WO2021083309A1 - 一种茂金属化合物及其制备方法和应用 - Google Patents

一种茂金属化合物及其制备方法和应用 Download PDF

Info

Publication number
WO2021083309A1
WO2021083309A1 PCT/CN2020/125121 CN2020125121W WO2021083309A1 WO 2021083309 A1 WO2021083309 A1 WO 2021083309A1 CN 2020125121 W CN2020125121 W CN 2020125121W WO 2021083309 A1 WO2021083309 A1 WO 2021083309A1
Authority
WO
WIPO (PCT)
Prior art keywords
iii
group
catalyst
reaction
metallocene
Prior art date
Application number
PCT/CN2020/125121
Other languages
English (en)
French (fr)
Inventor
尹兆林
毛远洪
曹育才
梁胜彪
朱红平
叶晓峰
倪晨
陈志康
钟东文
宋莎
蒋文军
刘振宇
Original Assignee
中国石油化工股份有限公司
上海化工研究院有限公司
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911046672.5A external-priority patent/CN112745366B/zh
Priority claimed from CN201911047955.1A external-priority patent/CN112745414B/zh
Application filed by 中国石油化工股份有限公司, 上海化工研究院有限公司, 厦门大学 filed Critical 中国石油化工股份有限公司
Priority to US17/755,538 priority Critical patent/US20220389133A1/en
Priority to KR1020227018352A priority patent/KR20220094212A/ko
Priority to JP2022526097A priority patent/JP2023501982A/ja
Priority to EP20880446.8A priority patent/EP4053175A4/en
Publication of WO2021083309A1 publication Critical patent/WO2021083309A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/58Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with silicon, germanium, tin, lead, antimony, bismuth or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • C08F4/6465Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64 containing silicium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/03Multinuclear procatalyst, i.e. containing two or more metals, being different or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/10Heteroatom-substituted bridge, i.e. Cp or analog where the bridge linking the two Cps or analogs is substituted by at least one group that contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Definitions

  • the invention relates to a metallocene compound and a preparation method and application thereof, in particular to a metallocene catalyst containing the metallocene compound and a preparation method and application of the catalyst, and specifically belongs to the technical field of metallocene catalysts.
  • Metallocene polypropylene has shown good applicability in fiber, injection molding and film products, and the market demand has increased year by year in recent years. These resin products have high requirements for the stereoregular structure of polypropylene, and the structure of polypropylene is regulated by the structure of the catalyst.
  • Metallocene polypropylene with higher order structure is one of the important resin species. It is synthesized by controlling the growth of the propylene chain through the stereo-enantiomeric sites of the catalyst.
  • a catalyst capable of carrying out enantio-site controlled chain extension reactions needs to have C2 axis or lower C1 axis symmetry (Chem. Rev. 2000, 100, 1223), bridged biindene ring type of racemic structure and its derivatives
  • the fourth group metal titanium, zirconium, and hafnium compounds of the system have this characteristic.
  • Brintzinger combined the racemic structure of ethyl diindene ligand and later ethyl bis(tetrahydroindene) ligand (J. Organomet. Chem.
  • the average molecular weight of the highest (300,000 Dalton) and the lowest (12,000 Dalton) is also 25 times different, but the molecular weight distribution of the polymer does not change much, at 1.9 ⁇ 2.6 changes, the isotacticity is within [mmmm] 86.0-91.0 (Angew. Chem. Int. Ed. Engl. 1985, 24, 507).
  • Herrmann et al. synthesized a racemic silicon-based bridged indene zirconium compound. Subsequently, Spaleck and Herrmann et al. modified the indene ring with substituents.
  • the polypropylene catalyzed by higher temperature and MAO had a reaction activity and molecular weight.
  • These groups are H, halogen atom, C 1 -C 10 alkyl, C 1 -C 10 fluoroalkyl, C 6 -C 10 aryl, C 6 -C 10 fluorine Substituted aryl, C 1 -C 10 alkoxy, C 2 -C 10 alkenyl, C 7 -C 40 aryl substituent alkyl, or R 11 and R 12 and R 11 and R 13 are linked together by atoms Ring; M 2 is Si, Ge, Sn; R 8 and R 9 can be the same or different, and the specific group definitions are the same as R 11 ; m and n can be the same or different, they are 0, 1, or 2, or m+n is 0, 1, or 2.
  • US5239022 further defines on the basis of the above that alkyl refers to straight or branched chain alkyl, halogen atom refers to fluorine, chlorine, bromine, and iodine, and R 11 , R 12 , and R 13 groups are specifically assigned preferentially. For details, please refer to the original document.
  • These groups are H, halogen atoms, C 1 -C 10 alkyl groups, and C 1 -C 10 Fluoroalkyl, C 1 -C 10 alkoxy, C 6 -C 10 aryl, C 6 -C 10 fluoroaryl, C 6 -C 10 phenolic, C 2 -C 10 alkenyl, C 7 -C 40 aryl substituent alkyl, C 7 -C 40 alkyl substituent aryl, C 8 -C 40 aryl substituent alkenyl, or R 14 and R 15 are joined by atoms to form one or more Ring; M 2 is Si, Ge, Sn.
  • the bridging group defined in US63764413B1 is biphenyl -M 2 (C 6 R 17 R 18 R 19 R 20 -C 6 R 21 R 22 R 23 R 24 ) -, and the overall definition of R 17 to R 24 is designated as R 1 And R 2 , or two or more adjacent radicals R 17 to R 24 , including R 20 and R 21 , and are connected by atoms to form one or more rings.
  • R 17 to R 24 are preferably H.
  • R 1 and R 2 can be the same or different, they are one of H, C 1 -C 10 alkyl, C 1 -C 10 alkoxy, C 6 -C 10 aryl, C 6 -C 10 phenol Group, C 2 -C 10 alkenyl, C 7 -C 40 aryl substituent alkyl, C 7 -C 40 alkyl substituent aryl, C 8 -C 40 aryl substituent alkenyl, OH, halogen atom , Or conjugated diene (random one or more hydrocarbon groups substituted), trihydrocarbon group or trihydrocarbon group, trihydrocarbon group substituted hydrocarbon group (in which the number of non-hydrogen atoms is up to 30).
  • Patents US5391790 and US5616747 directly indicate bridging groups with -R 6 -, and are defined as -[M 2 (R 8 )(R 9 )] p -, where M 2 is C, Si, Ge, Sn; R 8 and R 9 may be the same or different.
  • H C 1 -C 20 alkyl, C 6 -C 14 aryl, C 1 -C 10 alkoxy, C 2 -C 10 alkenyl, C 7 -C 20 aryl substituent alkyl, C 7 -C 20 alkyl substituent aryl, C 6 -C 10 phenolic group, C 1 -C 10 fluoroalkyl group, C 6 -C 10 halogenated aryl group , C 2 -C 10 alkynyl, -SiR 7 3 , halogen, or five-membered or six-membered heteroaromatic radicals (containing one or more heteroatoms), and atoms link them to form one or more rings; p is 1, 2, or 3.
  • US5739366 defines bridging group Y, specifying divalent C 1 -C 20 hydrocarbon groups, divalent C 1 -C 20 halogenated hydrocarbon groups, divalent silicon-containing groups, divalent germanium-containing groups, and two Valence tin-containing groups, –O–, –CO–, –S–, –SO–, –SO 2 –, –NR 5 –, –P(R 5 )–, –P(O)(R 5 )– , -BR 5 -or -AlR 5- (R 5 is H, halogen atom, C 1 -C 20 hydrocarbon group, divalent C 1 -C 20 halogenated hydrocarbon group).
  • the benzene ring is expanded to a seven-membered ring, and the corresponding bridging group Q is defined as a divalent C 1 -C 20 hydrocarbon group and a divalent C 1- C 20 halogenated hydrocarbon groups, silalkenyl groups, oligomeric silylene groups, germanene groups containing C 1 -C 20 hydrocarbon groups or C 1 -C 20 halogenated hydrocarbon groups, groups Connect two five-member rings.
  • the bridging group R 9 defined in US6444606B1, US7342078B2 and US2003/0149199A1 is: –O–M 2 (R 10 )(R 11 )–O–, –C(R 10 )(R 11 )–, –O–M 2 (R 10 )(R 11 )--, --C(R 10 )(R 11 )--M 2 (R 10 R 11 )--, --M 2 (R 10 )(R 11 )--, --M 2 (R 10) (R 11) -M 2 (R 10) (R 11) -, - C (R 10) (R 11) -C (R 10) (R 11) -, - M 2 (R 10) (R 11) - [C (R 10 R 11)] x -M 2 (R 10) (R 11) -, - C (R 10) (R 11) -C (R 10 R 11) -C (R 10) (R 11 )–,
  • These groups are H, halogen atoms, or C 1 -C 40 groups, such as C 1 -C 20 alkyl groups, C 1 -C 10 fluoroalkyl group, C 1 -C 10 alkoxy group, C 6 -C 14 aryl group, C 6 -C 10 fluoro aryl group, C 6 -C 10 phenol group, C 2 -C 10 Alkenyl, C 7 -C 40 aryl substituent alkyl, C 7 -C 40 alkyl substituent aryl, C 8 -C 40 aryl substituent alkenyl, or R 10 and R 11 are joined by atoms One or more rings; M 2 is Si, Ge, Sn.
  • the bridging group connects two cyclopentadiene groups, indene groups or fluorene groups, that is, the two groups are sterically defined. This bridging enhances the rigidity of the ligand structure, and shows importance for the formation of a racemic structure characteristic of the catalyst.
  • the racemic structure catalyst can well control the chain growth of the stereo-enantiomeric sites of propylene, and produce metallocene polypropylene with high isotacticity.
  • polypropylene products are basically produced using traditional supported Ziegler-Natta catalysts.
  • the use of bridged two-group metallocene catalysts to control the production of polypropylene with high isotacticity is rarely reported because there are still technical difficulties in this regard. .
  • the metallocene catalyst in the prior art has the technical problem of insufficient activity.
  • a new metallocene compound is provided, and the group connected to the bridging atom of the metallocene compound is an amine.
  • the special structure enables the metallocene catalyst containing the metallocene compound to have higher catalytic activity and can be synthesized High-grade metallocene polypropylene.
  • the second technical problem to be solved by the present invention is to provide a preparation method compatible with the metallocene compound which solves one of the technical problems.
  • the third technical problem to be solved by the present invention is to provide a metallocene compound catalyst which is one of the above technical problems.
  • the fourth technical problem to be solved by the present invention is to provide a preparation method compatible with the catalyst for solving the third technical problem.
  • the fifth technical problem to be solved by the present invention is to provide a metallocene compound for solving one of the above technical problems or the application of a catalyst for solving the third technical problem.
  • R I and R II are the same or different, and at least one of R I and R II is selected from C 1 -C 20 hydrocarbon groups substituted by amino groups, C 1 -C 20 halogenated hydrocarbon groups, C 1 -C 20 alkoxy group and C 6 -C 20 phenol group; and/or at least one of R I and R II is selected from a C 1 -C 20 hydrocarbon group substituted by a metallocene group, and a C 1 -C 20 halogenated hydrocarbon group , C 1 -C 20 alkoxy group and C 6 -C 20 phenol group; and/or at least one of R I and R II is selected from C 1 -C 20 hydrocarbon group, C 1 -C 20 halogenated hydrocarbon group, C 1 -C 20 alkoxy or C 6 -C 20 phenolic substituted metallocene group;
  • Z is selected from carbon, silicon, germanium and tin
  • Cp III is a cyclopentadienyl, indenyl or fluorenyl group with or without substituents as shown in formula (II), and R i , R ii , and R iii are the substituents on the corresponding rings;
  • R i , R ii and R iii are the same or different, and are each independently selected from hydrogen and C 1 -C 20 hydrocarbon groups that are linear or branched, saturated or unsaturated, containing heteroatoms or not containing heteroatoms;
  • E is NR iv or PR iv ;
  • R iv is selected from hydrogen and C 1 -C 20 hydrocarbon groups that are linear or branched, saturated or unsaturated, containing heteroatoms or not containing heteroatoms;
  • M is selected from group IVB metals
  • L IV and L V are the same or different, and are each independently selected from hydrogen and linear or branched, saturated or unsaturated, heteroatom-containing or heteroatom-free C 1 -C 20 hydrocarbon groups;
  • n 1 or 2.
  • Cp III refers to any one of the above cyclopentadienyl, indenyl or fluorenyl; when n is equal to 2, Cp III refers to the above cyclopentadienyl, indenyl Or two of each of the fluorenyl groups, or any two of the cyclopentadienyl, indenyl, or fluorenyl groups.
  • the two Cp III groups may be the same or different.
  • the amine group is represented by formula (III):
  • R a and R b are the same or different, and are each independently selected from hydrogen, C 1 -C 6 alkyl, C 6 -C 18 aryl, C 7 -C 20 aryl alkyl, and C 7 -C 20 alkyl aryl, preferably C 1 -C 6 alkyl, C 6 -C 12 aryl and C 7 -C 10 aryl alkyl, more preferably C 1 -C 4 alkyl, phenyl and C 7 -C 9 arylalkyl.
  • the metal in the metallocene group is Fe, and preferably, the metallocene group is a ferrocene group.
  • R I and R II are the same or different, and at least one of R I and R II is selected from a C 1 -C 10 hydrocarbon group substituted by an amino group, a C 1- C 10 halogenated hydrocarbon group, C 1 -C 10 alkoxy group, and C 6 -C 10 phenol group; and/or at least one of R I and R II is selected from C 1 -C 10 hydrocarbon groups substituted by metallocene groups, C 1 -C 10 halogenated hydrocarbon groups, C 1 -C 10 alkoxy groups, and C 6 -C 10 phenol groups; and/or at least one of R I and R II is selected from C 1 -C 10 hydrocarbon groups, C 1 -C 10 halogenated hydrocarbon group, C 1 -C 10 alkoxy group or C 6 -C 10 phenolic group substituted metallocene group.
  • R I and R II are the same or different, and at least one of R I and R II is selected from C 1 -C 6 hydrocarbon groups substituted by amine groups, C 1- C 6 halogenated hydrocarbon group, C 1 -C 6 alkoxy group and C 6 -C 8 phenol group; and/or at least one of R I and R II is selected from C 1 -C 6 hydrocarbon groups substituted by metallocene groups, C 1 -C 6 halogenated hydrocarbon group, C 1 -C 6 alkoxy group and C 6 -C 8 phenol group; and/or at least one of R I and R II is selected from C 1 -C 6 hydrocarbon group, C 1 -C 6 halogenated hydrocarbon group, C 1 -C 6 alkoxy or C 6 -C 8 phenolic group substituted metallocene group.
  • R I and R II are the same or different, and at least one of R I and R II is selected from a C 1 -C 6 hydrocarbon group substituted by an amino group; and/or At least one of R I and R II is selected from a C 1 -C 6 hydrocarbon group substituted with a metallocene group; and/or at least one of R I and R II is selected from a metallocene group substituted with a C 1 -C 6 hydrocarbon group .
  • R I and R II are the same or different, and at least one of R I and R II is selected from a C 1 -C 6 linear alkyl group substituted by an amino group; And/or at least one of R I and R II is selected from a C 1 -C 6 linear alkyl group substituted by a metallocene group; and/or at least one of R I and R II is selected from a C 1 -C 6 Linear alkyl substituted metallocene group.
  • R I and R II are the same or different, and at least one of R I and R II is selected from a C 1 -C 4 linear alkyl group substituted by an amino group; And/or at least one of R I and R II is selected from a C 1 -C 4 linear alkyl group substituted by a metallocene group; and/or at least one of R I and R II is selected from a C 1 -C 4 Linear alkyl substituted metallocene group.
  • the other group may be selected from C 1 -C 20 hydrocarbon groups, C 1 -C 20 halogenated groups Hydrocarbyl group, C 1 -C 20 alkoxy group and C 6 -C 20 phenol group, preferably C 1 -C 10 hydrocarbyl group, C 1 -C 10 halogenated hydrocarbyl group, C 1 -C 10 alkoxy group and C 6 -C 10 phenol groups, more preferably C 1 -C 6 hydrocarbon groups, C 1 -C 6 halogenated hydrocarbon groups, C 1 -C 6 alkoxy groups, and C 6 -C 8 phenol groups, more preferably C 1 -C 6 hydrocarbon groups.
  • R i , R ii and R iii refer to the substituents on the corresponding ring in the above formula.
  • Cp III is a cyclopentadienyl group
  • R i can be substituted and connected to one or up to four at any one, two, three or all four of the four positions independently of each other
  • Cp III is an indenyl group
  • R i can be substituted and connected to one or two independently at one of the two positions of the five-membered ring or at all two positions without selection, and R ii may be in the six-membered ring Any one, two, three or all four of the four positions are independently substituted and connected to one or up to four.
  • R iii is a part of the indenyl ring
  • the definition is the same R ii ;
  • R ii , R iii can be independently selected one, two, three or all four of the four positions in each of the two six-membered rings The positions are independent of each other instead of connecting one or up to four.
  • R i , R ii , and R iii each independently refer to hydrogen, linear or branched C 1 -C 20 alkyl, C 3 -C 20 cycloalkyl, C 6 -C 20 aryl, C 7 -C 20 alkyl aryl or C 7 -C 20 aryl alkyl, these groups optionally contain one or more heteroatoms, and can also be saturated or unsaturated.
  • R i , R ii , and R iii may form saturated or unsaturated cyclic groups, and these groups may optionally contain one or more heteroatoms.
  • R i , R ii and R iii are the same or different, and are each independently selected from hydrogen, C 1 -C 20 hydrocarbon group, C 1 -C 20 haloalkyl, C 6 -C 20 aryl, C 6 -C 20 halogenated aryl, C 7 -C 40 aryl alkyl, C 7 -C 40 alkyl aryl, C 3 -C 20 cycloalkyl, C 3 -C 20 Heterocycloalkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 1 -C 20 alkoxy, C 6 -C 20 phenol group, C 1 -C 20 amine group and containing 13 groups to Group 17 heteroatom group.
  • R i , R ii and R iii are the same or different, and are each independently selected from hydrogen, C 1 -C 10 hydrocarbon group, C 1 -C 10 haloalkyl, C 6 -C 10 aryl, C 6 -C 10 haloaryl, C 7 -C 20 aryl alkyl, C 7 -C 20 alkyl aryl, C 3 -C 10 cycloalkyl, C 3 -C 10 Heterocycloalkyl, C 2 -C 10 alkenyl, C 2 -C 10 alkynyl, C 1 -C 10 alkoxy, C 6 -C 10 phenol group, C 1 -C 10 amine group and containing 13 groups to Group 17 heteroatom group.
  • R i , R ii and R iii are the same or different, and are each independently selected from hydrogen, C 1 -C 6 hydrocarbon group, C 1 -C 6 haloalkyl, C 6 -C 6 aryl, C 6 -C 6 haloaryl, C 7 -C 10 aryl alkyl, C 7 -C 10 alkyl aryl, C 3 -C 6 cycloalkyl, C 3 -C 6 Heterocycloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1 -C 6 alkoxy, C 6 -C 6 phenol group, C 1 -C 6 amine group and containing 13 groups to Group 17 heteroatom group.
  • R iv is selected from hydrogen and C 1 -C 10 hydrocarbon groups that are linear or branched, saturated or unsaturated, containing heteroatoms or not containing heteroatoms.
  • R iv is selected from hydrogen and C 1 -C 6 hydrocarbon groups that are linear or branched, saturated or unsaturated, containing heteroatoms or not containing heteroatoms.
  • M is selected from Ti, Zr and Hf.
  • M is Zr.
  • L IV and L V are the same and are selected from hydrogen, chlorine, methyl, phenyl, benzyl and dimethylamino.
  • the preparation method includes:
  • the preparation method includes:
  • X is selected from Cl, Br and I;
  • R I R II Z(Cp III ) 2 2 ⁇ alkali metal salt or R I R II Z(Cp III )(E) 2 ⁇ alkali metal salt does not need to be separated, and directly forms a salt with X 2 ML IV L V Elimination reaction.
  • a method for preparing the above-mentioned metallocene compound includes:
  • the precursor of the R II is a molecule containing multiple bonds.
  • the molecule containing multiple bonds is selected from organic multiple bond molecules, CO and CO 2 , wherein the multiple bonds are selected from the same type of atoms or different types of atoms.
  • the above-mentioned metallocene compound can be prepared in both scheme one and scheme two.
  • the above-mentioned metallocene compound is prepared through Scheme 2. That is, through the precursor R I HZ (Cp III ) n (E) 2-n ML IV L V , R II HZ (Cp III ) n (E) 2-n ML IV L V or H 2 Z (Cp III ) n (E) 2-n ML IV L V is prepared by Z-H addition reaction with molecules containing multiple bonds.
  • H( Cp III ) alkali metal salt is prepared by reacting the locene ligand H 2 (Cp III ) with an equivalent amount of alkali metal organic compound, the alkali metal organic compound is selected from the group consisting of metal hydride, metal alkyl, alkenyl metal, aromatic metal, and amine
  • the base metal is preferably a metal alkyl; the alkali metal is selected from Li, Na, K, preferably Li; and X is selected from Cl, Br, I, preferably Cl.
  • the generated R I HZ[H(Cp III )] 2 does not need to be separated and is directly used in the next reaction. There are two schemes as follows:
  • L viii L viv ML IV L V destabilizing small molecules HL viii or HL viv to obtain R I HZ(Cp III ) 2 ML IV L V , L viii and L viv are leaving groups, which can be the same or It can be different, selected from hydrogen, alkyl, aryl, amine, preferably from two identical methyl, phenyl, dimethylamino groups.
  • alkali metal organic compound b) React with two moles of alkali metal organic compound to produce alkali metal salt.
  • alkali metal organic compound is the same as above; and then further eliminate it with X 2 ML IV L V salt to obtain R I HZ(Cp III ) 2 ML IV L
  • V and X is the same as above.
  • the preparation of H(Cp III ) alkali metal salt is the same as above,
  • the alkali metal salt of H(E) is prepared by reacting H 2 (E) with an equivalent amount of an alkali metal organic compound, and the definition of the alkali metal organic compound is the same as above.
  • the generated R I HZ[H(Cp III )][H(E)] does not need to be separated and is directly used in the next reaction. There are two schemes as follows:
  • alkali metal organic compound b) React with two moles of alkali metal organic compound to produce alkali metal salt.
  • alkali metal organic compound is the same as above; and then it is further eliminated by X 2 ML IV L V salt to obtain R I HZ(Cp III )(E)ML IV L V , X has the same definition as above.
  • R I HZ(Cp III ) n (E) 2-n ML IV L V R II HZ(Cp III ) n (E) 2-n ML IV L V or H 2 Z(Cp III ) n (E)
  • aprotic solvents which are selected from linear or branched alkane compounds, cycloalkane compounds, aromatic hydrocarbon compounds, halogenated hydrocarbon compounds, and ethers.
  • the compounds and cyclic ether compounds are preferably toluene, xylene, chlorobenzene, heptane, cyclohexane, methylcyclohexane, dichloromethane, chloroform, tetrahydrofuran, diethyl ether and 2,6-oxygen ring.
  • reaction with the alkali metal organic compound is carried out at a temperature of -60 to 140°C, preferably in the temperature range of -20 to 110°C; the reaction time is greater than 0.016h, and the reaction time is preferably in the range of 2-100h.
  • reaction of R I HZX 2 , R II HZX 2 , H 2 ZX 2 with H(Cp III ) or H(E) alkali metal salt, and X 2 ML IV L V and R I HZ[(Cp III )] 2 , R II HZ[(Cp III )] 2 , H 2 Z[(Cp III )] 2 , R I HZ[(Cp III )][(E)], R II HZ[(Cp III )][(E )] or H 2 Z[(Cp III )][(E)] alkali metal salt reaction is carried out at a temperature of -75 ⁇ 100°C, preferably the temperature range is –75 ⁇ 60°C; the reaction time is greater than 0.1h, preferably the reaction The time range is 6-100h.
  • the reaction is carried out at a temperature of 0-160°C, and the preferred temperature range is 20-140°C; the reaction time is greater than 0.1h, and the preferred reaction time range is 2-100h.
  • R I HZ (Cp III ) n (E) 2-n ML IV L V , R II HZ (Cp III ) n (E) 2-n ML IV L V or H 2 Z(Cp III ) n (E) 2-n ML IV L V is prepared by Z-H addition reaction with molecules containing multiple bonds (I).
  • the Z-H addition reaction requires the participation of a catalyst.
  • the catalyst is selected from transition metal catalysts and Lewis acid catalysts, preferably platinum catalysts in transition metals and B(C 6 F 5 ) 3 catalysts in Lewis acids.
  • the above need while the precursor L V and L IV or no effect of this action does not affect the catalyst reaction of Z-H with a multiple bond.
  • the precursor L V and L IV or no effect of this action does not affect the catalyst reaction of Z-H with a multiple bond.
  • L IV and L V are methyl groups
  • the B(C 6 F 5 ) 3 catalyst will complex with the methyl group to form [MeB(C 6 F 5 ) 3 ] ⁇ , and lose the catalytic effect, then L IV And L V needs to be converted to NMe 2 or other non-reactive groups.
  • the reaction of Z–H in 2-n ML IV L V with multiple bond molecules is carried out in an aprotic solvent.
  • the solvent is selected from linear or branched alkane compounds, cycloalkane compounds, aromatic hydrocarbon compounds, and halogenated compounds.
  • Hydrocarbon compounds, ether compounds and cyclic ether compounds preferably toluene, xylene, chlorobenzene, heptane, cyclohexane, methylcyclohexane, dichloromethane, chloroform, tetrahydrofuran, diethyl ether and 2,6- Oxygen ring.
  • the amount of catalyst used in the reaction is 0.00001-50% by mass of the total amount of reactants, preferably 0.01-20%; the reaction is carried out at a temperature of -30-140°C, and the preferred temperature range is 0-90°C; reaction time It is more than 0.1h, and the reaction time is preferably in the range of 2-50h.
  • the target product (I) is separated or purified by recrystallization.
  • Z is preferably silicon.
  • the Z hydrogenation reaction is carried out in the presence of a catalyst selected from transition metal catalysts and Lewis acid catalysts, preferably platinum catalysts in transition metals and B(C 6 F 5 ) 3 catalyst.
  • the amount of catalyst used in the Z hydrogenation reaction is 0.00001-50% of the total mass of the reactants, preferably 0.01-20%.
  • the temperature of the Z hydrogenation reaction is -30 to 140°C, preferably 0 to 90°C.
  • the reaction time of the Z hydrogenation reaction is greater than 0.1h, preferably 2-50h.
  • the obtained precursor is separated or purified by recrystallization, and the solvent for the recrystallization is an aprotic solvent; preferably, it is selected from linear or branched alkane compounds and cycloalkanes.
  • the solvent for the recrystallization is an aprotic solvent; preferably, it is selected from linear or branched alkane compounds and cycloalkanes.
  • Compounds, aromatic hydrocarbon compounds, halogenated hydrocarbon compounds, ether compounds and cyclic ether compounds further preferably, selected from toluene, xylene, hexane, heptane, cyclohexane and methylcyclohexane.
  • the precursor R I HZ(Cp III ) n (E) 2-n ML IV L V is prepared by a one-pot method of chemical reaction.
  • the preparation method of the precursor R I HZ(Cp III ) n (E) 2-n ML IV L V includes:
  • Step 1) reacting H 2 (Cp III ) with an alkali metal organic compound to generate the corresponding [H(Cp III )] ⁇ alkali metal salt;
  • Step 2 make [H(Cp III )] ⁇ alkali metal salt react with R I HZX 2 to generate R I HZ[H(Cp III )] 2 ;
  • Step 3 R I HZ[H(Cp III )] 2 does not need to be separated, and directly reacts with L viii L viv ML IV L V to destabilize the small molecule L viii or L viv to obtain the precursor R I HZ(Cp III ) 2 ML IV L V ;
  • R I HZ[H(Cp III )] 2 does not need to be separated, and directly reacts with the alkali metal organic compound to form an alkali metal salt; the obtained alkali metal salt is then eliminated and reacted with the X 2 ML IV L V salt to obtain the Precursor R I HZ (Cp III ) 2 ML IV L V ;
  • the preparation method of the precursor R I HZ(Cp III ) n (E) 2-n ML IV L V includes:
  • Step 1) make H 2 (Cp III ) and H 2 (E) react with alkali metal organic compounds to generate corresponding [H(Cp III )] ⁇ and [H(E)] ⁇ alkali metal salts;
  • Step 2) make [H(Cp III )] ⁇ and [H(E)] ⁇ alkali metal salt react with R I HZX 2 to form R I HZ[H(Cp III )][H(E)];
  • Step 3 R I HZ[H(Cp III )][H(E)] directly reacts with L viii L viv ML IV L V without separation to destabilize the small molecule L viii or L viv to obtain the precursor R I HZCp III EML IV L V ;
  • R I HZ[H(Cp III )][H(E)] directly reacts with alkali metal organic compounds to form alkali metal salt without separation; the obtained alkali metal salt is then eliminated with X 2 ML IV L V salt React to obtain the precursor R I HZCp III EML IV L V ;
  • X is selected from Cl, Br and I.
  • R I is through the addition of the Z–H bond in the precursor R II HZ(Cp III ) n (E) 2-n ML IV L V to the multiple bonds in the molecule containing multiple bonds
  • the reaction is formed
  • R II is formed by the addition reaction of the Z–H bond in the precursor R I HZ(Cp III ) n (E) 2-n ML IV L V with the multiple bonds in the multiple bond molecule
  • R I and R II are all formed by the addition reaction of the Z–H bond in the precursor H 2 Z(Cp III ) n (E) 2-n ML IV L V with the multiple bonds in the multiple bond molecule
  • the multiple bond molecule is an organic multiple bond molecule , CO or CO 2 , preferably organic multiple bond molecules. Therefore, R I and R II may be the same or different.
  • the reaction temperature of the reaction is -100°C to 140°C, preferably -85°C to 110°C; and/or, the reaction time is greater than 0.016h, preferably 2-100h .
  • the reaction materials are mixed at -100°C to -20°C, preferably -85°C to -10°C, and at 10°C to 50°C, preferably 20°C to 35°C.
  • the mixed reaction materials are allowed to react at °C for 1 hour to 100 hours, preferably 5 hours to 50 hours.
  • the reaction in each step, is carried out in an aprotic solvent, and the aprotic solvent is selected from linear or branched alkane compounds, cycloalkane compounds, aromatic hydrocarbon compounds, Halogenated hydrocarbon compounds, ether compounds and cyclic ether compounds are preferably selected from toluene, xylene, chlorobenzene, heptane, cyclohexane, methylcyclohexane, dichloromethane, chloroform, tetrahydrofuran, Ether and dioxane.
  • the aprotic solvent is selected from linear or branched alkane compounds, cycloalkane compounds, aromatic hydrocarbon compounds, Halogenated hydrocarbon compounds, ether compounds and cyclic ether compounds are preferably selected from toluene, xylene, chlorobenzene, heptane, cyclohexane, methylcyclohexane, dichloromethane, chloroform, tetrahydrofuran
  • the alkali metal organic compound is selected from the group consisting of metal hydride, metal alkyl, alkenyl metal, aromatic metal and amine metal, preferably metal alkyl, more preferably C 1 -C 6 alkane Base metal.
  • the alkali metal is selected from Li, Na and K, preferably Li.
  • the technical solution adopted by the present invention is as follows.
  • a catalyst for the polymerization of ⁇ -olefins comprising: the above-mentioned metallocene compound or the metallocene compound prepared according to the above-mentioned preparation method, a co-catalyst and a carrier.
  • the co-catalyst is selected from Lewis acids, ionic compounds containing non-coordinating anions and Lewis acid or Bronsted acid cations; preferably, the Lewis acid includes aluminum alkyl, Alkyl aluminoxane and organoboride; and/or the ionic compound containing non-coordinating anion and Lewis acid or Bronsted acid cation is selected from borate anions containing 1-4 perfluoroaryl substitutions compound of.
  • the aluminum alkyl includes trimethylaluminum, triethylaluminum, triisopropylaluminum, tri-n-propylaluminum, triisobutylaluminum, tri-n-butylaluminum, and triisopropylaluminum.
  • Pentyl aluminum tri-n-pentyl aluminum, tri-isohexyl aluminum, tri-n-hexyl aluminum, tri-isoheptyl aluminum, tri-n-heptyl aluminum, tri-isooctyl aluminum, tri-n-octyl aluminum, tri-isononyl aluminum, Tri-n-nonylaluminum, tri-isodecylaluminum, and tri-n-decylaluminum; and/or the alkylaluminoxane includes methylaluminoxane, ethylaluminoxane, and butyl-modified aluminoxane; And/or the organoboride includes trifluoroborane, triphenylborane, tris(4-fluorophenyl)borane, tris(pentafluorophenyl)borane, tris(3,5-difluorobenzene) Yl)borane and tris(
  • the alkyl aluminum includes trimethyl aluminum and triethyl aluminum.
  • the perfluoroaryl group is selected from perfluorophenyl, perfluoronaphthyl, perfluorobiphenyl, perfluoroalkylphenyl, and the cation is selected from N,N-dimethyl Phenylammonium ion, triphenylcarbonium ion, trialkylammonium ion and triarylammonium ion.
  • the content of the metallocene compound in the catalyst is 0.001% by mass to 10% by mass, preferably 0.01% by mass to 1% by mass, calculated as element M; and/or
  • the molar ratio of the Al element to the M element in the metallocene compound is (1 to 500):1, preferably (50 to 300):1.
  • the catalyst has an asymmetric structure.
  • the asymmetric structure can be multi-layered, it can mean that the R I and R II in the metallocene compound are asymmetric, it can also mean that the metallocene compound interacts with the auxiliary agent to form an asymmetric structure, and it can also mean that the metallocene compound and the auxiliary agent will form an asymmetric structure. After the metallocene compound reacts with the auxiliary agent, the carrier is loaded to further strengthen the asymmetry.
  • a method for preparing the above-mentioned catalyst includes: combining the metallocene compound, the co-catalyst and the carrier under the action of a solvent to form the catalyst.
  • the combination conditions include: the temperature of the combination is -40°C to 200°C, preferably 40°C to 120°C; the time of the combination is greater than 0.016h, preferably 2h-100h.
  • the solvent is selected from linear hydrocarbons, branched hydrocarbons, cyclic saturated hydrocarbons and aromatic hydrocarbons, preferably toluene, xylene, n-butane, n-pentane Alkane, isopentane, neopentane, cyclopentane, methylcyclopentane, n-hexane, n-heptane, cyclohexane, methylcyclohexane, petroleum ether, isoheptane, and neoheptane.
  • the preparation method of the above-mentioned catalyst includes:
  • the carrier is roasted.
  • the conditions of the roasting treatment include: a roasting temperature of 50°C to 700°C, and a roasting time of 0.5h to 240h.
  • the mixture A is heated.
  • the conditions of the heating treatment include: a heating temperature of 30°C to 110°C, and a heating time of 0.1h to 100h.
  • the conditions of the drying treatment include: a drying temperature of 30°C to 110°C, and a drying time of 0.1h to 100h.
  • the solid is washed before the drying treatment, preferably the solid is washed with the solvent, and more preferably, the solvent after washing does not contain metal ions.
  • the ⁇ -olefin is polymerized Reaction to obtain poly- ⁇ -olefin.
  • the polymerization reaction is carried out under solvent-free conditions.
  • the conditions of the polymerization reaction include: a reaction temperature of -50°C to 200°C, preferably 30°C to 100°C; and a reaction time of 0.01h to 60h, preferably 0.1h to 10h.
  • the metallocene catalyst or metallocene catalyst system is used in an amount of 0.001 mg to 1000 mg, preferably 0.01 mg to 200 mg, and more preferably 0.1 mg to 20 mg per gram of ⁇ -olefin.
  • the ⁇ -olefin includes C 2 -C 20 ⁇ -olefin, preferably C 2 -C 14 ⁇ -olefin, more preferably ethylene, propylene, 1-butene, 1-pentene , 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene and 1-eicosene, preferably 1-butene, 1-pentene, 1-hexene Ene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, and 1-tetradesene, preferably 1-butene
  • the ⁇ -olefin is propylene.
  • the bulk polymerization reaction can be carried out with propylene and hydrogen as raw materials (this bulk polymerization reaction can be carried out in a tank reactor or a tubular reactor; it can be carried out batchwise or Continuously), the amount of hydrogen can be 0 to 0.10 g/g propylene, preferably 0.00001 to 0.10 g/g propylene.
  • impurity breakers can be used in the polymerization of propylene.
  • the impurity-breaking agent is a substance commonly used in the field, and its specific dosage can be 0-100 mmol/g propylene, preferably 0.001-10 mmol/g propylene.
  • the ⁇ -olefin is ethylene.
  • the gas phase polymerization reaction is carried out, and the reaction temperature is 0-200°C, preferably 20-140°C; and/or, the reaction time is 0.016-60h, preferably 0.1-20h; and/or, ethylene
  • the pressure is 0.1-15 MPa, preferably 0.2-10 MPa, and/or the amount of catalyst is 0.00001-100 mg/g ethylene, and/or the amount of impurity removal agent is 0-100 mmol/g ethylene, and/or hydrogen
  • the dosage is 0 ⁇ 0.01g/g ethylene.
  • the impurity removing agent is selected from alkyl aluminum compounds, aromatic aluminum compounds, aluminoxane compounds, borohydride compounds, alkyl magnesium compounds, aromatic magnesium compounds, alkyl zinc compounds, aromatic Base zinc compound, alkyl lithium compound, aryl lithium compound, alkyl sodium compound, aryl sodium compound, alkyl potassium compound and aryl potassium compound; preferably, selected from trimethyl aluminum, triethyl aluminum, trimethyl aluminum Isobutyl aluminum, tri-n-butyl aluminum, tri-n-hexyl aluminum, tri-n-octyl aluminum, methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane and modified aluminoxane, alkyl aluminum Halides, dimethyl magnesium, diethyl magnesium, di-n-butyl magnesium, dimethyl zinc, diethyl zinc, di-n-butyl zinc, methyl lithium, n
  • hydrocarbyl may be alkyl, aryl, alkylaryl, arylalkyl, alkynyl, alkenyl and the like.
  • heteroatom may refer to heteroatoms such as oxygen, sulfur, nitrogen, and phosphorus.
  • substituted may refer to substitution by a substituent, which may be selected from halogens, non-carbon oxo acid groups and their derivatives, and optionally substituted alkyl, aralkyl and aryl groups.
  • a substituent which may be selected from halogens, non-carbon oxo acid groups and their derivatives, and optionally substituted alkyl, aralkyl and aryl groups.
  • one-pot method may refer to a continuous multi-step synthesis reaction carried out in the same reactor.
  • Me means methyl
  • Et means ethyl
  • iPr means isopropyl
  • tBu means tert-butyl
  • iBu means isobutyl
  • iPr Means isopropyl
  • Ph means phenyl
  • Fc means CpFe(C 5 H 4 );
  • Flu means fluorenyl.
  • Tol means toluene.
  • At least one of the two different groups on the bridging atom of the metallocene compound used in the present invention is an amine substituted group and/or a metallocene substituted group and/or a substituted metallocene group, This can promote the formation of a metallocene catalyst with a racemic structure, and when combined with a cocatalyst and a support, it can achieve chain growth controlled by the stereo-enantiomers of olefins such as propylene and ethylene, and produce high-isotactic metallocene poly Propylene or metallocene polyethylene.
  • the method for preparing metallocene compounds provided by the present invention can effectively carry out the group transformation of bridging atoms, and prepare bridged metallocene compounds with various structures and compositions.
  • the bridged metallocene compound obtained after the hydrogenation of the bridged atoms is combined with the cocatalyst and the carrier to form a metallocene catalyst, which has good thermal stability and catalytic activity, and can be used for the polymerization of ethylene or propylene and other alpha-olefins.
  • the aluminum/zirconium ratio is the aluminum-zirconium molar ratio.
  • the Al/Zr ratio refers to the molar ratio of the Al element and the Zr element.
  • Polymerization activity mass of polymerized product/(polymerization time ⁇ catalyst amount ⁇ zirconium content).
  • the extract was crystallized at -20°C to obtain the orange-red metallocene zirconium compound shown in formula 1 [Me(PhMeNH 2 CH 2 CH 2 C)Si(4-Ph-2-MeC 9 H 4 ) 2 ] ZrCl 2 , weighing 1.2 mmol, yield 24%.
  • the preparation method of the metallocene compound of formula 2 to formula 11 is similar to this, except that Me(PhMeNH 2 CH 2 CH 2 C) SiCl 2 in the second step is replaced with Me(PhMeNH 2 CH 2 CH 2 CH 2 C) SiCl 2 , Me(Me 2 NH 2 CH 2 CH 2 CH 2 C) SiCl 2 , Me(Me 2 NH 2 CH 2 C) SiCl 2 , Me(Me 2 NH 2 CH 2 CH 2 C) SiCl 2 , Me(NH 2 Pr 2 NH 2 CH 2 CH 2 C) SiCl 2 , Me(iPr 2 NH 2 CH 2 CH 2 C) SiCl 2 , Me(iBuMeNH 2 CH 2 CH 2 C) SiCl 2 , Me(iBuEtNH 2 CH 2 CH 2 C) SiCl 2 , Me(iPrEtNH 2 CH 2 CH 2 C) SiCl 2 , (Me 2 NH 2 CH 2 C)(iBuMeNH 2 CH 2 CH
  • the preparation method of the metallocene compound of formula 12-14 is also similar to this, except that Me(PhMeNCH 2 CH 2 CH 2 )SiCl 2 in the second step is replaced with Me[CpFe(C 5 H 4 )CH 2 CH 2 ]SiCl 2 , Me[CpFe(C 5 H 4 )CH 2 CH 2 CH 2 ]SiCl 2 , Me[CpFe(C 5 H 4 )CH 2 ]SiCl 2 , and finally the metallocene zirconium compound Me[CpFe(C 5 H 4 )CH 2 CH 2 ]Si(4-Ph-2-MeC 9 H 4 ) 2 ZrCl 2 (Formula 12, weighing 1.0 mmol, yield 20%), Me[CpFe(C 5 H 4 )CH 2 CH 2 CH 2 ]Si(4-Ph-2-MeC 9 H 4 ) 2 ZrCl 2 (Formula 13, weighing 1.3 mmol,
  • the preparation method of the metallocene compound of formula 15 is also similar to this, except that 4-phenyl-2-methylindenyl in the first step is replaced with 4-(4-tert-butyl)phenyl-2-methyl Indenyl, while replacing Me(PhMeNCH 2 CH 2 CH 2 )SiCl 2 in the second step with Me[CpFe(C 5 H 4 )CH 2 CH 2 ]SiCl 2 , the metallocene zirconium compound Me[CpFe( C 5 H 4 )CH 2 CH 2 ]Si(4-(4-tBuC 6 H 4 )-2-MeC 9 H 4 ) 2 ZrCl 2 (Equation 15, weighing 1.0 mmol, yield 20%).
  • the metallocene compound in which R 1 is a methyl group and R II is an alkyl group can be synthesized by referring to the bridged SiH group addition method. Examples are as follows.
  • the yellow suspension was placed at -78°C, and lithium tert-butylamine (0.79 g, 10 mmol) was slowly added dropwise, and after returning to room temperature, stirring was continued for 2 h to obtain an orange-yellow turbid liquid.
  • the orange-yellow turbid liquid was placed at -78°C, and n-butyllithium (2.4M, 8.5mL, 20mmol) was slowly added dropwise. After returning to room temperature, stirring was continued for 2h to obtain an orange-yellow turbid liquid.
  • the preparation steps are the same as preparation example 2.
  • the metallocene compound shown in formula 2 is selected, and the Al/Zr ratio is 193:1, 227:1, 340:1, and the catalyst SC-3A (zirconium content is 0.40%, 28.4 ⁇ mol /g), SC-3B (Zirconium content 0.30%, 25.0 ⁇ mol/g), SC-3C (Zirconium content 0.20%, 16.7 ⁇ mol/g).
  • the preparation steps are the same as preparation example 2.
  • the metallocene compound shown in formula 1 is selected, and the Al/Zr ratio is 193:1, 194:1, and 195:1, respectively, to prepare the catalyst SC-4A (zirconium content is 0.40%, 28.4 ⁇ mol /g), SC-4B (0.40% zirconium content, 28.5 ⁇ mol/g), SC-4C (0.40% zirconium content, 28.7 ⁇ mol/g).
  • the preparation steps are the same as those in Preparation Example 2.
  • the metallocene compound shown in formula 3 is selected, and the Al/Zr ratio is 50:1, 100:1, and 200:1 to prepare the catalyst SC-5A (zirconium content is 0.854%, 106.3 ⁇ mol /g), SC-5B (0.441% zirconium content, 49.2 ⁇ mol/g), SC-5C (0.277% zirconium content, 30.8 ⁇ mol/g).
  • the preparation steps are the same as those in Preparation Example 2, the metallocene compound shown in formula 4 is selected, and the Al/Zr ratio is controlled to be 100:1 to prepare the catalyst SC-6 (zirconium content 0.453%, 51.2 ⁇ mol/g).
  • the preparation steps are the same as those in Preparation Example 2, the metallocene compound shown in formula 5 is selected, and the Al/Zr ratio is controlled to be 100:1 to prepare the catalyst SC-7 (zirconium content 0.441%, 48.7 ⁇ mol/g).
  • the preparation steps are the same as those in Preparation Example 2, the metallocene compound shown in formula 6 is selected, and the Al/Zr ratio is controlled to be 100:1 to prepare the catalyst SC-8 (zirconium content 0.437%, 50.7 ⁇ mol/g).
  • the preparation steps are the same as those in Preparation Example 2, and the metallocene compound shown in formula 7 is selected and the Al/Zr ratio is controlled to be 100:1 to prepare the catalyst SC-9 (zirconium content 0.463%, 52.4 ⁇ mol/g).
  • the preparation steps are the same as those in Preparation Example 2, the metallocene compound shown in formula 8 is selected, and the Al/Zr ratio is controlled to be 100:1 to prepare the catalyst SC-10 (zirconium content 0.425%, 47.1 ⁇ mol/g).
  • the preparation steps are the same as those in Preparation Example 2, and the metallocene compound shown in formula 9 is selected and the Al/Zr ratio is controlled to be 100:1 to prepare the catalyst SC-11 (zirconium content 0.439%, 48.3 ⁇ mol/g).
  • the preparation steps are the same as those in Preparation Example 2.
  • the metallocene compound shown in formula 10 is selected and the Al/Zr ratio is controlled to be 100:1 to prepare the catalyst SC-12 (zirconium content 0.482%, 52.1 ⁇ mol/g).
  • the preparation steps are the same as those in Preparation Example 2, and the metallocene compound shown in formula 11 is selected and the Al/Zr ratio is controlled to be 100:1 to prepare the catalyst SC-13 (zirconium content 0.501%, 54.3 ⁇ mol/g).
  • the preparation steps are the same as those in Preparation Example 2, the metallocene compound shown in formula 12 is selected, and the Al/Zr ratio is controlled to be 100:1 to prepare the catalyst SC-14 (zirconium content 0.410%, 44.6 ⁇ mol/g).
  • the preparation steps are the same as those in Preparation Example 2.
  • the metallocene compound shown in formula 13 is selected and the Al/Zr ratio is controlled to be 100:1 to prepare the catalyst SC-16 (zirconium content 0.406%, 43.7 ⁇ mol/g).
  • the preparation steps are the same as those in Preparation Example 2.
  • the metallocene compound shown in formula 14 is selected and the Al/Zr ratio is controlled to be 100:1 to prepare the catalyst SC-17 (zirconium content 0.415%, 45.9 ⁇ mol/g).
  • the preparation steps are the same as those in Preparation Example 2, the metallocene compound shown in formula 15 is selected, and the Al/Zr ratio is controlled to be 100:1 to prepare the catalyst SC-18 (zirconium content 0.371%, 40.2 ⁇ mol/g).
  • the Al/Zr ratio was controlled to 200:1, and the zirconocene compound rac-MS-1b was selected to prepare the catalyst rac-MS-1b-C, in which the zirconium content was 0.268% (29.4 ⁇ mol/g).
  • the Al/Zr ratio is controlled to 50:1, and the zirconocene compound rac-MS-1j is selected to prepare the catalyst rac-MS-1j-C, in which the zirconium content is 0.846% (100.2 ⁇ mol/g).
  • the Al/Zr ratio is controlled to be 100:1, and the zirconocene compound rac-MS-3a is selected to prepare the catalyst rac-MS-3a-C, in which the zirconium content is 0.430% (47.2 ⁇ mol/g).
  • the Al/Zr ratio was controlled to 200:1, and the zirconocene compound rac-MS-3b was selected to prepare the catalyst rac-MS-3b-C, in which the zirconium content was 0.268% (29.4 ⁇ mol/g).
  • the Al/Zr ratio was controlled to 200:1, and the zirconocene compound rac-MS-4a was selected to prepare the catalyst rac-MS-4a-C, in which the zirconium content was 0.268% (29.4 mol/g).
  • the Al/Zr ratio is controlled to 200:1, and the zirconocene compound rac-MS-4b is selected to prepare the catalyst rac-MS-4b-C, in which the zirconium content is 0.268% (29.4 ⁇ mol/g).
  • the metallocene compounds prepared in Synthesis Examples 19-32 are used to prepare the catalyst for olefin polymerization.
  • the preparation process is as follows:
  • a 300mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • the polymerization experiment conditions are as follows: set a certain temperature, pressure and reaction time. Taking into account the industrial production and application, the polymerization experiment that has been completed has given priority to the choice of co-catalyst, that is, avoiding the use of expensive MAO or using as little as possible, and switching to the cheaper alkyl aluminum reagent. (If there is no special instructions below, this reaction method is used.)
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • SC-2C catalyst 106mg triisobutyl aluminum 3.2mL (concentration 150 ⁇ mol/mL, aluminum-zirconium ratio is about 200:1), the reaction time is 180 minutes, the reaction temperature is 75°C, and the propylene pressure is >3.9MPa.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • SC-3C catalyst 106mg triisobutyl aluminum 3.2mL (concentration 150 ⁇ mol/mL, aluminum-zirconium ratio is about 200:1), the reaction time is 180 minutes, the reaction temperature is 75°C, and the propylene pressure is >3.9MPa.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • SC-4A catalyst 60mg, triisobutyl aluminum 15mL (concentration 150 ⁇ mol/mL, aluminum-zirconium ratio is about 896:1 amount), reaction time is 330 minutes, reaction temperature is 75°C, and propylene amount is 518g.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • SC-4A catalyst 60mg, triethylaluminum 3mL (concentration 100 ⁇ mol/mL, aluminum-zirconium ratio about 1195:1), reaction time is 180 minutes, reaction temperature is 75°C, propylene content is 538g, hydrogen content is 0.02g.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • SC-4A catalyst 35mg, triethyl aluminum 2.5mL (concentration 100 ⁇ mol/mL, aluminum-zirconium ratio is about 1707:1 volume), reaction time is 180 minutes, reaction temperature is 75°C, propylene content is 512g, hydrogen content is 0.02g .
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • SC-4A catalyst 65mg, triisobutyl aluminum 20mL (concentration 150 ⁇ mol/mL, aluminum-zirconium ratio is about 1792:1 amount), reaction time is 270 minutes, reaction temperature is 75°C, propylene content is 659g, hydrogen content is 0.026g .
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • SC-4A catalyst 40mg triisobutyl aluminum 20mL (concentration 150 ⁇ mol/mL, aluminum-zirconium ratio is about 1707:1), reaction time is 180 minutes, reaction temperature is 75°C, propylene content is 628.6g, hydrogen content is 1.365 g.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • SC-4A catalyst 30mg triisobutyl aluminum 10mL (concentration 150 ⁇ mol/mL, aluminum-zirconium ratio is about 1195:1), reaction time is 420 minutes, reaction temperature is 75°C, propylene content is 682g, hydrogen content is 0.06g .
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • SC-4A catalyst 20mg, triisobutyl aluminum 3.5mL (concentration 150 ⁇ mol/mL, aluminum-zirconium ratio is about 627:1), reaction time is 180 minutes, reaction temperature is 75°C, propylene content is 657g, hydrogen content is 0.06 g.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • SC-4A catalyst 20mg, triisobutyl aluminum 7mL (concentration 150 ⁇ mol/mL, aluminum-zirconium ratio is about 1254:1), reaction time is 180 minutes, reaction temperature is 75°C, propylene content is 651g, hydrogen content is 0.06g .
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • SC-4A catalyst 20mg triisobutyl aluminum 10mL (concentration 150 ⁇ mol/mL, aluminum-zirconium ratio is about 1792:1 amount), reaction time is 180 minutes, reaction temperature is 75°C, propylene content is 654g, hydrogen content is 0.06g .
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • SC-4A catalyst 30mg triisobutyl aluminum 10mL (concentration 150 ⁇ mol/mL, aluminum-zirconium ratio is about 1195:1), reaction time is 420 minutes, reaction temperature is 75°C, propylene content is 670g, hydrogen content is 0.06g .
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • SC-4B catalyst 30mg triisobutyl aluminum 10mL (concentration 150 ⁇ mol/mL, aluminum-zirconium ratio is about 1195:1), reaction time is 480 minutes, reaction temperature is 75°C, propylene content is 684g, hydrogen content is 0.06g .
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • SC-4C catalyst 30mg triisobutyl aluminum 10mL (concentration 150 ⁇ mol/mL, aluminum-zirconium ratio is about 1195:1 volume), reaction time is 180 minutes, reaction temperature is 75°C, propylene content is 680g, hydrogen content is 0.06g .
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • SC-4C catalyst 20mg triisobutyl aluminum 10mL (concentration 150 ⁇ mol/mL, aluminum-zirconium ratio is about 1792:1 amount), reaction time is 180 minutes, reaction temperature is 75°C, propylene content is 681g, hydrogen content is 0.06g .
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • SC-5B catalyst 60mg, triisobutyl aluminum 15mL (concentration 150 ⁇ mol/mL, aluminum-zirconium ratio is about 896:1 amount), reaction time is 330 minutes, reaction temperature is 75°C, propylene amount is 521g.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • SC-5C catalyst 60mg, triethylaluminum 3mL (concentration 100 ⁇ mol/mL, aluminum-zirconium ratio about 1195:1 amount), reaction time is 180 minutes, reaction temperature is 75°C, propylene amount is 534g, hydrogen amount is 0.02g.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • Example 39 The evaluation conditions were the same as in Example 39, and the catalyst prepared in Preparation Example 16 was used. Using 560 g of propylene, 300 g of polypropylene powder was obtained. The PDI measured by GPC is 2.678, and the isotacticity measured by the high temperature 13 C NMR spectrum is [mmmm] 92.6%. The melting point test value is 145.1°C.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 300mL autoclave is used for the polymerization reaction (the following 300mL reactor is used unless otherwise specified), vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • the polymerization experiment conditions are as follows: set a certain temperature, pressure and reaction time. Taking into account the industrial production and application, the polymerization experiments that have been completed give priority to the choice of co-catalysts, that is, avoid or minimize the use of expensive MAO, and switch to the use of relatively inexpensive aluminum alkyl reagents.
  • the polymerization conditions were basically the same as those in Example 44, except that 50 mg of rac-MS-1b-C catalyst was weighed, and 2 mL of triisobutyl aluminum (concentration 150 ⁇ mol/mL, where the aluminum/zirconium ratio was about 200), The reaction time was set to 60 minutes, the reaction temperature was set to 50°C, and the ethylene pressure was set to 2 MPa.
  • the polymerization conditions were basically the same as those in Example 44, except that 150 mg of rac-MS-1b-C catalyst was weighed, 0.2 mL of MAO (specification 10% by mass in Tol, aluminum/zirconium ratio about 200:1), and the reaction time was set It was set at 60 minutes, the reaction temperature was set at 50°C, and the ethylene pressure was set at 1 MPa.
  • MAO specification 10% by mass in Tol, aluminum/zirconium ratio about 200:1
  • the polymerization conditions are basically the same as in Example 44, except that 113 mg of rac-MS-1j-C catalyst is weighed, and 15 mL of triisobutyl aluminum solution (concentration is 150 ⁇ mol/mL, aluminum/zirconium ratio is about 200:1) , The reaction time was set to 60 minutes, the reaction temperature was set to 50°C, and the ethylene pressure was set to 1 MPa.
  • the polymerization conditions were basically the same as in Example 44, except that: 150 mg of rac-MS-3a-C catalyst was weighed, and 6.3 mL of triisobutyl aluminum (concentration of 150 ⁇ mol/mL, aluminum/zirconium ratio of about 200:1) , The reaction time is 60 minutes, the reaction temperature is 50°C, and the ethylene pressure is 1 MPa.
  • the polymerization conditions were basically the same as in Example 44, except that 150 mg of rac-MS-3b-C catalyst was weighed, and 1.75 mL of triisobutyl aluminum (concentration of 150 ⁇ mol/mL, aluminum-zirconium ratio of about 200:1), The reaction time is 60 minutes, the reaction temperature is 50°C, and the ethylene pressure is 1 MPa.
  • the polymerization conditions were basically the same as in Example 44, except that: 150 mg of rac-MS-4a-C catalyst was weighed, and 6.3 mL of triisobutyl aluminum (concentration of 150 ⁇ mol/mL, aluminum/zirconium ratio of about 200:1) , The reaction time is 60 minutes, the reaction temperature is 50°C, and the ethylene pressure is 1 MPa.
  • the polymerization conditions were basically the same as in Example 44, except that 150 mg of rac-MS-4b-C catalyst was weighed, and 3.75 mL of triisobutyl aluminum (concentration of 150 ⁇ mol/mL, aluminum-zirconium ratio of about 200:1), The reaction time is 60 minutes, the reaction temperature is 50°C, and the ethylene pressure is 2 MPa.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • a 2000mL autoclave was selected, vacuumed in an oil bath at 100°C, and replaced with nitrogen for 3 times before use.
  • the substituent on the bridging atom in the metallocene compound contains an amine-substituted C 2 -C 4 group or a metallocene-substituted C 1 -C 3 group, it has higher catalytic activity and can be Suitable for polymerization products with molecular weight, PDI value, isotacticity and melting point.
  • the polymerization activity of the catalyst can be further optimized, which illustrates this point.
  • the polymerization activity of the catalyst can be further optimized.
  • the polymerization activity of the catalyst can be further optimized by adjusting the test conditions such as the Al/Zr ratio of the catalyst and/or the Al/Zr ratio of the polymerization system.
  • the substituent on the bridging atom in the metallocene compound is a C 5 -C 15 group substituted with an amine group or a C 5 -C 15 group substituted with a metallocene group, it has higher catalytic activity.
  • the prepared catalyst has higher catalytic activity for the polymerization of propylene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

一种茂金属化合物,其结构如式(I)所示。连接在该茂金属化合物的桥联原子上的基团为胺基取代的基团和/或茂金属基取代的基团和/或取代的茂金属基基团,该结构使得含有该茂金属化合物的茂金属催化剂具有较高的催化活性,并且能够合成高等规度的茂金属聚丙烯。

Description

一种茂金属化合物及其制备方法和应用
本申请要求享有2019年10月30日提交的以下专利申请的优先权:
1、发明名称为“非对称桥联二茂茚基过渡金属催化剂、制备方法及应用”,申请号为CN201911047955.1的中国专利申请;
2、发明名称为“硅基桥联的茂金属化合物及其制备方法、应用”,申请号为CN201911046672.5的中国专利申请;
其全部内容通过引用并入本文中。
技术领域
本发明涉及一种茂金属化合物及其制备方法和应用,尤其涉及包含该茂金属化合物的茂金属催化剂及该催化剂的制备方法和应用,具体属于茂金属催化剂技术领域。
背景技术
茂金属聚丙烯(mPP)已经在纤维、注塑以及膜制品方面显示出良好的应用性,近年来市场需求逐年增加。这些树脂产品对聚丙烯的立体规整结构有很高的要求,聚丙烯的结构则是通过催化剂的结构进行调控。
高等规结构的茂金属聚丙烯是其中一种重要的树脂品种,它通过催化剂立体对映位点控制丙烯链增长的方式合成。能够进行对映位点控制链增长反应的催化剂需要具有C2轴或更低的C1轴对称性(Chem.Rev.2000,100,1223),外消旋结构的桥联双茚环型及其衍生体系的第四族金属钛、锆、铪化合物具有这种特征。上世纪80年代Brintzinger组合成了外消旋结构的乙基二茚配体以及后来的乙基二(四氢茚)配体(J.Organomet.Chem.1982,232,233;1985,288,63),其钛和锆化合物在甲基铝氧烷(MAO)助剂的作用下催化丙烯生成高等规结构的聚丙烯,但是内消旋结构的催化剂不能生成高等规度的聚丙烯。这些外消旋结构催化剂的反应活性以及产物的分子量和等规度受温度的影响很大,在-20~60℃范围内,最高(84.43kg PP/g Zr·h)和最低(0.88kg PP/g Zr·h)活性相差近两个数量级,最高(30.0万道尔顿)和最低(1.2万道尔顿)平均分子量也相差25倍,但是聚合物的分子量分布变化不大,在1.9~2.6变化,等规度在[mmmm]86.0~91.0内(Angew.Chem.Int.Ed.Engl.1985,24,507)。1989年Herrmann等合成了外消旋的硅基桥联的茚 锆化合物,随后Spaleck和Herrmann等对茚环进行取代基修饰,在较高温度和MAO作用下催化生成的聚丙烯在反应活性、分子量、分子量分布以及等规度(最高可达98%,m.p.152℃)方面接近和达到工业应用水平(Angew.Chem.Int.Ed.Engl.1989,28,1511;1992,31,1348)。自此,一系列桥联双茚环型及其衍生体系的第四族茂金属催化剂被相继开发,并用于丙烯等规聚合催化(Chem.Rev.2000,100,1253)。
尽管反应条件如温度、压力、时间以及使用的催化剂浓度、溶剂、助剂、除杂剂、氢分子调节剂等因素对生成高等规聚丙烯的催化反应有很大的影响,外消旋结构的立体对映位点的调控作用则起着本质的决定性的影响。这些结构特征主要体现在茚环、茚环取代基、桥联基团、中心金属以及与中心金属键联的能够引发链增长的基团五个方面。本领域的研究人员都很清楚这五个方面的特征中无论哪一个方面的创新都可以取得相应的专利诉求权。
本申请专利主要针对桥联基团的重要作用。早期美国专利US5017714和US5120867对桥联基团S′的定义是指含硅基桥的1-4个原子的亚甲硅基、硅烷基、氧亚甲硅基、氧硅烷基。随后专利US5145819则对桥联-(CR 8R 9) m-R 7-(CR 8R 9) n-结构基团进行了广泛的定义和专利保护,R 7指定为–M 2(R 11)(R 12)–、–M 2(R 11)(R 12)–M 2(R 11)(R 12)–、–M 2(R 11)(R 12)–(CR 2 13)–、–O–M 2(R 11)(R 12)–O–、–C(R 11)(R 12)–、–O–M 2(R 11)(R 12)–、=BR 11、=AlR 11、–Ge–、–Sn–、–O–、–S–、=SO、=SO 2、=NR 11、=CO、=PR 11或者=P(O)R 11,其中R 11、R 12、R 13可以相同,也可以不同,这些基团是H、卤素原子、C 1–C 10烷基、C 1–C 10氟代烷基、C 6–C 10芳基、C 6–C 10氟代芳基、C 1–C 10烷氧基、C 2–C 10烯基、C 7–C 40芳基取代基烷基,或者R 11和R 12以及R 11和R 13由原子相联成环;M 2是Si、Ge、Sn;R 8和R 9可以相同,也可以不同,具体基团定义同R 11;m和n可以相同,也可以不同,它们是0、1或者2,或者m+n是0、1或者2。在这些定义中,R 7优先指定为–C(R 11)(R 12)–、–Si(R 11)(R 12)–、–Ge(R 11)(R 12)–、–O–、–S–、=SO、=PR 11或者=P(O)R 11。US5239022则在上述基础上进一步定义烷基是指直链或支链烷基,卤素原子是指氟、氯、溴、碘,并对R 11、R 12、R 13基团进行具体的优先指定,细节可参详原文件。专利US5243011、US5276208、US5350817、US5374752、US5483002、US5672668、US5714427、US5741868、US6087291、US6114479、US6124230、US6228795B1、US2003/0088022A1中桥联基团的定义与此类似。US5770753中将桥联基团直接定义为R 13,具体类型涵盖–M 2(R 14)(R 15)–、–M 2(R 14)(R 15)–M 2(R 14)(R 15)–、–C(R 14)(R 15)–C(R 14)(R 15)–、–O–M 2(R 14)(R 15)–O–、–C(R 14)(R 15)–、–O–M 2(R 14)(R 15)–、–C(R 14)(R 15)–M 2(R 14R 15)–、–C(R 14)(R 15)–C(R 14R 15)– C(R 14)(R 15)–、=BR 14、=AlR 14、–Ge–、–O–、–S–、=SO、=SO 2、=NR 14、=CO、=PR 14或者=P(O)R 14,其中R 14和R 15可以相同,也可以不同,这些基团是H、卤素原子、C 1–C 10烷基、C 1–C 10氟代烷基、C 1–C 10烷氧基、C 6–C 10芳基、C 6–C 10氟代芳基、C 6–C 10酚基、C 2–C 10烯基、C 7–C 40芳基取代基烷基,C 7–C 40烷基取代基芳基,C 8–C 40芳基取代基烯基,或者R 14和R 15由原子相联成一个或多个环;M 2是Si、Ge、Sn。随后的专利US5786432、US5380821、US5840644、US5840948、US5852142、US5929264、US5932669、US6051522、US60517272、US6057408、US6242544B1、US6255506B1、US6376407B1、US63764408B1、US63764409B1、US63764410B1、US63764411B1、US63764412B1、US2001/0021755A1、US2006/0116490A1、US2006/0252637A1中都提及相似或基本相同的桥联基团结构。US63764413B1中定义桥联基团为联苯基–M 2(C 6R 17R 18R 19R 20-C 6R 21R 22R 23R 24)–,R 17至R 24总体定义指定为R 1和R 2,或者两个或者更多邻近自由基R 17至R 24,包括R 20和R 21,以及由原子连接形成一个或多个环,R 17至R 24优选H。R 1和R 2可以相同,也可以不同,它们是其中的一个H、C 1–C 10烷基、C 1–C 10烷氧基、C 6–C 10芳基、C 6–C 10酚基、C 2–C 10烯基、C 7–C 40芳基取代基烷基、C 7–C 40烷基取代基芳基、C 8–C 40芳基取代基烯基、OH、卤素原子、或者共轭双烯(随机一个或多个碳氢基团取代)、三碳氢硅基或者三碳氢基、三碳氢硅基取代碳氢基(其中非氢原子数达30个)。这样的专利包含US5616747、US6376627B1、US6380120B1、US6380121B1、US6380122B1、US6380123B1、US6380124B1、US6380130B1、US6380130B1、US6380134B1等。专利US5391790和US5616747直接以–R 6–示意桥联基团,并定义为–[M 2(R 8)(R 9)] p–,其中M 2是C、Si、Ge、Sn;R 8和R 9可以相同,也可以不同,这些基团指定是H、C 1–C 20烷基、C 6–C 14芳基、C 1–C 10烷氧基、C 2–C 10烯基、C 7–C 20芳基取代基烷基、C 7–C 20烷基取代基芳基、C 6–C 10酚基、C 1–C 10氟代烷基、C 6–C 10卤代芳基、C 2–C 10炔基、–SiR 7 3、卤素、或者五员或六员杂芳香自由基(含一个或多个杂原子)、以及由原子链接它们形成一个或多个环;p是1、2或者3。US5739366定义桥联基团Y,指定二价C 1–C 20碳氢基团、二价C 1–C 20卤代碳氢基团、二价含硅基团、二价含锗基团、二价含锡基团、–O–、–CO–、–S–、–SO–、–SO 2–、–NR 5–、–P(R 5)–、–P(O)(R 5)–、–BR 5–或者–AlR 5–(R 5是H、卤素原子、C 1–C 20碳氢基团、二价C 1–C 20卤代碳氢基团)。日本聚合物化学公司申请的US6218558、US6252097B1和US6255515B1中茚环中苯环扩为七员环,相应的桥联基团Q定义为二价C 1–C 20碳氢基团、二价C 1–C 20卤代碳氢基团、含C 1–C 20碳氢基团或C 1–C 20卤代碳氢基团的硅烯基、寡聚亚甲硅基、锗烯基团,基团连接两个五员环。US6444606B1、US7342078B2和US2003/0149199A1中定义桥联基团R 9为: –O–M 2(R 10)(R 11)–O–、–C(R 10)(R 11)–、–O–M 2(R 10)(R 11)–、–C(R 10)(R 11)–M 2(R 10R 11)–、–M 2(R 10)(R 11)–、–M 2(R 10)(R 11)–M 2(R 10)(R 11)–、–C(R 10)(R 11)–C(R 10)(R 11)–、–M 2(R 10)(R 11)–[C(R 10R 11)] x–M 2(R 10)(R 11)–、–C(R 10)(R 11)–C(R 10R 11)–C(R 10)(R 11)–、>BR 10、>AlR 10、–Ga–、–O–、–S–、>SO、>SO 2、>NR 10、>CO、>PR 10,>P(O)R 10或>R(O)R 10,其中R 10和R 11可以相同,也可以不同,这些基团是H、卤素原子、或者C 1–C 40基团,如C 1–C 20烷基、C 1–C 10氟代烷基、C 1–C 10烷氧基、C 6–C 14芳基、C 6–C 10氟代芳基、C 6–C 10酚基、C 2–C 10烯基、C 7–C 40芳基取代基烷基,C 7–C 40烷基取代基芳基,C 8–C 40芳基取代基烯基,或者R 10和R 11由原子相联成一个或多个环;M 2是Si、Ge、Sn。
桥联基团联结两个环戊二烯基团、茚基团或芴基团,亦即对这两个基团进行了立体空间限定。这种桥联增强了配体结构的刚性,对形成外消旋结构特征的催化剂显示出重要性。外消旋结构的催化剂能够良好调控丙烯的立体对映位点链增长,产生高等规度的茂金属聚丙烯。
已经有很多桥联茂金属催化剂被报道,但是具有工业化应用或者应用前景的茂金属催化剂仍然不多,因为工业化应用对茂金属聚丙烯的等规度有很高的要求,如一些公司生产的茂金属聚丙烯,其等规度[mmmm]必须大于97%才能用于树脂产品。我国的聚丙烯产品基本上是使用传统Natta型催化剂生产,有部分的催化剂则是添加了简单的茂金属化合物组分,完全使用茂金属化合物为催化剂的基本上未见报道,因为在这方面仍存在理论和技术方面的难点。
我国的聚丙烯产品基本上是使用传统的负载型Ziegler-Natta催化剂生产,使用桥联双基团茂金属催化剂调控生产高等规度的聚丙烯报道甚少,因为这方面仍存在着技术因素的难点。
发明内容
本发明所要解决的技术问题之一是以往技术中的茂金属催化剂存在活性不够高的技术问题,提供一种新的茂金属化合物,连接在该茂金属化合物的桥联原子上的基团为胺基取代的基团和/或茂金属基取代的基团和/或取代的茂金属基基团,该特殊的结构使得含有该茂金属化合物的茂金属催化剂具有较高的催化活性,并且能够合成高等规度的茂金属聚丙烯。
本发明要解决的技术问题之二是提供一种与解决技术问题之一的茂金属化合物相适应的制备方法。
本发明所要解决的技术问题之三是提供一种采用上述技术问题之一的茂金属化合物的催化剂。
本发明所要解决的技术问题之四是提供一种与解决上述技术问题之三的催化剂相适应的制备方法。
本发明所要解决的技术问题之五是提供一种解决上述技术问题之一的茂金属化合物或解决上述技术问题之三的催化剂的应用。
为解决上述技术问题之一,本发明采用的技术方案如下。
一种茂金属化合物,其结构如式(I)所示:
Figure PCTCN2020125121-appb-000001
式(I)中,R I和R II相同或不同,且R I和R II中的至少一个选自被胺基取代的C 1-C 20烃基、C 1-C 20卤代烃基、C 1-C 20烷氧基和C 6-C 20酚基;和/或R I和R II中的至少一个选自被茂金属基取代的C 1-C 20烃基、C 1-C 20卤代烃基、C 1-C 20烷氧基和C 6-C 20酚基;和/或R I和R II中的至少一个选自被C 1-C 20烃基、C 1-C 20卤代烃基、C 1-C 20烷氧基或C 6-C 20酚基取代的茂金属基;
Z选自碳、硅、锗和锡;
Cp III为如式(Ⅱ)所示的含或不含取代基的环戊二烯基、茚基或芴基,R i、R ii、R iii为其中相应环上的取代基;
Figure PCTCN2020125121-appb-000002
R i、R ii和R iii相同或不同,各自独立地选自氢以及直链或支链、饱和或不饱和、含杂原子或不含杂原子的C 1-C 20烃基;
E为NR iv或PR iv
R iv选自氢以及直链或支链、饱和或不饱和、含杂原子或不含杂原子的C 1-C 20烃基;
M选自IVB族金属;
L IV和L V相同或不同,各自独立地选自选自氢以及直链或支链、饱和或不饱和、含杂原子或不含杂原子的C 1-C 20烃基;
n为1或2。
根据本发明,当n等于1时,Cp III是指上述环戊二烯基、茚基或芴基中的任选一个;当n等于2时,Cp III指上述环戊二烯基、茚基或芴基中各自的两个,或者环戊二烯基、茚基或 芴基中任选的两个。当n为2时,两个Cp III基团可以相同也可以不同。
根据本发明的优选实施方式,所述胺基如式(III)所示:
Figure PCTCN2020125121-appb-000003
式(III)中,R a和R b相同或不同,各自独立地选自氢、C 1-C 6烷基、C 6-C 18芳基、C 7-C 20芳基烷基和C 7-C 20烷基芳基,优选为C 1-C 6烷基、C 6-C 12芳基和C 7-C 10芳基烷基,更优选为C 1-C 4烷基、苯基和C 7-C 9芳基烷基。
根据本发明的优选实施方式,所述茂金属基中的金属为Fe,优选地,所述茂金属基为二茂铁基。
根据本发明的优选实施方式,式(I)中,R I和R II相同或不同,且R I和R II中的至少一个选自被胺基取代的C 1-C 10烃基、C 1-C 10卤代烃基、C 1-C 10烷氧基和C 6-C 10酚基;和/或R I和R II中的至少一个选自被茂金属基取代的C 1-C 10烃基、C 1-C 10卤代烃基、C 1-C 10烷氧基和C 6-C 10酚基;和/或R I和R II中的至少一个选自被C 1-C 10烃基、C 1-C 10卤代烃基、C 1-C 10烷氧基或C 6-C 10酚基取代的茂金属基。
根据本发明的优选实施方式,式(I)中,R I和R II相同或不同,且R I和R II中的至少一个选自被胺基取代的C 1-C 6烃基、C 1-C 6卤代烃基、C 1-C 6烷氧基和C 6-C 8酚基;和/或R I和R II中的至少一个选自被茂金属基取代的C 1-C 6烃基、C 1-C 6卤代烃基、C 1-C 6烷氧基和C 6-C 8酚基;和/或R I和R II中的至少一个选自被C 1-C 6烃基、C 1-C 6卤代烃基、C 1-C 6烷氧基或C 6-C 8酚基取代的茂金属基。
根据本发明的优选实施方式,式(I)中,R I和R II相同或不同,且R I和R II中的至少一个选自被胺基取代的C 1-C 6烃基;和/或R I和R II中的至少一个选自被茂金属基取代的C 1-C 6烃基;和/或R I和R II中的至少一个选自被C 1-C 6烃基取代的茂金属基。
根据本发明的优选实施方式,式(I)中,R I和R II相同或不同,且R I和R II中的至少一个选自被胺基取代的C 1-C 6直链烷基;和/或R I和R II中的至少一个选自被茂金属基取代的C 1-C 6直链烷基;和/或R I和R II中的至少一个选自被C 1-C 6直链烷基取代的茂金属基。
根据本发明的优选实施方式,式(I)中,R I和R II相同或不同,且R I和R II中的至少一个选自被胺基取代的C 1-C 4直链烷基;和/或R I和R II中的至少一个选自被茂金属基取代的C 1-C 4直链烷基;和/或R I和R II中的至少一个选自被C 1-C 4直链烷基取代的茂金属基。
根据本发明的优选实施方式,当R I和R II中仅有一个基团选自上述定义的基团时,另一 个基团可以选自C 1-C 20烃基、C 1-C 20卤代烃基、C 1-C 20烷氧基和C 6-C 20酚基,优选为C 1-C 10烃基、C 1-C 10卤代烃基、C 1-C 10烷氧基和C 6-C 10酚基,更优选为C 1-C 6烃基、C 1-C 6卤代烃基、C 1-C 6烷氧基和C 6-C 8酚基,进一步优选为C 1-C 6烃基。
根据本发明,R i、R ii、R iii代指上述分子式中相应环上的取代基。当Cp III为环戊二烯基时,R i可以在其中四个位置中任选的一个、二个、三个或无选择的全部四个位置相互独立地取代连接一个或多至四个;当Cp III为茚基时,R i可在五元环的其中两个位置任选的一个或无选择的全部两个位置相互独立地取代连接一个或两个,R ii可以在六元环中四个位置中任选的一个、二个、三个或无选择的全部四个位置相互独立地取代连接一个或多至四个,当R iii所在苯环为茚基环的一部分时其定义同R ii;当Cp III为芴基时,R ii、R iii可以独立地分别在两个六元环中各自的四个位置中任选的一个、二个、三个或无选择的全部四个位置相互独立地取代连接一个或多至四个。R i、R ii、R iii各自独立地指氢、直链的或支链的C 1–C 20烷基、C 3–C 20环烷基、C 6–C 20芳基、C 7–C 20烷基芳基或C 7–C 20芳基烷基,这些基团可选地包含一个或多个杂原子,也可以是饱和的或不饱和的。R i、R ii、R iii间可形成饱和的或不饱和的环基基团,这些基团可选地包含一个或多个杂原子。
根据本发明的优选实施方式,式(II)中,R i、R ii和R iii相同或不同,各自独立地选自氢、C 1-C 20烃基、C 1-C 20卤代烷基、C 6-C 20芳基、C 6-C 20卤代芳基、C 7-C 40芳基烷基、C 7-C 40烷基芳基、C 3-C 20环烷基、C 3-C 20杂环烷基、C 2-C 20烯基、C 2-C 20炔基、C 1-C 20烷氧基、C 6-C 20酚基、C 1-C 20胺基和含有13族到17族杂原子的基团。
根据本发明的优选实施方式,式(II)中,R i、R ii和R iii相同或不同,各自独立地选自氢、C 1-C 10烃基、C 1-C 10卤代烷基、C 6-C 10芳基、C 6-C 10卤代芳基、C 7-C 20芳基烷基、C 7-C 20烷基芳基、C 3-C 10环烷基、C 3-C 10杂环烷基、C 2-C 10烯基、C 2-C 10炔基、C 1-C 10烷氧基、C 6-C 10酚基、C 1-C 10胺基和含有13族到17族杂原子的基团。
根据本发明的优选实施方式,式(II)中,R i、R ii和R iii相同或不同,各自独立地选自氢、C 1-C 6烃基、C 1-C 6卤代烷基、C 6-C 6芳基、C 6-C 6卤代芳基、C 7-C 10芳基烷基、C 7-C 10烷基芳基、C 3-C 6环烷基、C 3-C 6杂环烷基、C 2-C 6烯基、C 2-C 6炔基、C 1-C 6烷氧基、C 6-C 6酚基、C 1-C 6胺基和含有13族到17族杂原子的基团。
根据本发明的优选实施方式,式(I)中,R iv选自氢以及直链或支链、饱和或不饱和、含杂原子或不含杂原子的C 1-C 10烃基。
根据本发明的优选实施方式,式(I)中,R iv选自氢以及直链或支链、饱和或不饱和、含杂原子或不含杂原子的C 1-C 6烃基。
根据本发明的优选实施方式,式(I)中,M选自Ti、Zr和Hf。
根据本发明的优选实施方式,式(I)中,M为Zr。
根据本发明的优选实施方式,L IV和L V相同,选自氢、氯、甲基、苯基、苄基和二甲胺基。
为解决上述技术问题之二,本发明采用的技术方案如下。
方案一:
一种上述的茂金属化合物的制备方法,
当n=2时,所述制备方法包括:
S1.使H 2(Cp III)与碱金属有机化合物反应生成相应的[H(Cp III)] ˉ碱金属盐;
S2.使[H(Cp III)] ˉ碱金属盐与R IR IIZX 2反应生成R IR IIZ[H(Cp III)] 2
S3.使R IR IIZ[H(Cp III)] 2与碱金属有机化合物反应生成相应的R IR IIZ(Cp III) 2 碱金属盐;
S4.使R IR IIZ(Cp III) 2 碱金属盐与X 2ML IVL V发生盐消除反应,得到R IR IIZ(Cp III) 2ML IVL V
当n=1时,所述制备方法包括:
S1.使H 2(Cp III)和H 2(E)分别与碱金属有机化合物反应生成相应的[H(Cp III)] ˉ碱金属盐和[H(E)] ˉ碱金属盐;
S2.使[H(Cp III)] ˉ碱金属盐和[H(E)] ˉ碱金属盐与R IR IIZX 2反应生成R IR IIZ[H(Cp III)][H(E)];
S3.使R IR IIZ[H(Cp III)][H(E)]与碱金属有机化合物反应生成相应的R IR IIZ(Cp III)(E) 碱金属盐;
S4.使R IR IIZ(Cp III)(E) 碱金属盐与X 2ML IVL V发生盐消除反应,得到R IR IIZ(Cp III)(E)ML IVL V
其中,X选自Cl、Br和I;
优选地,S4中,R IR IIZ(Cp III) 2 碱金属盐或R IR IIZ(Cp III)(E) 碱金属盐无需分离,直接与X 2ML IVL V发生盐消除反应。
方案二:
一种上述的茂金属化合物的制备方法,包括:
通过前驱体R IHZ(Cp III) n(E) 2-nML IVL V与R II的前驱体进行Z氢化反应制备;
其中,所述R II的前驱体为含多重键的分子,优选地,所述含多重键的分子选自有机多重键分子、CO以及CO 2,其中多重键选自同种原子或异种原子的13至16族的元素,优选 为C=C、C≡C、C=N、C≡N、C=O、C≡P、N=N、C=S、C=C=C、C=C=N、C=C=O和N=C=N键。
根据本发明,方案一和方案二均可以制得上述茂金属化合物。
根据本发明的优选实施方式,通过方案二制备上述茂金属化合物。即,通过前驱体R IHZ(Cp III) n(E) 2-nML IVL V、R IIHZ(Cp III) n(E) 2-nML IVL V或者H 2Z(Cp III) n(E) 2-nML IVL V与含多重键的分子发生Z–H加成反应制得。Collins报道了MeHZ(Cp) 2Zr(NMe 2) 2和MeHZ(Ind) 2Zr(NMe 2) 2的分步合成法(Macromolecules 2001,34,3120),即分别制备双茂配体MeHZ(CpH) 2和MeHZ(IndH) 2,再与Zr(NMe 2) 4反应生成MeHZ(Cp) 2Zr(NMe 2) 2和MeHZ(Ind) 2Zr(NMe 2) 2,该法与背景技术中阐述的脱茂环或非茂化合物质子的合成法类似。这两个化合物分别与过量的Me 3ZCl反应得到化合物MeHZ(Cp) 2ZrCl 2和MeHZ(Ind) 2ZrCl 2
对于前驱体R IHZ(Cp III) n(E) 2-nML IVL V、R IIHZ(Cp III) n(E) 2-nML IVL V或者H 2Z(Cp III) n(E) 2-nML IVL V的制备,本发明采用的技术方案可以使用这种方法,也可以采用背景技术中提及的盐消除法,但是优选采用一锅法的制备方式实施。本发明给出一锅法的具体实施方案,当选取的原料变化时,一锅法的实施过程不变。
当n=2时,选取R IHZX 2与两摩尔量的H(Cp III)碱金属盐反应(当H(Cp III)是两个不同的茂基团时各为一摩尔量),H(Cp III)碱金属盐由茂配体H 2(Cp III)与等量的碱金属有机化合物反应制得,碱金属有机化合物选自氢化金属、烷基金属、烯基金属、芳香基金属、胺基金属,优选烷基金属;碱金属选自Li、Na、K,优选Li;X选自Cl、Br、I,优选Cl。生成的R IHZ[H(Cp III)] 2无需分离,直接用于下一步反应,有如下两种方案:
a)与L viiiL vivML IVL V脱稳定小分子HL viii或者HL viv反应得到R IHZ(Cp III) 2ML IVL V,L viii和L viv是离去基团,可以相同,也可以不同,选自氢、烷基、芳基、胺基,优选自两个相同的甲基、苯基、二甲胺基。
b)与两摩尔量的碱金属有机化合物反应生成碱金属盐,碱金属有机化合物的定义同上;再进一步与X 2ML IVL V盐消除反应制得R IHZ(Cp III) 2ML IVL V,X的定义同上。
当n=1时,选取R IHZX 2与一摩尔量的H(Cp III)碱金属盐以及一摩尔的H(E)的碱金属盐反应,H(Cp III)碱金属盐的制备同上,H(E)的碱金属盐由H 2(E)与等量的碱金属有机化合物反应制得,碱金属有机化合物的定义同上。生成的R IHZ[H(Cp III)][H(E)]无需分离,直接用于下一步反应,有如下两种方案:
a)与L viiiL vivML IVL V脱稳定小分子HL viii或者HL viv反应得到到R IHZ(Cp III)(E)ML IVL V,L viii和L viv的定义同上。
b)与两摩尔量的碱金属有机化合物反应生成碱金属盐,碱金属有机化合物的定义同上;再进一步与X 2ML IVL V盐消除反应制得R IHZ(Cp III)(E)ML IVL V,X的定义同上。
选取R IIHZX 2制备R IIHZ(Cp III) n(E) 2-nML IVL V或者选取H 2ZX 2制备H 2Z(Cp III) n(E) 2-nML IVL V与上述方案类似。
在R IHZ(Cp III) n(E) 2-nML IVL V、R IIHZ(Cp III) n(E) 2-nML IVL V或者H 2Z(Cp III) n(E) 2-nML IVL V的制备过程中,反应在非质子性的溶剂中进行,这些溶剂选自直链或支链的烷烃化合物、环烷烃化合物、芳香烃化合物、卤代烃化合物、醚类化合物和环醚类化合物,优选甲苯、二甲苯、氯苯、庚烷、环己烷、甲基环己烷、二氯甲烷、三氯甲烷、四氢呋喃、乙醚和2,6-氧环。其中H 2(Cp III)、H 2(E)、R IHZ[H(Cp III)] 2、R IIHZ[H(Cp III)] 2、H 2Z[H(Cp III)] 2、R IHZ[H(Cp III)][H(E)]、R IIHZ[H(Cp III)][H(E)]或者H 2Z[H(Cp III)][H(E)]与碱金属有机化合物的反应在–60~140℃温度下实施,优选温度范围为-20~110℃;反应时间大于0.016h,优选反应时间范围为2~100h。R IHZX 2、R IIHZX 2、H 2ZX 2各自与H(Cp III)或H(E)碱金属盐的反应,以及X 2ML IVL V与R IHZ[(Cp III)] 2、R IIHZ[(Cp III)] 2、H 2Z[(Cp III)] 2、R IHZ[(Cp III)][(E)]、R IIHZ[(Cp III)][(E)]或者H 2Z[(Cp III)][(E)]碱金属盐的反应在–75~100℃温度下实施,优选温度范围为–75~60℃;反应时间大于0.1h,优选反应时间范围为6~100h。R IHZ[H(Cp III)] 2、R IIHZ[H(Cp III)] 2、H 2Z[H(Cp III)] 2、R IHZ[H(Cp III)][H(E)]、R IIHZ[H(Cp III)][H(E)]、H 2Z[H(Cp III)][H(E)]各自与L viiiL vivML IVL V脱稳定小分子的反应在0~160℃温度下实施,优选温度范围为20~140℃;反应时间大于0.1h,优选反应时间范围为2~100h。
本发明进一步给出的技术方案是前驱体R IHZ(Cp III) n(E) 2-nML IVL V、R IIHZ(Cp III) n(E) 2-nML IVL V或者H 2Z(Cp III) n(E) 2-nML IVL V与含多重键的分子发生Z–H加成反应制备(I)。在这些多重键的分子中,多重键选自由13至16族的元素组成的多重键,可以是同种原子,也可以是异种原子,优选C=C、C≡C、C=N、C≡N、C=O、C≡P、N=N、C=S、C=C=C、C=C=N、C=C=O、N=C=N。Z–H加成反应需要催化剂的参与,催化剂选自过渡金属催化剂和Lewis酸催化剂,优选过渡金属中的铂催化剂和Lewis酸中的B(C 6F 5) 3催化剂。为更好地达到本发明的目的,同时需要优选与上述前驱体中L IV和L V无作用或者这种作用不影响到Z–H与多重键反应的催化剂。这意味着当催化剂与上述前驱体中L IV和L V发生作用影响到Z–H与多重键的加成反应时,这种L IV和L V基团需要通过已制得的相关化合物进行基团转换反应,转化成不影响到Z–H与多重键反应的基团。举例说明,当L IV和L V为甲基时,B(C 6F 5) 3催化剂会与该甲基络合形成[MeB(C 6F 5) 3] ˉ,失去催化作用,那么L IV和L V需要变换为NMe 2或其它不反应的基团。
前驱体R IHZ(Cp III) n(E) 2-nML IVL V、R IIHZ(Cp III) n(E) 2-nML IVL V或者H 2Z(Cp III) n(E) 2-nML IVL V中的Z–H与多重键分子的反应在非质子性的溶剂中进行,溶剂选自直链或支链的烷烃化合物、环烷烃化合物、芳香烃化合物、卤代烃化合物、醚类化合物和环醚类化合物,优选甲苯、二甲苯、氯苯、庚烷、环己烷、甲基环己烷、二氯甲烷、三氯甲烷、四氢呋喃、乙醚和2,6-氧环。反应中催化剂的用量为反应物总量的质量百分比的0.00001~50%,优选占比为0.01~20%;反应在–30~140℃温度下实施,优选温度范围为0~90℃;反应时间大于0.1h,优选反应时间范围为2~50h。目标产物(I)通过重结晶分离或提纯。
根据本发明,“Z”优选为硅。
根据本发明的优选实施方式,在催化剂的存在下进行所述Z氢化反应,所述催化剂选自过渡金属催化剂和Lewis酸催化剂,优选为过渡金属中的铂催化剂和Lewis酸中的B(C 6F 5) 3催化剂。
根据本发明的优选实施方式,所述Z氢化反应中催化剂的用量为反应物总量的质量的0.00001~50%,优选占比为0.01~20%。
根据本发明的优选实施方式,所述Z氢化反应的温度为-30~140℃,优选为0~90℃。
根据本发明的优选实施方式,所述Z氢化反应的反应时间大于0.1h,优选为2~50h。
根据本发明的优选实施方式,得到的所述前驱体通过重结晶分离或提纯,所述重结晶的溶剂为非质子性的溶剂;优选地,选自直链或支链的烷烃化合物、环烷烃化合物、芳香烃化合物、卤代烃化合物、醚类化合物和环醚类化合物;进一步优选地,选自甲苯、二甲苯、己烷、庚烷、环己烷和甲基环己烷。
根据本发明的优选实施方式,所述前驱体R IHZ(Cp III) n(E) 2-nML IVL V通过化学反应的一锅法制备。
根据本发明的优选实施方式,当n=2时,所述前驱体R IHZ(Cp III) n(E) 2-nML IVL V的制备方法包括:
步骤1),使H 2(Cp III)与碱金属有机化合物反应生成相应的[H(Cp III)] ˉ碱金属盐;
步骤2),使[H(Cp III)] ˉ碱金属盐与R IHZX 2反应生成R IHZ[H(Cp III)] 2
步骤3),R IHZ[H(Cp III)] 2无需分离,直接与L viiiL vivML IVL V反应,脱稳小分子L viii或L viv,得到所述前驱体R IHZ(Cp III) 2ML IVL V
和/或,R IHZ[H(Cp III)] 2无需分离,直接与碱金属有机化合物反应生成碱金属盐;得到的碱金属盐再与X 2ML IVL V盐消除反应,得到所述前驱体R IHZ(Cp III) 2ML IVL V
当n=1时,所述前驱体R IHZ(Cp III) n(E) 2-nML IVL V的制备方法包括:
步骤1),使H 2(Cp III)和H 2(E)分别与碱金属有机化合物反应生成相应的[H(Cp III)] ˉ和[H(E)] ˉ碱金属盐;
步骤2),使[H(Cp III)] ˉ和[H(E)] ˉ碱金属盐与R IHZX 2反应生成R IHZ[H(Cp III)][H(E)];
步骤3),R IHZ[H(Cp III)][H(E)]无需分离,直接与L viiiL vivML IVL V反应,脱稳小分子L viii或L viv,得到所述前驱体R IHZCp IIIEML IVL V
和/或,R IHZ[H(Cp III)][H(E)]无需分离,直接与碱金属有机化合物反应生成碱金属盐;得到的碱金属盐再与X 2ML IVL V盐消除反应,得到所述前驱体R IHZCp IIIEML IVL V
其中,X选自Cl、Br和I。
根据本发明,在采用一锅法时,R I通过前驱体R IIHZ(Cp III) n(E) 2-nML IVL V中Z–H键与含多重键分子中多重键的加成反应形成,R II通过前驱体R IHZ(Cp III) n(E) 2-nML IVL V中Z–H键与含多重键分子中多重键的加成反应形成,或者R I和R II都通过前驱体H 2Z(Cp III) n(E) 2-nML IVL V中Z–H键与含多重键分子中多重键的加成反应形成;多重键分子为有机多重键分子、CO或CO 2,优选有机多重键分子。由此,R I和R II可以相同,也可以不同。
根据本发明的优选实施方式,各步骤中,所述反应的反应温度为-100℃~140℃,优选为-85℃~110℃;和/或,反应时间大于0.016h,优选为2~100h。
根据本发明的优选实施方式,各步骤中,在-100℃~-20℃,优选-85℃~-10℃的条件下混合反应物料,并在10℃~50℃,优选为20℃~35℃使混合后的反应物料反应1h~100h,优选5h~50h。
根据本发明的优选实施方式,各步骤中,所述反应在非质子性的溶剂中进行,所述非质子性的溶剂选自直链或支链的烷烃化合物、环烷烃化合物、芳香烃化合物、卤代烃化合物、醚类化合物和环醚类化合物,优选地,选自甲苯、二甲苯、氯苯、庚烷、环己烷、甲基环己烷、二氯甲烷、三氯甲烷、四氢呋喃、乙醚和二氧六环。
根据本发明的优选实施方式,所述碱金属有机化合物选自氢化金属、烷基金属、烯基金属、芳香基金属和胺基金属,优选为烷基金属,更优选为C 1-C 6烷基金属。
根据本发明的优选实施方式,所述碱金属选自Li、Na和K,优选为Li。
为解决上述技术问题之三,本发明采用的技术方案如下。
一种用于α-烯烃聚合反应的催化剂,包括:上述的茂金属化合物或根据上述的制备方法制得的茂金属化合物、助催化剂和载体。
根据本发明的优选实施方式,所述助催化剂选自路易斯酸、包含含有非配位阴离子和路易斯酸或布朗斯台德酸阳离子的离子性化合物;优选地,所述路易斯酸包括烷基铝、烷基铝氧烷和有机硼化物;和/或所述含有非配位阴离子和路易斯酸或布朗斯台德酸阳离子的离子性化合物选自含有1-4个全氟芳基取代的硼酸根阴离子的化合物。
根据本发明的优选实施方式,所述烷基铝包括三甲基铝、三乙基铝、三异丙基铝、三正丙基铝、三异丁基铝、三正丁基铝、三异戊基铝、三正戊基铝、三异己基铝、三正己基铝、三异庚基铝、三正庚基铝、三异辛基铝、三正辛基铝、三异壬基铝、三正壬基铝、三异癸基铝和三正癸基铝;和/或所述烷基铝氧烷包括甲基铝氧烷、乙基铝氧烷和丁基改性的铝氧烷;和/或所述有机硼化物包括三氟硼烷、三苯基硼烷、三(4-氟苯基)硼烷、三(五氟苯基)硼烷、三(3,5-二氟苯基)硼烷和三(2,4,6-三氟苯基)硼烷。
根据本发明的优选实施方式,所述烷基铝包括三甲基铝和三乙基铝。
根据本发明的优选实施方式,所述全氟芳基选自全氟苯基,全氟萘基、全氟联苯基、全氟烷基苯基,且阳离子选自N,N-二甲基苯基铵离子、三苯基碳鎓离子、三烷基铵离子和三芳基铵离子。
根据本发明的优选实施方式,所述催化剂中,茂金属化合物的含量以M元素计为0.001质量%~10质量%,优选为0.01质量%~1质量%;和/或所述助催化剂中的Al元素与所述茂金属化合物中的M元素的摩尔比为(1~500):1,优选为(50~300):1。
根据本发明的优选实施方式,所述催化剂具有非对称结构。所述非对称结构可以是多个层面的,其可以是指茂金属化合物中的R I和R II不对称,还可以是指茂金属化合物与助剂作用会形成非对称结构,还可以是指茂金属化合物与助剂作用后进行载体负载,进一步使非对称性加强。
为解决上述技术问题之四,本发明采用的技术方案如下。
一种上述的催化剂的制备方法,包括:使所述茂金属化合物、所述助催化剂以及所述载体在溶剂作用下结合形成所述催化剂。
根据本发明的优选实施方式,所述结合的条件包括:结合的温度为-40℃~200℃,优选为40℃~120℃;结合的时间大于0.016h,优选为2h~100h。
根据本发明的优选实施方式,所述溶剂选自直链碳氢化合物、支链碳氢化合物、环状饱和碳氢化合物和芳香类碳氢化合物,优选甲苯、二甲苯、正丁烷、正戊烷、异戊烷、新戊烷、环戊烷、甲基环戊烷、正己烷、正庚烷、环己烷、甲基环己烷、石油醚、异庚烷和新庚烷。
根据本发明的优选实施方式,上述的催化剂的制备方法,包括:
i)将所述助催化剂、所述载体和溶剂混合,得到混合物A;
ii)将所述混合物A与所述茂金属化合物混合,得到混合物B;优选地,先将所述茂金属化合物于溶剂进行混合,再与所述混合物A混合;
iii)从所述混合物B中分离出固体,并对所述固体进行干燥处理,制得所述催化剂。
根据本发明的优选实施方式,步骤i)中,所述载体经焙烧处理,优选地,所述焙烧处理的条件包括:焙烧温度为50℃~700℃,焙烧时间为0.5h~240h。
根据本发明的优选实施方式,所述混合物A经加热处理,优选地,所述加热处理的条件包括:加热温度为30℃~110℃,加热时间为0.1h~100h。
根据本发明的优选实施方式,步骤iii)中,所述干燥处理的条件包括:干燥温度为30℃~110℃,干燥时间为0.1h~100h。
根据本发明的优选实施方式,在进行所述干燥处理之前对所述固体进行洗涤,优选采用所述溶剂对所述固体进行洗涤,更优选地,洗涤至洗涤后的溶剂中不含有金属离子。
为解决上述技术问题之五,本发明采用的技术方案如下。
一种上述的茂金属化合物或根据上述的制备方法制得的茂金属化合物或根据上述的催化剂或根据上述的制备方法制得的催化剂在α-烯烃聚合领域中的应用。
根据本发明的优选实施方式,在上述的茂金属化合物或根据上述的制备方法制得的茂金属化合物或根据上述的催化剂或根据上述的制备方法制得的催化剂的存在下,α-烯烃进行聚合反应,得到聚α-烯烃。
根据本发明的优选实施方式,所述聚合反应在无溶剂的条件下进行。
根据本发明的优选实施方式,所述聚合反应的条件包括:反应温度为-50℃~200℃,优选为30℃~100℃;反应时间为0.01h~60h,优选为0.1h~10h。
根据本发明的优选实施方式,相对于每克α-烯烃计,所述茂金属催化剂或茂金属催化剂体系的用量为0.001mg~1000mg,优选为0.01mg~200mg,更优选为0.1mg~20mg。
根据本发明的优选实施方式,所述α-烯烃包括C 2-C 20α-烯烃,优选为C 2-C 14α-烯烃,更优选为乙烯、丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、1-壬烯、1-癸烯、1-十一烯、1-十二烯、1-十三烯、1-十四烯、1-十五烯、1-十六烯、1-十七烯、1-十八烯、1-十九烯和1-二十烯,优选1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、1-壬烯、1-癸烯、1-十一烯、1-十二烯、1-十三烯和1-十四烯。
在本发明的一些具体的实施方式中,所述α-烯烃为丙烯。当α-烯烃为丙烯时,可以以丙烯和氢气为原料进行本体聚合反应(这种本体聚合反应可以在釜式反应器中进行,也适合在管式反应器中进行;可以间歇进行,也可以连续进行),氢气的用量可以是0~0.10g/g丙烯,优选为0.00001~0.10g/g丙烯。另外,在进行丙烯的聚合时,可以采用破杂剂。破杂剂是本领域中通常采用的物质,其具体用量可以是0~100mmol/g丙烯,优选为0.001~10mmol/g丙烯。
在本发明的一些具体的实施方式中,所述α-烯烃为乙烯。当α-烯烃为乙烯时,进行气相聚合反应,反应温度为0~200℃,优选为20~140℃;和/或,反应时间为0.016~60h,优选为0.1~20h;和/或,乙烯压力为0.1~15MPa,优选为0.2~10MPa,和/或,催化剂的用量为0.00001~100mg/g乙烯,和/或,除杂剂的用量为0~100mmol/g乙烯,和/或,氢气的用量为0~0.01g/g乙烯。
根据本发明的一些实施方式,所述除杂剂选自烷基铝化合物、芳香基铝化合物、铝氧烷化合物、硼氢化合物、烷基镁化合物、芳香基镁化合物、烷基锌化合物、芳香基锌化合物、烷基锂化合物、芳香基锂化合物、烷基钠化合物、芳香基钠化合物、烷基钾化合物和芳香基钾化合物;优选地,选自三甲基铝、三乙基铝、三异丁基铝、三正丁基铝、三正己基铝、三正辛基铝、甲基铝氧烷、乙基铝氧烷、异丁基铝氧烷以及改性铝氧烷、烷基铝卤化物、二甲基镁、二乙基镁、二正丁基镁、二甲基锌、二乙基锌、二正丁基锌、甲基锂、正丁基锂和叔丁基锂。
本发明中,术语“烃基”可以是烷基、芳基、烷基芳基、芳基烷基、炔基、烯基等。
本发明中,术语“杂原子”可以是指氧、硫、氮和磷等杂原子。
本发明中,术语“取代”可以是指取代基取代,所述取代基可以选自卤素、非碳的含氧酸基团及其衍生物以及任选取代的烷基、芳烷基和芳基,例如被选自烷基、芳基、氨基、羟基、烷氧基、羰基、氧杂、羧基、硫杂、硫含氧酸和卤代基及其组合取代的基团。
本发明中,术语“一锅法”可以是指同一个反应器进行的连续多步合成反应。
本发明中,“Me”是指甲基;“Et”是指乙基;“iPr”是指异丙基;“tBu”是指叔丁基;“iBu”是指异丁基;“iPr”是指异丙基;“Ph”是指苯基;“Fc”是指CpFe(C 5H 4);“Flu”是指芴基。
本发明中,“Tol”是指甲苯。
本发明的有益效果至少在于:
1)本发明采用的茂金属化合物的桥联原子上不同的两个基团中至少一个是胺基取代的基团和/或茂金属取代的基团和/或取代的茂金属基基团,由此能促使生成外消旋结构的茂金属催化剂,在与助催化剂和载体结合的情况下能够实现烯烃例如丙烯和乙烯的立体对映位点控制的链增长,生产高等规度的茂金属聚丙烯或茂金属聚乙烯。
2)本发明所提供的茂金属化合物的制备方法可以有效地进行桥联原子的基团变换,制备结构和组成多样的桥联茂金属化合物。桥联原子氢化反应后得到的桥联茂金属化合物与助催化剂和载体结合形成茂金属催化剂,该催化剂具有良好的热稳定性和催化活性,可以乙烯或者丙烯等alpha-烯烃的聚合反应。
具体实施方式
下面通过实施例对本发明作进一步阐述。
在下述实施方式中,如无特殊说明,铝/锆比为铝锆摩尔比。
本发明中,若无特别说明,Al/Zr比是指Al元素和Zr元素的摩尔比。
本发明中,若无特别说明,“%”是指质量百分含量。
本发明中,聚合活性的计算公式为:
聚合活性=聚合产物的质量/(聚合时间×催化剂用量×锆含量)。
A、茂金属化合物的制备
【合成例1】
如式1的茂金属化合物的制备:
称取40mmol的4-苯基-2-甲基茚,溶于200mL Et 2O,冷却至-78℃,向其中缓慢滴加40mmol的浓度为2.4M的正丁基锂的己烷溶液,超过15min滴加完毕。搅拌下自然恢复到室温,在室温下再搅拌12h,得到茚基锂化合物的溶液。
称取20mmol的Me(PhMeNH 2CH 2CH 2C)SiCl 2,溶解于100mL正己烷中,冷却至-78℃,向其中缓慢滴加上述制备的茚基锂化合物的溶液,30min滴加完毕。搅拌下自然恢复到室温,在室温下再搅拌12h。过滤除去不溶物,滤液通过硅胶柱,得到黄色的溶液,抽干溶剂得到黄色的化合物Me(PhMeNH 2CH 2CH 2C)Si(4-Ph-2-MeC 9H 5) 2,称重8.2mmol,产率41%。
称取5mmol的Me(PhMeNH 2CH 2CH 2C)Si(4-Ph-2-MeC 9H 5) 2,溶于100mL THF,冷却至-78℃,向其中缓慢滴加10mmol的浓度为2.4M的正丁基锂的己烷溶液,超过15min滴 加完毕。搅拌下自然恢复到室温,在室温下再搅拌12h,得到硅基桥联茚基锂化合物的溶液。
称取5mmol ZrCl 4,加入100mL THF,冷却至-78℃,搅拌下向其中缓慢滴加上述的硅基桥联茚基锂化合物的溶液,超过15min滴加完毕。搅拌下自然恢复到室温,在室温下再搅拌12h。过滤除去不溶物,收集滤液,并将滤液中的THF溶剂抽走,剩余固体用100mL的甲苯提取。将提取液置于-20℃下结晶,得到式1所示的橙红色的茂金属锆化合物[Me(PhMeNH 2CH 2CH 2C)Si(4-Ph-2-MeC 9H 4) 2]ZrCl 2,称重1.2mmol,产率24%。
式2-式11的茂金属化合物的制备方法与此类似,只是将第二步骤中的Me(PhMeNH 2CH 2CH 2C)SiCl 2替换为Me(PhMeNH 2CH 2CH 2CH 2C)SiCl 2、Me(Me 2NH 2CH 2CH 2CH 2C)SiCl 2、Me(Me 2NH 2CH 2C)SiCl 2、Me(Me 2NH 2CH 2CH 2C)SiCl 2、Me(NH 2Pr 2NH 2CH 2CH 2C)SiCl 2、Me(iPr 2NH 2CH 2CH 2C)SiCl 2、Me(iBuMeNH 2CH 2CH 2C)SiCl 2、Me(iBuEtNH 2CH 2CH 2C)SiCl 2、Me(iPrEtNH 2CH 2CH 2C)SiCl 2、(Me 2NH 2CH 2C)(iBuMeNH 2CH 2CH 2C)SiCl 2,最后分别得到茂金属锆化合物Me(PhMeNH 2CH 2CH 2CH 2C)Si(4-Ph-2-MeC 9H 4) 2ZrCl 2(式2,称重1.0mmol,产率20%)、Me(Me 2NH 2CH 2CH 2CH 2C)Si(4-Ph-2-MeC 9H 4) 2ZrCl 2(式3,称重1.4mmol,产率28%)、Me(Me 2NH 2CH 2C)Si(4-Ph-2-MeC 9H 4) 2ZrCl 2(式4,称重1.2mmol,产率24%)、Me(Me 2NH 2CH 2CH 2C)Si(4-Ph-2-MeC 9H 4) 2ZrCl 2(式5,称重1.0mmol,产率20%)、Me(NH 2Pr 2NH 2CH 2CH 2C)Si(4-Ph-2-MeC 9H 4) 2ZrCl 2(式6,称重1.3mmol,产率26%)、Me(iPr 2NH 2CH 2CH 2C)Si(4-Ph-2-MeC 9H 4) 2ZrCl 2(式7,称重1.0mmol,产率20%)、Me(iBuMeNH 2CH 2CH 2C)Si(4-Ph-2-MeC 9H 4) 2ZrCl 2(式8,称重0.9mmol,产率18%)、Me(iBuEtNH 2CH 2CH 2C)Si(4-Ph-2-MeC 9H 4) 2ZrCl 2(式9,称重0.8mmol,产率16%)、Me(iPrEtNH 2CH 2CH 2C)Si(4-Ph-2-MeC 9H 4) 2ZrCl 2(式10,称重0.9mmol,产率18%)、(Me 2NH 2CH 2C)(iBuMeNH 2CH 2CH 2C)Si(4-Ph-2-MeC 9H 4) 2ZrCl 2(式11,称重0.6mmol,产率12%)。
式12-式14的茂金属化合物的制备方法也与此类似,只是将第二步骤中的Me(PhMeNCH 2CH 2CH 2)SiCl 2替换为Me[CpFe(C 5H 4)CH 2CH 2]SiCl 2、Me[CpFe(C 5H 4)CH 2CH 2CH 2]SiCl 2、Me[CpFe(C 5H 4)CH 2]SiCl 2,最后分别得到茂金属锆化合物Me[CpFe(C 5H 4)CH 2CH 2]Si(4-Ph-2-MeC 9H 4) 2ZrCl 2(式12,称重1.0mmol,产率20%)、Me[CpFe(C 5H 4)CH 2CH 2CH 2]Si(4-Ph-2-MeC 9H 4) 2ZrCl 2(式13,称重1.3mmol,产率26%)、Me[CpFe(C 5H 4)CH 2]Si(4-Ph-2-MeC 9H 4) 2ZrCl 2(式14,称重0.8mmol,产率16%)。
式15的茂金属化合物的制备方法同样与此类似,只是将第一步骤中的4-苯基-2-甲基茚 基替换为4-(4-叔丁基)苯基-2-甲基茚基,同时将第二步骤中的Me(PhMeNCH 2CH 2CH 2)SiCl 2替换为Me[CpFe(C 5H 4)CH 2CH 2]SiCl 2,最后得到茂金属锆化合物Me[CpFe(C 5H 4)CH 2CH 2]Si(4-(4-tBuC 6H 4)-2-MeC 9H 4) 2ZrCl 2(式15,称重1.0mmol,产率20%)。
【合成例2-12的前驱体的制备】
氢基硅桥双茚基茂锆化合物MeHSi(2-Me-7-p-tBuC 6H 4C 9H 4) 2ZrCl 2(MS-1)的制备。
称取2-甲基-7-对叔丁基苯基茚(5.24g,20mmol),溶于Tol(80mL)溶剂中,-78℃下缓慢滴加正丁基锂(2.4M,8.5mL,20mmol),逐步恢复室温并反应过夜,得到酒红色溶液。-78℃下缓慢滴加甲基二氯硅烷(1.04mL,10mmol),逐渐恢复室温搅拌8小时以上,得到黄色悬浊液。黄色悬浊液置于-78℃中,缓慢滴加正丁基锂(2.4M,8.5mL,20mmol),恢复室温后继续搅拌2h,得到橙黄色混浊液。手套箱中取四氯化锆(2.33g,10mmol)装于小瓶中,加入40mL甲苯,取出氮气保护,在室温下加入到上述黄色浑浊液中,很快颜色由橙黄色逐渐加深至棕黑色,反应1天。氮气保护下过滤反应液,得到的滤液抽干溶剂,加正己烷洗涤过滤抽干,得到黄色固体。黄色固体用甲苯-20℃下多步重结晶,分别得到外消旋结构的化合物rac-MS-1 1.76g(24.2%)和内消旋结构的化合物meso-MS-1 3.42g(47.0%)。
这两种化合物是同分异构体,具有相同的元素组成。选取其中的一种,进行元素分析确认其组成。组成为C 41H 48Cl 2SiZr(Mr=731.04):理论值:C,67.36;H,6.62;实测值:C,67.54;H,6.56。
【合成例2】
含胺基烷基硅桥双茚茂锆化合物Me(Me 2NCH 2CH 2)Si(2-Me-7-p-tBuC 6H 4C 9H 4) 2ZrCl 2 (rac-MS-1a)的制备
称取rac-MS-1(1.45g,2mmol),溶于Tol(100mL)溶剂中,加入Me 2NCH=CH 2(0.156g,2.2mmol)和B(C 6F 5) 3(0.051g,0.1mmol,5%的用量),加热至50℃反应24h。将所有易挥发的组分通过室温下抽真空移走,剩余固体用少量(每次用量约1.5mL)正己烷洗涤2至4次。真空干燥6h,得到黄色固体rac-MS-1a 1.36g(85.2%)。
组成为C 45H 57Cl 2NSiZr(Mr=802.16):理论值:C,67.38;H,7.16;N,1.75;实测值:C,67.42;H,7.19;N,1.78。
【合成例3】
含胺基烷基硅桥双茚茂锆化合物Me(Me 2NCH 2CH 2)Si(2-Me-7-p-tBuC 6H 4C 9H 4) 2ZrCl 2 (meso-MS-1a)的制备
实施步骤同合成例2,其中用meso-MS-1(1.45g,2mmol)代替rac-MS-1,最后得到黄色固体meso-MS-1a 1.4g(87.7%)。
化合物meso-MS-1与上述rac-MS-1是同分异构体,组成也为C 45H 57Cl 2NSiZr(Mr=802.16):理论值:C,67.38;H,7.16;N,1.75;实测值:C,67.44;H,7.18;N,1.77。
【合成例4】
含胺基烷基硅桥双茚茂锆化合物Me(PhMeNCH 2CH 2)Si(2-Me-7-p-tBuC 6H 4C 9H 4) 2ZrCl 2 (rac-MS-1b)的制备
实施步骤同合成例2,其中用PhMeNCH=CH 2(0.293g,2.2mmol)代替Me 2NCH=CH 2,最后得到黄色固体rac-MS-1b 1.65g(95.9%)。
组成为C 50H 59Cl 2NSiZr(Mr=864.23):理论值:C,69.49;H,6.88;N,1.62;实测值:C,69.45;H,6.89;N,1.65。
【合成例5】
含胺基烷基硅桥双茚茂锆化合物Me(Me 2NCH 2CH 2CH 2)Si(2-Me-7-p-tBuC 6H 4C 9H 4) 2ZrCl 2 (rac-MS-1c)的制备
实施步骤同实施例一,其中用Me 2NCH 2CH=CH 2(0.187g,2.2mmol)代替Me 2NCH=CH 2,最后得到黄色固体rac-MS-1c 1.35g(83.2%)。
组成为C 46H 59Cl 2NSiZr(Mr=816.18):理论值:C,67.69;H,7.29;N,1.72;实测值:C,67.65;H,7.30;N,1.70。
【合成例6】
含胺基烷基硅桥双茚茂锆化合物Me(PhMeNCH 2CH 2CH 2)Si(2-Me-7-p- tBuC 6H 4C 9H 4) 2ZrCl 2(rac-MS-1d)的制备
实施步骤同实施例一,其中用PhMeNCH 2CH=CH 2(0.324g,2.2mmol)代替Me 2NCH=CH 2,最后得到黄色固体rac-MS-1d 1.61g(92.3%)。
组成为C 51H 61Cl 2NSiZr(Mr=878.25):理论值:C,69.75;H,7.00;N,1.59;实测值: C,69.78;H,7.02;N,1.60。
【合成例7】
含胺基烷基硅桥双茚茂锆化合物Me(iPr 2NCH 2CH 2CH 2)Si(2-Me-7-p-tBuC 6H 4C 9H 4) 2ZrCl 2 (rac-MS-1e)的制备
实施步骤同实施例一,其中用iPr 2NCH 2CH=CH 2(0.310g,2.2mmol)代替Me 2NCH=CH 2,最后得到黄色固体rac-MS-1e 1.54g(88.8%)。
组成为C 50H 67Cl 2NSiZr(Mr=872.29):理论值:C,68.85;H,7.74;N,1.61;实测值:C,68.83;H,7.71;N,1.63。
【合成例8】
含胺基烷基硅桥双茚茂锆化合物Me(iBuMeNCH 2CH 2CH 2CH 2)Si(2-Me-7-p- tBuC 6H 4C 9H 4) 2ZrCl 2(rac-MS-1f)的制备
实施步骤同实施例一,其中用iBuMeNCH 2CH 2CH=CH 2(0.310g,2.2mmol)代替Me 2NCH=CH 2,最后得到黄色固体rac-MS-1f 1.57g(90.62%)。
组成为C 50H 67Cl 2NSiZr(Mr=872.29):理论值:C,68.85;H,7.74;N,1.61;实测值:C,68.82;H,7.72;N,1.63。
【合成例9】
含胺基烷基硅桥双茚茂锆化合物Me(PhMeNCH 2CH 2CH 2CH 2)Si(2-Me-7-p- tBuC 6H 4C 9H 4) 2ZrCl 2(rac-MS-1g)的制备
实施步骤同实施例一,其中用PhMeNCH 2CH 2CH=CH 2(0.354g,2.2mmol)代替Me 2NCH=CH 2,最后得到黄色固体rac-MS-1g 1.64g(92.52%)。
组成为C 52H 63Cl 2NSiZr(Mr=892.28):理论值:C,70.00;H,7.12;N,1.57;实测值:C,70.04;H,7.11;N,1.59。
【合成例10】
含胺基烷基硅桥双茚茂锆化合物Me(iPrEtNCH 2CH 2CH 2CH 2)Si(2-Me-7-p- tBuC 6H 4C 9H 4) 2ZrCl 2(rac-MS-1h)的制备
实施步骤同实施例一,其中用iPrEtNCH 2CH 2CH=CH 2(0.310g,2.2mmol)代替Me 2NCH=CH 2,最后得到黄色固体rac-MS-1h 1.57g(90.61%)。
组成为C 50H 71Cl 2NSiZr(Mr=876.32):理论值:C,68.53;H,8.17;N,1.60;实测值:C,68.51;H,8.18;N,1.62。
【合成例11】
含二茂铁烯基硅桥双茚茂锆化合物Me(FcCH=CH 2)Si(2-Me-7-p-tBuC 6H 4C 9H 4) 2ZrCl 2 (rac-MS-1i)的制备
实施步骤同实施例一,其中用FcC≡CH(0.420g,2mmol)代替Me 2NCH=CH 2,最后得到橙红色固体rac-MS-1i 1.72g(91.98%)。FcC≡CH中,Fc=CpFe(C 5H 4)。
组成为C 53H 58Cl 2FeSiZr(Mr=941.09):理论值:C,67.64;H,6.21;实测值:C,67.71;H,6.25。
【合成例12】
含二茂铁烷基硅桥双茚茂锆化合物Me(FcCH 2CH 2)Si(2-Me-7-p-tBuC 6H 4C 9H 4) 2ZrCl 2 (rac-MS-1j)的制备
实施步骤同实施例一,其中用FcCH=CH 2(0.424g,2mmol)代替Me 2NCH=CH 2,最后得到橙红色固体rac-MS-1j 1.63g(87.17%)。FcCH=CH 2中,Fc=CpFe(C 5H 4)。
组成为C 53H 60Cl 2FeSiZr(Mr=943.10):理论值:C,67.50;H,6.41;实测值:C,67.53;H,6.43。
【合成例13和14前驱体的制备】
氢基硅桥双茚基茂锆化合物MeHSi(2-Me-7-p-tBuC 6H 4C 9H 4) 2Zr(NMe 2) 2(rac-MS-2)的制备
称取2-甲基-7-对叔丁基苯基茚(5.24g,20mmol),溶于Tol(160mL)溶剂中,-78℃下缓慢滴加正丁基锂(2.4M,8.5mL,20mmol),逐步恢复室温并反应过夜,得到酒红色溶液。-78℃下缓慢滴加甲基二氯硅烷(1.04mL,10mmol),逐渐恢复室温搅拌8小时以上,得到黄色悬浊液。过滤除去LiCl沉淀得到黄色溶液,搅拌下加入四甲胺基锆(2.68g,10mmol)。加热至70至100℃12h。待冷却至室温时,移走挥发性组分,剩余固体用甲苯加己烷重结晶,得到橙色结晶状固体rac-MS-2 4.83g(64.9%)。
组成为C 45H 60N 2SiZr(Mr=748.28):理论值:C,72.23;H,8.08;N,3.74;实测值:C,72.21;H,8.05;N,3.76。
【合成例13】
含胺基烷基硅桥双茚茂锆化合物Me(PhMeNCH 2CH 2)Si(2-Me-7-p- tBuC 6H 4C 9H 4) 2Zr(NMe 2) 2(rac-MS-2a)的制备
称取rac-MS-2(1.49g,2mmol),溶于Tol(100mL)溶剂中,加入PhMeNCH=CH 2(0.293g,2.2mmol)和B(C 6F 5) 3(0.051g,0.1mmol,5%的用量),加热至50℃反应24h。将所有易挥发的组分通过室温下抽真空移走,剩余固体用少量(每次用量约1.5mL)正己烷洗涤2至4次。真空干燥6h,得到橙色固体rac-MS-2a 1.62g(92.2%)。
组成为C 54H 71N 3SiZr(Mr=881.47):理论值:C,73.58;H,8.12;N,4.77;实测值:C,73.60;H,8.14;N,4.75。
【合成例14】
含二茂铁烷基硅桥双茚茂锆化合物Me(FcCH 2CH 2)Si(2-Me-7-p-tBuC 6H 4C 9H 4) 2Zr(NMe 2) 2 (rac-MS-2b)的制备
实施步骤同合成例13,其中用FcCH=CH 2(0.424g,2mmol)代替PhMeNCH=CH 2,最后得到橙红色固体meso-MS-1a 1.4g(87.7%)。FcCH=CH 2中,Fc=CpFe(C 5H 4)。
组成为C 57H 72N 2FeSiZr(Mr=960.35):理论值:C,71.29;H,7.56;N,2.93;实测值:C,71.27;H,7.56;N,2.91。
【合成例15和16前驱体的制备】
氢基硅桥双茚基茂锆化合物MeHSi(2-Me-7-PhC 9H 4) 2ZrCl 2(MS-3)的制备
称取2-甲基-7-苯基茚(4.13g,20mmol),溶于Tol(160mL)溶剂中,-78℃下缓慢滴加正丁基锂(2.4M,8.5mL,20mmol),逐步恢复室温并反应过夜,得到酒红色溶液。-78℃下缓慢滴加甲基二氯硅烷(1.04mL,10mmol),逐渐恢复室温搅拌8小时以上,得到黄色悬浊液。黄色悬浊液置于-78℃中,缓慢滴加正丁基锂(2.4M,8.5mL,20mmol),恢复室温后继续搅拌2h,得到橙黄色混浊液。手套箱中取四氯化锆(2.33g,10mmol)装于小瓶中,加入40mL甲苯,取出氮气保护,在室温下加入到上述黄色浑浊液中,很快颜色由橙黄色逐渐加深至棕黑色,反应1天。氮气保护下过滤反应液,得到的滤液抽干溶剂,加正己烷洗涤过滤抽干,得到黄色固体。黄色固体用甲苯-20℃下多步重结晶,分别得到外消旋结构的化合物rac-MS-3 1.25g(18.7%)和内消旋结构的化合物meso-MS-3 2.75g(41.2%)。
组成为C 33H 28Cl 2SiZr(Mr=614.79):理论值:C,64.47;H,4.59;实测值:C,64.48;H,4.61。
【合成例15】
含胺基烷基硅桥双茚茂锆化合物Me(PhMeNCH 2CH 2)Si(2-Me-7-PhC 9H 4) 2ZrCl 2 (rac-MS-3a)的制备
称取rac-MS-3(1.34g,2mmol),溶于Tol(100mL)溶剂中,加入PhMeNCH=CH 2(0.293g,2.2mmol)和B(C 6F 5) 3(0.051g,0.1mmol,5%的用量),加热至50℃反应24h。将所有易挥发的组分通过室温下抽真空移走,剩余固体用少量(每次用量约1.5mL)正己烷洗涤2至4次。真空干燥6h,得到橙红色固体rac-MS-3a 1.41g(87.4%)。
组成为C 42H 39Cl 2NSiZr(Mr=747.98):理论值:C,67.44;H,5.26;N,1.87;实测值:C,67.42;H,5.27;N,1.86。
【合成例16】
含二茂铁烷基硅桥双茚茂锆化合物Me(FcCH 2CH 2)Si(2-Me-7-PhC 9H 4) 2ZrCl 2(rac-MS-3b) 的制备
实施步骤同合成例13,其中用FcCH=CH 2(0.424g,2mmol)代替PhMeNCH=CH 2,最后得到橙红色固体rac-MS-3b 1.53g(86.7%)。FcCH=CH 2中,Fc=CpFe(C 5H 4)。
组成为C 45H 40Cl 2FeSiZr(Mr=826.86):理论值:C,65.37;H,4.88;实测值:C,65.36;H,4.89。
【合成例16和17前驱体的制备】
氢基硅桥双芴基茂锆化合物MeHSiFlu 2ZrCl 2(MS-4)的制备
称取芴(3.32g,20mmol),溶于Tol(160mL)溶剂中,-78℃下缓慢滴加正丁基锂(2.4M,8.5mL,20mmol),逐步恢复室温并反应过夜,得到酒红色溶液。-78℃下缓慢滴加甲基二氯硅烷(1.04mL,10mmol),逐渐恢复室温搅拌8小时以上,得到黄色悬浊液。黄色悬浊液置于-78℃中,缓慢滴加正丁基锂(2.4M,8.5mL,20mmol),恢复室温后继续搅拌2h,得到橙黄色混浊液。手套箱中取四氯化锆(2.33g,10mmol)装于小瓶中,加入40mL甲苯,取出氮气保护,在室温下加入到上述黄色浑浊液中,很快颜色由橙黄色逐渐加深至棕色,反应1天。氮气保护下过滤反应液,得到的滤液抽干溶剂,加正己烷洗涤过滤抽干,得到黄色固体。黄色固体用甲苯-20℃下重结晶,得到化合物MS-4 3.89g(72.8%)。
组成为C 27H 20Cl 2SiZr(Mr=534.66):理论值:C,60.66;H,3.77;实测值:C,60.64; H,3.74。
【合成例17】
含胺基烷基硅桥双芴茂锆化合物Me(PhMeNCH 2CH 2)SiFlu 2ZrCl 2(MS-4a)的制备
称取MS-4(1.07g,2mmol),溶于Tol(100mL)溶剂中,加入PhMeNCH=CH 2(0.293g,2.2mmol)和B(C 6F 5) 3(0.051g,0.1mmol,5%的用量),加热至50℃反应24h。将所有易挥发的组分通过室温下抽真空移走,剩余固体用少量(每次用量约1.5mL)正己烷洗涤2至4次。真空干燥6h,得到橙色固体MS-4a 1.21g(90.6%)。
组成为C 36H 31Cl 2NSiZr(Mr=667.85):理论值:C,64.74;H,4.68;N,2.10;实测值:C,64.73;H,4.71;N,2.11。
【合成例18】
含二茂铁烷基硅桥双芴茂锆化合物Me(FcCH 2CH 2)SiFlu 2ZrCl 2(MS-4b)的制备
实施步骤同合成例17,其中用FcCH=CH 2(0.424g,2mmol)代替PhMeNCH=CH 2,最后得到橙红色固体MS-4b 1.32g(88.4%)。FcCH=CH 2中,Fc=CpFe(C 5H 4)。
组成为C 39H 32Cl 2FeSiZr(Mr=746.73):理论值:C,62.73;H,4.32;实测值:C,62.72;H,4.31。
【合成例19】
Me[(PhMeN(CH 2) 5)]Si(2-Me-7-PhC 9H 4) 2ZrCl 2的制备
称取rac-MS-3(1.34g,2mmol),溶于Tol(100mL)溶剂中,加入PhMeN(CH 2) 3CH=CH 2(0.388g,2.2mmol)和B(C 6F 5) 3(0.051g,0.1mmol,5%的用量),加热至50℃反应24h。将所有易挥发的组分通过室温下抽真空移走,剩余固体用少量(每次用量约1.5mL)正己烷洗涤2至4次。真空干燥6h,得到橙红色固体rac-MS-3c 1.49g(86.2%)。
组成为C 45H 45Cl 2NSiZr(Mr=790.97):理论值:C,68.41;H,5.74;N,1.77;实测值:C,68.44;H,5.75;N,1.76。
【合成例20】
Me[PhMeN(CH 2) 8]Si(2-Me-7-PhC 9H 4) 2ZrCl 2的制备
称取rac-MS-3(1.34g,2mmol),溶于Tol(100mL)溶剂中,加入PhMeN(CH 2) 6CH=CH 2(0.480g,2.2mmol)和B(C 6F 5) 3(0.051g,0.1mmol,5%的用量),加热至50℃反应24h。 将所有易挥发的组分通过室温下抽真空移走,剩余固体用少量(每次用量约1.5mL)正己烷洗涤2至4次。真空干燥6h,得到橙红色固体rac-MS-3d 1.57g(86.3%)。
组成为C 48H 51Cl 2NSiZr(Mr=832.15):理论值:C,69.28;H,6.18;N,1.68;实测值:C,69.25;H,6.16;N,1.70。
【合成例21】
Me[PhMeN(CH 2) 12]Si(2-Me-7-PhC 9H 4) 2ZrCl 2的制备
称取rac-MS-3(1.34g,2mmol),溶于Tol(100mL)溶剂中,加入PhMeN(CH 2) 9CH=CH 2(0.573g,2.2mmol)和B(C 6F 5) 3(0.051g,0.1mmol,5%的用量),加热至50℃反应24h。将所有易挥发的组分通过室温下抽真空移走,剩余固体用少量(每次用量约1.5mL)正己烷洗涤2至4次。真空干燥6h,得到橙红色固体rac-MS-3e 1.72g(89.9%)。
组成为C 51H 57Cl 2NSiZr(Mr=874.23):理论值:C,70.07;H,6.57;N,1.60;实测值:C,70.04;H,6.55;N,1.60。
【合成例22】
Me[PhMeN(CH 2) 15]Si(2-Me-7-PhC 9H 4) 2ZrCl 2的制备
称取rac-MS-3(1.34g,2mmol),溶于Tol(100mL)溶剂中,加入PhMeN(CH 2) 12CH=CH 2(0.666g,2.2mmol)和B(C 6F 5) 3(0.051g,0.1mmol,5%的用量),加热至50℃反应24h。将所有易挥发的组分通过室温下抽真空移走,剩余固体用少量(每次用量约1.5mL)正己烷洗涤2至4次。真空干燥6h,得到橙红色固体rac-MS-3f 1.83g(91.2%)。
组成为C 54H 63Cl 2NSiZr(Mr=916.31):理论值:C,70.78;H,6.93;N,1.53;实测值:C,70.76;H,6.95;N,1.52。
【合成例23】
Me[p-ClC 6H 4MeN(CH 2) 5]Si(2-Me-7-PhC 9H 4) 2ZrCl 2的制备
称取rac-MS-3(1.34g,2mmol),溶于Tol(100mL)溶剂中,加入 p-ClC 6H 4 MeN(CH 2) 3CH=CH 2(0.461g,2.2mmol)和B(C 6F 5) 3(0.051g,0.1mmol,5%的用量),加热至50℃反应24h。将所有易挥发的组分通过室温下抽真空移走,剩余固体用少量(每次用量约1.5mL)正己烷洗涤2至4次。真空干燥6h,得到橙红色固体rac-MS-3g 1.62g(90.0%)。
组成为C 45H 44Cl 3NSiZr(Mr=824.51):理论值:C,65.55;H,5.38;N,1.70;实测值: C,65.56;H,5.36;N,1.72。
【合成例24】
Me[p-MeOC 6H 4MeN(CH 2) 5]Si(2-Me-7-PhC 9H 4) 2ZrCl 2的制备
称取rac-MS-3(1.34g,2mmol),溶于Tol(100mL)溶剂中,加入 p-MeOC 6H 4 MeN(CH 2) 3CH=CH 2(0.454g,2.2mmol)和B(C 6F 5) 3(0.051g,0.1mmol,5%的用量),加热至50℃反应24h。将所有易挥发的组分通过室温下抽真空移走,剩余固体用少量(每次用量约1.5mL)正己烷洗涤2至4次。真空干燥6h,得到橙红色固体rac-MS-3h 1.60g(89.2%)。
组成为C 46H 46Cl 2NOSiZr(Mr=819.09):理论值:C,67.45;H,5.66;N,1.71;实测值:C,67.47;H,5.63;N,1.72。
【合成例25】
Me[Fc(CH 2) 5]Si(2-Me-7-PhC 9H 4) 2ZrCl 2的制备
称取rac-MS-3(1.34g,2mmol),溶于Tol(100mL)溶剂中,加入Fc(CH 2) 3CH=CH 2(0.559g,2.2mmol)(注:Fc=CpFe(C 5H 4))和B(C 6F 5) 3(0.051g,0.1mmol,5%的用量),加热至50℃反应24h。将所有易挥发的组分通过室温下抽真空移走,剩余固体用少量(每次用量约1.5mL)正己烷洗涤2至4次。真空干燥6h,得到橙红色固体rac-MS-3i 1.67g(87.9%)。
组成为C 48H 46Cl 2FeSiZr(Mr=868.95):理论值:C,66.35;H,5.34;实测值:C,66.36;H,5.33。
【合成例26】
Me(Fc(CH 2) 8)Si(2-Me-7-PhC 9H 4) 2ZrCl 2的制备
称取rac-MS-3(1.34g,2mmol),溶于Tol(100mL)溶剂中,加入Fc(CH 2) 6CH=CH 2(0.652g,2.2mmol)(注:Fc=CpFe(C 5H 4))和B(C 6F 5) 3(0.051g,0.1mmol,5%的用量),加热至50℃反应24h。将所有易挥发的组分通过室温下抽真空移走,剩余固体用少量(每次用量约1.5mL)正己烷洗涤2至4次。真空干燥6h,得到橙红色固体rac-MS-3j 1.72g(86.3%)。
组成为C 51H 52Cl 2FeSiZr(Mr=911.03):理论值:C,65.55;H,5.38;实测值:C,65.56;H,5.37。
【合成例27】
Me[Fc(CH 2) 12]Si(2-Me-7-PhC 9H 4) 2ZrCl 2的制备
称取rac-MS-3(1.34g,2mmol),溶于Tol(100mL)溶剂中,加入Fc(CH 2) 10CH=CH 2(0.775g,2.2mmol)(注:Fc=CpFe(C 5H 4))和B(C 6F 5) 3(0.051g,0.1mmol,5%的用量),加热至50℃反应24h。将所有易挥发的组分通过室温下抽真空移走,剩余固体用少量(每次用量约1.5mL)正己烷洗涤2至4次。真空干燥6h,得到橙红色固体rac-MS-3k 1.98g(93.6%)。
组成为C 55H 60Cl 2FeSiZr(Mr=967.14):理论值:C,68.31;H,6.25;实测值:C,68.34;H,6.27。
【合成例28】
Me[Fc(CH 2) 15]Si(2-Me-7-PhC 9H 4) 2ZrCl 2的制备
称取rac-MS-3(1.34g,2mmol),溶于Tol(100mL)溶剂中,加入Fc(CH 2) 13CH=CH 2(0.868g,2.2mmol)(注:Fc=CpFe(C 5H 4))和B(C 6F 5) 3(0.051g,0.1mmol,5%的用量),加热至50℃反应24h。将所有易挥发的组分通过室温下抽真空移走,剩余固体用少量(每次用量约1.5mL)正己烷洗涤2至4次。真空干燥6h,得到橙红色固体rac-MS-3l 2.02g(91.5%)。
组成为C 58H 66Cl 2FeSiZr(Mr=1009.22):理论值:C,69.03;H,6.59;实测值:C,69.04;H,6.57。
【合成例29】
参照桥SiH基加成法可以合成R 1为甲基和R II为烷基的茂金属化合物,示例如下。
MenBuSi(2-Me-7-PhC 9H 4) 2ZrCl 2的制备
称取rac-MS-3(1.34g,2mmol),溶于Tol(100mL)溶剂中,加入CH 3CH 2CH=CH 2(0.123g,2.2mmol)和B(C 6F 5) 3(0.051g,0.1mmol,5%的用量),加热至50℃反应24h。将所有易挥发的组分通过室温下抽真空移走,剩余固体用少量(每次用量约1.5mL)正己烷洗涤2至4次。真空干燥6h,得到橙红色固体rac-MS-3m 1.12g(76.6%)。
组成为C 37H 36Cl 2SiZr(Mr=670.90):理论值:C,66.24;H,5.41;实测值:C,66.23;H,5.40。
【合成例30】
Me[n-CH 3(CH 2) 7]Si(2-Me-7-PhC 9H 4) 2ZrCl 2的制备
称取rac-MS-3(1.34g,2mmol),溶于Tol(100mL)溶剂中,加入CH 3(CH 2) 5CH=CH 2 (0.247g,2.2mmol)和B(C 6F 5) 3(0.051g,0.1mmol,5%的用量),加热至50℃反应24h。将所有易挥发的组分通过室温下抽真空移走,剩余固体用少量(每次用量约1.5mL)正己烷洗涤2至4次。真空干燥6h,得到橙红色固体rac-MS-3n 1.23g(77.5%)。
组成为C 41H 44Cl 2SiZr(Mr=727.01):理论值:C,67.74;H,6.10;实测值:C,67.72;H,6.11。
【合成例31】
MeHSi(4-Ph-2-MeC 9H 4)(NtBu)ZrCl 2的制备。
称取4-苯基-2-甲基茚(2.06g,10mmol),溶于Tol(80ml)溶剂中,-78℃下缓慢滴加正丁基锂(2.4M,4.25mL,10mmol),逐步恢复室温并反应过夜,得到酒红色溶液。-78℃下缓慢滴加甲基二氯硅烷(1.04mL,10mmol),逐渐恢复室温搅拌8小时以上,得到黄色悬浊液。黄色悬浊液置于-78℃中,缓慢滴加叔丁胺基锂(0.79g,10mmol),恢复室温后继续搅拌2h,得到橙黄色混浊液。将橙黄色混浊液置于-78℃中,缓慢滴加正丁基锂(2.4M,8.5mL,20mmol),恢复室温后继续搅拌2h,得到橙黄色混浊液。手套箱中取四氯化锆(2.33g,10mmol)装于小瓶中,加入40mL甲苯,取出氮气保护,在室温下加入到上述橙黄色浑浊液中,很快颜色由橙黄色逐渐加深至深红色,反应1天。氮气保护下过滤反应液,得到的滤液抽干溶剂,加正己烷洗涤过滤抽干,得到红色固体。红色固体用甲苯-20℃下多步重结晶,得到化合物MeHSi(4-Ph-2-MeC 9H 4)(NtBu)ZrCl 2 2.88g(60.0%)。
组成为C 21H 25Cl 2NSiZr(Mr=481.65):理论值:C,52.37;H,5.23;N,2.91;实测值:C,52.40;H,5.21;N,2.90。
【合成例32】
Me[Fc(CH 2) 5]Si(4-Ph-2-MeC 9H 4) (NtBu) ZrCl 2的制备
称取MeHSi(4-Ph-2-MeC 9H 4)(NtBu)ZrCl 2(0.96g,2mmol),溶于Tol(100mL)溶剂中,加入Fc(CH 2) 3CH=CH 2(0.559g,2.2mmol)(注:Fc=CpFe(C 5H 4))和B(C 6F 5) 3(0.051g,0.1mmol,5%的用量),加热至50℃反应24h。将所有易挥发的组分通过室温下抽真空移走,剩余固体用少量(每次用量约1.5mL)正己烷洗涤2至4次。真空干燥6h,得到深红色固体 Me[Fc(CH 2) 5]Si(4-Ph-2-MeC 9H 4) (NtBu) ZrCl 2  1.21g(82.1%)。
组成为C 36H 44Cl 2FeNSiZr(Mr=736.81):理论值:C,58.68;H,6.02;N,1.90;实测值:C,58.66;H,6.03;N,1.92。
B、茂金属催化剂的制备
【制备例1】
称取经600℃焙烧处理过的硅胶2g,加入10mL 10%的MAO甲苯溶液(重量百分比),加热至80℃。在搅拌均匀的情况下加入式1所示的茂金属化合物的甲苯溶液,控制Al/Zr比为200:1,反应过夜。过滤收集固体,并用甲苯溶剂洗涤,至洗涤出的溶剂无色,固体真空干燥24h,得到固体粉末,手套箱中保存备用(以下如无特别说明,均使用此反应操作方法)。经投料量以及洗涤出液的金属含量测定计算,可以得到金属含量确定的催化剂SC-1,其中锆含量为0.268%(29.4μmol/g)。
Figure PCTCN2020125121-appb-000004
【制备例2】
称取经600℃焙烧处理过的硅胶2g,加入10mL 10%的MAO甲苯溶液(重量百分比)和甲苯纯溶剂,加热至80℃,搅拌24h后,过滤,收集固体,并用甲苯溶剂洗涤3次,固体真空干燥24h,得到固体粉末状的MAO-硅胶。
称取一定量的MAO-硅胶,加入甲苯溶剂形成悬浊液,在搅拌均匀的情况下加入茂金属锆化合物的甲苯溶液,反应过夜。过滤收集固体,并用甲苯溶剂洗涤,至洗涤出的溶剂无色,固体真空干燥24h,得到固体粉末,手套箱中保存备用。经投料量以及洗涤出液的锆含量测定计算,可以得到锆含量确定的催化剂。
选用式1的茂金属锆化合物,控制Al/Zr比50:1、100:1、150:1,分别制得催化剂SC-2A(锆含量为0.846%,100.2μmol/g)、SC-2B(锆含量0.430%,47.2μmol/g)、SC-2C(锆含量为0.282%,32.2μmol/g)。
【制备例3】
制备步骤同制备例2,选用式2所示的茂金属化合物,控制Al/Zr比193:1、227:1、340:1,分别制得催化剂SC-3A(锆含量为0.40%,28.4μmol/g)、SC-3B(锆含量0.30%,25.0μmol/g)、SC-3C(锆含量为0.20%,16.7μmol/g)。
Figure PCTCN2020125121-appb-000005
【制备例4】
制备步骤同制备例2,选用式1所示的茂金属化合物,控制Al/Zr比193:1、194:1、195:1,分别制得催化剂SC-4A(锆含量为0.40%,28.4μmol/g)、SC-4B(锆含量0.40%,28.5μmol/g)、SC-4C(锆含量为0.40%,28.7μmol/g)。
【制备例5】
制备步骤同制备例2,选用式3所示的茂金属化合物,控制Al/Zr比50:1、100:1、200:1,分别制得催化剂SC-5A(锆含量为0.854%,106.3μmol/g)、SC-5B(锆含量0.441%,49.2μmol/g)、SC-5C(锆含量为0.277%,30.8μmol/g)。
Figure PCTCN2020125121-appb-000006
【制备例6】
制备步骤同制备例2,选用式4所示的茂金属化合物,控制Al/Zr比100:1,制得催化剂SC-6(锆含量0.453%,51.2μmol/g)。
Figure PCTCN2020125121-appb-000007
【制备例7】
制备步骤同制备例2,选用式5所示的茂金属化合物,控制Al/Zr比100:1,制得催化剂SC-7(锆含量0.441%,48.7μmol/g)。
Figure PCTCN2020125121-appb-000008
【制备例8】
制备步骤同制备例2,选用式6所示的茂金属化合物,控制Al/Zr比100:1,制得催化剂SC-8(锆含量0.437%,50.7μmol/g)。
Figure PCTCN2020125121-appb-000009
【制备例9】
制备步骤同制备例2,选用式7所示的茂金属化合物,控制Al/Zr比100:1,制得催化剂SC-9(锆含量0.463%,52.4μmol/g)。
Figure PCTCN2020125121-appb-000010
【制备例10】
制备步骤同制备例2,选用式8所示的茂金属化合物,控制Al/Zr比100:1,制得催化剂SC-10(锆含量0.425%,47.1μmol/g)。
Figure PCTCN2020125121-appb-000011
【制备例11】
制备步骤同制备例2,选用式9所示的茂金属化合物,控制Al/Zr比100:1,制得催化剂SC-11(锆含量0.439%,48.3μmol/g)。
Figure PCTCN2020125121-appb-000012
【制备例12】
制备步骤同制备例2,选用式10所示的茂金属化合物,控制Al/Zr比100:1,制得催化剂SC-12(锆含量0.482%,52.1μmol/g)。
Figure PCTCN2020125121-appb-000013
【制备例13】
制备步骤同制备例2,选用式11所示的茂金属化合物,控制Al/Zr比100:1,制得催化剂SC-13(锆含量0.501%,54.3μmol/g)。
Figure PCTCN2020125121-appb-000014
【制备例14】
制备步骤同制备例2,选用式12所示的茂金属化合物,控制Al/Zr比100:1,制得催化剂SC-14(锆含量0.410%,44.6μmol/g)。
Figure PCTCN2020125121-appb-000015
【制备例15】
称取经600℃焙烧处理过的硅胶2.0g,加入10mL10%的MAO甲苯溶液(重量百分比),然后加入四(五氟苯基)硼酸双十八烷基甲基铵盐0.30g,然后补加甲苯10mL,加热至80℃,搅拌24h后,过滤,收集固体,并用甲苯溶剂洗涤3次,固体真空干燥24h,得到固体粉末状的载体硅胶3.1g。
称取2g经过处理的载体硅胶,加入甲苯溶剂20mL形成悬浊液,在搅拌均匀的情况下加入式12所示茂金属锆化合物100mg配成的甲苯溶液5mL,室温搅拌反应过夜。过滤收集固体,并用甲苯溶剂洗涤,至洗涤出的溶剂无色,固体真空干燥24h,得到Zr含量为0.390质量%(42.39μmol/g)的固体催化剂粉末(SC-15),手套箱中保存备用。
【制备例16】
与制备例15的不同之处仅在于同等质量的三(五氟苯基)硼烷替代四(五氟苯基)硼酸双十八烷基甲基铵盐,其它条件不变,得到固体催化剂3.2g,经测试催化剂锆含量为0.45质量%。
【制备例17】
制备步骤同制备例2,选用式13所示的茂金属化合物,控制Al/Zr比100:1,制得催化剂SC-16(锆含量0.406%,43.7μmol/g)。
Figure PCTCN2020125121-appb-000016
【制备例18】
制备步骤同制备例2,选用式14所示的茂金属化合物,控制Al/Zr比100:1,制得催化剂SC-17(锆含量0.415%,45.9μmol/g)。
Figure PCTCN2020125121-appb-000017
【制备例19】
制备步骤同制备例2,选用式15所示的茂金属化合物,控制Al/Zr比100:1,制得催化剂SC-18(锆含量0.371%,40.2μmol/g)。
Figure PCTCN2020125121-appb-000018
【制备例20】
选取合成例2-18中部分的茂金属化合物,用于制备烯烃聚合反应的催化剂,制备过程如下:
称取经600℃焙烧处理过的硅胶2g,加入10mL 10%的MAO甲苯溶液(重量百分比)和甲苯纯溶剂40-100mL,加热至80℃,搅拌24h后,过滤,收集固体,并用甲苯溶剂洗涤3次,固体真空干燥24h,得到固体粉末状的MAO-硅胶。
称取一定量的MAO-硅胶,加入甲苯溶剂形成悬浊液,在搅拌均匀的情况下加入部分实施例的茂锆化合物的甲苯溶液,反应过夜。过滤收集固体,并用甲苯溶剂洗涤,至洗涤出的溶剂无色,固体真空干燥24h,得到固体粉末,手套箱中保存备用。经投料量以及洗涤出液的锆含量测定计算,可以得到锆含量确定的催化剂。
其中:
控制Al/Zr比为200:1,选取茂锆化合物rac-MS-1b,制得催化剂rac-MS-1b-C,其中锆含量为0.268%(29.4μmol/g)。
控制Al/Zr比为50:1,选取茂锆化合物rac-MS-1j,制得催化剂rac-MS-1j-C,其中锆含量为0.846%(100.2μmol/g)。
控制Al/Zr比为100:1,选取茂锆化合物rac-MS-3a,制得催化剂rac-MS-3a-C,其中锆含量为0.430%(47.2μmol/g)。
控制Al/Zr比为200:1,选取茂锆化合物rac-MS-3b,制得催化剂rac-MS-3b-C,其中锆含量为0.268%(29.4μmol/g)。
控制Al/Zr比为200:1,选取茂锆化合物rac-MS-4a,制得催化剂rac-MS-4a-C,其中锆含 量为0.268%(29.4μmol/g)。
控制Al/Zr比为200:1,选取茂锆化合物rac-MS-4b,制得催化剂rac-MS-4b-C,其中锆含量为0.268%(29.4μmol/g)。
【制备例21】
取合成例19-32中制得的茂金属化合物,用于制备烯烃聚合反应的催化剂,制备过程如下:
称取经600℃焙烧处理过的硅胶2g,加入10mL 10%的MAO甲苯溶液(重量百分比)和甲苯纯溶剂40-100mL,加热至80℃,搅拌24h后,过滤,收集固体,并用甲苯溶剂洗涤3次,固体真空干燥24h,得到固体粉末状的MAO-硅胶。
称取一定量的MAO-硅胶,加入甲苯溶剂形成悬浊液,在搅拌均匀的情况下加入部分实施例的茂锆化合物的甲苯溶液,反应过夜。过滤收集固体,并用甲苯溶剂洗涤,至洗涤出的溶剂无色,固体真空干燥24h,得到固体粉末,手套箱中保存备用。经投料量以及洗涤出液的锆含量测定计算,可以得到锆含量确定的催化剂。
其中:
控制Al/Zr比为200:1,选取茂锆化合物Me[(PhMeN(CH 2) 5)]Si(2-Me-7-PhC 9H 4) 2ZrCl 2,制得催化剂rac-MS-3c-C,其中锆含量为0.268%(29.4μmol/g)。
控制Al/Zr比为200:1,选取茂锆化合物Me[PhMeN(CH 2) 8]Si(2-Me-7-PhC 9H 4) 2ZrCl 2,制得催化剂rac-MS-3d-C,其中锆含量为0.268%(29.4μmol/g)。
控制Al/Zr比为200:1,选取茂锆化合物Me[PhMeN(CH 2) 12]Si(2-Me-7-PhC 9H 4) 2ZrCl 2,制得催化剂rac-MS-3e-C,其中锆含量为0.268%(29.4μmol/g)。
控制Al/Zr比为200:1,选取茂锆化合物Me[PhMeN(CH 2) 15]Si(2-Me-7-PhC 9H 4) 2ZrCl 2,制得催化剂rac-MS-3f-C,其中锆含量为0.268%(29.4μmol/g)。
控制Al/Zr比为200:1,选取茂锆化合物Me[p-ClC 6H 4MeN(CH 2) 5]Si(2-Me-7-PhC 9H 4) 2ZrCl 2,制得催化剂rac-MS-3g-C,其中锆含量为0.268%(29.4μmol/g)。
控制Al/Zr比为200:1,选取茂锆化合物Me[p-MeOC 6H 4MeN(CH 2) 5]Si(2-Me-7-PhC 9H 4) 2ZrCl 2,制得催化剂rac-MS-3h-C,其中锆含量为0.268%(29.4μmol/g)。
控制Al/Zr比为200:1,选取茂锆化合物Me[Fc(CH 2) 5]Si(2-Me-7-PhC 9H 4) 2ZrCl 2,制得催 化剂rac-MS-3i,其中锆含量为0.268%(29.4μmol/g)。
控制Al/Zr比为200:1,选取茂锆化合物Me(Fc(CH 2) 8)Si(2-Me-7-PhC 9H 4) 2ZrCl 2,制得催化剂rac-MS-3j,其中锆含量为0.268%(29.4μmol/g)。
控制Al/Zr比为200:1,选取茂锆化合物Me[Fc(CH 2) 12]Si(2-Me-7-PhC 9H 4) 2ZrCl 2,制得催化剂rac-MS-3k-C,其中锆含量为0.268%(29.4μmol/g)。
控制Al/Zr比为200:1,选取茂锆化合物Me[Fc(CH 2) 15]Si(2-Me-7-PhC 9H 4) 2ZrCl 2,制得催化剂rac-MS-3l,其中锆含量为0.268%(29.4μmol/g)。
控制Al/Zr比为200:1,选取茂锆化合物MenBuSi(2-Me-7-PhC 9H 4) 2ZrCl 2,制得催化剂rac-MS-3m-C,其中锆含量为0.268%(29.4μmol/g)。
控制Al/Zr比为200:1,选取茂锆化合物Me[n-CH 3(CH 2) 7]Si(2-Me-7-PhC 9H 4) 2ZrCl 2,制得催化剂rac-MS-3n-C,其中锆含量为0.268%(29.4μmol/g)。
控制Al/Zr比为200:1,选取茂锆化合物MeHSi(4-Ph-2-MeC 9H 4)(NtBu)ZrCl 2,制得催化剂rac-MS-3o-C,其中锆含量为0.268%(29.4μmol/g)。
控制Al/Zr比为200:1,选取茂锆化合物 Me[Fc(CH 2) 5]Si(4-Ph-2-MeC 9H 4) (NtBu) ZrCl 2 ,制得催化剂rac-MS-3p-C,其中锆含量为0.268%(29.4μmol/g)。
C、催化反应
【实施例1】
选用300mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
将带压加催化剂装置烘干转进手套箱,加入记量的催化剂,并加入少量溶剂混匀。移出手套箱装接到高压反应釜装置上即可进行聚合实验。
聚合实验条件如下:设定一定温度、压力和反应时间。考虑到工业化生产应用,现已完成的聚合实验优先考虑助催化剂的选择,即避免不使用或者尽量少使用价格昂贵的MAO,转向使用价格较为低廉的的烷基铝试剂。(以下如无特别说明,均使用此反应操作方法。)
选用SC-1催化剂200mg,不使用溶剂,反应时间为30分钟,反应温度为80℃,压入丙烯50g。
最后得到聚合物23.5g,计算活性为2.35×10 6g(PP)·mol -1(Zr)·h -1
【实施例2】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-2A催化剂105mg,三异丁基铝8mL(浓度为150μmol/mL,铝锆比约500:1量),反应时间为180分钟,反应温度为75℃,丙烯压力>3.9MPa。
最后得到聚合物92g,计算聚合活性为4.00×10 7g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为131324,Mw为325745,PDI值为2.48;高温 13C NMR谱测得等规度为[mmmm]99.4%。熔点测试值为151.33℃。(注:PP的分析有选择性。)
【实施例3】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-2B催化剂105mg,三异丁基铝3.2mL(浓度为150μmol/mL,铝锆比约200:1量),反应时间为180分钟,反应温度为75℃,丙烯压力>3.9MPa。
最后得到聚合物64g,计算聚合活性为2.78×10 7g(PP)·mol -1(Zr)·h -1
【实施例4】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-2C催化剂106mg,三异丁基铝3.2mL(浓度为150μmol/mL,铝锆比约200:1量),反应时间为180分钟,反应温度为75℃,丙烯压力>3.9MPa。
最后得到聚合物57g,计算聚合活性为2.45×10 7g(PP)·mol -1(Zr)·h -1
【实施例5】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-3A催化剂105mg,三异丁基铝8mL(浓度为150μmol/mL,铝锆比约500:1量),反应时间为180分钟,反应温度为75℃,丙烯压力>3.9MPa。
最后得到聚合物80g,计算聚合活性为3.48×10 7g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为133064,Mw为313745,PDI值为2.36;高温 13C NMR谱测得等规度为[mmmm]99.3%。熔点测试值为149.43℃。
【实施例6】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-3B催化剂105mg,三异丁基铝3.2mL(浓度为150μmol/mL,铝锆比约200:1量),反应时间为180分钟,反应温度为75℃,丙烯压力>3.9MPa。
最后得到聚合物52g,计算聚合活性为2.26×10 7g(PP)·mol -1(Zr)·h -1
【实施例7】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-3C催化剂106mg,三异丁基铝3.2mL(浓度为150μmol/mL,铝锆比约200:1量),反应时间为180分钟,反应温度为75℃,丙烯压力>3.9MPa。
最后得到聚合物43g,计算聚合活性为1.85×10 7g(PP)·mol -1(Zr)·h -1
【实施例8】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4A催化剂98mg,三异丁基铝15mL(浓度为150μmol/mL,铝锆比约549:1量),反应时间为240分钟,反应温度为75℃,丙烯量528.7g。
最后得到聚合物450g,计算聚合活性为1.098×10 8g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为162913,Mw为377577,PDI值为2.317;高温 13C NMR谱测得等规度为[mmmm]99.6%。熔点测试值为151.4℃。
【实施例9】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4A催化剂60mg,三异丁基铝15mL(浓度为150μmol/mL,铝锆比约896:1量),反应时间为330分钟,反应温度为75℃,丙烯量518g。
最后得到聚合物860g,计算聚合活性为1.772×10 8g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为104205,Mw为226218,PDI值为2.17;高温 13C NMR谱测得等规度为[mmmm]98.4%。熔点测试值为152.2/161.4℃。
【实施例10】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4A催化剂60mg,三乙基铝3mL(浓度为100μmol/mL,铝锆比约1195:1量),反应时间为180分钟,反应温度为75℃,丙烯量538g,氢气量0.02g。
最后得到聚合物80g,计算聚合活性为3.186×10 7g(PP)·mol -1(Zr)·h -1
【实施例11】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4A催化剂35mg,三乙基铝2.5mL(浓度为100μmol/mL,铝锆比约1707:1量),反应时间为180分钟,反应温度为75℃,丙烯量512g,氢气量0.02g。
最后得到聚合物35g,计算聚合活性为2.389×10 7g(PP)·mol -1(Zr)·h -1
【实施例12】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4A催化剂65mg,三异丁基铝20mL(浓度为150μmol/mL,铝锆比约1792:1量),反应时间为270分钟,反应温度为75℃,丙烯量659g,氢气量0.026g。
最后得到聚合物600g,计算聚合活性为2.206×10 8g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为80551,Mw为188015,PDI值为2.33;高温 13C NMR谱测得等规度为[mmmm]99.7%。熔点测试值为151.83/152.2℃。
【实施例13】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4A催化剂40mg,三异丁基铝20mL(浓度为150μmol/mL,铝锆比约1707:1量),反应时间为180分钟,反应温度为75℃,丙烯量628.6g,氢气量1.365g。
最后得到聚合物270g,计算聚合活性为1.613×10 8g(PP)·mol -1(Zr)·h -1
【实施例14】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4A催化剂30mg,三异丁基铝20mL(浓度为150μmol/mL,铝锆比约2389:1量),反应时间为360分钟,反应温度为75℃,丙烯量658.8g,氢气量0.052g。
最后得到聚合物390g,计算聚合活性为3.106×10 8g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为47736,Mw为146937,PDI值为3.08。
【实施例15】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4A催化剂30mg,三异丁基铝20mL(浓度为150μmol/mL,铝锆比约2389:1量),反应时间为180分钟,反应温度为75℃,丙烯量357.2g,氢气量0.06g。
最后得到聚合物205g,计算聚合活性为1.633×10 8g(PP)·mol -1(Zr)·h -1。熔点测试值为154.03℃。
【实施例16】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4A催化剂30mg,三异丁基铝10mL(浓度为150μmol/mL,铝锆比约1195:1量),反应时间为420分钟,反应温度为75℃,丙烯量682g,氢气量0.06g。
最后得到聚合物540g,计算聚合活性为4.301×10 8g(PP)·mol -1(Zr)·h -1
【实施例17】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4A催化剂20mg,三异丁基铝3.5mL(浓度为150μmol/mL,铝锆比约627:1量),反应时间为180分钟,反应温度为75℃,丙烯量657g,氢气量0.06g。
最后得到聚合物10g,计算聚合活性为1.195×10 7g(PP)·mol -1(Zr)·h -1
【实施例18】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4A催化剂20mg,三异丁基铝7mL(浓度为150μmol/mL,铝锆比约1254:1量),反应时间为180分钟,反应温度为75℃,丙烯量651g,氢气量0.06g。
最后得到聚合物45g,计算聚合活性为5.376×10 7g(PP)·mol -1(Zr)·h -1
【实施例19】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4A催化剂20mg,三异丁基铝10mL(浓度为150μmol/mL,铝锆比约1792:1量),反应时间为180分钟,反应温度为75℃,丙烯量654g,氢气量0.06g。
最后得到聚合物82g,计算聚合活性为9.797×10 7g(PP)·mol -1(Zr)·h -1
【实施例20】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4A催化剂20mg,三异丁基铝10mL(浓度为150μmol/mL,铝锆比约1792:1量),反应时间为180分钟,反应温度为75℃,丙烯量652g,氢气量0.06g。
最后得到聚合物92g,计算聚合活性为1.099×10 8g(PP)·mol -1(Zr)·h -1
【实施例21】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4A催化剂30mg,三异丁基铝10mL(浓度为150μmol/mL,铝锆比约1195:1量),反应时间为420分钟,反应温度为75℃,丙烯量670g,氢气量0.06g。
最后得到聚合物530g,计算聚合活性为4.221×10 8g(PP)·mol -1(Zr)·h -1
【实施例22】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4B催化剂30mg,三异丁基铝10mL(浓度为150μmol/mL,铝锆比约1195:1量),反应时间为480分钟,反应温度为75℃,丙烯量684g,氢气量0.06g。
最后得到聚合物610g,计算聚合活性为4.859×10 8g(PP)·mol -1(Zr)·h -1
【实施例23】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4B催化剂30mg,三异丁基铝10mL(浓度为150μmol/mL,铝锆比约1195:1量),反应时间为240分钟,反应温度为75℃,丙烯量687.5g,氢气量0.06g。
最后得到聚合物533g,计算聚合活性为4.245×10 8g(PP)·mol -1(Zr)·h -1。熔点测试值为155.46℃。
【实施例24】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4B催化剂30mg,三异丁基铝10mL(浓度为150μmol/mL,铝锆比约1195:1量),反应时间为240分钟,反应温度为75℃,丙烯量688.6g,氢气量0.06g。
最后得到聚合物405g,计算聚合活性为3.226×10 8g(PP)·mol -1(Zr)·h -1
【实施例25】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4C催化剂30mg,三异丁基铝10mL(浓度为150μmol/mL,铝锆比约1195:1量),反应时间为180分钟,反应温度为75℃,丙烯量680g,氢气量0.06g。
最后得到聚合物530g,计算聚合活性为4.221×10 8g(PP)·mol -1(Zr)·h -1
【实施例26】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-4C催化剂20mg,三异丁基铝10mL(浓度为150μmol/mL,铝锆比约1792:1量),反应时间为180分钟,反应温度为75℃,丙烯量681g,氢气量0.06g。
最后得到聚合物145g,计算聚合活性为1.732×10 8g(PP)·mol -1(Zr)·h -1
【实施例27】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-5A催化剂98mg,三异丁基铝15mL(浓度为150μmol/mL,铝锆比约549:1量),反应时间为240分钟,反应温度为75℃,丙烯量523g。
最后得到聚合物461g,计算聚合活性为1.106×10 7g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为174912,Mw为366583,PDI值为2.09;高温 13C NMR谱测得等规度为[mmmm]98.4%。熔点测试值为153.1℃。
【实施例28】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-5B催化剂60mg,三异丁基铝15mL(浓度为150μmol/mL,铝锆比约896:1量),反应时间为330分钟,反应温度为75℃,丙烯量521g。
最后得到聚合物451g,计算聚合活性为2.788×10 7g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为115708,Mw为236654,PDI值为2.045;高温 13C NMR谱测得等规度为[mmmm]99.1%。熔点测试值为154.9℃。
【实施例29】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
选用SC-5C催化剂60mg,三乙基铝3mL(浓度为100μmol/mL,铝锆比约1195:1量),反应时间为180分钟,反应温度为75℃,丙烯量534g,氢气量0.02g。
最后得到聚合物91g,计算聚合活性为1.641×10 7g(PP)·mol -1(Zr)·h -1
【实施例30】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取SC-6催化剂98mg,三异丁基铝15mL(浓度为150μmol/mL,铝锆比约549:1量),反应时间为240分钟,反应温度为75℃,丙烯量541g。
最后得到聚合物424g,计算聚合活性为2.112×10 7g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为168742,Mw为368213,PDI值为2.18;高温 13C NMR谱测得等规度为[mmmm]98.9%。熔点测试值为155.4℃。
【实施例31】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取SC-7催化剂100mg,三异丁基铝15mL(浓度为150μmol/mL,铝锆比约549:1量),反应时间为240分钟,反应温度为75℃,丙烯量539g。
最后得到聚合物447g,计算聚合活性为2.294×10 7g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为198563,Mw为398423,PDI值为2.01;高温 13C NMR谱测得等规度为[mmmm]99.2%。熔点测试值为157.1℃。
【实施例32】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取SC-8催化剂100mg,三异丁基铝15mL(浓度为150μmol/mL,铝锆比约549:1量),反应时间为240分钟,反应温度为75℃,丙烯量534g。
最后得到聚合物451g,计算聚合活性为2.223×10 7g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为215821,Mw为439429,PDI值为2.036;高温 13C NMR谱测得等规度为[mmmm]99.4%。熔点测试值为159.1℃。
【实施例33】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取SC-9催化剂100mg,三异丁基铝15mL(浓度为150μmol/mL,铝锆比约549:1量),反应时间为240分钟,反应温度为75℃,丙烯量544g。
最后得到聚合物472g,计算聚合活性为2.252×10 7g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为175941,Mw为419745,PDI值为2.386;高温 13C NMR谱测得等规度为[mmmm]99.5%。熔点测试值为161.4℃。
【实施例34】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取SC-10催化剂100mg,三异丁基铝15mL(浓度为150μmol/mL,铝锆比约549:1量),反应时间为240分钟,反应温度为75℃,丙烯量521g。
最后得到聚合物469g,计算聚合活性为2.489×10 7g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为155967,Mw为430741,PDI值为2.762;高温 13C NMR谱测得等规度为[mmmm]97.2%。熔点测试值为147.9℃。
【实施例35】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取SC-11催化剂100mg,三异丁基铝15mL(浓度为150μmol/mL,铝锆比约549:1量),反应时间为240分钟,反应温度为75℃,丙烯量521g。
最后得到聚合物471g,计算聚合活性为2.437×10 7g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为152134,Mw为416572,PDI值为2.738;高温 13C NMR谱测得等规度为[mmmm]97.5%。熔点测试值为148.1℃。
【实施例36】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取SC-12催化剂100mg,三异丁基铝15mL(浓度为150μmol/mL,铝锆比约549:1量),反应时间为240分钟,反应温度为75℃,丙烯量529g。
最后得到聚合物487g,计算聚合活性为2.336×10 7g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为142879,Mw为396654,PDI值为2.776;高温 13C NMR谱测得等规度为[mmmm]96.6%。熔点测试值为144.7℃。
【实施例37】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取SC-13催化剂100mg,三异丁基铝15mL(浓度为150μmol/mL,铝锆比约549:1量),反应时间为240分钟,反应温度为75℃,丙烯量542g。
最后得到聚合物469g,计算聚合活性为2.159×10 7g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为162678,Mw为396789,PDI值为2.439;高温 13C NMR谱测得等规度为[mmmm]97.6%。熔点测试值为152.9℃。
【实施例38】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取SC-14催化剂100mg,三异丁基铝15mL(浓度为150μmol/mL),反应时间为240分钟,反应温度为75℃,丙烯量582g。
最后得到聚合物459g,计算聚合活性为2.573×10 7g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为182668,Mw为406769,PDI值为2.226;高温 13C NMR谱测得等规度为[mmmm]95.6%。熔点测试值为147.9℃。
【实施例39】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取SC-15催化剂100mg,三异丁基铝15mL(浓度为150μmol/mL),反应时间为240分钟,反应温度为75℃,丙烯量552g。
最后得到聚合物485g。高温GPC测得PDI值为2.028;高温 13C NMR谱测得等规度为[mmmm]96.3%。熔点测试值为148.5℃。
【实施例40】
与实施例39的评价条件相同,采用制备例16制得的催化剂。使用560g丙烯,得到300g聚丙烯粉末。GPC测试PDI为2.678,高温 13C NMR谱测得等规度为[mmmm]92.6%。熔点测试值为145.1℃。
【实施例41】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取SC-16催化剂100mg,三异丁基铝15mL(浓度为150μmol/mL),反应时间为240分钟,反应温度为75℃,丙烯量582g。
最后得到聚合物418g,计算聚合活性为2.434×10 7g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为172761,Mw为435432,PDI值为2.520;高温13C NMR谱测得等规度为[mmmm]96.7%。熔点测试值为148.8℃。
【实施例42】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取SC-17催化剂100mg,三异丁基铝15mL(浓度为150μmol/mL),反应时间为240分钟,反应温度为75℃,丙烯量582g。
最后得到聚合物401g,计算聚合活性为2.248×10 7g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为123758,Mw为467327,PDI值为3.776;高温13C NMR谱测得等规度为[mmmm]92.4%。熔点测试值为140.2℃。
【实施例43】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取SC-18催化剂100mg,三异丁基铝15mL(浓度为150μmol/mL),反应时间为240分钟,反应温度为75℃,丙烯量582g。
最后得到聚合物491g,计算聚合活性为2.752×10 7g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为186469,Mw为404219,PDI值为2.168;高温13C NMR谱测得等规度为[mmmm]97.2%。熔点测试值为148.7℃。
【实施例44】
聚合反应选用300mL高压反应釜(以下如无特别说明,均使用300mL反应釜),100℃油浴抽真空,氮气置换3次后待用。
将带压加催化剂装置烘干转进手套箱,加入记量的催化剂,并加入少量溶剂混匀。移出手套箱装接到高压反应釜装置上即可进行聚合实验。
聚合实验条件如下:设定一定温度、压力和反应时间。考虑到工业化生产应用,现已完成的聚合实验优先考虑助催化剂的选择,即避免使用或者尽量少使用价格昂贵的MAO,转向使用价格较为低廉的烷基铝试剂。
称取rac-MS-1b-C催化剂50mg,三异丁基铝2mL(浓度为150μmol/mL,此处的铝/锆比约200),反应时间设定60分钟,反应温度设定为50℃,釜内乙烯压力设定1MPa。
最后得到聚合物10g,计算聚合活性为6.8×10 6g(PE)·mol -1(Zr)·h -1
【实施例45】
聚合条件与实施例44基本相同,不同之处在于:称取rac-MS-1b-C催化剂50mg,三异丁基铝2mL(浓度为150μmol/mL,此处的铝/锆比约200),反应时间设定为60分钟,反应温度设定为50℃,乙烯压力设定为2MPa。
最后得到聚合物16g,计算聚合活性为1.08×10 7g(PE)·mol -1(Zr)·h -1
【实施例46】
聚合条件与实施例44基本相同,不同之处在于:称取rac-MS-1b-C催化剂150mg,MAO 0.2mL(规格10%质量in Tol,铝/锆比约200:1),反应时间设定为60分钟,反应温度设定为50℃,乙烯压力设定为1MPa。
最后得到聚合物35g,计算聚合活性为6.99×10 6g(PE)·mol -1(Zr)·h -1
【实施例47】
聚合条件与实施例44基本相同,不同之处在于:称取rac-MS-1j-C催化剂113mg,三异丁基铝溶液15mL(浓度为150μmol/mL,铝/锆比约200:1量),反应时间设定为 60分钟,反应温度设定为50℃,乙烯压力为1MPa。
最后得到聚合物10g,计算聚合活性为0.88×10 6g(PE)·mol -1(Zr)·h -1
【实施例48】
聚合条件与实施例44基本相同,不同之处在于:称取rac-MS-3a-C催化剂150mg,三异丁基铝6.3mL(浓度为150μmol/mL,铝/锆比约200:1量),反应时间为60分钟,反应温度为50℃,乙烯压力为1MPa。
最后得到聚合物21g,计算聚合活性为4.45×10 6g(PE)·mol -1(Zr)·h -1
【实施例49】
聚合条件与实施例44基本相同,不同之处在于:称取rac-MS-3b-C催化剂150mg,三异丁基铝1.75mL(浓度为150μmol/mL,铝锆比约200:1量),反应时间为60分钟,反应温度为50℃,乙烯压力为1MPa。
最后得到聚合物36g,计算聚合活性为2.74×10 7g(PE)·mol -1(Zr)·h -1
【实施例50】
聚合条件与实施例44基本相同,不同之处在于:称取rac-MS-4a-C催化剂150mg,三异丁基铝6.3mL(浓度为150μmol/mL,铝/锆比约200:1量),反应时间为60分钟,反应温度为50℃,乙烯压力为1MPa。
最后得到聚合物54g,计算聚合活性为1.22×10 7g(PE)·mol -1(Zr)·h -1
【实施例51】
聚合条件与实施例44基本相同,不同之处在于:称取rac-MS-4b-C催化剂150mg,三异丁基铝3.75mL(浓度为150μmol/mL,铝锆比约200:1量),反应时间为60分钟,反应温度为50℃,乙烯压力为2MPa。
最后得到聚合物62g,计算聚合活性为1.41×10 7g(PE)·mol -1(Zr)·h -1
【实施例52】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-1b-C催化剂112mg,三异丁基铝8mL(浓度为150μmol/mL,铝锆比约500:1量),反应时间为180分钟,反应温度为75℃,丙烯压力>3.9MPa。
最后得到聚合物91g,计算聚合活性为9.20×10 6g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为133945,Mw为342375,PDI值为2.57;高温13C NMR谱测得等规度为[mmmm]99.3%。熔点测试值为157.63℃。
【实施例53】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-1j-C催化剂101mg,三异丁基铝3.2mL(浓度为150μmol/mL,铝锆比约200:1量),反应时间为180分钟,反应温度为75℃,丙烯压力>3.9MPa。
最后得到聚合物132g,计算聚合活性为4.33×10 6g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为127361,Mw为36.431,PDI值为2.83;高温13C NMR谱测得等规度为[mmmm]98.6%。熔点测试值为152.3℃。
【实施例54】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-1b-C催化剂104mg,三异丁基铝15mL(浓度为150μmol/mL,铝锆比约549:1量),反应时间为240分钟,反应温度为75℃,丙烯量528.7g。
最后得到聚合物412g,计算聚合活性为3.37×10 7g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为173453,Mw为394257,PDI值为2.273;高温13C NMR谱测得等规度为[mmmm]99.1%。熔点测试值为154.4℃。
【实施例55】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-1b-C催化剂104mg,三乙基铝15mL(浓度为150μmol/mL,铝锆比约549:1量),反应时间为240分钟,反应温度为75℃,丙烯量538g,氢气量0.02g。
最后得到聚合物478g,计算聚合活性为1.54×10 8g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为135427,Mw为397892,PDI值为2.938;高温13C NMR谱测得等规度为[mmmm]98.4%。熔点测试值为153.2℃。
【实施例56】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-1j-C催化剂35mg,三乙基铝2.5mL(浓度为100μmol/mL,铝锆比约 1707:1量),反应时间为180分钟,反应温度为75℃,丙烯量512g,氢气量0.02g。
最后得到聚合物135g,计算聚合活性为4.37×10 7g(PP)·mol -1(Zr)·h -1。高温GPC测得的Mn为82451,Mw为213509,PDI值为2.59;高温13C NMR谱测得等规度为[mmmm]96.7%。熔点测试值为147.83/150.2℃。
【实施例57】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-3c-C催化剂35mg,三乙基铝2.5mL(浓度为100μmol/mL,铝锆比约1200:1量),反应时间为180分钟,反应温度为75℃,丙烯量512g,氢气量0.02g。
最后得到聚合物469g,计算聚合活性为1.52×10 8g(PP)·mol -1(Zr)·h -1
【实施例58】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-3d-C催化剂35mg,三乙基铝2.5mL(浓度为100μmol/mL,铝锆比约1200:1量),反应时间为180分钟,反应温度为75℃,丙烯量512g,氢气量0.02g。
最后得到聚合物455g,计算聚合活性为1.47×10 8g(PP)·mol -1(Zr)·h -1
【实施例59】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-3e-C催化剂35mg,三乙基铝2.5mL(浓度为100μmol/mL,铝锆比约1200:1量),反应时间为180分钟,反应温度为75℃,丙烯量512g,氢气量0.02g。
最后得到聚合物492g,计算聚合活性为1.59×10 8g(PP)·mol -1(Zr)·h -1
【实施例60】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-3f-C催化剂35mg,三乙基铝2.5mL(浓度为100μmol/mL,铝锆比约1200:1量),反应时间为180分钟,反应温度为75℃,丙烯量512g,氢气量0.02g。
最后得到聚合物421g,计算聚合活性为1.36×10 8g(PP)·mol -1(Zr)·h -1
【实施例61】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-3g-C催化剂35mg,三乙基铝2.5mL(浓度为100μmol/mL,铝锆比约1200:1量),反应时间为180分钟,反应温度为75℃,丙烯量512g,氢气量0.02g。
最后得到聚合物387g,计算聚合活性为1.25×10 8g(PP)·mol -1(Zr)·h -1
【实施例62】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-3h-C催化剂35mg,三乙基铝2.5mL(浓度为100μmol/mL,铝锆比约1200:1量),反应时间为180分钟,反应温度为75℃,丙烯量512g,氢气量0.02g。
最后得到聚合物418g,计算聚合活性为1.35×10 8g(PP)·mol -1(Zr)·h -1
【实施例63】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-3i-C催化剂35mg,三乙基铝2.5mL(浓度为100μmol/mL,铝锆比约1200:1量),反应时间为180分钟,反应温度为75℃,丙烯量512g,氢气量0.02g。
最后得到聚合物441g,计算聚合活性为1.43×10 8g(PP)·mol -1(Zr)·h -1
【实施例64】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-3j-C催化剂35mg,三乙基铝2.5mL(浓度为100μmol/mL,铝锆比约1200:1量),反应时间为180分钟,反应温度为75℃,丙烯量512g,氢气量0.02g。
最后得到聚合物427g,计算聚合活性为1.38×10 8g(PP)·mol -1(Zr)·h -1
【实施例65】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-3k-C催化剂35mg,三乙基铝2.5mL(浓度为100μmol/mL,铝锆比约1200:1量),反应时间为180分钟,反应温度为75℃,丙烯量512g,氢气量0.02g。
最后得到聚合物434g,计算聚合活性为1.41×10 8g(PP)·mol -1(Zr)·h -1
【实施例66】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-3l-C催化剂35mg,三乙基铝2.5mL(浓度为100μmol/mL,铝锆比约 1200:1量),反应时间为180分钟,反应温度为75℃,丙烯量512g,氢气量0.02g。
最后得到聚合物395g,计算聚合活性为1.27×10 8g(PP)·mol -1(Zr)·h -1
【实施例67】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-3p-C催化剂35mg,三乙基铝2.5mL(浓度为100μmol/mL,铝锆比约1200:1量),反应时间为180分钟,反应温度为75℃,丙烯量512g,氢气量0.02g。
最后得到聚合物352g,计算聚合活性为1.14×10 8g(PP)·mol -1(Zr)·h -1
【对比例1】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-3m-C催化剂35mg,三乙基铝2.5mL(浓度为100μmol/mL,铝锆比约1200:1量),反应时间为180分钟,反应温度为75℃,丙烯量512g,氢气量0.02g。
最后得到聚合物425g,计算聚合活性为1.38×10 8g(PP)·mol -1(Zr)·h -1
【对比例2】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-3n-C催化剂35mg,三乙基铝2.5mL(浓度为100μmol/mL,铝锆比约1200:1量),反应时间为180分钟,反应温度为75℃,丙烯量512g,氢气量0.02g。
最后得到聚合物420g,计算聚合活性为1.36×10 8g(PP)·mol -1(Zr)·h -1
【对比例3】
选用2000mL高压反应釜,100℃油浴抽真空,氮气置换3次后待用。
称取rac-MS-3o-C催化剂35mg,三乙基铝2.5mL(浓度为100μmol/mL,铝锆比约1200:1量),反应时间为180分钟,反应温度为75℃,丙烯量512g,氢气量0.02g。
最后得到聚合物268g,计算聚合活性为8.68×10 7g(PP)·mol -1(Zr)·h -1
为便于比较与分析,将上述实验数据汇总于下表中。
表1
Figure PCTCN2020125121-appb-000019
表2
Figure PCTCN2020125121-appb-000020
表3
Figure PCTCN2020125121-appb-000021
注:表1-3中,实施例1-43中催化剂活性的单位为10 6g(PP)·mol -1(Zr)·h -1。“--”表示无此项数据。
根据表1-3中的数据可知:
1)当茂金属化合物中桥联原子上的取代基包含胺基取代的C 2-C 4基团或茂金属基取代的C 1-C 3基团具有较高的催化活性,并能获得具有适宜分子量、PDI值、等规度和熔点的聚合产物。
2)通过调整茂金属化合物中桥联原子上的取代基的类型,能够获得不同分子量、不同熔点的聚合
3)通过调整催化剂的Al/Zr比和/或聚合体系的Al/Zr比等试验条件能进一步优化催化剂的聚合活说明了这一点。
表4
Figure PCTCN2020125121-appb-000022
注:实施例44-51中催化剂活性的单位为10 6g(PE)·mol -1(Zr)·h -1
根据表4中的数据可知:
1)当茂金属化合物中桥联原子上的取代基包含胺基取代的C 2基团或茂金属基取代的C 2基团时,较高的催化活性。
2)通过调整催化剂的Al/Zr比和/或聚合体系的Al/Zr比等试验条件能进一步优化催化剂的聚合活
表5
Figure PCTCN2020125121-appb-000023
注:表5中,实施例52-58中催化剂活性的单位为10 6g(PP)·mol -1(Zr)·h -1
根据表5中的数据可知:
1)当茂金属化合物中桥联原子上的取代基包含胺基取代的C 2基团或茂金属基取代的C 2基团时,较高的催化活性。
2)通过调整催化剂的Al/Zr比和/或聚合体系的Al/Zr比等试验条件能进一步优化催化剂的聚合活性这一点。
表6
Figure PCTCN2020125121-appb-000024
注:表6中,实施例57-67中催化剂活性的单位为10 6g(PP)·mol -1(Zr)·h -1。“--”表示无此项数据。
根据表6中的数据可知:
当茂金属化合物中桥联原子上的取代基为胺基取代的C 5-C 15基团或茂金属基取代的C 5-C 15基团时,有较高的催化活性。
根据表1-6中的数据可知:
与茂金属化合物中桥联原子上的取代基不含胺基取代的基团或茂金属基取代的基团相比,当茂金属取代的基团或茂金属基取代的基团时,其所制得的催化剂对丙烯的聚合具有较高的催化活性。

Claims (20)

  1. 一种茂金属化合物,其结构如式(I)所示:
    R IR IIZ(Cp III) n(E) 2-nML IVL v
    式(I)
    式(I)中,R I和R II相同或不同,且R I和R II中的至少一个选自被胺基取代的C 1-C 20烃基、C 1-C 20卤代烃基、C 1-C 20烷氧基和C 6-C 20酚基;和/或R I和R II中的至少一个选自被茂金属基取代的C 1-C 20烃基、C 1-C 20卤代烃基、C 1-C 20烷氧基和C 6-C 20酚基;和/或R I和R II中的至少一个选自被C 1-C 20烃基、C 1-C 20卤代烃基、C 1-C 20烷氧基或C 6-C 20酚基取代的茂金属基;
    Z选自碳、硅、锗和锡;
    Cp III为如式(Ⅱ)所示的含或不含取代基的环戊二烯基、茚基或芴基,R i、R ii、R iii为其中相应环上的取代基;
    Figure PCTCN2020125121-appb-100001
    R i、R ii和R iii相同或不同,各自独立地选自氢以及直链或支链、饱和或不饱和、含杂原子或不含杂原子的C 1-C 20烃基;
    E为NR iv或PR iv
    R iv选自氢以及直链或支链、饱和或不饱和、含杂原子或不含杂原子的C 1-C 20烃基;
    M选自IVB族金属;
    L IV和L V相同或不同,各自独立地选自选自氢以及直链或支链、饱和或不饱和、含杂原子或不含杂原子的C 1-C 20烃基;
    n为1或2。
  2. 根据权利要求1所述的茂金属化合物,其特征在于,
    所述胺基如式(III)所示:
    Figure PCTCN2020125121-appb-100002
    Figure PCTCN2020125121-appb-100003
    式(III)中,R a和R b相同或不同,各自独立地选自氢、C 1-C 6烷基、C 6-C 18芳基、C 7-C 20芳基烷基和C 7-C 20烷基芳基,优选为C 1-C 6烷基、C 6-C 12芳基和C 7-C 10芳基烷基,更优选为C 1-C 4烷基、苯基和C 7-C 9芳基烷基;和/或
    所述茂金属基中的金属为Fe,优选地,所述茂金属基为二茂铁基。
  3. 根据权利要求1或2所述的茂金属化合物,其特征在于,式(I)中,R I和R II相同或不同,且R I和R II中的至少一个选自被胺基取代的C 1-C 10烃基、C 1-C 10卤代烃基、C 1-C 10烷氧基和C 6-C 10酚基;和/或R I和R II中的至少一个选自被茂金属基取代的C 1-C 10烃基、C 1-C 10卤代烃基、C 1-C 10烷氧基和C 6-C 10酚基;和/或R I和R II中的至少一个选自被C 1-C 10烃基、C 1-C 10卤代烃基、C 1-C 10烷氧基或C 6-C 10酚基取代的茂金属基;和/或
    式(II)中,R i、R ii和R iii相同或不同,各自独立地选自氢、C 1-C 20烃基、C 1-C 20卤代烷基、C 6-C 20芳基、C 6-C 20卤代芳基、C 7-C 40芳基烷基、C 7-C 40烷基芳基、C 3-C 20环烷基、C 3-C 20杂环烷基、C 2-C 20烯基、C 2-C 20炔基、C 1-C 20烷氧基、C 6-C 20酚基、C 1-C 20胺基和含有13族到17族杂原子的基团;和/或
    R iv选自氢以及直链或支链、饱和或不饱和、含杂原子或不含杂原子的C 1-C 10烃基;和/或
    式(I)中,M选自Ti、Zr和Hf;和/或
    式(I)中,L IV和L V相同,选自氢、氯、甲基、苯基、苄基和二甲胺基。
  4. 一种权利要求1-3中任一项所述的茂金属化合物的制备方法,
    当n=2时,所述制备方法包括:
    S1.使H 2(Cp III)与碱金属有机化合物反应生成相应的[H(Cp III)] ˉ碱金属盐;
    S2.使[H(Cp III)] ˉ碱金属盐与R IR IIZX 2反应生成R IR IIZ[H(Cp III)] 2
    S3.使R IR IIZ[H(Cp III)] 2与碱金属有机化合物反应生成相应的R IR IIZ(Cp III) 2 碱金属盐;
    S4.使R IR IIZ(Cp III) 2 碱金属盐与X 2ML IVL V发生盐消除反应,得到R IR IIZ(Cp III) 2ML IVL V
    当n=1时,所述制备方法包括:
    S1.使H 2(Cp III)和H 2(E)分别与碱金属有机化合物反应生成相应的[H(Cp III)] ˉ碱金属盐和[H(E)] ˉ碱金属盐;
    S2.使[H(Cp III)] ˉ碱金属盐和[H(E)] ˉ碱金属盐与R IR IIZX 2反应生成R IR IIZ[H(Cp III)][H(E)];
    S3.使R IR IIZ[H(Cp III)][H(E)]与碱金属有机化合物反应生成相应的R IR IIZ(Cp III)(E) 碱金属盐;
    S4.使R IR IIZ(Cp III)(E) 碱金属盐与X 2ML IVL V发生盐消除反应,得到R IR IIZCp IIIEML IVL V
    其中,X选自Cl、Br和I;
    优选地,S4中,R IR IIZ(Cp III) 2 碱金属盐或R IR IIZ(Cp III)(E) 碱金属盐无需分离,直接与X 2ML IVL V盐消除反应。
  5. 一种权利要求1-3中任一项所述的茂金属化合物的制备方法,包括:
    通过前驱体R IHZ(Cp III) n(E) 2-nML IVL V与R II的前驱体进行Z氢化反应制备;
    其中,所述R II的前驱体为含多重键的分子,优选地,所述含多重键的分子选自有机多重键分子、CO以及CO 2,其中多重键选自同种原子或异种原子的13至16族的元素,优选为C=C、C≡C、C=N、C≡N、C=O、C≡P、N=N、C=S、C=C=C、C=C=N、C=C=O和N=C=N键中的一种或多种。
  6. 根据权利要求5所述的制备方法,其特征在于,在催化剂的存在下进行所述Z氢化反应,所述催化剂选自过渡金属催化剂和Lewis酸催化剂中的一种或多种,优选为过渡金属中的铂催化剂和Lewis酸中的B(C 6F 5) 3催化剂中的一种或多种;
    和/或,所述Z氢化反应中催化剂的用量为反应物总量的质量的0.00001~50%,优选占比为0.01~20%;
    和/或,所述Z氢化反应的温度为-30~140℃,优选为0~90℃;
    和/或,所述Z氢化反应的反应时间大于0.1h,优选为2~50h;
    和/或,得到的所述前驱体通过重结晶分离或提纯,所述重结晶的溶剂为非质子性的溶剂;优选地,选自直链或支链的烷烃化合物、环烷烃化合物、芳香烃化合物、卤代烃化合物、醚类化合物和环醚类化合物中的一种或多种;进一步优选地,选自优选甲苯、二甲苯、己烷、庚烷、环己烷和甲基环己烷中的一种或多种。
  7. 根据权利要求4-6中任一项所述的制备方法,其特征在于,所述前驱体R IHZ(Cp III) n(E) 2-nML IVL V通过化学反应的一锅法制备;优选地,
    当n=2时,所述前驱体R IHZ(Cp III) n(E) 2-nML IVL V的制备方法包括:
    步骤1),使H 2(Cp III)与碱金属有机化合物反应生成相应的[H(Cp III)] ˉ碱金属盐;
    步骤2),使[H(Cp III)] ˉ碱金属盐与R IHZX 2反应生成R IHZ[H(Cp III)] 2
    步骤3),R IHZ[H(Cp III)] 2无需分离,直接与L viiiL vivML IVL V反应,脱稳小分子L viii或 L viv,得到所述前驱体R IHZ(Cp III) 2ML IVL V
    和/或,R IHZ[H(Cp III)] 2无需分离,直接与碱金属有机化合物反应生成碱金属盐;得到的碱金属盐再与X 2ML IVL V盐消除反应,得到所述前驱体R IHZ(Cp III) 2ML IVL V
    当n=1时,所述前驱体R IHZ(Cp III) n(E) 2-nML IVL V的制备方法包括:
    步骤1),使H 2(Cp III)和H 2(E)分别与碱金属有机化合物反应生成相应的[H(Cp III)] ˉ和[H(E)] ˉ碱金属盐;
    步骤2),使[H(Cp III)] ˉ和[H(E)] ˉ碱金属盐与R IHZX 2反应生成R IHZ[H(Cp III)][H(E)];
    步骤3),R IHZ[H(Cp III)][H(E)]无需分离,直接与L viiiL vivML IVL V反应,脱稳小分子L viii或L viv,得到所述前驱体R IHZCp IIIEML IVL V
    和/或,R IHZ[H(Cp III)][H(E)]无需分离,直接与碱金属有机化合物反应生成碱金属盐;得到的碱金属盐再与X 2ML IVL V盐消除反应,得到所述前驱体R IHZCp IIIEML IVL V
    其中,X选自Cl、Br和I。
  8. 根据权利要求4-7中任一项所述的制备方法,其特征在于,各步骤中,所述反应的反应温度为-100℃~140℃,优选为-85℃~110℃;和/或,反应时间大于0.016h,优选为2~100h;
    优选地,各步骤中,在-100℃~-20℃,优选-85℃~-10℃的条件下混合反应物料,并在10℃~50℃,优选为20℃~35℃使混合后的反应物料反应1h~100h,优选5h~50h。
  9. 根据权利要求4-8中任一项所述的制备方法,其特征在于,各步骤中,所述反应在非质子性的溶剂中进行,所述非质子性的溶剂选自直链或支链的烷烃化合物、环烷烃化合物、芳香烃化合物、卤代烃化合物、醚类化合物和环醚类化合物中的一种或多种,优选地,选自甲苯、二甲苯、氯苯、庚烷、环己烷、甲基环己烷、二氯甲烷、三氯甲烷、四氢呋喃、乙醚和二氧六环中的一种或多种;
    和/或,所述碱金属有机化合物选自氢化金属、烷基金属、烯基金属、芳香基金属和胺基金属,优选为烷基金属,更优选为C 1-C 6烷基金属;
    和/或,所述碱金属选自Li、Na和K,优选为Li。
  10. 一种用于α-烯烃聚合反应的催化剂,包括:权利要求1-3中任一项所述的茂金属化合物或根据权利要求4-9中任一项所述的制备方法制得的茂金属化合物、助催化剂和载体。
  11. 根据权利要求10所述的催化剂,其特征在于,所述助催化剂选自路易斯酸、包含含有非配位阴离子和路易斯酸或布朗斯台德酸阳离子的离子性化合物中的一种或多种; 优选地,所述路易斯酸包括烷基铝、烷基铝氧烷和有机硼化物中的一种或多种;和/或所述含有非配位阴离子和路易斯酸或布朗斯台德酸阳离子的离子性化合物选自含有1-4个全氟芳基取代的硼酸根阴离子的化合物。
  12. 根据权利要求11所述的催化剂,其特征在于,
    所述烷基铝包括三甲基铝、三乙基铝、三异丙基铝、三正丙基铝、三异丁基铝、三正丁基铝、三异戊基铝、三正戊基铝、三异己基铝、三正己基铝、三异庚基铝、三正庚基铝、三异辛基铝、三正辛基铝、三异壬基铝、三正壬基铝、三异癸基铝和三正癸基铝;和/或所述烷基铝氧烷包括甲基铝氧烷、乙基铝氧烷和丁基改性的铝氧烷;和/或所述有机硼化物包括三氟硼烷、三苯基硼烷、三(4-氟苯基)硼烷、三(五氟苯基)硼烷、三(3,5-二氟苯基)硼烷和三(2,4,6-三氟苯基)硼烷;和/或
    所述全氟芳基选自全氟苯基,全氟萘基、全氟联苯基、全氟烷基苯基,且阳离子选自N,N-二甲基苯基铵离子、三苯基碳鎓离子、三烷基铵离子和三芳基铵离子。
  13. 根据权利要求10-12中任一项所述的催化剂,其特征在于,所述催化剂中,茂金属化合物的含量以M元素计为0.001质量%~10质量%,优选为0.01质量%~1质量%;和/或所述助催化剂中的Al元素与所述茂金属化合物中的M元素的摩尔比为(1~500):1,优选为(50~300):1。
  14. 一种权利要求10-13中任一项所述的催化剂的制备方法,包括:使所述茂金属化合物、所述助催化剂以及所述载体在溶剂作用下结合形成所述催化剂,优选地,所述结合的条件包括:结合的温度为-40℃~200℃,优选为40℃~120℃;结合的时间大于0.016h,优选为2h~100h。
  15. 根据权利要求14所述的制备方法,其特征在于,所述溶剂选自直链碳氢化合物、支链碳氢化合物、环状饱和碳氢化合物和芳香类碳氢化合物中的一种或多种,优选甲苯、二甲苯、正丁烷、正戊烷、异戊烷、新戊烷、环戊烷、甲基环戊烷、正己烷、正庚烷、环己烷、甲基环己烷、石油醚、异庚烷和新庚烷中的一种或多种。
  16. 一种权利要求1-3中任一项所述的茂金属化合物或根据权利要求4-9中任一项所述的制备方法制得的茂金属化合物或根据权利要求10-13任一项所述的催化剂或根据权利要求14或15所述的制备方法制得的催化剂在α-烯烃聚合领域中的应用。
  17. 根据权利要求16所述的应用,其特征在于,在权利要求1-3中任一项所述的茂金属化合物或根据权利要求4-9中任一项所述的制备方法制得的茂金属化合物或根据权利要求10-13任一项所述的催化剂或根据权利要求14或15所述的制备方法制得的催化剂的 存在下,α-烯烃进行聚合反应,得到聚α-烯烃,优选地,所述聚合反应在无溶剂的条件下进行。
  18. 根据权利要求16或17所述的应用,其特征在于,所述聚合反应的条件包括:反应温度为-50℃~200℃,优选为30℃~100℃;反应时间为0.01h~60h,优选为0.1h~10h。
  19. 根据权利要求16-18中任一项所述的应用,其特征在于,相对于每克α-烯烃计,所述茂金属催化剂或茂金属催化剂体系的用量为0.001mg~1000mg,优选为0.01mg~200mg,更优选为0.1mg~20mg。
  20. 根据权利要求16-19中任一项所述的应用,其特征在于,所述α-烯烃包括C 2-C 20α-烯烃,优选为C 2-C 14α-烯烃,更优选为乙烯、丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、1-壬烯、1-癸烯、1-十一烯、1-十二烯、1-十三烯、1-十四烯、1-十五烯、1-十六烯、1-十七烯、1-十八烯、1-十九烯和1-二十烯,优选1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、1-壬烯、1-癸烯、1-十一烯、1-十二烯、1-十三烯和1-十四烯。
PCT/CN2020/125121 2019-10-30 2020-10-30 一种茂金属化合物及其制备方法和应用 WO2021083309A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/755,538 US20220389133A1 (en) 2019-10-30 2020-10-30 Metallocene compound, and preparation method therefor and application thereof
KR1020227018352A KR20220094212A (ko) 2019-10-30 2020-10-30 메탈로센 화합물, 및 이의 제조 방법 및 적용
JP2022526097A JP2023501982A (ja) 2019-10-30 2020-10-30 メタロセン化合物及びその製造方法並びに適用
EP20880446.8A EP4053175A4 (en) 2019-10-30 2020-10-30 METALLOCENE COMPOUND AND PRODUCTION PROCESS THEREOF AND APPLICATION THEREOF

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911046672.5 2019-10-30
CN201911046672.5A CN112745366B (zh) 2019-10-30 硅基桥联的茂金属化合物及其制备方法、应用
CN201911047955.1A CN112745414B (zh) 2019-10-30 2019-10-30 非对称桥联二茂茚基过渡金属催化剂、制备方法及应用
CN201911047955.1 2019-10-30

Publications (1)

Publication Number Publication Date
WO2021083309A1 true WO2021083309A1 (zh) 2021-05-06

Family

ID=75714456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125121 WO2021083309A1 (zh) 2019-10-30 2020-10-30 一种茂金属化合物及其制备方法和应用

Country Status (5)

Country Link
US (1) US20220389133A1 (zh)
EP (1) EP4053175A4 (zh)
JP (1) JP2023501982A (zh)
KR (1) KR20220094212A (zh)
WO (1) WO2021083309A1 (zh)

Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017714A (en) 1988-03-21 1991-05-21 Exxon Chemical Patents Inc. Silicon-bridged transition metal compounds
US5120867A (en) 1988-03-21 1992-06-09 Welborn Jr Howard C Silicon-bridged transition metal compounds
US5145819A (en) 1990-11-12 1992-09-08 Hoechst Aktiengesellschaft 2-substituted disindenylmetallocenes, process for their preparation, and their use as catalysts in the polymerization of olefins
US5239022A (en) 1990-11-12 1993-08-24 Hoechst Aktiengesellschaft Process for the preparation of a syndiotactic polyolefin
US5243011A (en) 1992-04-09 1993-09-07 Cargill, Incorporated Low temperature curing, high solids, low VOC coating composition
US5276208A (en) 1990-11-12 1994-01-04 Hoechst Aktiengesellschaft Metallocenes containing ligands of 2-substituted idenyl derivatives, process for their preparation, and their use as catalysts
US5350817A (en) 1991-05-27 1994-09-27 Hoechst Ag Process for the preparation of polyolefins having a broad molecular weight distribution
US5374752A (en) 1991-11-30 1994-12-20 Hoechst Aktiengesellschaft Process for the preparation of a high molecular weight olefin polymer
US5380821A (en) 1992-07-14 1995-01-10 Solvay (Societe Anonyme) Process for the manufacture of poly(arylene sulphide)
US5391790A (en) 1992-06-13 1995-02-21 Hoechst Aktiengesellschaft Process for the preparation of bridged, chiral metallocene catalysts of the bisindenyl type
US5483002A (en) 1993-09-10 1996-01-09 Basf Aktiengesellschaft Propylene polymers having low-temperature impact strength
US5672668A (en) 1992-08-15 1997-09-30 Hoechst Aktiengesellschaft Process for the preparation of polyolefins
US5739366A (en) 1993-06-07 1998-04-14 Mitsui Petrochemical Industries, Ltd. Transition metal compound containing substituted indenyl rings
US5741868A (en) 1993-12-27 1998-04-21 Hoechst Aktiengesellschaft Olefin polymerization process by using a substituted indenyl containing metallocene catalyst
US5770753A (en) 1992-06-27 1998-06-23 Targor Gmbh Metallocenes containing aryl-substituted indenyl derivatives as ligands, process for their preparation, and their use as catalysts
US5840948A (en) 1991-11-30 1998-11-24 Targor Gmbh Process for the preparation of substituted indenes and their use as ligand systems for metallocene catalysts
US5932669A (en) 1991-11-30 1999-08-03 Targor Gmbh Metallocenes having benzo-fused indenyl derivatives as ligands, processes for their preparation and their use as catalysts
US6057408A (en) 1995-12-01 2000-05-02 Targor Gmbh High molecular weight copolymers of propylene and olefins having 2 or 4 to 32 carbon atoms
US6087291A (en) 1994-06-24 2000-07-11 Exxon Chemical Patents, Inc. Polymerization catalyst systems
US6114479A (en) 1995-07-13 2000-09-05 Exxon Chemical Patents Inc. Polymerization catalyst systems, their production and use
US6218558B1 (en) 1998-06-08 2001-04-17 Japan Polychem Corporation Transition metal compound, catalyst component for olefin polymerization and process for the preparation of α-olefin polymer
US6228795B1 (en) 1997-06-05 2001-05-08 Exxon Chemical Patents, Inc. Polymeric supported catalysts
US6252097B1 (en) 1996-12-09 2001-06-26 Mitsubishi Chemical Corporation Transition metal compounds
US6255515B1 (en) 1997-01-21 2001-07-03 Mitsubishi Chemical Corporation Processes for producing silicon- or germanium-containing organic compound, transition metal complex, catalyst for polymerization of α-olefin and α-olefin polymer
CN1339507A (zh) * 2000-08-28 2002-03-13 财团法人工业技术研究院 用于制备烯烃聚合物的茂金属化合物及其应用
US6376627B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6376407B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380122B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380120B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380123B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380124B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380121B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380134B1 (en) 1998-04-08 2002-04-30 Syngenta Crop Protection, Inc. N-pyridyl herbicide compounds
US6380130B1 (en) 1998-10-19 2002-04-30 Marie-Claude Meyer Product capable of transforming a toxic, corrosive or environmentally harmful liquid product into a harmless or non-aggressive residue
US6444606B1 (en) 1997-03-07 2002-09-03 Basell Polypropylen Gmbh Supported catalyst system, method for the production and use thereof in olefin polymerization
US20030088022A1 (en) 1998-05-13 2003-05-08 Lin Chon Y. Polypropylene compositions methods of making the same
US20030149199A1 (en) 1999-12-23 2003-08-07 Jorg Schottek Transition metal compound, ligand system, catalyst system and the use of the latter for polymerisation and copolymerisation of olefins
US20060016490A1 (en) 2004-07-23 2006-01-26 Instrumenttitehdas Kytola Oyolli Kytolantie 1 Flow rate controller
US20060252637A1 (en) 2003-05-28 2006-11-09 Basell Polyolefine Gmbh Bisindenyl zirconium complexes for use in the polymerization of olefins
CN101157742A (zh) * 2007-09-11 2008-04-09 浙江大学 用于制备环烯烃共聚物的催化体系
JP2008222899A (ja) * 2007-03-14 2008-09-25 Sumitomo Chemical Co Ltd オレフィン重合体及びオレフィン重合体の製造方法
CN108752509A (zh) * 2018-06-08 2018-11-06 北京化工大学 茂金属催化剂及制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102343937B1 (ko) * 2017-12-26 2021-12-27 주식회사 엘지화학 메탈로센 담지 촉매 및 이를 이용한 폴리프로필렌의 제조 방법

Patent Citations (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120867A (en) 1988-03-21 1992-06-09 Welborn Jr Howard C Silicon-bridged transition metal compounds
US5017714A (en) 1988-03-21 1991-05-21 Exxon Chemical Patents Inc. Silicon-bridged transition metal compounds
US5145819A (en) 1990-11-12 1992-09-08 Hoechst Aktiengesellschaft 2-substituted disindenylmetallocenes, process for their preparation, and their use as catalysts in the polymerization of olefins
US5239022A (en) 1990-11-12 1993-08-24 Hoechst Aktiengesellschaft Process for the preparation of a syndiotactic polyolefin
US5276208A (en) 1990-11-12 1994-01-04 Hoechst Aktiengesellschaft Metallocenes containing ligands of 2-substituted idenyl derivatives, process for their preparation, and their use as catalysts
US5714427A (en) 1991-05-27 1998-02-03 Hoechst Aktiengesellschaft Catalyst system comprising two zirconocenes and aluminoxane
US5350817A (en) 1991-05-27 1994-09-27 Hoechst Ag Process for the preparation of polyolefins having a broad molecular weight distribution
US5929264A (en) 1991-11-30 1999-07-27 Targor Gmbh Process for the preparation of substituted indenes and their use as ligand systems for metallocene catalysts
US5840948A (en) 1991-11-30 1998-11-24 Targor Gmbh Process for the preparation of substituted indenes and their use as ligand systems for metallocene catalysts
US6051522A (en) 1991-11-30 2000-04-18 Targor Gmbh Catalyst which can be used for the preparation of olefins during polymerization
US5932669A (en) 1991-11-30 1999-08-03 Targor Gmbh Metallocenes having benzo-fused indenyl derivatives as ligands, processes for their preparation and their use as catalysts
US5852142A (en) 1991-11-30 1998-12-22 Targor Gmbh Process for the preparation of an olefin polymer
US5374752A (en) 1991-11-30 1994-12-20 Hoechst Aktiengesellschaft Process for the preparation of a high molecular weight olefin polymer
US5243011A (en) 1992-04-09 1993-09-07 Cargill, Incorporated Low temperature curing, high solids, low VOC coating composition
US5616747A (en) 1992-06-13 1997-04-01 Hoechst Aktiengesellschaft Process for the preparation of bridged, chiral metallocene catalysts of the bisindenyl type
US5391790A (en) 1992-06-13 1995-02-21 Hoechst Aktiengesellschaft Process for the preparation of bridged, chiral metallocene catalysts of the bisindenyl type
US5840644A (en) 1992-06-27 1998-11-24 Targor Gmbh Metallocenes containing aryl-substituted indenyl derivatives as ligands, process for their preparation, and their use as catalysts
US5786432A (en) 1992-06-27 1998-07-28 Targor Gmbh Metallocenes containing aryl-substituted indenyl derivatives as ligands, process for their preparation, and their use as catalysts
US5770753A (en) 1992-06-27 1998-06-23 Targor Gmbh Metallocenes containing aryl-substituted indenyl derivatives as ligands, process for their preparation, and their use as catalysts
US6242544B1 (en) 1992-06-27 2001-06-05 Targor Gmbh Metallocenes containing aryl-substituted indenyl ligands and their use as catalysts
US20010021755A1 (en) 1992-06-27 2001-09-13 Frank Kuber Metallocenes containing aryl-substituted indenyl derivatives as ligands, process for their preparation, and their use as catalysts
US6255506B1 (en) 1992-06-27 2001-07-03 Targor Gmbh Metallocenes containing aryl-substituted indenyl derivatives as ligands, process for their preparation, and their use as catalysts
US5380821A (en) 1992-07-14 1995-01-10 Solvay (Societe Anonyme) Process for the manufacture of poly(arylene sulphide)
US5672668A (en) 1992-08-15 1997-09-30 Hoechst Aktiengesellschaft Process for the preparation of polyolefins
US5739366A (en) 1993-06-07 1998-04-14 Mitsui Petrochemical Industries, Ltd. Transition metal compound containing substituted indenyl rings
US5483002A (en) 1993-09-10 1996-01-09 Basf Aktiengesellschaft Propylene polymers having low-temperature impact strength
US5741868A (en) 1993-12-27 1998-04-21 Hoechst Aktiengesellschaft Olefin polymerization process by using a substituted indenyl containing metallocene catalyst
US6087291A (en) 1994-06-24 2000-07-11 Exxon Chemical Patents, Inc. Polymerization catalyst systems
US6114479A (en) 1995-07-13 2000-09-05 Exxon Chemical Patents Inc. Polymerization catalyst systems, their production and use
US6124230A (en) 1995-07-13 2000-09-26 Exxon Chemical Patents, Inc. Polymerization catalyst systems, their production and use
US6057408A (en) 1995-12-01 2000-05-02 Targor Gmbh High molecular weight copolymers of propylene and olefins having 2 or 4 to 32 carbon atoms
US6252097B1 (en) 1996-12-09 2001-06-26 Mitsubishi Chemical Corporation Transition metal compounds
US6255515B1 (en) 1997-01-21 2001-07-03 Mitsubishi Chemical Corporation Processes for producing silicon- or germanium-containing organic compound, transition metal complex, catalyst for polymerization of α-olefin and α-olefin polymer
US6444606B1 (en) 1997-03-07 2002-09-03 Basell Polypropylen Gmbh Supported catalyst system, method for the production and use thereof in olefin polymerization
US6228795B1 (en) 1997-06-05 2001-05-08 Exxon Chemical Patents, Inc. Polymeric supported catalysts
US6380134B1 (en) 1998-04-08 2002-04-30 Syngenta Crop Protection, Inc. N-pyridyl herbicide compounds
US20030088022A1 (en) 1998-05-13 2003-05-08 Lin Chon Y. Polypropylene compositions methods of making the same
US6218558B1 (en) 1998-06-08 2001-04-17 Japan Polychem Corporation Transition metal compound, catalyst component for olefin polymerization and process for the preparation of α-olefin polymer
US6380130B1 (en) 1998-10-19 2002-04-30 Marie-Claude Meyer Product capable of transforming a toxic, corrosive or environmentally harmful liquid product into a harmless or non-aggressive residue
US7342078B2 (en) 1999-12-23 2008-03-11 Basell Polyolefine Gmbh Transition metal compound, ligand system, catalyst system and the use of the latter for polymerisation and copolymerisation of olefins
US20030149199A1 (en) 1999-12-23 2003-08-07 Jorg Schottek Transition metal compound, ligand system, catalyst system and the use of the latter for polymerisation and copolymerisation of olefins
US6380124B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380121B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380123B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380120B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380122B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6376407B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6376627B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
CN1339507A (zh) * 2000-08-28 2002-03-13 财团法人工业技术研究院 用于制备烯烃聚合物的茂金属化合物及其应用
US20060252637A1 (en) 2003-05-28 2006-11-09 Basell Polyolefine Gmbh Bisindenyl zirconium complexes for use in the polymerization of olefins
US20060016490A1 (en) 2004-07-23 2006-01-26 Instrumenttitehdas Kytola Oyolli Kytolantie 1 Flow rate controller
JP2008222899A (ja) * 2007-03-14 2008-09-25 Sumitomo Chemical Co Ltd オレフィン重合体及びオレフィン重合体の製造方法
CN101157742A (zh) * 2007-09-11 2008-04-09 浙江大学 用于制备环烯烃共聚物的催化体系
CN108752509A (zh) * 2018-06-08 2018-11-06 北京化工大学 茂金属催化剂及制备方法与应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM. INT. ED. ENGL., vol. 24, 1985, pages 507
ANGEW. CHEM. INT. ED. ENGL., vol. 28, 1989, pages 1511
CHEM. REV., vol. 100, 2000, pages 1253
J. ORGANOMET. CHEM., 1982

Also Published As

Publication number Publication date
EP4053175A4 (en) 2023-11-15
EP4053175A1 (en) 2022-09-07
KR20220094212A (ko) 2022-07-05
JP2023501982A (ja) 2023-01-20
US20220389133A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
JP4838475B2 (ja) メタロセン化合物、その製造方法及びオレフィン重合のための触媒系におけるその使用
JP6711906B2 (ja) 混成担持メタロセン触媒およびこれを利用したポリオレフィンの製造方法
JP6272477B2 (ja) メタロセン化合物、これを含む触媒組成物およびこれを用いるオレフィン系重合体の製造方法
JP2018502819A (ja) リガンド化合物、遷移金属化合物及びこれを含む触媒組成物
KR20050112135A (ko) 치환된 4족 금속 착체, 촉매 및 올레핀 중합 방법
WO1998043989A1 (en) Metallocenes and catalysts for polymerization of olefins
JP6450393B2 (ja) メタロセン化合物、これを含む触媒組成物、およびこれを用いるポリオレフィンの製造方法
Nifant'ev et al. The catalytic behavior of heterocenes activated by TIBA and MMAO under a low Al/Zr ratios in 1-octene polymerization
JP2018502046A (ja) メタロセン化合物、メタロセン担持触媒およびこれを用いるポリオレフィンの製造方法
US6479646B1 (en) Metallocene compounds having indenyl ligand and catalysts for olefin polymerization containing the same
CN106661072B (zh) 金属茂化合物、包含其的催化剂组合物以及使用其制备基于烯烃的聚合物的方法
US6365763B1 (en) Method for producing metallocenes
US20020010084A1 (en) Method for producting fulvene metal complexes
EP3786195B1 (en) Novel transition metal compound and method for preparing polypropylene using the same
KR20190074798A (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
JP4145372B2 (ja) オレフィン(共)重合用置換メタロセン触媒
US11254759B2 (en) Transition metal compound for olefin polymerization catalyst, and olefin polymerization catalyst including same
WO2021083309A1 (zh) 一种茂金属化合物及其制备方法和应用
KR101926833B1 (ko) 메탈로센 화합물
JP6453483B2 (ja) メタロセン担持触媒およびこれを用いるポリオレフィンの製造方法
JP7118500B2 (ja) 混成担持触媒およびそれを用いたポリオレフィンの製造方法
JP7309256B2 (ja) リガンド化合物、遷移金属化合物及びこれを含む触媒組成物
CN112424210A (zh) 新型过渡金属化合物以及使用其的聚丙烯的制备方法
KR102065163B1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2018168940A1 (ja) 極性オレフィン重合体及び共重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526097

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227018352

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020880446

Country of ref document: EP

Effective date: 20220530