WO2014174818A1 - 酸化物質定量方法および酸化物質定量装置 - Google Patents

酸化物質定量方法および酸化物質定量装置 Download PDF

Info

Publication number
WO2014174818A1
WO2014174818A1 PCT/JP2014/002220 JP2014002220W WO2014174818A1 WO 2014174818 A1 WO2014174818 A1 WO 2014174818A1 JP 2014002220 W JP2014002220 W JP 2014002220W WO 2014174818 A1 WO2014174818 A1 WO 2014174818A1
Authority
WO
WIPO (PCT)
Prior art keywords
curve
absorbance
oxidant
substance
reducing agent
Prior art date
Application number
PCT/JP2014/002220
Other languages
English (en)
French (fr)
Inventor
真里 小野寺
今井 伸一
裕典 熊谷
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US14/409,956 priority Critical patent/US9513227B2/en
Priority to CN201480001563.0A priority patent/CN104380086A/zh
Priority to JP2014556857A priority patent/JPWO2014174818A1/ja
Publication of WO2014174818A1 publication Critical patent/WO2014174818A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/005Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods investigating the presence of an element by oxidation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N2021/755Comparing readings with/without reagents, or before/after reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/228Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for peroxides

Definitions

  • the present invention relates to an oxidizing substance quantification method using an oxidation-reduction reaction and an oxidizing substance quantification apparatus used therefor.
  • Detecting or quantifying substances that produce oxidants as a result of oxidants and chemical reactions is important in many areas.
  • quantification / monitoring of oxidizing substances in water is very important in terms of the effects and operation management of the apparatus.
  • methods for quantifying oxidized substances include enzymatic methods and methods that measure substances that undergo detectable chemical reactions (color changes, etc.) by chemical reaction with the analyte, and various components that are present in body fluids in clinical tests It is used for quantitative and environmental analysis.
  • hydrogen peroxide is quantified by adding a substance that undergoes a detectable color change, for example, a leuco dye, as a reducing agent in the presence of peroxidase, and performing a redox reaction to colorimetrically produce a colored substance that is quantitatively generated.
  • a detectable color change for example, a leuco dye
  • a reducing agent having high selectivity with respect to the known oxidizing substance is usually selected and used.
  • a general reducing agent must be used. In such a case, the oxidation-reduction reaction does not proceed quantitatively, and accurate quantification is difficult. There is a case. If accurate quantification is possible even if one kind of reducing agent is used for various oxidizing substances, it is not necessary to prepare various reducing agents, and thus quicker and lower-cost quantification is possible.
  • the present invention has been made to solve the above-mentioned conventional problems, and has as its object to provide an oxidant substance quantification method and an oxidant substance quantification apparatus used therefor that can quantitate an oxidant substance accurately, quickly and at low cost.
  • the present inventors add one kind of reducing agent to a sample solution containing one kind or a plurality of kinds of oxidants having different lifetimes, and after color change or color development.
  • the absorbance curve can be used to determine the amount of oxidized material without being affected by blank coloring due to natural oxidation of the reducing agent.
  • the oxidant substance quantification method of the present invention is an oxidant substance quantification method for quantifying an oxidant substance in a sample by using an oxidation-reduction reaction, and is applied to a sample solution containing one kind or a plurality of kinds of oxidant substances having different lifetimes.
  • a seed reducing agent is added, an absorbance curve is prepared by measuring the time change of the absorbance of the reducing agent after color change or color development, and based on the obtained absorbance curve, an oxidizing substance in the sample solution And the amount of the oxidized substance is quantified.
  • the oxidation substance quantification apparatus of the present invention is an oxide quantification apparatus used in an oxidation substance quantification method for quantifying an oxidant substance in a sample using an oxidation-reduction reaction, and the oxide quantification apparatus includes a measurement unit and a control unit.
  • a reaction unit that reacts a sample solution containing one or more kinds of oxidizing substances having different lifetimes with one reducing agent, a light source unit that irradiates light to the reaction unit, and A light receiving portion for detecting the light transmitted from the reaction portion and measuring the absorbance of the reducing agent after color change or color development;
  • the control unit stores a reference approximate curve indicating a change in absorbance of a known oxidant with time, a calibration curve indicating a relationship between absorbance and concentration, and the absorbance of the reducing agent after color change or color development.
  • An absorbance curve is prepared by measuring a time change of the sample, and an oxidizing substance in the sample solution is identified based on the obtained absorbance curve, and a calculation unit for quantifying the oxidizing substance is provided. To do.
  • one type of reducing agent can be used for various oxidizing substances, and no masking agent or blank test is required. Thereby, it becomes possible to perform accurate quantification of the oxidized substance more quickly and at low cost.
  • the oxidizing substance targeted by the present invention is not particularly limited.
  • An oxidizing substance that can oxidize iodide ions is preferable. Examples include hydrogen peroxide, ozone, radical species, potassium nitrate, hypochlorous acid, chlorous acid, chloric acid, perchloric acid, halogen, permanganate, cerium ammonium nitrate, chromic acid, dichromic acid, peroxygen An oxide etc. can be mentioned. However, when two or more kinds of oxidizing substances are present, it is necessary that each oxidizing substance has a life difference.
  • a stable oxidant having a long life eg, hydrogen peroxide
  • an unstable oxidant having a short life eg, ozone, radical species, etc.
  • the reducing agent is not particularly limited as long as it is water-soluble and causes a color change or color development upon reaction with an oxidizing substance and can be detected by an optical method.
  • Examples include potassium iodide and ferrous sulfate, but potassium iodide is preferred.
  • a masking agent or a masking process is unnecessary.
  • the masking agent is an agent that suppresses the reaction of the reducing agent with an oxidizing substance other than the target oxidizing substance.
  • the masking treatment includes not only addition of a masking agent but also chemical modification of the reducing agent in order to prevent the reducing agent from reacting with an oxidizing substance other than the target oxidizing substance.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an oxidant concentration quantification apparatus according to the present invention.
  • the apparatus includes at least a measurement unit 102 and a control unit 105.
  • the measurement unit 102 includes a reaction unit 101 that reacts a sample solution containing one or a plurality of oxidizing substances having different lifetimes with one reducing agent, a light source unit 103 that irradiates the reaction unit 101 with light, and the reaction And a light receiving unit 104 that detects transmitted light from the unit 101 and measures the absorbance of the reducing agent after color change or color development.
  • control unit 105 stores a reference approximate curve indicating the time change of the absorbance of the known oxidant substance, a storage unit 107 that stores a calibration curve indicating the relationship between the absorbance and the concentration, and the reducing agent after color change or color development.
  • the absorbance change is measured to create an absorbance curve, and the obtained absorbance curve is decomposed into one or more approximate curves by curve approximation analysis to calculate the half-width of each approximate curve and the initial absorbance at time zero.
  • the calculating part 106 which quantifies the said identified oxidized substance using the calibration curve which shows the relationship with a density
  • the storage unit 107 may be connected to the outside. Further, the reaction unit 101 may be separated from the measurement unit 102.
  • an absorbance curve obtained by adding a single reducing agent to the known oxidized substance and measuring the change in absorbance with time can be used.
  • one reducing agent is added to a sample solution containing at least one oxidizing substance.
  • An optical cell can be used for the reaction unit 101.
  • a quartz cell, a glass cell, or a disposable cell made of polystyrene or polymethyl methacrylate can be used.
  • the measurement unit 102 the light from the light source 103 is irradiated to the reaction unit 101 through an optical system (not shown), and the transmitted light from the reaction unit 101 is detected by the light receiver 104.
  • an ultraviolet-visible spectrophotometer can be used as the measurement unit 102.
  • the transmitted light data from the light receiver 104 is sent to the calculation unit 106.
  • the calculation unit 106 calculates the absorbance of the reducing agent after the color change or after the color development from the comparison with the incident light data from the light source 103, and further creates an absorbance curve representing the temporal change in the absorbance of the reducing agent. .
  • curve approximation analysis is applied to the obtained absorbance curve to decompose it into one or more types of approximate curves, and the half width of each approximate curve and the initial absorbance at time zero are calculated.
  • the half-value width of each approximate curve obtained is compared with the half-value width of a reference approximate curve of a known oxidized substance that is separately acquired and stored in the storage unit 107, and the oxidized substances belonging to each approximate curve are identified.
  • the full width at half maximum obtained from the approximate curve can be used as a parameter indicating the ease of attenuation of each oxidized substance, and indicates a value specific to each oxidized substance. Therefore, it becomes possible to identify the unknown oxidation substance by comparing the half-value width of the unknown oxidation substance in the sample with the half-value width of the known oxidation substance.
  • the identified oxidized substance is quantified using a calibration curve indicating the relationship between the absorbance and the concentration of the known oxidized substance separately obtained and stored in the storage unit 107 and the initial absorbance.
  • the storage unit 107 stores a calibration curve for known oxidants.
  • the calibration curve is prepared by adding a reducing agent in the same manner as described above for an oxidized substance having a known concentration and measuring the initial absorbance at time zero.
  • a calibration curve is created using the initial absorbance and concentration.
  • an absorbance curve is created for at least one concentration, curve approximation analysis is applied to the obtained absorbance curve to decompose it into one approximate curve, and the half width of the approximate curve is calculated.
  • This half-value width is stored as the half-value width of the known oxidized substance.
  • the concentration measured by the potassium permanganate method can be used as the concentration for preparing a calibration curve.
  • the concentration measured with an ozone measuring reagent for example, manufactured by Kasa Principle Chemical Co., Ltd.
  • the curve approximation analysis used in the present invention is not particularly limited as long as it is a method of approximating various time series data distribution waveforms by mathematical formulas. Gaussian approximation, Maxwell-Boltzmann approximation, Lorentz approximation and the like can be mentioned, but Gaussian approximation is preferable.
  • one kind of reducing agent can be used for various oxidizing substances. Moreover, a masking agent and a blank test are unnecessary. Thereby, it becomes possible to perform accurate quantification of the oxidized substance more quickly and at low cost.
  • the present invention is useful when sample water containing two or more kinds of oxidizing substances having different lifetimes is targeted.
  • accurate quantification is difficult when each oxidizing substance is quantified by the conventional method.
  • the enzyme method and the absorbance method using leuco dye which are conventional methods for determining hydrogen peroxide, are quantitative when the only oxidizing substance in the solution is hydrogen peroxide.
  • the reducing agent reacts with other oxidizing substances. Therefore, accurate quantification is difficult.
  • the potassium iodide method which is a conventional method for determining ozone, is quantitative when the only oxidizing substance in the solution is ozone, but when other oxidizing substances are present in addition to ozone, Since potassium iodide also reacts with other oxidizing substances, the ozone concentration is estimated to be high, so accurate quantification is difficult.
  • the present invention pays attention to the fact that the lifetime of each oxidant is different when there are multiple types of oxidant, and is obtained by applying a curve approximation analysis to the absorbance curve representing the change in absorbance of sample water over time.
  • the half-value widths of the plurality of approximate curves to be obtained indicate values specific to each oxidizing substance.
  • the present invention is particularly useful for sample water containing radical species.
  • a plurality of kinds of oxidizing substances such as ozone, hydrogen peroxide, and oxygen-containing radicals are generated in a solution by a submerged plasma apparatus.
  • a submerged plasma device generates multiple oxidizing substances such as ozone, hydrogen peroxide, and radicals in the solution, but the reaction mechanism in the water is competitively entangled between the reactions of each oxidizing substance and changes over time. Therefore, it is difficult to quantify the product (for example, OH radicals have a short lifetime and recombine with each other to change to hydrogen peroxide).
  • the present invention focuses on the fact that the lifetime of each oxidized material is different when there are a plurality of types of oxidized materials. Therefore, the greater the difference in lifetime, the greater the difference in half-value width. Becomes easy. Further, by using the absorbance at time zero of the approximate curve obtained for each oxidizing substance in the sample water, it is possible to separately calculate the concentrations of radical species and other oxidizing substances.
  • Example 1 sample water containing hydrogen peroxide as an oxidizing substance was used as a measurement target.
  • the sample water was prepared by adding a predetermined amount of hydrogen peroxide (manufactured by Kanto Chemical) to 250 mL of pure water. Immediately after the addition, the reaction time was 0 minutes, and after a lapse of a predetermined time, a reducing agent mainly composed of 10 mL of pure water and potassium iodide was added to the reaction unit 101 made of disposable cell (made of polymethylmethacrylate) having a cell length of 1 cm. The absorbance of the sample water to which the reducing agent was added (hereinafter referred to as reduced treated water) was measured by the measuring unit 102 every predetermined time.
  • reduced treated water absorbance of the sample water to which the reducing agent was added
  • the absorbance was measured using a UV-visible spectrophotometer (manufactured by JASCO) at a wavelength range of 400 to 800 nm, a measurement interval of 1.0 nm, a scanning speed of 400 nm / min, and a bandwidth of 2.0 nm.
  • the control unit 105 created a graph (absorbance curve) showing the relationship between the absorbance of the maximum peak of iodine at 500 nm to 530 nm and the elapsed time using the absorbance data at predetermined time intervals.
  • the calibration curve was created according to the following procedure. That is, with respect to each concentration of hydrogen peroxide solution, a reducing agent mainly composed of pure water and potassium iodide was added to the reaction part 101 made of disposable cell (made of polymethyl methacrylate) having a cell length of 1 cm. The initial absorbance at time zero was measured, and a calibration curve was created using the initial absorbance and concentration. Furthermore, the absorbance of the reduced treated water for one concentration was measured by the measurement unit 102 at predetermined time intervals. Next, a graph (absorbance curve) showing the relationship between the absorbance of the maximum peak of iodine at 500 nm to 530 nm and the elapsed time was prepared using the absorbance data for each predetermined time. A Gaussian curve (referred to as a reference Gaussian curve) was obtained by applying Gaussian approximation to the obtained absorbance curve, and data of the reference Gaussian curve was stored in the storage unit 107. Absorbance measurement was performed as described above.
  • FIG. 2 is a graph showing the relationship between the absorbance of the maximum peak at 500 nm to 530 nm and the elapsed time, and the black circle ( ⁇ ) in the figure indicates the absorbance value of the maximum peak at 500 nm to 530 nm.
  • the computing unit 106 applied the Gaussian approximation to the absorbance curve in FIG. 2 to obtain a Gaussian curve.
  • the obtained Gaussian curve (also called Gaussian function) is shown below.
  • FIG. 3 is a calibration curve for hydrogen peroxide.
  • the time zero absorbance of the above Gaussian curve corresponds to the hydrogen peroxide concentration at the time of sample water preparation, and the hydrogen peroxide concentration in the sample water can be calculated by using the zero time absorbance.
  • the absorbance at time zero was obtained from the above Gaussian curve, and the hydrogen peroxide concentration was calculated using the hydrogen peroxide calibration curve of FIG. A value of 2.5 ⁇ 10 ⁇ 4 mol / L was obtained as the hydrogen peroxide concentration in the sample water.
  • the half width of the Gaussian curve obtained for the sample water was in good agreement with the value of the half width obtained from the reference Gaussian curve for hydrogen peroxide.
  • Example 2 sample water containing ozone as an oxidizing substance was used as a measurement target.
  • Sample water was prepared by connecting an air pump to an ozone generator (manufactured by Chuen Electronics) and introducing the generated ozone into pure water. The initial absorbance at time zero was measured, and a calibration curve was created using the initial absorbance and concentration. Immediately after the addition, the reaction time was 0 minutes, and after a lapse of a predetermined time, a reducing agent mainly composed of 10 mL of pure water and potassium iodide was added to the reaction unit 101 made of disposable cell (made of polymethylmethacrylate) having a cell length of 1 cm. The absorbance of the reduced treated water was measured by the measurement unit 102 every predetermined time. Absorbance measurement was performed in the same manner as in Example 1.
  • the control unit 105 created a graph (absorbance curve) showing the relationship between the absorbance of the maximum peak of iodine at 500 nm to 530 nm and the elapsed time using the absorbance data at predetermined time intervals.
  • the calibration curve was created according to the following procedure. That is, for each concentration of ozone water, a reducing agent mainly composed of pure water and potassium iodide was added to the reaction section 101 made of a disposable cell (made of polymethyl methacrylate) having a cell length of 1 cm. The initial absorbance at time zero was measured, and a calibration curve was created using the initial absorbance and concentration. Further, the absorbance of the reduced treated water was measured at a measurement unit 102 at predetermined time intervals for one concentration. Next, a graph (absorbance curve) showing the relationship between the absorbance of the maximum peak of iodine at 500 nm to 530 nm and the elapsed time was prepared using the absorbance data for each predetermined time. A Gaussian curve (referred to as a reference Gaussian curve) was obtained by applying Gaussian approximation to the obtained absorbance curve, and data of the reference Gaussian curve was stored in the storage unit 107.
  • FIG. 4 is a graph showing the relationship between the absorbance of the maximum peak at 500 nm to 530 nm and the elapsed time, and the black circle ( ⁇ ) in the figure shows the absorbance value of the maximum peak at 500 nm to 530 nm.
  • the computing unit 106 applied the Gaussian approximation to the absorbance curve in FIG. 4 to obtain a Gaussian curve.
  • the Gaussian curve obtained is shown below.
  • FIG. 5 is an ozone calibration curve.
  • the absorbance at time zero was obtained from the above Gaussian curve, and the ozone concentration was calculated using the ozone calibration curve of FIG. A value of 1.3 ⁇ 10 ⁇ 6 mol / L was obtained as the ozone concentration in the sample water.
  • the value of the half width of the above-mentioned Gaussian curve obtained for the sample water was in good agreement with the value of the half width obtained from the ozone standard Gaussian curve.
  • Example 3 sample water containing ozone and hydrogen peroxide as an oxidizing substance was used as a measurement target.
  • the sample water was prepared by adding predetermined amounts of ozone and hydrogen peroxide (manufactured by Kanto Chemical) to 250 mL of pure water.
  • the ozone was dissolved in pure water by connecting an air pump to an ozone generator (manufactured by Chuen Electronics).
  • the reaction time was 0 minutes, and after a lapse of a predetermined time, a reducing agent mainly composed of 10 mL of pure water and potassium iodide was added to the reaction unit 101 made of disposable cell (made of polymethylmethacrylate) having a cell length of 1 cm.
  • the absorbance of the sample water to which the reducing agent was added was measured by the measuring unit 102 every predetermined time. Absorbance measurement was performed in the same manner as in Example 1.
  • the absorbance data for each predetermined time was sent to the control unit 105, where a graph (absorbance curve) showing the relationship between the absorbance of the maximum peak of iodine at 500 nm to 530 nm and the elapsed time was created.
  • FIG. 6 is a graph showing the relationship between the absorbance of the maximum peak at 500 nm to 530 nm and the elapsed time, and the black circle ( ⁇ ) in the figure indicates the absorbance value of the maximum peak at 500 nm to 530 nm. From FIG. 6, it can be seen that there are an attenuation region (referred to as region A) of about 20 minutes to about 100 minutes and an attenuation region (B region) that maintains a stable and constant concentration after about 100 minutes.
  • region A an attenuation region
  • B region an attenuation region
  • the calculation unit 106 applied the Gaussian approximation to the A region and the B region of the absorbance curve in FIG. 6 to obtain a Gaussian curve.
  • the Gaussian curve obtained is shown below.
  • Half-width of the Gaussian curve is a parameter representing the life of each oxidant, the half width of the curve 1 is 2 ⁇ 172 2, the half width of the curve 2 is 2 ⁇ 1613 2.
  • These half-value width values are created in Example 1 and Example 2, the half-value widths of the reference Gaussian curves of ozone and hydrogen peroxide stored in the storage unit 107 are compared, and the half-value widths of the reference Gaussian curves are compared. Were confirmed to match the full width at half maximum of Curve 1 and Curve 2, respectively.
  • the zero-time absorbances of curve 1 and curve 2 were obtained from FIG. 6, and the ozone concentration and the hydrogen peroxide concentration were calculated using the calibration curve of ozone and hydrogen peroxide stored in the storage unit 107.
  • the ozone concentration in the sample water was 2.5 ⁇ 10 ⁇ 5 mol / L
  • the hydrogen peroxide concentration was 6.9 ⁇ 10 ⁇ 5 mol / L.
  • Example 4 sample water containing radical species, ozone, and hydrogen peroxide as an oxidizing substance was used as a measurement target.
  • plasma treatment was performed for 250 mL of pure water (prepared by mixing conductivity 20 mS / m and sodium sulfate) for 10 minutes. Immediately after completion of the treatment, 0 minute was set, and 10 mL of a sample after a certain period of time and a reducing agent mainly composed of potassium iodide were added to the reaction unit 101. The absorbance of the reduced treated water was measured by the measurement unit 102 every predetermined time. Absorbance measurement was performed in the same manner as in Example 1.
  • FIG. 7 is a graph showing the relationship between the absorbance of the maximum peak at 500 nm to 530 nm and the elapsed time, and the black circle ( ⁇ ) in the figure indicates the absorbance value of the maximum peak at 500 nm to 530 nm. From FIG. 7, an attenuation region (C region) of 0 to about 20 minutes, an attenuation region (referred to as region A) of about 20 minutes to about 100 minutes, and an attenuation region that maintains a stable and constant concentration after about 100 minutes (A region). It can be seen that (B region) exists.
  • the calculation unit 106 applied the Gaussian approximation to the A region, the B region, and the C region of the absorbance curve in FIG.
  • the obtained Gaussian curve (also called Gaussian function) is shown below.
  • FWHM of curve 1 is 2 ⁇ 172 2
  • the half width of the curve 2 is 2 ⁇ 1613 2.
  • These half-value width values are created in Example 1 and Example 2, and compared with the half-value widths of the standard Gaussian curves of ozone and hydrogen peroxide stored in the storage unit 107, and the half-value widths of the standard Gaussian curves are compared. Were confirmed to match the full width at half maximum of Curve 1 and Curve 2, respectively.
  • the attribution of the curve 3 can be estimated as, for example, a radical species because it is an oxidizing substance different from hydrogen peroxide and ozone, for example, because the decay time is short.
  • the zero-time absorbances of curve 1 and curve 2 were obtained from FIG. 7, and the ozone concentration and hydrogen peroxide concentration were calculated using the calibration curve of ozone and hydrogen peroxide stored in the storage unit 107.
  • the ozone concentration in the sample water was 2.5 ⁇ 10 ⁇ 5 mol / L
  • the hydrogen peroxide concentration was 6.9 ⁇ 10 ⁇ 5 mol / L.
  • the present invention it is possible to quantitate an oxidizing substance accurately, quickly and at low cost without being affected by blank coloring due to natural oxidation of the reducing agent using one kind of reducing agent.
  • concentration of each oxidizing substance can be accurately quantified. This is useful for water quality monitoring and water treatment device operation management. It can also be applied to uses such as quantitative analysis and environmental analysis of various components present in body fluids in clinical tests.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

 正確、迅速および低コストに酸化物質を定量することが可能な酸化物質定量方法およびそれに用いる酸化物質定量装置を提供する。本発明の酸化物質定量方法は、試料中の酸化物質を酸化還元反応を用いて定量する酸化物質定量方法であって、1種または寿命の異なる複数種の酸化物質を含む試料溶液に1種の還元剤を添加し、色変化後または発色後の該還元剤の吸光度の時間変化を測定して吸光度曲線を作成し、得られた該吸光度曲線に基づいて、前記試料溶液中の酸化物質を同定するともに、当該酸化物質を定量する。

Description

酸化物質定量方法および酸化物質定量装置
 本発明は、酸化還元反応を用いる酸化物質定量方法およびそれに用いる酸化物質定量装置に関する。
 酸化物質および化学反応の結果、酸化物質を生じる物質の検出または定量は多くの領域において重要である。特に、水処理の分野において、水中の酸化物質の定量・モニタリングはその効果および装置の動作管理を行う上で非常に重要である。
 従来、酸化物質の定量方法としては、酵素法や分析対象物質と化学反応して検出可能な変化(色変化など)を受ける物質を測定する方法があり、臨床検査における体液中に存在する各種成分の定量や環境分析に利用されている。例えば過酸化水素の定量はペルオキシダーゼの共存下、還元剤として、検出可能な色変化を受ける物質、例えばロイコ色素を添加し、酸化還元反応を行わせて、定量的に生成する発色物質を比色定量する方法などがある(例えば、特許文献1参照)
特開昭60-256056号公報
 しかしながら、従来の方法では、試薬として用いる還元剤の自然酸化によるブランク着色による誤差を生じ易く正確な定量が困難であるという問題がある。これに対し、マスキング剤を添加して還元剤の自然酸化を抑制する方法があるが、マスキング剤の効果は試料水質、例えばpHや金属イオンの影響を受けるため、すべての試料水について適用できるものではない。また、ブランク試験により上記のブランク着色を補正する方法もあるが、ブランク試験の準備と実施に時間を要する。そのため、マスキング剤やブランク試験を用いることなく、酸化物質の正確な定量が可能な酸化物定量方法に対するニーズが存在している。
 また、試料水に含まれる酸化物質が既知である場合、通常、その既知の酸化物質に対して高い選択性を有する還元剤を選択して用いる。しかし、試料水に含まれる酸化物質が未知である場合、一般的な還元剤を用いざるを得ないが、そのような場合、酸化還元反応が定量的に進行せず、正確な定量が困難な場合がある。1種類の還元剤を種々の酸化物質に対して用いても正確な定量が可能となれば、種々の還元剤を用意する必要がないので、より迅速かつ低コストの定量が可能となる。
 本発明は、前記従来の課題を解決するもので、正確、迅速および低コストに酸化物質を定量することが可能な酸化物質定量方法およびそれに用いる酸化物質定量装置を提供することを目的とした。
 本発明者らは、酸化物質の定量方法について鋭意検討する過程で、1種または寿命の異なる複数種の酸化物質を含む試料溶液に1種の還元剤を添加し、色変化後または発色後の還元剤の吸光度の時間変化を測定して吸光度曲線を作成し、その吸光度曲線を用いることで、還元剤の自然酸化によるブランク着色の影響を受けることなく、酸化物質の定量が可能になることを見出して本発明を完成させたものである。すなわち、本発明の酸化物質定量方法は、試料中の酸化物質を酸化還元反応を用いて定量する酸化物質定量方法であって、1種または寿命の異なる複数種の酸化物質を含む試料溶液に1種の還元剤を添加し、色変化後または発色後の該還元剤の吸光度の時間変化を測定して吸光度曲線を作成し、得られた該吸光度曲線に基づいて、前記試料溶液中の酸化物質を同定するともに、当該酸化物質を定量することを特徴とする。
 また、本発明の酸化物質定量装置は、試料中の酸化物質を酸化還元反応を用いて定量する酸化物質定量方法に用いる酸化物定量装置であって、該酸化物定量装置が測定部と制御部とを備え、該測定部が、1種または寿命の異なる複数種の酸化物質を含む試料溶液と1種の還元剤とを反応させる反応部と、該反応部へ光を照射する光源部と、該反応部からの透過光を検出して色変化後または発色後の該還元剤の吸光度を測定する受光部とを有し、
 該制御部が、既知酸化物質の吸光度の時間変化を示す基準近似曲線と、吸光度と濃度との関係を示す検量線とを記憶する記憶部と、色変化後または発色後の該還元剤の吸光度の時間変化を測定して吸光度曲線を作成し、得られた該吸光度曲線に基づいて、前記試料溶液中の酸化物質を同定するともに、当該酸化物質を定量する演算部とを有することを特徴とする。
 本発明の酸物質定量方法によれば、1種類の還元剤を種々の酸化物質に対して用いることができ、また、マスキング剤やブランク試験が不要である。これにより、より迅速かつ低コストで酸化物質の正確な定量を行うことが可能となる。
本発明の定量装置の構成の一例を示す模式図である。 本発明の実施例1における試料の吸光度の時間変化を示すグラフである。 本発明の実施例1における過酸化水素の検量線の一例を示すグラフである。 本発明の実施例2における試料の吸光度の時間変化を示すグラフである。 本発明の実施例2におけるオゾンの検量線の一例を示すグラフである。 本発明の実施例3における試料の吸光度の時間変化の一例を示すグラフである。 本発明の実施例4における試料の吸光度の時間変化の一例を示すグラフである。
 以下、図面等を参照して本発明の実施の形態について説明する。
 本発明の対象とする酸化物質は、特に限定されない。好ましくは、ヨウ化物イオンを酸化できる酸化物質である。例としては、過酸化水素、オゾン、ラジカル種、硝酸カリウム、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、ハロゲン、過マンガン酸塩、硝酸セリウムアンモニウム、クロム酸、二クロム酸、過酸化物等を挙げることができる。ただし、2種類以上の酸化物質が存在している場合、各酸化物質に寿命差があることが必要である。寿命差があれば、寿命が長い安定な酸化物質(例:過酸化水素など)から寿命が短い不安定な酸化物質(例:オゾン、ラジカル種など)まで種類を問わず定量可能である。
 還元剤としては、水溶性で、酸化物質との反応時に色変化または発色を伴い、光学的方法によって検出できるものであれば特に限定されない。例としては、ヨウ化カリウム、硫酸第一鉄等を挙げることができるが、ヨウ化カリウムが好ましい。また、本発明では、マスキング剤またはマスキング処理は不要である。なお、マスキング剤とは、還元剤が、対象とする酸化物質以外の酸化物質と反応するのを抑制する薬剤である。また、マスキング処理とは、マスキング剤の添加だけでなく、還元剤が、対象とする酸化物質以外の酸化物質と反応するのを抑制するために、還元剤を化学的に修飾することも含む。
 図1は、本発明に係る酸化物質濃度定量装置の構成の一例を示す模式図である。該装置は、少なくとも測定部102と制御部105を備えている。測定部102は、1種または寿命の異なる複数の酸化物質を含む試料溶液と1種の還元剤とを反応させる反応部101と、該反応部101へ光を照射する光源部103と、該反応部101からの透過光を検出して色変化後または発色後の還元剤の吸光度を測定する受光部104とを有している。また、制御部105は、既知酸化物質の吸光度の時間変化を示す基準近似曲線と、吸光度と濃度との関係を示す検量線を記憶する記憶部107と、色変化後または発色後の還元剤の吸光度の時間変化を測定して吸光度曲線を作成し、得られた該吸光度曲線を曲線近似解析により1種以上の近似曲線に分解して各該近似曲線の半値幅と時間ゼロにおける初期吸光度を算出し、各該近似曲線の半値幅と既知酸化物質の前記基準近似曲線の半値幅とを比較して各該近似曲線に帰属される酸化物質を同定する一方、別途取得した既知酸化物質における吸光度と濃度との関係を示す検量線と前記の初期吸光度を用いて、前記の同定された酸化物質を定量する演算部106とを有している。なお、記憶部107は外部に接続されていても良い。また、反応部101を、測定部102と別体としても良い。また、既知酸化物質の基準近似曲線には、別途、既知酸化物質に1種の還元剤を添加して、吸光度の時間変化を測定して得られる吸光度曲線を用いることができる。
 以下、図1を参照して本発明に係る酸化物質定量方法の手順を説明する。反応部101において、少なくとも1種の酸化物質を含む試料溶液に1種の還元剤を添加する。反応部101には、光学セルを用いることができる。光学セルとしては、石英セル、ガラスセル、あるいはポリスチレン製やポリメチルメタクリレート製等のディスポセルを用いることができる。
 次いで、測定部102において、光源103からの光を光学系(非図示)を通して反応部101に照射し、反応部101からの透過光を受光器104で検出する。測定部102には、紫外可視分光光度計を用いることができる。
 受光器104から透過光のデータは、演算部106に送られる。演算部106では、光源103からの入射光のデータとの比較から、色変化後または発色後の還元剤の吸光度が算出され、さらに、その還元剤の吸光度の時間変化を表す吸光度曲線を作成する。次いで、得られた吸光度曲線に曲線近似解析を適用して1種以上の近似曲線に分解し、各近似曲線の半値幅と時間ゼロにおける初期吸光度を算出する。次いで、得られた各近似曲線の半値幅と、別途に取得し、記憶部107に保存した既知酸化物質の基準近似曲線の半値幅とを比較して各近似曲線に帰属される酸化物質を同定する。近似曲線から得られる半値幅は各酸化物質の減衰し易さを示すパラメータとして用いることができ、各酸化物質に固有の値を示す。そのため、試料中の未知酸化物質の半値幅と既知酸化物質の半値幅とを比較することにより未知酸化物質を同定することが可能となる。さらに、別途に取得し、記憶部107に保存した既知酸化物質における吸光度と濃度との関係を示す検量線と前記の初期吸光度を用いて、前記の同定された酸化物質を定量する。
 記憶部107には既知酸化物質の検量線を保存する。検量線の作成は、濃度既知の酸化物質について上記と同様に還元剤を添加し時間ゼロにおける初期吸光度を測定する。その初期吸光度と濃度を用いて検量線を作成する。さらに、少なくとも1種の濃度について、吸光度曲線を作成し、得られた吸光度曲線に曲線近似解析を適用して1種の近似曲線に分解し、該近似曲線の半値幅を算出する。この半値幅を既知酸化物質の半値幅として記憶する。例えば、過酸化水素の場合、例えば過マンガン酸カリウム法で測定した濃度を検量線作成のための濃度として用いることができる。また、オゾンの場合、オゾン測定試薬(例えば笠原理化工業製)で測定した濃度を検量線作成のための濃度として用いることができる。
 本発明で用いる曲線近似解析は、種々の時系列データの分布波形を数式によって近似する方法であれば特に限定されない。ガウス近似、マックスウェル-ボルツマン近似、ローレンツ近似等を挙げることができるが、ガウス近似が好ましい。
 本発明によれば、1種類の還元剤を種々の酸化物質に対して用いることができる。また、マスキング剤やブランク試験が不要である。これにより、より迅速かつ低コストで酸化物質の正確な定量を行うことが可能となる。
 さらに、本発明は、寿命の異なる2種類以上の酸化物質を含む試料水を対象とする場合に有用である。複数種の酸化物質が存在するような場合、各酸化物質を従来手法により定量しようとした場合、正確な定量が困難である。例えば、過酸化水素の従来の定量法である酵素法やロイコ色素を用いる吸光度法では、溶液中の酸化物質が過酸化水素のみである場合は定量性があるが、過酸化水素以外に他の酸化物質が存在している場合(特に、過酸化水素よりも酸化ポテンシャルが高いオゾンやOHラジカルのような酸化物質が存在している場合)は、還元剤が他の酸化物質とも反応してしまうため、正確な定量が困難である。また、オゾンの従来の定量法であるヨウ化カリウム法についても、溶液中の酸化物質がオゾンのみである場合には定量性があるが、オゾン以外に他の酸化物質が存在している場合、ヨウ化カリウムがその他の酸化物質とも反応するため、オゾン濃度が高く見積もられるので正確な定量が困難である。本発明は、複数種の酸化物質が存在する場合、それぞれの酸化物質の寿命が異なることに着目したものであり、試料水の吸光度の時間変化を表す吸光度曲線に曲線近似解析を適用して得られる複数の近似曲線の半値幅は、各酸化物質に固有の値を示す。したがって、試料水中の各酸化物質の半値幅と既知酸化物質の半値幅とを比較することにより、試料水中の未知酸化物質を容易に同定することが可能となる。また、試料水中の各酸化物質に対して得られる近似曲線の時間ゼロにおける吸光度は、各酸化物質の濃度に比例するため、検量線を用いることにより、各酸化物質の濃度を別々に算出することが可能となる。
 さらに、本発明は、ラジカル種を含む試料水に対して特に有用である。例えば、液中プラズマ装置により溶液中にオゾンや過酸化水素、酸素含有ラジカルのような複数種の酸化物質が生成するような場合に特に有用である。液中プラズマ装置により溶液中にオゾンや過酸化水素、ラジカルのような複数の酸化物質が生成するが、その水中における反応機構は各酸化物質同士の反応および経時的な変化が競争的に絡み合っているため生成物の定量が困難である(例えば、OHラジカルは寿命が短く、ラジカル同士で再結合して過酸化水素に変化する)。上記の通り、本発明は、複数種の酸化物質が存在する場合、それぞれの酸化物質の寿命が異なることに着目したものであるので、寿命差が大きい程、半値幅の差も大きくなり、同定が容易となる。また、試料水中の各酸化物質に対して得られる近似曲線の時間ゼロにおける吸光度を用いることにより、ラジカル種とそれ以外の酸化物質の濃度を別々に算出することが可能となる。
実施例1
 本実施例では、酸化物質として過酸化水素を含む試料水を測定対象に用いた。
(実験方法)
 試料水は、純水250mLに過酸化水素(関東化学製)を所定量添加して調製した。添加直後を0分とし、そこから所定時間経過後、純水10mLとヨウ化カリウムを主成分とする還元剤をセル長1cmのディスポセル(ポリメチルメタクリレート製)から成る反応部101に添加した。還元剤を添加した試料水(以下、還元処理水という)の吸光度を測定部102にて所定時間毎に測定した。なお、吸光度測定は、(日本分光製)紫外可視分光光度計を用い、波長範囲400~800nm、測定間隔1.0nm、走査速度は400nm/分、バンド幅2.0nmで行った。
 制御部105では、所定時間毎の吸光度のデータを用いて、ヨウ素の500nm~530nmにおける極大ピークの吸光度と経過時間との関係を示すグラフ(吸光度曲線)が作成された。
(検量線の作成)
 過酸化水素の検量線作成には、1.3×10-5~6.3×10-4mol/Lの濃度範囲に調製した5種類の過酸化水素水を用いた。なお、検量線に用いた過酸化水素の濃度は、過マンガン酸カリウム法を用いて測定した。取得した検量線データは記憶部107に保存した。
 次いで、検量線作成は以下の手順で行った。すなわち、各濃度の過酸化水素水に対して、純水とヨウ化カリウムを主成分とする還元剤をセル長1cmのディスポセル(ポリメチルメタクリレート製)から成る反応部101に添加した。時間ゼロにおける初期吸光度を測定し、その初期吸光度と濃度を用いて検量線を作成した。さらに、1種の濃度について還元処理水の吸光度を測定部102にて所定時間毎に測定した。次いで、所定時間毎の吸光度のデータを用いて、ヨウ素の500nm~530nmにおける極大ピークの吸光度と経過時間との関係を示すグラフ(吸光度曲線)を作成した。得られた吸光度曲線に対してガウス近似を適用してガウス曲線(基準ガウス曲線という)を求め、その基準ガウス曲線のデータを記憶部107に保存した。吸光度測定は、上記と同様に行った。
(結果)
 図2は、500nm~530nmにおける極大ピークの吸光度と経過時間との関係を示すグラフであり、図中の黒丸(●)は、500nm~530nmにおける極大ピークの吸光度の値を示している。演算部106により、図2の吸光度曲線について、ガウス近似を適用してガウス曲線を求めた。以下に得られたガウス曲線(ガウス関数ともいう)を示す。
Figure JPOXMLDOC01-appb-M000001
 図3は過酸化水素の検量線である。上記のガウス曲線の時間ゼロの吸光度は、試料水調製時の過酸化水素濃度に対応するので、その時間ゼロの吸光度を用いることにより、試料水中の過酸化水素濃度を算出できる。上記のガウス曲線から時間ゼロの吸光度を求め、記憶部107に保存されている、図3の過酸化水素の検量線を用いて、過酸化水素濃度を算出した。試料水中の過酸化水素濃度として2.5×10-4mol/Lの値が得られた。なお、試料水に対して得られた上記のガウス曲線の半値幅は、過酸化水素の基準ガウス曲線から得られた半値幅の値とよく一致していた。
実施例2
 本実施例では、酸化物質としてオゾンを含む試料水を測定対象に用いた。
(実験方法)
 試料水は、オゾン発生器(中遠電子製)に空気ポンプを接続し、発生したオゾンを純水に導入することにより調製した。時間ゼロにおける初期吸光度を測定し、その初期吸光度と濃度を用いて検量線を作成した。添加直後を0分とし、そこから所定時間経過後、純水10mLとヨウ化カリウムを主成分とする還元剤をセル長1cmのディスポセル(ポリメチルメタクリレート製)から成る反応部101に添加した。還元処理水の吸光度を測定部102にて所定時間毎に測定した。吸光度測定は、実施例1と同様の方法で行った。
 制御部105では、所定時間毎の吸光度のデータを用いて、ヨウ素の500nm~530nmにおける極大ピークの吸光度と経過時間との関係を示すグラフ(吸光度曲線)が作成された。
(検量線の作成)
 オゾンの検量線作成には、1.0×10-5~3.1×10-5mol/Lの濃度範囲に調製した5種類のオゾン水溶液を用いた。取得した検量線データは記憶部107に保存した。なお、検量線に用いたオゾンの濃度は、オゾン測定試薬(笠原理化工業製)を用いて測定した。
 次いで、検量線作成は以下の手順で行った。すなわち、各濃度のオゾン水に対して、純水とヨウ化カリウムを主成分とする還元剤をセル長1cmのディスポセル(ポリメチルメタクリレート製)から成る反応部101に添加した。時間ゼロにおける初期吸光度を測定し、その初期吸光度と濃度を用いて検量線を作成した。さらに、1種の濃度について、還元処理水の吸光度を測定部102にて所定時間毎に測定した。次いで、所定時間毎の吸光度のデータを用いて、ヨウ素の500nm~530nmにおける極大ピークの吸光度と経過時間との関係を示すグラフ(吸光度曲線)を作成した。得られた吸光度曲線に対してガウス近似を適用してガウス曲線(基準ガウス曲線という)を求め、その基準ガウス曲線のデータを記憶部107に保存した。
(結果)
 図4は、500nm~530nmにおける極大ピークの吸光度と経過時間との関係を示すグラフであり、図中の黒丸(●)は、500nm~530nmにおける極大ピークの吸光度の値を示している。演算部106により、図4の吸光度曲線について、ガウス近似を適用してガウス曲線を求めた。以下に得られたガウス曲線を示す。
Figure JPOXMLDOC01-appb-M000002
 図5は、オゾンの検量線である。上記のガウス曲線から時間ゼロの吸光度を求め、記憶部107に保存されている、図5のオゾンの検量線を用いて、オゾン濃度を算出した。試料水中のオゾン濃度として1.3×10-6mol/Lの値が得られた。なお、試料水に対して得られた上記のガウス曲線の半値幅の値は、オゾンの基準ガウス曲線から得られた半値幅の値とよく一致していた。
実施例3
 本実施例は、酸化物質としてオゾンと過酸化水素を含む試料水を測定対象に用いた。
(実験方法)
 試料水は、純水250mLにオゾンと過酸化水素(関東化学製)を所定量添加して調製した。オゾンは、オゾン発生器(中遠電子製)に空気ポンプを接続して純水に溶解させた。添加直後を0分とし、そこから所定時間経過後、純水10mLとヨウ化カリウムを主成分とする還元剤をセル長1cmのディスポセル(ポリメチルメタクリレート製)から成る反応部101に添加した。還元剤を添加した試料水(以下、還元処理水という)の吸光度を測定部102にて所定時間毎に測定した。吸光度測定は、実施例1と同様に行った。
 所定時間毎の吸光度のデータは制御部105に送られ、そこで、ヨウ素の500nm~530nmにおける極大ピークの吸光度と経過時間との関係を示すグラフ(吸光度曲線)が作成された。
(結果)
 図6は、500nm~530nmにおける極大ピークの吸光度と経過時間との関係を示すグラフであり、図中の黒丸(●)は、500nm~530nmにおける極大ピークの吸光度の値を示している。図6より、約20分~約100分の減衰領域(A領域という)と、約100分以降の安定で一定の濃度を保つ減衰領域(B領域)が存在することがわかる。
 演算部106により、図6の吸光度曲線のA領域とB領域について、ガウス近似を適用してガウス曲線を求めた。以下に得られたガウス曲線を示す。
曲線1(A領域)
Figure JPOXMLDOC01-appb-M000003
曲線2(B領域)
Figure JPOXMLDOC01-appb-M000004
 ガウス曲線の半値幅は各酸化物質の寿命を表すパラメータであり、曲線1の半値幅は、2×172であり、曲線2の半値幅は2×1613である。これらの半値幅の値を、実施例1と実施例2で作成し、記憶部107に保存されているオゾンと過酸化水素の基準ガウス曲線の半値幅を比較し、その基準ガウス曲線の半値幅が、それぞれ、曲線1と曲線2の半値幅と一致することを確認した。
 図6から曲線1と曲線2の時間ゼロの吸光度を求め、記憶部107に保存されているオゾンと過酸化水素の検量線を用いて、オゾン濃度と過酸化水素濃度を算出した。本実施例では、試料水中のオゾン濃度は2.5×10-5mol/Lであり、過酸化水素濃度は6.9×10-5mol/Lであった。
実施例4
 本実施例は、酸化物質としてラジカル種とオゾンと過酸化水素を含む試料水を測定対象に用いた。
 試料の調製の手順としては、純水250mL(導電率20mS/m、硫酸ナトリウムを混合して調製)に対して10分間プラズマ処理を行った。処理終了直後を0分とし、そこから一定時間経過した試料10mLとヨウ化カリウムを主成分とする還元剤を反応部101に添加した。還元処理水の吸光度を測定部102にて所定時間毎に測定した。吸光度測定は、実施例1と同様に行った。
(結果)
 図7は、500nm~530nmにおける極大ピークの吸光度と経過時間との関係を示すグラフであり、図中の黒丸(●)は、500nm~530nmにおける極大ピークの吸光度の値を示している。図7より、0~約20分の減衰領域(C領域)と、約20分~約100分の減衰領域(A領域という)と、約100分以降の安定で一定の濃度を保つ減衰領域(B領域)が存在することがわかる。
 演算部106により、図7の吸光度曲線のA領域とB領域とC領域について、ガウス近似を適用してガウス曲線を求めた。以下に得られたガウス曲線(ガウス関数ともいう)を示す。
曲線1(A領域)
Figure JPOXMLDOC01-appb-M000005
曲線2(B領域)
Figure JPOXMLDOC01-appb-M000006
曲線3(C領域)
Figure JPOXMLDOC01-appb-M000007
 曲線1の半値幅は、2×172であり、曲線2の半値幅は2×1613である。これらの半値幅の値を、実施例1と実施例2で作成し、記憶部107に保存されているオゾンと過酸化水素の基準ガウス曲線の半値幅と比較し、その基準ガウス曲線の半値幅が、それぞれ、曲線1と曲線2の半値幅と一致することを確認した。また、曲線3の帰属については、過酸化水素やオゾンとは異なる酸化物質であること、例えば減衰時間が短いことから、例えばラジカル種と推定できる。
 図7から曲線1と曲線2の時間ゼロの吸光度を求め、記憶部107に保存されているオゾンと過酸化水素の検量線を用いて、オゾン濃度と過酸化水素濃度を算出した。本実施例では、試料水中のオゾン濃度は2.5×10-5mol/Lであり、過酸化水素濃度は6.9×10-5mol/Lであった。
 本発明によれば、1種類の還元剤を用いて、還元剤の自然酸化によるブランク着色の影響を受けることなく、正確、迅速および低コストに酸化物質を定量することが可能になる。特に、試料水中に複数の酸化物質が共存している場合にも、各酸化物質の濃度を正確に定量することが可能となる。これにより、水質のモニタリングや水処理装置の動作管理に有用である。また、臨床検査における体液中に存在する各種成分の定量や環境分析等の用途にも応用できる。
101 反応部
102 測定部
103 光源
104 受光器
105 制御部
106 演算部
107 記憶部

Claims (7)

  1.  試料中の酸化物質を酸化還元反応を用いて定量する酸化物質定量方法であって、
     1種または寿命の異なる複数種の酸化物質を含む試料溶液に1種の還元剤を添加し、色変化後または発色後の該還元剤の吸光度の時間変化を測定して吸光度曲線を作成し、得られた該吸光度曲線に基づいて、前記試料溶液中の酸化物質を同定するともに、当該酸化物質を定量する、該酸化物質定量方法。
  2.  前記の得られた吸光度曲線と、既知酸化物質の吸光度の時間変化を示す別途取得した基準近似曲線とを比較して、前記試料溶液中の酸化物質を同定する請求項1記載の酸化物質定量方法。
  3.  前記の得られた吸光度曲線を曲線近似解析により1種以上の近似曲線に分解して各該近似曲線の半値幅と時間ゼロにおける初期吸光度を算出し、各該近似曲線の半値幅と別途取得した既知酸化物質の基準近似曲線の半値幅とを比較して各該近似曲線に帰属される酸化物質を同定する請求項2記載の酸化物質定量方法。
  4.  別途取得した既知酸化物質における吸光度と濃度との関係を示す検量線と前記の初期吸光度を用いて、前記の同定された酸化物質を定量する、請求項3記載の酸化物質定量方法。
  5.  前記の近似曲線がガウス曲線である請求項3記載の酸化物質定量方法。
  6.  試料中の酸化物質を酸化還元反応を用いて定量する酸化物質定量方法に用いる酸化物定量装置であって、
     該酸化物定量装置が測定部と制御部とを備え、
     該測定部が、1種または寿命の異なる複数種の酸化物質を含む試料溶液と1種の還元剤とを反応させる反応部と、該反応部へ光を照射する光源部と、該反応部からの透過光を検出して色変化後または発色後の該還元剤の吸光度を測定する受光部とを有し、
     該制御部が、既知酸化物質の吸光度の時間変化を示す基準近似曲線と、吸光度と濃度との関係を示す検量線とを記憶する記憶部と、色変化後または発色後の該還元剤の吸光度の時間変化を測定して吸光度曲線を作成し、得られた該吸光度曲線に基づいて、前記試料溶液中の酸化物質を同定するともに、当該酸化物質を定量する演算部とを有する、該酸化物定量装置。
  7.  前記演算部が、前記吸光度曲線を曲線近似解析により1種以上の近似曲線に分解して各該近似曲線の半値幅と時間ゼロにおける初期吸光度を算出し、各該近似曲線の半値幅と既知酸化物質の前記基準近似曲線の半値幅とを比較して各該近似曲線に帰属される酸化物質を同定する一方、別途取得した既知酸化物質における吸光度と濃度との関係を示す検量線と前記の初期吸光度を用いて、前記の同定された酸化物質を定量する、請求項6記載の酸化物定量装置。
PCT/JP2014/002220 2013-04-26 2014-04-21 酸化物質定量方法および酸化物質定量装置 WO2014174818A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/409,956 US9513227B2 (en) 2013-04-26 2014-04-21 Method for quantitative determination of oxidant and apparatus for quantitative determination of oxidant
CN201480001563.0A CN104380086A (zh) 2013-04-26 2014-04-21 氧化物质定量方法以及氧化物质定量装置
JP2014556857A JPWO2014174818A1 (ja) 2013-04-26 2014-04-21 酸化物質定量方法および酸化物質定量装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013094231 2013-04-26
JP2013-094231 2013-04-26

Publications (1)

Publication Number Publication Date
WO2014174818A1 true WO2014174818A1 (ja) 2014-10-30

Family

ID=51791406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002220 WO2014174818A1 (ja) 2013-04-26 2014-04-21 酸化物質定量方法および酸化物質定量装置

Country Status (4)

Country Link
US (1) US9513227B2 (ja)
JP (1) JPWO2014174818A1 (ja)
CN (1) CN104380086A (ja)
WO (1) WO2014174818A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021080014A1 (ja) * 2019-10-25 2021-04-29 メタウォーター株式会社 濃度測定方法、濃度測定装置およびプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6168184B1 (ja) * 2016-03-25 2017-07-26 栗田工業株式会社 酸化剤濃度の測定方法及び測定装置、並びに電子材料洗浄装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772047A (en) * 1980-10-24 1982-05-06 Olympus Optical Co Ltd Component analyzing method
US5420042A (en) * 1992-07-03 1995-05-30 Boehringer Mannheim Gmbh Method for the analytical determination of the concentration of a component of a medical sample
JP2010529451A (ja) * 2007-06-05 2010-08-26 イーコラブ インコーポレイティド 過酸および/または過酸化物の濃度の速度論的定量法
JP2011094970A (ja) * 2009-10-27 2011-05-12 Hikari Dento Kogyosho:Kk オゾン濃度測定装置
WO2011132525A1 (ja) * 2010-04-20 2011-10-27 株式会社日立ハイテクノロジーズ 自動分析装置及び自動分析方法
WO2012008324A1 (ja) * 2010-07-14 2012-01-19 株式会社日立ハイテクノロジーズ 自動分析装置、分析方法及び情報処理装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670385A (en) 1984-05-21 1987-06-02 Eastman Kodak Company Compositions and elements containing triarylmethane leuco dyes and methods using same
JPS61184463A (ja) 1985-02-09 1986-08-18 Wako Pure Chem Ind Ltd 過酸化水素の新規定量法
US4855228A (en) 1987-09-11 1989-08-08 Miles Inc. Multiple oxidative indicator system for visual determination of hydrogen peroxide
JPH0880199A (ja) 1994-09-12 1996-03-26 Konica Corp 酸化性物質測定方法、ペルオキシダーゼ様物質測定方法、酵素免疫測定方法または酵素免疫染色方法及びこれらの測定方法に用いられる凍結乾燥組成物
JP3323404B2 (ja) 1995-10-30 2002-09-09 アークレイ株式会社 高精度な物質の測定方法
US6777243B2 (en) 1995-10-30 2004-08-17 Arkray Inc. Method for measuring substance and testing piece
DE69635717T2 (de) 1995-10-30 2006-08-31 Arkray, Inc. Verfahren zum Bestimmen eines Analyten und Vorrichtung dafür
JP3428853B2 (ja) 1997-04-02 2003-07-22 東北電子産業株式会社 液体試料の抗酸化力を測定するための方法および装置
EP0869361A3 (en) 1997-04-02 1999-12-29 Tohoku Electronic Industrial Co., Ltd. Method of and device for measuring antioxidation capability of liquid sample
NZ531656A (en) 2001-09-13 2007-09-28 Genvartec Pty Ltd Methods of detection of conformational change in a nucleic acid duplex by treatment with oxidising or reactive agent as a result of exposure to environmental or chemical conditions
JP4175002B2 (ja) 2002-03-08 2008-11-05 栗田工業株式会社 酸化・還元剤の注入量制御方法
US8071390B2 (en) 2007-06-05 2011-12-06 Ecolab Usa Inc. Temperature stabilized optical cell and method
US8143070B2 (en) 2007-06-05 2012-03-27 Ecolab Usa Inc. Optical cell
US8076154B2 (en) 2007-06-05 2011-12-13 Ecolab Usa Inc. Method of calibration for nonlinear optical sensor
US8076155B2 (en) 2007-06-05 2011-12-13 Ecolab Usa Inc. Wide range kinetic determination of peracid and/or peroxide concentrations

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772047A (en) * 1980-10-24 1982-05-06 Olympus Optical Co Ltd Component analyzing method
US5420042A (en) * 1992-07-03 1995-05-30 Boehringer Mannheim Gmbh Method for the analytical determination of the concentration of a component of a medical sample
JP2010529451A (ja) * 2007-06-05 2010-08-26 イーコラブ インコーポレイティド 過酸および/または過酸化物の濃度の速度論的定量法
JP2011094970A (ja) * 2009-10-27 2011-05-12 Hikari Dento Kogyosho:Kk オゾン濃度測定装置
WO2011132525A1 (ja) * 2010-04-20 2011-10-27 株式会社日立ハイテクノロジーズ 自動分析装置及び自動分析方法
WO2012008324A1 (ja) * 2010-07-14 2012-01-19 株式会社日立ハイテクノロジーズ 自動分析装置、分析方法及び情報処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021080014A1 (ja) * 2019-10-25 2021-04-29 メタウォーター株式会社 濃度測定方法、濃度測定装置およびプログラム
JP7477522B2 (ja) 2019-10-25 2024-05-01 メタウォーター株式会社 濃度測定方法、濃度測定装置およびプログラム

Also Published As

Publication number Publication date
JPWO2014174818A1 (ja) 2017-02-23
CN104380086A (zh) 2015-02-25
US20160011118A1 (en) 2016-01-14
US9513227B2 (en) 2016-12-06

Similar Documents

Publication Publication Date Title
Cai et al. Multi-wavelength spectrophotometric determination of hydrogen peroxide in water with peroxidase-catalyzed oxidation of ABTS
Baga et al. A simple spectrophotometric determination of hydrogen peroxide at low concentrations in aqueous solution
CA1219464A (en) Florescent fluid analysis
JP4430134B2 (ja) クレアチニン濃度の測定方法、測定デバイス及び測定装置、並びにそれらを用いた尿中塩分量の測定方法、測定デバイス及び測定装置
Sargazi et al. Application of a smartphone based spectrophotometer for rapid in-field determination of nitrite and chlorine in environmental water samples
EP0634646B1 (en) Method of and apparatus for analyzing nitrogen compounds and phosphorus compounds contained in water
JP5522584B2 (ja) Icp発光分光分析方法
JP2010513874A (ja) 改良された水質分析
Tan et al. A novel optical ammonia sensor based on reflectance measurements for highly polluted and coloured water
Marks et al. A new method of determining residual chlorine
WO2014174818A1 (ja) 酸化物質定量方法および酸化物質定量装置
WO2012118022A1 (ja) 酸化性物質の総濃度測定方法、酸化性物質の総濃度測定用濃度計およびそれを用いた硫酸電解装置
JP2005214863A (ja) 紫外光による水および水溶液測定方法
Aoyagi et al. Determination of human serum albumin by chemiluminescence immunoassay with luminol using a platinum-immobilized flow-cell
Tashkhourian et al. Localized surface plasmon resonance sensor for simultaneous kinetic determination of peroxyacetic acid and hydrogen peroxide
JP2003075348A (ja) 水質測定方法及び装置
US11092585B2 (en) Electrochemical method for detection and quantification of organic compounds in water
Gonzalez-Robledo et al. Determination of hypochlorite in waters by stopped-flow chemiluminescence spectrometry
JP3697430B2 (ja) 水中微量成分の測定方法及び装置
Masadome Determination of cationic polyelectrolytes using a photometric titration with crystal violet as a color indicator
KR20180091180A (ko) 과산화수소 농도의 검출방법 및 검출키트.
JP2000180430A (ja) 水中の水酸化ラジカルの測定方法
Bosque-Sendra et al. An overview of qualimetric strategies for optimisation and calibration in pharmaceutical analysis using flow injection techniques
JP4299696B2 (ja) 過硫酸塩類濃度の測定方法
JPH07151688A (ja) 水中の窒素化合物及びリン化合物の分析方法並びに装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014556857

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787961

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14409956

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14787961

Country of ref document: EP

Kind code of ref document: A1