WO2021083300A1 - 高碳链烷烃二胺对苯二甲酸盐及其制备方法和应用 - Google Patents

高碳链烷烃二胺对苯二甲酸盐及其制备方法和应用 Download PDF

Info

Publication number
WO2021083300A1
WO2021083300A1 PCT/CN2020/125032 CN2020125032W WO2021083300A1 WO 2021083300 A1 WO2021083300 A1 WO 2021083300A1 CN 2020125032 W CN2020125032 W CN 2020125032W WO 2021083300 A1 WO2021083300 A1 WO 2021083300A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
reaction
diamine
carbon
carbon alkane
Prior art date
Application number
PCT/CN2020/125032
Other languages
English (en)
French (fr)
Inventor
周波
王磊
刘媛
张玉龙
Original Assignee
昆山博科化学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山博科化学有限公司 filed Critical 昆山博科化学有限公司
Publication of WO2021083300A1 publication Critical patent/WO2021083300A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/54Preparation of compounds containing amino groups bound to a carbon skeleton by rearrangement reactions
    • C07C209/58Preparation of compounds containing amino groups bound to a carbon skeleton by rearrangement reactions from or via amides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/09Diamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/04Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C233/05Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/14Monocyclic dicarboxylic acids
    • C07C63/15Monocyclic dicarboxylic acids all carboxyl groups bound to carbon atoms of the six-membered aromatic ring
    • C07C63/261,4 - Benzenedicarboxylic acid
    • C07C63/28Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids

Definitions

  • the invention relates to the preparation field of high-carbon alkane diamine terephthalate, in particular to a high-carbon alkane diamine terephthalate and a preparation method and application thereof.
  • Polyamide also known as nylon (PA) is a nitrogen-containing heterochain polymer containing polyamide characteristic groups (-NHCO-) in the main chain. It is combined with polycarbonate, polyoxymethylene, and polybutylene terephthalate. Together with polyphenylene ether, they are called the five general engineering plastics. Polyamide has excellent characteristics such as wear resistance, impact resistance, fatigue resistance, and corrosion resistance. With the continuous emergence of high value-added modified products, polyamide engineering plastics are widely used in the automotive, electronic and electrical and transportation industries. Typical products include pumps. Impellers, bearings, automotive electrical instruments and other parts.
  • High-carbon chain nylon varieties have the advantages of low density, low water absorption, low temperature resistance, abrasion resistance, and impact resistance. Therefore, downstream chemicals of high-carbon alkane diamines coincidentally put forward new requirements for the quality of high-carbon alkane diamines, requiring higher product quality.
  • the long-chain diamines include nonanediamine, especially the preparation represented by decane diamine.
  • the original synthesis process has been continued: long-chain dibasic acid is used as raw material, through high-temperature ammoniation, and dehydration to obtain long-chain diamine.
  • Nitrile, Raney nickel and other metal alloys are selected as catalysts, and intermittent hydrogenation methods are selected for catalytic production.
  • the advantage of the traditional synthesis method is that it is relatively mature in the process and easy to operate.
  • nonanediamine there are also reports on the industrialized process of producing nonanediamine by ammoniating hydrogenation in the presence of ammonia, using azelaaldehyde as a raw material, and using metals such as nickel as a catalyst.
  • the purpose of the present invention is to overcome the safety and process complexity problems in the prior art, and provide a safe, convenient, simple and easy method for preparing high-carbon alkane diamine terephthalate.
  • the first aspect of the present invention provides a method for preparing high-carbon paraffin diamine terephthalate, the method comprising the following steps:
  • the product of step 2) is directly used for the reaction in step 3).
  • the ammonia-containing compound is ammonia gas and/or urea.
  • the molar ratio of the higher alkane diacid represented by formula (1) to the ammonia-containing compound is 1:1-10.
  • the amidation reaction conditions include: a reaction temperature of 150-280° C., and a reaction time of 3-18 hours.
  • the molar ratio of the high-carbon chain diamide represented by formula (2) to sodium hypochlorite and/or sodium hypobromite is 1:1.8-3.5.
  • step 2) is carried out in the presence of a solvent.
  • the weight ratio of the high-carbon chain diamide represented by formula (2) to the solvent is 1:5-15.
  • the solvent is selected from the group consisting of dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, tetrahydrofuran, methanol, ethanol, and propanol. One or more.
  • the pH value of the reaction system is 9 or more.
  • the higher alkane diamine represented by formula (3) is nonane diamine, decane diamine, undecane diamine, dodecane diamine or tridecane diamine.
  • step 3 the molar ratio of the higher alkane diamine represented by formula (3) to terephthalic acid is 1:0.95-1.05.
  • the organic solvent is one or more of methanol, ethanol and isopropanol.
  • a high-carbon paraffin diamine terephthalate which is prepared by the method of the present invention.
  • the application of the high-carbon paraffin diamine terephthalate prepared by the method of the present invention in the preparation of polyamide is provided.
  • the present invention can provide a safe, convenient, simple and easy method for preparing high-carbon alkane diamine salt.
  • the method for preparing high-carbon alkane diamine terephthalate provided by the present invention includes the following steps:
  • n may be 9, 10, 11, 12, or 13.
  • m may be 9, 10, 11, 12, or 13.
  • step 1) is carried out under the conditions of the amidation reaction, and the high-carbon alkane diacid represented by formula (1) and the ammonia-containing compound are subjected to amidation reaction, thereby obtaining the high-carbon represented by formula (2) Chain diamide.
  • the high-carbon alkane diacid represented by formula (1) to carry out amidation reaction with an ammonia-containing compound, it has the advantages of simple operation, few by-products and high yield, and there is no need to go through after the reaction is completed.
  • the post-treatment can be directly used in the next reaction, which greatly simplifies the process.
  • the ammonia-containing compound may be various ammonia-containing compounds commonly used in the amidation of carboxylic acids in the art, for example, may be one or more of ammonia, urea, etc., preferably ammonia and/ Or urea, because it has the advantages of simple reaction and convenient operation by using ammonia gas, it is more preferably ammonia gas.
  • the high-carbon alkane diacid represented by formula (1) can be obtained commercially, or can be synthesized according to conventional methods in the art.
  • high-carbon alkane diacid examples include undecyl diacid, dodecane diacid, tridecane diacid, tetradecane diacid, or pentadecane diacid.
  • the molar ratio of the higher alkane diacid represented by formula (1) to the ammonia-containing compound is 1:1-10, more preferably 1:2-10, and more preferably 1:2.5- 5. More preferably, it is 1:3-4.
  • the amidation reaction conditions include: the reaction temperature is 150-280°C, and the reaction time is 3-18 hours; more preferably, the amidation reaction conditions include: the reaction temperature is 160-240°C, and the reaction time is 10-16 hours.
  • step 1) after step 1) is completed, the high-chain diamide represented by formula (2) can be obtained only by cooling to room temperature, and the obtained high-chain diamide represented by formula (2) can be used directly Step 2).
  • the reaction of step 2) can be directly carried out in the reaction vessel of step 1), so that the above two-step reaction can be carried out in one reactor, which is extremely useful in industry.
  • step 2) under alkaline conditions, in the presence of water and sodium hypochlorite and/or sodium hypobromite, the high-chain diamide represented by formula (2) undergoes a rearrangement and degradation reaction to obtain The higher alkane diamine represented by formula (3).
  • the rearrangement reaction when the high-carbon chain diamide represented by formula (2) reacts with the alkaline solution of sodium hypochlorite and/or sodium hypobromite, the rearrangement reaction generates isocyanate, which is then hydrolyzed to obtain the formula (3) The high-carbon alkane diamine shown. That is, in step 2), the rearrangement reaction and the hydrolysis reaction (degradation reaction) are also carried out in the same reaction vessel, which can greatly simplify the industry and is extremely useful in industry.
  • the weight ratio of the high-carbon chain diamide represented by formula (2) to water can be 1:5-100, preferably 1:6-50, and more preferably 1: 6-15, more preferably 1:6-10, still more preferably 1:7-8.
  • water can be used in the form of sodium hypochlorite aqueous solution or sodium hypobromite aqueous solution.
  • the molar ratio of the high-carbon chain diamide represented by formula (2) to sodium hypochlorite and/or sodium hypobromite is 1:1.8-3.5, more preferably 1:2.6-3.2.
  • the above-mentioned sodium hypochlorite or sodium hypobromite can be obtained commercially, or can be prepared at the reaction site.
  • chlorine gas and sodium hydroxide solution can be used as raw materials for on-site preparation and use, or bromine and sodium hydroxide can be used as raw materials for on-site preparation and use.
  • step 2) is carried out in the presence of a solvent, and the use of a solvent is helpful to the progress of the reaction.
  • the amount of the solvent can be specifically selected according to the amount of the high-chain diamide represented by formula (2), for example, the formula ( 2)
  • the weight ratio of the high-carbon chain diamide to the solvent can be 1:5-15, preferably 1:8-10.
  • the solvent is selected from the group consisting of dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, tetrahydrofuran, methanol, ethanol, and propanol.
  • dioxane ethylene glycol dimethyl ether
  • ethylene glycol diethyl ether diethylene glycol dimethyl ether
  • diethylene glycol diethyl ether diethylene glycol dimethyl ether
  • diethylene glycol diethyl ether diethylene glycol dimethyl ether
  • tetrahydrofuran methanol, ethanol, and propanol.
  • dioxane ethylene glycol dimethyl ether
  • diethylene glycol diethyl ether diethylene glycol dimethyl ether
  • diethylene glycol diethyl ether diethylene glycol dimethyl ether
  • tetrahydrofuran methanol, ethanol, and propanol.
  • the pH value of the reaction system is above 9, more preferably 10-12.
  • the pH value of the reaction system can be adjusted by adding a base as required, for example, an inorganic base and an organic base can be added for adjustment, and an inorganic base is preferably added for adjustment.
  • a base for example, an inorganic base and an organic base can be added for adjustment, and an inorganic base is preferably added for adjustment.
  • the inorganic base include sodium hydroxide, potassium hydroxide, and the like, and sodium hydroxide is preferred.
  • step 2) can be carried out at a temperature of 5-80°C, more preferably, it can be carried out in the following manner: at 0-10°C, an aqueous solution containing sodium hypochlorite and/or sodium hypobromite is added dropwise to In the solution containing the high-carbon chain diamide represented by formula (2), the temperature is maintained for 0.5-3 hours; then the temperature is increased to 20-35°C and reacted at this temperature for 1-5 hours; then, the temperature is increased to 60-75°C and react at this temperature for 0.5-5 hours.
  • step 2) the reaction is completed, it is only necessary to separate the reaction solution and concentrate the organic phase to obtain a high-purity product.
  • the subsequent processing steps are extremely simple and extremely useful in industry.
  • the high-carbon alkane diamine represented by formula (3) is nonane diamine, decane diamine, undecane diamine, dodecane diamine or tridecane diamine.
  • step 3 the molar ratio of high-carbon alkane diamine represented by formula (3) to terephthalic acid is 1:0.95-1.05;
  • the organic solvent is one or more of ethanol, methanol and isopropanol.
  • step 2) the product obtained in step 2) can be directly used in step 3) for reaction.
  • a high-carbon paraffin diamine terephthalate which is prepared by the method of the present invention.
  • the application of the high-carbon paraffin diamine terephthalate prepared by the method of the present invention in the preparation of polyamide is provided.
  • 1,11-undecane diamide (10 g) and 190 ml of dioxane into the reaction flask, stir and cool down with an ice bath, after the temperature of the reaction solution drops to about 10°C, add sodium hydroxide and sodium hypochlorite dropwise (The molar ratio of sodium hydroxide and sodium hypochlorite is 2:1, and the amount of sodium hypochlorite is 3 moles relative to 1 mole of 1,11-undecane diamide), and the rate of dropping is controlled to maintain the reaction temperature at 10°C About, and control the pH of the reaction system to 10-12.
  • 1,11-undecane diamide (10 g) and 190 ml of dioxane into the reaction flask, stir and cool down with an ice bath, after the temperature of the reaction solution drops to about 10°C, add sodium hydroxide and sodium hypochlorite dropwise (The molar ratio of sodium hydroxide and sodium hypochlorite is 2:1, and the amount of sodium hypochlorite is 2.6 moles relative to 1 mole of 1,11-undecane diamide), and the rate of dropping is controlled to maintain the reaction temperature at 13°C About, and control the pH of the reaction system to 10-11.
  • the reaction is kept for 1 hour, then the ice bath is removed to allow it to naturally return to temperature, and the temperature is controlled at 25°C for 3 hours, and then heated to 75°C for 1 hour.
  • the organic layer was separated, the organic layer was concentrated to remove dioxane, and a small amount of solids were removed by filtration.
  • the filtrate was continuously concentrated to obtain 6.6 g of light yellow oily product. According to nuclear magnetic data, the obtained product was 1,9-nonanediamine.
  • the gas phase quantitative sampling test showed that the purity was 95%, and the yield was 89.5%.
  • 1,11-undecane diamide (10 g) and 190 ml of dioxane into the reaction flask, stir and cool down with an ice bath, after the temperature of the reaction solution drops to about 10°C, add sodium hydroxide and sodium hypochlorite dropwise (The molar ratio of sodium hydroxide and sodium hypochlorite is 2:1, and the amount of sodium hypochlorite is 3.2 moles relative to 1 mole of 1,11-undecane diamide), and the rate of dropping is controlled to maintain the reaction temperature at 10°C About, and control the pH of the reaction system to 10-11.
  • the reaction is kept for 1 hour, then the ice bath is removed to allow it to naturally return to temperature, and the temperature is controlled at 30°C for 1 hour, and then heated to 75°C for 1 hour.
  • the organic layer was separated, the organic layer was concentrated to remove the solvent, filtered to remove a small amount of solids, and the filtrate was continuously concentrated to obtain 6.8 g of light yellow oily product.
  • the obtained product was 1,9-nonanediamine.
  • the gas phase Quantitative sampling detection showed that the purity was 94.5%, and the yield was 92%.
  • the difference is that the raw material undecanedioic acid was replaced with the same molar amount of dodecanedioic acid to obtain 1,12-dodecanedioic acid amide: 90 g (yield of 91 %), which can be used directly in the next step.
  • the product obtained is 1,10-decanediamine.
  • the gas phase quantitative injection test has a purity of 98 %, the yield is 74%.
  • the temperature was controlled at about 30°C, and the reaction was carried out for 3 hours. Then the jacket was changed to a water bath and heated to 75°C, stirred and reacted for about 10 minutes, the reaction solution was clarified, kept for 1 hour, and then separated at 60-65°C. The organic layer was concentrated to remove a small amount of solids. The filtrate was concentrated to obtain 465 g of shallow A yellow oily substance. According to the nuclear magnetic data, the obtained product is 1,9-nonanediamine. In addition, the gas phase quantitative injection test showed that the purity was 96% and the yield was 88.3%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyamides (AREA)

Abstract

涉及高碳链烷烃二胺对苯二甲酸盐制备领域,提供一种高碳链烷烃二胺对苯二甲酸盐及其制备方法和应用。所述高碳链烷烃二胺对苯二甲酸盐的制备方法包括以下步骤,1)在酰胺化反应条件下,将式COOH-(CH 2) n-COOH所示的高碳链烷烃二酸与含氨化合物反应;2)在碱性条件下,在水与次氯酸钠和/或次溴酸钠的存在下,使式CONH 2-(CH 2) n-CONH 2所示的高碳链二酰胺发生重排降级反应;在溶剂存在下,将式(3)所示的高碳链烷烃二胺与对苯二甲酸进行成盐反应。所述方法是一种安全方便、简单易行、特别适合工业制备的高碳链烷烃二胺对苯二甲酸盐的制备方法。

Description

高碳链烷烃二胺对苯二甲酸盐及其制备方法和应用 技术领域
本发明涉及高碳链烷烃二胺对苯二甲酸盐制备领域,具体涉及一种高碳链烷烃二胺对苯二甲酸盐及其制备方法和应用。
背景技术
聚酰胺,又称尼龙(PA),是主链中含有聚酰胺特征基团(-NHCO-)的含氮杂链聚合物,与聚碳酸酯、聚甲醛、聚对苯二甲酸丁二醇酯和聚苯醚并称为五大通用工程塑料。聚酰胺具有耐磨、耐冲击、耐疲劳、耐腐蚀等优异特性,随着高附加值改性产品的不断涌现,聚酰胺工程塑料广泛应用于汽车、电子电气及交通运输业,典型制品有泵叶轮、轴承、汽车电器仪表等零部件。
高碳链尼龙品种,具有密度小、吸水率低、耐低温、耐磨、耐冲击等优点。所以高碳链烷烃二胺的下游化工品不约而同地对高碳链烷烃二胺的品质提出了新的要求,要求产品的质量要更高。
长链二元胺包括壬二胺,特别是以癸二胺为代表的制备,一直以来延续了原始的合成工艺:以长链二元酸为原料,经高温氨化,脱水制得长链二腈,选取雷尼镍等金属合金当作催化剂,选择间歇式的加氢方式来进行催化生产。传统合成方法的优势是对于工艺掌握比较成熟,操作便于进行。另外,对于壬二胺,也有报道通过以壬二醛为原料,在氨的存在下,以镍等金属作催化剂,氨化氢化生产壬二胺的工业化工艺。
但是,上述现有的工艺涉及高温、高压,氢化等危险工艺,存在安全性上的问题,并且现有的工艺存在工艺复杂的问题。
发明内容
本发明的目的是为了克服现有技术存在的安全性和工艺复杂的问题,提供一种安全方便,简单易行的高碳链烷烃二胺对苯二甲酸盐的制备方法。
为了实现上述目的,本发明第一方面提供一种高碳链烷烃二胺对苯二甲酸盐的制备方法,所述方法包括以下步骤,
1)在酰胺化反应条件下,将式(1)所示的高碳链烷烃二酸与含氨化合物反应,得到式(2)所示的高碳链二酰胺;
2)在碱性条件下,在水与次氯酸钠和/或次溴酸钠的存在下,使式(2)所示的高碳链二酰胺发生重排降级反应,得到式(3)所示的高碳链烷烃二胺;
3)在有机溶剂存在下,将式(3)所示的高碳链烷烃二胺与对苯二甲酸进行接触反应,
COOH-(CH 2) n-COOH  式(1) CONH 2-(CH 2) n-CONH 2  式(2)
NH 2-(CH 2) m-NH 2  式(3)
式(1)~式(3)中,n=9-13,m=9-13。
优选地,步骤2)的产物直接用于步骤3)中进行反应。
优选地,所述含氨化合物为氨气和/或尿素。
优选地,式(1)所示的高碳链烷烃二酸与含氨化合物的摩尔比为1:1-10。
优选地,所述酰胺化反应条件包括:反应温度为150-280℃,反应时间为3-18小时。
优选地,式(2)所示的高碳链二酰胺与次氯酸钠和/或次溴酸钠的摩尔比为1:1.8-3.5。
优选地,步骤2)在溶剂存在下进行。
优选地,式(2)所示的高碳链二酰胺与所述溶剂的重量比为1:5-15。
优选地,所述溶剂为二氧六环、乙二醇二甲醚、乙二醇二乙醚、二乙 二醇二甲醚、二乙二醇二乙醚、四氢呋喃、甲醇、乙醇和丙醇中的一种或多种。
优选地,步骤2)中,反应体系的pH值在9以上。
优选地,式(3)所示的高碳链烷烃二胺为壬二胺、癸二胺、十一烷二胺、十二烷二胺或十三烷二胺。
优选地,步骤3)中,式(3)所示的高碳链烷烃二胺与对苯二甲酸的摩尔比为1:0.95-1.05。
优选地,所述有机溶剂为甲醇、乙醇和异丙醇中的一种或多种。
根据本发明的第二方面,提供一种高碳链烷烃二胺对苯二甲酸盐,其通过本发明的方法制备得到。
根据本发明的第三方面,提供本发明的方法制备得到的高碳链烷烃二胺对苯二甲酸盐在制备聚酰胺中的应用。
通过上述技术方案,本发明能够提供一种安全方便,简单易行的高碳链烷烃二胺盐的制备方法。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明提供的高碳链烷烃二胺对苯二甲酸盐的制备方法,该方法包括以下步骤,
1)在酰胺化反应条件下,将式(1)所示的高碳链烷烃二酸与含氨化合物反应,得到式(2)所示的高碳链二酰胺;
2)在碱性条件下,在水与次氯酸钠和/或次溴酸钠的存在下,使式(2) 所示的高碳链二酰胺发生重排降级反应,得到式(3)所示的高碳链烷烃二胺;
3)在有机溶剂存在下,将式(3)所示的高碳链烷烃二胺与对苯二甲酸进行接触反应,
COOH-(CH 2) n-COOH  式(1) CONH 2-(CH 2) n-CONH 2  式(2)
NH 2-(CH 2) m-NH 2  式(3)
式(1)~式(3)中,n=9-13,m=9-13。
根据本发明,式(1)~式(3)中,n可以为9、10、11、12或13。
根据本发明,式(1)~式(3)中,m可以为9、10、11、12或13。
根据本发明,步骤1)在酰胺化反应条件下进行,通过使式(1)所示的高碳链烷烃二酸与含氨化合物进行酰胺化反应,从而得到式(2)所示的高碳链二酰胺。
在本发明中,通过使用式(1)所示的高碳链烷烃二酸与含氨化合物进行酰胺化反应,具有操作简单、副产物少和收率高的优点,并且,反应完成后无需经过后处理可以直接用于下一步反应,极大地简化了工艺。
根据本发明,所述含氨化合物可以为本领域通常用于羧酸酰胺化的各种含氨化合物,例如,可以为氨气、尿素等中的一种或多种,优选为氨气和/或尿素,由于通过使用氨气具有反应简单,操作方便的优点,因此更优选为氨气。
根据本发明,式(1)所示的高碳链烷烃二酸可以通过商购获得,也可以按照本领域常规方法合成得到。
作为所述高碳链烷烃二酸例如可以举出:十一烷基二酸、十二烷二酸、十三烷二酸、十四烷二酸或十五烷二酸。
根据本发明,优选地,式(1)所示的高碳链烷烃二酸与含氨化合物的摩尔比为1:1-10,更优选为1:2-10,更优选为1:2.5-5,更进一步优选为1:3-4。
优选地,所述酰胺化反应条件包括:反应温度为150-280℃,反应时间为3-18小时;更优选地,所述酰胺化反应条件包括:反应温度为160-240℃,反应时间为10-16小时。
根据本发明,步骤1)完成后,仅需要冷却到室温即可得到式(2)所示的高碳链二酰胺,并且得到的式(2)所示的高碳链二酰胺可以直接用于步骤2)。例如可以直接在步骤1)的反应容器中进行步骤2)的反应,从而实现在一个反应器中进行上述两步反应,在工业上极其有用。
根据本发明,步骤2)中,在碱性条件下,在水与次氯酸钠和/或次溴酸钠的存在下,使式(2)所示的高碳链二酰胺发生重排降级反应,得到式(3)所示的高碳链烷烃二胺。在该步骤中,式(2)所示的高碳链二酰胺与次氯酸钠和/或次溴酸钠的碱溶液作用时,重排反应生成异腈酸酯,然后水解制备得到式(3)所示的高碳链烷烃二胺。也即,在步骤2)中,重排反应和水解反应(降级反应)也是在同一个反应容器中进行,由此可以大大简化工业,在工业上极其有用。
在本发明中,水通常过量使用,例如,式(2)所示的高碳链二酰胺与水的重量比可以为1:5-100,优选为1:6-50,更优选为1:6-15,更优选为1:6-10,进一步优选为1:7-8。
此外,水可以次氯酸钠水溶液或次溴酸钠水溶液的形式使用。
优选地,式(2)所示的高碳链二酰胺与次氯酸钠和/或次溴酸钠的摩尔比为1:1.8-3.5,更优选为1:2.6-3.2。
上述次氯酸钠或次溴酸钠可以通过商购获得,也可以在反应现场制备得到。在反应现场制备得到时,可以以氯气和氢氧化钠溶液为原料现场制备使用,也可以以溴素和氢氧化钠为原料现场制备使用。
此外,优选步骤2)在溶剂存在下进行,使用溶剂有助于反应的进行,所述溶剂的用量可以根据式(2)所示的高碳链二酰胺的量来具体选择,例如,式(2)所示的高碳链二酰胺与所述溶剂的重量比可以为1:5-15,优 选为1:8-10。
优选地,所述溶剂为二氧六环、乙二醇二甲醚、乙二醇二乙醚、二乙二醇二甲醚、二乙二醇二乙醚、四氢呋喃、甲醇、乙醇和丙醇中的一种或多种;更优选为二氧六环,通过使用二氧六环具有操作简便,反应选择性好的优异效果。
优选地,步骤2)中,反应体系的pH值在9以上,更优选为10-12。
根据本发明,根据需要反应体系的pH值可以通过加入碱来调节,例如可以加入无机碱和有机碱来调节,优选加入无机碱来调节。作为所述无机碱例如可以为氢氧化钠和氢氧化钾等,优选为氢氧化钠。
根据本发明,步骤2)可以在5-80℃的温度下进行,更优选地,可以按照以下方式进行:在0-10℃下,将含有次氯酸钠和/或次溴酸钠的水溶液滴加到含有式(2)所示的高碳链二酰胺的溶液中,并在该温度下保持0.5-3小时;然后升温至20-35℃并在该温度下反应1-5小时;接着,升温到60-75℃并在该温度下反应0.5-5小时。
根据本发明,步骤2)反应完成后,仅需要将反应液进行分层后、将有机相浓缩即可获得高纯度的产物,其后处理步骤极其简单,在工业上极其有用。
根据本发明,优选地,式(3)所示的高碳链烷烃二胺为壬二胺、癸二胺、十一烷二胺、十二烷二胺或十三烷二胺。
根据本发明,步骤3)中,式(3)所示的高碳链烷烃二胺与对苯二甲酸的摩尔比为1:0.95-1.05;
优选地,所述有机溶剂为乙醇、甲醇和异丙醇中的一种或多种。
根据本发明,可以将在步骤2)得到产物直接用于步骤3)进行反应。
根据本发明的第二方面,提供一种高碳链烷烃二胺对苯二甲酸盐,其通过本发明的方法制备得到。
根据本发明的第三方面,提供本发明的方法制备得到的高碳链烷烃二 胺对苯二甲酸盐在制备聚酰胺中的应用。
以下将通过实施例对本发明进行详细描述,但本发明并不仅限于下述实施例。以下实施例中所使用的试剂如无特别说明时均为市售品。
实施例1
本实施例用于说明1,9-壬二胺对苯二甲酸盐的制备
1)1,11-十一烷二酰胺的合成
将100克十一烷二酸加入250ml的三口反应瓶中,加热至原料熔点使之熔化,通入氨气(相对于1摩尔的十一烷二酸,氨气通入量约为3摩尔),反应温度先保持在160℃,使原料和氨气反应成盐,随后反应温度升至220℃,随着反应脱水的量增加,最终反应温度升高至260℃,氨气流速保持此反应脱水能够顺利带出,脱水反应时间为12小时,反应结束后,降温后结晶成固体,烘干得1,11-十一烷二酰胺:93克(收率为94%),可直接供下一步使用。
2)1,9-壬二胺的合成
将1,11-十一烷二酰胺(10克)和190ml的二氧六环加入反应瓶中,搅拌并用冰浴降温,在反应液温度降至10℃左右后,滴加氢氧化钠和次氯酸钠的混合溶液(氢氧化钠和次氯酸钠的摩尔比为2:1,并且相对于1摩尔的1,11-十一烷二酰胺,次氯酸钠用量为3摩尔),控制滴加速度以维持反应温度在10℃左右,并控制反应体系的pH值为10-12。滴加完毕后,保温反应1小时,然后撤除冰浴让其自然回温,并将温度控制在30℃反应3小时,然后加热至75℃,保温反应1.5小时。冷却后,分出有机层,有机层浓缩除去二氧六环,过滤除去少量固体,滤液继续浓缩得到6.7g浅黄色油状产品,通过核磁数据可知,得到的产品为1,9-壬二胺,另外,气相定量进样检测,纯度为95%,收率为91%。
核磁数据: 1H NMR(MeOD,ppm)δ2.65,(t,18Hz,CΗ 2,4Η),1.4-1.6(b,CH 2,4H),1.3-1.4(b,CH 2,10H).
3)1,9-壬二胺对苯二甲酸盐的合成
在反应瓶中,加入上步得到的1,9-壬二胺5.8克,然后加入32毫升乙醇。搅拌下加热反应液至55-60℃,得浅色透明液体,分批加入对苯二甲酸6.1克,色谱检测液体中壬二胺的含量。待反应完成后,将温度降至室温,过滤收集壬二胺对苯二甲酸盐8.83克,收率:82.6%(按对苯二甲酸计),纯度:99.1%。
实施例2
本实施例用于说明1,9-壬二胺的制备
1)1,11-十一烷二酰胺的合成
将100克十一烷二酸加入250ml的三口反应瓶中,加热至原料熔点使之熔化,通入氨气(相对于1摩尔的十一烷二酸,氨气通入量约为3.5摩尔),反应温度先保持在180℃,使原料和氨气反应成盐,随后反应温度升至200℃,随着反应脱水的量增加,最终反应温度升高至220℃,氨气流速保持此反应脱水能够顺利带出,脱水反应时间为10小时,反应结束后,降温后结晶成固体,烘干得1,11-十一烷二酰胺(收率95%),可直接供下一步使用。
2)1,9-壬二胺的合成
将1,11-十一烷二酰胺(10克)和190ml的二氧六环加入反应瓶中,搅拌并用冰浴降温,在反应液温度降至10℃左右后,滴加氢氧化钠和次氯酸钠的混合溶液(氢氧化钠和次氯酸钠的摩尔比为2:1,并且相对于1摩尔的1,11-十一烷二酰胺,次氯酸钠用量为2.6摩尔),控制滴加速度以维持反应温度在13℃左右,并控制反应体系的pH值为10-11。滴加完毕后,保温反应1小时,然后撤除冰浴让其自然回温,并将温度控制在25℃反应3小时,然后加热至75℃,保温反应1小时。冷却后,分出有机层,有机层浓缩除去二氧六环,过滤除去少量固体,滤液继续浓缩得到6.6g浅黄色油状产品,通过核磁数据可知,得到的产品为1,9-壬二胺,另外,气相定量进样 检测,纯度为95%,收率为89.5%。
3)1,9-壬二胺对苯二甲酸盐的合成
在反应瓶中,加入上步得到的1,9-壬二胺3.30克,然后加入20毫升乙醇。搅拌下加热反应液至55-60℃,得浅色透明液体,分批加入对苯二甲酸3.46克,色谱检测液体中壬二胺的含量。待反应完成后,将温度降至室温,过滤收集1,9-壬二胺对苯二甲酸盐5.73克,收率:85%(按对苯二甲酸计),纯度:99.2%。
实施例3
本实施例用于说明1,9-壬二胺的制备
1)1,11-十一烷二酰胺的合成
将100克十一烷二酸加入250ml的三口反应瓶中,加热至原料熔点使之熔化,通入氨气(相对于1摩尔的十一烷二酸,氨气通入量为4摩尔),反应温度先保持在160℃,使原料和氨气反应成盐,随后反应温度升至190℃,随着反应脱水的量增加,最终反应温度升高至210℃,氨气流速保持此反应脱水能够顺利带出,脱水反应时间为13小时,反应结束后,降温后结晶成固体,烘干得1,11-十一烷二酰胺(收率94%),可直接供下一步使用。
2)1,9-壬二胺的合成
将1,11-十一烷二酰胺(10克)和190ml的二氧六环加入反应瓶中,搅拌并用冰浴降温,在反应液温度降至10℃左右后,滴加氢氧化钠和次氯酸钠的混合溶液(氢氧化钠和次氯酸钠的摩尔比为2:1,并且相对于1摩尔的1,11-十一烷二酰胺,次氯酸钠用量为3.2摩尔),控制滴加速度以维持反应温度在10℃左右,并控制反应体系的pH值为10-11。滴加完毕后,保温反应1小时,然后撤除冰浴让其自然回温,并将温度控制在30℃反应1小时,然后加热至75℃,保温反应1小时。冷却后,分出有机层,有机层浓缩除去溶剂,过滤除去少量固体,滤液继续浓缩得到6.8g浅黄色油状产品, 通过核磁数据可知,得到的产品为1,9-壬二胺,另外,气相定量进样检测,纯度为94.5%,收率为92%。
3)1,9-壬二胺对苯二甲酸盐的合成
在反应瓶中,加入上步得到的1,9-壬二胺4.95克,然后加入30毫升乙醇。搅拌下加热反应液至55-60℃,得浅色透明液体,分批加入对苯二甲酸5.53克,色谱检测液体中壬二胺的含量。待反应完成后,将温度降至室温,过滤收集1,9-壬二胺对苯二甲酸盐9.0克,收率:86%(按对苯二甲酸计),纯度:99.1%。
实施例4
1)1,12-十二烷二酰胺的合成
按照实施例1的制备方法进行,不同的是,将原料十一烷二酸替换为相同摩尔量的十二烷二酸,得到1,12-十二烷二酰胺:90克(收率为91%),可直接供下一步使用。
2)1,10-癸二胺的合成
取10克(0.044mol)十二碳二酸二酰胺加入反应瓶中,随后加入190ml(2.23mol)1,4-二氧六环搅拌并用冰浴降温。配制氢氧化钠11.2g(0.28mol)和160g(0.135mol)次氯酸钠的混合溶液。反应液温度降至10℃左右,滴加氢氧化钠和次氯酸钠的混合溶液,控制反应温度在10℃左右。反应液为浑浊状固液混合体。滴加完毕后,保温反应30分钟,让其自然回温。温度控制在30℃左右,反应3小时;随后用油浴加热至75℃,搅拌反应约10分钟,反应液澄清,保温反应1小时,随后在在60-65℃左右下分层,有机层浓缩,得到粘状固液混合体,除去少量固体,滤液浓缩得到5.7g浅黄色油状物,通过核磁数据可知,得到的产品为1,10-癸二胺,另外,气相定量进样检测,纯度98%,收率74%。
核磁数据: 1H NMR(CDCl 3,ppm)δ2.65(t,18Hz,CH 2,4Η),1.4-1.6(b,CH 2, 4H),1.25-1.3(b,CH 2,8H),1.15-1.25(b,CH 2,4H).
3)1,10-癸二胺对苯二甲酸盐的合成
在反应瓶中,加入上步得到的1,10-癸二胺4.30克,然后加入30毫升乙醇。搅拌下加热反应液至55-60℃,得浅色透明液体,分批加入对苯二甲酸4.50克,色谱检测液体中壬二胺的含量。待反应完成后,将温度降至室温,过滤收集1,10-癸二胺对苯二甲酸盐6.85克,收率:78.0%(按对苯二甲酸计);纯度:99.2%。
实施例5
1)1,11-十一烷二酰胺的合成
按照实施例1的步骤1)的方法进行制备。
2)1,9-壬二胺的合成
将700克(3.27mol)十一碳二酸二酰胺加入30L反应釜中,随后加入13.3Kg(155.93mol)的1,4-二氧六环搅拌夹套通盐水降温。配制氢氧化钠788g(19.7mol)和11.2Kg(9.45mol)次氯酸钠的混合溶液。反应液温度降至10℃左右,滴加氢氧化钠和次氯酸钠的混合溶液,控制反应温度在10℃左右。反应液为浑浊状固液混合体。滴加完毕后,保温反应30分钟。温度控制在30℃左右,反应3小时。随后夹套改用水浴加热至75℃,搅拌反应约10分钟,反应液澄清,保温反应1小时,随后在60-65℃左右下分层,有机层浓缩,除去少量固体,滤液浓缩得到465g浅黄色油状物,通过核磁数据可知,得到的产品为1,9-壬二胺,另外,气相定量进样检测,纯度96%,收率88.3%。
3)1,9-壬二胺对苯二甲酸盐的合成
在反应瓶中,加入上步得到的1,9-壬二胺330.0克,然后加入2000毫升乙醇。搅拌下加热反应液至55-60℃,得浅色透明液体,分批加入对苯二甲酸346.0克,色谱检测液体中壬二胺的含量。待反应完成后,将温度降至 室温,过滤收集1,9-壬二胺对苯二甲酸盐580克,收率:86%(按对苯二甲酸计),纯度:99.3%。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (12)

  1. 一种高碳链烷烃二胺对苯二甲酸盐的制备方法,其特征在于,所述方法包括以下步骤,
    1)在酰胺化反应条件下,将式(1)所示的高碳链烷烃二酸与含氨化合物反应,得到式(2)所示的高碳链二酰胺;
    2)在碱性条件下,在水与次氯酸钠和/或次溴酸钠的存在下,使式(2)所示的高碳链二酰胺发生重排降级反应,得到式(3)所示的高碳链烷烃二胺;
    3)在溶剂存在下,将式(3)所示的高碳链烷烃二胺与对苯二甲酸进行成盐反应,
    COOH-(CH 2) n-COOH  式(1)  CONH 2-(CH 2) n-CONH 2  式(2)
    NH 2-(CH 2) m-NH 2    式(3)
    式(1)~式(3)中,n=9-13,m=9-13。
  2. 根据权利要求1所述的方法,其中,步骤2)得到产物直接用于步骤3)进行反应。
  3. 根据权利要求1所述的方法,其中,所述含氨化合物为氨气和/或尿素。
  4. 根据权利要求1所述的方法,其中,式(1)所示的高碳链烷烃二酸与含氨化合物的摩尔比为1:1-10。
  5. 根据权利要求1-4中任意一项所述的方法,其中,所述酰胺化反应条件包括:反应温度为150-280℃,反应时间为3-18小时。
  6. 根据权利要求1-4中任意一项所述的方法,其中,式(2)所示的高碳链二酰胺与次氯酸钠和/或次溴酸钠的摩尔比为1:1.8-3.5。
  7. 根据权利要求1-4中任意一项所述的方法,其中,步骤2)在溶剂存在下进行;
    优选地,式(2)所示的高碳链二酰胺与所述溶剂的重量比为1:5-15;
    优选地,所述溶剂为二氧六环、乙二醇二甲醚、乙二醇二乙醚、二乙二醇二甲醚、二乙二醇二乙醚、四氢呋喃、甲醇、乙醇和丙醇中的一种或多种。
  8. 根据权利要求1-4中任意一项所述的方法,其中,步骤2)中,反应体系的pH值在9以上。
  9. 根据权利要求1-4中任意一项所述的方法,其中,式(3)所示的高碳链烷烃二胺为壬二胺、癸二胺、十一烷二胺、十二烷二胺或十三烷二胺。
  10. 根据权利要求1-4中任意一项所述的方法,其中,步骤3)中,式(3)所示的高碳链烷烃二胺与对苯二甲酸的摩尔比为1:0.95-1.05;
    优选地,所述有机溶剂为甲醇、乙醇和异丙醇中的一种或多种。
  11. 一种高碳链烷烃二胺对苯二甲酸盐,其特征在于,通过权利要求1-10中任意一项所述的方法制备得到。
  12. 权利要求1-10中任意一项所述的方法制备得到的高碳链烷烃二胺对苯二甲酸盐或权利要求11所述的高碳链烷烃二胺对苯二甲酸盐在制备聚酰胺中的应用。
PCT/CN2020/125032 2019-11-01 2020-10-30 高碳链烷烃二胺对苯二甲酸盐及其制备方法和应用 WO2021083300A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911059284.0 2019-11-01
CN201911059284.0A CN112759522A (zh) 2019-11-01 2019-11-01 高碳链烷烃二胺对苯二甲酸盐及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021083300A1 true WO2021083300A1 (zh) 2021-05-06

Family

ID=75692094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125032 WO2021083300A1 (zh) 2019-11-01 2020-10-30 高碳链烷烃二胺对苯二甲酸盐及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN112759522A (zh)
WO (1) WO2021083300A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880235A (zh) * 2010-06-30 2010-11-10 株洲时代新材料科技股份有限公司 一种长链半芳香族尼龙盐的制备方法
CN103613505A (zh) * 2013-11-18 2014-03-05 江门市德众泰工程塑胶科技有限公司 一种使用混合溶剂合成半芳香族尼龙盐的方法
CN103613495A (zh) * 2013-11-18 2014-03-05 江门市德众泰工程塑胶科技有限公司 一种长碳链半芳香族尼龙盐的制备方法
CN105339415A (zh) * 2013-06-19 2016-02-17 帝斯曼知识产权资产管理有限公司 生产半芳族半结晶聚酰胺的方法
CN108727200A (zh) * 2017-04-24 2018-11-02 北京旭阳科技有限公司 壬二胺的合成方法
CN109456202A (zh) * 2018-11-05 2019-03-12 昆山博科化学有限公司 高碳链烷烃二胺及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3529240A1 (de) * 1985-08-16 1987-02-26 Basf Ag Schlagzaehe polyamidformmassen und deren herstellung
DE10217433A1 (de) * 2002-04-18 2003-10-30 Basf Ag Inhärent vernetzbare Polyamide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880235A (zh) * 2010-06-30 2010-11-10 株洲时代新材料科技股份有限公司 一种长链半芳香族尼龙盐的制备方法
CN105339415A (zh) * 2013-06-19 2016-02-17 帝斯曼知识产权资产管理有限公司 生产半芳族半结晶聚酰胺的方法
CN103613505A (zh) * 2013-11-18 2014-03-05 江门市德众泰工程塑胶科技有限公司 一种使用混合溶剂合成半芳香族尼龙盐的方法
CN103613495A (zh) * 2013-11-18 2014-03-05 江门市德众泰工程塑胶科技有限公司 一种长碳链半芳香族尼龙盐的制备方法
CN108727200A (zh) * 2017-04-24 2018-11-02 北京旭阳科技有限公司 壬二胺的合成方法
CN109456202A (zh) * 2018-11-05 2019-03-12 昆山博科化学有限公司 高碳链烷烃二胺及其制备方法和应用

Also Published As

Publication number Publication date
CN112759522A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
JP6643496B2 (ja) アリール置換パラ−フェニレンジアミン系物質の製造方法
CN102186903A (zh) 制备聚酰胺的分批方法
CN101284906A (zh) 聚酰胺的制备方法
JP5343704B2 (ja) ポリアミドの製造方法
WO2020093949A1 (zh) 高碳链烷烃二胺及其制备方法和应用
JPS58111829A (ja) ポリアミドの製造方法
JP5633519B2 (ja) ポリアミドの製造方法
CN107325279A (zh) 一种连续化生产半芳香族尼龙的方法
JP5802200B2 (ja) シアン化物塩を用いるキレート化剤又はその前駆体の製造方法
WO2021083300A1 (zh) 高碳链烷烃二胺对苯二甲酸盐及其制备方法和应用
US2743247A (en) Method of polycondensation of alkylene-alkylidene- and aralkylidene-bishalogen substituted carboxylic acid amides
CN101973887A (zh) 一种双季铵盐的制备方法
EP0013554B1 (en) Process for production of 1,17-diamino-9-azaheptadecane
JP4605328B2 (ja) アルキレンビスメラミンの製造方法
JPWO2016056340A1 (ja) ポリアミド樹脂の製造方法
JP4168233B2 (ja) ポリアミド製造法
US20030114700A1 (en) Continuous process for the cyanoalkylation of compounds having one or more NH functions
RU2448952C1 (ru) Способ получения диамида терефталевой кислоты
CN117865900A (zh) 一种苯并三氮唑产品品质优化方法
JPS62292747A (ja) N,n−ジアルキル置換アミノフエノ−ル類の製造方法
JPH04112862A (ja) 3―シアノ―3,5,5―トリメチルシクロへキサノンの製造方法
JP2001114724A (ja) 脂環族ジカルボン酸の製造方法
JPH01141913A (ja) 高重合度ポリアミドの合成法
JPH0567629B2 (zh)
JPH0570417A (ja) 芳香族アミノカルボン酸の製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882440

Country of ref document: EP

Kind code of ref document: A1