WO2021077466A1 - 膜及其制备方法 - Google Patents

膜及其制备方法 Download PDF

Info

Publication number
WO2021077466A1
WO2021077466A1 PCT/CN2019/115866 CN2019115866W WO2021077466A1 WO 2021077466 A1 WO2021077466 A1 WO 2021077466A1 CN 2019115866 W CN2019115866 W CN 2019115866W WO 2021077466 A1 WO2021077466 A1 WO 2021077466A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
surfactant
mixture
layer
group
Prior art date
Application number
PCT/CN2019/115866
Other languages
English (en)
French (fr)
Inventor
李玉裕
Original Assignee
江阴市德惠热收缩包装材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴市德惠热收缩包装材料有限公司 filed Critical 江阴市德惠热收缩包装材料有限公司
Publication of WO2021077466A1 publication Critical patent/WO2021077466A1/zh
Priority to ZA2022/04143A priority Critical patent/ZA202204143B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • B32B2307/7145Rot proof, resistant to bacteria, mildew, mould, fungi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds

Definitions

  • the present disclosure relates to the field of film technology, in particular to ordinary anti-fog antibacterial films and multilayer composite high-barrier anti-fog antibacterial films.
  • Plastic film has been constantly developing and innovating to adapt to the ever-increasing demand for packaging.
  • Traditional packaging pays attention to the intricate appearance of packaging.
  • Modern packaging is developing towards functional packaging, and new goals for intelligent packaging have been proposed.
  • the packaging requirements for vegetables, fruits, grains, and food are higher, because modern people have more requirements for food preservation and quality and food safety. Come higher.
  • Packaging films include single-layer film, composite film, and co-extrusion film.
  • Packaging methods include modified atmosphere packaging, inflatable packaging, and vacuum packaging. To a certain extent, they have the effects of water removal, oxygen barrier, and corrosion protection, but their functions are still relatively weak. Can not meet the packaging requirements of food preservation and quality. During the storage, transportation and sales of vegetables and fruits, a large amount of water vapor will be volatilized and condensed on the inner surface of the package, forming water vapor and water droplets, and then flowing to the fruits and vegetables. , Great waste. Grain such as rice gradually begins to become mildewed after packaging. Foods generally fail to meet the shelf life requirements. Therefore, the market urgently needs packaging products with stronger fresh-keeping and quality-preserving functions.
  • the present disclosure relates to a method of preparing a film, which includes:
  • Heating the first mixture to about 80°C to 160°C;
  • the second mixture is co-extruded, film blown or cast to obtain the film.
  • the present disclosure relates to a film, which is prepared by a method including the following steps:
  • Heating the first mixture to about 80°C to 160°C;
  • the second mixture is co-extruded, film blown or cast to obtain the film.
  • the present disclosure relates to a multilayer film, which includes an inner layer, a sub-inner layer, a middle layer, and an outer layer, wherein the inner layer is prepared by a method including the following steps:
  • Heating the first mixture to about 80°C to 160°C;
  • the second mixture is co-extruded, film blown or cast to obtain the film.
  • Figure 1 shows a schematic diagram of a multilayer anti-fog and antibacterial film according to an embodiment of the present disclosure
  • Fig. 2 shows a schematic diagram of a multilayer anti-fog and antibacterial film according to another embodiment of the present disclosure.
  • references in the overall specification to “one embodiment,” “an embodiment,” “in another embodiment,” or “in certain embodiments” mean that at least one embodiment includes the Related specific reference elements, structures or characteristics. Therefore, the appearances of the phrases “in one embodiment” or “in an embodiment” or “in another embodiment” or “in certain embodiments” in various places throughout the specification do not necessarily all refer to the same embodiment. In addition, specific elements, structures, or characteristics may be combined in one or more embodiments in any suitable manner.
  • plastic particles is a common name for plastic particles, which is a raw material for storage, transportation, and processing of plastics in the form of semi-finished products.
  • anti-fog surfactant refers to a low-molecular-weight dispersant containing hydrophilic and lipophilic groups.
  • the anti-fogging agent with strong hydrophilicity and lipophilic chain length has good compatibility with plastics. The migration speed is slow, and the long-lasting defogging effect is good.
  • antibacterial agent refers to a class of agents used to prevent the rot of vegetables, fruits, and food caused by various bacteria.
  • LDPE low-density polyethylene, usually a polymer obtained by polymerizing ethylene as a monomer, using oxygen or organic peroxide as an initiator under a high pressure of 98.0 to 294 MPa.
  • LLDPE linear low-density polyethylene, which is structurally different from general low-density polyethylene because there are no long-chain branches.
  • EVA refers to an ethylene-vinyl acetate copolymer, which is a copolymer of ethylene and acetic acid.
  • metalocene refers to an organometallic coordination compound formed by connecting a transition metal and cyclopentadiene.
  • the term "erucamide” is an important derivative of erucic acid, which is an excellent fine chemical product with a wide range of applications. Because of its high melting point and good thermal stability (stable at 273°C), it is mainly used as an anti-sticking agent and slip agent for various plastics and resins, and an excellent lubricant and antistatic agent for extruded films. .
  • PE refers to polyethylene, which is a typical thermoplastic material with good flexibility and water vapor permeability. Specifically, it can be subdivided into LDPE, LLDPE and HDPE.
  • PP refers to polypropylene, which is a semi-crystalline thermoplastic.
  • PA refers to polyamide, commonly known as nylon, which is a polar polymer with good mechanical properties, barrier properties and printing properties.
  • EVOH refers to an ethylene-vinyl alcohol copolymer, which is an alcoholysis product of the saponification reaction of an ethylene-vinyl acetate copolymer. It is a highly crystalline body with good mechanical strength and elastic modulus.
  • polyimide glue refers to polyimide glue
  • polyimide polyimide refers to a type of polymer containing an imide ring (-CO-NH-CO-) in the main chain, Among them, polymers containing phthalimide structure are the most important.
  • antistatic agent is a type of additive that is added to plastics or coated on the surface of molded articles to reduce the accumulation of static electricity.
  • the term "dripping agent” is a type of surfactant that breaks the interfacial tension between the water droplets and the film and prevents the formation of water droplets on the surface.
  • the present disclosure relates to a method of preparing a film, which includes:
  • Heating the first mixture to about 80°C to 160°C;
  • the second mixture is co-extruded, film blown or cast to obtain the film.
  • the first mixture is selected from the group consisting of anti-fog surfactant-containing masterbatches, low density polyethylene (LDPE), linear low density polyethylene (LLPPE), polypropylene (PP), ethylene-vinyl acetate Copolymer (EVA), additives or mixtures thereof.
  • LDPE low density polyethylene
  • LLPPE linear low density polyethylene
  • PP polypropylene
  • EVA ethylene-vinyl acetate Copolymer
  • the second mixture also undergoes heating and cooling steps before forming a film.
  • it includes about 1 to 20 parts of anti-fog surfactant-containing masterbatch, about 20 to 60 parts of low-density polyethylene (LDPE), and about 30 to 80 parts of thread Type low density polyethylene (LLPPE), about 1 to 10 parts of ethylene-vinyl acetate copolymer (EVA), and about 0 to 30 parts of additives.
  • LDPE low-density polyethylene
  • LLPPE thread Type low density polyethylene
  • EVA ethylene-vinyl acetate copolymer
  • it includes about 1 to 20 parts of anti-fog surfactant-containing masterbatch, about 50 to 140 parts of polypropylene (PP), and about 1 to 10 parts of ethylene-acetic acid Ethylene copolymer (EVA) and about 0 to 30 parts of additives.
  • PP polypropylene
  • EVA ethylene-acetic acid Ethylene copolymer
  • the base material, anti-fog surfactant and auxiliary materials are mixed and granulated to obtain the anti-fog surfactant-containing masterbatch.
  • illustrative examples of base materials that can be used in the present disclosure include, but are not limited to, blends of LDPE and LLDPE and blends of PP, LDPE, and LLDPE,
  • the base material accounts for about 60% to 80% of the anti-fog surfactant-containing masterbatch by weight percentage.
  • anti-fog surfactants that can be used in the present disclosure include, but are not limited to, surfactants including hydrophilic groups and lipophilic groups.
  • hydrophilic groups that can be used in the present disclosure include, but are not limited to, carboxyl groups, hydroxyl groups, amine groups, and ether groups.
  • anti-fog surfactants that can be used in the present disclosure include at least one hydrocarbon surfactant and at least one fluorosurfactant.
  • hydrocarbon surfactants that can be used in the present disclosure include, but are not limited to, fatty acid polyoxyethylene amines, polyol fatty acid esters, ethanolamines, castor oil polyols, and polyether-based surfaces Active agent.
  • hydrocarbon surfactants that can be used in the present disclosure include, but are not limited to, isomeric alcohol polyoxyethylene ethers.
  • fluorosurfactants that can be used in the present disclosure include, but are not limited to, amphoteric surfactants, fluorocarbon cationic surfactants, and nonionic fluorocarbon surfactants.
  • amphoteric surfactants that can be used in the present disclosure include, but are not limited to, perfluoroalkyl beta theophylline.
  • nonionic fluorocarbon surfactants that can be used in the present disclosure include, but are not limited to, perfluoroalkyl phosphate, N-perfluoroalkyl sulfonate propyl triethyl Silane and perfluoroalkyl poly.
  • fluorocarbon cationic surfactants that can be used in the present disclosure include, but are not limited to, fluorocarbon cationic surfactants.
  • nonionic fluorocarbon surfactants that can be used in the present disclosure include, but are not limited to, perfluoroalkyl polyethers.
  • the anti-fog surfactant accounts for about 10% to 25% of the anti-fog surfactant-containing master batch by weight percentage.
  • excipients that can be used in the present disclosure include, but are not limited to, water-absorbing resins, dripping agents, and fillers.
  • illustrative examples of drip agents that can be used in the present disclosure include, but are not limited to, polyglycerol fatty acid esters, polyglycerol, synthetic polyglycerol esters, and glycerol monostearate.
  • illustrative examples of water-absorbing resins that can be used in the present disclosure include, but are not limited to, PVA and EVA.
  • illustrative examples of fillers that can be used in the present disclosure include, but are not limited to, diatomaceous earth, talc, and calcium carbonate.
  • illustrative examples of fillers that can be used in the present disclosure include, but are not limited to, diatomaceous earth.
  • the water-absorbent resin accounts for about 5% to 10% of the anti-fog surfactant-containing masterbatch by weight percentage.
  • the extender accounts for about 1% to 10% of the anti-fog surfactant-containing masterbatch by weight percentage.
  • the dripping agent accounts for about 0.5-2% of the anti-fog surfactant-containing masterbatch by weight percentage.
  • the granulation temperature is about 145 to 165°C.
  • adjuvants that can be used in the present disclosure include, but are not limited to, metallocenes, artificial silicon, erucamide, and antistatic agents.
  • the adjuvant includes about 0 to 10 parts of metallocene, about 0 to 10 parts of synthetic silica, about 0 to 10 parts of erucocene amide, and about 0 to 10 parts of Mao antistatic agent.
  • antistatic agents that can be used in the present disclosure include, but are not limited to, cationic antistatic agents, nonionic antistatic agents, and nonionic antistatic agents.
  • illustrative examples of cationic antistatic agents that can be used in the present disclosure include, but are not limited to, long-chain alkyl quaternary ammonium, phosphorus, and phosphonium salts, with chloride as the counterion.
  • anionic antistatic agents that can be used in the present disclosure include, but are not limited to, alkali metal salts of alkyl sulfonic acid, phosphoric acid, and dithiocarbamic acid.
  • nonionic antistatic agents that can be used in the present disclosure include, but are not limited to, ethoxylated aliphatic alkyl amines.
  • the particle size of the nano-titania that can be used in the present disclosure is about 2 to 15 nm.
  • the particle size of the nano titanium dioxide that can be used in the present disclosure is about 2 to 10 nm.
  • the concentration of titanium dioxide in the first solution is about 1:20 to 1:10 parts by weight.
  • the concentration of titanium dioxide in the first solution is about 1:10 parts by weight.
  • the solid-to-liquid ratio of the first mixture to the first solution is about 1:0.6 to 1:1.2.
  • the present disclosure relates to a film, which is prepared by a method including the following steps:
  • Heating the first mixture to about 80°C to 160°C;
  • the second mixture is co-extruded, film blown or cast to obtain the film.
  • the present disclosure relates to a multilayer film, which includes an inner layer, a sub-inner layer, a middle layer, and an outer layer, wherein the inner layer is prepared by a method including the following steps:
  • Heating the first mixture to about 80°C to 160°C;
  • the second mixture is co-extruded, film blown or cast to obtain the film.
  • the secondary inner layer is an anti-fog film.
  • the anti-fog film is made of a mixture of LDPE and LLDPE or PP, metallocene, EVA, and master batches containing anti-fog surfactants by mixing, extruding, blowing or casting.
  • illustrative examples that can be used as the middle layer of the present disclosure include, but are not limited to, EVOH films and PA films.
  • the outer layer is made by a mixture of LDPE and LLDPE, metallocene, EVA, erucamide, antistatic agent mixing, extrusion, film blowing, or casting.
  • an adhesive layer is provided between the secondary inner layer and the middle layer.
  • an adhesive layer is provided between the middle layer and the outer layer.
  • illustrative examples of adhesive layers that can be used in the present disclosure include, but are not limited to, high temperature resistant thermal conductive adhesives and pressure sensitive adhesives.
  • heat-resistant thermally conductive adhesives that can be used in the present disclosure include, but are not limited to, silicone-based heat-resistant thermally conductive adhesives or polyimide adhesives (Pia).
  • illustrative examples of pressure-sensitive adhesives that can be used in the present disclosure include, but are not limited to, polyacrylate-based pressure-sensitive adhesives.
  • the multilayer composite high-barrier anti-fog antibacterial film is five-layer or seven-layer or nine-layer.
  • the multilayer film is an anti-fog and antibacterial multilayer film.
  • the first solution was added to the warmed first mixture (addition amount or solid-liquid ratio) to obtain a second mixture, and the second mixture was heated to 2°C; The second mixture is cooled; and the cooled second mixture is co-extruded and blown into a film to obtain the film.
  • the first solution is added to the warmed first mixture to obtain a second mixture, and the second mixture is heated to 3°C; the heated second mixture is cooled; and the cooled The second mixture is co-extruded and cast to obtain the film.
  • the plastic raw material is heated to 120°C; at 120°C, the first solution is added to the warmed first mixture to obtain a second mixture, and the second mixture is heated to 3°C; The second mixture is cooled; and the cooled second mixture is co-extruded and blown to obtain the film.
  • the seven-layer symmetrical structure barrier anti-fog antibacterial film from the inside to the outside, includes: inner layer 10, secondary inner layer 20, first adhesive layer 30, middle layer 40, second adhesive layer 50, first outer layer 60 and the second outer layer 70, the inner layer 10 is the film prepared in Example 1, the first glue layer 30 and the second glue 50 Pia glue, the middle layer 40 is an EVOH film, and the secondary inner layer 20 is an anti-fog film, which is made of LDPE and LLDPE mixture, metallocene, EVA, and anti-fogging surfactant-containing masterbatch mixing, extrusion, blown film production, the first outer layer 60 and the second outer layer 70 through the mixture of LDPE and LLDPE, metallocene, EVA , Erucamide, antistatic agent mixing, extrusion, blown film production.
  • inner layer 10 is the film prepared in Example 1
  • the middle layer 40 is an EVOH film
  • the secondary inner layer 20 is an anti-
  • the nine-layer symmetrical structure barrier anti-fog antibacterial film from the inside to the outside, includes: inner layer 10, secondary inner layer 20, third inner layer 30, first adhesive layer 40, middle layer 50, second adhesive layer 60.
  • the first adhesive layer 40 and the second adhesive layer 60 are Pia glue
  • the middle layer 50 is a PA film
  • the first outer layer 70 is the second
  • the outer layer 80 and the third outer layer 90 are made by mixing, extruding, and film blowing a mixture of LDPE and LLDPE, metallocene, EVA, erucamide, and antistatic agent.
  • the sample is the multilayer film of Example 4, and the control sample is a commercially available common packaging cling film.
  • Test strain Staphylococcus aureus (ATCC 6538)
  • Sample test volume 1 piece/50 ⁇ 50mm square piece
  • Sample condition the sample is in a sealed plastic bag
  • the antibacterial effect value of antibacterial processed products should not be less than 2.0.
  • the nano-titanium oxide in the film of the present disclosure forms electrons and holes under light, and interacts with O 2 and H 2 O adsorbed on its surface to form superoxide radicals.
  • the positrons combine with water molecules to produce hydrogen and oxygen free radicals.
  • Hydroxyl radicals have powerful oxidative decomposition capabilities. They can decompose almost all organic compounds and some inorganic substances, and decompose them into non-toxic carbon dioxide and water.
  • the negative electrons combine with oxygen to form active oxygen, that is, super oxide ion, which has a strong oxidative decomposition ability. It can destroy the cell membrane of bacteria. While killing the bacteria, it decomposes harmful compounds released on the corpse of the bacteria, thereby achieving Sterilizing effect.
  • the sample is the multilayer film of Example 4, and the control sample is a commercially available ordinary packaging cling film.
  • the multi-layer film of the present disclosure has better fresh-keeping time or effect than ordinary commercial fresh-keeping films regardless of whether it is under normal temperature or refrigerated conditions.
  • the multi-layer film of the present disclosure realizes the functions of barrier, anti-fogging, and antibacterial, and effectively solves the pain and difficulty problems of vegetable, fruit and food packaging.
  • the multilayer film has the characteristics of fast, efficient and long-lasting anti-fogging, and can effectively anti-fogging under cold storage, conventional storage and transportation conditions. During the storage period, there will be no fog or stagnant water in the packaging bag, keep it dry, keep the packaging fresh, and extend the storage period.
  • the anti-fogging property of the plastic film is tested, the wet tension of the plastic film is tested according to the test standard GB/T14216-2008, and the moisture permeability of the plastic film is tested according to the GB/T 1037-1988.
  • the sample is the multilayer film of Example 4.
  • the present disclosure uses an excellent high-fluorine and high-efficiency anti-fog surfactant compounded with a variety of surfactants.
  • the composite surfactant migrates to the inner surface of the film to increase the surface tension of the film and make the mist quickly diverge on the surface of the film.
  • the water film is also absorbed to prevent fogging in normal temperature, cold and hot environments, to achieve a better anti-fog effect and prolong the anti-fog period.
  • the inner layer and the sub-inner layer are both anti-fogging and anti-bacterial films.
  • the anti-fogging effect of the anti-fogging surfactant in the inner layer will gradually become invalid.
  • the mist surfactant can continuously migrate from the sub-inner layer to the inner layer close to the food, so that the anti-fog surfactant in the inner layer can be continuously supplemented in time to ensure the lasting anti-fog effect of the cling film.
  • the method is: detect the haze of the film
  • Test standard A large haze means more agglomeration, and a small haze means less agglomeration. If the haze reaches the standard or the transparency is high, it means that there is no or very little reunion;
  • Test result Transparency value: ⁇ 90%, it means that the agglomeration is low, reaching the qualified level, and the film of the sample is transparent and uniform.
  • the present disclosure uses photocatalyst nano titanium dioxide as an antibacterial agent, which is effectively mixed with plastic particles, and extruded and blown into a film to make a packaging film.
  • the adopted mixing technology will not cause the nano-titanium dioxide to agglomerate and be non-nano-sized, but also can uniformly mix the nano-titanium dioxide and the plastic particles, improve the dispersion and uniformity of the nano-titanium dioxide in the film, and improve the transparency and antibacterial function of the film. So that the nano-titanium dioxide antibacterial film can realize industrial production.
  • relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any difference between these entities or operations.
  • kind of actual relationship or sequence

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

公开了制备膜的方法以及由此方法制备得到膜。所述方法包括:将纳米二氧化钛与水混合,从而得到第一溶液;将第一混合物加热至约80℃至160℃;在约80℃至160℃下,将所述第一溶液添加至所述加热的第一混合物中,得到第二混合物;以及将第二混合物进行多层共挤,吹膜或流延,从而得到所述膜。

Description

膜及其制备方法
领域
本公开涉及膜技术领域,特别涉及普通防雾抗菌膜和多层复合高阻隔防雾抗菌膜。
背景
塑料薄膜一直在不断地发展革新,适应不断增长的包装需求。传统包装注重包装的外观的精美,现代包装向功能性包装发展,并提出智能包装的新目标,蔬菜水果、粮食、食品的包装要求更高,因为现代人们对食品保鲜保质、食品安全的要求越来越高。
现有包装膜有单层膜、复合膜、共挤膜,包装方式有气调包装、充气包装、真空包装,一定程度上起到了去水、阻氧、防腐作用,但其功能仍然比较薄弱,不能满足食品保鲜保质的包装要求。蔬菜水果储运销售过程中会挥发出大量的水汽,凝结至包装物内表面,形成水汽,水珠,再流向蔬果导致蔬果加速腐烂,增加细菌滋生,导致水分大量流失,大量腐烂变质,污染环境、极大浪费。大米等粮食包装后逐步开始霉变。食品普遍达不到保质期的要求。因此,市场迫切需要具有更强保鲜保质功能的包装产品。
国内国际市场上现有一种抗菌膜,是使用无机银抗菌剂制备的抗菌膜。这种抗菌剂是西欧科学家于10多年前发明,近几年我引进使用。是目前公认的有效的抗菌膜。但是,这种抗菌膜的抗菌效果还有较大差距,远没有达到人们的使用要求,关键是这种膜使用纳米银作为抗菌剂,目前还没有资料证明这种膜对人体有无毒副作用。目前这种膜主要用于纺织品如防臭袜等方面,食品包装领域没有广泛用应。
因此,亟需一种能够集阻隔、防雾、抗菌功能于一体的,具有高效保鲜保质能力的包装薄膜。
概述
一方面,本公开涉及制备膜的方法,其包括:
将纳米二氧化钛与水混合,从而得到第一溶液;
将第一混合物加热至约80℃至160℃;
在约80℃至160℃下,将所述第一溶液添加至所述加热的第一混合物中,得到第二混合物;以及
将第二混合物进行共挤出,吹膜或流延,从而得到所述膜。
另一方面,本公开涉及膜,其由包括以下步骤的方法制备得到:
将纳米二氧化钛与水混合,从而得到第一溶液;
将第一混合物加热至约80℃至160℃;
在约80℃至160℃下,将所述第一溶液添加至所述加热的第一混合物中,得到第二混合物;以及
将第二混合物进行共挤出,吹膜或流延,从而得到所述膜。
另一方面,本公开涉及多层膜,其包括内层、次内层、中层以及外层,其中所述内层由包括以下步骤的方法制备得到:
将纳米二氧化钛与水混合,从而得到第一溶液;
将第一混合物加热至约80℃至160℃;
在约80℃至160℃下,将所述第一溶液添加至所述加热的第一混合物中,得到第二混合物;以及
将第二混合物进行共挤出,吹膜或流延,从而得到所述膜。
附图简要说明
图1示出了本公开一实施方案的多层防雾抗菌膜的示意图;
图2示出了本公开另一实施方案的多层防雾抗菌膜的示意图。
详述
在以下的说明中,包括某些具体的细节以对各个公开的实施方案提供全面的理解。然而,相关领域的技术人员会认识到,不采用一个或多个这些具体的细节,而采用其他方法、部件、材料等的情况下仍实现实施方案。
除非本公开中另有要求,在整体说明书和所附的权利要求中,词语“包括”、“包含”、“含有”和“具有”应解释为开放式的、含括式的意义,即“包括 但不限于”。
在整体说明书中提到的“一实施方案”、“实施方案”、“在另一实施方案中”或“在某些实施方案中”意指在至少一实施方案中包括与该实施方案所述的相关的具体参考要素、结构或特征。因此,在整个说明书中不同位置出现的短语“在一实施方案中”或“在实施方案中”或“在另一实施方案中”或“在某些实施方案中”不必全部指同一实施方案,此外,具体要素、结构或特征可以任何适当的方式在一个或多个实施方案中结合。
定义
在本公开中,术语“塑料粒子”为塑料颗粒的俗称,是塑料以半成品形态进行储存、运输和加工成型的原料。
在本公开中,术语“防雾表面活性剂”系指含有亲水亲油基团的低分子量分散剂,亲水性强且亲油基链长的防雾剂与塑料的相容性好,迁移速度慢,持久除雾效果好。
在本公开中,术语“抗菌剂”系指一类用来防治各类细菌引起蔬菜水果、食品腐烂的药剂。
在本公开中,术语“LDPE”系指低密度聚乙烯,通常是以乙烯为单体,在98.0至294MPa的高压下,用氧或有机过氧化物为引发剂,经聚合所得的聚合物。
在本公开中,术语“LLDPE”系指线型低密度聚乙烯,线型低密度聚乙烯在结构上不同于一般的低密度聚乙烯,因为不存在长支链。
在本公开中,术语“EVA”系指乙烯-乙酸乙烯共聚物,其为乙烯和醋酸共聚而成的。
在本公开中,术语“茂金属”系指过渡金属与环戊二烯相连所形成的有机金属配位化合物。
在本公开中,术语“芥酸酰胺”为芥酸的重要衍生物,是一种应用范围广泛的优良精细化工产品。由于它具有较高的熔点和良好的热稳定性(在273℃下稳定),因而主要用作各种塑料、树脂的抗粘剂和滑爽剂,挤塑薄膜的优良润滑剂和抗静电剂。
在本公开中,术语“PE”系指聚乙烯,其为典型的热塑性材料,其柔软性和水蒸气渗透性较好,具体可细分为LDPE、LLDPE以及HDPE。
在本公开中,术语“PP”系指聚丙烯,其为一种半结晶的热塑性塑料。
在本公开中,术语“PA”系指聚酰胺,俗称尼龙,其为极性聚合物,具有较好的力学性能、阻隔性能和印刷性能。
在本公开中,术语“EVOH”系指乙烯-乙烯醇共聚物,其为乙烯-醋酸乙烯酯共聚物进行皂化反应的醇解产物,是一种高度结晶体,具有较好的力学强度、弹性模量及优异的氧气阻隔性能,与聚偏二氯乙烯(PVDC)和聚丙烯氰并称为三大高阻隔性材料。
在本公开中,术语“Pia”系指聚酰亚胺胶,聚酰亚胺聚酰亚胺是指主链上含有酰亚胺环(-CO-NH-CO-)的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要。
在本公开中,术语“抗静电剂”是添加在塑料之中或涂敷于模塑制品的表面,以达到减少静电积累目的的一类添加剂。
在本公开中,术语“流滴剂”是一种表面活性剂,起破坏水珠与薄膜之间的界面张力,防止表面形成水珠的一类助剂。
具体实施方式
一方面,本公开涉及制备膜的方法,其包括:
将纳米二氧化钛与水混合,从而得到第一溶液;
将第一混合物加热至约80℃至160℃;
在约80℃至160℃下,将所述第一溶液添加至所述加热的第一混合物中,得到第二混合物;以及
将第二混合物进行共挤出,吹膜或流延,从而得到所述膜。
在某些实施方案中,第一混合物选自含防雾表面活性剂的母粒、低密度聚乙烯(LDPE)、线型低密度聚乙烯(LLPPE)、聚丙烯(PP)、乙烯-醋酸乙烯共聚物(EVA)、助剂或其混合物。
在某些实施方案中,第二混合物成膜之前还经过升温和冷却步骤。
在某些实施方案中,按重量百分数计,包括约1至20份的含防雾表面活性剂的母粒、约20至60份的低密度聚乙烯(LDPE)、约30至80份的线 型低密度聚乙烯(LLPPE)、约1至10份的乙烯-醋酸乙烯共聚物(EVA)以及约0至30份的助剂。
在某些实施方案中,按重量百分数计,包括约1至20份的含防雾表面活性剂的母粒、约50至140份的聚丙烯(PP)、约1至10份的乙烯-醋酸乙烯共聚物(EVA)以及约0至30份的助剂。
在某些实施方案中,将基料、防雾表面活性剂以及辅料混合并造粒,得到所述含防雾表面活性剂的母粒。
在某些实施方案中,能够用于本公开的基料的示例性实例包括但不限于LDPE和LLDPE的混合物以及PP、LDPE和LLDPE的混合物,
在某些实施方案中,按重量百分比,基料占含防雾表面活性剂的母粒的约60%至80%。
在某些实施方案中,能够用于本公开的防雾表面活性剂的示例性实例包括但不限于包括亲水基团和亲油基团的表面活性剂。
在某些实施方案中,能够用于本公开的亲水基团的示例性实例包括但不限于羧基、羟基、胺基和醚基。
在某些实施方案中,能够用于本公开的亲油基团的示例性实例包括但不限于长链烷基和氟碳链。
在某些实施方案中,能够用于本公开的防雾表面活性剂包括至少一碳氢表面活性剂和至少一氟表面活性剂。
在某些实施方案中,能够用于本公开的碳氢表面活性剂的示例性实例包括但不限于脂肪酸聚氧乙烯基胺、多元醇脂肪酸酯、乙醇胺、蓖淋油多元醇和聚醚型表面活性剂。
在某些实施方案中,能够用于本公开的碳氢表面活性剂的示例性实例包括但不限于异构醇聚氧乙烯醚。
在某些实施方案中,能够用于本公开的氟表面活性剂的示例性实例包括但不限于两性表面活性剂、氟碳阳离子表面活性剂和非离子型氟碳表面活性剂。
在某些实施方案中,能够用于本公开的两性表面活性剂的示例性实例包括但不限于全氟烷基甜茶碱。
在某些实施方案中,能够用于本公开的非离子型氟碳表面活性剂的示 例性实例包括但不限于全氟烷基磷酸脂、N-全氟烷基磺酸基丙基三乙基硅烷和全氟烷基聚。
在某些实施方案中,能够用于本公开的氟碳阳离子表面活性剂的示例性实例包括但不限于氟碳阳离子表面活性剂。
在某些实施方案中,能够用于本公开的非离子型氟碳表面活性剂的示例性实例包括但不限于全氟烷基聚醚。
在某些实施方案中,按重量百分比,防雾表面活性剂占含防雾表面活性剂的母粒料的约10%至25%。
在某些实施方案中,能够用于本公开的辅料的示例性实例包括但不限于吸水树脂、流滴剂和填充料。
某些实施方案中,,能够用于本公开的流滴剂的示例性实例包括但不限于聚甘油脂肪酸酯、聚甘油、合成聚甘油酯和单硬脂酸甘油酯。
某些实施方案中,能够用于本公开的吸水树脂的示例性实例包括但不限于PVA和EVA。
某些实施方案中,能够用于本公开的填充剂的示例性实例包括但不限于硅藻土、滑石粉和碳酸钙。
某些实施方案中,能够用于本公开的填充剂的示例性实例包括但不限于硅藻土。
某些实施方案中,按重量百分比,吸水树脂占含防雾表面活性剂的母粒的约5%至10%。
某些实施方案中,按重量百分比,充剂占含防雾表面活性剂的母粒的约1%至10%。
某些实施方案中,按重量百分比,流滴剂占含防雾表面活性剂的母粒的约0.5-2%。
某些实施方案中,造粒温度为约145至165℃。
某些实施方案中,能够用于本公开的助剂的示例性实例包括但不限于茂金属、人造硅、芥酸酰胺和抗静电剂。
某些实施方案中,按重量份数计,助剂包括约0至10份的茂金属、约0至10份的茂人造硅、约0至10份的茂芥酸酰胺以及约0至10份的茂抗静电剂。
某些实施方案中,能够用于本公开的抗静电剂的示例性实例包括但不限于阳离子抗静电剂、非离子型抗静电剂和非离子型抗静电剂。
某些实施方案中,能够用于本公开的阳离子抗静电剂的示例性实例包括但不限于长链的烷基季铵、磷和鏻盐,以氯化物作平衡离子。
某些实施方案中,能够用于本公开的阴离子抗静电剂的示例性实例包括但不限于烷基磺酸、磷酸和二硫代氨基甲酸的碱金属盐。
某些实施方案中,能够用于本公开的非离子型抗静电剂的示例性实例包括但不限于乙氧基化脂肪族烷基胺。
在某些实施方案中,能够用于本公开的纳米二氧化钛的粒径约为2至15nm。
在某些实施方案中,能够用于本公开的纳米二氧化钛的粒径约为2至10nm。
在某些实施方案中,第一溶液中二氧化钛的浓度约为1:20至1:10重量份。
在某些实施方案中,第一溶液中二氧化钛的浓度约1:10重量份。
在某些实施方案中,第一混合物与第一溶液的固液比约为1:0.6至1:1.2。
另一方面,本公开涉及膜,其由包括以下步骤的方法制备得到:
将纳米二氧化钛与水混合,从而得到第一溶液;
将第一混合物加热至约80℃至160℃;
在约80℃至160℃下,将所述第一溶液添加至所述加热的第一混合物中,得到第二混合物;以及
将第二混合物进行共挤出,吹膜或流延,从而得到所述膜。
另一方面,本公开涉及多层膜,其包括内层、次内层、中层以及外层,其中所述内层由包括以下步骤的方法制备得到:
将纳米二氧化钛与水混合,从而得到第一溶液;
将第一混合物加热至约80℃至160℃;
在约80℃至160℃下,将所述第一溶液添加至所述加热的第一混合物中,得到第二混合物;以及
将第二混合物进行共挤出,吹膜或流延,从而得到所述膜。
在某些实施方案中,次内层为防雾膜。
在某些实施方案中,防雾膜由LDPE与LLDPE的混合物或PP、茂金属、EVA以及含防雾表面活性剂的母粒混合、挤出、吹膜或流延制成。
在某些实施方案中,能够用作本公开的中层的示例性实例包括但不限于EVOH膜和PA膜。
在某些实施方案中,外层通过LDPE与LLDPE的混合物、茂金属、EVA、芥酸酰胺、抗静电剂混合、挤出、吹膜或流延制成。
在某些实施方案中,次内层和中层之间设有粘接层。
在某些实施方案中,中层和外层之间设有粘接层。
在某些实施方案中,能够用于本公开的粘结层的示例性实例包括但不限于耐高温导热胶和压敏胶。
在某些实施方案中,能够用于本公开的耐高温导热胶的示例性实例包括但不限于有机硅型耐高温导热胶或聚酰亚胺胶(Pia)。
在某些实施方案中,能够用于本公开的压敏胶的示例性实例包括但不限于聚丙烯酸酯类压敏胶。
在某些实施方案中,多层复合高阻隔防雾抗菌膜为五层或七层或九层。
在某些实施方案中,多层膜为防雾抗菌多层膜。
下文中,本公开将通过如下实施例进行详细解释以便更好地理解本申请的各个方面及其优点。然而,应当理解,以下的实施例是非限制性的而且仅用于说明本公开的某些实施方案。
实施例
实施例1
将7kg的LDPE和LLDPE的混合物、1.3kg的氟碳阳离子表面活性剂、全氟烷基醚表面活性剂以及聚氧乙烯醚表面活性剂的混合物、0.2kg的PVA吸水树脂、0.3kg的EVA吸水树脂、0.5kg的硅藻土、0.5kg的滑石粉、0.2kg的流滴剂进行混合,在145℃下进行造粒,得到含防雾表面活性剂的母粒;
将0.6kg含防雾表面活性剂的母粒、3kgLDPE、4kg LLPPE、0.5kgEVA以及0.5kg茂金属、0.2kg的人造硅、0.1kg芥酸酰胺以及0.5kg的抗静电剂混合,得到第一混合物;
将0.6kg的粒径2-10nm的纳米二氧化钛与水按重量份1:10进行混合,从而得到第一溶液;将第一混合物加温至100℃;
在100℃下,将所述第一溶液添加至所述加温的第一混合物(加入量或者固液比)中,得到第二混合物,并将所述第二混合物升温2℃;将升温的第二混合物冷却;以及将冷却的第二混合物进行共挤出,吹膜,从而得到所述膜。
实施例2
将6.4kg的LDPE以及LLDPE的混合物、2.5kg的全氟烷基聚醚表面活性剂和异构醇聚氧乙烯醚活性剂的混合物、0.5kg的PVA吸水树脂、0.5kg的滑石粉以及0.1kg的滴流剂进行混合,在165℃下进行造粒,得到含防雾表面活性剂的母粒;
将0.5kg的含防雾表面活性剂的母粒、2.5kg的LDPE、4.5kg的LLPPE、0.6kg的EVA以及0.4kg的茂金属、0.3kg的人造硅、0.2kg的芥酸酰胺以及0.4kg的抗静电剂混合,得到第一混合物;
将0.6kg的粒径5-15nm的纳米二氧化钛与水按重量份1:20进行混合,从而得到第一溶液;将塑料原料加温至140℃;
在140℃下,将所述第一溶液添加至所述加温的第一混合物中,得到第二混合物,并将所述第二混合物升温3℃;将升温的第二混合物冷却;以及将冷却的第二混合物进行共挤出,流延,从而得到所述膜。
实施例3
将8kg的LDPE以及LLDPE的混合物、1kg的全氟烷基聚醚表面活性剂和异构醇聚氧乙烯醚活性剂的混合物、0.5kg的PVA吸水树脂和EVA吸水树脂的混合物、0.45kg的碳酸钙以及0.05的滴流剂进行混合,在150℃下下进行造粒,得到含防雾表面活性剂的母粒;
含0.7kg的防雾表面活性剂的母粒、2.5kg的LDPE、4.3kg的LLPPE、 0.5kg的EVA以及0.5kg的茂金属、0.2kg的人造硅、0.1kg的芥酸酰胺以及0.5kg的抗静电剂混合,得到第一混合物;
将0.5kg的粒径2-8nm的纳米二氧化钛与水按重量份1:15进行混合,从而得到第一溶液;
将塑料原料加温至120℃;在120℃下,将所述第一溶液添加至所述加温的第一混合物中,得到第二混合物,并将所述第二混合物升温3℃;将升温的第二混合物冷却;以及将冷却的第二混合物进行共挤出,吹膜,从而得到所述膜。
实施例4
如图1所示,七层对称结构阻隔防雾抗菌膜,从内向外依次包括:内层10、次内层20、第一胶层30、中层40、第二胶层50、第一外层60以及第二外层70,内层10为实施例1制备的膜、第一胶层30和第二胶50Pia胶、中层40为EVOH膜,次内层20为防雾膜,其由LDPE与LLDPE的混合物、茂金属、EVA以及含防雾表面活性剂的母粒混合、挤出、吹膜制成,第一外层60以及第二外层70通过LDPE与LLDPE的混合物、茂金属、EVA、芥酸酰胺、抗静电剂混合、挤出、吹膜制成。
实施例5
如图2所示,九层对称结构阻隔防雾抗菌膜,从内向外依次包括:内层10、次内层20、第三内层30、第一胶层40、中层50、第二胶层60、第一外层70、第二外层80以及第三外层90,其中,内层10为实施例1制备的膜,次内层20和第三内层30由LDPE与LLDPE的混合物、茂金属、EVA以及含防雾表面活性剂的母粒混合、挤出、吹膜制成,第一胶层40和第二胶层60Pia胶、中层50为PA膜,第一外层70第二外层80以及第三外层90为通过LDPE与LLDPE的混合物、茂金属、EVA、芥酸酰胺、抗静电剂混合、挤出、吹膜制成。
性能测试
1、根据日本工业标准JIS Z 2801:2010抗菌产品-抗菌性试验和抗菌效果进行抗菌活性的测试。
样品为实施例4的多层膜,对照样为市售的普通包装保鲜膜。
样品前处理:70%乙醇擦拭
接触时间:24±1小时
培养温度:35±1℃
菌液浓度:2.5-10×10 5cfu/mL
接种量:1.0±0.1mL
测试菌种:金黄色葡萄球菌(ATCC 6538)
大肠杆菌(ATCC 8739)
样品测试量:1片/50×50mm方片
测试结果如表1所示:
表1实施例4的多层膜的抗菌活性的测试数据
Figure PCTCN2019115866-appb-000001
接样条件:样品在密封的塑料袋中
样品准备:提交的样品洗涤为/洗涤,然后进行测试
抗菌效果的判定:
抗菌加工制品的抗菌效果值应不小于2.0。
从表1可知,本公开的多层膜对金黄色葡萄球菌和大肠杆菌的抗菌活性在3-5.5,大于日本工业标准JIS Z 2801:2010的2.0。且,细菌在0-24小 时内的恢复值远小于市售的普通保鲜膜。
这是由于本公开薄膜中的纳米氧化钛在光照下,形成电子与空穴,与吸附其表面的O 2和H 2O作用,形成超氧化自由基,正电子与水分子结合产生氢氧自由基,氢氧自由基具有强大的氧化分解能力,它能分解几乎所有的有机化合物和一部分无机物,将它们分解成无毒的二氧化碳和水。而负电子与氧结合成活性氧,即超级氧化离子,具有很强的氧化分解能力,它可以破坏细菌的细胞膜,在杀死细菌的同时,分解细菌尸体上释放出的有害复合物,从而实现杀菌的效果。
2、对样品和对照样的在常温或冷藏条件下的保鲜时间进行测试。其中,样品为实施例4的多层膜,对照样为市售的普通包装保鲜膜。
测试结果如表2所示:
表2实施例4的多层膜的实验数据
Figure PCTCN2019115866-appb-000002
Figure PCTCN2019115866-appb-000003
从表2可知,本公开的多层膜无论是在常温还是冷藏的条件下,保鲜时间或效果均优于市售的普通保鲜膜。
这是由于本公开的多层膜,实现了阻隔、防雾、抗菌功能于一体,有效解决蔬果、食品包装的疼点、难点问题。该多层膜具有快速、高效、持久防雾的特点,冷藏与常规储藏、运输条件下均能高效防雾。储藏期内,包装袋内不会有雾气、积水,保持干燥,被包装物保鲜好,储存期延长。
3、对样品的防雾性能进行测试:
根据测试标准GB/T 31726-2015测试塑料薄膜的防雾性,根据测试标准GB/T14216-2008测试塑料薄膜的湿张力,根据GB/T 1037-1988测试塑料薄膜的透湿量。其中,样品为实施例4的多层膜。
测试结果如表3所示:
表3实施例4的多层膜的实验数据
Figure PCTCN2019115866-appb-000004
从表3可知,本公开的多层膜的防雾性能、湿张力和透湿量均优于国 家标准。
这是由于本公开采用优秀的多种表面活性剂复合的高氟高效防雾表面活性剂,复合表面活性剂迁移到薄膜内表面,增强薄膜的表面张力,使雾水在薄膜表面迅速发散,形成水膜并被吸收,做到常温、冷、热环境都防雾,达到更好的防雾效果,延长防雾的有效期。同时,内层和次内层均选用防雾抗菌膜,在防雾保鲜膜的长期使用过程中,内层的防雾表面活性剂的防雾效果会逐渐失效,而此时此内层的防雾表面活性剂可以不断地从次内层迁移到靠近食品的内层中,使得内层的防雾表面活性剂能够源源不断的得到及时的补充,保证保鲜膜的持久防雾效果。
4、对样品中纳米二氧化钛团聚情况进行检测,其中,样品为实施例4的多层膜:
方法是:检测薄膜的雾度;
检测标准:雾度大则说明团聚多,雾度小则说明团聚少。雾度达到标准或透明度高,则说明未团聚或团聚极少;
检测结果:透明度值:≥90%,则说明团聚低,达到合格水平,同时样品的膜透明均匀。
本公开采用光触媒纳米二氧化钛作为抗菌剂,使之与塑料粒子有效混合,挤出吹制成薄膜,制成包装膜。采用的混合技术,既不会导致纳米二氧化钛团聚,非纳米化,又能使纳米二氧化钛和塑料粒子均匀混合,提升纳米二氧化钛在薄膜中的分散度、均匀度,提高薄膜的透明塑和抗菌功能。使得纳米二氧化钛抗菌膜能够实现工业化生产。
在本公开中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
从前述中可以理解,尽管为了示例性说明的目的描述了本公开的具体实施方案,但是在不偏离本公开的精神和范围的条件下,本领域所述技术人员可以作出各种变形或改进、这些变形或修改都应落入本公开所附权利要求的范围。

Claims (47)

  1. 制备膜的方法,其包括:
    将纳米二氧化钛与水混合,从而得到第一溶液;
    将第一混合物加热至80℃至160℃;
    在80℃至160℃下,将所述第一溶液添加至所述加热的第一混合物中,得到第二混合物;以及
    将第二混合物进行共挤出,吹膜或流延,从而得到所述膜。
  2. 如权利要求1所述的方法,其中所述第一混合物选自含防雾表面活性剂的母粒、低密度聚乙烯(LDPE)、线型低密度聚乙烯(LLPPE)、聚丙烯(PP)、乙烯-醋酸乙烯共聚物(EVA)、助剂或其混合物。
  3. 如权利要求2所述的方法,按重量百分数计,其中所述第一混合物包括1至20份的含防雾表面活性剂的母粒、20至60份的低密度聚乙烯(LDPE)、30至80份的线型低密度聚乙烯(LLPPE)、1至10份的乙烯-醋酸乙烯共聚物(EVA)以及0至30份的助剂。
  4. 如权利要求2所述的方法,按重量百分数计,其中所述第一混合物包括约1至20份的含防雾表面活性剂的母粒、50至140份的聚丙烯(PP)、1至10份的乙烯-醋酸乙烯共聚物(EVA)以及0至30份的助剂。
  5. 如权利要求1至4中任一权利要求所述的方法,其中所述第二混合物成膜之前还经过升温和冷却步骤。
  6. 如权利要求1至5中任一权利要求所述的方法,其中将基料、防雾表面活性剂以及辅料混合并造粒,得到所述含防雾表面活性剂的母粒。
  7. 如权利要求6所述的方法,其中所述基料为LDPE和LLDPE的混合物或者PP、LDPE以及LLDPE的混合物。
  8. 如权利要求6或7所述的方法,按重量百分比,其中所述基料占含防雾表面活性剂的母粒的60-80%。
  9. 如权利要求6至8中任一权利要求所述的方法,其中所述防雾表面活性剂包括亲水基团和亲油基团。
  10. 如权利要求9所述的方法,其中所述亲水基团选自羧基、羟基、胺基或醚基。
  11. 如权利要求9所述的方法,其中所述亲油基团选自长链烷基或氟碳链。
  12. 如权利要求6至11中任一权利要求所述的方法,其中所述防雾表面活性剂包括至少一碳氢表面活性剂和至少一氟表面活性剂。
  13. 如权利要求12所述的方法,其中所述碳氢表面活性剂选自脂肪酸聚氧乙烯基胺、多元醇脂肪酸酯、乙醇胺、蓖淋油多元醇、聚醚型表面活性剂及其混合物。
  14. 如权利要求12或13所述的方法,其中所述碳氢表面活性剂选自异构醇聚氧乙烯醚。
  15. 如权利要求12至14中任一权利要求所述的方法,其中所述氟表面活性剂选自两性表面活性剂、氟碳阳离子表面活性剂、非离子型氟碳表面活性剂及其混合物。
  16. 如权利要求15所述的方法,其中所述两性表面活性剂选自全氟烷基甜茶碱。
  17. 如权利要求15所述的方法,其中所述非离子型氟碳表面活性剂选自全氟烷基磷酸脂、N-全氟烷基磺酸基丙基三乙基硅烷、全氟烷基聚及其混合物。
  18. 如权利要求15或17所述的方法,其中所述非离子型氟碳表面活性剂选自全氟烷基聚醚。
  19. 如权利要求15所述的方法,其中所述氟碳阳离子表面活性剂选自氟碳阳离子表面活性剂。
  20. 如权利要求6至19中任一权利要求所述的方法,按重量百分比,其中所述防雾表面活性剂占含防雾表面活性剂的母粒料的10-25%。
  21. 如权利要求6至20中任一权利要求所述的方法,其中所述辅料选自吸水树脂、流滴剂、填充料及其混合物。
  22. 如权利要求6至21中任一权利要求所述的方法,其中所述吸水树脂选自PVA、EVA及其混合物。
  23. 如权利要求6至22中任一权利要求所述的方法,其中所述填充剂选自硅藻土、滑石粉、碳酸钙及其混合物。
  24. 如权利要求23所述的方法,其中所述填充剂选自硅藻土。
  25. 如权利要求6至24中任一权利要求所述的方法,按重量百分比,所述吸水树脂占含防雾表面活性剂的母粒5-10%。
  26. 如权利要求6至25中任一权利要求所述的方法,按重量百分比,所述填充剂占含防雾表面活性剂的母粒的1-10%。
  27. 如权利要求6至26中任一权利要求所述的方法,按重量百分比,所述流滴剂占含防雾表面活性剂的母粒的0.5-2%。
  28. 如权利要求6至27中任一权利要求所述的方法,所述造粒温度为145至165℃。
  29. 如权利要求2至4中任一权利要求所述的方法,所述助剂选自茂金属、人造硅、芥酸酰胺、抗静电剂或其混合物。
  30. 如权利要求1至28中任一权利要求所述的方法,所述纳米二氧化钛的粒径为2至15nm。
  31. 如权利要求29所述的方法,所述纳米二氧化钛的粒径为2至10nm。
  32. 如权利要求1至30中任一权利要求所述的方法,所述第一溶液中二氧化钛的浓度为1:20至1:10重量份。
  33. 如权利要求31所述的方法,所述第一溶液中二氧化钛的浓度为1:10重量份。
  34. 由权利要求1至32中任一权利要求所述的方法制备得到的膜。
  35. 多层膜,其包括内层、次内层、中层以及外层,其中所述内层为权利要求33所述的膜。
  36. 多层膜,其包括内层、次内层、中层以及外层,其中所述内层为权利要求1至32中任一权利要求所述的方法制备得到的膜。
  37. 如权利要求34或35所述的多层膜,其中所述次内层为防雾膜。
  38. 如权利要求36所述的多层膜,其中所述防雾膜由LDPE与LLDPE的混合物或PP、茂金属、EVA以及含防雾表面活性剂的母粒混合、挤出、吹膜或流延制成。
  39. 如权利要求34至37中任一权利要求所述的多层膜,其中所述中层选自EVOH膜或PA膜。
  40. 如权利要求34至38中任一权利要求所述的多层膜,其中外层通过LDPE与LLDPE的混合物、茂金属、EVA、芥酸酰胺、抗静电剂混合、挤出、吹膜或流延制成。
  41. 如权利要求34至39中任一权利要求所述的多层膜,其中所述多层膜还包括设置在所述次内层和所述中层之间的粘接层。
  42. 如权利要求34至40中任一权利要求所述的多层膜,其中所述多层膜还包括设置在所述中层和所述外层之间的粘接层。
  43. 如权利要求40或41所述的多层膜,其中所述优选所述粘接层选自耐高温导热胶或压敏胶。
  44. 如权利要求42所述的多层膜,其中所述耐高温导热胶为有机硅型耐高温导热胶或聚酰亚胺胶(Pia)。
  45. 如权利要求42或43所述的多层膜,其中所述压敏胶为聚丙烯酸酯类压敏胶。
  46. 如权利要求34或44所述的多层膜,其中所述多层膜为五层或七层或九层。
  47. 如权利要求34或45所述的多层膜,其为防雾抗菌多层膜。
PCT/CN2019/115866 2019-10-23 2019-11-06 膜及其制备方法 WO2021077466A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2022/04143A ZA202204143B (en) 2019-10-23 2022-04-12 Film and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911010084.6A CN110982158A (zh) 2019-10-23 2019-10-23 膜及其制备方法
CN201911010084.6 2019-10-23

Publications (1)

Publication Number Publication Date
WO2021077466A1 true WO2021077466A1 (zh) 2021-04-29

Family

ID=70082327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115866 WO2021077466A1 (zh) 2019-10-23 2019-11-06 膜及其制备方法

Country Status (3)

Country Link
CN (1) CN110982158A (zh)
WO (1) WO2021077466A1 (zh)
ZA (1) ZA202204143B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114949718A (zh) * 2022-05-13 2022-08-30 河南理工大学 一种水凝胶堵漏风防灭火材料及其制备方法和应用、一种防煤炭自燃方法、一种灭火方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111925580A (zh) * 2020-07-16 2020-11-13 江阴市德惠热收缩包装材料有限公司 易揭盖膜及其制备方法
WO2022135500A1 (en) * 2020-12-23 2022-06-30 Nano And Advanced Materials Institute Limited Food contact safe, germ repellent material
CN114657513B (zh) * 2022-05-23 2022-09-20 河南银金达新材料股份有限公司 一种抗菌再生聚酯膜的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1371938A (zh) * 2001-02-27 2002-10-02 国家农产品保鲜工程技术研究中心(天津) 填加纳米材料保鲜膜及制作方法
CN101948584A (zh) * 2010-09-27 2011-01-19 南京农业大学 一种适合食用菌保鲜的纳米包装材料及其应用
CN103396634A (zh) * 2013-08-13 2013-11-20 武汉羿阳科技有限公司 一种自清洁抗菌防雾薄膜
CN104151691A (zh) * 2014-07-28 2014-11-19 南京农业大学 一种防止食用菌品质劣变的纳米保鲜膜及其应用
CN105801995A (zh) * 2016-03-29 2016-07-27 南京农业大学 一种抑制香菇内源性甲醛产生的纳米复合包装材料
CN107163362A (zh) * 2017-05-22 2017-09-15 句容市兴武包装有限公司 一种添加纳米粒子的食用菌保鲜膜的制备方法
CN107955252A (zh) * 2017-12-05 2018-04-24 苏州市农业科学院 一种纳米果蔬防雾膜及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008083975A1 (en) * 2007-01-12 2008-07-17 Isdin S.A. Light-stabilized composition
CN101040631A (zh) * 2007-04-20 2007-09-26 沈阳农业大学 金铃大枣保鲜专用膜、袋
CN106240111B (zh) * 2016-07-29 2019-04-02 江阴市德惠热收缩包装材料有限公司 高氟防雾保鲜膜及其制备工艺
CN109605891A (zh) * 2018-12-29 2019-04-12 无锡市太平洋新材料股份有限公司 一种食品包装用防雾膜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1371938A (zh) * 2001-02-27 2002-10-02 国家农产品保鲜工程技术研究中心(天津) 填加纳米材料保鲜膜及制作方法
CN101948584A (zh) * 2010-09-27 2011-01-19 南京农业大学 一种适合食用菌保鲜的纳米包装材料及其应用
CN103396634A (zh) * 2013-08-13 2013-11-20 武汉羿阳科技有限公司 一种自清洁抗菌防雾薄膜
CN104151691A (zh) * 2014-07-28 2014-11-19 南京农业大学 一种防止食用菌品质劣变的纳米保鲜膜及其应用
CN105801995A (zh) * 2016-03-29 2016-07-27 南京农业大学 一种抑制香菇内源性甲醛产生的纳米复合包装材料
CN107163362A (zh) * 2017-05-22 2017-09-15 句容市兴武包装有限公司 一种添加纳米粒子的食用菌保鲜膜的制备方法
CN107955252A (zh) * 2017-12-05 2018-04-24 苏州市农业科学院 一种纳米果蔬防雾膜及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114949718A (zh) * 2022-05-13 2022-08-30 河南理工大学 一种水凝胶堵漏风防灭火材料及其制备方法和应用、一种防煤炭自燃方法、一种灭火方法

Also Published As

Publication number Publication date
ZA202204143B (en) 2022-06-29
CN110982158A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2021077466A1 (zh) 膜及其制备方法
CA2267756C (en) Resin composition, production thereof, and laminate comprising a layer composed of said resin composition
CN111303525A (zh) Pe防雾抗菌保鲜收缩膜及其制备方法
CN111333888A (zh) 可降解聚乳酸抗菌膜及其制备方法
CN109049918B (zh) 一种防雾增韧抗菌流延聚丙烯食品包装膜及其制备方法
JP2016049727A (ja) シーラントフィルム
CN111925580A (zh) 易揭盖膜及其制备方法
JP4707783B2 (ja) 水酸基含有熱可塑性樹脂改質用の樹脂組成物およびその使用法
CN111234353A (zh) 榴莲保鲜膜及其制备方法
JP2019501273A (ja) 抗菌性ポリマー組成物
KR101512563B1 (ko) 상변화 물질을 함유하는 포장재용 조성물 및 포장필름
CN111660524A (zh) 一种气相核心微泡散射薄膜及其制备方法和应用
JP2008030425A (ja) ポリプロピレン系樹脂積層フィルム、およびその製造方法
JP4240076B2 (ja) ポリプロピレン系樹脂積層フィルム、およびその製造方法
CN103289202A (zh) 一种抑菌阻燃聚丙烯双向拉伸薄膜
CN113621146B (zh) 一种防雾抗菌防霉聚乳酸母粒及其薄膜和制备方法
CN108047543A (zh) 一种pe薄膜材料及其制备方法
CN102485783B (zh) 一种线性低密度聚乙烯的制备方法
CN114211843A (zh) 一种医药包装用高阻隔热封氟膜及其制备方法
CN110382616A (zh) 树脂组合物和由其构成的成型材料以及多层结构体
US20230045878A1 (en) A vaccum-sealable plastic pouch
JP2019098534A (ja) 農業用ポリオレフィン系多層フィルム
JP4867857B2 (ja) ポリプロピレン系樹脂積層フィルム、およびその製造方法
JPH11293077A (ja) 樹脂組成物の製造法
JP4822570B2 (ja) 樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949908

Country of ref document: EP

Kind code of ref document: A1