WO2021073653A1 - 一种调节高度和阻尼力的方法及系统 - Google Patents

一种调节高度和阻尼力的方法及系统 Download PDF

Info

Publication number
WO2021073653A1
WO2021073653A1 PCT/CN2020/122009 CN2020122009W WO2021073653A1 WO 2021073653 A1 WO2021073653 A1 WO 2021073653A1 CN 2020122009 W CN2020122009 W CN 2020122009W WO 2021073653 A1 WO2021073653 A1 WO 2021073653A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping force
connecting portion
pneumatic valve
adjustable damper
air spring
Prior art date
Application number
PCT/CN2020/122009
Other languages
English (en)
French (fr)
Inventor
张晓锋
孙国
于曼华
冯永江
张加
Original Assignee
安路普(北京)汽车技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安路普(北京)汽车技术有限公司 filed Critical 安路普(北京)汽车技术有限公司
Priority to US17/769,857 priority Critical patent/US11926188B2/en
Publication of WO2021073653A1 publication Critical patent/WO2021073653A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0152Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit
    • B60G17/0155Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit pneumatic unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/052Pneumatic spring characteristics
    • B60G17/0523Regulating distributors or valves for pneumatic springs
    • B60G17/0525Height adjusting or levelling valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/052Pneumatic spring characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/15Fluid spring
    • B60G2202/152Pneumatic spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • B60G2500/11Damping valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/30Height or ground clearance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/02Retarders, delaying means, dead zones, threshold values, cut-off frequency, timer interruption

Definitions

  • the invention relates to the field of shock absorbers, in particular to a method and system for adjusting height and damping force.
  • the existing suspension system mainly includes two control systems for height adjustment and damping force adjustment. These two control systems are mutually independent systems and each have corresponding control mechanisms. In the manual adjustment mode, it is necessary to press two buttons at the same time to realize the synchronous adjustment of the two control systems, which is inconvenient to operate.
  • the most commonly used suspension control system is based on CDC (Continuous Damping Control).
  • the suspension control system first uses sensors to collect information and sends the collected information to the electronic control unit.
  • the electronic control unit simultaneously calculates the air pressure in the air spring airbag and the damping force of the damper, and sends the calculated control signal to the air spring and the CDC damper at the same time, and controls the air spring and the CDC damper to perform corresponding operations at the same time.
  • the present invention is proposed to provide a method and system for adjusting height and damping force that overcomes the above problems or at least partially solves the above problems.
  • a method for adjusting height and damping force comprising: combining a pneumatic valve, an air spring, an adjustable damper, and a damping force for adjusting the damping force of the adjustable damper
  • the adjusting device is arranged between the first connecting part and the second connecting part; the positions of the pneumatic valve, the air spring, the adjustable damper, and the damping force adjusting device are adapted to the positions of the pneumatic valve, the air spring, and the damping force adjusting device;
  • the damping force adjusting device is connected to the air spring;
  • the pneumatic valve collects at least one movement variable of the first connecting portion relative to the second connecting portion
  • the pneumatic valve controls the air spring to inflate or deflate according to the collected movement variable and/or the change in the movement variable to achieve height adjustment; and/or, the pneumatic valve drives the damping force adjustment device to control the control station.
  • the adjustable damper outputs a corresponding damping force to realize the adjustment of the damping force of the adjustable damper.
  • a system for adjusting height and damping force includes a first connecting portion, a second connecting portion, at least one pneumatic valve, an air spring, an adjustable damper, and The damping force adjusting device of the adjustable damper damping force; the pneumatic valve, the air spring, the adjustable damper, and the damping force adjusting device are arranged between the first connecting portion and the second connecting portion , The positions of the pneumatic valve, the air spring, the adjustable damper and the damping force adjusting device are adapted; the pneumatic valve is connected to the damping force adjusting device and the air spring respectively;
  • the pneumatic valve is used to collect at least one movement variable of the first connecting portion relative to the second connecting portion; at the same time, the air is controlled according to the collected movement variable and/or the change in the movement variable
  • the spring is inflated or deflated to achieve height adjustment; and/or the damping force adjusting device is driven by air to control the adjustable damper to output a corresponding damping force, so as to adjust the damping force of the adjustable damper.
  • the technical solution of the present invention collects at least one movement variable of the first connecting portion relative to the second connecting portion through a pneumatic valve, and adjusts the damping force of the damper through the pneumatic valve direct pneumatic drive adjustment device
  • the pneumatic valve is used to directly control the inflation or deflation of the air spring for height adjustment, and the synchronization of height and damping force is achieved through the coordination of mechanical mechanisms, compared with the electronic control method in the prior art to achieve synchronization of height and damping force.
  • the sensitivity of height adjustment and damping adjustment is improved, and the comfort is further improved; in addition, the technical solution of the present invention makes the driver not need to manually adjust the damping force and height during driving, so that the driver’s attention is more concentrated, To a certain extent, it can reduce the occurrence of traffic accidents.
  • Fig. 1 shows a flow chart of a method for adjusting height and damping force according to an embodiment of the present invention
  • Fig. 2 shows a schematic diagram of the positional relationship of the first connecting portion relative to the second connecting portion according to an embodiment of the present invention
  • Fig. 3 shows a schematic diagram of the functional structure of a system for adjusting height and damping force in an embodiment of the present invention
  • Fig. 4 shows a schematic diagram of the functional structure of an adjusting device according to an embodiment of the present invention
  • Fig. 5 shows a schematic diagram of the functional structure of another adjusting device according to an embodiment of the present invention.
  • Fig. 6 shows a schematic diagram of the functional structure of another adjusting device according to an embodiment of the present invention.
  • S00 the balance position of the total working stroke
  • S11 the lower limit of the first displacement threshold range
  • S12 the upper limit of the first displacement threshold range
  • S21 the lower limit of the second displacement threshold range
  • S22 The upper limit of the second displacement threshold range
  • S31 the lower limit of the third displacement threshold range
  • S32 the upper limit of the third displacement threshold range
  • 100 The system for adjusting the damping force of the damper; 110, the first connection 120, second connecting part; 130, pneumatic valve; 140, air spring; 150, adjustable damper; 160, damping force adjustment device; 170, height adjustment device; 161, gas compression device; 162, cable control device 163, gas compression device; 164, proportional valve.
  • Fig. 1 shows a flow chart of a method for adjusting height and damping force according to an embodiment of the present invention. As shown in Fig. 1, the method for adjusting height and damping force includes:
  • a pneumatic valve, an air spring, an adjustable damper, and a damping force adjusting device for adjusting the damping force of the adjustable damper are arranged between the first connecting part and the second connecting part; the pneumatic valve, the air spring The position of the adjustable damper and the damping force adjusting device are adapted; the pneumatic valve is respectively connected with the damping force adjusting device and the air spring, specifically, the first gas output end of the pneumatic valve is connected with the gas input end of the damping force adjusting device, The second gas output end of the pneumatic valve is connected with the connection port of the air spring.
  • the pneumatic valve has a linear structure.
  • the pneumatic valve includes a driving rod and a valve body.
  • the driving rod makes a reciprocating linear motion in the valve body.
  • the driving rod is connected to the first connecting part, and the valve body is connected to the second connecting part.
  • this embodiment does not further limit the positions of the pneumatic valve, air spring, and adjustable damper.
  • the air spring can be Provide support between the first connection part and the second connection part and change the positional relationship between the first connection part and the second connection part.
  • the adjustable damper can provide a shock absorption effect for the first connection part or the second connection part. can.
  • the damping force adjusting device includes a device for controlling the swing direction and swing amplitude of the adjusting pin of the adjustable damper.
  • the first gas output end of the pneumatic valve is connected to the gas input end of the damping force adjustment device for adjusting the damping force of the adjustable damper, so that a gas flow connection can be generated between the pneumatic valve and the damping force adjustment device, wherein the damping force adjustment
  • the damping force adjustment device is also connected to the atmosphere, so that the pneumatic valve air-driven damping force adjustment device performs corresponding operations, that is, the pneumatic valve air-driven damping force adjustment device is connected to the air source and the atmosphere , Control the adjustable damper to output the corresponding damping force;
  • the second gas output end of the pneumatic valve is connected with the connection port of the air spring, so that the pneumatic valve and the air spring can generate a gas flow connection, so that the air spring and the air source or The atmosphere is connected to realize the inflation or deflation of the air spring.
  • the second connecting portion includes the chassis frame, that is, a pneumatic valve, an air spring, an adjustable damper, and a damping force adjusting device for adjusting the damping force of the adjustable damper Arranged between the cab and the chassis frame.
  • the first connecting part includes a vehicle chassis
  • the second connecting part includes wheels, that is, a pneumatic valve, an air spring, an adjustable damper, and a damping force adjusting device for adjusting the damping force of the adjustable damper are arranged on the vehicle chassis And between the wheels.
  • the second connecting part includes the lower frame of the seat, that is, a pneumatic valve, an air spring, an adjustable damper, and a damping for adjusting the damping force of the adjustable damper
  • the force adjusting device is arranged between the upper frame of the seat and the lower frame of the seat.
  • the first connecting part includes the sliding horizontal axis of the seat scissors frame
  • the second connecting part includes the rotating pin of the seat scissors frame, that is, the pneumatic valve and the adjustable damper are arranged on the sliding horizontal axis of the seat scissors frame
  • the air spring and the damping force adjusting device for adjusting the damping force of the adjustable damper are arranged at corresponding positions between the air spring and the rotating pin of the seat scissors frame.
  • step S120 the pneumatic valve collects at least one movement variable of the first connecting part relative to the second connecting part
  • the motion variables include the positional relationship of the first connection part relative to the second connection part, the speed of the first connection part relative to the second connection part, and the acceleration of the first connection part relative to the second connection part. This embodiment does not further limit the motion variable.
  • step S130 at the same time, the pneumatic valve controls the air spring to inflate or deflate according to the collected motion variables and/or changes in motion variables to achieve height adjustment; and/or, the air-driven damping force adjusting device controls the adjustable damper to output corresponding Damping force, realizing the adjustment of the damping force of the adjustable damper.
  • the change of the motion variable is determined by at least two temporally continuous motion variables of the first connecting part relative to the second connecting part.
  • the gas flow change inside the pneumatic valve drives the gas flow inside the damping force adjustment device to change, thereby triggering the damping force adjustment device to control the swing direction and the adjustment pin of the adjustable damper
  • the swing amplitude enables the adjustable damper to output the damping force corresponding to the swing direction and swing amplitude, so that the damping force of the adjustable damper can be adjusted; in addition, the gas flow inside the pneumatic valve changes at the same time as the pneumatic valve The working stroke changes. Since the second gas output end of the pneumatic valve is connected to the connecting port of the air spring, when the working stroke of the pneumatic valve changes, the pneumatic valve and the air spring can generate gas flow connection, so that the air spring and the air spring are connected. The source or atmosphere is connected, and the air spring can be inflated or deflated, and the height can be adjusted.
  • the technical solution of this embodiment collects at least one movement variable of the first connecting portion relative to the second connecting portion through a pneumatic valve, and directly pneumatically drives the damping force adjusting device to adjust the damping force of the adjustable damper through the pneumatic valve.
  • the pneumatic valve directly controls the inflation or deflation of the air spring to adjust the height, and realizes the synchronous adjustment of the height and the damping force through the coordination of the mechanical mechanism, which is compared with the electronic control method in the prior art to achieve the height and damping force.
  • Synchronous adjustment improves the sensitivity of height adjustment and shock absorption adjustment, and further improves comfort; in addition, the technical solution of this embodiment eliminates the need for the driver to manually adjust the damping force and height during driving, so that the driver's attention is more concentrated , To a certain extent, can reduce the occurrence of traffic accidents.
  • the adjustable dampers in this embodiment include CDC dampers and PDC dampers (PDC, Pneumatic Damping Control), etc.
  • PDC PDC dampers
  • This embodiment does not further limit the type of adjustable dampers, and only needs to be adjustable.
  • the damping force of the damper can be adjusted.
  • the above content only enumerates and describes the structure of the damping force adjustment device of the adjustable damper, and other adjustment devices that can adjust the damping force of the adjustable damper are within the protection scope of this embodiment.
  • FIG. 2 shows a schematic diagram of the positional relationship between the first connecting portion and the second connecting portion according to an embodiment of the present invention.
  • the motion variable includes the first connecting portion.
  • the positional relationship relative to the second connecting portion; the positional relationship includes the vertical relationship of the first connecting portion with respect to the second connecting portion, or the horizontal relationship of the first connecting portion with respect to the second connecting portion, or the first connecting portion
  • the vertical relationship and the horizontal relationship of the first connecting portion with respect to the second connecting portion that is to say, not only the height and damping force can be adjusted according to the vertical relationship of the first connecting portion with respect to the second connecting portion, but also according to the first connecting portion.
  • the height and damping force can be adjusted according to the horizontal relationship between the first connection portion and the second connection portion, and the height and the damping force can also be adjusted simultaneously according to the vertical relationship and the horizontal relationship between the first connection portion and the second connection portion.
  • the positional relationship between the first connecting portion and the second connecting portion is the adjusted target value, and the positional relationship is provided by the total working stroke of the pneumatic valve.
  • the positional relationship between the first connecting portion and the second connecting portion is preset The ratio corresponds to the total working stroke of the pneumatic valve.
  • the ratio of the positional relationship of the first connecting part relative to the second connecting part to the total working stroke of the pneumatic valve is 1:1, 1:2, or 1:3. This embodiment does not further limit the ratio between the positional relationship of the first connecting portion relative to the second connecting portion and the total working stroke of the pneumatic valve.
  • the total working stroke includes the total working stroke balance position S00 and at least three displacement threshold ranges, where the second displacement threshold range (S21, S22) includes the first displacement threshold range (S11, S12) and the third displacement threshold range (S31, S32) includes the second displacement threshold range (S21, S22), for example, the first displacement threshold range includes (-5mm, +5mm), the second displacement threshold range includes (-20mm, +20mm), and the third displacement threshold range includes (-25mm, +25mm).
  • different displacement threshold ranges can be set according to actual needs, and this embodiment does not further limit the displacement threshold range.
  • Adjusting the height and damping force according to the position relationship mainly includes the following modes:
  • the positional relationship of the first connecting part relative to the second connecting part is within the first displacement threshold range (S11, S12), and the pneumatic valve neither controls the air spring inflation or deflation, nor does the air drive the damping force adjustment
  • the device controls the adjustable damper to output the corresponding damping force.
  • the damping force of the adjustable damper is the preset basic damping force; in this mode, you can drive on a flat road without adjusting the height and damping force.
  • the damping force of the adjustable damper is a preset basic damping force, which is generally a relatively small damping force.
  • the preset basic damping force includes 50 Newtons (N), and the height of the air spring is a preset height.
  • the positional relationship between the first connecting portion and the second connecting portion is between the first displacement threshold range (S11, S12) and the second displacement threshold range (S21, S22), and the pneumatic valve controls the air spring to inflate or
  • the damping force adjusting device controls the adjustable damper to output a corresponding damping force, and the damping force of the adjustable damper is a preset damping force.
  • the pneumatic valve controls the air spring to preset Because the first gas flow rate is small, the height of the air spring is slightly reduced, and the damping force of the adjustable damper is the preset basic damping force.
  • the pneumatic valve controls the air spring to a preset The first gas flow rate is inflated. Because the first gas flow rate is small, the height of the air spring is slightly increased.
  • the damping force of the adjustable damper is the preset basic damping force, so that the first connecting part is relative to the second connecting part. The positional relationship of the parts is kept within the first displacement threshold range, which improves comfort.
  • the positional relationship between the first connecting portion and the second connecting portion is between the second displacement threshold range (S21, S22) and the third displacement threshold range (S31, S32), and the pneumatic valve controls the air spring to inflate or
  • the air-driven damping force adjusting device controls the adjustable damper to output the first damping force, and the first damping force changes with the change of the displacement.
  • the first damping force includes (50N, 1500N), and the first damping force increases or decreases as the displacement changes.
  • the pneumatic valve controls the air spring to predict Set the second air flow to deflate, the height of the air spring is reduced, and at the same time, the first damping force output by the adjustable damper controlled by the air-driven damping force adjusting device gradually increases with the change of displacement.
  • the pneumatic valve controls the air spring to a preset second The air flow is deflated, the height of the air spring is reduced, and the first damping force output by the air-driven damping force adjusting device controls the adjustable damper to gradually decrease following the change of displacement; in addition, the first connecting portion is relative to the second connecting portion
  • the pneumatic valve controls the air spring to inflate at the preset second air flow rate, and the height of the air spring increases
  • the air-driven damping force adjusting device controls the first damping force output by the adjustable damper to gradually increase following the change of displacement; in the opposite movement process, that is, the positional relationship of the first connecting part relative to the second connecting
  • the second gas mass is greater than the first gas flow rate.
  • the pneumatic valve controls the air spring to inflate or deflate
  • the air-driven damping force adjusting device controls the output of the adjustable damper
  • the second damping force for example, the second damping force includes 3000N; wherein the second damping force is a damping force corresponding to the end impact protection coefficient, and the first damping force is located between the preset basic damping force and the second damping force.
  • the pneumatic valve controls the air spring to deflate at a preset third gas flow rate, the height of the air spring is reduced, and the air-driven damping force adjustment device controls the second damping force output by the adjustable damper;
  • the pneumatic valve controls the air spring to inflate at a preset third gas flow rate, the height of the air spring increases, and the air-driven damping force adjusting device controls the second damping force output by the adjustable damper.
  • it can be driving on a severely bumpy road, and the air spring and the adjustable
  • the damping force adjusting device controls its own air pressure to decrease within a preset time, so as not to change the output of the adjustable damper within the preset time. Damping force, realize the delay adjustment of the damping force of the adjustable damper.
  • a buffer period can be constructed during the transition from a severely bumpy road to a flat road, which reduces the discomfort that occurs when the high damping force is immediately changed to a low damping force, and further improves comfort.
  • the motion variable further includes the speed and acceleration of the first connecting part relative to the second connecting part, wherein the speed can pass through at least two temporally continuous periods of the first connecting part relative to the second connecting part.
  • the acceleration can be determined by at least two temporally continuous velocities of the first connecting portion relative to the second connecting portion.
  • the adjustable damper is controlled to output a third damping force, and the third damping force increases with the acceleration.
  • the third damping force increases as the acceleration decreases. For example, when driving on a washboard type road, the positional relationship between the first connecting part and the second connecting part changes very little, but the acceleration of the first connecting part relative to the second connecting part is relatively large.
  • control the adjustable damper to output a smaller third damping force to reduce the discomfort caused by the road surface excitation, so as to obtain better comfort.
  • the third damping force is less than the preset basic damping force 50N, for example, the third damping force includes (10N, 45N).
  • the method shown in FIG. 1 further includes: controlling the working stroke of the pneumatic valve to be shortened, extended, or kept unchanged through the height adjustment device, thereby controlling the air spring to inflate, deflate or neither inflate nor The deflation realizes the gear and memory adjustment of the positional relationship between the first connecting portion and the second connecting portion.
  • the height adjustment device may include the following three types.
  • the first height adjustment device includes an adjustment handle and a cable.
  • the adjustment handle is connected to the pneumatic valve through the cable. Specifically, the adjustment handle changes the operation of the pneumatic valve by controlling the length of the cable.
  • the second type of height adjustment device includes a motor drive device, which is connected to the pneumatic valve through a cable. Specifically, the motor drive device changes the working stroke of the pneumatic valve by controlling the length of the cable, and then controls the air spring to inflate or discharge.
  • the third type of height adjustment device includes a motor drive device.
  • the motor drive device is directly connected to the pneumatic valve.
  • the motor drive device directly changes the working stroke of the pneumatic valve or fixes it at a specific position, thereby controlling the air spring to inflate, deflate or neither inflate nor inflate. Without deflation, the height of the air spring is raised, lowered or fixed at a specific position to realize the gear and memory adjustment of the air spring height, thereby realizing the gear and memory of the positional relationship between the first connecting portion and the second connecting portion Adjustment; In addition, the suspension adjustment can be realized at a specific position through a pneumatic valve to improve comfort.
  • the working stroke of the pneumatic valve becomes shorter and controls the air spring to inflate
  • the working stroke of the pneumatic valve becomes longer and the air spring is controlled to deflate.
  • the length of the cable and the working stroke of the pneumatic valve are not further limited. The user can adjust the positional relationship between the first connecting portion and the second connecting portion through the height adjusting device according to actual needs, so as to meet the needs of different users.
  • the equilibrium position between the first connecting portion and the second connecting portion changes following the change of the positional relationship of the first connecting portion with respect to the second connecting portion, and a pneumatic valve is used to make The first connecting portion or the second connecting portion realizes suspension at an equilibrium position of the first connecting portion relative to the second connecting portion.
  • the height adjusting device adjusts the positional relationship between the first connecting portion and the second connecting portion to a specific position through the pneumatic valve
  • the working stroke of the pneumatic valve is shortened or extended while the pneumatic valve is continuously returned to position, thereby making The balance position of the pneumatic valve does not change relative to itself, but the balance position of the pneumatic valve changes continuously with respect to the first connection part or the second connection part, so that the balance position of the first connection part relative to the second connection part continuously occurs Change
  • the balance position of the pneumatic valve is adapted to the balance position of the first connecting part relative to the second connecting part.
  • the suspension system is a seat suspension system
  • the first connecting part includes the upper frame of the seat
  • the second connecting part includes the lower frame of the seat.
  • Xiao Ming sits on the seat and adjusts the height of the seat to 100mm, under the action of the pneumatic valve, the suspension position range of the seat at this time is (-10mm, +10mm); Xiaohong sits on the seat and adjusts the height of the seat to 80mm. Under the action of the pneumatic valve, At this time, the suspension position range of the seat is still (-10mm, +10mm). It can be seen that the equilibrium position of the first connection portion relative to the second connection portion changes following the change in the positional relationship of the first connection portion relative to the second connection portion, and the pneumatic valve makes the The first connecting portion or the second connecting portion realizes suspension at an equilibrium position of the first connecting portion relative to the second connecting portion.
  • the equilibrium position of the pneumatic valve is that the first connecting portion is relative to the second connecting portion The balance position of the department.
  • FIG. 3 shows a functional structure diagram of a system for adjusting height and damping force according to an embodiment of the present invention.
  • a system 100 for adjusting height and damping force is shown in FIG. It includes a first connecting portion 110, a second connecting portion 120, at least one pneumatic valve 130, an air spring 140, an adjustable damper 150 and a damping force adjusting device 160 for adjusting the damping force of the adjustable damper; a pneumatic valve 130, air
  • the spring 140, the adjustable damper 150 and the damping force adjusting device 160 are arranged between the first connecting portion 110 and the second connecting portion 120.
  • the pneumatic valve 130, the air spring 140, the adjustable damper 150 and the damping force adjusting device 160 are The position is adapted; the pneumatic valve 130 is respectively connected with the damping force adjusting device 160 and the air spring 140; specifically, the first gas output end of the pneumatic valve 130 is connected with the gas input end of the damping force adjusting device 160, and the second The gas output end is connected to the connection port of the air spring 140.
  • the pneumatic valve 130 has a linear structure.
  • the pneumatic valve 130 includes a driving rod and a valve body.
  • the driving rod makes a reciprocating linear motion in the valve body.
  • the driving rod is connected to the first connecting portion 110, and the valve body is connected to the second connecting portion 120.
  • the position of the pneumatic valve 130, the air spring 140, and the adjustable damper 150 are not further restricted in this embodiment, as long as the pneumatic valve 130 can collect the movement between the first connecting portion 110 and the second connecting portion 120.
  • the air spring 140 can provide support between the first connection part 110 and the second connection part 120 and change the positional relationship between the first connection part 110 and the second connection part 120.
  • the adjustable damper 150 can be the first connection part 110 and the second connection part 120.
  • the connecting portion 110 or the second connecting portion 120 only needs to provide a shock absorption effect.
  • the damping force adjusting device 160 includes a device for controlling the swing direction and the swing amplitude of the adjusting pin of the adjustable damper 150.
  • the first gas output end of the pneumatic valve 130 is connected to the gas input end of the damping force adjusting device 160 for adjusting the damping force of the adjustable damper 150, so that a gas flow connection can be generated between the pneumatic valve 130 and the damping force adjusting device 160, wherein, when the damping force adjusting device 160 is in communication with the pneumatic valve 130, the damping force adjusting device 160 is also in communication with the atmosphere, so as to realize that the pneumatic valve 130 pneumatically drives the damping force adjusting device 160 to perform corresponding operations, that is, the pneumatic valve 130 pneumatically drives the damping force adjusting device 160 to perform corresponding operations.
  • the driving damping force adjusting device 160 is connected to the air source and the atmosphere, and the adjustable damper 150 is controlled to output corresponding damping force; the second gas output end of the pneumatic valve 130 is connected to the connecting port of the air spring 140, so that the pneumatic valve 130 is connected to the air spring An air flow connection can be generated between the air springs 140, so that the air spring 140 is connected to the air source or the atmosphere, and the air spring 140 is inflated or deflated.
  • the second connecting portion 120 includes a chassis frame, that is, the pneumatic valve 130, the air spring 140, the adjustable damper 150 and the adjustable damper 150 are used to adjust the damping
  • the force damping force adjusting device 160 is arranged between the cab and the chassis frame.
  • the second connecting portion 120 includes wheels, that is, the pneumatic valve 130, the air spring 140, the adjustable damper 150 and the damping force used to adjust the damping force of the adjustable damper 150
  • the adjustment device 160 is arranged between the vehicle chassis and the wheels.
  • the second connecting portion 120 includes the lower frame of the seat, that is, the pneumatic valve 130, the air spring 140, the adjustable damper 150 and the adjustable damping
  • the damping force adjusting device 160 of the damping force of the actuator 150 is arranged between the upper frame of the seat and the lower frame of the seat.
  • the first connecting portion 110 includes the sliding horizontal axis of the seat scissors frame
  • the second connecting portion 120 includes the rotating pin shaft of the seat scissors frame, that is, the pneumatic valve 130 and the adjustable damper 150 are arranged on the seat scissors frame.
  • the air spring 140 and the damping force adjusting device 160 for adjusting the damping force of the adjustable damper 150 are arranged in corresponding positions between the sliding horizontal axis of the slidable shaft and the rotating pin of the seat scissors frame.
  • the pneumatic valve 130 is used to collect at least one movement variable of the first connecting portion 110 relative to the second connecting portion 120; the movement variable includes the positional relationship of the first connecting portion 110 relative to the second connecting portion 120, and the first connecting portion 110 is opposite to With respect to the speed of the second connecting portion 120, the acceleration of the first connecting portion 110 relative to the second connecting portion 120.
  • This embodiment does not further limit the motion variable.
  • the air spring 140 is controlled to inflate or deflate according to the collected motion variables and/or changes in motion variables to achieve height adjustment; and/or, the air-driven damping force adjusting device 160 controls the adjustable damper 150 to output corresponding damping force, Realize the adjustment of the damping force of the adjustable damper 150.
  • the change of the motion variable is determined by at least two temporally continuous motion variables of the first connecting portion 110 relative to the second connecting portion 120.
  • the pneumatic valve 130 collects the movement variable between the first connection part 110 and the second connection part 120, or after the pneumatic valve 130 collects the movement variable between the first connection part 110 and the second connection part 120, Or, after the pneumatic valve 130 collects the movement variable between the first connecting portion 110 and the second connecting portion 120 and the change of the movement variable, the gas flow inside the pneumatic valve 130 changes, due to the first gas output end of the pneumatic valve 130 It is connected to the gas input end of the damping force adjusting device 160 for adjusting the damping force of the adjustable damper 150.
  • the gas flow inside the pneumatic valve 130 changes to drive the gas flow inside the damping force adjusting device 160 to change, thereby triggering the damping
  • the force adjusting device 160 controls the swing direction and swing amplitude of the adjusting pin of the adjustable damper 150, so that the adjustable damper 150 outputs a damping force corresponding to the swing direction and swing amplitude, and realizes the damping force of the adjustable damper 150
  • the gas flow inside the pneumatic valve 130 changes at the same time the working stroke of the pneumatic valve 130 changes.
  • the pneumatic valve 130 Since the second gas output end of the pneumatic valve 130 is connected to the connection port of the air spring 140, the pneumatic valve 130 When the working stroke of the air spring changes, the pneumatic valve 130 and the air spring 140 can generate a gas flow connection, so that the air spring 140 is connected to the air source or the atmosphere, and the air spring 140 is inflated or deflated to achieve height adjustment.
  • the technical solution of this embodiment collects at least one movement variable of the first connecting portion relative to the second connecting portion through a pneumatic valve, and directly pneumatically drives the damping force adjusting device to adjust the damping force of the adjustable damper through the pneumatic valve.
  • the pneumatic valve directly controls the inflation or deflation of the air spring to adjust the height, and realizes the synchronous adjustment of the height and the damping force through the coordination of the mechanical mechanism, which is compared with the electronic control method in the prior art to achieve the height and damping force.
  • Synchronous adjustment improves the sensitivity of height adjustment and shock absorption adjustment, and further improves comfort; in addition, the technical solution of this embodiment eliminates the need for the driver to manually adjust the damping force and height during driving, so that the driver's attention is more concentrated , To a certain extent, can reduce the occurrence of traffic accidents.
  • the pneumatic valve 130 is specifically used to collect the positional relationship of the first connecting portion 110 relative to the second connecting portion 120; the positional relationship includes a vertical relationship and/ Or horizontal relationship; that is, the positional relationship includes the vertical relationship of the first connecting portion 110 with respect to the second connecting portion 120, or the horizontal relationship of the first connecting portion 110 with respect to the second connecting portion 120, or the first connecting
  • the vertical and horizontal relationship of the portion 110 relative to the second connecting portion 120 that is, not only the height and damping force can be adjusted according to the vertical relationship of the first connecting portion 110 relative to the second connecting portion 120, but also
  • the height and damping force can be adjusted according to the horizontal relationship between the first connecting portion 110 and the second connecting portion 120, and the height and the damping force can also be adjusted according to the vertical and horizontal relationship of the first connecting portion 110 with respect to the second connecting portion 120 at the same time. Damping force is adjusted.
  • the positional relationship of the first connecting portion 110 relative to the second connecting portion 120 is the adjusted target value, and the positional relationship is provided by the total working stroke of the pneumatic valve.
  • the position of the first connecting portion 110 relative to the second connecting portion 120 The relationship corresponds to the total working stroke of the pneumatic valve 130 according to a preset ratio.
  • the ratio of the positional relationship of the first connecting portion 110 relative to the second connecting portion 120 to the total working stroke of the pneumatic valve 130 is 1:1: 2 or 1:3 etc.
  • the ratio of the positional relationship of the first connecting portion 110 relative to the second connecting portion 120 to the total working stroke of the pneumatic valve 130 is not further limited.
  • the total working stroke includes the total working stroke balance position S00 and at least three displacement threshold ranges, where the second displacement threshold range (S21, S22) includes the first displacement threshold range (S11, S12) and the third displacement threshold range (S31, S32) includes the second displacement threshold range (S21, S22), for example, the first displacement threshold range includes (-5mm, +5mm), the second displacement threshold range includes (-20mm, +20mm), and the third displacement threshold range includes (-25mm, +25mm).
  • different displacement threshold ranges can be set according to actual needs, and this embodiment does not further limit the displacement threshold range.
  • Adjusting the height and damping force according to the position relationship mainly includes the following modes:
  • the positional relationship between the first connecting portion 110 and the second connecting portion 120 is within the first displacement threshold range (S11, S12), and the pneumatic valve 130 is specifically used to neither control the inflation or deflation of the air spring 140 ,
  • the air-driven damping force adjusting device 160 controls the adjustable damper 150 to output the corresponding damping force.
  • the damping force of the adjustable damper 150 is the preset basic damping force; in this mode, it can be driving on a flat road , The height and damping force are not adjusted, so that the damping force of the adjustable damper is the preset basic damping force, generally a small damping force, for example, the preset basic damping force includes 50 Newtons (N), air
  • the height of the spring is the preset height.
  • the positional relationship of the first connecting portion 110 relative to the second connecting portion 120 is between the first displacement threshold range (S11, S12) and the second displacement threshold range (S21, S22).
  • the pneumatic valve 130 is specifically It is used to control the inflation or deflation of the air spring 140, but does not drive the damping force adjusting device 160 to control the adjustable damper 150 to output a corresponding damping force, and the damping force of the adjustable damper 150 is a preset damping force.
  • the pneumatic valve 130 is specifically used
  • the air spring 140 is controlled to deflate at the preset first gas flow rate
  • the height of the air spring 140 is reduced slightly because the first gas flow rate is small
  • the damping force of the adjustable damper 150 is the preset basic damping force.
  • the pneumatic valve 130 is specifically used for The air spring 140 is controlled to be inflated at the preset first gas flow rate. Because the first gas flow rate is small, the height of the air spring 140 increases slightly; at the same time, the damping force of the adjustable damper 150 is the preset basic damping force, so The positional relationship of the first connecting portion with respect to the second connecting portion is maintained within the first displacement threshold range, and the comfort is improved.
  • the positional relationship of the first connecting portion 110 relative to the second connecting portion 120 is between the second displacement threshold range (S21, S22) and the third displacement threshold range (S31, S32).
  • the pneumatic valve 130 is specifically It is used to control the inflation or deflation of the air spring 140, while the air-driven damping force adjusting device 160 controls the adjustable damper 150 to output a first damping force, and the first damping force changes with changes in displacement.
  • the first damping force includes (50N, 1500N), and the first damping force increases or decreases as the displacement changes.
  • the pneumatic valve 130 specifically Used to control the air spring 140 to deflate at the preset second air flow rate, the height of the air spring 140 is reduced, and the air-driven damping force adjusting device 160 controls the first damping force output by the adjustable damper 150 to gradually follow the change of displacement Increase, in the reverse movement process, that is, the positional relationship of the first connecting portion 110 relative to the second connecting portion 120 from the upper limit S32 of the third displacement threshold range to the upper limit S22 of the second displacement threshold range
  • the pneumatic valve 130 is specifically used to control the air spring 140 to deflate at a preset second gas flow rate.
  • the height of the air spring 140 is reduced.
  • the air-driven damping force adjusting device 160 controls the first damping output of the adjustable damper 150.
  • the force gradually decreases with the change of displacement; in addition, the positional relationship of the first connecting portion 110 with respect to the second connecting portion 120 ranges from the lower limit S21 of the second displacement threshold range to the lower limit S31 of the third displacement threshold range.
  • the pneumatic valve 130 is specifically used to control the air spring 140 to inflate at a preset second gas flow rate, the height of the air spring 140 increases, and the air-driven damping force adjusting device 160 controls the first output of the adjustable damper 150
  • the damping force gradually increases with the change of displacement; in the reverse movement process, that is, the positional relationship of the first connecting portion 110 with respect to the second connecting portion 120 is from the lower limit S31 of the third displacement threshold range to the second displacement threshold range
  • the pneumatic valve 130 is specifically used to control the air spring 140 to inflate at a preset second air flow, the height of the air spring 140 increases, and the air-driven damping force adjusting device 160 controls the adjustable damping
  • the first damping force output by the device 150 gradually decreases following the change of the displacement.
  • the second gas mass is greater than the first gas flow rate.
  • the positional relationship of the first connecting portion 110 relative to the second connecting portion 120 exceeds the third displacement threshold range, and the pneumatic valve 130 is specifically used to control the inflation or deflation of the air spring 140, and the pneumatic drive damping force
  • the adjusting device 160 controls the adjustable damper 150 to output a second damping force.
  • the second damping force includes 3000 Newtons (N); where the second damping force is a damping force corresponding to the end impact protection coefficient, and the first damping force is located at Between the preset basic damping force and the second damping force. In this case, you can drive on a severely bumpy road, and adjust the air springs and adjustable dampers synchronously according to the road conditions to avoid rigid contact between the first connecting part and the second connecting part and improve comfort.
  • the pneumatic valve 130 is specifically used to control the air spring 140 to deflate at a preset third gas flow rate, the height of the air spring 140 is reduced, and the air-driven damping force adjusting device 160 is controlled and adjustable The second damping force output by the damper 150; in addition, the positional relationship of the first connecting portion 110 relative to the second connecting portion 120 exceeds the lower limit of the third displacement threshold range, for example, the first connecting portion 110 relative to The positional relationship of the second connecting portion 120 is within the displacement threshold range (- ⁇ , -25mm,), the pneumatic valve 130 is specifically used to control the air spring 140 to inflate at a preset third gas flow rate, and the height of the air spring 140 increases At the same time, the air-driven damping force
  • the damping force adjusting device 160 is used to control its own air pressure to decrease within a preset time after the adjustable damper 150 outputs the second damping force, so that it does not change within the preset time.
  • the damping force output by the adjustable damper 150 realizes the delay adjustment of the damping force of the adjustable damper 150.
  • a buffer period can be constructed during the transition from a severely bumpy road to a flat road, which reduces the discomfort that occurs when the high damping force is immediately changed to a low damping force, and further improves comfort.
  • the pneumatic valve 130 is also specifically used to collect the speed and/or acceleration of the first connecting part 110 relative to the second connecting part 120, wherein the speed can pass through the first connecting part. 110 relative to the second connecting portion 120 at least two consecutive positions in time to determine, the acceleration can be determined by the first connecting portion 110 relative to the second connecting portion 120 in at least two consecutive positions in time The speed to determine.
  • the adjustable damper 150 is controlled to output a third damping force, the third damping force Decrease as the acceleration increases, or the third damping force increases as the acceleration decreases.
  • the positional relationship between the first connecting portion and the second connecting portion changes little, but the acceleration of the first connecting portion 110 relative to the second connecting portion 120 is relatively large.
  • the adjustable damper 150 is controlled to output a smaller third damping force to reduce the discomfort caused by the road surface excitation, so as to obtain better comfort.
  • the third damping force is less than the preset basic damping force 50N, for example, the third damping force includes (10N, 45N).
  • the system shown in FIG. 3 further includes: controlling the working stroke of the pneumatic valve 130 to be shortened, extended or kept unchanged through the height adjustment device 170, so as to control the air spring 140 to inflate, deflate or neither It is inflated and not deflated, which realizes the gear and memory adjustment of the positional relationship of the first connecting portion 110 relative to the second connecting portion 120.
  • the height adjusting device 170 may include the following three types.
  • the first type of height adjusting device 170 includes an adjusting handle and a cable.
  • the adjusting handle is connected to the pneumatic valve 130 through the cable. Specifically, the adjusting handle changes the pneumatic valve by controlling the length of the cable.
  • the working stroke of the valve 130 controls the inflation or deflation of the air spring 140 to realize the gear adjustment of the height of the air spring 140, thereby realizing the gear adjustment of the positional relationship of the first connecting portion 110 relative to the second connecting portion 120;
  • the adjustment handle fixes the length of the cable, so that the working stroke of the pneumatic valve 130 remains unchanged, so that the air spring 140 is neither inflated nor deflated, so that the height of the air spring 140 can be adjusted in memory and the first connecting portion 110 is relative to each other. Memory adjustment of the positional relationship of the second connecting portion 120;
  • the pneumatic valve 130 is used to realize the suspension adjustment at a specific position to improve comfort.
  • the second type of height adjustment device 170 includes a motor drive device, which is connected to the pneumatic valve 130 through a cable.
  • the motor drive device changes the working stroke of the pneumatic valve 130 by controlling the length of the cable, thereby controlling the air spring
  • the 140 is inflated or deflated to realize the gear adjustment of the height of the air spring 140, thereby realizing the gear adjustment of the position relationship of the first connecting portion 110 relative to the second connecting portion 120; at the same time, the length of the cable is fixed by the motor drive device,
  • the working stroke of the pneumatic valve 130 remains unchanged, so that the air spring 140 is neither inflated nor deflated, so that the memory adjustment of the height of the air spring 140 is realized, thereby realizing the positional relationship between the first connecting portion 110 and the second connecting portion 120
  • the pneumatic valve 130 is used to achieve suspension adjustment at a specific position to improve comfort.
  • the third type of height adjustment device 170 includes a motor drive device, which is directly connected to the pneumatic valve 130.
  • the motor drive device directly changes the working stroke of the pneumatic valve 130 or fixes it at a specific position, thereby controlling the air spring 140 to inflate, deflate or It is neither inflated nor deflated, so that the height of the air spring 140 is raised, lowered or fixed at a specific position to realize the gear and memory adjustment of the height of the air spring 140, so that the first connecting portion 110 is relative to the second connecting portion 120.
  • the position relationship of the gear and memory adjustment; in addition, the pneumatic valve 130 realizes the suspension adjustment at a specific position, which improves the comfort.
  • the embodiment does not further limit the length of the cable and the working stroke of the pneumatic valve 130.
  • the user can adjust the positional relationship of the first connecting portion 110 with respect to the second connecting portion 120 according to actual needs through the height adjusting device 170 to meet the needs of different users.
  • the equilibrium position between the first connecting portion 110 and the second connecting portion 120 changes following the change of the positional relationship of the first connecting portion 110 with respect to the second connecting portion 120, and the pneumatic valve 130, for enabling the first connecting portion 110 or the second connecting portion 120 to float at an equilibrium position of the first connecting portion 110 relative to the second connecting portion 120.
  • the height adjusting device 170 adjusts the positional relationship between the first connecting portion 110 and the second connecting portion 120 to a specific position through the pneumatic valve 130
  • the working stroke of the pneumatic valve 130 is shortened or extended while the pneumatic valve 130 Keep returning to the position, so that the balance position of the pneumatic valve 130 does not change relative to itself, but the balance position of the pneumatic valve 130 changes continuously relative to the first connecting portion 110 or the second connecting portion 120, so that the first connecting portion 110
  • the balance position relative to the second connecting portion 120 is constantly changing, and the balance position of the pneumatic valve 130 is adapted to the balance position of the first connecting portion 110 relative to the second connecting portion 120.
  • the suspension system is a seat suspension system
  • the first connecting portion 110 includes the upper frame of the seat
  • the second connecting portion 120 includes the lower frame of the seat. Adjust to 100mm.
  • the suspension position range of the seat is (-10mm, +10mm); Xiaohong sits on the seat and adjusts the height of the seat to 80mm. Under the action of, the suspension position range of the seat is still (-10mm, +10mm) at this time.
  • the equilibrium position of the first connection portion 110 relative to the second connection portion 120 changes following the change in the positional relationship of the first connection portion 110 relative to the second connection portion 120, and
  • the pneumatic valve 130 enables the first connecting portion 110 or the second connecting portion 120 to float at the equilibrium position of the first connecting portion 110 relative to the second connecting portion 120.
  • the equilibrium position of the pneumatic valve 130 is the first connecting portion 110 Relative to the equilibrium position of the second connecting portion 120.
  • FIG. 4 shows a schematic diagram of the functional structure of a damping force adjusting device according to an embodiment of the present invention.
  • the damping force adjusting device 140 includes a gas compression device 161 and The cable control device 162 driven by the gas compression device 161 is connected to the adjustable damper 150.
  • the cable control device 162 is connected to the adjusting pin of the adjustable damper 150.
  • the cable control device 162 has a drive adjustable
  • the adjustment pin of the damper 150 is a return spring that reciprocates.
  • the pneumatic valve 130 changes its internal gas flow according to the collected motion variables and/or changes in motion variables to change the state of the gas and the frequency of the change of the state of the gas inside the gas compression device 161, such as air pressure and air pressure.
  • the frequency of the change changes the stroke size of the gas compression device 161.
  • the driving force of the cable control device 162 becomes larger; when the stroke of the gas compression device 161 becomes smaller, the stroke of the cable control device 162 becomes larger.
  • the driving force becomes smaller. Since the return force of the cable control device 162 is provided by the return spring, the return force of the cable control device 162 and the drive force of the cable control device 162 become linear without changing the return spring. relationship.
  • the matching relationship between the driving force and the restoring force of the cable control device 162 can be adjusted, thereby driving the adjustment pin of the adjustable damper 150 to reciprocate, that is, the driving is adjustable
  • the swing direction and swing amplitude of the adjustment pin of the damper control the adjustable damper to output a corresponding damping force, so as to realize the adaptive adjustment of the damping force of the adjustable damper 150.
  • FIG. 5 shows a schematic diagram of the functional structure of another damping force adjusting device according to an embodiment of the present invention.
  • the damping force adjusting device 140 includes a pneumatic valve 130.
  • the driven gas compression device 163 is connected to the adjustable damper 150; specifically, the driving rod of the gas compression device 163 is connected to the adjustment pin of the adjustable damper 150;
  • the pneumatic valve 130 changes its internal gas flow according to the collected movement variables and/or changes in the movement variables. Since the pneumatic valve 130 is connected to the gas compression device 163, the gas flow inside the gas compression device 163 follows the pneumatic valve 130 The internal gas flow changes, which causes the stroke of the gas compression device 163 to change, that is, the relative displacement between the drive rod of the gas compression device 163 and the cylinder tube changes, so as to achieve the purpose of adjusting the stroke size of the gas compression device 163.
  • the driving rod of the gas compression device 163 is connected to the adjustment pin of the adjustable damper 150, so when the pneumatic valve 130 drives the driving rod of the gas compression device 163 to reciprocate in the cylinder, the driving rod of the gas compression device 163 is adjustable.
  • the adjustment pin of the damper 150 reciprocates to a corresponding amplitude, and controls the adjustable damper to output a corresponding damping force, so as to realize the adaptive adjustment of the damping force of the adjustable damper 150.
  • the functional structure and working principle of the gas compression device 163 shown in FIG. 5 and the gas compression device 161 shown in FIG. 4 are the same, and both are mainly composed of a drive rod and a cylinder.
  • the functional structure and working principle of the gas compression device 163 and the gas compression device 161 may also be different.
  • FIG. 6 shows a schematic diagram of the functional structure of another damping force adjusting device according to an embodiment of the present invention.
  • the damping force adjusting device 140 includes a proportional valve 164,
  • the proportional valve 164 is connected to the valve port of the damping fluid flow chamber of the adjustable damper 150; the pneumatic valve 130 changes its internal gas flow according to the collected motion variable and/or the change of the motion variable to change the proportional valve 164 by pneumatic drive.
  • the working stroke of the adjustable damper 150 is thus to control the diameter of the valve port of the damping fluid flow chamber of the adjustable damper 150. Since the diameter of the valve port of the damping fluid flow chamber is different, the flow rate and/or flow rate of the damping fluid are different.
  • the purpose of adjusting the damping fluid flow rate, damping fluid flow rate, or damping fluid flow rate and flow velocity of the adjustable damper 150 is realized, and finally the adjustable damper is controlled to output corresponding damping force, and the damping force of the adjustable damper 150 is adaptively adjusted. .
  • the system for adjusting the height of the suspension system can be applied to the field of seat suspension systems, vehicle chassis suspension systems, and cab suspension systems. This embodiment does not apply to the application fields of the system for adjusting the height of the suspension system. Further restrictions.
  • the technical solution of this embodiment collects at least one movement variable of the first connecting portion relative to the second connecting portion through a pneumatic valve, and adjusts the damping force of the damper through the pneumatic valve direct pneumatic drive adjustment device.
  • the pneumatic valve directly controls the air spring to inflate or deflate for height adjustment, and realizes the synchronous adjustment of height and damping force through the coordination of mechanical mechanisms.
  • the height and damping force are synchronously adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

一种调节高度和阻尼力的方法及系统,将气动阀(130)、空气弹簧(140)、可调阻尼器(150)和用于调节可调阻尼器(150)阻尼力的阻尼力调节装置(160)布置在第一连接部(110)与第二连接部(120)之间;气动阀(130)、空气弹簧(140)、可调阻尼器(150)和阻尼力调节装置(160)的位置相适应;气动阀(130)分别与阻尼力调节装置(160)和空气弹簧(140)连接;气动阀(130)采集第一连接部(110)相对于第二连接部(120)的至少一个运动变量;同时气动阀(130)根据采集到的运动变量和/或运动变量的变化控制空气弹簧(140)充气或者放气,实现高度调节;和/或,气驱动阻尼力调节装置(160)控制可调阻尼器(150)输出相应的阻尼力,实现对可调阻尼器(150)阻尼力大小的调节,提升了高度调节和阻尼力调节的灵敏度。

Description

一种调节高度和阻尼力的方法及系统
相关申请的交叉参考
本申请要求于2019年10月18日提交中国专利局、申请号为201910991448.7、名称为“一种调节高度和阻尼力的方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及减震器领域,具体涉及一种调节高度和阻尼力的方法及系统。
背景技术
现有悬架系统主要包括高度调节和阻尼力调节两个控制系统,这两个控制系统是相互独立的体系,分别具备相应的控制机构。在手动调节方式中,需要同时按压两个按钮实现两个控制系统的同步调节,操作不便。在电控方式中,比较常用的是基于CDC阻尼器(CDC,Continuous Damping Control)的悬架控制系统,该悬架控制系统首先利用传感器采集信息,并将采集到的信息发送至电子控制单元,电子控制单元同时计算出空气弹簧气囊内的空气压力和阻尼器的阻尼力,并将计算出的控制信号同时发送至空气弹簧和CDC阻尼器,控制空气弹簧和CDC阻尼器同时进行相应操作,从而实现悬架系统的高度调节和减震调节。虽然这种悬架控制系统可以提升悬架系统的稳定性和舒适性,但是该悬架控制系统中的电子元件在实际应用过程中易受到安装位置的限制,使得控制精度不够精确且安装维护不便;另外,电子元件在线路布局上容易受到悬架系统自身空间的限制,且该悬架控制系统的成本较高,使得该悬架控制系统没有得到广泛的应用。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的一种调节高度和阻尼力的方法及系统。
依据本发明的一个方面,提供了一种调节高度和阻尼力的方法,所述方法包括:将气动阀、空气弹簧、可调阻尼器和用于调节所述可调阻尼器阻尼力的阻尼力调节装置布置在第一连接部与第二连接部之间;所述气动阀、所述空气弹簧、所述可调阻尼器和所述阻尼力调节装置的位置相适应;所述气动阀分别与所述阻尼力调节装置和所述空气弹簧连接;
所述气动阀采集所述第一连接部相对于所述第二连接部的至少一个运动变量;
同时所述气动阀根据采集到的所述运动变量和/或所述运动变量的变化控制所述空气弹簧充气或者放气,实现高度调节;和/或,气驱动所述阻尼力调节装置控制所述可调阻尼器输出相应的阻尼力,实现对所述可调阻尼器阻尼力大小的调节。
依据本发明的另一个方面,提供了一种调节高度和阻尼力的系统,所述系统包括第一连接部、第二连接部、至少一个气动阀、空气弹簧、可调阻尼器和用于调节所述可调阻尼器阻尼力的阻尼力调节装置;所述气动阀、所述空气弹簧、所述可调阻尼器和所述阻尼力调节装置布置在第一连接部和第二连接部之间,所述气动阀、所述空气弹簧、所述可调阻尼器和所述阻尼力调节装置的位置相适应;所述气动阀分别与所述阻尼力调节装置和所述空气弹簧连接;
所述气动阀,用于采集所述第一连接部相对于所述第二连接部的至少一个运动变量;同时根据采集到的所述运动变量和/或所述运动变量的变化控制所述空气弹簧充气或者放气,实现高度调节;和/或,气驱动所述阻尼力调节装置控制所述可调阻尼器输出相应的阻尼力,实现对所述可调阻尼器阻尼力大小的调节。
本发明的有益效果是:本发明的技术方案通过气动阀采集第一连接部相对于第二连接部的至少一个运动变量,并通过气动阀直接气驱动调节装置对阻尼器阻尼力的大小进行调节,同时通过气动阀直接控制空气弹簧充气或者放气进行高度调节,通过机械机构的协同配合实现高度和阻尼力的同步调节,相比于现有技术中通过电控方式实现高度和阻尼力同步调节,提升了高度调节和减震调节的灵敏度,进一步提升舒适性;另外,本发明的技术方案使得驾驶员在行驶过程中无需手动调节阻尼力和高度,使得驾驶员的注意力更加集中,在一定程度上可以降低交通事故的发生。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的, 而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了根据本发明一个实施例中的一种调节高度和阻尼力的方法的流程图;
图2示出了根据本发明一个实施例中第一连接部相对于所述第二连接部的位置关系的示意图;
图3示出了根据本发明一个实施例中的一种调节高度和阻尼力的系统的功能结构示意图;
图4示出了根据本发明一个实施例中的一种调节装置的功能结构示意图;
图5示出了根据本发明一个实施例中的另一种调节装置的功能结构示意图;
图6示出了根据本发明一个实施例中的再一种调节装置的功能结构示意图;
附图说明:S00、总工作行程平衡位置;S11、第一位移阈值范围的下限值;S12、第一位移阈值范围的上限值;S21、第二位移阈值范围的下限值;S22、第二位移阈值范围的上限值;S31、第三位移阈值范围的下限值;S32、第三位移阈值范围的上限值;100、调节阻尼器的阻尼力的系统;110、第一连接部;120、第二连接部;130、气动阀;140、空气弹簧;150、可调阻尼器;160、阻尼力调节装置;170、高度调节装置;161、气体压缩装置;162、拉线控制装置;163、气体压缩装置;164、比例阀。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
图1示出了根据本发明一个实施例中的一种调节高度和阻尼力的方法的流程图,如图1所示,调节高度和阻尼力的方法包括:
步骤S110中,将气动阀、空气弹簧、可调阻尼器和用于调节该可调阻尼器阻尼力的阻尼力调节装置布置在第一连接部与第二连接部之间;气动阀、空气弹簧、可调阻尼器和阻尼力调节装置的位置相适应;气动阀分别与阻尼力调节装置和空气弹簧连接,具体地,气动阀的第一气体输出端与阻尼力调节装置的气体输入端连接,气动阀的第二气体输出端与空气弹簧的连接口连 接。
在本步骤中,气动阀为线性结构,该气动阀包括驱动杆和阀体,驱动杆在阀体内做往复直线式运动,驱动杆与第一连接部连接,阀体与第二连接部连接。需要说明的是,本实施例对气动阀、空气弹簧和可调阻尼器的位置不作进一步的限定,只要气动阀能够采集第一连接部和第二连接部之间的运动变量,空气弹簧能够为第一连接部和第二连接部之间提供支撑并改变第一连接部与第二连接部之间的位置关系,可调阻尼器能够为第一连接部或第二连接部提供减震效果即可。阻尼力调节装置包括控制可调阻尼器的调节销的摆动方向和摆动幅度大小的装置。气动阀的第一气体输出端与用于调节可调阻尼器阻尼力的阻尼力调节装置的气体输入端连接,使得气动阀与阻尼力调节装置之间能够产生气体流动连接,其中,阻尼力调节装置在与气动阀连通的过程中,该阻尼力调节装置也与大气连通,从而实现气动阀气驱动阻尼力调节装置执行相应操作,即,气动阀气驱动阻尼力调节装置与气源和大气连接,控制可调阻尼器输出相应的阻尼力;气动阀的第二气体输出端与空气弹簧的连接口连接,使得气动阀与空气弹簧之间能够产生气体流动连接,从而使得空气弹簧与气源或者大气连接,进而实现空气弹簧充气或者放气。
另外,若第一连接部包括驾驶室,则第二连接部包括底盘车架,即,将气动阀、空气弹簧、可调阻尼器和用于调节该可调阻尼器阻尼力的阻尼力调节装置布置在驾驶室和底盘车架之间。若第一连接部包括车辆底盘,则第二连接部包括车轮,即,将气动阀、空气弹簧、可调阻尼器和用于调节该可调阻尼器阻尼力的阻尼力调节装置布置在车辆底盘和车轮之间。若第一连接部包括座椅的上框架,则第二连接部包括座椅的下框架,即,将气动阀、空气弹簧、可调阻尼器和用于调节该可调阻尼器阻尼力的阻尼力调节装置布置在座椅的上框架和座椅的下框架之间。若第一连接部包括座椅剪刀架的滑动横轴,则第二连接部包括座椅剪刀架的旋转销轴,即,将气动阀和可调阻尼器布置在座椅剪刀架的滑动横轴和座椅剪刀架的旋转销轴之间,同时将空气弹簧和用于调节该可调阻尼器阻尼力的阻尼力调节装置布置在相应位置。
步骤S120中,气动阀采集第一连接部相对于第二连接部的至少一个运动变量;
在本步骤中,运动变量包括第一连接部相对于第二连接部的位置关系,第一连接部相对于第二连接部的速度,第一连接部相对于第二连接部的加速度。本实施例对运动变量不作进一步的限定。
步骤S130中,同时气动阀根据采集到的运动变量和/或运动变量的变化 控制空气弹簧充气或者放气,实现高度调节;和/或,气驱动阻尼力调节装置控制可调阻尼器输出相应的阻尼力,实现对可调阻尼器阻尼力大小的调节。
在本步骤中,运动变量的变化通过第一连接部相对于第二连接部的至少两个时间上连续的运动变量来确定。气动阀采集到第一连接部和第二连接部之间的运动变量后,或者,气动阀采集到第一连接部和第二连接部之间的运动变量的变化后,或者,气动阀采集到第一连接部和第二连接部之间的运动变量以及运动变量的变化后,气动阀内部的气体流量发生变化,由于气动阀的第一气体输出端与用于调节可调阻尼器阻尼力的阻尼力调节装置的气体输入端连接,因此,气动阀内部的气体流量变化驱动阻尼力调节装置的内部的气体流量发生变化,从而触发阻尼力调节装置控制可调阻尼器的调节销的摆动方向和摆动幅度的大小,使得可调阻尼器输出与摆动方向和摆动幅度对应的阻尼力,实现可调阻尼器的阻尼力大小的可调节;另外,气动阀内部的气体流量发生变化的同时气动阀的工作行程发生变化,由于气动阀的第二气体输出端与空气弹簧的连接口连接,因此,气动阀的工作行程发生变化时,气动阀与空气弹簧能够产生气体流动连接,从而使得空气弹簧与气源或者大气连接,进而实现空气弹簧充气或者放气,实现高度调节。
由上可知,本实施例的技术方案通过气动阀采集第一连接部相对于第二连接部的至少一个运动变量,并通过气动阀直接气驱动阻尼力调节装置对可调阻尼器阻尼力的大小进行调节,同时通过气动阀直接控制空气弹簧充气或者放气进行高度调节,通过机械机构的协同配合实现高度和阻尼力的同步调节,相比于现有技术中通过电控方式实现高度和阻尼力同步调节,提升了高度调节和减震调节的灵敏度,进一步提升舒适性;另外,本实施例的技术方案使得驾驶员在行驶过程中无需手动调节阻尼力和高度,使得驾驶员的注意力更加集中,在一定程度上可以降低交通事故的发生。
需要进一步说明的是,本实施例中的可调阻尼器包括CDC阻尼器和PDC阻尼器(PDC,Pneumatic Damping Control)等,本实施例对可调阻尼器的类型不作进一步限定,只需可调阻尼器的阻尼力可调即可。另外,上述内容仅对可调阻尼器的阻尼力调节装置的结构进行列举说明,其他的只要能够对可调阻尼器的阻尼力进行调节的调节装置均在本实施例的保护范围之内。
在本发明的一些实施例中,图2示出了根据本发明一个实施例中第一连接部相对于第二连接部的位置关系的示意图,如图2所示,运动变量包括第一连接部相对于第二连接部的位置关系;该位置关系包括第一连接部相对于第二连接部的竖直关系,或者,第一连接部相对于第二连接部的水平关系, 或者,第一连接部相对于第二连接部的竖直关系和水平关系;也就是说,不仅可以根据第一连接部相对于第二连接部的竖直关系对高度和阻尼力进行调节,而且可以根据第一连接部相对于第二连接部的水平关系对高度和阻尼力进行调节,还可以同时根据第一连接部相对于第二连接部的竖直关系和水平关系对高度和阻尼力进行调节。
第一连接部相对于第二连接部的位置关系为调整的目标值,该位置关系由气动阀的总工作行程提供,优选地,第一连接部相对于第二连接部的位置关系按照预设比例与气动阀的总工作行程相对应,例如,第一连接部相对于第二连接部的位置关系与气动阀的总工作行程的比例为1:1、1:2或者1:3等。本实施例对第一连接部相对于第二连接部的位置关系与气动阀的总工作行程的比例不作进一步限定。总工作行程包括总工作行程平衡位置S00和至少三个位移阈值范围,其中,第二位移阈值范围(S21,S22)包含第一位移阈值范围(S11,S12),第三位移阈值范围(S31,S32)包含第二位移阈值范围(S21,S22),例如,第一位移阈值范围包括(-5mm,+5mm),第二位移阈值范围包括(-20mm,+20mm),第三位移阈值范围包括(-25mm,+25mm)。在实际应用中,可以根据实际需要设置不同的位移阈值范围,本实施例对位移阈值范围不作进一步限定。
根据位置关系对高度和阻尼力进行调节主要包括以下几种模式:
第一种模式,第一连接部相对于第二连接部的位置关系在第一位移阈值范围(S11,S12)内,气动阀既不控制空气弹簧充气或者放气,也不气驱动阻尼力调节装置控制可调阻尼器输出相应的阻尼力,可调阻尼器的阻尼力为预设的基本阻尼力;这种模式下,可以是在平坦路面上行驶,对高度和阻尼力均不进行调节,使得可调阻尼器的阻尼力为预设的基本阻尼力,一般为较小的阻尼力,例如预设的基本阻尼力包括50牛顿(N),空气弹簧的高度为预设的高度。
第二种模式,第一连接部相对于第二连接部的位置关系在第一位移阈值范围(S11,S12)与第二位移阈值范围(S21,S22)之间,气动阀控制空气弹簧充气或者放气,但不气驱动阻尼力调节装置控制可调阻尼器输出相应的阻尼力,可调阻尼器的阻尼力为预设的阻尼力。
具体地,第一连接部相对于第二连接部的位置关系从第一位移阈值范围的上限值S12到第二位移阈值范围的上限值S22的过程中,气动阀控制空气弹簧以预设的第一气体流量放气,由于第一气体流量较小,空气弹簧的高度小幅度降低,同时可调阻尼器的阻尼力为预设的基本阻尼力。另外,第一连 接部相对于第二连接部的位置关系从第一位移阈值范围的下限值S11到第二位移阈值范围的下限值S21的过程中,气动阀控制空气弹簧以预设的第一气体流量充气,由于第一气体流量较小,空气弹簧的高度小幅度升高;同时可调阻尼器的阻尼力为预设的基本阻尼力,从而使得第一连接部相对于第二连接部的位置关系保持在第一位移阈值范围内,提升舒适性。
第三种模式,第一连接部相对于第二连接部的位置关系在第二位移阈值范围(S21,S22)与第三位移阈值范围(S31,S32)之间,气动阀控制空气弹簧充气或者放气,同时气驱动阻尼力调节装置控制可调阻尼器输出第一阻尼力,第一阻尼力跟随位移的变化而变化。例如,第一阻尼力包括(50N,1500N),第一阻尼力跟随位移的变化而增加或者减小。
具体地,第一连接部相对于第二连接部的位置关系从第二位移阈值范围的上限值S22到第三位移阈值范围的上限值S32的运动过程中,气动阀控制空气弹簧以预设的第二气体流量放气,空气弹簧的高度降低,同时气驱动阻尼力调节装置控制可调阻尼器输出的第一阻尼力跟随位移的变化而逐渐增加,在相反运动过程中,即,第一连接部相对于第二连接部的位置关系从第三位移阈值范围的上限值S32到第二位移阈值范围的上限值S22的运动过程中,气动阀控制空气弹簧以预设的第二气体流量放气,空气弹簧的高度降低,同时气驱动阻尼力调节装置控制可调阻尼器输出的第一阻尼力跟随位移的变化而逐渐减小;另外,第一连接部相对于第二连接部的位置关系从第二位移阈值范围的下限值S21到第三位移阈值范围的下限值S31的过程中,气动阀控制空气弹簧以预设的第二气体流量充气,空气弹簧的高度升高,同时气驱动阻尼力调节装置控制可调阻尼器输出的第一阻尼力跟随位移的变化而逐渐增加;在相反运动过程中,即,第一连接部相对于第二连接部的位置关系从第三位移阈值范围的下限值S31到第二位移阈值范围的下限值S21的过程中,气动阀控制空气弹簧以预设的第二气体流量充气,空气弹簧的高度升高,同时气驱动阻尼力调节装置控制可调阻尼器输出的第一阻尼力跟随位移的变化而逐渐减小。其中,第二气体质量大于第一气体流量。这种模式下,可以是在崎岖路面上行驶,根据路面情况对空气弹簧和可调阻尼器进行同步调节,减小振动幅度,降低崎岖路面产生的不适感,以使得舒适性达到最佳。
第四种模式,第一连接部相对于第二连接部的位置关系超出所述第三位移阈值范围,气动阀控制空气弹簧充气或者放气,同时气驱动阻尼力调节装置控制可调阻尼器输出第二阻尼力,例如,第二阻尼力包括3000N;其中,第二阻尼力为与末端冲击保护系数对应的阻尼力,第一阻尼力位于预设的基 本阻尼力与第二阻尼力之间。
具体地,第一连接部相对于第二连接部的位置关系超出第三位移阈值范围的上限值的过程中,例如,第一连接部相对于第二连接部的位置关系在位移阈值范围(+25mm,+∞)内,气动阀控制空气弹簧以预设的第三气体流量放气,空气弹簧的高度降低,同时气驱动阻尼力调节装置控制可调阻尼器输出的第二阻尼力;另外,第一连接部相对于第二连接部的位置关系超出第三位移阈值范围的下限值的过程中,例如,第一连接部相对于第二连接部的位置关系在位移阈值范围(-∞,-25mm,)内,气动阀控制空气弹簧以预设的第三气体流量充气,空气弹簧的高度升高,同时气驱动阻尼力调节装置控制可调阻尼器输出的第二阻尼力。这种情况下,可以是在剧烈颠簸的路面上行驶,根据路面情况对空气弹簧和可调阻尼器进行同步调节,避免第一连接部与第二连接部刚性接触,提升舒适性。
在本发明的一些实施例中,可调阻尼器输出第二阻尼力后,阻尼力调节装置控制自身的气压在预设时间内变小,从而在预设时间内不改变可调阻尼器输出的阻尼力,实现可调阻尼器阻尼力的延时调节。这种情况下,可以在从剧烈颠簸的路面到平坦路面的过渡过程中构建缓冲期,降低从高阻尼力立刻变换到低阻尼力时产生的不适感,进一步提升舒适性。
在本发明的一些实施例中,运动变量还包括第一连接部相对于第二连接部的速度和加速度,其中,速度能够通过第一连接部相对于第二连接部的至少两个时间上连续的位置来确定,加速度能够通过第一连接部相对于第二连接部的至少两个时间上连续的速度来确定。
进一步地,若所述第一连接部相对于所述第二连接部的位置关系在所述第二位移阈值范围内,例如第二位移阈值范围包括(-20mm,20mm),且所述第一连接部相对于所述第二连接部的加速度大于加速度阈值,例如加速度阈值为6m/s 2,则控制所述可调阻尼器输出第三阻尼力,所述第三阻尼力随着加速度的增大而减小,或者,所述第三阻尼力随着加速度的减小而增大。例如在搓衣板类路面行驶时,第一连接部相对于第二连接部之间的位置关系变化很小的,但是第一连接部相对于第二连接部的加速度却较大,这种情况下,控制可调阻尼器输出较小的第三阻尼力来减弱路面激励带来的不适感,从而获得较佳的舒适性。需要说明的是,第三阻尼力小于预设的基本阻尼力50N,例如,第三阻尼力包括(10N,45N)。
在本发明的一些实施例中,图1所示的方法还包括:通过高度调节装置控制气动阀的工作行程缩短、延长或者保持不变,从而控制空气弹簧充气、 放气或者既不充气也不放气,实现第一连接部相对于第二连接部的位置关系的档位和记忆调节。例如高度调节装置可以包括以下三种类型,第一种高度调节装置包括调节手柄和拉索,调节手柄通过拉索与气动阀连接,具体地,调节手柄通过控制拉索的长度改变气动阀的工作行程,从而控制空气弹簧充气或者放气,实现空气弹簧高度的档位调节,从而实现第一连接部相对于第二连接部的位置关系的档位调节;同时通过调节手柄将拉索的长度固定,使得气动阀的工作行程保持不变,从而使得空气弹簧既不充气也不放气,实现空气弹簧高度的记忆调节,从而实现第一连接部相对于第二连接部的位置关系的记忆调节;另外,一旦拉索的长度固定,如上所述,通过气动阀实现在特定位置实现悬浮调节,提升舒适性。第二种高度调节装置包括电机驱动装置,电机驱动装置通过拉索与气动阀连接,具体地,电机驱动装置通过控制拉索的长度,从而改变气动阀的工作行程,进而控制空气弹簧充气或者放气,实现空气弹簧高度的档位调节,从而实现第一连接部相对于第二连接部的位置关系的档位调节;同时通过电机驱动装置将拉索的长度固定,使得气动阀的工作行程保持不变,从而使得空气弹簧既不充气也不放气,实现空气弹簧高度的记忆调节,从而实现第一连接部相对于第二连接部的位置关系的记忆调节;另外,一旦拉索的长度固定,如上所述,通过气动阀实现在特定位置实现悬浮调节,提升舒适性。第三种高度调节装置包括电机驱动装置,电机驱动装置直接与气动阀连接,通过电机驱动装置直接改变气动阀的工作行程或者固定在特定位置,进而控制空气弹簧充气、放气或者既不充气也不放气,使得空气弹簧的高度升高、降低或者固定在特定位置,实现空气弹簧高度的档位和记忆调节,从而实现第一连接部相对于第二连接部的位置关系的档位和记忆调节;另外,通过气动阀实现在特定位置实现悬浮调节,提升舒适性。例如,拉索的长度变长时,气动阀的工作行程变短,控制空气弹簧充气;拉索的长度变短时,气动阀的工作行程变长,控制空气弹簧放气,本实施例对拉索的长度与气动阀的工作行程不作进一步限定。用户可以通过该高度调节装置根据实际需要对第一连接部相对于第二连接部的位置关系进行调节,满足不同用户的需求。
进一步地,所述第一连接部与所述第二连接部之间的平衡位置跟随所述第一连接部相对于所述第二连接部的位置关系的变化而变化,气动阀,用于使得所述第一连接部或者所述第二连接部在所述第一连接部相对于所述第二连接部的平衡位置实现悬浮。具体地,高度调节装置通过气动阀调节第一连接部相对于第二连接部之间的位置关系至特定位置的过程中,气动阀的工作 行程缩短或者延长的同时气动阀不断回位,从而使得气动阀的平衡位置相对于自身不发生变化,但是气动阀的平衡位置相对于第一连接部或者第二连接部不断发生变化,从而使得第一连接部相对于第二连接部的平衡位置不断发生变化,气动阀的平衡位置与第一连接部相对于第二连接部的平衡位置相适应。例如,若悬架系统为座椅悬架系统,第一连接部包括座椅的上框架,则第二连接部包括座椅的下框架,小明坐在座椅上,将座椅的高度调整为100mm,在气动阀的作用下,此时座椅的悬浮位置范围为(-10mm,+10mm);小红坐在座椅上,将座椅的高度调整为80mm,在气动阀的作用下,此时座椅的悬浮位置范围依旧为(-10mm,+10mm)。由此可见,所述第一连接部相对于所述第二连接部的平衡位置跟随所述第一连接部相对于所述第二连接部的位置关系的变化而变化,所述气动阀使得所述第一连接部或者所述第二连接部在所述第一连接部相对于所述第二连接部的平衡位置实现悬浮。
需要说明的是,当第一连接部与第二连接部之间的位置关系与气动阀的工作行程的对应比例为1:1时,气动阀的平衡位置为第一连接部相对于第二连接部的平衡位置。
在本发明的一些实施例中,图3示出了根据本发明一个实施例中的一种调节高度和阻尼力的系统的功能结构示意图,如图3所示,调节高度和阻尼力的系统100包括第一连接部110、第二连接部120、至少一个气动阀130、空气弹簧140、可调阻尼器150和用于调节可调阻尼器阻尼力的阻尼力调节装置160;气动阀130、空气弹簧140、可调阻尼器150和阻尼力调节装置160布置在第一连接部110和第二连接部120之间,气动阀130、空气弹簧140、可调阻尼器150和阻尼力调节装置160的位置相适应;气动阀130分别与阻尼力调节装置160和空气弹簧140连接;具体地,气动阀130的第一气体输出端与阻尼力调节装置160的气体输入端连接,气动阀130的第二气体输出端与空气弹簧140的连接口连接。
其中,气动阀130为线性结构,该气动阀130包括驱动杆和阀体,驱动杆在阀体内做往复直线式运动,驱动杆与第一连接部110连接,阀体与第二连接部120连接。需要说明的是,本实施例对气动阀130、空气弹簧140和可调阻尼器150的位置不作进一步的限定,只要气动阀130能够采集第一连接部110和第二连接部120之间的运动变量,空气弹簧140能够为第一连接部110和第二连接部120之间提供支撑并改变第一连接部110与第二连接部120之间的位置关系,可调阻尼器150能够为第一连接部110或第二连接部120提供减震效果即可。阻尼力调节装置160包括控制可调阻尼器150的调节销 的摆动方向和摆动幅度大小的装置。气动阀130的第一气体输出端与用于调节可调阻尼器150阻尼力的阻尼力调节装置160的气体输入端连接,使得气动阀130与阻尼力调节装置160之间能够产生气体流动连接,其中,阻尼力调节装置160在与气动阀130连通的过程中,该阻尼力调节装置160也与大气连通,从而实现气动阀130气驱动阻尼力调节装置160执行相应操作,即,气动阀130气驱动阻尼力调节装置160与气源和大气连接,控制可调阻尼器150输出相应的阻尼力;气动阀130的第二气体输出端与空气弹簧140的连接口连接,使得气动阀130与空气弹簧140之间能够产生气体流动连接,从而使得空气弹簧140与气源或者大气连接,进而实现空气弹簧140充气或者放气。
另外,若第一连接部110包括驾驶室,则第二连接部120包括底盘车架,即,将气动阀130、空气弹簧140、可调阻尼器150和用于调节该可调阻尼器150阻尼力的阻尼力调节装置160布置在驾驶室和底盘车架之间。若第一连接部110包括车辆底盘,则第二连接部120包括车轮,即,将气动阀130、空气弹簧140、可调阻尼器150和用于调节该可调阻尼器150阻尼力的阻尼力调节装置160布置在车辆底盘和车轮之间。若第一连接部110包括座椅的上框架,则第二连接部120包括座椅的下框架,即,将气动阀130、空气弹簧140、可调阻尼器150和用于调节该可调阻尼器150阻尼力的阻尼力调节装置160布置在座椅的上框架和座椅的下框架之间。若第一连接部110包括座椅剪刀架的滑动横轴,则第二连接部120包括座椅剪刀架的旋转销轴,即,将气动阀130和可调阻尼器150布置在座椅剪刀架的滑动横轴和座椅剪刀架的旋转销轴之间,同时将空气弹簧140和用于调节该可调阻尼器150阻尼力的阻尼力调节装置160布置在相应位置。
气动阀130,用于采集第一连接部110相对于第二连接部120的至少一个运动变量;运动变量包括第一连接部110相对于第二连接部120的位置关系,第一连接部110相对于第二连接部120的速度,第一连接部110相对于第二连接部120的加速度。本实施例对运动变量不作进一步的限定。同时根据采集到的运动变量和/或运动变量的变化控制空气弹簧140充气或者放气,实现高度调节;和/或,气驱动阻尼力调节装置160控制可调阻尼器150输出相应的阻尼力,实现对可调阻尼器150阻尼力大小的调节。其中,运动变量的变化通过第一连接部110相对于第二连接部120的至少两个时间上连续的运动变量来确定。气动阀130采集到第一连接部110和第二连接部120之间的运动变量后,或者,气动阀130采集到第一连接部110和第二连接部120之间 的运动变量的变化后,或者,气动阀130采集到第一连接部110和第二连接部120之间的运动变量以及运动变量的变化后,气动阀130内部的气体流量发生变化,由于气动阀130的第一气体输出端与用于调节可调阻尼器150阻尼力的阻尼力调节装置160的气体输入端连接,因此,气动阀130内部的气体流量变化驱动阻尼力调节装置160的内部的气体流量发生变化,从而触发阻尼力调节装置160控制可调阻尼器150的调节销的摆动方向和摆动幅度的大小,使得可调阻尼器150输出与摆动方向和摆动幅度对应的阻尼力,实现可调阻尼器150的阻尼力大小的可调节;另外,气动阀130内部的气体流量发生变化的同时气动阀130的工作行程发生变化,由于气动阀130的第二气体输出端与空气弹簧140的连接口连接,因此,气动阀130的工作行程发生变化时,气动阀130与空气弹簧140能够产生气体流动连接,从而使得空气弹簧140与气源或者大气连接,进而实现空气弹簧140充气或者放气,实现高度调节。
由上可知,本实施例的技术方案通过气动阀采集第一连接部相对于第二连接部的至少一个运动变量,并通过气动阀直接气驱动阻尼力调节装置对可调阻尼器阻尼力的大小进行调节,同时通过气动阀直接控制空气弹簧充气或者放气进行高度调节,通过机械机构的协同配合实现高度和阻尼力的同步调节,相比于现有技术中通过电控方式实现高度和阻尼力同步调节,提升了高度调节和减震调节的灵敏度,进一步提升舒适性;另外,本实施例的技术方案使得驾驶员在行驶过程中无需手动调节阻尼力和高度,使得驾驶员的注意力更加集中,在一定程度上可以降低交通事故的发生。
在本发明的一些实施例中,结合图2和图3所示,气动阀130,具体用于采集第一连接部110相对于第二连接部120的位置关系;位置关系包括竖直关系和/或水平关系;即,该位置关系包括第一连接部110相对于第二连接部120的竖直关系,或者,第一连接部110相对于第二连接部120的水平关系,或者,第一连接部110相对于第二连接部120的竖直关系和水平关系;也就是说,不仅可以根据第一连接部110相对于第二连接部120的竖直关系对高度和阻尼力进行调节,而且可以根据第一连接部110相对于第二连接部120的水平关系对高度和阻尼力进行调节,还可以同时根据第一连接部110相对于第二连接部120的竖直关系和水平关系对高度和阻尼力进行调节。
第一连接部110相对于第二连接部120的位置关系为调整的目标值,该位置关系由气动阀的总工作行程提供,优选地,第一连接部110相对于第二连接部120的位置关系按照预设比例与气动阀130的总工作行程相对应,例 如,第一连接部110相对于第二连接部120的位置关系与气动阀130的总工作行程的比例为1:1、1:2或者1:3等。本实施例对第一连接部110相对于第二连接部120的位置关系与气动阀130的总工作行程的比例不作进一步限定。总工作行程包括总工作行程平衡位置S00和至少三个位移阈值范围,其中,第二位移阈值范围(S21,S22)包含第一位移阈值范围(S11,S12),第三位移阈值范围(S31,S32)包含第二位移阈值范围(S21,S22),例如,第一位移阈值范围包括(-5mm,+5mm),第二位移阈值范围包括(-20mm,+20mm),第三位移阈值范围包括(-25mm,+25mm)。在实际应用中,可以根据实际需要设置不同的位移阈值范围,本实施例对位移阈值范围不作进一步限定。
根据位置关系对高度和阻尼力进行调节主要包括以下几种模式:
第一种模式,第一连接部110相对于第二连接部120的位置关系在第一位移阈值范围(S11,S12)内,气动阀130,具体用于既不控制空气弹簧140充气或者放气,也不气驱动阻尼力调节装置160控制可调阻尼器150输出相应的阻尼力,可调阻尼器150的阻尼力为预设的基本阻尼力;这种模式下,可以是在平坦路面上行驶,对高度和阻尼力均不进行调节,使得可调阻尼器的阻尼力为预设的基本阻尼力,一般为较小的阻尼力,例如预设的基本阻尼力包括50牛顿(N),空气弹簧的高度为预设的高度。
第二种模式,第一连接部110相对于第二连接部120的位置关系在第一位移阈值范围(S11,S12)与第二位移阈值范围(S21,S22)之间,气动阀130,具体用于控制空气弹簧140充气或者放气,但不气驱动阻尼力调节装置160控制可调阻尼器150输出相应的阻尼力,可调阻尼器150的阻尼力为预设的阻尼力。
具体地,第一连接部110相对于第二连接部120的位置关系从第一位移阈值范围的上限值S12到第二位移阈值范围的上限值S22的过程中,气动阀130,具体用于控制空气弹簧140以预设的第一气体流量放气,由于第一气体流量较小,空气弹簧140的高度小幅度降低,同时可调阻尼器150的阻尼力为预设的基本阻尼力。另外,第一连接部110相对于第二连接部120的位置关系从第一位移阈值范围的下限值S11到第二位移阈值范围的下限值S21的过程中,气动阀130,具体用于控制空气弹簧140以预设的第一气体流量充气,由于第一气体流量较小,空气弹簧140的高度小幅度升高;同时可调阻尼器150的阻尼力为预设的基本阻尼力,从而使得第一连接部相对于第二连接部的位置关系保持在第一位移阈值范围内,提升舒适性。
第三种模式,第一连接部110相对于第二连接部120的位置关系在第二位移阈值范围(S21,S22)与第三位移阈值范围(S31,S32)之间,气动阀130,具体用于控制空气弹簧140充气或者放气,同时气驱动阻尼力调节装置160控制可调阻尼器150输出第一阻尼力,第一阻尼力跟随位移的变化而变化。例如,第一阻尼力包括(50N,1500N),第一阻尼力跟随位移的变化而增加或者减小。
具体地,第一连接部110相对于第二连接部120的位置关系从第二位移阈值范围的上限值S22到第三位移阈值范围的上限值S32的运动过程中,气动阀130,具体用于控制空气弹簧140以预设的第二气体流量放气,空气弹簧140的高度降低,同时气驱动阻尼力调节装置160控制可调阻尼器150输出的第一阻尼力跟随位移的变化而逐渐增加,在相反运动过程中,即,第一连接部110相对于第二连接部120的位置关系从第三位移阈值范围的上限值S32到第二位移阈值范围的上限值S22的运动过程中,气动阀130,具体用于控制空气弹簧140以预设的第二气体流量放气,空气弹簧140的高度降低,同时气驱动阻尼力调节装置160控制可调阻尼器150输出的第一阻尼力跟随位移的变化而逐渐减小;另外,第一连接部110相对于第二连接部120的位置关系从第二位移阈值范围的下限值S21到第三位移阈值范围的下限值S31的过程中,气动阀130,具体用于控制空气弹簧140以预设的第二气体流量充气,空气弹簧140的高度升高,同时气驱动阻尼力调节装置160控制可调阻尼器150输出的第一阻尼力跟随位移的变化而逐渐增加;在相反运动过程中,即,第一连接部110相对于第二连接部120的位置关系从第三位移阈值范围的下限值S31到第二位移阈值范围的下限值S21的过程中,气动阀130,具体用于控制空气弹簧140以预设的第二气体流量充气,空气弹簧140的高度升高,同时气驱动阻尼力调节装置160控制可调阻尼器150输出的第一阻尼力跟随位移的变化而逐渐减小。其中,第二气体质量大于第一气体流量。这种模式下,可以是在崎岖路面上行驶,根据路面情况对空气弹簧和可调阻尼器进行同步调节,减小振动幅度,降低崎岖路面产生的不适感,以使得舒适性达到最佳。
第四种模式,第一连接部110相对于第二连接部120的位置关系超出所述第三位移阈值范围,气动阀130,具体用于控制空气弹簧140充气或者放气,同时气驱动阻尼力调节装置160控制可调阻尼器150输出第二阻尼力,例如,第二阻尼力包括3000牛顿(N);其中,第二阻尼力为与末端冲击保护系数对应的阻尼力,第一阻尼力位于预设的基本阻尼力与第二阻尼力之间。这种 情况下,可以是在剧烈颠簸的路面上行驶,根据路面情况对空气弹簧和可调阻尼器进行同步调节,避免第一连接部与第二连接部刚性接触,提升舒适性。
具体地,第一连接部110相对于第二连接部120的位置关系超出第三位移阈值范围的上限值的过程中,例如,第一连接部相对于第二连接部的位置关系在位移阈值范围(+25mm,+∞)内,气动阀130,具体用于控制空气弹簧140以预设的第三气体流量放气,空气弹簧140的高度降低,同时气驱动阻尼力调节装置160控制可调阻尼器150输出的第二阻尼力;另外,第一连接部110相对于第二连接部120的位置关系超出第三位移阈值范围的下限值的过程中,例如,第一连接部110相对于第二连接部120的位置关系在位移阈值范围(-∞,-25mm,)内,气动阀130,具体用于控制空气弹簧140以预设的第三气体流量充气,空气弹簧140的高度升高,同时气驱动阻尼力调节装置160控制可调阻尼器150输出的第二阻尼力。这种情况下,可以是在剧烈颠簸的路面上行驶,根据路面情况对空气弹簧和可调阻尼器进行同步调节,避免第一连接部与第二连接部刚性接触,提升舒适性。
在本发明的一些实施例中,阻尼力调节装置160,用于在可调阻尼器150输出第二阻尼力后,控制自身的气压在预设时间内变小,从而在预设时间内不改变可调阻尼器150输出的阻尼力,实现可调阻尼器150阻尼力的延时调节。这种情况下,可以在从剧烈颠簸的路面到平坦路面的过渡过程中构建缓冲期,降低从高阻尼力立刻变换到低阻尼力时产生的不适感,进一步提升舒适性。
在本发明的一些实施例中,气动阀130,还具体用于采集第一连接部110相对于第二连接部120的速度和/或加速度,其中,所述速度能够通过所述第一连接部110相对于所述第二连接部120的至少两个时间上连续的位置来确定,所述加速度能够通过所述第一连接部110相对于所述第二连接部120的至少两个时间上连续的速度来确定。
进一步地,若所述第一连接部110相对于所述第二连接部120的位置关系在所述第二位移阈值范围内,例如第二位移阈值范围包括(-20mm,20mm),且所述第一连接部110相对于所述第二连接部120的加速度大于加速度阈值,例如加速度阈值为6m/s 2,则控制所述可调阻尼器150输出第三阻尼力,所述第三阻尼力随着加速度的增大而减小,或者,所述第三阻尼力随着加速度的减小而增大。例如在搓衣板类路面行驶时,第一连接部相对于第二连接部之间的位置关系变化很小的,但是第一连接部110相对于第二连接部120的加速度却较大,这种情况下,控制可调阻尼器150输出较小的第三阻尼力来减 弱路面激励带来的不适感,从而获得较佳的舒适性。需要说明的是,第三阻尼力小于预设的基本阻尼力50N,例如,第三阻尼力包括(10N,45N)。
在本发明的一些实施例中,图3所示的系统还包括:通过高度调节装置170控制气动阀130的工作行程缩短、延长或者保持不变,从而控制空气弹簧140充气、放气或者既不充气也不放气,实现第一连接部110相对于第二连接部120的位置关系的档位和记忆调节。例如高度调节装置170可以包括以下三种类型,第一种高度调节装置170包括调节手柄和拉索,调节手柄通过拉索与气动阀130连接,具体地,调节手柄通过控制拉索的长度改变气动阀130的工作行程,从而控制空气弹簧140充气或者放气,实现空气弹簧140高度的档位调节,从而实现第一连接部110相对于第二连接部120的位置关系的档位调节;同时通过调节手柄将拉索的长度固定,使得气动阀130的工作行程保持不变,从而使得空气弹簧140既不充气也不放气,实现空气弹簧140高度的记忆调节,从而实现第一连接部110相对于第二连接部120的位置关系的记忆调节;另外,一旦拉索的长度固定,如上所述,通过气动阀130实现在特定位置实现悬浮调节,提升舒适性。第二种高度调节装置170包括电机驱动装置,电机驱动装置通过拉索与气动阀130连接,具体地,电机驱动装置通过控制拉索的长度,从而改变气动阀130的工作行程,进而控制空气弹簧140充气或者放气,实现空气弹簧140高度的档位调节,从而实现第一连接部110相对于第二连接部120的位置关系的档位调节;同时通过电机驱动装置将拉索的长度固定,使得气动阀130的工作行程保持不变,从而使得空气弹簧140既不充气也不放气,实现空气弹簧140高度的记忆调节,从而实现第一连接部110相对于第二连接部120的位置关系的记忆调节;另外,一旦拉索的长度固定,如上所述,通过气动阀130实现在特定位置实现悬浮调节,提升舒适性。第三种高度调节装置170包括电机驱动装置,电机驱动装置直接与气动阀130连接,通过电机驱动装置直接改变气动阀130的工作行程或者固定在特定位置,进而控制空气弹簧140充气、放气或者既不充气也不放气,使得空气弹簧140的高度升高、降低或者固定在特定位置,实现空气弹簧140高度的档位和记忆调节,从而实现第一连接部110相对于第二连接部120的位置关系的档位和记忆调节;另外,通过气动阀130实现在特定位置实现悬浮调节,提升舒适性。例如,拉索的长度变长时,气动阀130的工作行程变短,控制空气弹簧140充气;拉索的长度变短时,气动阀130的工作行程变长,控制空气弹簧140放气,本实施例对拉索的长度与气动阀130的工作行程不作进一步限定。用户可以通过该高度调节装置170根据实际 需要对第一连接部110相对于第二连接部120的位置关系进行调节,满足不同用户的需求。
进一步地,所述第一连接部110与所述第二连接部120之间的平衡位置跟随所述第一连接部110相对于所述第二连接部120的位置关系的变化而变化,气动阀130,用于使得所述第一连接部110或者所述第二连接部120在所述第一连接部110相对于所述第二连接部120的平衡位置实现悬浮。具体地,高度调节装置170通过气动阀130调节第一连接部110相对于第二连接部120之间的位置关系至特定位置的过程中,气动阀130的工作行程缩短或者延长的同时气动阀130不断回位,从而使得气动阀130的平衡位置相对于自身不发生变化,但是气动阀130的平衡位置相对于第一连接部110或者第二连接部120不断发生变化,从而使得第一连接部110相对于第二连接部120的平衡位置不断发生变化,气动阀130的平衡位置与第一连接部110相对于第二连接部120的平衡位置相适应。例如,若悬架系统为座椅悬架系统,第一连接部110包括座椅的上框架,则第二连接部120包括座椅的下框架,小明坐在座椅上,将座椅的高度调整为100mm,在气动阀130的作用下,此时座椅的悬浮位置范围为(-10mm,+10mm);小红坐在座椅上,将座椅的高度调整为80mm,在气动阀130的作用下,此时座椅的悬浮位置范围依旧为(-10mm,+10mm)。由此可见,所述第一连接部110相对于所述第二连接部120的平衡位置跟随所述第一连接部110相对于所述第二连接部120的位置关系的变化而变化,所述气动阀130使得所述第一连接部110或者所述第二连接部120在所述第一连接部110相对于所述第二连接部120的平衡位置实现悬浮。
需要说明的是,当第一连接部110与第二连接部120之间的位置关系与气动阀130的工作行程的对应比例为1:1时,气动阀130的平衡位置为第一连接部110相对于第二连接部120的平衡位置。
在本发明的一些实施例中,图4示出了根据本发明一个实施例中的一种阻尼力调节装置的功能结构示意图,如图4所示,阻尼力调节装置140包括气体压缩装置161和被气体压缩装置161驱动的拉线控制装置162,拉线控制装置162与可调阻尼器150连接,具体地,拉线控制装置162与可调阻尼器150的调节销连接,拉线控制装置162具有驱动可调阻尼器150的调节销往复运动的回位弹簧。
气动阀130根据采集到的运动变量和/或运动变量的变化改变自身内部的气体流量发生变化以气驱动气体压缩装置161内部的气体的状态量和状态量的变化的频率,例如气压和气压的变化的频率,从而改变气体压缩装置161 的行程大小,当气体压缩装置161的行程变大时,拉线控制装置162的驱动力变大;当气体压缩装置161的行程变小时,拉线控制装置162的驱动力变小,由于拉线控制装置162的回位力由回位弹簧提供,因此,在不改变回位弹簧的前提下,拉线控制装置162的回位力与拉线控制装置162的驱动力成线性关系。因此,通过改变气体压缩装置161的行程大小即可调整拉线控制装置162的驱动力和回位力之间的匹配关系,从而驱动可调阻尼器150的调节销往复摆动,即,驱动可调阻尼器的调节销的摆动方向和摆动幅度的大小,控制可调阻尼器输出相应的阻尼力,实现可调阻尼器150的阻尼力的自适应调节。
在本发明的一些实施例中,图5示出了根据本发明一个实施例中的另一种阻尼力调节装置的功能结构示意图,如图5所示,阻尼力调节装置140包括被气动阀130驱动的气体压缩装置163,气体压缩装置163与可调阻尼器150连接;具体地,气体压缩装置163的驱动杆与可调阻尼器150的调节销连接;
气动阀130根据采集到的运动变量和/或运动变量的变化改变自身内部的气体流量发生变化,由于气动阀130与气体压缩装置163连接,因此,气体压缩装置163内部的气体流量跟随气动阀130内部的气体流量发生变化,使得气体压缩装置163的行程发生变化,即,气体压缩装置163的驱动杆和缸筒之间的相对位移发生变化,实现调整气体压缩装置163的行程大小的目的,由于气体压缩装置163的驱动杆与可调阻尼器150的调节销连接,因此,当气动阀130气驱动气体压缩装置163的驱动杆在缸筒中往复运动时,气体压缩装置163的驱动杆驱动可调阻尼器150的调节销往复摆动相应幅度,控制可调阻尼器输出相应的阻尼力,实现可调阻尼器150的阻尼力的自适应调节。
需要说明的是,图5所示的气体压缩装置163与图4所示的气体压缩装置161的功能结构和工作原理均相同,均主要由驱动杆和缸筒两部分组成。当然,在其他实施例中,气体压缩装置163和气体压缩装置161的功能结构和工作原理也可以不同。
在本发明的一些实施例中,图6示出了根据本发明一个实施例中的再一种阻尼力调节装置的功能结构示意图,如图6所示,阻尼力调节装置140包括比例阀164,比例阀164与可调阻尼器150的阻尼液流通腔的阀口连接;气动阀130根据采集到的运动变量和/或运动变量的变化改变自身内部的气体流量发生变化以气驱动改变比例阀164的工作行程,从而控制可调阻尼器150的阻尼液流通腔的阀口的通径大小,由于阻尼液流通腔的阀口的通径大小不 同,因此,阻尼液的流量和/或流速不同,进而实现调整可调阻尼器150的阻尼液流量、阻尼液流速或者阻尼液流量和流速的目的,最终控制可调阻尼器输出相应的阻尼力,实现可调阻尼器150的阻尼力的自适应调节。
需要说明的是,调节悬架系统高度的系统可以应用在座椅悬架系统、车辆底盘悬架系统以及驾驶室悬架系统等领域,本实施例对调节悬架系统高度的系统的应用领域不作进一步的限定。
综上所述,本实施例的技术方案通过气动阀采集第一连接部相对于第二连接部的至少一个运动变量,并通过气动阀直接气驱动调节装置对阻尼器阻尼力的大小进行调节,同时通过气动阀直接控制空气弹簧充气或者放气进行高度调节,通过机械机构的协同配合实现高度和阻尼力的同步调节,相比于现有技术中通过电控方式实现高度和阻尼力同步调节,提升了高度调节和阻尼力调节的灵敏度,进一步提升舒适性;另外,本实施例的技术方案使得驾驶员在行驶过程中无需手动调节阻尼力和高度,使得驾驶员的注意力更加集中,在一定程度上可以降低交通事故的发生。
最后应说明的是,以上仅为本发明的优选实施例而已,并非用于限定本发明的保护范围,尽管参照前述各实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述个实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (23)

  1. 一种调节高度和阻尼力的方法,其特征在于,所述方法包括:
    将气动阀、空气弹簧、可调阻尼器和用于调节所述可调阻尼器阻尼力的阻尼力调节装置布置在第一连接部与第二连接部之间;所述气动阀、所述空气弹簧、所述可调阻尼器和所述阻尼力调节装置的位置相适应;所述气动阀分别与所述阻尼力调节装置和所述空气弹簧连接;
    所述气动阀采集所述第一连接部相对于所述第二连接部的至少一个运动变量;
    同时所述气动阀根据采集到的所述运动变量和/或所述运动变量的变化控制所述空气弹簧充气或者放气,实现高度调节;和/或,气驱动所述阻尼力调节装置控制所述可调阻尼器输出相应的阻尼力,实现对所述可调阻尼器阻尼力大小的调节。
  2. 如权利要求1所述的调节高度和阻尼力的方法,其特征在于,所述运动变量包括所述第一连接部相对于所述第二连接部的位置关系;所述位置关系包括竖直关系和/或水平关系;
    所述第一连接部相对于所述第二连接部的位置关系为调整的目标值,所述位置关系由所述气动阀的总工作行程提供,所述总工作行程包括总工作行程平衡位置和至少三个位移阈值范围,其中,第二位移阈值范围包含第一位移阈值范围,第三位移阈值范围包含所述第二位移阈值范围;
    所述第一连接部相对于所述第二连接部的位置关系在所述第一位移阈值范围内,所述气动阀既不控制所述空气弹簧充气或者放气,也不气驱动所述阻尼力调节装置控制所述可调阻尼器输出相应的阻尼力,所述可调阻尼器的阻尼力为预设的基本阻尼力;
    所述第一连接部相对于所述第二连接部的位置关系在所述第一位移阈值范围与所述第二位移阈值范围之间,所述气动阀控制所述空气弹簧充气或者放气,但不气驱动所述阻尼力调节装置控制所述可调阻尼器输出相应的阻尼力,所述可调阻尼器的阻尼力为预设的阻尼力;
    所述第一连接部相对于所述第二连接部的位置关系在所述第二位移阈值范围与所述第三位移阈值范围之间,所述气动阀控制所述空气弹簧充气或者 放气,同时气驱动所述阻尼力调节装置控制所述可调阻尼器输出第一阻尼力,所述第一阻尼力跟随位移的变化而变化;
    所述第一连接部相对于所述第二连接部的位置关系超出所述第三位移阈值范围,所述气动阀控制所述空气弹簧充气或者放气,同时气驱动所述阻尼力调节装置控制所述可调阻尼器输出第二阻尼力;
    其中,所述第二阻尼力为与末端冲击保护系数对应的阻尼力,所述第一阻尼力位于所述预设的基本阻尼力与所述第二阻尼力之间。
  3. 如权利要求2所述的调节高度和阻尼力的方法,其特征在于,所述可调阻尼器输出所述第二阻尼力后,所述阻尼力调节装置控制自身的气压在预设时间内变小,从而在所述预设时间内不改变所述可调阻尼器输出的第二阻尼力,实现可调阻尼器阻尼力的延时调节。
  4. 如权利要求2所述的调节高度和阻尼力的方法,其特征在于,所述第一连接部相对于所述第二连接部的位置关系在所述第一位移阈值范围与所述第二位移阈值范围之间,所述气动阀控制所述空气弹簧充气或者放气,但不气驱动所述阻尼力调节装置控制所述可调阻尼器输出相应的阻尼力,所述可调阻尼器的阻尼力为预设的阻尼力包括:
    所述第一连接部相对于所述第二连接部的位置关系从第一位移阈值范围的上限值到第二位移阈值范围的上限值的过程中,所述气动阀控制所述空气弹簧以预设的第一气体流量放气,所述空气弹簧的高度降低,同时所述可调阻尼器的阻尼力为预设的基本阻升高;
    或者,所述第一连接部相对于所述第二连接部的位置关系从第一位移阈值范围的下限值到第二位移阈值范围的下限值的过程中,所述气动阀控制所述空气弹簧以所述第一气体流量充气,所述空气弹簧的高度升高;同时所述可调阻尼器的阻尼力为预设的基本阻尼力。
  5. 如权利要求4所述的调节高度和阻尼力的方法,其特征在于,所述第一连接部相对于所述第二连接部的位置关系在所述第二位移阈值范围与所述第三位移阈值范围之间,所述气动阀控制所述空气弹簧充气或者放气,同时气驱动所述阻尼力调节装置控制所述可调阻尼器输出第一阻尼力,所述第一阻尼力跟随位移的变化而变化包括:
    所述第一连接部相对于所述第二连接部的位置关系从第二位移阈值范围 的上限值到第三位移阈值范围的上限值的运动过程中,所述气动阀控制所述空气弹簧以预设的第二气体流量放气,所述空气弹簧的高度降低,同时气驱动所述阻尼力调节装置控制所述可调阻尼器输出的第一阻尼力跟随位移的变化而逐渐增加;
    或者,所述第一连接部相对于所述第二连接部的位置关系从第二位移阈值范围的下限值到第三位移阈值范围的下限值的过程中,所述气动阀控制所述空气弹簧以所述第二气体流量充气,所述空气弹簧的高度升高,同时气驱动所述阻尼力调节装置控制所述可调阻尼器输出的第一阻尼力跟随位移的变化而逐渐增加,其中,所述第二气体流量大于所述第一气体流量。
  6. 如权利要求5所述的调节高度和阻尼力的方法,其特征在于,所述第一连接部相对于所述第二连接部的位置关系超出所述第三位移阈值范围,所述气动阀控制所述空气弹簧充气或者放气,同时气驱动所述阻尼力调节装置控制所述可调阻尼器输出第二阻尼力包括:
    所述第一连接部相对于所述第二连接部的位置关系超出所述第三位移阈值范围的上限值的过程中,所述气动阀控制所述空气弹簧以预设的第三气体流量放气,所述空气弹簧的高度降低,同时气驱动所述阻尼力调节装置控制所述可调阻尼器输出的第二阻尼力;
    所述第一连接部相对于所述第二连接部的位置关系超出所述第三位移阈值范围的下限值的过程中,所述气动阀控制所述空气弹簧以所述第三气体流量充气,所述空气弹簧的高度升高,同时气驱动所述阻尼力调节装置控制所述可调阻尼器输出的第二阻尼力,其中,所述第三气体流量大于所述第二气体流量。
  7. 如权利要求2所述的调节高度和阻尼力的方法,其特征在于,所述运动变量还包括所述第一连接部相对于所述第二连接部的速度和加速度,其中,所述速度能够通过所述第一连接部相对于所述第二连接部的至少两个时间上连续的位置来确定,所述加速度能够通过所述第一连接部相对于所述第二连接部的至少两个时间上连续的速度来确定。
  8. 如权利要求7所述的调节高度和阻尼力的方法,其特征在于,若所述第一连接部相对于所述第二连接部的位置关系在所述第二位移阈值范围内,且所述第一连接部相对于所述第二连接部的加速度大于加速度阈值,则控制 所述可调阻尼器输出第三阻尼力,所述第三阻尼力随着加速度的增大而减小,或者,所述第三阻尼力随着加速度的减小而增大,其中,所述第三阻尼力小于所述预设的基本阻尼力。
  9. 如权利要求1所述的调节高度和阻尼力的方法,其特征在于,所述方法还包括:
    通过高度调节装置控制所述气动阀的工作行程缩短、延长或者保持不变,从而控制所述空气弹簧充气、放气或者既不充气也不放气,实现所述第一连接部相对于所述第二连接部的位置关系的档位和记忆调节。
  10. 如权利要求9所述的调节高度和阻尼力的方法,其特征在于,所述第一连接部相对于所述第二连接部的平衡位置跟随所述第一连接部相对于所述第二连接部的位置关系的变化而变化,所述气动阀使得所述第一连接部或者所述第二连接部在所述第一连接部相对于所述第二连接部的平衡位置实现悬浮。
  11. 一种调节高度和阻尼力的系统,其特征在于,所述系统包括第一连接部、第二连接部、至少一个气动阀、空气弹簧、可调阻尼器和用于调节所述可调阻尼器阻尼力的阻尼力调节装置;所述气动阀、所述空气弹簧、所述可调阻尼器和所述阻尼力调节装置布置在第一连接部和第二连接部之间,所述气动阀、所述空气弹簧、所述可调阻尼器和所述阻尼力调节装置的位置相适应;所述气动阀分别与所述阻尼力调节装置和所述空气弹簧连接;
    所述气动阀,用于采集所述第一连接部相对于所述第二连接部的至少一个运动变量;同时根据采集到的所述运动变量和/或所述运动变量的变化控制所述空气弹簧充气或者放气,实现高度调节;和/或,气驱动所述阻尼力调节装置控制所述可调阻尼器输出相应的阻尼力,实现对所述可调阻尼器阻尼力大小的调节。
  12. 如权利要求11所述的调节高度和阻尼力的系统,其特征在于,所述气动阀,具体用于采集所述第一连接部相对于所述第二连接部的位置关系;所述位置关系包括竖直关系和/或水平关系;
    所述第一连接部相对于所述第二连接部的位置关系为调整的目标值,所述位置关系由所述气动阀的总工作行程提供,所述总工作行程包括总工作行程平衡位置和至少三个位移阈值范围,其中,第二位移阈值范围包含第一位 移阈值范围,第三位移阈值范围包含所述第二位移阈值范围;
    所述第一连接部相对于所述第二连接部的位置关系在所述第一位移阈值范围内,所述气动阀,具体用于既不控制所述空气弹簧充气或者放气,也不气驱动所述阻尼力调节装置控制所述可调阻尼器输出相应的阻尼力,所述可调阻尼器的阻尼力为预设的基本阻尼力;
    所述第一连接部相对于所述第二连接部的位置关系在所述第一位移阈值范围与所述第二位移阈值范围之间,所述气动阀,具体用于控制所述空气弹簧充气或者放气,但不气驱动所述阻尼力调节装置控制所述可调阻尼器输出相应的阻尼力,所述可调阻尼器的阻尼力为预设的阻尼力;
    所述第一连接部相对于所述第二连接部的位置关系在所述第二位移阈值范围与所述第三位移阈值范围之间,所述气动阀,具体用于控制所述空气弹簧充气或者放气,同时气驱动所述阻尼力调节装置控制所述可调阻尼器输出第一阻尼力,所述第一阻尼力跟随位移的变化而变化;
    所述第一连接部相对于所述第二连接部的位置关系超出所述第三位移阈值范围,所述气动阀,具体用于控制所述空气弹簧充气或者放气,同时气驱动所述阻尼力调节装置控制所述可调阻尼器输出第二阻尼力;
    其中,所述第二阻尼力为与末端冲击保护系数对应的阻尼力,所述第一阻尼力位于预设的基本阻尼力与所述第二阻尼力之间。
  13. 如权利要求12所述的调节高度和阻尼力的系统,其特征在于,所述阻尼力调节装置,用于在所述可调阻尼器输出所述第二阻尼力后,控制自身的气压在预设时间内变小,从而在所述预设时间内不改变所述可调阻尼器输出的第二阻尼力,实现可调阻尼器阻尼力的延时调节。
  14. 如权利要求12所述的调节高度和阻尼力的系统,其特征在于,所述第一连接部相对于所述第二连接部的位置关系从第一位移阈值范围的上限值到第二位移阈值范围的上限值的过程中,所述气动阀,具体用于控制所述空气弹簧以预设的第一气体流量放气,所述空气弹簧的高度降低,同时所述可调阻尼器的阻尼力为预设的基本阻尼力;
    或者,所述第一连接部相对于所述第二连接部的位置关系从第一位移阈值范围的下限值到第二位移阈值范围的下限值的过程中,所述气动阀,具体用于控制所述空气弹簧以所述第一气体流量充气,所述空气弹簧的高度升高; 同时所述可调阻尼器的阻尼力为预设的基本阻尼力。
  15. 如权利要求14所述的调节高度和阻尼力的系统,其特征在于,所述第一连接部相对于所述第二连接部的位置关系从第二位移阈值范围的上限值到第三位移阈值范围的上限值的运动过程中,所述气动阀,具体用于控制所述空气弹簧以预设的第二气体流量放气,所述空气弹簧的高度降低,同时气驱动所述阻尼力调节装置控制所述可调阻尼器输出的第一阻尼力跟随位移的变化而逐渐增加;
    或者,所述第一连接部相对于所述第二连接部的位置关系从第二位移阈值范围的下限值到第三位移阈值范围的下限值的过程中,所述气动阀,具体用于控制所述空气弹簧以所述第二气体流量充气,所述空气弹簧的高度升高,同时气驱动所述阻尼力调节装置控制所述可调阻尼器输出的第一阻尼力跟随位移的变化而逐渐增加;其中,所述第二气体流量大于所述第一气体流量。
  16. 如权利要求15所述的调节高度和阻尼力的系统,其特征在于,所述第一连接部相对于所述第二连接部的位置关系超出所述第三位移阈值范围的上限值的过程中,所述气动阀,具体用于控制所述空气弹簧以预设的第三气体流量放气,所述空气弹簧的高度降低,同时气驱动所述阻尼力调节装置控制所述可调阻尼器输出的第二阻尼力;
    所述第一连接部相对于所述第二连接部的位置关系超出所述第三位移阈值范围的下限值的过程中,所述气动阀,具体用于控制所述空气弹簧以所述第三气体流量充气,所述空气弹簧的高度升高,同时气驱动所述阻尼力调节装置控制所述可调阻尼器输出的第二阻尼力,其中,所述第三气体流量大于所述第二气体流量。
  17. 如权利要求12所述的调节高度和阻尼力的系统,其特征在于,所述气动阀,还具体用于采集所述第一连接部相对于所述第二连接部的速度和加速度,其中,所述速度能够通过所述第一连接部相对于所述第二连接部的至少两个时间上连续的位置来确定,所述加速度能够通过所述第一连接部相对于所述第二连接部的至少两个时间上连续的速度来确定。
  18. 如权利要求17所述的调节高度和阻尼力的系统,其特征在于,若所述第一连接部相对于所述第二连接部的位置关系在所述第二位移阈值范围内,且所述第一连接部相对于所述第二连接部的加速度大于加速度阈值,则 控制所述可调阻尼器输出第三阻尼力,所述第三阻尼力随着加速度的增大而减小,或者,所述第三阻尼力随着加速度的减小而增大,其中,所述第三阻尼力小于所述预设的基本阻尼力。
  19. 如权利要求11所述的调节高度和阻尼力的系统,其特征在于,所述系统还包括高度调节装置,所述高度调节装置,用于控制所述气动阀的工作行程缩短、延长或者保持不变,从而控制所述空气弹簧充气、放气或者既不充气也不放气,实现所述第一连接部相对于所述第二连接部的位置关系的档位和记忆调节。
  20. 如权利要求19所述的调节高度和阻尼力的系统,其特征在于,所述第一连接部相对于所述第二连接部的平衡位置跟随所述第一连接部相对于所述第二连接部的位置关系的变化而变化,所述气动阀使得所述第一连接部或者所述第二连接部在所述第一连接部相对于所述第二连接部的平衡位置实现悬浮。
  21. 如权利要求11所述的调节高度和阻尼力的系统,其特征在于,所述阻尼力调节装置包括气体压缩装置和被所述气体压缩装置驱动的拉线控制装置,所述拉线控制装置与所述可调阻尼器连接;
    所述气动阀,具体用于根据采集到的所述运动变量和/或所述运动变量的变化气驱动所述气体压缩装置内部的气体信息的状态量和所述状态量的变化的频率,改变所述气体压缩装置的行程大小,进而调整所述拉线控制装置的驱动力和回位力之间的匹配关系,驱动所述可调阻尼器的调节销往复摆动,实现可调阻尼器的阻尼力的自适应调节。
  22. 如权利要求11所述的调节高度和阻尼力的系统,其特征在于,所述阻尼力调节装置包括被所述气动阀驱动的气体压缩装置,所述气体压缩装置与所述可调阻尼器连接;
    所述气动阀,具体用于根据采集到的所述运动变量和/或所述运动变量的变化气驱动调整所述气体压缩装置的行程大小,驱动所述可调阻尼器的调节销往复摆动相应幅度,实现可调阻尼器的阻尼力的自适应调节。
  23. 如权利要求11所述的调节高度和阻尼力的系统,其特征在于,所述阻尼力调节装置包括比例阀,所述比例阀与所述可调阻尼器的阻尼液流通腔的阀口连接;
    所述气动阀,具体用于根据采集到的所述运动变量和/或所述运动变量的变化气驱动改变所述比例阀的工作行程,从而控制所述可调阻尼器的阻尼液流通腔的阀口的通径大小,进而调整所述可调阻尼器的阻尼液流量和/或流速,实现可调阻尼器的阻尼力的自适应调节。
PCT/CN2020/122009 2019-10-18 2020-10-19 一种调节高度和阻尼力的方法及系统 WO2021073653A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/769,857 US11926188B2 (en) 2019-10-18 2020-10-19 Method and system for adjusting height and damping force

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910991448.7 2019-10-18
CN201910991448.7A CN110712492B (zh) 2019-10-18 2019-10-18 一种调节高度和阻尼力的方法及系统

Publications (1)

Publication Number Publication Date
WO2021073653A1 true WO2021073653A1 (zh) 2021-04-22

Family

ID=69212824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122009 WO2021073653A1 (zh) 2019-10-18 2020-10-19 一种调节高度和阻尼力的方法及系统

Country Status (3)

Country Link
US (1) US11926188B2 (zh)
CN (1) CN110712492B (zh)
WO (1) WO2021073653A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110626140B (zh) * 2019-10-18 2021-11-09 安路普(北京)汽车技术有限公司 一种调节悬架系统高度的方法和系统
CN110712492B (zh) * 2019-10-18 2021-11-05 安路普(北京)汽车技术有限公司 一种调节高度和阻尼力的方法及系统
CN110722953B (zh) * 2019-10-18 2021-10-12 安路普(北京)汽车技术有限公司 一种调节阻尼器的阻尼力的方法和系统
US12013696B2 (en) * 2020-12-01 2024-06-18 Waymo Llc Reactive suspension and emergency signaling in autonomous trucking systems
CN113737633B (zh) * 2021-09-15 2022-10-28 湖南大学 一种低频调谐质量阻尼器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA64036C2 (en) * 2002-07-23 2004-02-16 Inst Of Technical Mechanics Of Suspension of vehicle seat
JP2005291413A (ja) * 2004-04-01 2005-10-20 Jeol Ltd 制振除振装置
CN102180116A (zh) * 2011-04-19 2011-09-14 长春富维-江森自控汽车饰件系统有限公司 车辆座椅的气悬浮机构
CN202914611U (zh) * 2012-06-12 2013-05-01 南京农业大学 一种刚度和阻尼联合调节的减振装置
CN103660832A (zh) * 2012-09-10 2014-03-26 福特全球技术公司 具有空气弹簧和振动阻尼器的车辆的高度调节装置
CN105492225A (zh) * 2013-10-01 2016-04-13 格拉默股份有限公司 具有悬挂系统的车辆座椅或车辆驾驶室及多用途车辆
CN106080084A (zh) * 2016-07-11 2016-11-09 安庆新景技电子科技有限公司 一种车辆悬架电控系统
CN110712492A (zh) * 2019-10-18 2020-01-21 安路普(北京)汽车技术有限公司 一种调节高度和阻尼力的方法及系统
CN110745044A (zh) * 2019-10-18 2020-02-04 安路普(北京)汽车技术有限公司 一种调节阻尼力和高度的装置、座椅和车辆悬架系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB943262A (en) * 1959-05-06 1963-12-04 Dunlop Rubber Co Improvements in pneumatic suspension systems for vehicles
US6070681A (en) * 1997-06-13 2000-06-06 Lord Corporation Controllable cab suspension
JP2000016047A (ja) * 1998-07-06 2000-01-18 Toyota Motor Corp ばね上質量推定装置
JP4143782B2 (ja) * 1999-03-31 2008-09-03 株式会社日立製作所 エアサスペンション装置
US6988599B2 (en) * 2000-12-07 2006-01-24 Visteon Global Technologies, Inc. Compressible fluid strut
JP4348934B2 (ja) * 2002-09-25 2009-10-21 アイシン・エィ・ダブリュ株式会社 車両のサスペンション制御装置
US7320387B2 (en) * 2005-04-06 2008-01-22 Arvinmeritor Technology, Llc Load adaptive damper with transient air signal restrictor
US8840172B2 (en) * 2005-05-13 2014-09-23 Grammer Ag Device and method for suspension of a vehicle cabin by means of additional volumes
RU2395407C2 (ru) * 2006-03-22 2010-07-27 Тойота Дзидося Кабусики Кайся Система подвески транспортного средства
JP4737222B2 (ja) * 2008-04-18 2011-07-27 トヨタ自動車株式会社 車両用サスペンションシステム
CN101417595B (zh) * 2008-11-04 2011-11-09 江苏大学 空气悬架气体回路充(放)气过程数学模型的建立方法
US8113521B2 (en) * 2009-06-19 2012-02-14 Pin Hsiu Rubber Co., Ltd. Intelligent electronic air suspension system that automatically adjusts its air pressure
CN102390231B (zh) * 2011-08-23 2013-08-21 中国北方车辆研究所 一种车姿调节系统轮胎载荷控制方法
CN102616103B (zh) * 2012-04-23 2013-09-25 扬州万方电子技术有限责任公司 一种麦克纳姆轮全向移动车
KR101510018B1 (ko) * 2013-12-18 2015-04-07 현대자동차주식회사 차량용 에어스프링
CN105715735B (zh) * 2016-03-02 2018-01-16 江苏大学 一种刚度阻尼及惯性力可控的隔振系统及其控制方法
EP3500446A4 (en) * 2016-08-22 2020-04-15 Stemco Products, Inc. PNEUMATIC ANTI-ROLL SYSTEM
CN110121438B (zh) * 2016-11-18 2023-01-31 北极星工业有限公司 具有可调节悬架的车辆
US10569813B2 (en) * 2016-12-23 2020-02-25 Link Mfg., Ltd. Cab suspension systems and associated methods of manufacture and use
US10406884B2 (en) * 2017-06-09 2019-09-10 Polaris Industries Inc. Adjustable vehicle suspension system
US11034205B2 (en) * 2017-10-18 2021-06-15 Beijingwest Industries Co., Ltd. Concurrent leveling system for a vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA64036C2 (en) * 2002-07-23 2004-02-16 Inst Of Technical Mechanics Of Suspension of vehicle seat
JP2005291413A (ja) * 2004-04-01 2005-10-20 Jeol Ltd 制振除振装置
CN102180116A (zh) * 2011-04-19 2011-09-14 长春富维-江森自控汽车饰件系统有限公司 车辆座椅的气悬浮机构
CN202914611U (zh) * 2012-06-12 2013-05-01 南京农业大学 一种刚度和阻尼联合调节的减振装置
CN103660832A (zh) * 2012-09-10 2014-03-26 福特全球技术公司 具有空气弹簧和振动阻尼器的车辆的高度调节装置
CN105492225A (zh) * 2013-10-01 2016-04-13 格拉默股份有限公司 具有悬挂系统的车辆座椅或车辆驾驶室及多用途车辆
CN106080084A (zh) * 2016-07-11 2016-11-09 安庆新景技电子科技有限公司 一种车辆悬架电控系统
CN110712492A (zh) * 2019-10-18 2020-01-21 安路普(北京)汽车技术有限公司 一种调节高度和阻尼力的方法及系统
CN110745044A (zh) * 2019-10-18 2020-02-04 安路普(北京)汽车技术有限公司 一种调节阻尼力和高度的装置、座椅和车辆悬架系统

Also Published As

Publication number Publication date
US11926188B2 (en) 2024-03-12
CN110712492A (zh) 2020-01-21
CN110712492B (zh) 2021-11-05
US20220388363A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
WO2021073653A1 (zh) 一种调节高度和阻尼力的方法及系统
KR101068988B1 (ko) 에어 서스펜션 및 전자제어 서스펜션 장치
KR101130288B1 (ko) 전자제어 서스펜션 장치와 이를 이용한 안티 스쿼트 제어방법
EP1659007B1 (en) Air suspension and electronically controlled suspension system
WO2021073651A1 (zh) 一种调节阻尼器的阻尼力的方法和系统
JPH063239B2 (ja) 調整可能な振動ダンパ
JPS59186713A (ja) 自動車のサスペンシヨン
WO2021073652A1 (zh) 一种调节悬架系统高度的方法和系统
WO2021073649A1 (zh) 一种调节阻尼力和高度的装置、座椅以及车辆悬架系统
WO2021073650A1 (zh) 一种调节阻尼力和高度的装置、座椅和车辆悬架系统
JPH05162527A (ja) 車両支持機構の調整装置
CN109515269B (zh) 一种刚度与阻尼可调式拖拉机驾驶室座椅悬架装置
JP4690759B2 (ja) 可変減衰力ダンパーの制御装置
JP2575485B2 (ja) 能動型サスペンション
CN213298665U (zh) 一种摩托车及其前缓冲机构
CN220114757U (zh) 电动摩托车的减震前叉
CN2578158Y (zh) 空气悬挂式座椅
RU215981U1 (ru) Подвеска сиденья транспортного средства с активным демпфированием
CN108312798A (zh) 空气悬架及使用该空气悬架的车辆
JP2005280522A (ja) 懸架装置
KR20080109456A (ko) 전자제어 현가장치의 감쇠력 제어 장치 및 그에 의한감쇠력 제어 방법
JPH02120105A (ja) 車両のサスペンション装置
JPH0227700Y2 (zh)
CN118418636A (zh) 一种基于直线电机的主动式电磁悬架
KR20070076227A (ko) 전자제어 서스펜션 장치와 이를 이용한 안티 다이브 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20875703

Country of ref document: EP

Kind code of ref document: A1