WO2021080014A1 - 濃度測定方法、濃度測定装置およびプログラム - Google Patents

濃度測定方法、濃度測定装置およびプログラム Download PDF

Info

Publication number
WO2021080014A1
WO2021080014A1 PCT/JP2020/039998 JP2020039998W WO2021080014A1 WO 2021080014 A1 WO2021080014 A1 WO 2021080014A1 JP 2020039998 W JP2020039998 W JP 2020039998W WO 2021080014 A1 WO2021080014 A1 WO 2021080014A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution sample
substance
measured
concentration
reagent
Prior art date
Application number
PCT/JP2020/039998
Other languages
English (en)
French (fr)
Inventor
京柱 金
太秀 山口
Original Assignee
メタウォーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メタウォーター株式会社 filed Critical メタウォーター株式会社
Priority to JP2021553582A priority Critical patent/JP7477522B2/ja
Publication of WO2021080014A1 publication Critical patent/WO2021080014A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Definitions

  • the present invention relates to a concentration measuring method, a concentration measuring device and a program, and in particular, a concentration measuring method using a reagent that reacts with a substance to be measured to change the magnitude of parameters such as fluorescence intensity and absorbance, and the concentration. It relates to a concentration measuring device and a program which can be suitably used for a measuring method.
  • a quantification method using trifluoperazine (TFP) in which the magnitude of fluorescence intensity changes according to the bromate ion concentration is used. It has been proposed (see, for example, Patent Documents 1 and 2).
  • TFP trifluoperazine
  • the magnitude of the fluorescence intensity when the bromate ion in the sample water is reacted with TFP is measured, and the obtained measured value of the fluorescence intensity is compared with a calibration curve prepared in advance.
  • a method for determining the bromate ion concentration in the sample water has been proposed.
  • the present invention provides a method for measuring the concentration of a substance to be measured in a solution sample using a reagent that reacts with the substance to be measured and changes the magnitude of a parameter. Therefore, the concentration of the substance to be measured can be easily adjusted with high accuracy.
  • the purpose is to make it possible to measure.
  • An object of the present invention is to solve the above problems advantageously, and the concentration measuring method of the present invention reacts the concentration of the measurement target substance contained in the solution sample with the measurement target substance to form a solution.
  • the present invention aims to advantageously solve the above problems, and the concentration measuring apparatus of the present invention reacts the concentration of the measurement target substance contained in the solution sample with the measurement target substance.
  • This is a device for measuring using a reagent that changes the size of the parameters of the solution sample, and a solution sample containing a substance to be measured having an unknown concentration and a known amount of the substance to be measured were added to the solution sample.
  • a measuring unit that measures the change over time of the parameter, and a substance to be measured in the solution sample and the reference solution sample based on the measurement result by the measuring unit.
  • the present invention aims to solve the above problems advantageously, and the program of the present invention reacts the concentration of the substance to be measured contained in the solution sample with the substance to be measured to make a solution.
  • the concentration of the substance to be measured can be easily measured with high accuracy.
  • the concentration measuring method of the present invention is a method of measuring the concentration of a substance to be measured in a solution sample containing the substance to be measured by using a reagent that reacts with the substance to be measured and changes the size of a parameter of the solution sample. ..
  • the concentration measurement method of the present invention for example, bromate ions as analyte (BrO 3 -) bromate ion concentration in the solution sample containing, solution sample reacts with bromate ions fluorescence It can be used when measuring with trifluoperazine as a reagent for changing the magnitude of intensity.
  • the combination of the substance to be measured, the parameter, and the reagent to which the concentration measuring method of the present invention can be applied is not limited to the above-mentioned example, and the parameter may be, for example, absorbance.
  • the substance to be measured may be iron ion, pH, or DNA.
  • the reagent may be pennant trolley, FITC (fluorescein isothiocyanate), or EMA (Ethidium MonoAzide).
  • the concentration measuring method of the present invention was made by finding the following findings.
  • substances other than the substance to be measured contained in the solution sample (hereinafter, may be referred to as "coexisting substance") also react with the reagent and have parameters. Can affect changes in the size of.
  • coexisting substance substances other than the substance to be measured contained in the solution sample
  • the reaction between the substance to be measured and the reagent reaches the apparent reaction end (equilibrium) relatively early, whereas the reaction between the coexisting substance and the reagent is measured. Even if the reaction between the target substance and the reagent reaches equilibrium, it does not end and continues to affect the change in the magnitude of the parameter.
  • the magnitude of the change in the fluorescence intensity of the solution sample is measured.
  • the sum of the magnitude of the change in fluorescence intensity due to the reaction between the target substance and the reagent and the magnitude of the change in fluorescence intensity due to the reaction between the coexisting substance and the reagent shows that the reaction between the target substance and the reagent is In a system in which the apparent reaction termination (equilibrium) is reached relatively early, but the reaction between the coexisting substance and the reagent is not completed, the change in fluorescence intensity due to the reaction between the coexisting substance and the reagent is the measurement target substance and the reagent.
  • the concentration of the substance to be measured is determined as follows.
  • the concentration measurement method of the present invention utilizes the above-mentioned new findings and uses a solution sample containing a substance to be measured having an unknown concentration and a reference solution sample in which a known amount of the substance to be measured is added to the solution sample.
  • the concentration of the substance to be measured is measured.
  • the behavior as shown in FIG. 2 is exhibited.
  • the reference in the graph shown in FIG. 2, the analyte and the reagent with apparently time the reaction is terminated T is the reaction time longer portion than E of (a portion located on the right side of the FIG.
  • the difference between the fluorescence intensity of the solution sample and the fluorescence intensity of the solution sample corresponds to the amount (known amount) of the substance to be measured added to the solution sample at the time of preparing the reference solution.
  • the fluorescent intensity obtained by extrapolating to the start reacting relationship between fluorescence intensity and the reaction time of the solution sample in the longer portion the reaction time than the time T E (T 0), it coexisting materials in the solution sample.
  • the fluorescence intensity in a state of not reacting with the reagent that is, the fluorescence intensity corresponding to the concentration of the substance to be measured in the solution sample).
  • the concentration of the substance to be measured in the solution sample can be obtained without creating a calibration curve or the like. Will be possible.
  • the influence of coexisting substances can be canceled when the difference between the fluorescence intensity of the reference solution sample and the fluorescence intensity of the solution sample is taken, so that the concentration of the substance to be measured can be highly accurate. Can be obtained at.
  • C ⁇ (P 1 '-P 0') / (P 2 '-P 1') ⁇ ⁇ (m / M) ⁇ (1)
  • C Concentration of the substance to be measured in the solution sample
  • m Mass of the substance to be measured added to the solution sample (known amount)
  • M Mass of reference solution sample [Relationship 2] Create a first approximation formula for solution samples representing the relationship between the magnitude and response time of the fluorescence intensity of the time T E later, for the reference solution samples representing the relationship between the magnitude and response time of the fluorescence intensity of the time T E after create a second approximate
  • the time at which the apparent reaction between the substance to be measured and the reagent is completed is, for example, (1) a method of theoretically calculating the reaction rate constant between the substance to be measured and the reagent, (2).
  • a method in which the time at which the differential value of the curve showing the relationship between the reaction time and the fluorescence intensity becomes zero or less than a predetermined value for the first time is set as the reaction end time, (3)
  • the first approximate expression and the second approximate expression are created.
  • the reaction end time is determined by using a method such as a method in which the time at which the value obtained by dividing the slope of the first approximation formula by the slope of the second approximation formula is 0.9 or more and 1.1 or less is set as the reaction end time. be able to.
  • the method (2) above is preferable from the viewpoint of ease of use.
  • the time T 1 at which the apparent reaction between the measurement target substance and the reagent in the solution sample ends and the time at which the apparent reaction between the measurement target substance and the reagent in the reference solution sample ends are not particularly limited, and can be matched by making the reaction conditions of the substance to be measured such as the reaction temperature and the reagent the same.
  • the first approximation formula and the second approximation formula are not particularly limited, and a known regression analysis method (single regression analysis or multiple regression analysis) such as the least squares method or curve fitting can be applied. It can be obtained by using.
  • a solution sample containing a measurement target substance having an unknown concentration and a known amount of the measurement target substance are added to the solution sample.
  • the measurement target substance in the solution sample and the reference solution sample and the measurement target substance in the reference solution sample based on the measurement step of adding the reagent to the reference solution sample and measuring the change with time of the parameter and the measurement result of the measurement step. It is obtained by substituting time T (however, T ⁇ 0) into the analytical step of creating an approximate expression representing the relationship between the magnitude of the parameter and time after the apparent reaction end time with the reagent.
  • the amount of the substance to be measured (known amount) added to the solution sample in the sample preparation step is not particularly limited, and is, for example, 1/2 of the control standard value, 1/2 of the legal standard value, or measurement. It can be 10 times the value of the unit of sensitivity (eg, 10 mg / L when the unit is mg / L).
  • the execution order of the first measurement step and the second measurement step is not particularly limited.
  • the reaction conditions of the substance to be measured and the reagent should be the same in the first measurement step and the second measurement step. Is preferable.
  • the concentration measuring device of the present invention is a device that measures the concentration of a substance to be measured contained in a solution sample by using a reagent that reacts with the substance to be measured and changes the size of a parameter of the solution sample. Then, the concentration measuring apparatus of the present invention can be suitably used, for example, when determining the concentration of the substance to be measured in the solution sample by using the concentration measuring method of the present invention described above.
  • an example of the concentration measuring device of the present invention includes a measuring unit, an analysis unit, and a calculation unit, and may have any other configuration.
  • the measuring unit measures the time course of the parameters of the solution sample containing the measurement target substance of unknown concentration and the reference solution sample in which a known amount of the measurement target substance is added to the solution sample with the reagent added. ..
  • the measuring unit can be configured by using a measuring device (for example, a fluorometer or an absorbance meter) according to the type of parameter.
  • the reagent may be added to the solution sample and the reference solution sample manually by the measurer or automatically by the measuring unit.
  • the analysis unit and the calculation unit can be composed of a single computer, a plurality of computers, or the like. Then, the analysis unit approximates the relationship between the magnitude and time of the parameters after the apparent reaction end time between the substance to be measured and the reagent in the solution sample and the reference solution sample based on the measurement result by the measurement unit. Create an expression. Further, the calculation unit obtains the concentration of the substance to be measured in the solution sample from the relationship between the value of the parameter obtained by substituting the time T (however, T ⁇ 0) into the approximate expression and the known amount.
  • the program of the present invention is used when measuring the concentration of a substance to be measured contained in a solution sample using a reagent that reacts with the substance to be measured and changes the size of a parameter of the solution sample. Then, the program of the present invention, for example, causes the above-mentioned concentration measuring device of the present invention to function as a concentration measuring device for obtaining the concentration of the substance to be measured in the solution sample by using the above-mentioned concentration measuring method of the present invention. It can be preferably used.
  • the concentration of the substance to be measured contained in the solution sample is measured by using a reagent that reacts with the substance to be measured and changes the size of the parameter of the solution sample.
  • the solution sample containing the substance to be measured having an unknown concentration and the reference solution sample to which a known amount of the substance to be measured was added to the solution sample
  • the changes over time of the parameters were measured with the reagent added.
  • an example of the program of the present invention causes the concentration measuring device to perform the above-mentioned steps via, for example, a control device such as a computer that controls the operation of the concentration measuring device.
  • this program may be recorded on a computer-readable recording medium. Using such a recording medium, it is possible to install the program on the computer.
  • the recording medium on which the program is recorded may be a non-transient recording medium.
  • the non-transient recording medium is not particularly limited, but may be, for example, a recording medium such as a CD-ROM or a DVD-ROM.
  • the program can also be provided by download over the network.
  • Example 1 Ozone-treated water (A) collected from a pipe after ozone treatment was prepared as a solution sample containing bromate ion as a substance to be measured.
  • a reference sample solution was prepared by adding 0.75 ⁇ g of bromate ion standard to 75 ml of ozone-treated water (A) so that the concentration was added by 10 ⁇ g / L (sample preparation step). Then, trifluoperazine was added as a reagent to each of the solution sample and the reference solution sample so as to have a concentration of 3 ⁇ mol / L, and the change with time of the fluorescence intensity was measured using a prototype device capable of measuring fluorescence (). First measurement step and second measurement step). The results are shown in FIG. 3 (a).
  • the times T 1 and T 2 at which the apparent reaction between the substance to be measured and the reagent are completed, the first approximate formula and the second approximate formula, and the reaction start time are as follows.
  • Example 2 In the sample preparation step, ozone-treated water (B) collected from the ozone-treated piping was prepared as a solution sample containing bromate ion as a substance to be measured, and bromate ion standard was prepared for 75 ml of ozone-treated water (B). 0.75 ⁇ g was added so that the concentration was added by 10 ⁇ g / L to prepare a reference sample solution.
  • concentration of the substance to be measured in the solution sample (ozone-treated water (B)) was determined in the same manner as in Example 1 except for the above, it was 11.98 ⁇ g / L.
  • the concentration of the substance to be measured can be easily measured with high accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本発明は、例えば以下のようにして、測定対象物質の濃度を高い精度で簡便に測定する方法を提供する。溶液サンプルに含まれる測定対象物質の濃度を、溶液サンプルに既知の量の測定対象物質を添加した参照溶液サンプルを用いて測定する。溶液サンプルと参照溶液サンプルのそれぞれについて、試薬を添加してパラメータの経時変化を測定し、見掛け上の反応終了時間(T1・T2)以降のパラメータの大きさと時間の関係を表す近似式を作成する。作成した近似式に時間Tを代入して得られたパラメータの値と、参照溶液サンプルに添加した既知の量の関係から、溶液サンプル中の測定対象物質の濃度を算出する。

Description

濃度測定方法、濃度測定装置およびプログラム
 本発明は、濃度測定方法、濃度測定装置およびプログラムに関し、特には、測定対象物質と反応して蛍光強度や吸光度等のパラメータの大きさを変化させる試薬を用いた濃度測定方法、並びに、当該濃度測定方法に好適に使用し得る濃度測定装置およびプログラムに関するものである。
 従来、溶液サンプル中に含まれている測定対象物質の濃度を測定する方法として、測定対象物質と反応する試薬を使用し、測定対象物質と試薬との反応によって変化するパラメータの大きさを測定することにより溶液サンプル中の測定対象物質の濃度を求める方法が知られている。
 具体的には、例えば、水中の臭素酸イオン濃度を測定することが可能な方法として、臭素酸イオン濃度に応じて蛍光強度の大きさが変化するトリフルオペラジン(TFP)を使用した定量方法が提案されている(例えば、特許文献1,2参照)。当該定量方法では、試料水中の臭素酸イオンとTFPとを反応させた際の蛍光強度の大きさを測定し、得られた蛍光強度の測定値と、予め作成しておいた検量線とを対比することにより試料水中の臭素酸イオン濃度を求める方法が提案されている。
特開2014-2007号公報 特開2016-57162号公報
 しかし、測定対象物質と反応する試薬を用いた上記従来の濃度測定方法には、検量線の作成が必要であり、作業が煩雑であるという問題があった。
 また、測定対象物質と反応する試薬を用いた上記従来の濃度測定方法には、溶液サンプル中に含まれている測定対象物質以外の物質(共存物質)と、試薬とが反応してパラメータの大きさの変化に影響を与えることにより測定対象物質の濃度の定量精度が低下するという問題もあった。
 そこで、本発明は、測定対象物質と反応してパラメータの大きさを変化させる試薬を用いて溶液サンプル中の測定対象物質の濃度を測定する方法について、測定対象物質の濃度を高い精度で簡便に測定することを可能にすることを目的とする。
 この発明は、上記課題を有利に解決することを目的とするものであり、本発明の濃度測定方法は、溶液サンプル中に含まれる測定対象物質の濃度を、前記測定対象物質と反応して溶液サンプルのパラメータの大きさを変化させる試薬を用いて測定する方法であって、濃度未知の測定対象物質を含む溶液サンプル、及び、前記溶液サンプルに対し既知の量の測定対象物質を添加した参照溶液サンプルに、前記試薬を添加し、前記パラメータの経時変化を測定する測定工程と、前記測定工程による測定結果に基づいて、前記溶液サンプル中及び前記参照溶液サンプル中の測定対象物質と前記試薬との見掛け上の反応終了時間以降の前記パラメータの大きさと時間との関係を表す近似式を作成する分析工程と、前記近似式に時間T(但し、T≧0)を代入して得られるパラメータの値と、前記既知の量との関係から前記溶液サンプル中の測定対象物質の濃度を求める算出工程とを含むとを含むことを特徴とする。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の濃度測定装置は、溶液サンプル中に含まれる測定対象物質の濃度を、前記測定対象物質と反応して溶液サンプルのパラメータの大きさを変化させる試薬を用いて測定する装置であって、濃度未知の測定対象物質を含む溶液サンプル、及び、前記溶液サンプルに対し既知の量の測定対象物質を添加した参照溶液サンプルについて、前記試薬を添加した状態で、前記パラメータの経時変化を測定する測定部と、前記測定部による測定結果に基づいて、前記溶液サンプル中及び前記参照溶液サンプル中の測定対象物質と前記試薬との見掛け上の反応終了時間以降の前記パラメータの大きさと時間との関係を表す近似式を作成する分析部と、前記近似式に時間T(但し、T≧0)を代入して得られるパラメータの値と、前記既知の量との関係から前記溶液サンプル中の測定対象物質の濃度を求める算出部とを備えることを特徴とする。
 更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のプログラムは、溶液サンプル中に含まれる測定対象物質の濃度を、前記測定対象物質と反応して溶液サンプルのパラメータの大きさを変化させる試薬を用いて測定する装置に、濃度未知の測定対象物質を含む溶液サンプル、及び、前記溶液サンプルに対し既知の量の測定対象物質を添加した参照溶液サンプルについて、前記試薬を添加した状態で、前記パラメータの経時変化を測定した結果を取得させるステップと、取得した前記結果に基づいて、前記溶液サンプル中及び前記参照溶液サンプル中の測定対象物質と前記試薬との見掛け上の反応終了時間以降の前記パラメータの大きさと時間との関係を表す近似式を作成させるステップと、前記近似式に時間T(但し、T≧0)を代入して得られるパラメータの値と、前記既知の量との関係から前記溶液サンプル中の測定対象物質の濃度を求めるステップとを実行させることを特徴とする。
 本発明によれば、測定対象物質の濃度を高い精度で簡便に測定することができる。
試薬と反応させた際の溶液サンプルのパラメータの経時変化について、溶液サンプル中に含まれている成分との関係を説明するためのグラフである。 溶液サンプルおよび参照溶液サンプルについて、試薬と反応させた際のパラメータの経時変化を示すグラフである。 反応時間と蛍光強度との関係を示すグラフであり、(a)は、実施例1で作成したグラフであり、(b)は実施例2で作成したグラフである。
(濃度測定方法)
 本発明の濃度測定方法は、測定対象物質を含む溶液サンプル中の測定対象物質の濃度を、測定対象物質と反応して溶液サンプルのパラメータの大きさを変化させる試薬を用いて測定する方法である。具体的には、本発明の濃度測定方法は、例えば、測定対象物質として臭素酸イオン(BrO3 -)を含む溶液サンプル中の臭素酸イオン濃度を、臭素酸イオンと反応して溶液サンプルの蛍光強度の大きさを変化させる試薬としてトリフルオペラジンを用いて測定する際に用いることができる。
 なお、本発明の濃度測定方法を適用可能な測定対象物質、パラメータおよび試薬の組み合わせは、上述した一例に限定されるものではなく、例えば、パラメータは吸光度であってもよい。また、測定対象物質は、鉄イオン、pH、DNAであってもよい。更に、試薬は、ペナントロリン、FITC(fluorescein isothiocyanate)、EMA(Ethidium MonoAzaide)であってもよい。
 ここで、本発明の濃度測定方法は、以下の知見を見出してなされたものである。測定対象物質と反応する試薬を用いた濃度測定方法では、溶液サンプル中に含まれている測定対象物質以外の物質(以下、「共存物質」と称することがある。)も試薬と反応してパラメータの大きさの変化に影響を与え得る。そして、上述した臭素酸イオンの定量系などでは、測定対象物質と試薬との反応は比較的早期に見掛け上の反応終了(平衡)に到達するのに対し、共存物質と試薬との反応は測定対象物質と試薬との反応が平衡に到達しても終了せずにパラメータの大きさの変化に影響を与え続ける。
 具体的には、本発明の濃度測定方法は、一例として試薬との反応により変化するパラメータが蛍光強度である場合について図1に示すように、溶液サンプルの蛍光強度の変化の大きさは、測定対象物質と試薬との反応に起因した蛍光強度の変化の大きさと、共存物質と試薬との反応に起因した蛍光強度の変化の大きさとの和であるところ、測定対象物質と試薬との反応が比較的早期に見掛け上の反応終了(平衡)に到達する一方で共存物質と試薬との反応は終了しない系では、共存物質と試薬との反応に起因した蛍光強度の変化が測定対象物質と試薬との見掛け上の反応が終了する時間TEの前後において略一定である場合、測定対象物質と試薬との見掛け上の反応終了後の蛍光強度の変化は、共存物質と試薬との反応に起因した蛍光強度の変化と略等しくなるという新たな知見を利用し、以下のようにして測定対象物質の濃度を求めるものである。
 本発明の濃度測定方法は、上記の新たな知見を利用し、濃度未知の測定対象物質が含まれる溶液サンプルと、溶液サンプルに対し既知の量の測定対象物質を添加した参照溶液サンプルとを用いて、測定対象物質の濃度を測定するものである。上述したような系では、溶液サンプルと参照溶液サンプルとについて試薬と反応させた際の蛍光強度の大きさの経時変化を測定すると、図2に示すような挙動を示す。また、図2に示すグラフにおいて、測定対象物質と試薬との見掛け上の反応が終了する時間TEよりも反応時間が長い部分(図2では時間TEよりも右側に位置する部分)における参照溶液サンプルの蛍光強度と溶液サンプルの蛍光強度との差は、参照溶液の調製時に溶液サンプルに対して添加した測定対象物質の量(既知の量)に対応した大きさとなる。また、時間TEよりも反応時間が長い部分における溶液サンプルの蛍光強度と反応時間との関係を反応開始時(T=0)まで外挿して得られる蛍光強度は、溶液サンプル中で共存物質が試薬と反応していない状態の蛍光強度(即ち、溶液サンプル中の測定対象物質の濃度に対応した蛍光強度)となる。更に、時間TEよりも反応時間が長い部分における参照溶液サンプルの蛍光強度と反応時間との関係を反応開始時(T=0)まで外挿して得られる蛍光強度は、参照溶液サンプル中で共存物質が試薬と反応していない状態の蛍光強度(即ち、参照溶液サンプル中の測定対象物質の濃度(=既知の量の測定対象物質を添加した分だけ溶液サンプルよりも高い濃度)に対応した蛍光強度)となる。そして、図2に示すグラフでは、以下に示す[関係1]や[関係2]等の関係が成立するため、検量線などを作成しなくても、溶液サンプル中の測定対象物質の濃度を求めることが可能になる。なお、下記の関係を用いる場合には、参照溶液サンプルの蛍光強度と溶液サンプルの蛍光強度との差を取る際に共存物質による影響をキャンセルすることができるので、測定対象物質の濃度を高い精度で求めることができる。
[関係1]
 溶液サンプルについて時間TE以降の蛍光強度の大きさと反応時間との関係を表す第1の近似式を作成し、参照溶液サンプルについて時間TE以降の蛍光強度の大きさと反応時間との関係を表す第2の近似式を作成した場合、下記の関係式(1)が成立する。
C={(P1’-P0’)/(P2’-P1’)}×(m/M) ・・・(1)
 C:溶液サンプル中の測定対象物質の濃度
 P0’:反応開始時(T=0)の蛍光強度の値
 P1’:反応開始時(T=0)における第1の近似式の蛍光強度の値(第1の近似式の切片)
 P2’:反応開始時(T=0)における第2の近似式の蛍光強度の値(第2の近似式の切片)
 m:溶液サンプルに添加した測定対象物質の質量(既知の量)
 M:参照溶液サンプルの質量
[関係2]
 溶液サンプルについて時間TE以降の蛍光強度の大きさと反応時間との関係を表す第1の近似式を作成し、参照溶液サンプルについて時間TE以降の蛍光強度の大きさと反応時間との関係を表す第2の近似式を作成し、反応開始時(T=0)の蛍光強度の値P0’を通って第1の近似式および第2の近似式と略平行な仮想線とを作成した場合、下記の関係式(2)が成立する。
C={(P1-P0)/(P2-P1)}×(m/M) ・・・(2)
 C:溶液サンプル中の測定対象物質の濃度
 P0:反応時間Tにおける仮想線の蛍光強度の値
 P1:反応時間Tにおける第1の近似式の蛍光強度の値
 P2:反応時間Tにおける第2の近似式の蛍光強度の値
 m:溶液サンプルに添加した測定対象物質の質量(既知の量)
 M:参照溶液サンプルの質量
 なお、本発明において、測定対象物質と試薬との見掛け上の反応が終了する時間は、例えば、(1)測定対象物質と試薬との反応速度定数を用いて理論的に算出する方法、(2)反応時間と蛍光強度との関係を示す曲線の微分値が初めてゼロまたは所定値以下になる時間を反応終了時間とする方法、(3)第1の近似式と第2の近似式とを作成した際に第1の近似式の傾きを第2の近似式の傾きで除した値が0.9以上1.1以下となる時間を反応終了時間とする方法、などの方法を用いて決定することができる。
 中でも、使用し易さの観点からは上記(2)の方法が好ましい。
 ここで、図2では、溶液サンプル中の測定対象物質と試薬との見掛け上の反応が終了する時間T1と、参照溶液サンプル中の測定対象物質と試薬との見掛け上の反応が終了する時間T2とが一致する場合について示したが、本発明では、時間T1と時間T2とが一致しなくてもよい。但し、測定対象物質の濃度を更に簡便かつ高精度で求める観点からは、時間T1と時間T2とは一致させることが好ましい。
 なお、時間T1と時間T2とは、特に限定されることなく、例えば反応温度などの測定対象物質と試薬との反応条件を同一にすることにより、一致させることができる。
 また、本発明において、第1の近似式および第2の近似式は、特に限定されることなく、例えば最小二乗法などの既知の回帰分析方法(単回帰分析または重回帰分析)やカーブフィッティングを用いて求めることができる。
 更に、本発明において、反応開始時(T=0)の蛍光強度の値P0’は、特に限定されることなく、任意の方法で求めることができる。例えば、反応開始時(T=0)の蛍光強度の値P0’は、溶液サンプルおよび参照溶液サンプルのそれぞれについて、測定対象物質と試薬との見掛け上の反応が終了する時間TEよりも反応時間が短い部分(図2では時間TEよりも左側に位置する部分)のデータをカーブフィッティングすることにより、求めることができる。
 なお、溶液サンプルのデータを用いて算出した反応開始時(T=0)の蛍光強度の値と、参照溶液サンプルのデータを用いて算出した反応開始時(T=0)の蛍光強度の値とが相違する場合には、何れか一方の値を蛍光強度の値P0’として採用してもよいし、両者の算術平均値を蛍光強度の値P0’として採用してもよい。
 そして、本発明において、上述した[関係2]において用いる仮想線は、特に限定されることなく、(1)傾きが第1の近似式と等しく、反応開始時(T=0)の蛍光強度の値がP0’となる直線、(2)傾きが第2の近似式と等しく、反応開始時(T=0)の蛍光強度の値がP0’となる直線、(3)傾きが第1の近似式の傾きと第2の近似式の傾きとの算術平均値に等しく、反応開始時(T=0)の蛍光強度の値がP0’となる直線、などとすることができる。
 なお、上述した[関係1]および[関係2]に関し、蛍光強度のバラツキの影響を低減して測定対象物質の濃度を更に高精度で求める観点からは、本発明では、上述した[関係1]を利用して測定対象物質の濃度を求めることが好ましい。
 そして、上述した知見および着想を用いた本発明の濃度測定方法では、具体的には、濃度未知の測定対象物質を含む溶液サンプル、及び、前記溶液サンプルに対し既知の量の測定対象物質を添加した参照溶液サンプルに、前記試薬を添加し、前記パラメータの経時変化を測定する測定工程と、前記測定工程による測定結果に基づいて、前記溶液サンプル中及び前記参照溶液サンプル中の測定対象物質と前記試薬との見掛け上の反応終了時間以降の前記パラメータの大きさと時間との関係を表す近似式を作成する分析工程と、前記近似式に時間T(但し、T≧0)を代入して得られるパラメータの値と、前記既知の量との関係から前記溶液サンプル中の測定対象物質の濃度を求める算出工程とを実施して、溶液サンプル中の測定対象物質の濃度を高い精度で簡便に求めることができる。
 より具体的には、本発明の濃度測定方法では、例えば、
(A)濃度未知の測定対象物質を含む溶液サンプルと、溶液サンプルに対し既知の量の測定対象物質を添加した参照溶液サンプルとを準備するサンプル準備工程と、
(B)サンプル準備工程で準備した溶液サンプルに試薬を添加し、パラメータの経時変化を測定する第1の測定工程と、
(C)サンプル準備工程で準備した参照溶液サンプルに試薬を添加し、パラメータの経時変化を測定する第2の測定工程と、
(D)第1の測定工程の測定結果から、溶液サンプル中の測定対象物質と試薬との見掛け上の反応終了時間である時間T1を決定し、時間T1以降のパラメータの大きさと時間との関係を表す第1の近似式を作成する第1の分析工程と、
(E)第2の測定工程の測定結果から、参照溶液サンプル中の測定対象物質と試薬との見掛け上の反応終了時間である時間T2を決定し、時間T2以降のパラメータの大きさと時間との関係を表す第2の近似式を作成する第2の分析工程と、
(F)第1の近似式に時間T(但し、T≧0)を代入して得られるパラメータの値P1と、第2の近似式に時間T(但し、T≧0)を代入して得られるパラメータの値P2と、既知の量との関係から溶液サンプル中の測定対象物質の濃度を求める算出工程と、
を実施して、溶液サンプル中の測定対象物質の濃度を高い精度で簡便に求めることができる。
 なお、サンプル準備工程において溶液サンプルに対して添加する測定対象物質の量(既知の量)は、特に限定されることなく、例えば管理基準値の1/2、法定基準値の1/2または測定感度の単位の10倍値(例:単位がmg/Lの場合、10mg/L)とすることができる。
 また、第1の測定工程および第2の測定工程におけるパラメータの大きさの測定は、試薬を添加した時間を反応開始時(T=0)として、パラメータの種類に応じた測定装置(例えば、蛍光光度計や吸光度計)を用いて行うことができる。ここで、第1の測定工程および第2の測定工程の実施順は、特に限定されない。また、前述したとおり、測定対象物質の濃度をより高い精度で求める観点からは、第1の測定工程と、第2の測定工程とでは、測定対象物質と試薬との反応条件を同一にすることが好ましい。
 そして、算出工程では、上述した[関係1]または[関係2]を用いて測定対象物質の濃度を求めることが好ましく、[関係1]を用いて測定対象物質の濃度を求めることがより好ましい。
(濃度測定装置)
 本発明の濃度測定装置は、溶液サンプル中に含まれる測定対象物質の濃度を、測定対象物質と反応して溶液サンプルのパラメータの大きさを変化させる試薬を用いて測定する装置である。そして、本発明の濃度測定装置は、例えば、上述した本発明の濃度測定方法を用いて溶液サンプル中の測定対象物質の濃度を求める際に好適に用いることができる。
 ここで、本発明の濃度測定装置の一例は、測定部と、分析部と、算出部とを備え、任意に他の構成を更に有していてもよい。
 測定部は、濃度未知の測定対象物質を含む溶液サンプル、及び、溶液サンプルに対し既知の量の測定対象物質を添加した参照溶液サンプルについて、試薬を添加した状態で、パラメータの経時変化を測定する。具体的には、測定部は、パラメータの種類に応じた測定装置(例えば、蛍光光度計や吸光度計)を用いて構成することができる。
 なお、溶液サンプルおよび参照溶液サンプルへの試薬の添加は、測定者がマニュアル操作で行ってもよいし、測定部が自動で行ってもよい。
 分析部および算出部は、単一の、または、複数のコンピュータ等で構成することができる。
 そして、分析部は、測定部による測定結果に基づいて、溶液サンプル中及び参照溶液サンプル中の測定対象物質と試薬との見掛け上の反応終了時間以降のパラメータの大きさと時間との関係を表す近似式を作成する。
 また、算出部は、近似式に時間T(但し、T≧0)を代入して得られるパラメータの値と、前記既知の量との関係から溶液サンプル中の測定対象物質の濃度を求める。
 なお、分析部における近似式の作成および算出部における濃度の算出は、それぞれ、本発明の濃度測定方法の分析工程および算出工程と同様の手法を用いて行うことができるので、ここでは説明を省略する。
(プログラム)
 本発明のプログラムは、溶液サンプル中に含まれる測定対象物質の濃度を、測定対象物質と反応して溶液サンプルのパラメータの大きさを変化させる試薬を用いて測定する際に用いられる。そして、本発明のプログラムは、例えば、上述した本発明の濃度測定装置を、上述した本発明の濃度測定方法を用いて溶液サンプル中の測定対象物質の濃度を求める濃度測定装置として機能させる際に好適に用いることができる。
 具体的には、本発明のプログラムの一例は、溶液サンプル中に含まれる測定対象物質の濃度を、測定対象物質と反応して溶液サンプルのパラメータの大きさを変化させる試薬を用いて測定する濃度測定装置に、濃度未知の測定対象物質を含む溶液サンプル、及び、溶液サンプルに対し既知の量の測定対象物質を添加した参照溶液サンプルについて、試薬を添加した状態で、パラメータの経時変化を測定した結果を取得させるステップと、取得した測定結果に基づいて、溶液サンプル中及び参照溶液サンプル中の測定対象物質と試薬との見掛け上の反応終了時間以降のパラメータの大きさと時間との関係を表す近似式を作成させるステップと、近似式に時間T(但し、T≧0)を代入して得られるパラメータの値と、既知の量との関係から溶液サンプル中の測定対象物質の濃度を求めるステップとを実行させる。
 より具体的には、本発明のプログラムの一例は、例えば、濃度測定装置の動作を制御するコンピュータ等の制御装置を介して濃度測定装置に上述したステップを実行させる。
 なお、このプログラムは、コンピュータが読み取り可能な記録媒体に記録されていてもよい。このような記録媒体を用いれば、プログラムをコンピュータにインストールすることが可能である。ここで、プログラムが記録された記録媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM、DVD-ROMなどの記録媒体であってもよい。また、このプログラムは、ネットワークを介したダウンロードによって提供することもできる。
(実施例1)
 測定対象物質として臭素酸イオンを含む溶液サンプルとして、オゾン処理後の配管から採取したオゾン処理水(A)を準備した。
 オゾン処理水(A)75mlに対し、臭素酸イオン標準を濃度が10μg/L足されるように0.75μg添加して参照サンプル溶液を準備した(サンプル準備工程)。
 そして、溶液サンプルおよび参照溶液サンプルのそれぞれについて、試薬としてトリフルオペラジンを濃度が3μmol/Lとなるように添加し、蛍光測定が可能な試作装置を使用して蛍光強度の経時変化を測定した(第1の測定工程および第2の測定工程)。結果を図3(a)に示す。
 得られたデータから、以下のようにして、測定対象物質と試薬との見掛け上の反応が終了する時間T1,T2と、第1の近似式および第2の近似式と、反応開始時(T=0)の蛍光強度の値P0’とを求めた(第1の分析工程および第2の分析工程)。
・時間T1,T2:反応時間と蛍光強度との関係を示す曲線の微分値が初めて0.5(a.u./秒)以下になる時間(=500秒)とした
・第1の近似式および第2の近似式:最小二乗法により求めた
・反応開始時(T=0)の蛍光強度の値P0’:溶液サンプルの、時間T=200秒から時間T1までのデータを使用し、カーブフィッティングにより反応開始時(T=0)の蛍光強度の指数を求め、反応開始時(T=0)の蛍光強度を求めてP0’とした
 そして、下記の関係式(1):
C={(P1’-P0’)/(P2’-P1’)}×(m/M) ・・・(1)
 C:溶液サンプル中の臭素酸イオンの濃度
 P0’:反応開始時(T=0)の蛍光強度の値
 P1’:反応開始時(T=0)における第1の近似式の蛍光強度の値
 P2’:反応開始時(T=0)における第2の近似式の蛍光強度の値
 m:溶液サンプルに添加した臭素酸イオンの質量(既知の量)
 M:参照溶液サンプルの質量
を用いて溶液サンプル(オゾン処理水(A))中の測定対象物質の濃度を求めたところ、2.01μg/Lであった。因みに、P0’は2.438(a.u.)であり、P1’は2.634(a.u.)であり、P2’は3.783(a.u.)であり、m/Mは12μg/Lであった。
 同じオゾン処理水(A)について、イオンクロマトグラフ(Thermofisher社製、商品名「Dionex」)を用いて臭素酸イオン濃度の定量を行ったところ、濃度は1.92μg/Lであった。
(実施例2)
 サンプル準備工程において、測定対象物質として臭素酸イオンを含む溶液サンプルとして、オゾン処理後の配管から採取したオゾン処理水(B)を準備し、オゾン処理水(B)75mlに対し、臭素酸イオン標準を濃度が10μg/L足されるように0.75μg添加して参照サンプル溶液を準備した。それ以外は実施例1と同様にして溶液サンプル(オゾン処理水(B))中の測定対象物質の濃度を求めたところ、11.98μg/Lであった。因みに、P0’は2.381(a.u.)であり、P1’は3.532(a.u.)であり、P2’は4.685(a.u.)であり、m/Mは12μg/Lであった。また、蛍光強度の経時変化の測定結果は、図3(b)に示す通りであった。
 また、同じオゾン処理水(B)について、イオンクロマトグラフ(Thermofisher社製、商品名「Dionex」)を用いて臭素酸イオン濃度の定量を行ったところ、濃度は11.85μg/Lであった。
 実施例1,2より、本発明の方法では高い精度で臭素酸イオン濃度を測定できることが分かる。
 本発明によれば、測定対象物質の濃度を高い精度で簡便に測定することができる。

Claims (7)

  1.  溶液サンプル中に含まれる測定対象物質の濃度を、前記測定対象物質と反応して溶液サンプルのパラメータの大きさを変化させる試薬を用いて測定する方法であって、
     濃度未知の測定対象物質を含む溶液サンプル、及び、前記溶液サンプルに対し既知の量の測定対象物質を添加した参照溶液サンプルに、前記試薬を添加し、前記パラメータの経時変化を測定する測定工程と、
     前記測定工程による測定結果に基づいて、前記溶液サンプル中及び前記参照溶液サンプル中の測定対象物質と前記試薬との見掛け上の反応終了時間以降の前記パラメータの大きさと時間との関係を表す近似式を作成する分析工程と、
     前記近似式に時間T(但し、T≧0)を代入して得られるパラメータの値と、前記既知の量との関係から前記溶液サンプル中の測定対象物質の濃度を求める算出工程と、
    を含む、濃度測定方法。
  2.  前記分析工程では、前記溶液サンプル中の測定対象物質に対応する第1の近似式と、前記参照溶液サンプル中の測定対象物質に対応する第2の近似式とを作成し、
     前記算出工程では、下記の関係式(1):
    C={(P1’-P0’)/(P2’-P1’)}×(m/M) ・・・(1)
     C:溶液サンプル中の測定対象物質の濃度
     P0’:反応開始時(T=0)のパラメータの値
     P1’:反応開始時(T=0)における第1の近似式のパラメータの値
     P2’:反応開始時(T=0)における第2の近似式のパラメータの値
     m:溶液サンプルに添加した測定対象物質の質量(既知の量)
     M:参照溶液サンプルの質量
    を用いて前記溶液サンプル中の測定対象物質の濃度を求める、請求項1に記載の濃度測定方法。
  3.  前記パラメータが蛍光強度または吸光度である、請求項1または2に記載の濃度測定方法。
  4.  前記測定対象物質が臭素酸イオンであり、
     前記パラメータが蛍光強度であり、
     前記試薬がトリフルオペラジンである、請求項1~3の何れかに記載の濃度測定方法。
  5.  前記溶液サンプルと、前記参照溶液サンプルとで、前記測定対象物質と前記試薬との反応条件を同一にする、請求項1~4の何れかに記載の濃度測定方法。
  6.  溶液サンプル中に含まれる測定対象物質の濃度を、前記測定対象物質と反応して溶液サンプルのパラメータの大きさを変化させる試薬を用いて測定する装置であって、
     濃度未知の測定対象物質を含む溶液サンプル、及び、前記溶液サンプルに対し既知の量の測定対象物質を添加した参照溶液サンプルについて、前記試薬を添加した状態で、前記パラメータの経時変化を測定する測定部と、
     前記測定部による測定結果に基づいて、前記溶液サンプル中及び前記参照溶液サンプル中の測定対象物質と前記試薬との見掛け上の反応終了時間以降の前記パラメータの大きさと時間との関係を表す近似式を作成する分析部と、
     前記近似式に時間T(但し、T≧0)を代入して得られるパラメータの値と、前記既知の量との関係から前記溶液サンプル中の測定対象物質の濃度を求める算出部と、
    を備える、濃度測定装置。
  7.  溶液サンプル中に含まれる測定対象物質の濃度を、前記測定対象物質と反応して溶液サンプルのパラメータの大きさを変化させる試薬を用いて測定する装置に、
     濃度未知の測定対象物質を含む溶液サンプル、及び、前記溶液サンプルに対し既知の量の測定対象物質を添加した参照溶液サンプルについて、前記試薬を添加した状態で、前記パラメータの経時変化を測定した結果を取得させるステップと、
     取得した前記結果に基づいて、前記溶液サンプル中及び前記参照溶液サンプル中の測定対象物質と前記試薬との見掛け上の反応終了時間以降の前記パラメータの大きさと時間との関係を表す近似式を作成させるステップと、
     前記近似式に時間T(但し、T≧0)を代入して得られるパラメータの値と、前記既知の量との関係から前記溶液サンプル中の測定対象物質の濃度を求めるステップと、
    を実行させる、プログラム。
PCT/JP2020/039998 2019-10-25 2020-10-23 濃度測定方法、濃度測定装置およびプログラム WO2021080014A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021553582A JP7477522B2 (ja) 2019-10-25 2020-10-23 濃度測定方法、濃度測定装置およびプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019194650 2019-10-25
JP2019-194650 2019-10-25

Publications (1)

Publication Number Publication Date
WO2021080014A1 true WO2021080014A1 (ja) 2021-04-29

Family

ID=75620730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039998 WO2021080014A1 (ja) 2019-10-25 2020-10-23 濃度測定方法、濃度測定装置およびプログラム

Country Status (2)

Country Link
JP (1) JP7477522B2 (ja)
WO (1) WO2021080014A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180143A (ja) * 1985-07-17 1986-08-12 フレデリツク・ジエイ・アラジエム 免疫拡散による蛋白の定量分析方法
JPS63118655A (ja) * 1986-03-19 1988-05-23 ベ−リンガ−・マンハイム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 免疫反応の反応成分を測定するための方法及び試薬
JPH06148187A (ja) * 1991-02-07 1994-05-27 Konica Corp 免疫学的測定方法
WO2009116554A1 (ja) * 2008-03-19 2009-09-24 メタウォーター株式会社 臭素酸イオンの測定方法および装置
JP2010271095A (ja) * 2009-05-20 2010-12-02 Hitachi High-Technologies Corp 自動分析装置及び分析方法
US20130130308A1 (en) * 2011-11-23 2013-05-23 Envolure Process for directly measuring multiple biodegradabilities
JP2014002007A (ja) * 2012-06-18 2014-01-09 Metawater Co Ltd 臭素酸イオンの測定方法及び測定装置
WO2014174818A1 (ja) * 2013-04-26 2014-10-30 パナソニックIpマネジメント株式会社 酸化物質定量方法および酸化物質定量装置
JP2016057162A (ja) * 2014-09-09 2016-04-21 メタウォーター株式会社 臭素酸イオン濃度の測定方法および測定システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180143A (ja) * 1985-07-17 1986-08-12 フレデリツク・ジエイ・アラジエム 免疫拡散による蛋白の定量分析方法
JPS63118655A (ja) * 1986-03-19 1988-05-23 ベ−リンガ−・マンハイム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 免疫反応の反応成分を測定するための方法及び試薬
JPH06148187A (ja) * 1991-02-07 1994-05-27 Konica Corp 免疫学的測定方法
WO2009116554A1 (ja) * 2008-03-19 2009-09-24 メタウォーター株式会社 臭素酸イオンの測定方法および装置
JP2010271095A (ja) * 2009-05-20 2010-12-02 Hitachi High-Technologies Corp 自動分析装置及び分析方法
US20130130308A1 (en) * 2011-11-23 2013-05-23 Envolure Process for directly measuring multiple biodegradabilities
JP2014002007A (ja) * 2012-06-18 2014-01-09 Metawater Co Ltd 臭素酸イオンの測定方法及び測定装置
WO2014174818A1 (ja) * 2013-04-26 2014-10-30 パナソニックIpマネジメント株式会社 酸化物質定量方法および酸化物質定量装置
JP2016057162A (ja) * 2014-09-09 2016-04-21 メタウォーター株式会社 臭素酸イオン濃度の測定方法および測定システム

Also Published As

Publication number Publication date
JP7477522B2 (ja) 2024-05-01
JPWO2021080014A1 (ja) 2021-04-29

Similar Documents

Publication Publication Date Title
Campaña et al. ALAMIN: a chemometric program to check analytical method performance and to assess the trueness by standard addition methodology
JP5006441B2 (ja) 全血分析
ATE295541T1 (de) Verfahren und vorrichtung zur untersuchung von wirksstoffskandidaten und zur bestimmung ihrer pharmakokinetischen parametern
JP6576914B2 (ja) 測光のための較正方法
Østergaard et al. Bioanalytical interaction studies executed by preincubation affinity capillary electrophoresis
JP2020514689A5 (ja)
Mehta The validation criteria for analytical methods used in pharmacy practice research
CN109633181A (zh) 一种血浆中变肾上腺素和去甲变肾上腺素的检测试剂盒
Ni et al. Simultaneous determination of halide and thiocyanate ions by potentiometric precipitation titration and multivariate calibration
Khachornsakkul et al. Distance-based β-amyloid protein detection on PADs for the scanning and subsequent follow-up of Alzheimer's disease in human urine samples
WO2021080014A1 (ja) 濃度測定方法、濃度測定装置およびプログラム
Jurdáková et al. FIA-MS/MS determination of creatinine in urine samples undergoing butylation
JPH06194313A (ja) 反応測定方法
Basavaiah et al. Three useful bromimetric methods for the determination of salbutamol sulfate
CN106501526A (zh) 一种组合定向剂优化胶乳偶联抗体检测前白蛋白(pa)的试剂盒
Fayez et al. Comparative study of the efficiency of computed univariate and multivariate methods for the estimation of the binary mixture of clotrimazole and dexamethasone using two different spectral regions
Lehmann Direct determination of lithium in serum by atomic absorption spectroscopy
Mateo et al. Development and evaluation of a rapid and sensitive homogeneous assay for haptoglobin measurements in saliva
US9310359B2 (en) Analyte quantification using flow induced dispersion analysis
El‐Didamony et al. A novel spectrofluorimetric method for the assay of pseudoephedrine hydrochloride in pharmaceutical formulations via derivatization with 4‐chloro‐7‐nitrobenzofurazan
Mirsky Quantitative characterization of affinity properties of immobilized receptors
Kircher et al. Simultaneous reaction-rate determinations of phosphate and silicate
JP2009535619A (ja) 少なくとも2つの元素を含む試料の調査のための分光法における方法
Taleuzzaman et al. Bio-Analytical Method Validation-A Review
JP2595267B2 (ja) 測光的評価を用いる物質の測定法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880112

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553582

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880112

Country of ref document: EP

Kind code of ref document: A1