 0.1 내지 약 10 중량부일 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 상기 구성 성분을 혼합하고, 통상의 이축 압출기를 사용하여, 약 180 내지 약 280℃, 예를 들면 약 200 내지 약 260℃에서 용융 압출한 펠렛 형태일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 UL-94 vertical test 방법으로 측정한 1.5 mm 두께 사출 시편의 난연도가 V-2 이상일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 UL746A에 의거하여 측정한 100 mm × 100 mm × 1.5 mm 크기 시편의 GWIT(Glow Wire Ignitability Temperature)가 약 730℃ 이상, 예를 들면 약 750 내지 약 800℃일 수 있고, GWFI(Glow Wire Flammability Index)가 약 870℃ 이상, 예를 들면 약 900 내지 약 960℃일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 KS C IEC 62321-3-2에 의거하여, 이온크로마토그래피로 측정한 시편 15 mg 중의 할로겐 함량이 약 100 내지 약 900 ppm, 예를 들면 약 200 내지 약 850 ppm일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여, 측정한 6.4 mm 두께 시편의 노치 아이조드 충격강도가 약 7 내지 약 30 kgf·cm/cm, 예를 들면 약 8 내지 약 20 kgf·cm/cm일 수 있다.
본 발명에 따른 성형품은 상기 열가소성 수지 조성물로부터 형성된다. 상기 항균성 열가소성 수지 조성물은 펠렛 형태로 제조될 수 있으며, 제조된 펠렛은 사출성형, 압출성형, 진공성형, 캐스팅성형 등의 다양한 성형방법을 통해 다양한 성형품(제품)으로 제조될 수 있다. 이러한 성형방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 잘 알려져 있다. 상기 성형품은 난연성, 내충격성, 이들의 물성 발란스 등이 우수하고, 할로겐 함량이 900 ppm 이하로 국제환경규격인 RoHS(Restriction of Hazardous Substances)를 만족하므로, 각종 전기, 전자 부품, 특히, 커넥터류 부품 등으로 유용하다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.
실시예
이하, 실시예 및 비교예에서 사용된 각 성분의 사양은 다음과 같다.
(A) 열가소성 수지
(A1) 에틸렌-프로필렌 블록 공중합체(제조사: 롯데케미칼, 제품명: JH-370A, 용융흐름지수(Melt-flow Index: MI): 35 g/10분)를 사용하였다.
(A2) 폴리프로필렌 수지(제조사: 롯데케미칼, 제품명: H1500, 용융흐름지수(Melt-flow Index: MI): 12 g/10분)를 사용하였다. MI: 12
(A3) 에틸렌-프로필렌 랜덤 공중합체(제조사: 롯데케미칼, 제품명: J-560S, 용융흐름지수(Melt-flow Index: MI): 20 g/10분)를 사용하였다.
(B) 금속 포스피네이트 화합물
알루미늄 디에틸 포스피네이트(제조사: Clariant, 제품명: OP1230)를 사용하였다.
(C) 인질소계 난연제
멜라민 폴리포스페이트(제조사: JLS, 제품명: PNA350)를 사용하였다.
(D) 브롬계 난연제
테트라브로모비스페놀 A 비스(2,3-디브로모프로필 에테르)(제조사: Suzuhiro chemical, 제품명: FCP-680G)을 사용하였다.
(E) 인계 난연제
비스페놀 A 디포스페이트(bisphenol A diphosphate, 제조사: DAIHACHI, 제품명: CR-741)를 사용하였다.
실시예 1 내지 7 및 비교예 1 내지 9
상기 각 구성 성분을 하기 표 1 및 2에 기재된 바와 같은 함량으로 첨가한 후, 200℃에서 압출하여 펠렛을 제조하였다. 압출은 L/D=36, 직경 45 mm인 이축 압출기를 사용하였으며, 제조된 펠렛은 80℃에서 4시간 이상 건조 후, 6 Oz 사출기(성형 온도 260℃, 금형 온도: 60℃)에서 사출하여 시편을 제조하였다. 제조된 시편에 대하여 하기의 방법으로 물성을 평가하고, 그 결과를 하기 표 1 및 2에 나타내었다.
물성 측정 방법
(1) 난연도: UL-94 vertical test 방법으로 1.5 mm 두께 사출 시편의 난연도를 측정하였다.
(2) GWIT(Glow Wire Ignitability Temperature)(단위: ℃): UL746A에 의거하여, 100 mm × 100 mm × 1.5 mm 크기 시편의 GWIT를 측정하였다.
(3) GWFI(Glow Wire Flammability Index)(단위: ℃): UL746A에 의거하여, 100 mm × 100 mm × 1.5 mm 크기 시편의 GWFI를 측정하였다.
(4) 할로겐 함량(단위: ppm): KS C IEC 62321-3-2에 의거하여, 이온크로마토그래피(제조사: DIONEX, 제품명: IC-5000S)로 시편 15 mg 중의 할로겐 함량을 측정하였다.
(5) 노치 아이조드 충격강도(단위: kgf·cm/cm): ASTM D256에 의거하여, 6.4 mm 두께 시편의 노치 아이조드 충격강도를 측정하였다.
실시예
1 2 3 4 5 6 7
(A1) (중량부) 100 100 100 100 100 100 100
(A2) (중량부) - - - - - - -
(A3) (중량부) - - - - - - -
(B) (중량부) 0.5 1 4 1 1.5 1 1
(C) (중량부) 2 2 1.5 1 4 1 2
(D) (중량부) 0.1 0.1 0.1 0.05 0.1 0.05 0.13
(E) (중량부) - - - - - - -
난연도 V-2 V-2 V-2 V-2 V-2 V-2 V-2
GWIT (℃) 750 775 775 750 775 750 775
GWFI (℃) 900 960 960 900 960 900 960
할로겐 함량 (ppm) 650 650 630 330 630 330 845
노치 아이조드 충격강도 (kgf·cm/cm) 10 10 8 12 8 12 10
비교예
1 2 3 4 5 6 7 8 9
(A1) (중량부) - - 100 100 100 100 100 100 100
(A2) (중량부) 100 - - - - - - - -
(A3) (중량부) - 100 - - - - - - -
(B) (중량부) 1 1 0.2 8 1 1 1 1 1
(C) (중량부) 2 2 2 2 0.2 8 2 2 -
(D) (중량부) 0.1 0.1 0.1 0.1 0.1 0.1 - 1 0.1
(E) (중량부) - - - - - - - - 2
난연도 V-2 Fail Fail V-2 Fail Fail Fail V-2 Fail
GWIT (℃) 725 725 725 750 725 700 750 750 700
GWFI (℃) 800 850 850 960 850 800 900 960 800
할로겐 함량 (ppm) 650 650 650 610 660 620 0 6,450 650
노치 아이조드 충격강도 (kgf·cm/cm) 2 6 10 3 10 3 10 6 10
상기 결과로부터, 본 발명의 열가소성 수지 조성물은 난연성(UL94, GWIT, GWFR), 내충격성(노치 아이조드 충격강도) 등이 모두 우수하고, 할로겐 함량이 900 ppm 이하로 국제환경규격인 RoHS(Restriction of Hazardous Substances)를 충족함을 알 수 있다.
반면, 에틸렌-프로필렌 블록 공중합체(A1) 대신에 폴리프로필렌 수지(A2)를 적용한 비교예 1의 경우, 열가소성 수지 조성물의 난연성, 내충격성 등이 저하됨을 알 수 있고, 에틸렌-프로필렌 블록 공중합체(A1) 대신에 에틸렌-프로필렌 랜덤 공중합체(A3)를 적용한 비교예 2의 경우, 열가소성 수지 조성물의 난연성, 내충격성 등이 저하됨을 알 수 있다. 금속 포스피네이트 화합물을 본 발명의 함량 범위 미만으로 적용할 경우(비교예 3), 열가소성 수지 조성물의 난연성 등이 저하됨을 알 수 있고, 금속 포스피네이트 화합물을 본 발명의 함량 범위 보다 초과하여 적용할 경우(비교예 4), 열가소성 수지 조성물의 내충격성 등이 저하됨을 알 수 있으며, 인질소계 난연제를 본 발명의 함량 범위 미만으로 적용할 경우(비교예 5), 열가소성 수지 조성물의 난연성 등이 저하됨을 알 수 있고, 인질소계 난연제를 본 발명의 함량 범위 보다 초과하여 적용할 경우(비교예 6), 열가소성 수지 조성물의 난연성, 내충격성 등이 저하됨을 알 수 있으며, 브롬계 난연제를 적용하지 않을 경우(비교예 7), 열가소성 수지 조성물의 난연성 등이 저하됨을 알 수 있고, 브롬계 난연제를 본 발명의 함량 범위 보다 초과하여 적용할 경우(비교예 8), 열가소성 수지 조성물의 할로겐 함량이 크게 상승하여, 국제환경규격에 부적합함을 알 수 있다. 또한, 인질소계 난연제(C) 대신에 인계 난연제를 적용할 경우(비교예 9), 열가소성 수지 조성물의 난연성 등이 저하됨을 알 수 있다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (15)

  1. 에틸렌-프로필렌 블록 공중합체 약 100 중량부;
    금속 포스피네이트 화합물 약 0.3 내지 약 5 중량부;
    인질소계 난연제 약 0.5 내지 약 5 중량부; 및
    브롬계 난연제 약 0.01 내지 약 0.2 중량부;를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  2. 제1항에 있어서, 상기 에틸렌-프로필렌 블록 공중합체는 에틸렌 약 20 내지 약 60 중량% 및 프로필렌 약 40 내지 약 80 중량%를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  3. 제1항 또는 제2항에 있어서, 상기 에틸렌-프로필렌 블록 공중합체는 프로필렌 단독중합체 약 60 내지 약 95 중량% 및 고무성분의 에틸렌-프로필렌 공중합체 약 5 내지 약 40 중량%를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 에틸렌-프로필렌 블록 공중합체는 ASTM D1238에 의거하여, 230℃, 2.16 kg 하중 조건에서 측정한 용융흐름지수(Melt-flow Index: MI)가 약 5 내지 약 100 g/10분인 것을 특징으로 하는 열가소성 수지 조성물.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 금속 포스피네이트 화합물은 하기 화학식 1로 표시되는 것을 특징으로 하는 열가소성 수지 조성물:
    [화학식 1]
    Figure PCTKR2020013019-appb-I000003
    상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 6의 알킬기 또는 탄소수 6 내지 12의 아릴기이고, M은 Al, Zn, Mg, Ca, Sb, Sn, Ge, Ti, Fe, Zr, Ce, Bi, Sr, Mn, Li, 또는 Na이며, n은 1 내지 4의 정수이다
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 인질소계 난연제는 멜라민 폴리포스페이트, 멜람 피로포스페이트, 멜렘 피로포스페이트, 멜론 피로포스페이트, 멜라민 피로포스페이트, 디멜라민 피로포스페이트, 멜라민 폴리포스페이트, 멜람 폴리포스페이트, 멜론 폴리포스페이트 및/또는 멜렘 폴리포스페이트 및/또는 이의 혼합된 다중염 및/또는 암모늄 하이드로겐 포스페이트, 암모늄 디하이드로겐 포스페이트, 암모늄 폴리포스페이트 중 1종 이상을 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 브롬계 난연제는 테트라브로모비스페놀 A 비스(2,3-디브로모프로필 에테르), 테트라브로모 비스페놀 A, 데카브로모 디페닐옥사이드, 데카브로미네이티드디페닐 에탄, 1,2-비스(2,4,6-트리브로모페닐) 에탄, 옥타브로모-1,3,3-트리메틸-1-페닐인단 및 2,4,6-트리스(2,4,6-트리브로모페녹시)-1,3,5-트리아진 중 1종 이상을 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 금속 포스피네이트 화합물 및 상기 인질소계 난연제의 중량비는 약 1 : 0.2 내지 약 1 : 5인 것을 특징으로 하는 열가소성 수지 조성물.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 금속 포스피네이트 화합물 및 상기 브롬계 난연제의 중량비는 약 1 : 0.01 내지 약 1 : 0.6인 것을 특징으로 하는 열가소성 수지 조성물.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 인질소계 난연제 및 상기 브롬계 난연제의 중량비는 약 1 : 0.01 내지 약 1 : 0.4인 것을 특징으로 하는 열가소성 수지 조성물.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 UL-94 vertical test 방법으로 측정한 1.5 mm 두께 사출 시편의 난연도가 V-2인 것을 특징으로 하는 열가소성 수지 조성물.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 UL746A에 의거하여 측정한 100 mm × 100 mm × 1.5 mm 크기 시편의 GWIT(Glow Wire Ignitability Temperature)가 약 730℃ 이상, GWFI(Glow Wire Flammability Index)가 약 870℃ 이상인 것을 특징으로 하는 열가소성 수지 조성물.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 KS C IEC 62321-3-2에 의거하여, 이온크로마토그래피로 측정한 시편 15 mg 중의 할로겐 함량이 약 100 내지 약 900 ppm인 것을 특징으로 하는 열가소성 수지 조성물.
  14. 제1항 내지 제13항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여, 측정한 6.4 mm 두께 시편의 노치 아이조드 충격강도가 약 7 내지 약 30 kgf·cm/cm인 것을 특징으로 하는 열가소성 수지 조성물.
  15. 제1항에 내지 제14항 중 어느 한 항에 따른 열가소성 수지 조성물로부터 형성되는 것을 특징으로 하는 성형품.
PCT/KR2020/013019 2019-10-31 2020-09-24 열가소성 수지 조성물 및 이로부터 제조된 성형품 WO2021085868A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/626,919 US20220275194A1 (en) 2019-10-31 2020-09-24 Thermoplastic Resin Composition and Molded Product Manufactured Therefrom
EP20881218.0A EP4053202A4 (en) 2019-10-31 2020-09-24 THERMOPLASTIC RESIN COMPOSITION AND MOLDED PRODUCT MADE THEREFROM
CN202080060020.1A CN114286843A (zh) 2019-10-31 2020-09-24 热塑性树脂组合物及由其制造的模制产品
JP2022505460A JP2023500010A (ja) 2019-10-31 2020-09-24 熱可塑性樹脂組成物およびそれにより製造された成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190137273A KR102473869B1 (ko) 2019-10-31 2019-10-31 열가소성 수지 조성물 및 이로부터 제조된 성형품
KR10-2019-0137273 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021085868A1 true WO2021085868A1 (ko) 2021-05-06

Family

ID=75714650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013019 WO2021085868A1 (ko) 2019-10-31 2020-09-24 열가소성 수지 조성물 및 이로부터 제조된 성형품

Country Status (6)

Country Link
US (1) US20220275194A1 (ko)
EP (1) EP4053202A4 (ko)
JP (1) JP2023500010A (ko)
KR (1) KR102473869B1 (ko)
CN (1) CN114286843A (ko)
WO (1) WO2021085868A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114736453A (zh) * 2022-03-14 2022-07-12 金发科技股份有限公司 一种低卤阻燃pp材料及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102392432B1 (ko) * 2021-11-02 2022-04-28 이정훈 금속 포스피네이트계 난연제를 포함하는 난연제 조성물 및 난연성 합성 수지 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980069435A (ko) * 1997-02-28 1998-10-26 하태준 내충격성 및 난연성이 우수한 폴리올레핀계 수지 조성물
KR20030054090A (ko) * 2001-12-24 2003-07-02 삼성종합화학주식회사 난연성 폴리프로필렌 수지 조성물
KR20150145016A (ko) * 2014-06-18 2015-12-29 한화토탈 주식회사 이축연신 필름용 폴리프로필렌 수지
KR20170002370A (ko) * 2014-04-23 2017-01-06 사빅 글로벌 테크놀러지스 비.브이. 난연성 폴리에스테르 조성물 및 물품
KR101863421B1 (ko) 2015-12-30 2018-05-31 한화토탈 주식회사 비할로겐 난연 폴리프로필렌 수지 조성물
JP2018154697A (ja) * 2017-03-16 2018-10-04 Mcppイノベーション合同会社 難燃性ポリオレフィン系樹脂組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322322A (ja) * 2001-02-27 2002-11-08 Bromine Compounds Ltd 難燃性ポリオレフィン組成物
KR20050068620A (ko) * 2003-12-30 2005-07-05 삼성토탈 주식회사 난연성 폴리프로필렌 수지 조성물
CN101484526A (zh) * 2006-07-14 2009-07-15 胜技高分子株式会社 绝缘部件用聚对苯二甲酸丁二醇酯树脂组合物
KR100817563B1 (ko) * 2006-11-13 2008-03-27 제일모직주식회사 내스크래치 난연성 열가소성 수지 조성물
EP2596055B1 (en) * 2010-07-19 2014-08-20 DSM IP Assets B.V. Flame retardant insulated electrical wire
KR20150102715A (ko) * 2014-02-28 2015-09-07 주식회사 엘지화학 난연성 열가소성 수지 조성물 및 이를 포함하는 전선
PL2947121T3 (pl) * 2014-02-28 2019-11-29 Lg Chemical Ltd Kompozycja termoplastycznej żywicy zmniejszającej palność i przewód elektryczny zawierający tę kompozycję
CN104448560A (zh) * 2014-12-01 2015-03-25 黑龙江省润特科技有限公司 聚丙烯用无卤膨胀阻燃剂
KR101960350B1 (ko) * 2015-06-17 2019-03-20 주식회사 엘지화학 폴리프로필렌 수지 조성물 및 이로 피복된 케이블
CN109251399B (zh) * 2018-08-01 2021-01-08 无锡杰科塑业有限公司 车内高压线用柔软型低烟无卤高阻燃耐油电缆料及其制备方法
CN109233101B (zh) * 2018-09-10 2021-04-30 金发科技股份有限公司 一种耐热阻燃聚丙烯组合物及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980069435A (ko) * 1997-02-28 1998-10-26 하태준 내충격성 및 난연성이 우수한 폴리올레핀계 수지 조성물
KR20030054090A (ko) * 2001-12-24 2003-07-02 삼성종합화학주식회사 난연성 폴리프로필렌 수지 조성물
KR20170002370A (ko) * 2014-04-23 2017-01-06 사빅 글로벌 테크놀러지스 비.브이. 난연성 폴리에스테르 조성물 및 물품
KR20150145016A (ko) * 2014-06-18 2015-12-29 한화토탈 주식회사 이축연신 필름용 폴리프로필렌 수지
KR101863421B1 (ko) 2015-12-30 2018-05-31 한화토탈 주식회사 비할로겐 난연 폴리프로필렌 수지 조성물
JP2018154697A (ja) * 2017-03-16 2018-10-04 Mcppイノベーション合同会社 難燃性ポリオレフィン系樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4053202A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114736453A (zh) * 2022-03-14 2022-07-12 金发科技股份有限公司 一种低卤阻燃pp材料及其制备方法和应用
CN114736453B (zh) * 2022-03-14 2023-09-26 金发科技股份有限公司 一种低卤阻燃pp材料及其制备方法和应用

Also Published As

Publication number Publication date
KR20210051694A (ko) 2021-05-10
US20220275194A1 (en) 2022-09-01
JP2023500010A (ja) 2023-01-04
CN114286843A (zh) 2022-04-05
EP4053202A4 (en) 2023-12-06
KR102473869B1 (ko) 2022-12-02
EP4053202A1 (en) 2022-09-07

Similar Documents

Publication Publication Date Title
WO2013115538A1 (ko) 비할로겐 난연 고강성 폴리카보네이트 수지 조성물
WO2021107489A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2020130435A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2021085868A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
CN101910299A (zh) 阻燃热塑性树脂组合物及其制备方法
KR101473774B1 (ko) 고충격 난연 폴리페닐렌 에테르계 열가소성 수지 조성물
WO2021020741A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2019132584A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2012086867A1 (ko) 아크릴계 공중합체 수지 조성물
WO2019132575A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2015088239A1 (ko) 할로겐계 난연 유리섬유 강화 폴리아미드 수지 조성물, 및 제조방법
WO2015088240A1 (ko) 폴리〔아릴렌 에테르〕 난연수지 조성물 및 비가교 난연 케이블
WO2015130089A1 (ko) 난연성 열가소성 수지 조성물 및 이를 포함하는 전선
WO2022139176A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2022005181A1 (ko) 폴리포스포네이트 수지 조성물 및 이로부터 제조된 성형품
KR101613768B1 (ko) 폴리(아릴렌 에테르) 수지 조성물 및 이로부터 제조된 피복재
WO2022025409A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2022124513A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2021107540A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2021137490A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2024005326A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2022145724A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2024111936A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2019132591A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2023085680A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505460

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020881218

Country of ref document: EP

Effective date: 20220531