WO2021081957A1 - 显示面板及其制备方法、显示装置 - Google Patents

显示面板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2021081957A1
WO2021081957A1 PCT/CN2019/114889 CN2019114889W WO2021081957A1 WO 2021081957 A1 WO2021081957 A1 WO 2021081957A1 CN 2019114889 W CN2019114889 W CN 2019114889W WO 2021081957 A1 WO2021081957 A1 WO 2021081957A1
Authority
WO
WIPO (PCT)
Prior art keywords
base substrate
insulating layer
flexible insulating
area
display panel
Prior art date
Application number
PCT/CN2019/114889
Other languages
English (en)
French (fr)
Inventor
罗皓
邓银
韦东梅
吴博
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/976,611 priority Critical patent/US20210134849A1/en
Priority to CN201980002239.3A priority patent/CN113133321A/zh
Priority to PCT/CN2019/114889 priority patent/WO2021081957A1/zh
Publication of WO2021081957A1 publication Critical patent/WO2021081957A1/zh
Priority to US17/588,860 priority patent/US20220157858A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • H01L27/1244Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits for preventing breakage, peeling or short circuiting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133351Manufacturing of individual cells out of a plurality of cells, e.g. by dicing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13458Terminal pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/59Fixed connections for flexible printed circuits, flat or ribbon cables or like structures
    • H01R12/592Fixed connections for flexible printed circuits, flat or ribbon cables or like structures connections to contact elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/7076Coupling devices for connection between PCB and component, e.g. display
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/147Structural association of two or more printed circuits at least one of the printed circuits being bent or folded, e.g. by using a flexible printed circuit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/129Chiplets
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/851Division of substrate

Definitions

  • This application relates to the field of display technology, and in particular to a display panel, a manufacturing method thereof, and a display device.
  • the present application discloses a display panel, a manufacturing method thereof, and a display device to provide an ultra-narrow frame solution for a rigid display panel.
  • a display panel including:
  • the flexible insulating layer includes a first part and a second part, the first part is disposed on the base substrate, and the second part extends beyond one side edge of the base substrate;
  • the integrated circuit chip and the flexible circuit board are respectively bonded and connected with the second part of the flexible insulating layer.
  • the flexible circuit board is located on a side of the integrated circuit chip away from the first part of the flexible insulating layer.
  • the base substrate includes a display area and a connection area located on one side of the display area;
  • the projection of the first part of the flexible insulating layer on the base substrate is located in the connection area, and the second part extends beyond the edge of one side of the connection area of the base substrate.
  • the width of the connection area in a direction away from the display area is 200 ⁇ m-400 ⁇ m; the width of the first part in a direction away from the display area is 200 ⁇ m-300 ⁇ m.
  • the display panel further includes a buffer layer disposed on a side of the flexible insulating layer away from the base substrate, and the buffer layer completely covers a surface of the flexible insulating layer away from the base substrate .
  • the projection of the portion of the buffer layer provided on the base substrate on the base substrate is located in the connection area.
  • the display panel further includes a driving circuit arranged on a side of the buffer layer away from the base substrate.
  • the material of the flexible insulating layer is polyimide; the material of the base substrate is glass.
  • the display panel further includes a color filter substrate, and a side edge of the color filter substrate close to the second portion of the flexible insulating layer is aligned with the side edge of the base substrate.
  • the second part of the flexible insulating layer is bent to a side of the base substrate away from the first part of the flexible insulating layer.
  • a display device includes the display panel described in any one of the above.
  • the display device further includes a circuit board on a side of the base substrate away from the first part of the flexible insulating layer;
  • the second part of the flexible insulating layer is bent to a side of the base substrate away from the first part of the flexible insulating layer;
  • the integrated circuit chip is electrically connected to the circuit board.
  • a method for preparing a display panel includes the following steps:
  • the base substrate including a first area and a second area located on one side of the first area;
  • the flexible insulating layer including a first portion located on the first area and a second portion located on the second area;
  • An integrated circuit chip and a flexible circuit board are respectively bound on the second part of the flexible insulating layer;
  • the second area of the base substrate is cut off.
  • the first area includes a display area and a connection area, and the connection area is located between the display area and the second area;
  • Forming a flexible insulating layer on the base substrate specifically includes:
  • a flexible insulating layer is formed on the connection area and the second area of the base substrate.
  • forming a flexible insulating layer on the base substrate specifically includes:
  • a screen printing process is used to form a flexible insulating layer on the base substrate.
  • the method before binding the integrated circuit chip and the flexible circuit board on the second part of the flexible insulating layer, the method further includes:
  • the pattern of the driving circuit is formed on the base substrate through an array process.
  • the method further includes:
  • a buffer layer is formed on the flexible insulating layer, and the projection of the buffer layer on the base substrate surrounds the projection of the flexible insulating layer on the base substrate.
  • the peeling off the second portion of the flexible insulating layer from the second area of the base substrate specifically includes:
  • the laser lift-off technology is used to peel the second part of the flexible insulating layer from the second area of the base substrate.
  • the cutting off the second area of the base substrate specifically includes:
  • the base substrate is cut along the dividing line between the first area and the second area, and the depth of the cut is smaller than that of the substrate The thickness of the substrate; after the cutting operation, the first area and the second area of the base substrate are separated along the boundary line by external force.
  • the method further includes:
  • the second part of the flexible insulating layer is bent to the side of the base substrate away from the first part of the flexible insulating layer for packaging.
  • FIG. 1 is a schematic cross-sectional view and a schematic top view corresponding to a display panel provided by an embodiment of the application;
  • FIG. 2 is a schematic diagram of a partial cross-sectional structure of a display panel provided by another embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a cross-sectional structure of a display panel provided by another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a cross-sectional structure of a display panel provided by another embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a cross-sectional structure comparison between a display panel provided by an embodiment of the disclosure and two display panels in the related art;
  • FIG. 6 is a flowchart of a method for manufacturing a display panel provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic cross-sectional view and a schematic top view corresponding to a display panel provided by an embodiment of the disclosure in a manufacturing stage;
  • FIG. 8 is a schematic cross-sectional view and a schematic top view corresponding to a display panel provided by an embodiment of the disclosure in another preparation stage;
  • FIG. 9 is a schematic top view corresponding to a display panel provided by an embodiment of the disclosure in another preparation stage.
  • FIG. 10 is a schematic top view corresponding to a display panel provided by an embodiment of the disclosure in another manufacturing stage.
  • a display panel including:
  • the flexible insulating layer 2 includes a first part 21 and a second part 22, the first part 21 is arranged on the base substrate 1, and the second part 22 extends beyond one side edge of the base substrate 1;
  • An integrated circuit chip (IC) 3 and a flexible circuit board (FPC) 4 are bonded and connected to the second part 22 of the flexible insulating layer 2 respectively.
  • a flexible insulating layer 2 is provided on a rigid base substrate 1, a first part 21 of the flexible insulating layer 2 is disposed on the base substrate 1, and a second part 22 extends beyond one side edge of the base substrate 1 and is bound IC 3 and FPC 4 are provided.
  • the second part 22 of the flexible insulating layer 2 can be bent to the back of the base substrate 1 for packaging, as shown in Figure 5 (a), so as to realize the display module Set of narrow borders.
  • the frame of the display panel can be designed to be very narrow. Specifically, it is compared with the bonding of FPC 40 on the glass substrate 10 and bonding chip on the FPC 40 as shown in Figure 5 (b).
  • the frame of the solution (COF, chip on FPC) and the solution (COG, chip on Glass) of binding the chip 30 and the FPC 40 on the glass substrate 10 as shown in (c) of FIG. 5 are narrower.
  • the display panel provided by this application can be realized by only using the COG bonding process and a simple flexible deposition process.
  • the process is simple, which can avoid the shortcomings of tight COF resources and at the same time avoid COF bonding.
  • the problem of yield loss caused by the process is very practical.
  • the display panel provided by the present application can be applied to both rigid OLED and LCD, which can make rigid OLED and LCD still have strong competitiveness in the full-screen era.
  • an integrated circuit chip (IC) 3 and a flexible circuit board (FPC) 4 are both arranged on the second part 22 of the flexible insulating layer 2 and along the extension of the flexible insulating layer 2.
  • the flexible circuit board 4 is located on the side of the integrated circuit chip 3 away from the first part 21 of the flexible insulating layer 2, that is, along the extension direction of the flexible insulating layer 2, the IC 3 is close to the flexible insulating layer
  • the FPC 4 of the first part 21 of the layer 2 is far away from the first part 21 of the flexible insulating layer 2.
  • the material of the flexible insulating layer 2 may be polyimide (PI); the material of the base substrate 1 may be glass.
  • the base substrate 1 includes a display area AA and a connection area BB located on one side of the display area AA.
  • the projection of the first part 21 of the flexible insulating layer 2 on the base substrate 1 is located in the connection area BB, and the second part 22 extends beyond the edge of the base substrate 1 on the side of the connection area BB. That is, there is no flexible insulating layer 2 on the display area AA of the base substrate 1, and the flexible insulating layer 2 is only arranged on the frame area (connection area BB) on one side of the display area AA and partially exceeds the frame area.
  • the flexible insulating layer 2 is on the base substrate 1.
  • the above preparation process is simple and can be realized by conventional screen printing and other processes. Therefore, there is no need to purchase slit coating equipment in the flexible OLED manufacturing process, which can greatly reduce the cost of this solution.
  • the structure of each part does not represent the regional scope.
  • the width d of the connection area BB in the direction away from the display area AA may be designed to be about 200 ⁇ m-400 ⁇ m. This width is much smaller than the COF binding zone width (greater than 1mm). Further, the width of the first portion 21 of the flexible insulating layer 2 in the direction away from the display area AA may be about 200 ⁇ m-300 ⁇ m.
  • the display panel of the embodiment of the present application further includes a buffer layer (buffer layer) 5 disposed on the side of the flexible insulating layer 2 away from the base substrate 1.
  • the buffer layer 5 It completely covers the surface of the flexible insulating layer 2 away from the base substrate 1.
  • the display panel of the embodiment of the present application further includes a driving circuit arranged on the side of the buffer layer 5 away from the base substrate 1.
  • the driving circuit in the embodiment of the present application specifically includes all the graphic structures required to achieve pixel driving, including not only the pixel circuit in the display area AA, but also the metal traces extending to the flexible insulating layer 2, And structures such as connection terminals located on the second part 22 of the flexible insulating layer 2 and used for binding with the IC 3 and FPC 4, for example, as shown in FIGS. 7 and 10, the second part 22 of the flexible insulating layer 2 A connection terminal 31 for binding the IC 3 and a connection terminal 41 for binding the FPC 4 are provided.
  • the flexible insulating layer 2 has strong water absorption.
  • a buffer layer 5 is provided before the drive circuit (including metal traces) is formed.
  • the flexible insulating layer 2 and the drive circuit layer are isolated by the buffer layer 5, which can effectively block water vapor and prevent the drive circuit. Corrosion of metal traces.
  • the material of the buffer layer 5 may include silicon nitride (SiNx), silicon oxide (SiOx), or a combination of both.
  • silicon nitride (SiNx) has a better effect of isolating water vapor
  • silicon oxide (SiOx) is relatively soft and is very suitable for preparation on the flexible insulating layer 2.
  • the projection of the portion of the buffer layer 5 provided on the base substrate 1 on the base substrate 1 is located in the connection area BB. That is, the buffer layer 5 is not deposited in the display area AA, which can save material and help reduce the thickness of the display panel.
  • the part of the buffer layer 5 on the connection area BB of the base substrate 1 completely covers the first part 21 of the flexible insulating layer 2, so that the edge of the buffer layer 5 and the first part 21 of the flexible insulating layer 2
  • the edge can form a stepped structure (as shown in the dashed box in FIG. 2), so as to prevent the wire from breaking when the edge of the buffer layer 5 and the edge of the flexible insulating layer 2 cross the line.
  • the display panel of the embodiment of the present application is a liquid crystal display panel (LCD), and the base substrate 1 is configured as the substrate of the array substrate.
  • LCD liquid crystal display panel
  • the display panel further includes a color filter substrate 6.
  • An edge of the color filter substrate 6 close to the second portion 22 of the flexible insulating layer 2 is aligned with the side edge of the base substrate 1, that is, a liquid crystal display In the panel, the borders of the base substrate 1 and the color filter substrate 6 on the binding package side are aligned.
  • the display panel of the embodiment of the present application can also be designed according to the current conventional scheme. As shown in FIG. 4, the edge of the color filter substrate 6 and the array substrate on the side of the binding area are not aligned, and the base substrate 1 of the array substrate Beyond the edge of the color filter substrate 6.
  • the display panel of the embodiment of the present application may also be a rigid OLED.
  • the base substrate is configured as the substrate of the driving backplane of the OLED.
  • the second portion 22 of the flexible insulating layer 2 is bent until the base substrate 1 is away from the flexible insulating layer 2.
  • One side of the first part 21 is used to encapsulate the lower frame of the display panel.
  • an embodiment of the present application further provides a display device, and the display device includes a display panel as in any of the foregoing embodiments.
  • the display device of the embodiment of the present application may further include a circuit board 7 located on the side of the base substrate 1 away from the first part 21 of the flexible insulating layer 2.
  • the second part 22 of the flexible insulating layer 2 is bent to the side of the base substrate 1 away from the first part 21 of the flexible insulating layer 2, and the FPC 4 bound on the second part 22 is electrically connected to the circuit board 7 . That is, the portion of the flexible insulating layer 2 that exceeds the base substrate 1 is configured to be folded and bent to the back of the display panel (the side facing away from the display surface) for packaging.
  • the display device is a liquid crystal display device (LCD)
  • the display device has a backlight source.
  • the circuit board is arranged on the side of the backlight source away from the display panel, and the second part of the flexible insulating layer is bent to the backlight source. Encapsulate on the back.
  • the display device is an organic electroluminescent display device (OLED), there is no backlight.
  • the circuit board is directly arranged on the back of the display panel, and the second part of the flexible insulating layer is directly bent to the back of the display panel for packaging .
  • OLED organic electroluminescent display device
  • the embodiment of the present application also provides a method for manufacturing the display panel. As shown in FIG. 6, the method includes the following steps:
  • Step 101 providing a rigid base substrate, the base substrate including a first area and a second area located on one side of the first area;
  • Step 102 forming a flexible insulating layer on the base substrate, the flexible insulating layer including a first portion located on the first area and a second portion located on the second area;
  • Step 103 bonding IC and FPC on the second part of the flexible insulating layer respectively;
  • Step 104 peeling the second part of the flexible insulating layer from the second area of the base substrate;
  • Step 105 the second area of the base substrate is cut off.
  • the COG bonding process of the traditional LCD production line can be used; and after the bonding is completed, the second part of the flexible insulating layer is peeled off, and then the peeled base substrate area is cut, so that the flexible insulating layer is not peeled off
  • the first part still has a strong adhesion to the base substrate, which can replace the COF bonding process. At this time, the flexible insulating layer can replace the COF.
  • the display panel formed by the above preparation method is provided with a flexible insulating layer 2 on a rigid base substrate 1, and a first part 21 of the flexible insulating layer 2 is provided on the base substrate 1.
  • the second part 22 extends beyond one side edge of the base substrate 1 and is bound with IC 3 and FPC 4.
  • the second part 22 of the flexible insulating layer 2 can be bent to the back of the base substrate 1 for packaging.
  • the narrow frame of the display module is realized. Specifically, as shown in Figure 5(a), since the frame area of the above-mentioned base substrate 1 does not need to be bound with IC or FPC, the frame of the display panel can be designed to be very narrow.
  • the above-mentioned preparation method specifically includes several processes such as flexible film deposition, binding, flexible film peeling, substrate cutting, etc. Therefore, it can be realized by using only part of the process in COG packaging and a simple flexible deposition process.
  • the process is simple and compared In the COF packaging scheme, it can avoid the shortcomings of COF resource shortage, and at the same time can avoid the problem of yield loss caused by the COF binding process, which is very practical.
  • the above-mentioned preparation method of the display panel can be applied to both rigid OLED and LCD, so that the rigid OLED and LCD still have strong competitiveness in the full-screen era.
  • the material of the flexible insulating layer 2 may be polyimide (PI); the material of the base substrate 1 may be glass.
  • the first area CC of the base substrate 1 includes a display area AA and a connection area BB, and the connection area BB is located between the display area AA and the second area DD.
  • step 102, forming the flexible insulating layer 2 on the base substrate 1 may specifically include: forming the flexible insulating layer 2 on the connection area BB and the second area DD of the base substrate 1. That is, there is no flexible insulating layer 2 on the display area AA of the base substrate 1, and the flexible insulating layer 2 is only provided in the frame area (the connection area BB and the second area DD) on one side of the display area AA.
  • step 102, forming the flexible insulating layer 2 on the base substrate 1 may specifically include: forming the flexible insulating layer 2 on the base substrate 1 by using a screen printing process.
  • the flexible insulating layer 2 may also be thermally cured.
  • the edge of the flexible insulating layer 2 formed by the screen printing process has a certain slope angle, which can prevent the wiring from breaking through the boundary of the PI film edge.
  • step 103 that is, before the IC and FPC are bound on the second part of the flexible insulating layer, the following steps may be further included:
  • the pattern of the driving circuit is formed on the base substrate 1 through the array process.
  • the driving circuit in the embodiment of the present application specifically includes all the graphic structures required to achieve pixel driving, including not only the pixel circuit in the display area AA (not shown in the figure), but also the flexible insulating layer. 2 on the metal traces (not shown in the figure), and on the second part 22 of the flexible insulating layer 2 and used for bonding with IC and FPC and other structures, as shown in Figure 7 and Figure 10
  • the second part 22 of the flexible insulating layer 2 is provided with a connecting terminal 31 for bonding the IC 3 and a connecting terminal 41 for bonding the FPC 4.
  • the following steps may be further included:
  • a buffer layer 5 is formed on the flexible insulating layer 2, and the projection of the buffer layer 5 on the base substrate 1 surrounds the projection of the flexible insulating layer 2 on the base substrate 1.
  • the flexible insulating layer 2 has strong water absorption.
  • a buffer layer 5 is provided before the drive circuit (including metal traces) is formed.
  • the flexible insulating layer 2 and the drive circuit layer are isolated by the buffer layer 5, which can effectively block water vapor and prevent the drive circuit. Corrosion of metal traces.
  • the material of the buffer layer 5 may include silicon nitride (SiNx), silicon oxide (SiOx), or a combination of both.
  • silicon nitride (SiNx) has a better effect of isolating water vapor
  • silicon oxide (SiOx) is relatively soft and is very suitable for preparation on the flexible insulating layer 2.
  • the projection of the portion of the buffer layer 5 provided on the base substrate 1 on the base substrate 1 is located in the connection area BB. That is, the buffer layer 5 is not deposited in the display area AA, which can save material and help reduce the thickness of the display panel.
  • the part of the buffer layer 5 on the connection area BB of the base substrate 1 completely covers the first part 21 of the flexible insulating layer 2, so that the edge of the buffer layer 5 and the first part 21 of the flexible insulating layer 2
  • the edge can form a stepped structure (as shown in the dashed box in FIG. 2), so as to prevent the wire from breaking when the edge of the buffer layer 5 and the edge of the flexible insulating layer 2 cross the line.
  • the module process (cell process) may be followed.
  • processes such as liquid crystal infusion and cell matching may be included;
  • OLED processes such as deposition of the light-emitting unit film layer and preparation of an encapsulation layer may be included.
  • step 104 peeling the second part of the flexible insulating layer from the second area of the base substrate, specifically includes:
  • LLO Laser lift-off technology
  • step 105, cutting the second area of the base substrate specifically includes:
  • the base substrate is cut along the dividing line between the first zone and the second zone, and the cutting depth is less than the thickness of the base substrate;
  • the first area and the second area of the base substrate are separated along the boundary line.
  • the base substrate can be directly broken along the boundary line between the first area and the second area. In this way, damage to the flexible insulating layer caused by the cutting operation can be avoided.
  • step 101, providing a rigid base substrate 1 specifically includes: providing a large-size substrate 8, and the large-size substrate 8 may include at least two base substrates 1.
  • step 103 that is, before the IC and FPC are bound on the second part of the flexible insulating layer, the following steps are further included:
  • the large-sized substrate 8 is divided by a cutting process to obtain an independent base substrate 1.
  • a flexible insulating layer 2 As shown in FIGS. 9 and 10, a flexible insulating layer 2, a buffer layer 5, a driving circuit (including a connecting terminal 31 for bonding IC and a connecting terminal 41 for bonding FPC), and a pair of liquid crystals are prepared.
  • Some cell processes such as boxing or deposition of light-emitting unit film layers can all be performed uniformly on the basis of the large-size substrate 8, and then the large-size substrate 8 is divided to obtain an independent display module as shown in FIG. 7.
  • the edge of the color filter substrate can be cut inward as in a conventional cutting operation to expose the connection area of the base substrate. Since the connection area does not require a binding operation, the cutting edge of the color filter substrate can also be aligned with the cutting edge of the base substrate in this cutting process.
  • step 104 and step 105 need to be performed sequentially, that is, the second part 22 of the flexible insulating layer 2 needs to be sequentially performed.
  • step 105 after the second area of the base substrate is cut off, further includes the following steps: as shown in Figure 5 (a), bending the second portion 22 of the flexible insulating layer 2 Fold to the side of the base substrate 1 away from the first part 21 of the flexible insulating layer 2 for packaging. That is, the portion of the flexible insulating layer 2 that exceeds the base substrate 1 is configured to be folded and bent to the back of the display panel (the side facing away from the display surface) for packaging.
  • a circuit board 7 is provided on the side of the base substrate 1 away from the first portion 21 of the flexible insulating layer 2.
  • the second part 22 of the flexible insulating layer 2 is bent to the side of the base substrate 1 away from the first part 21 of the flexible insulating layer 2, and the FPC 4 bound on the second part 22 is electrically connected to the circuit board 7.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请涉及显示技术领域,公开一种显示面板及其制备方法、显示装置。显示面板包括:刚性衬底基板;柔性绝缘层,包括第一部分和第二部分,所述第一部分设置在所述衬底基板上,所述第二部分超出所述衬底基板的一侧边缘;集成电路芯片和柔性线路板,分别与所述柔性绝缘层的第二部分绑定连接。上述显示面板的边框可以设计的非常窄,具体可以相比于COF和COG的边框都要窄。并且,相比于COF封装方案,本申请提供的显示面板,仅采用COG绑定工艺和简单的柔性沉积工艺即可以实现,工艺简单,实用性很强。另外,本申请提供的显示面板,可以同时适用于刚性OLED和LCD,可以提高刚性面板在全面屏时代的竞争力。

Description

显示面板及其制备方法、显示装置 技术领域
本申请涉及显示技术领域,特别涉及一种显示面板及其制备方法、显示装置。
背景技术
如今,手机已经进入了全面屏时代,各大手机厂商都在追求极致的全面屏,高屏占比。左右窄边框已经很成熟,上边框可以通过留海屏、水滴屏、甚至升降摄像头来解决。在追求全面屏的过程中,下边框的宽度成为限制提高屏占比最大的瓶颈。因此,如何实现下边框的超窄边框,是目前的显示面板亟需解决的技术问题。
发明内容
本申请公开了一种显示面板及其制备方法、显示装置,用以提供一种刚性显示面板的超窄边框方案。
为达到上述目的,本公开提供以下技术方案:
一种显示面板,包括:
刚性衬底基板;
柔性绝缘层,包括第一部分和第二部分,所述第一部分设置在所述衬底基板上,所述第二部分超出所述衬底基板的一侧边缘;
集成电路芯片和柔性线路板,分别与所述柔性绝缘层的第二部分绑定连接。
可选的,所述柔性线路板位于所述集成电路芯片远离所述柔性绝缘层第一部分的一侧。
可选的,所述衬底基板包括显示区和位于所述显示区一侧的连接区;
所述柔性绝缘层的第一部分在衬底基板上的投影位于所述连接区内,所 述第二部分超出所述衬底基板的连接区一侧的边缘。
可选的,所述连接区沿远离所述显示区方向上的宽度为200μm-400μm;所述第一部分沿远离所述显示区方向上的宽度为200μm-300μm。
可选的,所述显示面板还包括设置在所述柔性绝缘层远离所述衬底基板一侧的缓冲层,所述缓冲层完全覆盖所述柔性绝缘层远离所述衬底基板的一侧表面。
可选的,所述缓冲层设置在所述衬底基板上的部分在所述衬底基板上的投影位于所述连接区内。
可选的,所述显示面板还包括设置在所述缓冲层远离所述衬底基板一侧的驱动电路。
可选的,所述柔性绝缘层的材料为聚酰亚胺;所述衬底基板的材料为玻璃。
可选的,所述显示面板还包括彩膜基板,所述彩膜基板靠近所述柔性绝缘层第二部分的一侧边缘与所述衬底基板的所述一侧边缘对齐。
可选的,所述柔性绝缘层的第二部分弯折至所述衬底基板背离所述柔性绝缘层第一部分的一侧。
一种显示装置,包括上述任一项所述的显示面板。
可选的,所述显示装置还包括位于所述衬底基板背离所述柔性绝缘层第一部分的一侧的电路板;
所述柔性绝缘层的第二部分弯折至所述衬底基板背离所述柔性绝缘层第一部分的一侧;
所述集成电路芯片与所述电路板电连接。
一种显示面板的制备方法,包括以下步骤:
提供刚性衬底基板,所述衬底基板包括第一区和位于所述第一区一侧的第二区;
在所述衬底基板上形成柔性绝缘层,所述柔性绝缘层包括位于所述第一区上的第一部分和位于所述第二区上的第二部分;
在所述柔性绝缘层的第二部分上分别绑定集成电路芯片和柔性线路板;
将所述柔性绝缘层的第二部分从所述衬底基板的第二区上剥离;
将所述衬底基板的第二区切除。
可选的,所述第一区包括显示区和连接区,所述连接区位于所述显示区和所述第二区之间;
在所述衬底基板上形成柔性绝缘层,具体包括:
在所述衬底基板的连接区和第二区上形成柔性绝缘层。
可选的,在所述衬底基板上形成柔性绝缘层,具体包括:
采用丝网印刷工艺在所述衬底基板上形成柔性绝缘层。
可选的,所述在所述柔性绝缘层的第二部分上绑定集成电路芯片和柔性线路板之前,还包括:
通过阵列工艺在所述衬底基板上形成驱动电路的图形。
可选的,所述通过阵列工艺在所述衬底基板上形成驱动电路的图形之前,还包括:
在所述柔性绝缘层上形成缓冲层,所述缓冲层在衬底基板上的投影包围所述柔性绝缘层在衬底基板上的投影。
可选的,所述将所述柔性绝缘层的第二部分从所述衬底基板的第二区上剥离,具体包括:
采用激光剥离技术将所述柔性绝缘层的第二部分从所述衬底基板的第二区上剥离。
可选的,所述将所述衬底基板的第二区切除,具体包括:
从所述衬底基板背离所述柔性绝缘层的一侧、对所述衬底基板沿所述第一区和所述第二区之间的分界线进行切割,切割的深度小于所述衬底基板的厚度;切割操作后通过外力使所述衬底基板的第一区和第二区沿所述分界线分离。
可选的,将所述衬底基板的第二区切除之后,还包括:
将所述柔性绝缘层的第二部分弯折至所述衬底基板背离所述柔性绝缘层 第一部分的一侧进行封装。
附图说明
图1为本申请实施例提供的一种显示面板所对应的截面示意图和俯视示意图;
图2为本公开另一实施例提供的一种显示面板的部分截面结构示意图;
图3为本公开另一实施例提供的一种显示面板的截面结构示意图;
图4为本公开另一实施例提供的一种显示面板的截面结构示意图;
图5为本公开实施例提供的一种显示面板与相关技术中的两种显示面板的截面结构对比示意图;
图6为本公开实施例提供的一种显示面板的制备方法流程图;
图7为本公开实施例提供的一种显示面板在一个制备阶段所对应的截面示意图和俯视示意图;
图8为本公开实施例提供的一种显示面板在另一个制备阶段所对应的截面示意图和俯视示意图;
图9为本公开实施例提供的一种显示面板在另一个制备阶段所对应的俯视示意图;
图10为本公开实施例提供的一种显示面板在另一个制备阶段所对应的俯视示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图1至图4所示,本公开实施例提供了一种显示面板,包括:
刚性衬底基板1;
柔性绝缘层2,包括第一部分21和第二部分22,第一部分21设置在衬底基板1上,第二部分22超出衬底基板1的一侧边缘;
集成电路芯片(IC)3和柔性线路板(FPC)4,分别与柔性绝缘层2的第二部分22绑定连接。
上述显示面板,在刚性衬底基板1上设置有一柔性绝缘层2,该柔性绝缘层2的第一部分21设置在衬底基板1上,第二部分22超出衬底基板1的一侧边缘并绑定有IC 3和FPC 4,在显示模组制备阶段,可以将柔性绝缘层2的第二部分22弯折至衬底基板1背面封装,如图5中(a)所示,从而实现显示模组的窄边框。具体的,如图5中(a)所示,由于本申请中的柔性绝缘层2直接沉积在衬底基板1上,衬底基板1的边框区域既不需要绑定IC,也不需要绑定FPC,因此,该显示面板的边框可以设计的非常窄,具体的,相比于如图5中(b)所示的在玻璃基板10上绑定FPC 40、并在FPC 40上绑定芯片的方案(COF,chip on FPC)以及如图5中(c)所示的在玻璃基板10上绑定芯片30和FPC 40的方案(COG,chip on Glass)的边框都要更窄。并且,相比于COF方案,本申请提供的显示面板,仅采用COG绑定工艺和简单的柔性沉积工艺即可以实现,工艺简单,既可以避免COF资源紧张的缺点,同时又可以避免COF绑定工艺造成的良率损失问题,实用性很强。另外,本申请提供的显示面板,可以同时适用于刚性OLED和LCD,可以使得刚性OLED和LCD在全面屏时代仍然具有很强的竞争力。
具体的,如图1至图4所示,集成电路芯片(IC)3和柔性线路板(FPC)4,均设置在柔性绝缘层2的第二部分22上,且沿柔性绝缘层2的延展方向上排布;具体的,柔性线路板4位于集成电路芯片3远离所述柔性绝缘层2第一部分21的一侧,即,沿柔性绝缘层2的延展方向上,所述IC 3靠近柔性绝缘层2的第一部分21,FPC 4远离柔性绝缘层2的第一部分21。
一种具体的实施例中,柔性绝缘层2的材料可以为聚酰亚胺(PI);衬底基板1的材料可以为玻璃。
一种具体的实施例中,衬底基板1包括显示区AA和位于显示区AA一侧 的连接区BB。柔性绝缘层2的第一部分21在衬底基板1上的投影位于连接区BB内,第二部分22超出衬底基板1的连接区BB一侧的边缘。即衬底基板1的显示区AA上没有柔性绝缘层2,柔性绝缘层2仅设置在显示区AA一侧的边框区(连接区BB)上且部分超出该边框区。
进而,柔性绝缘层2上只有简单的信号走线,不需要像显示区AA那样需要制备像素,所以对柔性绝缘层2的表面要求并不那么高,因此,柔性绝缘层2在衬底基板1上的制备工艺要求简单,常规丝网印刷等工艺就能实现。所以也不需要采购柔性OLED制备工艺中的狭缝刮涂(slit coating)设备,可以大大降低本方案的成本。
具体的,上述提到的衬底基板的‘显示区’、‘连接区’,以及后面涉及到的‘第一区’、‘第二区’,均是指衬底基板沿延展方向上具有的各部分结构,并不是代表区域范围。
一种具体的实施例中,本申请实施例的显示面板,应用于手机显示模组时,连接区BB沿远离显示区AA方向上的宽度d可以设计约为200μm-400μm。此宽度比COF的绑定区宽度(大于1mm)要小很多。进一步的,所述柔性绝缘层2的第一部分21沿远离显示区AA方向上的宽度可以约为200μm-300μm。
一种具体的实施例中,如图2所示,本申请实施例的显示面板,还包括设置在柔性绝缘层2远离衬底基板1一侧的缓冲层(buffer层)5,该缓冲层5完全覆盖柔性绝缘层2远离衬底基板1的一侧表面。
进一步的,本申请实施例的显示面板,还包括设置在缓冲层5远离衬底基板1一侧的驱动电路。
具体的,本申请实施例中的驱动电路,具体包括用于实现像素驱动所需要的所有图形结构,既包括显示区AA内的像素电路,又包括延伸至柔性绝缘层2上的金属走线、以及位于柔性绝缘层2第二部分22上且用于与IC 3和FPC 4绑定的连接端子等结构,例如,如图7和图10中即表示出了柔性绝缘层2第二部分22上设有用于绑定IC 3的连接端子31和用于绑定FPC 4的连 接端子41。
具体的,柔性绝缘层2吸水性较强,在形成驱动电路(包括金属走线)之前设置缓冲层5,通过缓冲层5隔绝柔性绝缘层2和驱动电路层,可以有效阻挡水汽,防止驱动电路中的金属走线腐蚀。
示例性的,缓冲层5的材料可以包括氮化硅(SiNx)、氧化硅(SiOx)或者两者的组合。具体的,氮化硅(SiNx)隔绝水汽效果比较好,氧化硅(SiOx)比较软,很适合制备在柔性绝缘层2上。
示例性的,如图2所示,缓冲层5设置在衬底基板1上的部分在衬底基板1上的投影位于连接区BB内。即,在显示区AA内不沉积缓冲层5,这样可以节约材料,并且有利于减小显示面板的厚度。
具体的,如图2所示,缓冲层5在衬底基板1连接区BB上的部分完全覆盖柔性绝缘层2的第一部分21,这样,缓冲层5的边缘和柔性绝缘层2第一部分21的边缘可以形成阶梯结构(如图2中的虚线框中所示的部分),从而可以防止走线在缓冲层5的边缘和柔性绝缘层2的边缘跨线时发生断线。
一种具体的实施例中,如图3和图4所示,本申请实施例的显示面板为液晶显示面板(LCD),衬底基板1配置为阵列基板的衬底。
示例性的,如图3所示,显示面板还包括彩膜基板6,彩膜基板6靠近柔性绝缘层2第二部分22的一侧边缘与衬底基板1的该侧边缘对齐,即液晶显示面板中,衬底基板1和彩膜基板6的绑定封装一侧边框边沿对齐。
现有的LCD窄边框工艺,均需要在阵列基板的边框区进行绑定工艺(如IC和/或FPC的绑定),因此,彩膜基板与阵列基板在绑定区一侧的边缘不能对齐,需要对彩膜基板切割以暴露出阵列基板的绑定区。本申请实施例提供的LCD面板,由于IC 3和FPC 4是绑定在柔性绝缘层2的第二部分22上,该第二部分22超出衬底基板1的边框边沿,因此并不需要暴露出衬底基板1的部分边框进行绑定,因此,本申请实施例的显示面板,彩膜基板6和阵列基板在绑定区一侧的边缘可以对齐,从而改善LCD模组的整体外观和工艺。
当然,本申请实施例的显示面板,也可以按照目前常规的方案设计,如 图4所示,彩膜基板6和阵列基板在绑定区一侧的边缘不对齐,阵列基板的衬底基板1超出彩膜基板6边缘。
另一种具体的实施例中,本申请实施例的显示面板,也可以为刚性OLED。此时,衬底基板被配置为OLED的驱动背板的衬底。
一种具体的实施例中,如图5中(a)所示,本申请实施例的显示面板中,柔性绝缘层2的第二部分22弯折至所述衬底基板1背离柔性绝缘层2第一部分21的一侧,以用于实现显示面板下边框的封装。
具体的,本申请实施例还提供一种显示装置,该显示装置包括如上述任一实施例中的显示面板。
一种具体的实施例中,如图5中(a)所示,本申请实施例的显示装置,还可以包括位于衬底基板1背离柔性绝缘层2第一部分21的一侧的电路板7。具体的,柔性绝缘层2的第二部分22弯折至衬底基板1背离柔性绝缘层2第一部分21的一侧,该第二部分22上绑定的FPC 4与电路板7之间电连接。即,柔性绝缘层2超出衬底基板1的部分被配置为折叠弯曲到显示面板背面(背离显示面的一侧)进行封装。
具体的,若显示装置为液晶显示装置(LCD),该显示装置具有背光源,此时,电路板设置在背光源背离显示面板的一侧,柔性绝缘层的第二部分弯折至背光源的背面进行封装。若显示装置为有机电致发光显示装置(OLED),则没有背光源,此时,电路板直接设置在显示面板的背面,则柔性绝缘层的第二部分直接弯折至显示面板的背面进行封装。
具体的,基于本申请实施例提供的显示面板,本申请实施例还提供一种显示面板的制备方法,如图6所示,该方法包括以下步骤:
步骤101,提供刚性衬底基板,该衬底基板包括第一区和位于第一区一侧的第二区;
步骤102,在衬底基板上形成柔性绝缘层,该柔性绝缘层包括位于第一区上的第一部分和位于第二区上的第二部分;
步骤103,在柔性绝缘层的第二部分上分别绑定IC和FPC;
步骤104,将柔性绝缘层的第二部分从衬底基板的第二区上剥离;
步骤105,将衬底基板的第二区切除。
具体的,上述制备方法中,在柔性绝缘层上进行IC和FPC绑定(bonding)时,因柔性绝缘层下方具有刚性衬底基板,因此该过程不存在柔性bonding的困难,即在通过绑定设备按压IC或FPC以进行绑定连接的过程中,由于刚性衬底基板的存在,可以更容易实现IC或FPC与连接端子之间的压接,且压接的良率会更好,此时采用传统LCD产线的COG绑定工艺就能应对;并且,在Bonding完成后将柔性绝缘层第二部分剥离,然后将剥离的衬底基板区域切割,这样,可以使柔性绝缘层没有进行剥离的第一部分与衬底基板仍然有较强粘结力,可以替代COF bonding工艺,此时,柔性绝缘层可以取代COF的作用。
上述制备方法所形成的显示面板,如图1至图4所示,在刚性衬底基板1上设置有一柔性绝缘层2,该柔性绝缘层2的第一部分21设置在衬底基板1上,第二部分22超出衬底基板1的一侧边缘并绑定有IC 3和FPC 4,在显示模组制备阶段,可以将柔性绝缘层2的第二部分22弯折至衬底基板1背面封装,如图5中(a)所示,从而实现显示模组的窄边框。具体的,如图5中(a)所示,由于上述衬底基板1的边框区域既不需要绑定IC,也不需要绑定FPC,因此,该显示面板的边框可以设计的非常窄,具体可以达到与在柔性衬底(PI)上绑定芯片(COP,chip on PI)的窄边框效果接近,且相比于如图5中(b)所示的在FPC 40上绑定芯片的方案(COF,chip on FPC)和如图5中(c)所示的在玻璃基板10上绑定芯片30的方案(COG,chip on Glass)的边框都要更窄。
另外,上述制备方法,具体包括柔性膜沉积、绑定、柔性膜剥离、基板切割等几种工艺,因此仅采用COG封装中的部分工艺和简单的柔性沉积工艺即可以实现,工艺简单,相比于COF封装方案,既可以避免COF资源紧张的缺点,同时又可以避免COF绑定工艺造成的良率损失问题,实用性很强。具体的,上述显示面板的制备方法,可以同时适用于刚性OLED和LCD,可以 使得刚性OLED和LCD在全面屏时代仍然具有很强的竞争力。
一种具体的实施例中,柔性绝缘层2的材料可以为聚酰亚胺(PI);衬底基板1的材料可以为玻璃。
一种具体的实施例中,如图7和图8所示,衬底基板1的第一区CC包括显示区AA和连接区BB,连接区BB位于显示区AA和第二区DD之间。示例性的,步骤102,在衬底基板1上形成柔性绝缘层2,具体可以包括:在衬底基板1的连接区BB和第二区DD上形成柔性绝缘层2。即衬底基板1的显示区AA上没有柔性绝缘层2,柔性绝缘层2仅设置在显示区AA一侧的边框区域(连接区BB和第二区DD)。
一种具体的实施例中,步骤102,在衬底基板1上形成柔性绝缘层2,具体可以包括:采用丝网印刷工艺在衬底基板1上形成柔性绝缘层2。
具体的,在采用印刷工艺形成柔性绝缘层2的图形后,还可以对柔性绝缘层2进行热固化处理。
具体的,由于显示区AA内没有柔性绝缘层2,因此,柔性绝缘层2上不需要制备像素,只有简单的信号走线,所以对柔性绝缘层2的表面要求并不那么高,常规丝网印刷等工艺就能实现。所以也不需要采购柔性OLED制备工艺中的狭缝刮涂(slit coating)设备,可以大大降低本方案的成本。
另外,丝网印刷工艺形成的柔性绝缘层2的边缘具有一定的坡度角,可以防止走线通过PI膜边缘交界处发生断线。
一种具体的实施例中,步骤103之前,即在柔性绝缘层的第二部分上绑定IC和FPC之前,还可以包括以下步骤:
如图7和图10所示,通过阵列工艺在衬底基板1上形成驱动电路的图形。
具体的,本申请实施例中的驱动电路,具体包括用于实现像素驱动所需要的所有图形结构,既包括显示区AA内的像素电路(图中未示出),又包括延伸至柔性绝缘层2上的金属走线(图中未示出)、以及位于柔性绝缘层2第二部分22上且用于与IC和FPC绑定的连接端子等结构,如图7和图10中表示出了柔性绝缘层2第二部分22上设有用于绑定IC 3的连接端子31和用于 绑定FPC 4的连接端子41。
一种具体的实施例中,在通过阵列工艺在衬底基板上形成驱动电路的图形之前,还可以包括以下步骤:
如图2所示,在柔性绝缘层2上形成缓冲层5,缓冲层5在衬底基板1上的投影包围柔性绝缘层2在衬底基板1上的投影。
具体的,柔性绝缘层2吸水性较强,在形成驱动电路(包括金属走线)之前设置缓冲层5,通过缓冲层5隔绝柔性绝缘层2和驱动电路层,可以有效阻挡水汽,防止驱动电路中的金属走线腐蚀。
示例性的,缓冲层5的材料可以包括氮化硅(SiNx)、氧化硅(SiOx)或者两者的组合。具体的,氮化硅(SiNx)隔绝水汽效果比较好,氧化硅(SiOx)比较软,很适合制备在柔性绝缘层2上。
示例性的,如图2所示,缓冲层5设置在衬底基板1上的部分在衬底基板1上的投影位于连接区BB内。即,在显示区AA内不沉积缓冲层5,这样可以节约材料,并且有利于减小显示面板的厚度。
具体的,如图2所示,缓冲层5在衬底基板1连接区BB上的部分完全覆盖柔性绝缘层2的第一部分21,这样,缓冲层5的边缘和柔性绝缘层2第一部分21的边缘可以形成阶梯结构(如图2中的虚线框中所示的部分),从而可以防止走线在缓冲层5的边缘和柔性绝缘层2的边缘跨线时发生断线。
一种具体的实施例中,通过阵列工艺在衬底基板上形成驱动电路的图形之后,还可以接着进行模组工艺(cell工艺)。例如,对于LCD显示面板,可以包括液晶滴注、对盒等工艺;对于OLED,则包括沉积发光单元膜层、制备封装层等工艺。
一种具体的实施例中,步骤104,将柔性绝缘层的第二部分从衬底基板的第二区上剥离,具体包括:
采用激光剥离技术(LLO)将柔性绝缘层的第二部分从衬底基板的第二区上剥离。
一种具体的实施例中,步骤105,将衬底基板的第二区切除,具体包括:
从衬底基板背离柔性绝缘层的一侧、对衬底基板沿第一区和第二区之间的分界线进行切割,切割的深度小于所述衬底基板的厚度;切割操作后通过外力使所述衬底基板的第一区和第二区沿所述分界线分离,具体可以直接将衬底基板沿第一区和第二区之间的分界线掰断。这样,可以避免切割操作对柔性绝缘层造成损坏。
如图9所示,一种具体的实施例中,步骤101,提供刚性衬底基板1,具体包括:提供一个大尺寸基板8,该大尺寸基板8可以包括至少两块衬底基板1。
进一步的,步骤103之前,即在柔性绝缘层的第二部分上绑定IC和FPC之前,还包括以下步骤:
通过切割工艺将大尺寸基板8分割、以获得独立的衬底基板1。
具体的,如图9和图10所示,制备柔性绝缘层2、缓冲层5、驱动电路(包括用于绑定IC的连接端子31和用于绑定FPC的连接端子41)、以及液晶对盒或沉积发光单元膜层等部分cell工艺,均可以在大尺寸基板8的基础上统一进行,之后再进行大尺寸基板8的分割、以得到如图7所示的独立的显示模组。
具体的,如果是LCD面板,则此次基板切割工艺中,可以像常规的切割操作那样,将彩膜基板边缘向内切割以暴露出衬底基板的连接区。由于连接区不需要绑定操作,因此,此次切割工艺中也可以使得彩膜基板的切割边缘与衬底基板的切割边缘对齐。
具体的,在通过切割工艺对大尺寸基板分割、以获得独立的显示模组之后,再对每个显示模组进行绑定工艺,即在柔性绝缘层2的第二部分22上进行IC 3和FPC 4的绑定,如图8所示。
具体的,如图8所示,完成IC 3和FPC 4的绑定之后,对于每个显示模组,需要依次进行步骤104和步骤105,即需要依次进行将柔性绝缘层2的第二部分22剥离以及将衬底基板1的第二区DD切除的步骤,以获得如图1中所示的窄边框显示模组。
一种具体的实施例中,步骤105,将衬底基板的第二区切除之后,还包括以下步骤:如图5中(a)所示,将所述柔性绝缘层2的第二部分22弯折至所述衬底基板1背离所述柔性绝缘层2第一部分21的一侧进行封装。即,柔性绝缘层2超出衬底基板1的部分被配置为折叠弯曲到显示面板背面(背离显示面的一侧)进行封装。
具体的,如图5中(a)所示,在衬底基板1背离柔性绝缘层2第一部分21的一侧设置有电路板7。柔性绝缘层2的第二部分22弯折至衬底基板1背离柔性绝缘层2第一部分21的一侧,该第二部分22上绑定的FPC 4与电路板7之间电连接。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (20)

  1. 一种显示面板,包括:
    刚性衬底基板;
    柔性绝缘层,包括第一部分和第二部分,所述第一部分设置在所述衬底基板上,所述第二部分超出所述衬底基板的一侧边缘;
    集成电路芯片和柔性线路板,分别与所述柔性绝缘层的第二部分绑定连接。
  2. 如权利要求1所述的显示面板,其中,所述柔性线路板位于所述集成电路芯片远离所述柔性绝缘层第一部分的一侧。
  3. 如权利要求1所述的显示面板,其中,所述衬底基板包括显示区和位于所述显示区一侧的连接区;
    所述柔性绝缘层的第一部分在衬底基板上的投影位于所述连接区内,所述第二部分超出所述衬底基板的连接区一侧的边缘。
  4. 如权利要求3所述的显示面板,其中,所述连接区沿远离所述显示区方向上的宽度为200μm-400μm;所述第一部分沿远离所述显示区方向上的宽度为200μm-300μm。
  5. 如权利要求3所述的显示面板,其中,还包括设置在所述柔性绝缘层远离所述衬底基板一侧的缓冲层,所述缓冲层完全覆盖所述柔性绝缘层远离所述衬底基板的一侧表面。
  6. 如权利要求5所述的显示面板,其中,所述缓冲层设置在所述衬底基板上的部分在所述衬底基板上的投影位于所述连接区内。
  7. 如权利要求5所述的显示面板,其中,还包括设置在所述缓冲层远离所述衬底基板一侧的驱动电路。
  8. 如权利要求1所述的显示面板,其中,所述柔性绝缘层的材料为聚酰亚胺;所述衬底基板的材料为玻璃。
  9. 如权利要求1所述的显示面板,其中,还包括彩膜基板,所述彩膜基 板靠近所述柔性绝缘层第二部分的一侧边缘与所述衬底基板的所述一侧边缘对齐。
  10. 如权利要求1-9任一项所述的显示面板,其中,所述柔性绝缘层的第二部分弯折至所述衬底基板背离所述柔性绝缘层第一部分的一侧。
  11. 一种显示装置,包括如权利要求1-10任一项所述的显示面板。
  12. 如权利要求11所述的显示装置,其中,还包括位于所述衬底基板背离所述柔性绝缘层第一部分的一侧的电路板;
    所述柔性绝缘层的第二部分弯折至所述衬底基板背离所述柔性绝缘层第一部分的一侧;
    所述集成电路芯片与所述电路板电连接。
  13. 一种显示面板的制备方法,包括以下步骤:
    提供刚性衬底基板,所述衬底基板包括第一区和位于所述第一区一侧的第二区;
    在所述衬底基板上形成柔性绝缘层,所述柔性绝缘层包括位于所述第一区上的第一部分和位于所述第二区上的第二部分;
    在所述柔性绝缘层的第二部分上分别绑定集成电路芯片和柔性线路板;
    将所述柔性绝缘层的第二部分从所述衬底基板的第二区上剥离;
    将所述衬底基板的第二区切除。
  14. 如权利要求13所述的制备方法,其中,所述第一区包括显示区和连接区,所述连接区位于所述显示区和所述第二区之间;
    在所述衬底基板上形成柔性绝缘层,具体包括:
    在所述衬底基板的连接区和第二区上形成柔性绝缘层。
  15. 如权利要求14所述的制备方法,其中,在所述衬底基板上形成柔性绝缘层,具体包括:
    采用丝网印刷工艺在所述衬底基板上形成柔性绝缘层。
  16. 如权利要求13所述的制备方法,其中,所述在所述柔性绝缘层的第二部分上绑定集成电路芯片和柔性线路板之前,还包括:
    通过阵列工艺在所述衬底基板上形成驱动电路的图形。
  17. 如权利要求16所述的制备方法,其中,所述通过阵列工艺在所述衬底基板上形成驱动电路的图形之前,还包括:
    在所述柔性绝缘层上形成缓冲层,所述缓冲层在衬底基板上的投影包围所述柔性绝缘层在衬底基板上的投影。
  18. 如权利要求13所述的制备方法,其中,所述将所述柔性绝缘层的第二部分从所述衬底基板的第二区上剥离,具体包括:
    采用激光剥离技术将所述柔性绝缘层的第二部分从所述衬底基板的第二区上剥离。
  19. 如权利要求13所述的制备方法,其中,所述将所述衬底基板的第二区切除,具体包括:
    从所述衬底基板背离所述柔性绝缘层的一侧、对所述衬底基板沿所述第一区和所述第二区之间的分界线进行切割,切割的深度小于所述衬底基板的厚度;切割操作后通过外力使所述衬底基板的第一区和第二区沿所述分界线分离。
  20. 如权利要求13-19任一项所述的制备方法,其中,将所述衬底基板的第二区切除之后,还包括:
    将所述柔性绝缘层的第二部分弯折至所述衬底基板背离所述柔性绝缘层第一部分的一侧进行封装。
PCT/CN2019/114889 2019-10-31 2019-10-31 显示面板及其制备方法、显示装置 WO2021081957A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/976,611 US20210134849A1 (en) 2019-10-31 2019-10-31 Display panel, preparation method thereof and display device
CN201980002239.3A CN113133321A (zh) 2019-10-31 2019-10-31 显示面板及其制备方法、显示装置
PCT/CN2019/114889 WO2021081957A1 (zh) 2019-10-31 2019-10-31 显示面板及其制备方法、显示装置
US17/588,860 US20220157858A1 (en) 2019-10-31 2022-01-31 Display panel, preparation method thereof and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/114889 WO2021081957A1 (zh) 2019-10-31 2019-10-31 显示面板及其制备方法、显示装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/976,611 A-371-Of-International US20210134849A1 (en) 2019-10-31 2019-10-31 Display panel, preparation method thereof and display device
US17/588,860 Continuation US20220157858A1 (en) 2019-10-31 2022-01-31 Display panel, preparation method thereof and display device

Publications (1)

Publication Number Publication Date
WO2021081957A1 true WO2021081957A1 (zh) 2021-05-06

Family

ID=75687795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114889 WO2021081957A1 (zh) 2019-10-31 2019-10-31 显示面板及其制备方法、显示装置

Country Status (3)

Country Link
US (2) US20210134849A1 (zh)
CN (1) CN113133321A (zh)
WO (1) WO2021081957A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101551533A (zh) * 2008-04-03 2009-10-07 精工爱普生株式会社 电光装置及电子设备
US20160374193A1 (en) * 2015-06-17 2016-12-22 Samsung Display Co., Ltd. Display device
CN108399862A (zh) * 2018-03-12 2018-08-14 武汉华星光电半导体显示技术有限公司 柔性显示面板
CN108681119A (zh) * 2018-05-23 2018-10-19 Oppo广东移动通信有限公司 一种显示面板、显示装置以及显示装置的制作方法
CN108762562A (zh) * 2018-05-25 2018-11-06 京东方科技集团股份有限公司 一种显示基板、显示面板、触控显示装置及其制作方法
CN109459878A (zh) * 2018-11-28 2019-03-12 武汉华星光电技术有限公司 显示面板及其制备方法
CN109597252A (zh) * 2018-12-17 2019-04-09 武汉天马微电子有限公司 一种液晶显示模组和液晶显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002882A (ja) * 1998-06-16 2000-01-07 Toshiba Electronic Engineering Corp 液晶表示装置及びその製造方法
WO2010055722A1 (ja) * 2008-11-11 2010-05-20 シャープ株式会社 表示装置およびテレビ受信装置
CN110308579B (zh) * 2018-03-22 2022-04-12 上海和辉光电股份有限公司 一种刚性显示面板及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101551533A (zh) * 2008-04-03 2009-10-07 精工爱普生株式会社 电光装置及电子设备
US20160374193A1 (en) * 2015-06-17 2016-12-22 Samsung Display Co., Ltd. Display device
CN108399862A (zh) * 2018-03-12 2018-08-14 武汉华星光电半导体显示技术有限公司 柔性显示面板
CN108681119A (zh) * 2018-05-23 2018-10-19 Oppo广东移动通信有限公司 一种显示面板、显示装置以及显示装置的制作方法
CN108762562A (zh) * 2018-05-25 2018-11-06 京东方科技集团股份有限公司 一种显示基板、显示面板、触控显示装置及其制作方法
CN109459878A (zh) * 2018-11-28 2019-03-12 武汉华星光电技术有限公司 显示面板及其制备方法
CN109597252A (zh) * 2018-12-17 2019-04-09 武汉天马微电子有限公司 一种液晶显示模组和液晶显示装置

Also Published As

Publication number Publication date
US20210134849A1 (en) 2021-05-06
CN113133321A (zh) 2021-07-16
US20220157858A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
US11061438B2 (en) Flexible display panel, manufacturing method thereof and display device
US11296308B2 (en) Flexible display device manufacturing method and flexible display device
KR102151099B1 (ko) 디스플레이 패널 및 이를 이용한 대형 디스플레이 장치
JP5311531B2 (ja) 半導体チップの実装された表示パネル
US11923397B2 (en) Micro light emitting diode display substrate and manufacturing method thereof
US9240149B2 (en) Liquid crystal display device and method of fabricating the same
WO2020168906A1 (zh) 显示面板及其制备方法、显示装置
WO2020192561A1 (zh) 显示基板及其制备方法和显示装置
WO2018145453A1 (zh) 显示基板、显示面板、显示装置及邦定方法
WO2021000457A1 (zh) 显示面板及其制作方法
US20110255034A1 (en) Display device
US20210294137A1 (en) Display device comprising a flip chip film connected to a connecting surface of a plurality of bonding pins and manufacturing method thereof
US20220308376A1 (en) Array substrate, manufacturing method thereof, and display panel
WO2019000912A1 (zh) 显示面板及其制造方法、显示装置
WO2016086606A1 (zh) 阵列基板、修补片、显示面板和修复阵列基板的方法
CN111489647B (zh) 显示模组及其制造方法、显示装置
WO2020133794A1 (zh) 窄边框显示屏的制作方法及显示装置
US20190204657A1 (en) Display substrate and manufacturing method thereof, display device and manufacturing method thereof, and mobile terminal
WO2016192337A1 (zh) 显示面板的制备方法及显示面板、显示装置
WO2020107774A1 (zh) 显示面板及其制备方法
WO2021035947A1 (zh) 一种显示面板及显示装置
CN110034158A (zh) 显示装置
KR101298610B1 (ko) 액정표시장치 및 그 제조방법
US20230176432A1 (en) Display panel, manufacturing method thereof, and display device
KR102339969B1 (ko) 칩-온-필름 회로 및 그를 포함하는 플렉서블 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950918

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19950918

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19950918

Country of ref document: EP

Kind code of ref document: A1