WO2021073650A1 - 一种调节阻尼力和高度的装置、座椅和车辆悬架系统 - Google Patents

一种调节阻尼力和高度的装置、座椅和车辆悬架系统 Download PDF

Info

Publication number
WO2021073650A1
WO2021073650A1 PCT/CN2020/122006 CN2020122006W WO2021073650A1 WO 2021073650 A1 WO2021073650 A1 WO 2021073650A1 CN 2020122006 W CN2020122006 W CN 2020122006W WO 2021073650 A1 WO2021073650 A1 WO 2021073650A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping force
adjusting
gas
damping
height
Prior art date
Application number
PCT/CN2020/122006
Other languages
English (en)
French (fr)
Inventor
孙国
张晓锋
于曼华
张加
冯永江
Original Assignee
安路普(北京)汽车技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安路普(北京)汽车技术有限公司 filed Critical 安路普(北京)汽车技术有限公司
Priority to DE112020004981.7T priority Critical patent/DE112020004981T5/de
Publication of WO2021073650A1 publication Critical patent/WO2021073650A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/50Seat suspension devices
    • B60N2/502Seat suspension devices attached to the base of the seat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/50Seat suspension devices
    • B60N2/505Adjustable suspension including height adjustment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • B60G11/26Resilient suspensions characterised by arrangement, location or kind of springs having fluid springs only, e.g. hydropneumatic springs
    • B60G11/27Resilient suspensions characterised by arrangement, location or kind of springs having fluid springs only, e.g. hydropneumatic springs wherein the fluid is a gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/052Pneumatic spring characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/04Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable
    • B60N2/16Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable height-adjustable
    • B60N2/1605Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable height-adjustable characterised by the cinematic
    • B60N2/161Rods
    • B60N2/162Scissors-like structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/04Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable
    • B60N2/16Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable height-adjustable
    • B60N2/1635Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable height-adjustable characterised by the drive mechanism
    • B60N2/1665Hydraulic or pneumatic actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/50Seat suspension devices
    • B60N2/506Seat guided by rods
    • B60N2/508Scissors-like structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/50Seat suspension devices
    • B60N2/52Seat suspension devices using fluid means
    • B60N2/522Seat suspension devices using fluid means characterised by dampening means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/50Seat suspension devices
    • B60N2/52Seat suspension devices using fluid means
    • B60N2/525Seat suspension devices using fluid means using gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/43Filling or drainage arrangements, e.g. for supply of gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/15Fluid spring
    • B60G2202/152Pneumatic spring

Definitions

  • the invention relates to the field of shock absorbers, in particular to a device for adjusting damping force and height, a seat and a vehicle suspension system.
  • the existing suspension system mainly includes two control systems for height adjustment and damping force adjustment. These two control systems are mutually independent systems and each have corresponding control mechanisms. In the manual adjustment mode, it is necessary to press two buttons at the same time to realize the synchronous adjustment of the two control systems, which is inconvenient to operate.
  • the most commonly used suspension control system is based on CDC (Continuous Damping Control).
  • the suspension control system first uses sensors to collect information and sends the collected information to the electronic control unit.
  • the electronic control unit simultaneously calculates the air pressure in the air spring airbag and the damping force of the damper, and sends the calculated control signal to the air spring and the CDC damper at the same time, and controls the air spring and the CDC damper to perform corresponding operations at the same time.
  • the present invention is proposed to provide a device, seat and vehicle suspension system for adjusting damping force and height, which overcomes or at least partially solves the above-mentioned problems.
  • a device for adjusting damping force and height includes a regulating valve, which is respectively connected to the damping of air source, atmosphere, air spring, and damping element. Force adjustment device connection;
  • the regulating valve includes a first cylinder and at least one first control rod slidably arranged in the first cylinder.
  • a gas flow connection is generated between the air spring and the air source or the atmosphere, so as to realize the height adjustment of the air spring; and/or the damping force adjustment device of the damping element is made to be in a gas flow connection between the air source and the atmosphere Therefore, the damping force adjusting device for pneumatically driving the damping element performs corresponding operations to control the damping element to output a corresponding damping force, so as to adjust the damping force of the damping element.
  • a seat has at least two scissor frame structures that move relative to each other, at least one damping element for shock absorption, and an air spring for height adjustment.
  • the seat also includes a damping force adjusting device of the damping element and the above-mentioned device for adjusting damping force and height, the damping element, the air spring, the damping force adjusting device of the damping element and the adjusting damping force and height.
  • the positions of the four devices are adapted to each other, and the devices for adjusting the damping force and height are respectively connected with the damping force adjusting device of the damping element and the air spring;
  • One end of the device for adjusting damping force and height is connected to one of the scissors frame structure, the other end of the device for adjusting damping force and height is connected to the other scissors frame structure, and the two relatively moving scissors frame
  • the relative movement of the structure drives the device for adjusting damping force and height to control the inflation or deflation of the air spring, or the relative movement of the two relatively moving scissor frame structures drives the device for adjusting damping force and height to control
  • the damping force adjustment device of the damping element performs corresponding operations to realize seat damping force adjustment.
  • a vehicle suspension system includes a vehicle body and at least four wheels, and at least two dampers for shock absorption are arranged between the vehicle body and the wheels. Element and an air spring for height adjustment, the vehicle suspension system further includes a damping force adjusting device for a damping element and the above-mentioned device for adjusting damping force and height, the damping element, the air spring, and the damping element
  • the damping force adjustment device of the damping force adjustment device is adapted to the positions of the damping force and height adjustment devices, and the damping force and height adjustment device is respectively connected with the damping force adjustment device of the damping element and the air spring.
  • the beneficial effect of the present invention is that the damping force and height adjustment device claimed by the present invention can control the inflation or deflation of the air spring to achieve height adjustment through the relative displacement of the first control rod and the first cylinder with respect to each other.
  • the damping force adjustment device of the air-driven damping element performs corresponding operations to control the damping element to output the corresponding damping force to realize the damping force adjustment, that is, to realize the height adjustment of the suspension system or simultaneously realize the height adjustment and the damping force adjustment of the suspension system , So that the shock absorption effect reaches the best state.
  • the technical solution of the present invention realizes the synchronous adjustment of height and damping force through electronic control, which improves the sensitivity of height adjustment and damping force adjustment, and further improves comfort
  • the technical solution of the present invention makes the driver need not manually adjust the damping force and height during driving, so that the driver's attention is more concentrated, and to a certain extent, the occurrence of traffic accidents can be reduced; and the technical solution of the present invention is composed of It is composed of a linear structure, which is compatible with the height of the suspension system, and is not restricted by the space and installation position of the suspension system. It is convenient to install, low in failure rate, convenient to maintain, and low in cost.
  • Figure 1 shows a perspective view of a device for adjusting damping force and height according to an embodiment of the present invention
  • Figure 2 shows a front view of a device for adjusting damping force and height according to an embodiment of the present invention
  • Figure 3 shows a first cross-sectional view of a device for adjusting damping force and height according to an embodiment of the present invention
  • Figure 4 shows a second cross-sectional view of a device for adjusting damping force and height according to an embodiment of the present invention
  • Figure 5 shows a perspective view of a control rod according to an embodiment of the present invention
  • Fig. 6 shows a perspective view of another control rod according to an embodiment of the present invention.
  • Figure 7 (a) shows a cross-sectional view of another device for adjusting damping force and height in a first working state according to an embodiment of the present invention
  • Figure 7 (b) shows a cross-sectional view of another device for adjusting damping force and height in a second working state according to an embodiment of the present invention
  • Figure 8 shows a perspective view of another device for adjusting damping force and height according to an embodiment of the present invention.
  • Figure 9 shows an exploded view of another device for adjusting damping force and height according to an embodiment of the present invention.
  • Figure 10 (a) shows a cross-sectional view of another device for adjusting damping force and height in a first working state according to an embodiment of the present invention
  • Figure 10(b) shows a cross-sectional view of another device for adjusting damping force and height in a second working state according to an embodiment of the present invention
  • Figure 11 shows a perspective view of yet another device for adjusting damping force and height according to an embodiment of the present invention
  • Figure 12 shows an exploded view of another device for adjusting damping force and height according to an embodiment of the present invention
  • FIG. 13 shows a schematic diagram of the functional structure of a seat according to an embodiment of the present invention.
  • FIG. 1 shows a perspective view of a device for adjusting damping force and height according to an embodiment of the present invention.
  • the device 10 for adjusting damping force and height includes a regulating valve A, which is respectively connected with The air source, the atmosphere, the air spring and the damping force adjusting device of the damping element are connected;
  • the adjusting valve A includes a first cylinder A100 and at least one first control rod A200 slidably arranged in the first cylinder A100, through the first The relative displacement of the control rod A100 and the first cylinder A100 with respect to each other causes a gas flow connection between the air spring and the air source or the atmosphere to realize the height adjustment of the air spring; and/or, the damping force adjustment device of the damping element
  • the damping force adjusting device of the damping element includes a device for controlling the swing direction and amplitude of the adjusting pin of the damping element.
  • this device is called a driving device for the adjusting pin of the damping element.
  • the driving device of the adjusting pin of the damping element mainly includes the following two structures:
  • the driving device of the adjusting pin of the first type of damping element includes a gas compression device (such as a cylinder) and a cable control device with a return spring.
  • the regulating valve A is connected to the gas compression device, and the gas compression device is connected to the damping device through the cable control device.
  • the adjustment pin of the component is connected.
  • the driving force of the cable control device becomes larger; when the gas compression device works As the stroke becomes smaller, the driving force of the cable control device becomes smaller.
  • the opposite setting can also be made, and the corresponding relationship between the working stroke of the gas compression device and the driving force of the cable control device is not further limited in this embodiment. Since the return force of the cable control device is provided by the return spring, the return force of the cable control device and the driving force of the cable control device are in a linear relationship without changing the return spring.
  • the matching relationship between the driving force and the restoring force of the cable control device can be adjusted, so as to drive the adjustment pin of the damping element to reciprocate, that is, the adjustment pin of the damping element is driven.
  • the swing direction and swing amplitude control the damping element to output the corresponding damping force to realize the adjustment of the damping force.
  • the driving device of the adjustment pin of the second type of damping element includes a gas compression device (for example, a cylinder), the driving rod of the gas compression device is directly connected with the adjustment pin of the damping element, and the adjustment valve A is pneumatically connected with the gas compression device.
  • a gas compression device for example, a cylinder
  • the gas flow rate inside the regulating valve A itself changes to drive the gas state quantity and the state quantity of the gas inside the gas compression device
  • the frequency of change causes the relative displacement between the drive rod of the gas compression device and the cylinder to change, so that the drive rod of the gas compression device drives the adjustment pin of the damping element to reciprocate, that is ,
  • the swing direction and swing amplitude of the adjusting pin of the driving damping element are controlled to output the corresponding damping force to realize the adjustment of the damping force.
  • the damping force adjusting device of the damping element further includes a proportional valve, which is connected to the valve port of the damping fluid flow cavity of the damping element.
  • the regulating valve A is pneumatically connected to the proportional valve.
  • the working stroke of the valve changes to control the diameter of the valve port of the damping fluid flow chamber of the damping element. For example, when the working stroke of the proportional valve becomes larger, the diameter of the valve port of the damping fluid flow chamber of the damping element changes. If it is small, the opposite setting can also be made.
  • the corresponding relationship between the working stroke of the proportional valve and the diameter of the valve port of the damping fluid flow cavity of the damping element is not further limited.
  • the damping element in this embodiment includes CDC dampers and PDC dampers (PDC, Pneumatic Damping Control), etc.
  • PDC PDC dampers
  • This embodiment does not further limit the type of damping element, and only the damping force of the damping element can be used. Just adjust.
  • the above content only enumerates and describes the structure of the damping force adjustment device of the damping element, and other adjustment devices that can adjust the damping force of the damping element are within the protection scope of this embodiment.
  • the damping force and height adjustment device claimed in this embodiment can not only control the inflation or deflation of the air spring to achieve height adjustment through the relative displacement of the first control rod and the first cylinder relative to each other, but also can simultaneously drive the damping force.
  • the damping force adjustment device of the element performs corresponding operations to control the damping element to output the corresponding damping force to realize the damping force adjustment, that is, to realize the height adjustment of the suspension system or realize the height adjustment and the damping force adjustment of the suspension system simultaneously, so as to reduce the shock The effect reaches the best state.
  • the technical solution of this embodiment realizes the synchronous adjustment of height and damping force through electronic control, which improves the sensitivity of height adjustment and damping force adjustment, and further improves comfort; in addition, The technical solution of this embodiment eliminates the need for the driver to manually adjust the damping force and height during driving, so that the driver’s attention is more concentrated, and the occurrence of traffic accidents can be reduced to a certain extent; and the technical solution of this embodiment is linear
  • the structure is adapted to the height of the suspension system, and is not restricted by the space and installation position of the suspension system itself, and has convenient installation, low failure rate, convenient maintenance, and low cost.
  • the working stroke of the regulating valve A includes at least three displacement threshold ranges, wherein the second displacement threshold range includes the first displacement threshold range, and the third displacement threshold range includes the second displacement threshold range;
  • the regulating valve A includes a first cylinder A100 and at least one first control rod A200 slidably arranged in the first cylinder A100.
  • the regulating valve mainly has the following three suspension working modes:
  • the regulating valve A does not produce a gas flow connection, that is, the air spring and the gas source or There is no gas flow connection between the atmosphere and no gas flow connection between the damping force adjustment device of the damping element and the air source and the atmosphere.
  • the air spring is neither inflated nor deflated, and the damping force of the damping element remains The preset base damping force.
  • the second levitation working mode when the relative displacement of the first cylinder A100 and the first control rod A200 relative to each other is between the first displacement threshold range and the second displacement threshold range, the air spring and the gas source are connected to the gas flow. , To realize the inflation of the air spring, or create a gas flow connection between the air spring and the atmosphere, and realize the deflation of the air spring. In this case, only the height of the air spring is adjusted, and the damping force of the damping element still maintains the preset basic damping force.
  • the air spring and the atmosphere A gas flow connection is generated between them to realize the deflation of the air spring; or, the relative displacement of the first cylinder A100 and the first control rod A200 with respect to each other is from the lower limit of the first displacement threshold range to the second displacement threshold range
  • the air spring is connected with the air source to generate air flow to realize the inflation of the air spring.
  • the damping force adjusting device of the damping element and the pneumatic causes the air pressure inside the damping force adjustment device of the damping element to change, so that the damping force adjustment device of the air-driven damping element performs corresponding operations to control the damping element to output corresponding damping force and realize the damping of the damping element
  • the force is adjusted, and a gas flow connection is generated between the air spring and the air source or the atmosphere to realize the inflation or deflation of the air spring. In this case, the height of the air spring and the damping force of the damping element are adjusted simultaneously.
  • the air spring and the atmosphere A gas flow connection is generated between the air springs to deflate the air spring, and the gas flow connection between the damping force adjustment device of the damping element and the air source and the atmosphere makes the air pressure inside the damping force adjustment device of the damping element change, so that the air drives the damping element
  • the damping force adjusting device performs corresponding operations to control the damping force of the damping element to increase; or, the relative displacement of the first cylinder A100 and the first control rod A200 with respect to each other is from the lower limit of the second displacement threshold range to the third
  • the air spring is connected with the air source to realize the air spring inflation
  • the damping force adjusting device of the damping element is connected with the air flow between the air source and the atmosphere, so that the damping element
  • the charging and discharging speed of the air spring between the second displacement threshold range and the third displacement threshold range is greater than the charging and discharging speed of the air spring between the first displacement threshold range and the second displacement threshold range.
  • the damping force and height adjustment device claimed in this embodiment can control the inflation or deflation of the air spring to achieve height adjustment at different positions, or the damping force adjustment device of the air-driven damping element can perform corresponding operations to control the damping element.
  • Output corresponding damping force to achieve damping force adjustment that is, height adjustment at different positions, or simultaneous height adjustment and damping force adjustment, so that the shock absorption effect is adapted to the position change, so that the comfort can reach the best state.
  • FIG. 2 shows a front view of a device for adjusting damping force and height according to an embodiment of the present invention
  • FIG. 3 shows a front view of a device for adjusting damping force and height according to an embodiment of the present invention
  • the first cross-sectional view of the device Figure 4 shows a second cross-sectional view of a device for adjusting damping force and height according to an embodiment of the present invention, as shown in Figures 2-4
  • the first cylinder A100 It includes at least one first air inlet A110, a second air inlet A120, a first air outlet A130, a second air outlet A140, a third air outlet A150, a first air outlet A160, and a second air outlet A170;
  • An air inlet A110 is connected to the air source, the first air inlet A110 is connected to the first air outlet A130; the first air outlet A130 is connected to the second air inlet A120; the second air outlet A140 is connected to the first air outlet respectively A160 is connected to the damping force adjusting
  • the second air outlet A140 and the first air inlet A110 and the first row A gas flow connection is generated between the air ports A160, so that the air pressure inside the damping force adjustment device of the damping element changes, so that the damping force adjustment device of the air-driven damping element performs corresponding operations, controls the damping element to output corresponding damping force, and realizes the damping element
  • the third air outlet A150 and the second air inlet A120 have a gas flow connection to realize the inflation of the air spring; or, the second air outlet A140 and the second air inlet A120 and the first exhaust A gas flow connection is generated between the ports A160, so that the air pressure inside the damping force adjustment device of the damping element changes, so that the damping force adjustment device of the air-driven damping element performs corresponding operations to control the damping element to output a corresponding damping force to realize the damping
  • the damping force is adjusted, and at the same time the third air outlet A150 and the second air outlet A170 realize the deflation of the air spring.
  • the height of the air spring and the damping force of the damping element are adjusted simultaneously to improve comfort and reduce the discomfort caused by rough roads.
  • At least four sealing elements A300 are provided between the first cylinder A100 and the first control rod A200, so as to form a continuous separation between the first cylinder A100 and the first control rod A200.
  • the gas chamber A400 includes a first gas chamber A410, a second gas chamber A420, a third gas chamber A430, a fourth gas chamber A440, and a fifth gas chamber A450, the first gas chamber A410 is connected to the gas source, the first gas chamber A410 is connected to the third gas chamber A430, and the second gas chamber A420 is connected to the damping force adjusting device of the damping element and the atmosphere respectively; the fourth gas The chamber A440 is connected with the air spring; the fifth gas chamber A450 is connected with the atmosphere.
  • the first gas chamber A410 includes a first air inlet A110 and a second air outlet A130
  • the second gas chamber A420 includes a second air outlet A140 and a first exhaust port A160
  • the third gas chamber A430 includes The second air inlet A120
  • the fourth air chamber A440 include a third air outlet A150
  • the fifth air chamber A450 includes a second air outlet A170. Since the five gas chambers are separated from each other and continuous with each other, and the first gas chamber A410 and the third gas chamber A430 are in communication, when the first control rod A200 reciprocates in the first cylinder A100, Corresponding gas flow connections are generated in the five gas chambers, thereby realizing height adjustment or simultaneous adjustment of height and damping force, so as to achieve the best comfort.
  • FIG. 5 shows a perspective view of a control rod according to an embodiment of the present invention
  • FIG. 6 shows a perspective view of another control rod according to an embodiment of the present invention, as shown in FIG. 5 or FIG. 6,
  • the first control rod A200 includes at least a first part A210 and a second part A220.
  • the second part A220 is disposed at the end of the first part A210.
  • the diameter of the first part A210 is smaller than the diameter of the second part A220.
  • the longitudinal axis of the second part A220 and the longitudinal axis of the first part A210 coincide with or parallel to each other, and the area difference between the cross section of the first part A210 and the cross section of the second part A220 is used for carrying The gas pressure, so that the first control rod moves under the drive of the gas pressure.
  • the second portion A220 includes at least one first axial groove A221.
  • the first axial grooves A221 may be located on the same horizontal line or on different horizontal lines, and the shape of the multiple first axial grooves A221 may be The same can also be different.
  • the second part of A220 mainly has the following two structures:
  • At least one first axial groove A221 is arranged corresponding to the third gas chamber A430. It should be noted here that when the first control rod A200 and the first cylinder A100 are not displaced relative to each other, the first axial groove A221 is correspondingly arranged in the third gas chamber A430, that is, arranged in the first gas chamber A430. Between the second sealing element A320 and the third sealing element A330.
  • opening the first axial groove A221 inside the second part can not only connect the second gas chamber A420 and the third gas when the first control rod A200 and the first cylinder A100 are relatively displaced relative to each other.
  • the chamber A430 provides gas for the air spring to inflate the air spring, and can also communicate with the third gas chamber A430 and the fourth gas chamber A440.
  • the damping force adjustment device of the air-driven damping element performs corresponding operations to control the output of the damping element.
  • the damping force can realize the adjustment of damping force.
  • the friction between the first control rod and the first cylinder can be reduced to a certain extent, and the control accuracy can be improved.
  • the second portion A220 further includes at least one end area A222, and the end area A222 has a chamfer that is inclined with respect to the longitudinal axis of the second portion A220.
  • the second part A222 also includes a first end area A2221 and a second end area A2222, wherein the first end area A2221 is disposed at the end of the second part A220, and the end of the second part A220 is The part far away from the end of the first part A210; the second end area A2222 is arranged at the front end of the second part A220, and the front end of the second part A220 is the part close to the end of the first part A210. Further, as shown in FIGS.
  • At least one first axial groove is provided at the position of the same horizontal line between the front end and the end of the second part, and end regions are respectively provided at the front end and the end of the second part, which can achieve simultaneous air control.
  • Spring height adjustment and damping force adjustment are provided at the position of the same horizontal line between the front end and the end of the second part, and end regions are respectively provided at the front end and the end of the second part, which can achieve simultaneous air control.
  • Figure 7 (a) shows a cross-sectional view of the first working state of another device for adjusting damping force and height in an embodiment of the present invention
  • Figure 7 (b) shows A cross-sectional view of the second working state of another device for adjusting damping force and height in an embodiment of the present invention, combined with FIG. 6 and FIG. 7, is correspondingly provided in the third gas chamber A430 at least one first At the same time as an axial groove A221, at least one first axial groove A223 is provided in the first gas chamber A410.
  • the damping force of the damping element stops adjusting.
  • the first control rod A200 is in the lowest position, and as shown in FIG. 7(b), the first control rod A200 is in contact with the bottom of the first cylinder A100.
  • the first control lever is in the lowest position.
  • the damping force adjusting device of the air-driven damping element When the first axial groove A221 passes over the second sealing element A320 between the third gas chamber A430 and the second gas chamber A420, gas flow is generated between the third gas chamber A430 and the second gas chamber A420
  • the damping force adjusting device of the air-driven damping element When connected, the damping force adjusting device of the air-driven damping element performs corresponding operations, controls the damping element to output corresponding damping force, and realizes the damping force adjustment. It can be seen that opening the first axial groove A221 inside the second part can not only connect the second gas chamber A420 and the third gas when the first control rod A200 and the first cylinder A100 are relatively displaced relative to each other.
  • the chamber A430 provides gas for the air spring to inflate the air spring, and can also communicate with the third gas chamber A430 and the fourth gas chamber A440.
  • the damping force adjustment device of the air-driven damping element performs corresponding operations and controls the output of the damping element accordingly.
  • the end of the second part A220 is also provided with a first end area A2221.
  • a gas flow connection is generated between the fourth gas chamber A440 and the fifth gas chamber A450 , That is, the air spring is connected with the atmosphere to generate gas flow to realize the air spring deflation.
  • the design of the end area reduces the friction between the first control rod and the first cylinder, so that the first control rod reciprocates more smoothly in the first cylinder, and prevents the first control rod from being in the first cylinder. Stuttering occurs during internal reciprocating motion, which further improves the control accuracy.
  • At least one first axial groove is provided at different positions of the second part, and an end area is provided at the end of the second part, which can realize air spring height adjustment or simultaneous adjustment of air spring height and damping force.
  • this embodiment does not further limit the specific structure of the second part.
  • a suitable specific structure of the second part can be selected according to actual conditions.
  • the second part has at least one second axial groove (A2221-1, A2222-1) connected to the end regions (A2221, A2222). ). Still in the second structure of the second part shown in FIG. 6, the second part has at least one second axial groove A2221-1 connected to the first end area A2221.
  • the second axial groove A2221-1 crosses the fourth sealing element 340 between the fourth gas chamber A440 and the fifth gas chamber A450 earlier than the first end region A2221, and the second axial groove The groove A2222-1 passes the first sealing element A310 between the first gas chamber A410 and the second gas chamber A420 earlier than the second end region A2222.
  • the technical solution claimed in this embodiment can be achieved by changing the shape and depth of the first axial groove (A221, A223) and/or the second axial groove (A2221-1, A2222-1).
  • the first axial grooves (A221, A223) can be rectangular grooves, V-shaped grooves or as shown in the figure.
  • the first axial groove (A221, A223) can include a rectangular groove and a second axial groove (A2221-1, A2222-1), wherein the rectangular groove is located on the upper part, and the second axial groove
  • the groove (A2221-1, A2222-1) is located in the lower part, or the rectangular groove is located in the lower part, and the second axial groove (A2221-1, A2222-1) is located in the upper part, or the rectangular groove is located in the two second axial grooves.
  • the middle of the two axial grooves (A2221-1, A2222-1); the second axial groove (A2221-1, A2222-1) can be a rectangular groove or a V-shaped groove.
  • the shapes of the directional groove and the second axial groove are not further limited.
  • the inflation speed and the speed of adjusting the damping force of the air spring can be controlled by changing the shape and depth of the first axial groove (A221, A223).
  • the shape of the first axial groove A221 is designed to be a rhombus, So that when the lower triangular apex area of the first axial groove A221 crosses the third sealing element A330 between the third gas chamber A430 and the fourth gas chamber A440, the third gas chamber A430 and the fourth gas chamber A430 A small amount of gas flow connection is generated between the chambers A440, so that a small amount of gas is charged into the air spring to realize the fine adjustment of the air spring height, so as to realize the suspension adjustment of the suspension system at a specific position, which helps to further improve the suspension system Comfort; when the lower triangular non-apex area of the first axial groove A221 crosses the third sealing element A330 between the third gas chamber A430 and the fourth gas chamber A440, the third gas chamber A430 and A larger amount of gas flow connection is generated between the fourth
  • the design of the first axial groove can reduce the friction between the first control rod and the sealing element when the first control rod reciprocates in the first cylinder, so as to prevent the first control rod from reciprocating in the first cylinder. The phenomenon of stuttering improves the control accuracy.
  • the shape of the first axial groove A223 can also be designed as a rhombus.
  • the shape of the first axial groove A223 can be designed into a V shape, when the small opening area of the first axial groove A223 crosses the first gas chamber A410 and the second gas chamber A420.
  • a sealing element A310 a small amount of gas flow connection is generated between the first gas chamber A410 and the second gas chamber A420, which provides a small amount of gas for the damping force adjusting device of the damping element, and changes the damping element's
  • the internal air pressure of the damping force adjustment device changes, so as to realize the fine adjustment of the damping force and obtain better comfort.
  • the working stroke of the device that adjusts the damping force and height needs to be adapted to the suspension working stroke of the suspension system. If the suspension system has a long suspension working stroke, then adjust the damping force and height The working stroke of the device needs to be long, otherwise once the suspension working stroke of the suspension system exceeds the working stroke of the device for adjusting damping force and height, the device for adjusting damping force and height will be damaged. In this case, the cost of the device for adjusting the damping force and height with a long working stroke increases, and the overall tensile strength of the device for adjusting the damping force and height becomes weaker.
  • FIG. 8 shows a perspective view of another device for adjusting damping force and height according to an embodiment of the present invention
  • FIG. 9 shows a perspective view of another device for adjusting damping force and height according to an embodiment of the present invention.
  • Figure 10 (a) shows a cross-sectional view of the first working state of another device for adjusting damping force and height in an embodiment of the present invention
  • Figure 10 (b) shows a cross-sectional view according to the present invention
  • the device 10 for adjusting damping force and height also includes a gas compression device B, which Device B is connected to the air source;
  • the gas compression device B includes a second cylinder B100 and at least one second control rod B200 slidably arranged in the second cylinder B100; the second control rod B200 is connected to the first control rod A200, for example, the first control rod B200 Connect with the first control rod A200 through the fixing device D.
  • the relative displacement of the first control rod A200 and the first cylinder A100 relative to each other reaches the maximum working stroke, the relative displacement of the second control rod B200 and the second cylinder B100 relative to each other Displacement is compensated. That is to say, as shown in Figure 10 (a), within the working stroke of the regulating valve A, the working stroke of the gas compression device B does not change, and the gas compression device only serves as a connection.
  • the working stroke of the regulating valve A The stroke is determined by the relative displacement of the first control rod A200 and the first cylinder A100 compared to each other, and the working stroke of the gas compression device B is determined by the relative displacement of the second control rod B200 and the second cylinder B100 compared to each other;
  • the working stroke of the regulating valve A reaches the maximum value, the working stroke of the gas compression device B is compensated, which extends the working stroke of the regulating valve A, and realizes the best state of the overall tensile strength of the device to ensure the adjustment of the damping force and height To meet the needs of different suspension systems with different suspension working strokes.
  • the device 10 for adjusting the damping force and height further includes a guide device C.
  • the gas compression device B and the regulating valve A are respectively slidably connected to the guide device C, and the gas compression device B is connected to the regulating valve A .
  • the gas compression device B is connected to the regulating valve A.
  • the gas compression device B is connected to the regulating device A.
  • the gas compression device B is connected to the regulating device A.
  • This embodiment does not further limit the connection between the gas compression device B and the regulating valve A and the guide device C.
  • the guide device C makes the movement and working strokes of the gas compression device B and the regulating valve A on the same longitudinal axis, and bears a certain lateral pressure, which improves the control accuracy of the device for adjusting the damping force and height.
  • the device for adjusting the damping force and height can be fixed on the suspension system through the guide device. It can be seen that the guiding device plays the role of positioning, guiding and bearing a certain lateral pressure in the technical solution claimed in this embodiment.
  • the guiding device C mainly includes the following two structures:
  • the guide device C includes at least two guide ring grooves C110 and at least one guide rod C120.
  • the guide rod C120 and the guide ring groove C110 slide relative to each other; the gas compression device B and At least one guide ring groove C110 is connected; the regulating valve A is connected with at least one guide ring groove C110.
  • FIG. 11 shows a perspective view of another device for adjusting damping force and height according to an embodiment of the present invention
  • FIG. 12 shows another device for adjusting damping force according to an embodiment of the present invention.
  • the guide device C includes at least one guide plate C210, at least three guide grooves C220 and at least two guide rods C230;
  • the guide groove C220 includes a guide ring groove C221 and a guide Groove C222;
  • at least two guide ring grooves C221 are provided on both sides of the guide plate C210, for example, at least two symmetrical guide ring grooves C221 are provided on both sides of the guide plate C210, and at least one guide is provided in the center of the guide plate C210 Groove C222;
  • the gas compression device B is provided with a guide block B300, and the guide block B300 slides in the guide groove C222;
  • the regulating valve A is arranged on the guide plate C210;
  • the guide rod C includes at least one guide plate C210, at least three
  • the guiding device of the first structure or the guiding device of the second structure can be selected according to actual needs, and the structure of the guiding device is not further limited in this embodiment.
  • the device 10 for adjusting the damping force and height can be applied to any suspension system.
  • the suspension system includes a seat suspension system, a vehicle chassis suspension system, and a cab suspension system. This embodiment does not further limit the application field of the device 10 for adjusting the damping force and height.
  • FIG. 13 shows a schematic diagram of the functional structure of a seat according to an embodiment of the present invention.
  • a seat has at least two relatively movable scissor frame structures (50, 60), and at least one A damping element 40 for shock absorption and an air spring 20 for height adjustment.
  • the seat also includes a damping force adjustment device (not shown in the figure) of the damping element and the damping force and height adjustment as claimed in the first embodiment.
  • the device 10, the damping element 40, the air spring 20, the damping force adjustment device of the damping element are adapted to the positions of the device 10 for adjusting the damping force and height, and the device 10 for adjusting the damping force and height is respectively corresponding to the damping force of the damping element
  • the adjusting device is connected with the air spring 20;
  • One end of the device 10 for adjusting damping force and height is connected to one of the scissors frame structure 50, and the other end of the device 10 for adjusting damping force and height is connected to the other scissors frame structure 60.
  • Two relatively moving scissors frame structures ( The relative movement of 50, 60) drives the device 10 for adjusting the damping force and height to control the air spring 20 to inflate or deflate to realize the suspension adjustment of the seat; and/or the two relatively movable scissor frame structures (50, 60)
  • Relative motion drives the device 10 for adjusting damping force and height to control the damping force adjustment device of the damping element to perform corresponding operations.
  • the device for adjusting damping force and height 10 performs corresponding operations to control the damping force.
  • the components output corresponding damping force to realize seat damping force adjustment.
  • the device for adjusting the damping force and height of the seat claimed in this embodiment height adjustment can be achieved, and the height and damping force can also be adjusted synchronously, so that the comfort of the seat can reach the best state.
  • the technical solution of this embodiment improves the sensitivity of height adjustment and damping force adjustment, and further improves the comfort compared with the seat that realizes the synchronous adjustment of height and damping force through electronic control in the prior art; in addition, this embodiment
  • the technical solution eliminates the need for the driver to manually adjust the damping force and height during driving, so that the driver’s attention is more concentrated, which can reduce the occurrence of traffic accidents to a certain extent; and the device for adjusting the damping force and height in the seat It is composed of a linear structure, which is compatible with the height of the seat suspension system, and is not restricted by the space and installation position of the seat suspension system itself, and has convenient installation, low failure rate, convenient maintenance, and low cost.
  • the seat also includes a cable, which is connected to the device 10 for adjusting the damping force and height.
  • the cable passes through the guide chute (C200, C300) of the guide device and is connected to the device for adjusting the damping force and height.
  • the cable drives the device 10 for adjusting the damping force and height to reciprocate to realize the height adjustment of the seat.
  • the driver can adjust the seat to the best height through the cable according to his own needs, realize the memory adjustment of the height and gear of the seat, and then obtain a posture that is easy to operate the steering wheel, pedals, gear lever and other devices to improve comfort
  • the driver can pull the cable according to actual needs to realize the synchronous adjustment of the height of the seat and the damping force, so as to reduce the discomfort caused by the rough road and obtain the best comfort.
  • the length of the cable can be adjusted mechanically, for example, the length of the cable can be adjusted by adjusting the handle; it can also be adjusted electronically.
  • the length of the cable is adjusted by the motor, and the control method of the length of the cable is not further limited in this embodiment.
  • a vehicle suspension system includes a vehicle body and at least four wheels. At least two damping elements for shock absorption and an air spring for height adjustment are arranged between the vehicle body and the wheels.
  • the vehicle suspension system also includes a damping element for damping.
  • the force adjusting device and the device 10 for adjusting the damping force and height as claimed in the first embodiment, the damping force adjusting device for damping elements, air springs, and damping elements (not shown in the figure), and the device for adjusting damping force and height 10 four The position of the damping element is adapted, and the device 10 for adjusting the damping force and the height is respectively connected with the damping force adjusting device of the damping element and the air spring.
  • the relative movement between the body and the wheels can drive the first cylinder and the first control rod to generate relative displacements relative to each other, so that the damping force adjusting device of the damping element and the air source Generate a gas flow connection with the atmosphere, and/or connect the air spring with the gas source or the atmosphere to realize the synchronization adjustment of the height or the height and the damping force of the vehicle suspension system, so that the vehicle suspension system has a shock absorption effect Compatible with the height of the vehicle suspension system, the sensitivity of height adjustment and damping force adjustment is improved, and the installation is convenient, the failure rate is low, the maintenance is convenient, and the cost is low.
  • the damping force and height adjustment device claimed in this embodiment can control the inflation or deflation of the air spring to achieve height adjustment through the relative displacement of the first control rod and the first cylinder with respect to each other, or at the same time.
  • the damping force adjustment device of the air-driven damping element performs corresponding operations to control the damping element to output the corresponding damping force to realize the damping force adjustment, that is, to realize the height adjustment of the suspension system or realize the height adjustment and the damping force adjustment of the suspension system simultaneously.
  • the technical solution of this embodiment realizes the synchronous adjustment of the height and the damping force through the electronic control method in the prior art, which improves the sensitivity of the height adjustment and the damping force adjustment, and further improves the comfort;
  • the technical solution of this embodiment eliminates the need for the driver to manually adjust the damping force and height during driving, so that the driver's attention is more concentrated, and to a certain extent, the occurrence of traffic accidents can be reduced; and the technical solution of this embodiment It is composed of a linear structure, which is compatible with the height of the suspension system, and is not restricted by the space and installation position of the suspension system itself. It is convenient to install, low in failure rate, easy to maintain, and low in cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

一种调节阻尼力和高度的装置(10)、座椅和车辆悬架系统,该调节阻尼力和高度的装置(10)包括调节阀(A),调节阀(A)分别与气源、大气、空气弹簧(20)和阻尼元件(40)的阻尼力调节装置连接,该调节阀(A)包括第一圆筒(A100)和至少一个可滑动布置在第一圆筒(A100)内的第一控制杆(A200),通过第一控制杆(A200)和第一圆筒(A100)相对于彼此的相对位移,使得空气弹簧(20)与气源或者大气之间产生气体流动连接,实现空气弹簧(20)的高度调节;和/或,使得阻尼元件(40)的阻尼力调节装置与气源和大气之间气体流动连接,从而气驱动阻尼元件(40)的阻尼力调节装置执行相应操作以控制阻尼元件(40)输出相应的阻尼力,实现阻尼元件(40)阻尼力大小的调节,该调节阻尼力和高度的装置(10)实现了阻尼力和高度的调节。

Description

一种调节阻尼力和高度的装置、座椅和车辆悬架系统
相关申请的交叉参考
本申请要求于2019年10月18日提交中国专利局、申请号为201910991431.1、名称为“一种调节阻尼力和高度的装置、座椅和车辆悬架系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及减震器领域,具体涉及一种调节阻尼力和高度的装置、座椅和车辆悬架系统。
背景技术
现有悬架系统主要包括高度调节和阻尼力调节两个控制系统,这两个控制系统是相互独立的体系,分别具备相应的控制机构。在手动调节方式中,需要同时按压两个按钮实现两个控制系统的同步调节,操作不便。在电控方式中,比较常用的是基于CDC阻尼器(CDC,Continuous Damping Control)的悬架控制系统,该悬架控制系统首先利用传感器采集信息,并将采集到的信息发送至电子控制单元,电子控制单元同时计算出空气弹簧气囊内的空气压力和阻尼器的阻尼力,并将计算出的控制信号同时发送至空气弹簧和CDC阻尼器,控制空气弹簧和CDC阻尼器同时进行相应操作,从而实现悬架系统的高度调节和阻尼力调节。虽然这种悬架控制系统可以很好地提升悬架系统的稳定性和舒适性,但是该悬架控制系统中的电子元件在实际应用过程中易受到安装位置的限制,使得控制精度不够精确且安装维护不便;另外,电子元件在线路布局上容易受到悬架系统自身空间的限制,且该悬架控制系统的成本较高,使得该悬架控制系统没有得到广泛的应用。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的一种调节阻尼力和高度的装置、座椅和车辆悬架系统。
依据本发明的一个方面,提供了一种调节阻尼力和高度的装置,所述调节阻尼力和高度的装置包括调节阀,所述调节阀分别与气源、大气、空气弹簧和阻尼元件的阻尼力调节装置连接;
所述调节阀包括第一圆筒和至少一个可滑动布置在所述第一圆筒内的第 一控制杆,通过所述第一控制杆和所述第一圆筒相对于彼此的相对位移,使得所述空气弹簧与气源或者大气之间产生气体流动连接,实现所述空气弹簧的高度调节;和/或,使得所述阻尼元件的阻尼力调节装置与气源和大气之间气体流动连接,从而气驱动所述阻尼元件的阻尼力调节装置执行相应操作以控制所述阻尼元件输出相应的阻尼力,实现所述阻尼元件阻尼力大小的调节。
依据本发明的另一个方面,提供了一种座椅,所述座椅具有至少两个相对移动的剪刀架结构、至少一个用于减震的阻尼元件和用于高度调节的空气弹簧,所述座椅还包括阻尼元件的阻尼力调节装置和如上述的调节阻尼力和高度的装置,所述阻尼元件、所述空气弹簧、所述阻尼元件的阻尼力调节装置与所述调节阻尼力和高度的装置四者的位置相适应,所述调节阻尼力和高度的装置分别与所述阻尼元件的阻尼力调节装置和所述空气弹簧连接;
所述调节阻尼力和高度的装置的一端连接在其中一个剪刀架结构上,所述调节阻尼力和高度的装置的另一端连接在另一个剪刀架结构上,所述两个相对移动的剪刀架结构的相对运动驱动所述调节阻尼力和高度的装置控制所述空气弹簧充气或者放气,或者,所述两个相对移动的剪刀架结构的相对运动驱动所述调节阻尼力和高度的装置控制所述阻尼元件的阻尼力调节装置执行相应操作,实现座椅阻尼力调节。
依据本发明的再一个方面,提供了一种车辆悬架系统,所述车辆悬挂系统包括车身和至少四个车轮,所述车身与所述车轮之间设置有至少两个用于减震的阻尼元件和用于高度调节的空气弹簧,所述车辆悬挂系统还包括阻尼元件的阻尼力调节装置和如上述的调节阻尼力和高度的装置,所述阻尼元件、所述空气弹簧、所述阻尼元件的阻尼力调节装置和所述调节阻尼力和高度的装置四者的位置相适应,所述调节阻尼力和高度的装置分别与所述阻尼元件的阻尼力调节装置和所述空气弹簧连接。
本发明的有益效果是:本发明请求保护的调节阻尼力和高度装置通过第一控制杆和第一圆筒相对于彼此的相对位移既可以控制空气弹簧的充气或放气实现高度调节,也可以同时气驱动阻尼元件的阻尼力调节装置执行相应操作以控制阻尼元件输出相应的阻尼力,实现阻尼力调节,即,实现悬架系统的高度调节或者同步实现悬架系统的高度调节和阻尼力调节,使得减震效果达到最佳状态,本发明的技术方案相比于现有技术中通过电控方式实现高度和阻尼力的同步调节,提升了高度调节和阻尼力调节的灵敏度,进一步提升舒适性;另外,本发明的技术方案使得驾驶员在行驶过程中无需手动调节阻尼力和高度,使得驾驶员的注意力更加集中,在一定程度上可以降低交通事 故的发生;而且本发明的技术方案由线性结构构成,该结构与悬架系统的高度相适应,不受悬架系统自身空间和安装位置的限制,安装便捷、故障率低、维护方便,成本低。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了根据本发明一个实施例中的一种调节阻尼力和高度的装置的立体图;
图2示出了根据本发明一个实施例中的一种调节阻尼力和高度的装置的主视图;
图3示出了根据本发明一个实施例中的一种调节阻尼力和高度的装置的第一种剖面图;
图4示出了根据本发明一个实施例中的一种调节阻尼力和高度的装置的第二种剖面图;
图5示出了根据本发明一个实施例中的一种控制杆的立体图;
图6示出了根据本发明一个实施例中的另一种控制杆的立体图;
图7(a)示出了根据本发明一个实施例中的另一种调节阻尼力和高度的装置的第一种工作状态的剖面图;
图7(b)示出了根据本发明一个实施例中的另一种调节阻尼力和高度的装置的第二种工作状态的剖面图;
图8示出了根据本发明一个实施例中的再一种调节阻尼力和高度的装置的立体图;
图9示出了根据本发明一个实施例中的再一种调节阻尼力和高度的装置的爆炸图;
图10(a)示出了根据本发明一个实施例中的再一种调节阻尼力和高度的装置的第一种工作状态的剖面图;
图10(b)示出了根据本发明一个实施例中的再一种调节阻尼力和高度的装 置的第二种工作状态的剖面图;
图11示出了根据本发明一个实施例中的又一种调节阻尼力和高度的装置的立体图;
图12示出了根据本发明一个实施例中的又一种调节阻尼力和高度的装置的爆炸图;
图13示出了根据本发明一个实施例中的一种座椅的功能结构示意图;
附图说明:调节阻尼力和高度的装置10;空气弹簧20;阻尼元件40;剪刀架结构(50,60);调节阀A;第一圆筒A100;第一进气口A110;第二进气口A120;第一出气口A130;第二出气口A140;第三出气口A150;第一排气口A160;第二排气口A170;第一控制杆A200;第一部分A210;第二部分A220;第一轴向凹槽(A221,A223);端部区域A222;第一端部区域A2221;第二端部区域A2222;第二轴向凹槽(A2221-1,A2222-1);密封元件A300;第一密封元件A310;第二密封元件A320;第三密封元件A330;第四密封元件A340;气体腔室A400;第一气体腔室A410;第二气体腔室A420;第三气体腔室A430;第四气体腔室A440;第五气体腔室A450;气体压缩装置B;第二圆筒B100;第二控制杆B200;导向块B300;导向装置C;导向环槽(C110,C221);导向杆(C120,C230);导向板C210;导向槽C220;导向凹槽C222;导向滑槽(C200,C300);固定装置D。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
实施例一
图1示出了根据本发明一个实施例中的一种调节阻尼力和高度的装置的立体图,如图1所示,调节阻尼力和高度的装置10包括调节阀A,该调节阀A分别与气源、大气、空气弹簧和阻尼元件的阻尼力调节装置连接;该调节阀A包括第一圆筒A100和至少一个可滑动布置在第一圆筒A100内的第一控制杆A200,通过第一控制杆A100和第一圆筒A100相对于彼此的相对位移,使得空气弹簧与气源或者大气之间产生气体流动连接,实现空气弹簧的高度调节;和/或,使得阻尼元件的阻尼力调节装置与气源和大气之间气体流动连接,从而气驱动阻尼元件的阻尼力调节装置执行相应操作以控制阻尼元件输 出相应的阻尼力,实现所述阻尼元件阻尼力大小的调节。
需要说明的是,阻尼元件的阻尼力调节装置包括控制阻尼元件的调节销的摆动方向和摆动幅度大小的装置,本实施例中将这种装置称为阻尼元件的调节销的驱动装置。阻尼元件的调节销的驱动装置主要包括以下两种结构:
第一种阻尼元件的调节销的驱动装置包括气体压缩装置(例如气缸)和具有回位弹簧的拉线控制装置,其中调节阀A与气体压缩装置连接,且该气体压缩装置通过拉线控制装置与阻尼元件的调节销连接。调节阀A的第一控制杆A100和第一圆筒A100相对于彼此产生相对位移的过程中,调节阀A自身内部的气体流量发生变化以气驱动气体压缩装置内部的气体的状态量和状态量的变化的频率,例如气压和气压的变化的频率,从而改变气体压缩装置的工作行程大小,当气体压缩装置的工作行程变大时,拉线控制装置的驱动力变大;当气体压缩装置的工作行程变小时,拉线控制装置的驱动力变小。当然也可以进行相反设置,本实施例对气体压缩装置的工作行程与拉线控制装置驱动力的对应关系不作进一步限定。由于拉线控制装置的回位力由回位弹簧提供,因此,在不改变回位弹簧的前提下,拉线控制装置的回位力与拉线控制装置的驱动力成线性关系。因此,通过改变气体压缩装置的工作行程大小即可调整拉线控制装置的驱动力和回位力之间的匹配关系,从而驱动阻尼元件的调节销往复摆动,即,驱动阻尼元件的调节销的摆动方向和摆动幅度的大小,控制阻尼元件输出相应的阻尼力,实现阻尼力的调节。
第二种阻尼元件的调节销的驱动装置包括气体压缩装置(例如气缸),该气体压缩装置的驱动杆与阻尼元件的调节销直接连接,调节阀A与该气体压缩装置气动连接。调节阀A的第一控制杆A100和第一圆筒A100相对于彼此产生相对位移的过程中,调节阀A自身内部的气体流量发生变化以气驱动气体压缩装置内部的气体的状态量和状态量的变化的频率,例如气压和气压的变化的频率,使得气体压缩装置的驱动杆和缸筒之间的相对位移发生变化,从而气体压缩装置的驱动杆驱动阻尼元件的调节销往复摆动,即,驱动阻尼元件的调节销的摆动方向和摆动幅度的大小,控制阻尼元件输出相应的阻尼力,实现阻尼力的调节。
另外,阻尼元件的阻尼力调节装置还包括比例阀,该比例阀与阻尼元件的阻尼液流通腔的阀口连接。调节阀A与该比例阀气动连接,调节阀A的第一控制杆A100和第一圆筒A100相对于彼此产生相对位移的过程中,调节阀A自身内部的气体流量发生变化以气驱动该比例阀的工作行程发生变化,从而控制阻尼元件的阻尼液流通腔的阀口的通径大小,例如,该比例阀的工作 行程变大时,阻尼元件的阻尼液流通腔的阀口的通径变小,亦可进行相反设置,本实施例对比例阀的工作行程与阻尼元件的阻尼液流通腔的阀口的通径的对应关系不作进一步限定。通过控制阻尼元件的阻尼液流通腔的阀口的通径大小,实现控制阻尼元件的阻尼液流量、阻尼液流速或者阻尼液流量和阻尼液流速的目的,最终控制阻尼元件输出相应的阻尼力,实现阻尼力调节。
需要进一步说明的是,本实施例中的阻尼元件包括CDC阻尼器和PDC阻尼器(PDC,Pneumatic Damping Control)等,本实施例对阻尼元件的类型不作进一步限定,只需阻尼元件的阻尼力可调即可。另外,上述内容仅对阻尼元件的阻尼力调节装置的结构进行列举说明,其他的只要能够对阻尼元件的阻尼力进行调节的调节装置均在本实施例的保护范围之内。
可见,本实施例请求保护的调节阻尼力和高度装置通过第一控制杆和第一圆筒相对于彼此的相对位移既可以控制空气弹簧的充气或放气实现高度调节,也可以同时气驱动阻尼元件的阻尼力调节装置执行相应操作以控制阻尼元件输出相应的阻尼力,实现阻尼力调节,即,实现悬架系统的高度调节或者同步实现悬架系统的高度调节和阻尼力调节,使得减震效果达到最佳状态,本实施例的技术方案相比于现有技术中通过电控方式实现高度和阻尼力的同步调节,提升了高度调节和阻尼力调节的灵敏度,进一步提升舒适性;另外,本实施例的技术方案使得驾驶员在行驶过程中无需手动调节阻尼力和高度,使得驾驶员的注意力更加集中,在一定程度上可以降低交通事故的发生;而且本实施例的技术方案由线性结构构成,该结构与悬架系统的高度相适应,不受悬架系统自身空间和安装位置的限制,安装便捷、故障率低、维护方便,成本低。
进一步地,该调节阀A的工作行程至少包括三个位移阈值范围,其中,第二位移阈值范围包含第一位移阈值范围,第三位移阈值范围包含第二位移阈值范围;
调节阀A包括第一圆筒A100和至少一个可滑动布置在第一圆筒A100内的第一控制杆A200,第一圆筒A100和第一控制杆A200相对于彼此产生不同的相对位移时,调节阀主要有以下三种悬浮工作模式:
第一种悬浮工作模式,当第一圆筒A100和第一控制杆A200相对于彼此的相对位移在第一位移阈值范围内,调节阀A不产生气体流动连接,即,空气弹簧与气源或者大气之间未产生气体流动连接且阻尼元件的阻尼力调节装置与气源和大气之间未产生气体流动连接,这种情况下空气弹簧既不充气也不放气,而且阻尼元件的阻尼力保持预设的基础阻尼力。
第二种悬浮工作模式,当第一圆筒A100和第一控制杆A200相对于彼此的相对位移在第一位移阈值范围与第二位移阈值范围之间,使得空气弹簧与气源产生气体流动连接,实现空气弹簧的充气,或者,空气弹簧与大气之间产生气体流动连接,实现空气弹簧的放气。这种情况下,仅是空气弹簧的高度进行调节,阻尼元件的阻尼力依旧保持预设的基础阻尼力。
例如,第一圆筒A100和第一控制杆A200相对于彼此发生的相对位移从第一位移阈值范围的上限值到第二位移阈值范围的上限值的过程中,使得空气弹簧与大气之间产生气体流动连接,实现空气弹簧的放气;或者,第一圆筒A100和第一控制杆A200相对于彼此发生的相对位移从第一位移阈值范围的下限值到第二位移阈值范围的下限值的过程中,使得空气弹簧与气源产生气体流动连接,实现空气弹簧的充气。
第三种悬浮工作模式,当第一圆筒A100和第一控制杆A200相对于彼此的相对位移在第二位移阈值范围与第三位移阈值范围之间,使得阻尼元件的阻尼力调节装置与气源和大气之间气体流动连接,使得阻尼元件的阻尼力调节装置内部的气压产生变化,从而气驱动阻尼元件的阻尼力调节装置执行相应操作以控制阻尼元件输出相应的阻尼力,实现阻尼元件阻尼力大小的调节,且空气弹簧与气源或者大气之间产生气体流动连接,实现空气弹簧的充气或者放气。这种情况下,空气弹簧的高度和阻尼元件的阻尼力同步调节。
例如,第一圆筒A100和第一控制杆A200相对于彼此发生的相对位移从第二位移阈值范围的上限值到第三位移阈值范围的上限值的过程中,使得空气弹簧与大气之间产生气体流动连接,实现空气弹簧放气,且阻尼元件的阻尼力调节装置与气源和大气之间气体流动连接,使得阻尼元件的阻尼力调节装置内部的气压产生变化,从而气驱动阻尼元件的阻尼力调节装置执行相应操作以控制阻尼元件的阻尼力增加;或者,第一圆筒A100和第一控制杆A200相对于彼此发生的相对位移从第二位移阈值范围的下限值到第三位移阈值范围的下限值的过程中,使得空气弹簧与气源产生气体流动连接,实现空气弹簧充气,且阻尼元件的阻尼力调节装置与气源和大气之间气体流动连接,使得阻尼元件的阻尼力调节装置内部的气压产生变化,从而气驱动阻尼元件的阻尼力调节装置执行相应操作以控制阻尼元件的阻尼力增加。
需要说明的是,空气弹簧在第二位移阈值范围与第三位移阈值范围之间的充放气速度大于该空气弹簧在第一位移阈值范围与第二位移阈值范围之间的充放气速度。
可见,本实施例请求保护的调节阻尼力和高度装置在不同的位置既可以 控制空气弹簧的充气或放气实现高度调节,也可以气驱动阻尼元件的阻尼力调节装置执行相应操作以控制阻尼元件输出相应的阻尼力,实现阻尼力调节,即,在不同位置处进行高度调节,或者同步实现高度调节和阻尼力调节,使得减震效果与位置变化相适应,使得舒适性达到最佳状态。
进一步地,图2示出了根据本发明一个实施例中的一种调节阻尼力和高度的装置的主视图,图3示出了根据本发明一个实施例中的一种调节阻尼力和高度的装置的第一种剖面图,图4示出了根据本发明一个实施例中的一种调节阻尼力和高度的装置的第二种剖面图,如图2-4所示,第一圆筒A100包括至少一个第一进气口A110、第二进气口A120、第一出气口A130、第二出气口A140、第三出气口A150、第一排气口A160和第二排气口A170;第一进气口A110与气源连接,第一进气口A110与第一出气口A130连接;第一出气口A130与第二进气口A120连接;第二出气口A140分别与第一排气口A160和阻尼元件的阻尼力调节装置连接;第三出气口A150与空气弹簧连接口连接;第一排气口A160和第二排气口A170分别与大气连接;
当第一圆筒A100和第一控制杆A200相对于彼此的相对位移在第一位移阈值范围与第二位移阈值范围之间时,第二进气口A120与第三出气口A150之间产生气体流动连接,实现空气弹簧的充气,或者,第三出气口A150与第二排气口A170之间产生气体流动连接,实现空气弹簧的放气;这种情况下,空气弹簧充气或者放气,但是阻尼元件的阻尼力依旧保持预设的基础阻尼力。
当第一圆筒A100和第一控制杆A200相对于彼此的相对位移在第二位移阈值范围与第三位移阈值范围之间时,第二出气口A140与第一进气口A110和第一排气口A160之间产生气体流动连接,使得阻尼元件的阻尼力调节装置内部的气压产生变化,从而气驱动阻尼元件的阻尼力调节装置执行相应操作,控制阻尼元件输出相应的阻尼力,实现阻尼元件的阻尼力调节;同时第三出气口A150与第二进气口A120之间产生气体流动连接,实现空气弹簧的充气;或者,第二出气口A140与第二进气口A120和第一排气口A160之间产生气体流动连接,使得阻尼元件的阻尼力调节装置内部的气压产生变化,从而气驱动阻尼元件的阻尼力调节装置执行相应操作以控制阻尼元件输出相应的阻尼力,实现阻尼元件的阻尼力调节,同时第三出气口A150与第二排气口A170,实现空气弹簧的放气。这种情况下,空气弹簧的高度和阻尼元件的阻尼力同步调节,提升舒适性,降低崎岖路面产生的不适感。
仍如图3或4所示,第一圆筒A100与第一控制杆A200之间设置有至少四个密封元件A300,从而在第一圆筒A100与第一控制杆A200之间形成彼 此分离连续的至少五个气体腔室A400。
进一步地,仍如图3或4所示,气体腔室A400包括第一气体腔室A410、第二气体腔室A420、第三气体腔室A430、第四气体腔室A440和第五气体腔室A450,第一气体腔室A410与气源连接,第一气体腔室A410与第三气体腔室A430连接,第二气体腔室A420分别与阻尼元件的阻尼力调节装置和大气连接;第四气体腔室A440与空气弹簧连接;第五气体腔室A450与大气连接。具体地,第一气体腔室A410包括第一进气口A110和第二出气口A130,第二气体腔室A420包括第二出气口A140和第一排气口A160,第三气体腔室A430包括第二进气口A120,第四气体腔室A440包括第三出气口A150,第五气体腔室A450包括第二排气口A170。由于五个气体腔室彼此分离又是相互连续的,且第一气体腔室A410与第三气体腔室A430连通,因此,当第一控制杆A200在第一圆筒A100中往复运动时,使得五个气体腔室中产生相应的气体流动连接,从而实现高度调节或者高度和阻尼力的同步调节,使得舒适性达到最佳。
图5示出了根据本发明一个实施例中的一种控制杆的立体图,图6示出了根据本发明一个实施例中的另一种控制杆的立体图,如图5或者图6所示,第一控制杆A200包括至少第一部分A210和第二部分A220,第二部分A220设置在第一部分A210的末端,第一部分A210的直径小于第二部分A220的直径。
进一步地,仍如图5所示,第二部分A220的纵轴线与第一部分A210的纵轴线相互重合或平行,第一部分A210的横截面相对于第二部分A220的横截面的面积差用于承载气体压力,从而使得第一控制杆在气体压力的驱动下运动。
具体地,仍如图5或6所示,第二部分A220包括至少一个第一轴向凹槽A221。当第一轴向凹槽A221的数量为多个时,第一轴向凹槽A221可以位于同一水平线上,也可以位于不同的水平线上,且多个第一轴向凹槽A221的形状可以是相同,也可以是不同的。第二部分A220主要以下两种结构:
第一种结构,仍如图4和5所示,至少一个第一轴向凹槽A221与第三气体腔室A430对应设置。这里需要说明的是,第一控制杆A200和第一圆筒A100未相对于彼此产生相对位移时,该第一轴向凹槽A221对应设置在第三气体腔室A430内,即,设置在第二密封元件A320与第三密封元件A330之间。在第一控制杆A200和第一圆筒A100相对于彼此产生相对位移的情况下,当第一轴向凹槽A221越过第三气体腔室A430与第四气体腔室A440之间的 第三密封元件A330时,第三气体腔室A430与第四气体腔室A440之间产生气体流动连接,实现空气弹簧充气;当第一轴向凹槽A221越过第三气体腔室A430与第二气体腔室A420之间的第二密封元件A320时,第三气体腔室A430与第二气体腔室A420之间产生气体流动连接,气驱动阻尼元件的阻尼力调节装置执行相应操作以控制阻尼元件输出相应的阻尼力,实现阻尼力调节。可见,在第二部分的内部开设第一轴向凹槽A221,不仅可以在第一控制杆A200和第一圆筒A100相对于彼此产生相对位移时,连通第二气体腔室A420和第三气体腔室A430为空气弹簧提供气体实现空气弹簧的充气,而且还可以连通第三气体腔室A430和第四气体腔室A440,气驱动阻尼元件的阻尼力调节装置执行相应操作以控制阻尼元件输出相应的阻尼力,实现阻尼力调节。同时还可在一定程度上减少第一控制杆和第一圆筒之间的摩擦力,提升控制精度。
同时,第二部分A220还包括至少一个端部区域A222,端部区域A222具有相对于第二部分A220的纵向轴线倾斜的倒角。仍如图5所示,第二部分A222还包括第一端部区域A2221和第二端部区域A2222,其中第一端部区域A2221设置在第二部分A220的末端,第二部分A220的末端为远离第一部分A210末端的部分;第二端部区域A2222设置在第二部分A220的前端,第二部分A220的前端为靠近第一部分A210末端的部分。进一步地,仍如图3和图5所示,当第一端部区域A2221越过第四气体腔室A440与第五气体腔室A450之间的第四密封元件A340时,第四气体腔室A440与第五气体腔室A450之间产生气体流动连接,即,空气弹簧与大气产生气体流动连接,实现空气弹簧放气。当第二端部区域A2222越过第一气体腔室A410与第二气体腔室A420之间的第一密封元件A310时,第一气体腔室A410与第二气体腔室A420之间产生气体流动连接,为阻尼元件的阻尼力调节装置提供气体,使得阻尼元件的阻尼力调节装置内部的气压产生变化,从而气驱动阻尼元件的阻尼力调节装置执行相应操作以控制阻尼元件输出相应的阻尼力,实现阻尼力调节。端部区域的设计减小了第一控制杆和第一圆筒之间的摩擦力,使得第一控制杆在第一圆筒内往复运动地更加顺畅,避免第一控制杆在第一圆筒内往复运动时发生卡顿的现象,进一步提升控制精度。
由此可知,在第二部分的前端与末端之间的同一水平线的位置上设置至少一个第一轴向凹槽,并在第二部分的前端和末端分别设置端部区域,可以实现同时控制空气弹簧高度调节和阻尼力调节。
第二种结构,图7(a)示出了根据本发明一个实施例中的另一种调节阻尼力和高度的装置的第一种工作状态的剖面图,图7(b)示出了根据本发明一个 实施例中的另一种调节阻尼力和高度的装置的第二种工作状态的剖面图,结合如图6和图7所示,在第三气体腔室A430内对应设置至少一个第一轴向凹槽A221的同时,在第一气体腔室A410内设置至少一个第一轴向凹槽A223。这里需要说明的是,如图7(a)所示,第一控制杆A200和第一圆筒A100未相对于彼此产生相对位移时,该第一轴向凹槽A223对应设置在第一气体腔室A410内,第一轴向凹槽A221对应设置在第三气体腔室A430内。
当第一轴向凹槽A223越过第一气体腔室A410与所述第二气体腔室A420之间的第一密封元件A310时,第一气体腔室A410与所述第二气体腔室A420之间产生气体流动连接,气驱动阻尼元件的阻尼力调节装置执行相应操作,控制阻尼元件输出相应的阻尼力,实现阻尼力调节。如图7(b)所示,当第一轴向凹槽A223全部越过第一密封元件A310时,第一密封元件A310处于图6中的F区域,第一气体腔室A410与第二气体腔室A420之间断开,无气体流动连接,保证无气体泄漏。此时,阻尼元件的阻尼力停止调节。这种情况下,可以是悬架系统实现速降后,第一控制杆A200处于最低位置,仍如图7(b)所示,第一控制杆A200与第一圆筒A100的底部接触。例如座椅悬架系统实现速降后,第一控制杆处于最低位置。
当第一轴向凹槽A221越过第三气体腔室A430与第四气体腔室A440之间的第三密封元件A330时,第三气体腔室A430与第四气体腔室A440之间产生气体流动连接,实现空气弹簧充气;
当第一轴向凹槽A221越过第三气体腔室A430与第二气体腔室A420之间的第二密封元件A320时,第三气体腔室A430与第二气体腔室A420之间产生气体流动连接,气驱动阻尼元件的阻尼力调节装置执行相应操作,控制阻尼元件输出相应的阻尼力,实现阻尼力调节。可见,在第二部分的内部开设第一轴向凹槽A221,不仅可以在第一控制杆A200和第一圆筒A100相对于彼此产生相对位移时,连通第二气体腔室A420和第三气体腔室A430为空气弹簧提供气体实现空气弹簧的充气,而且还可以连通第三气体腔室A430和第四气体腔室A440,气驱动阻尼元件的阻尼力调节装置执行相应操作,控制阻尼元件输出相应的阻尼力,实现阻尼力调节。
同时,第二部分A220的末端还设置有第一端部区域A2221。当第一端部区域A2221越过第四气体腔室A440与第五气体腔室A450之间的第四密封元件A340时,第四气体腔室A440与第五气体腔室A450之间产生气体流动连接,即,空气弹簧与大气产生气体流动连接,实现空气弹簧放气。端部区域的设计减小了第一控制杆和第一圆筒之间的摩擦力,使得第一控制杆在第一 圆筒内往复运动地更加顺畅,避免第一控制杆在第一圆筒内往复运动时发生卡顿的现象,进一步提升控制精度。
由此可知,在第二部分的不同位置处设置至少一个第一轴向凹槽,并在第二部分的末端设置端部区域,可以实现空气弹簧高度调节或者空气弹簧高度调节和阻尼力同步调节。
需要说明的是,本实施例对第二部分的具体结构不作进一步限定,在实际应用中,可以根据实际情况,选择合适的第二部分的具体结构。
进一步地,仍如图5所示的第二部分的第一种结构,第二部分具有至少一个与端部区域(A2221,A2222)连接的第二轴向凹槽(A2221-1,A2222-1)。仍如图6所示的第二部分的第二种结构,第二部分具有至少一个与第一端部区域A2221连接的第二轴向凹槽A2221-1。
仍如图3、图5和图6所示,当第一端部区域A2221的第二轴向凹槽A2221-1越过第四气体腔室A440与第五气体腔室A450之间的第四密封元件340时,第四气体腔室A440与第五气体腔室A450之间产生微量的气体流动连接,使得少量的气体从空气弹簧内排出,实现空气弹簧高度的微调,从而实现悬架系统在特定位置的悬浮调节,有助于进一步提升悬架系统的舒适性。当第二端部区域A2222的第二轴向凹槽A2222-1越过第一气体腔室A410与第二气体腔室A420之间的第一密封元件A310时,第一气体腔室A410与第二气体腔室A420之间产生微量的气体流动连接,为阻尼元件的阻尼力调节装置提供较少的气体,使得阻尼元件的阻尼力调节装置内部的气压产生微小的变化,从而控制阻尼元件输出的阻尼力产生微小的变化,实现阻尼力的微调,有助于进一步提升悬架系统的舒适性。
需要说明的是,第二轴向凹槽A2221-1比第一端部区域A2221先越过第四气体腔室A440与第五气体腔室A450之间的第四密封元件340,第二轴向凹槽A2222-1比第二端部区域A2222先越过第一气体腔室A410与第二气体腔室A420之间的第一密封元件A310。
还需要说明的是,本实施例请求保护的技术方案可以通过改变第一轴向凹槽(A221,A223)和/或第二轴向凹槽(A2221-1,A2222-1)的形状和深度以控制不同的气体流量,从而在不同位置处实现不同的高度和/或阻尼力调节,例如,第一轴向凹槽(A221,A223)可以是矩形凹槽、V形凹槽或者仍如图5所示,第一轴向凹槽(A221,A223)可以包含矩形凹槽和第二轴向凹槽(A2221-1,A2222-1),其中该矩形凹槽位于上部,第二轴向凹槽(A2221-1,A2222-1)位于下部,或者,该矩形凹槽位于下部,第二轴向凹槽(A2221-1, A2222-1)位于上部,或者,该矩形凹槽位于两个第二轴向凹槽(A2221-1,A2222-1)的中间;第二轴向凹槽(A2221-1,A2222-1)可以是矩形凹槽或者V形凹槽,本实施例对第一轴向凹槽和第二轴向凹槽的形状不作进一步限定。
具体地,可以通过改变第一轴向凹槽(A221,A223)的形状和深度控制空气弹簧的充气速度和阻尼力调节的速度,例如,将第一轴向凹槽A221的形状设计成菱形,使得当第一轴向凹槽A221的下三角形的顶角区域越过第三气体腔室A430与第四气体腔室A440之间的第三密封元件A330时,第三气体腔室A430与第四气体腔室A440之间产生微量的气体流动连接,使得少量的气体充入空气弹簧内,实现空气弹簧高度的微调,从而实现悬架系统在特定位置的悬浮调节,有助于进一步提升悬架系统的舒适性;当第一轴向凹槽A221的下三角形的非顶角区域越过第三气体腔室A430与第四气体腔室A440之间的第三密封元件A330时,第三气体腔室A430与第四气体腔室A440之间产生较大量的气体流动连接,使得较多的气体充入空气弹簧内,实现空气弹簧高度的快速调节。当第一轴向凹槽A221的上三角形的顶角区域越过第三气体腔室A430与第二气体腔室A420之间的第二密封元件A320时,第三气体腔室A430与第二气体腔室A420之间产生微量的气体流动连接,为阻尼元件的阻尼力调节装置提供少量的气体,较小地改变阻尼元件的阻尼力调节装置内部气压的变化,从而实现阻尼力大小的微调,进而获得较佳的舒适性。当第一轴向凹槽A221的上三角形的非顶角区域越过第三气体腔室A430与第二气体腔室A420之间的第二密封元件A320时,第三气体腔室A430与第二气体腔室A420之间产生较大量气体流动连接,为阻尼元件的阻尼力调节装置提供较多气体,较大地改变阻尼元件的阻尼力调节装置内部气压的变化,从而较快地实现阻尼力大小的调节,进而获得较佳的舒适性。另外,第一轴向凹槽的设计可以减小第一控制杆在第一圆筒内往复运动时与密封元件产生的摩擦力,从而避免第一控制杆在第一圆筒内往复运动时发生卡顿的现象,提升控制精度。同理也可将第一轴向凹槽A223的形状设计成菱形。
另外,可以将第一轴向凹槽A223的形状设计成V形,当第一轴向凹槽A223的小开口区域越过第一气体腔室A410与所述第二气体腔室A420之间的第一密封元件A310时,第一气体腔室A410与所述第二气体腔室A420之间产生微量的气体流动连接,为阻尼元件的阻尼力调节装置提供少量的气体,较小地改变阻尼元件的阻尼力调节装置内部气压的变化,从而实现阻尼力大小的微调,进而获得较佳的舒适性。当第一轴向凹槽A223的大开口区域越过第一气体腔室A410与所述第二气体腔室A420之间的第一密封元件A310时, 第一气体腔室A410与所述第二气体腔室A420之间产生较大量的气体流动连接,为阻尼元件的阻尼力调节装置提供较多气体,较大地改变阻尼元件的阻尼力调节装置内部气压的变化,从而较快地实现阻尼力大小的调节,进而获得较佳的舒适性。
为了满足悬架系统不同悬浮工作行程的需求,需要将调节阻尼力和高度的装置的工作行程与悬架系统悬浮工作行程相互适应,如果悬架系统悬浮工作行程较长,那么调节阻尼力和高度的装置的工作行程需要较长,否则一旦悬架系统的悬浮工作行程超出调节阻尼力和高度的装置的工作行程,调节阻尼力和高度的装置将被损坏。这样的话,工作行程较长的调节阻尼力和高度的装置的成本增加,而且调节阻尼力和高度的装置整体的抗拉强度变弱。为了解决这一问题,本发明提出了另一种调节阻尼力和高度的装置。图8示出了根据本发明一个实施例中的再一种调节阻尼力和高度的装置的立体图,图9示出了根据本发明一个实施例中的再一种调节阻尼力和高度的装置的爆炸图,图10(a)示出了根据本发明一个实施例中的再一种调节阻尼力和高度的装置的第一种工作状态的剖面图,图10(b)示出了根据本发明一个实施例中的再一种调节阻尼力和高度的装置的第二种工作状态的剖面图,如图8-10所示,调节阻尼力和高度的装置10还包括气体压缩装置B,气体压缩装置B与气源连接;
气体压缩装置B包括第二圆筒B100和至少一个可滑动布置在第二圆筒B100内的第二控制杆B200;第二控制杆B200与第一控制杆A200连接,例如,第一控制杆B200与第一控制杆A200通过固定装置D连接。如图10(b)所示,当第一控制杆A200与第一圆筒A100相对于彼此的相对位移达到最大工作行程时,由第二控制杆B200与第二圆筒B100相对于彼此的相对位移进行补偿。也就是说,如图10(a)所示,在调节阀A的工作行程内,气体压缩装置B的工作行程不发生变化,气体压缩装置仅起到连接的作用,其中,调节阀A的工作行程由第一控制杆A200和第一圆筒A100相比于彼此的相对位移确定,气体压缩装置B的工作行程由第二控制杆B200和第二圆筒B100相比于彼此的相对位移确定;当调节阀A的工作行程达到最大值时,由气体压缩装置B的工作行程进行补偿,延长了调节阀A的工作行程,实现了在保证调节阻尼力和高度的装置整体抗拉强度最佳状态下,满足不同悬架系统不同悬浮工作行程的需求。
进一步地,仍如图8所示,调节阻尼力和高度的装置10还包括导向装置C,气体压缩装置B与调节阀A分别与导向装置C滑动连接,且气体压缩装 置B与调节阀A连接。在实际应用中,也可以仅将调节阀A与导向装置C滑动连接,气体压缩装置B不与导向装置C滑动连接,这种情况下,气体压缩装置B与调节阀A连接。还可以仅将气体压缩装置B与导向装置C滑动连接,调节阀A不与导向装置C滑动连接,这种情况下,气体压缩装置B与调节A连接。本实施例对气体压缩装置B和调节阀A与导向装置C的连接方式不作进一步限定。导向装置C使得气体压缩装置B和调节阀A的运动工作行程在同一条纵轴线上,并承受一定的侧向压力,提升调节阻尼力和高度的装置的控制精度。同时,调节阻尼力和高度的装置可以通过导向装置固定在悬架系统上。可见,导向装置在本实施例请求保护的技术方案中起到定位、导向和承受一定侧向压力的作用。
具体地,导向装置C主要包括以下两种结构:
第一种结构,仍如图8和9所示,导向装置C包括至少两个导向环槽C110和至少一个导向杆C120,导向杆C120与导向环槽C110相对于彼此滑动;气体压缩装置B与至少一个导向环槽C110连接;调节阀A与至少一个导向环槽C110连接。
第二种结构,图11示出了根据本发明一个实施例中的又一种调节阻尼力和高度的装置的立体图,图12示出了根据本发明一个实施例中的又一种调节阻尼力和高度的装置的爆炸图,如图11-12所示,导向装置C包括至少一个导向板C210、至少三个导向槽C220和至少两个导向杆C230;导向槽C220包括导向环槽C221和导向凹槽C222;导向板C210的两侧设置有至少两个导向环槽C221,例如,导向板C210的两侧设置有至少两个对称的导向环槽C221,导向板C210的中心设置有至少一个导向凹槽C222;气体压缩装置B设置有导向块B300,导向块B300在导向凹槽C222中滑动;调节阀A设置在导向板C210上;导向杆C230与导向环槽C221相对于彼此滑动,具体地,导向杆C230在导向环槽C221中滑动。
需要说明的是,在实际应用中,可以根据实际需要,选择应用第一种结构的导向装置或者第二种结构的导向装置,本实施例对导向装置的结构不作进一步的限定。
还需要说明的是,调节阻尼力和高度的装置10可以应用在任意一种悬架系统中,悬架系统包括座椅悬架系统、车辆底盘悬架系统以及驾驶室悬架系统中。本实施例对调节阻尼力和高度的装置10的应用领域不做进一步限定。
实施例二
图13示出了根据本发明一个实施例中的一种座椅的功能结构示意图,如 图13所示,一种座椅具有至少两个相对移动的剪刀架结构(50,60)、至少一个用于减震的阻尼元件40和用于高度调节的空气弹簧20,该座椅还包括阻尼元件的阻尼力调节装置(图中未示出)和如实施例一请求保护的调节阻尼力和高度的装置10,阻尼元件40、空气弹簧20、阻尼元件的阻尼力调节装置与调节阻尼力和高度的装置10四者的位置相适应,调节阻尼力和高度的装置10分别与阻尼元件的阻尼力调节装置和空气弹簧20连接;
调节阻尼力和高度的装置10的一端连接在其中一个剪刀架结构50上,调节阻尼力和高度的装置10的另一端连接在另一个剪刀架结构60上,两个相对移动的剪刀架结构(50,60)的相对运动驱动调节阻尼力和高度的装置10控制空气弹簧20充气或者放气,实现座椅的悬浮调节;和/或,两个相对移动的剪刀架结构(50,60)的相对运动驱动调节阻尼力和高度的装置10控制阻尼元件的阻尼力调节装置执行相应操作,具体地,调节阻尼力和高度的装置10气驱动阻尼元件的阻尼力调节装置20执行相应操作,控制阻尼元件输出相应阻尼力,实现座椅阻尼力调节。
可见,本实施例请求保护的座椅通过调节阻尼力和高度的装置既可以实现高度调节,也可以实现高度和阻尼力的同步调节,使得座椅舒适性达到最佳状态。本实施例的技术方案相比于现有技术中通过电控方式实现高度和阻尼力的同步调节的座椅,提升了高度调节和阻尼力调节的灵敏度,进一步提升舒适性;另外,本实施例的技术方案使得驾驶员在行驶过程中无需手动调节阻尼力和高度,使得驾驶员的注意力更加集中,在一定程度上可以降低交通事故的发生;而且座椅中的调节阻尼力和高度的装置由线性结构构成,该结构与座椅悬架系统的高度相适应,不受座椅悬架系统自身空间和安装位置的限制,安装便捷、故障率低、维护方便,成本低。
进一步地,座椅还包括拉索,拉索与调节阻尼力和高度的装置10连接,具体地,拉索穿过导向装置的导向滑槽(C200,C300)与调节阻尼力和高度的装置连接,拉索驱动调节阻尼力和高度的装置10往复运动,实现座椅的高度调节。一方面,驾驶员可以根据自身需要通过拉索将座椅调整到最佳高度,实现座椅的高度档位记忆调节,进而获得易于对方向盘、踏板、变速杆等装置进行操作的姿势,提升舒适性;另一方面,驾驶员可以根据实际需要拉动拉索,实现座椅的高度和阻尼力的同步调节,以降低崎岖路面产生的不适感,获得最佳的舒适性。需要说明的是,拉索的长度可以通过机械的方式进行调节,例如,通过调节手柄对拉索的长度进行调节;也可以通过电控的方式进行调节。例如通过电机对拉索的长度进行调节,本实施例对拉索长度的控制 方式不作进一步限定。
实施例三
一种车辆悬架系统包括车身和至少四个车轮,车身与车轮之间设置有至少两个用于减震的阻尼元件和用于高度调节的空气弹簧,该车辆悬挂系统还包括阻尼元件的阻尼力调节装置和如实施例一请求保护的调节阻尼力和高度的装置10,阻尼元件、空气弹簧、阻尼元件的阻尼力调节装置(图中未示出)和调节阻尼力和高度的装置10四者的位置相适应,调节阻尼力和高度的装置10分别与阻尼元件的阻尼力调节装置和空气弹簧连接。可见,只要车辆悬架的高度发生变化,车身与车轮之间的相对运动即可驱动第一圆筒和第一控制杆产生相对于彼此的相对位移,使得阻尼元件的阻尼力调节装置与气源和大气之间产生气体流动连接,和/或,使得空气弹簧与气源或者大气连接,即可实现车辆悬架系统的高度或者高度和阻尼力的同步调节,使得车辆悬架系统的减震效果与车辆悬架系统的高度相适应,提升了高度调节和阻尼力调节的灵敏度,安装便捷、故障率低、维护方便,成本低。
综上所述,本实施例请求保护的调节阻尼力和高度装置通过第一控制杆和第一圆筒相对于彼此的相对位移既可以控制空气弹簧的充气或放气实现高度调节,也可以同时气驱动阻尼元件的阻尼力调节装置执行相应操作,控制阻尼元件输出相应的阻尼力,实现阻尼力调节,即,实现悬架系统的高度调节或者同步实现悬架系统的高度调节和阻尼力调节,使得减震效果达到最佳状态,本实施例的技术方案相比于现有技术中通过电控方式实现高度和阻尼力同步调节,提升了高度调节和阻尼力调节的灵敏度,进一步提升舒适性;另外,本实施例的技术方案使得驾驶员在行驶过程中无需手动调节阻尼力和高度,使得驾驶员的注意力更加集中,在一定程度上可以降低交通事故的发生;而且本实施例的技术方案由线性结构构成,该结构与悬架系统的高度相适应,不受悬架系统自身空间和安装位置的限制,安装便捷、故障率低、维护方便,成本低。
最后应说明的是,以上仅为本发明的优选实施例而已,并非用于限定本发明的保护范围,尽管参照前述各实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述个实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (22)

  1. 一种调节阻尼力和高度的装置,其特征在于,所述调节阻尼力和高度的装置包括调节阀,所述调节阀分别与气源、大气、空气弹簧和阻尼元件的阻尼力调节装置连接;
    所述调节阀包括第一圆筒和至少一个可滑动布置在所述第一圆筒内的第一控制杆,
    通过所述第一控制杆和所述第一圆筒相对于彼此的相对位移,使得所述空气弹簧与气源或者大气之间产生气体流动连接,实现所述空气弹簧的高度调节;和/或,使得所述阻尼元件的阻尼力调节装置与气源和大气之间气体流动连接,从而气驱动所述阻尼元件的阻尼力调节装置执行相应操作以控制所述阻尼元件输出相应的阻尼力,实现所述阻尼元件阻尼力大小的调节。
  2. 如权利要求1所述的调节阻尼力和高度的装置,其特征在于,
    所述调节阀的工作行程至少包括三个位移阈值范围,其中,第二位移阈值范围包含第一位移阈值范围,第三位移阈值范围包含所述第二位移阈值范围;
    当所述第一圆筒和所述第一控制杆相对于彼此的相对位移在所述第一位移阈值范围内,使得所述空气弹簧与气源或者大气之间未产生气体流动连接,所述空气弹簧既不充气也不放气,且使得所述阻尼元件的阻尼力调节装置与气源和大气之间未产生气体流动连接,所述阻尼元件的阻尼力保持预设的基础阻尼力;
    当所述第一圆筒和所述第一控制杆相对于彼此的相对位移在所述第一位移阈值范围与所述第二位移阈值范围之间,使得所述空气弹簧与气源或者大气之间产生气体流动连接,实现空气弹簧的充气或放气;
    当所述第一圆筒和所述第一控制杆相对于彼此的相对位移在所述第二位移阈值范围与所述第三位移阈值范围之间,使得所述阻尼元件的阻尼力调节装置与气源和大气之间气体流动连接,气驱动所述阻尼元件的阻尼力调节装置执行相应操作,实现所述阻尼元件阻尼力大小的调节,且使得所述空气弹簧与气源或者大气之间产生气体流动连接,实现所述空气弹簧的充气或者放气。
  3. 如权利要求2所述的调节阻尼力和高度的装置,其特征在于,
    所述第一圆筒包括至少一个第一进气口、第二进气口、第一出气口、第 二出气口、第三出气口、第一排气口和第二排气口;
    所述第一进气口与气源连接,所述第一进气口与所述第一出气口连接;
    所述第一出气口与所述第二进气口连接;
    所述第二出气口分别与所述第一排气和阻尼元件的阻尼力调节装置连接;
    所述第三出气口与空气弹簧连接口连接;
    所述第一排气口和所述第二排气口分别与大气连接。
  4. 如权利要求3所述的调节阻尼力和高度的装置,其特征在于,当所述第一圆筒和所述第一控制杆相对于彼此的相对位移在所述第一位移阈值范围与所述第二位移阈值范围之间时,所述第二进气口与所述第三出气口之间产生气体流动连接,实现所述空气弹簧的充气,或者,所述第三出气口与所述第二排气口之间产生气体流动连接,实现所述空气弹簧的放气;
    当所述第一圆筒和所述第一控制杆相对于彼此的相对位移在所述第二位移阈值范围与所述第三位移阈值范围之间时,所述第二出气口与所述第一进气口和所述第一排气口之间产生气体流动连接,气驱动所述阻尼元件的阻尼力调节装置执行相应操作,实现所述阻尼元件的阻尼力调节,且所述第三出气口与所述第二进气口之间产生气体流动连接,实现所述空气弹簧的充气;或者,所述第二出气口与所述第二进气口和所述第一排气口之间产生气体流动连接,气驱动所述阻尼元件的阻尼力调节装置执行相应操作,实现所述阻尼元件的阻尼力调节,且所述第三出气口与所述第二排气口之间产生气体流动连接,实现所述空气弹簧的放气。
  5. 如权利要求1或2或3或4所述的调节阻尼力和高度的装置,其特征在于,
    所述第一圆筒与所述第一控制杆之间设置有至少四个密封元件,从而在所述第一圆筒与所述第一控制杆之间形成彼此分离连续的至少五个气体腔室。
  6. 如权利要求5所述的调节阻尼力和高度的装置,其特征在于,所述气体腔室包括第一气体腔室、第二气体腔室、第三气体腔室、第四气体腔室和第五气体腔室,第一气体腔室与所述气源连接,所述第一气体腔室与第三气体腔室连接,第二气体腔室分别与所述阻尼元件的阻尼力调节装置和大气连接,第四气体腔室与所述空气弹簧连接,第五气体腔室与所述大气连接。
  7. 如权利要求6所述的调节阻尼力和高度的装置,其特征在于,
    所述第一控制杆包括至少第一部分和第二部分,所述第二部分设置在所述第一部分的末端,所述第一部分的直径小于所述第二部分的直径。
  8. 如权利要求7所述的调节阻尼力和高度的装置,其特征在于,所述第二部分的纵轴线与所述第一部分的纵轴线相互重合或平行,所述第一部分的横截面相对于所述第二部分的横截面的面积差用于承载气体压力。
  9. 如权利要求8所述的调节阻尼力和高度的装置,其特征在于,所述第二部分包括至少一个第一轴向凹槽。
  10. 如权利要求9所述的调节阻尼力和高度的装置,其特征在于,所述第一轴向凹槽与第三气体腔室对应设置;
    当所述第一轴向凹槽越过所述第三气体腔室与第四气体腔室之间的第三密封元件时,所述第三气体腔室与所述第四气体腔室之间产生气体流动连接,实现空气弹簧充气;
    当所述第一轴向凹槽越过所述第三气体腔室与所述第二气体腔室之间的第二密封元件时,所述第三气体腔室与所述第二气体腔室之间产生气体流动连接,气驱动所述阻尼元件的阻尼力调节装置执行相应操作以控制所述阻尼元件输出相应的阻尼力,实现所述阻尼元件阻尼力大小的调节。
  11. 如权利要求10所述的调节阻尼力和高度的装置,其特征在于,所述第一轴向凹槽还与第一气体腔室对应设置;
    当所述第一轴向凹槽越过所述第一气体腔室与所述第二气体腔室之间的第一密封元件时,所述第一气体腔室与所述第二气体腔室之间产生气体流动连接,气驱动所述阻尼元件的阻尼力调节装置执行相应操作以控制所述阻尼元件输出相应的阻尼力,实现所述阻尼元件阻尼力大小的调节。
  12. 如权利要求10所述的调节阻尼力和高度的装置,其特征在于,所述第二部分还包括至少一个端部区域,所述端部区域具有相对于所述第二部分的纵向轴线倾斜的倒角。
  13. 如权利要求12所述的调节阻尼力和高度的装置,其特征在于,所述端部区域设置在所述第二部分的末端,当所述端部区域越过所述第四气体腔室与所述第五气体腔室之间的第四密封元件时,所述第四气体腔室与所述第五气体腔室之间产生气体流动连接,实现空气弹簧放气。
  14. 如权利要求13所述的调节阻尼力和高度的装置,其特征在于,所述 端部区域还设置在所述第二部分的前端,当所述端部区域越过所述第一气体腔室与所述第二气体腔室之间的第一密封元件时,所述第一气体腔室与所述第二气体腔室之间产生气体流动连接,气驱动所述阻尼元件的阻尼力调节装置执行相应操作以控制所述阻尼元件输出相应的阻尼力,实现所述阻尼元件阻尼力大小的调节。
  15. 如权利要求12-14任意一项所述的调节阻尼力和高度的装置,其特征在于,所述第二部分具有至少一个与所述端部区域连接的第二轴向凹槽。
  16. 如权利要求1所述的调节阻尼力和高度的装置,其特征在于,所述调节阻尼力和高度的装置还包括气体压缩装置,所述气体压缩装置与气源连接;
    所述气体压缩装置包括第二圆筒和至少一个可滑动布置在所述第二圆筒内的第二控制杆;所述第二控制杆与所述第一控制杆连接;当所述第一控制杆与所述第一圆筒相对于彼此的相对位移达到最大工作行程时,由所述第二控制杆与所述第二圆筒相对于彼此的相对位移进行补偿。
  17. 如权利要求16所述的调节阻尼力和高度的装置,其特征在于,所述调节阻尼力和高度的装置还包括导向装置,所述气体压缩装置和/或所述调节阀与所述导向装置滑动连接,所述气体压缩装置与所述调节阀连接。
  18. 如权利要求17所述的调节阻尼力和高度的装置,其特征在于,所述导向装置包括至少两个导向环槽和至少一个导向杆,所述导向杆与所述导向环槽相对于彼此滑动;
    所述气体压缩装置与至少一个导向环槽连接;
    所述调节阀与至少一个导向环槽连接。
  19. 如权利要求17所述的调节阻尼力和高度的装置,其特征在于,所述导向装置包括至少一个导向板、至少三个导向槽和至少两个导向杆;所述导向槽包括导向环槽和导向凹槽;
    所述导向板的两侧设置有至少两个所述导向环槽,所述导向板的中心设置有至少一个所述导向凹槽;
    所述气体压缩装置设置有导向块,所述导向块在所述导向凹槽中滑动;
    所述调节阀设置在所述导向板上;
    所述导向杆与所述导向环槽相对于彼此滑动。
  20. 一种座椅,所述座椅具有至少两个相对移动的剪刀架结构、至少一个用于减震的阻尼元件和用于高度调节的空气弹簧,其特征在于,所述座椅还 包括阻尼元件的阻尼力调节装置和如权利要求1-19任意一项所述的调节阻尼力和高度的装置,所述阻尼元件、所述空气弹簧、所述阻尼元件的阻尼力调节装置与所述调节阻尼力和高度的装置四者的位置相适应,所述调节阻尼力和高度的装置分别与所述阻尼元件的阻尼力调节装置和所述空气弹簧连接;
    所述调节阻尼力和高度的装置的一端连接在其中一个剪刀架结构上,所述调节阻尼力和高度的装置的另一端连接在另一个剪刀架结构上,所述两个相对移动的剪刀架结构的相对运动驱动所述调节阻尼力和高度的装置控制所述空气弹簧充气或者放气,实现所述座椅的悬浮调节;和/或,所述两个相对移动的剪刀架结构的相对运动驱动所述调节阻尼力和高度的装置控制所述阻尼元件的阻尼力调节装置执行相应操作,实现座椅阻尼力调节。
  21. 如权利要求20所述的座椅,其特征在于,所述座椅还包括拉索,所述拉索与所述调节阻尼力和高度的装置连接,所述拉索驱动所述调节阻尼力和高度的装置往复运动,实现所述座椅的高度调节。
  22. 一种车辆悬架系统,所述车辆悬挂系统包括车身和至少四个车轮,所述车身与所述车轮之间设置有至少两个用于减震的阻尼元件和用于高度调节的空气弹簧,其特征在于,所述车辆悬挂系统还包括阻尼元件的阻尼力调节装置和如权利要求1-19任意一项所述的调节阻尼力和高度的装置,所述阻尼元件、所述空气弹簧、所述阻尼元件的阻尼力调节装置和所述调节阻尼力和高度的装置四者的位置相适应,所述调节阻尼力和高度的装置分别与所述阻尼元件的阻尼力调节装置和所述空气弹簧连接。
PCT/CN2020/122006 2019-10-18 2020-10-19 一种调节阻尼力和高度的装置、座椅和车辆悬架系统 WO2021073650A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020004981.7T DE112020004981T5 (de) 2019-10-18 2020-10-19 Vorrichtungen zum Einstellen von Dämpfungskraft und -höhe, Sitz und Fahrzeugaufhängungssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910991431.1 2019-10-18
CN201910991431.1A CN110745044A (zh) 2019-10-18 2019-10-18 一种调节阻尼力和高度的装置、座椅和车辆悬架系统

Publications (1)

Publication Number Publication Date
WO2021073650A1 true WO2021073650A1 (zh) 2021-04-22

Family

ID=69278798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122006 WO2021073650A1 (zh) 2019-10-18 2020-10-19 一种调节阻尼力和高度的装置、座椅和车辆悬架系统

Country Status (3)

Country Link
CN (1) CN110745044A (zh)
DE (1) DE112020004981T5 (zh)
WO (1) WO2021073650A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110745044A (zh) * 2019-10-18 2020-02-04 安路普(北京)汽车技术有限公司 一种调节阻尼力和高度的装置、座椅和车辆悬架系统
CN110712492B (zh) 2019-10-18 2021-11-05 安路普(北京)汽车技术有限公司 一种调节高度和阻尼力的方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201021162Y (zh) * 2007-04-26 2008-02-13 南京农业大学 刚度和阻尼可调的空气弹簧剪式座椅
CN101337518A (zh) * 2007-06-29 2009-01-07 格拉默股份有限公司 带滑阀的汽车座椅
CN102180116A (zh) * 2011-04-19 2011-09-14 长春富维-江森自控汽车饰件系统有限公司 车辆座椅的气悬浮机构
US20130158791A1 (en) * 2011-12-20 2013-06-20 Michael S. Contratto Seat suspension system having fail-safe functionality
CN103660832A (zh) * 2012-09-10 2014-03-26 福特全球技术公司 具有空气弹簧和振动阻尼器的车辆的高度调节装置
CN110745044A (zh) * 2019-10-18 2020-02-04 安路普(北京)汽车技术有限公司 一种调节阻尼力和高度的装置、座椅和车辆悬架系统
CN210912116U (zh) * 2019-10-18 2020-07-03 安路普(北京)汽车技术有限公司 一种调节阻尼力和高度的装置、座椅和车辆悬架系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012214569B3 (de) * 2012-08-16 2013-10-31 Ford Global Technologies, Llc Luftfeder- und Dämpfereinheit mit Höhenverstellung
DE102013110923B4 (de) * 2013-10-01 2019-07-04 Grammer Ag Fahrzeugsitz oder Fahrzeugkabine mit einer Federungseinrichtung und Nutzkraftfahrzeug
CN105329058B (zh) * 2015-11-19 2017-09-05 江苏大学 一种馈能型主动空气悬架系统及其控制方法
CN105522882B (zh) * 2016-01-26 2018-01-05 山东正凯机械科技有限公司 一种循环导气式的空气悬挂装置
DE102016107626B4 (de) * 2016-04-25 2021-04-01 Grammer Aktiengesellschaft Regelbares Dämpfungssystem für einen Fahrzeugsitz
DE102016107625B4 (de) * 2016-04-25 2021-08-12 Grammer Aktiengesellschaft Regelbares Dämpfungssystem für einen Fahrzeugsitz
CN107953736B (zh) * 2016-10-14 2024-02-27 宇通客车股份有限公司 一种车辆及其悬架用互联式空气减震器模块和空气减震器
CN107499209A (zh) * 2017-09-19 2017-12-22 安路普(北京)汽车技术有限公司 电控阻尼调节系统及气悬浮座椅
CN107458277B (zh) * 2017-09-19 2023-08-18 安路普(北京)汽车技术有限公司 自动阻尼调节机构及气悬浮座椅
CN109551985A (zh) * 2018-11-26 2019-04-02 安路普(北京)汽车技术有限公司 一种空气弹簧组件及空气悬架系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201021162Y (zh) * 2007-04-26 2008-02-13 南京农业大学 刚度和阻尼可调的空气弹簧剪式座椅
CN101337518A (zh) * 2007-06-29 2009-01-07 格拉默股份有限公司 带滑阀的汽车座椅
CN102180116A (zh) * 2011-04-19 2011-09-14 长春富维-江森自控汽车饰件系统有限公司 车辆座椅的气悬浮机构
US20130158791A1 (en) * 2011-12-20 2013-06-20 Michael S. Contratto Seat suspension system having fail-safe functionality
CN103660832A (zh) * 2012-09-10 2014-03-26 福特全球技术公司 具有空气弹簧和振动阻尼器的车辆的高度调节装置
CN110745044A (zh) * 2019-10-18 2020-02-04 安路普(北京)汽车技术有限公司 一种调节阻尼力和高度的装置、座椅和车辆悬架系统
CN210912116U (zh) * 2019-10-18 2020-07-03 安路普(北京)汽车技术有限公司 一种调节阻尼力和高度的装置、座椅和车辆悬架系统

Also Published As

Publication number Publication date
CN110745044A (zh) 2020-02-04
DE112020004981T5 (de) 2022-08-04

Similar Documents

Publication Publication Date Title
CN210912116U (zh) 一种调节阻尼力和高度的装置、座椅和车辆悬架系统
WO2021073647A1 (zh) 一种阻尼力调节装置、座椅和车辆悬架系统
CN210912115U (zh) 一种调节阻尼力和高度的装置、座椅和车辆悬架系统
WO2021073650A1 (zh) 一种调节阻尼力和高度的装置、座椅和车辆悬架系统
WO2021073648A1 (zh) 一种高度调节装置、座椅以及车辆悬架系统
CN1965174B (zh) 电控频率相依型阻尼
WO2021073649A1 (zh) 一种调节阻尼力和高度的装置、座椅以及车辆悬架系统
KR20080077092A (ko) 파일럿-제어되는 메인밸브를 갖는 공기 스프링 및 댐퍼유닛
US11926188B2 (en) Method and system for adjusting height and damping force
CN106427455A (zh) 车辆悬架和车辆
KR100854598B1 (ko) 감쇠력 가변식 쇽업소버
CN210912114U (zh) 一种阻尼力调节装置、座椅和车辆悬架系统
CN210912103U (zh) 一种高度调节装置、座椅以及车辆悬架系统
CN102003238B (zh) 一种发动机制动装置
CN110588458A (zh) 一种气动悬浮阀以及座椅
US6659239B2 (en) Shock absorber through the rod damping adjustment
CN210912104U (zh) 一种气动悬浮阀以及座椅
WO2021073651A1 (zh) 一种调节阻尼器的阻尼力的方法和系统
CN1975194A (zh) 气弹簧
JP2003194133A (ja) 減衰力調整式油圧緩衝器
JP2002013582A (ja) 減衰力調整式油圧緩衝器
JP2003278819A (ja) 減衰力調整式油圧緩衝器
CN109515105B (zh) 轮毂驱动电动汽车用带多层附加气室的空气悬架控制方法
CN209654510U (zh) 阻尼可调式减震器
KR101165057B1 (ko) 차량의 현가 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876143

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20876143

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20876143

Country of ref document: EP

Kind code of ref document: A1