WO2021073651A1 - 一种调节阻尼器的阻尼力的方法和系统 - Google Patents

一种调节阻尼器的阻尼力的方法和系统 Download PDF

Info

Publication number
WO2021073651A1
WO2021073651A1 PCT/CN2020/122007 CN2020122007W WO2021073651A1 WO 2021073651 A1 WO2021073651 A1 WO 2021073651A1 CN 2020122007 W CN2020122007 W CN 2020122007W WO 2021073651 A1 WO2021073651 A1 WO 2021073651A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting portion
damping force
damper
damping
adjustable damper
Prior art date
Application number
PCT/CN2020/122007
Other languages
English (en)
French (fr)
Inventor
张晓锋
孙国
于曼华
冯永江
张加
Original Assignee
安路普(北京)汽车技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安路普(北京)汽车技术有限公司 filed Critical 安路普(北京)汽车技术有限公司
Publication of WO2021073651A1 publication Critical patent/WO2021073651A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics

Definitions

  • the invention relates to the field of shock absorbers, in particular to a method and system for adjusting the damping force of a damper.
  • the damping force of the damper is adjusted while applying the damper to reduce the discomfort caused by the rough road.
  • the adjustment methods of the damping force of the damper mainly include manual adjustment methods and electronic control adjustment methods.
  • the damping force is mainly adjusted by the adjustment handle. Due to the inconvenience of operation, the driver will hardly use the manual adjustment handle to adjust the damping force when passing on uneven roads during driving.
  • the electronic control adjustment method the main application of CDC dampers (CDC, Continuous Damping Control) in the suspension system is to adjust the damping force.
  • the suspension control system based on the CDC damper can improve the stability and comfort of the suspension system, the electronic components in the suspension control system are easily restricted by the installation position in the actual application process, which makes the control accuracy Insufficient precision and inconvenient installation and maintenance; in addition, the circuit layout of the electronic components is easily restricted by the space of the suspension system itself, and the suspension control system has a high cost, which makes the suspension control system not widely used.
  • the present invention is proposed to provide a method and system for adjusting the damping force of a damper that overcomes the above-mentioned problems or at least partially solves the above-mentioned problems.
  • a method of adjusting the damping force of a damper comprising: arranging a pneumatic valve and an adjustable damper between a first connecting part and a second connecting part, the pneumatic The valve is adapted to the position of the adjustable damper; and the gas output end of the pneumatic valve is connected to the gas input end of the adjusting device for adjusting the damping force of the adjustable damper; the adjusting device is connected to the The adjustable damper is connected; the pneumatic valve collects at least one movement variable of the first connecting portion relative to the second connecting portion; at the same time, the pneumatic valve is based on the collected movement variable and/or the The change of the movement variable air drives the adjusting device to control the adjustable damper to output a corresponding damping force, so as to realize the adjustment of the damping force of the adjustable damper.
  • a system for adjusting the damping force of a damper includes a first connecting portion, a second connecting portion, at least one pneumatic valve, an adjustable damper, and A device for adjusting the damping force of an adjustable damper; the pneumatic valve and the adjustable damper are arranged between the first connecting portion and the second connecting portion, and the positions of the pneumatic valve and the adjustable damper are adapted
  • the gas output end of the pneumatic valve is connected to the gas input end of the adjusting device;
  • the adjusting device is connected to the adjustable damper;
  • the pneumatic valve is used to collect the first connecting portion relative to the At least one motion variable of the second connecting portion; and at the same time, according to the collected motion variable and/or the change of the motion variable, the adjusting device is driven to control the adjustable damper to output the corresponding damping force, so as to realize the The adjustment of the damping force of the adjustable damper.
  • the technical solution of the present invention collects at least one movement variable of the first connecting portion relative to the second connecting portion through a pneumatic valve, and adjusts the damping force of the damper through the pneumatic valve direct pneumatic drive adjustment device ,
  • the damping force adjustment can be achieved through the coordination of mechanical mechanisms.
  • the signal is collected by the sensor first, and then the damping force signal is calculated by the electronic control unit according to the signal collected by the sensor, and then the damping force signal is sent to the execution
  • the mechanism adjusts the damping force, which greatly improves the sensitivity of the damping force adjustment.
  • the technical solution of the present invention eliminates the need for the driver to manually adjust the damping force during driving, so that the driver's attention is more concentrated, and to a certain extent, the occurrence of traffic accidents can be reduced.
  • Fig. 1 shows a flowchart of a method for adjusting the damping force of a damper according to an embodiment of the present invention
  • Fig. 2 shows a schematic diagram of the positional relationship of the first connecting portion relative to the second connecting portion according to an embodiment of the present invention
  • Fig. 3 shows a schematic diagram of the functional structure of a system for adjusting the damping force of a damper according to an embodiment of the present invention
  • Fig. 4 shows a schematic diagram of the functional structure of an adjusting device according to an embodiment of the present invention
  • Fig. 5 shows a schematic diagram of the functional structure of another adjusting device according to an embodiment of the present invention.
  • Fig. 6 shows a schematic diagram of the functional structure of another adjusting device according to an embodiment of the present invention.
  • Fig. 7 shows a schematic diagram of the functional structure of another system for adjusting the damping force of a damper according to an embodiment of the present invention
  • 110 the first connecting part; 120, the second connecting part; S31, the upper damping stroke end; S32, the lower damping stroke end; S21, the maximum settable position; S22, the minimum settable position; S11, Balance upper limit position; S12, balance lower limit position; S00, total damping stroke balance position; 100, system for adjusting the damping force of the damper; 130, pneumatic valve; 140, regulating device; 141, gas compression device; 142, cable control device 143. Gas compression device; 144. Proportional valve; 150. Adjustable damper; 160. Height adjustment device; 170. Fluid spring.
  • Fig. 1 shows a flowchart of a method for adjusting the damping force of a damper according to an embodiment of the present invention.
  • a method for adjusting the damping force of a damper includes:
  • Step S110 arranging the pneumatic valve and the adjustable damper between the first connecting part and the second connecting part, the positions of the pneumatic valve and the adjustable damper are adapted; and the gas output end of the pneumatic valve is used for adjusting the adjustable damper.
  • the gas input end of the adjusting device for adjusting the damping force of the damper is connected; the adjusting device is connected with the adjustable damper;
  • the pneumatic valve has a linear structure.
  • the pneumatic valve includes a driving rod and a valve body.
  • the driving rod makes a reciprocating linear motion in the valve body.
  • the driving rod is connected to the first connecting part, and the valve body is connected to the second connecting part.
  • the adjustable damper has a linear structure, and the position of the pneumatic valve and the adjustable damper is adapted to include the longitudinal axis of the pneumatic valve being parallel or coincident with the longitudinal axis of the adjustable damper, or the longitudinal axis of the pneumatic valve and the adjustable damper
  • the longitudinal axes are neither parallel nor coincident.
  • the longitudinal axis of the pneumatic valve is parallel to or coincides with the longitudinal axis of the adjustable damper.
  • this embodiment does not further limit the positions of the pneumatic valve and the adjustable damper.
  • the adjustable damper can be the first One connecting part or a second connecting part only needs to provide a shock-absorbing effect.
  • the adjusting device of the damping force of the adjustable damper refers to a device that controls the swing direction and amplitude of the adjustment pin of the adjustable damper.
  • the gas output end of the pneumatic valve is connected to the gas input end of the adjusting device used to adjust the damping force of the adjustable damper, so that the pneumatic valve and the adjusting device can generate gas flow connection, so that the pneumatic valve drive adjusting device performs corresponding operations, and the control can be Adjust the damper to output the corresponding damping force.
  • the second connecting part includes the chassis frame, that is, the pneumatic valve and the adjustable damper are arranged between the cab and the chassis frame. If the first connecting portion includes the vehicle chassis, the second connecting portion includes wheels, that is, the pneumatic valve and the adjustable damper are arranged between the vehicle chassis and the wheels. If the first connecting portion includes the upper frame of the seat, the second connecting portion includes the lower frame of the seat, that is, the pneumatic valve and the adjustable damper are arranged between the upper frame of the seat and the lower frame of the seat.
  • the second connecting part includes the rotating pin of the seat scissors frame, that is, the pneumatic valve and the adjustable damper are arranged on the sliding horizontal axis of the seat scissors frame And the pivot pin of the seat scissors frame.
  • Step S120 the pneumatic valve collects at least one movement variable of the first connecting part relative to the second connecting part
  • the motion variables include the positional relationship of the first connection part relative to the second connection part, the speed of the first connection part relative to the second connection part, and the acceleration of the first connection part relative to the second connection part. This embodiment does not further limit the motion variable.
  • step S130 at the same time, the pneumatic valve controls the adjustable damper to output a corresponding damping force according to the collected movement variable and/or the change of the movement variable, so as to realize the adjustment of the damping force of the adjustable damper.
  • the change of the motion variable is determined by at least two temporally continuous motion variables of the first connecting part relative to the second connecting part.
  • the technical solution of this embodiment collects at least one movement variable of the first connecting portion relative to the second connecting portion through the pneumatic valve, and adjusts the damping force of the damper through the pneumatic valve direct pneumatic drive adjustment device.
  • the coordination of mechanical mechanisms can achieve damping force adjustment.
  • the signal is collected by the sensor first, and then the damping force signal is calculated by the electronic control unit according to the signal collected by the sensor, and then the damping force signal is sent to the actuator for execution Damping force adjustment greatly improves the sensitivity of damping force adjustment.
  • the technical solution of this embodiment eliminates the need for the driver to manually adjust the damping force during driving, so that the driver's attention is more concentrated, and the occurrence of traffic accidents can be reduced to a certain extent.
  • the adjustable dampers in this embodiment include CDC dampers and PDC dampers (PDC, Pneumatic Damping Control), etc.
  • PDC PDC dampers
  • This embodiment does not further limit the type of adjustable dampers, and only needs to be adjustable.
  • the damping force of the damper can be adjusted.
  • the above content only enumerates and describes the structure of the damping force adjustment device of the adjustable damper, and other adjustment devices that can adjust the damping force of the adjustable damper are within the protection scope of this embodiment.
  • FIG. 2 shows a schematic diagram of the positional relationship between the first connecting portion and the second connecting portion according to an embodiment of the present invention.
  • the motion variable includes the first connecting portion.
  • the positional relationship relative to the second connecting portion; the positional relationship includes the vertical relationship of the first connecting portion with respect to the second connecting portion, or the horizontal relationship of the first connecting portion with respect to the second connecting portion, or the first connecting portion
  • the vertical relationship and the horizontal relationship of the first connecting portion relative to the second connecting portion that is to say, not only the damping force can be adjusted according to the vertical relationship of the first connecting portion relative to the second connecting portion, but also according to the first connecting portion.
  • the damping force can be adjusted according to the horizontal relationship of the second connecting portion, and the damping force can also be adjusted simultaneously according to the vertical relationship and the horizontal relationship of the first connecting portion with respect to the second connecting portion.
  • the positional relationship of the first connecting part relative to the second connecting part is the adjusted target value, and the positional relationship is provided by the total damping stroke of the adjustable damper.
  • the positional relationship of the first connecting part relative to the second connecting part is in accordance with the preset value.
  • Set the ratio to correspond to the total damping stroke of the adjustable damper such as 1:1, 1:2, or 1:3.
  • the positional relationship between the first connecting part and the second connecting part is related to the pneumatic valve.
  • the proportion of the total work stroke is not further limited.
  • the total damping stroke is defined by the upper damping stroke end S31 and the lower damping stroke end S32; the maximum settable position S21 of the first connecting part relative to the second connecting part is between the total damping stroke balance position S00 and the upper damping stroke end S31 Within the range, the minimum settable position S22 of the first connecting portion relative to the second connecting portion is within the range between the total damping stroke balance position S00 and the lower damping stroke end S32; the balance range is determined by the maximum settable position S21 And the sub-range of the total damping stroke range defined by the minimum settable position S22, the balance range is defined by the upper balance position S11 and the lower balance position S12.
  • the total damping stroke range includes (-15mm, +15mm)
  • the sub-ranges of the total damping stroke range defined by the maximum settable position S21 and the minimum settable position S22 include (-10mm, +10mm)
  • the balance range includes ( -5mm, +5mm).
  • adjusting the damping force according to the position relationship is mainly divided into the following three modes:
  • the damping force of the adjustable damper is the preset basic damping force, for example, the preset basic damping force includes 50 Newtons (N); in this case, it can be driving on a flat road, so that the damping force of the adjustable damper is the preset
  • the basic damping force is generally a smaller damping force, so as to achieve the best comfort.
  • the gas flow inside the pneumatic valve changes and the air pressure inside the air drive regulator changes, thereby controlling the Adjust the damper to output a first damping force
  • the first damping force includes (50N, 1500N), and the first damping force increases linearly or non-linearly as the positional relationship between the first connecting portion and the second connecting portion changes;
  • the gas flow inside the pneumatic valve changes to change the air pressure inside the pneumatic drive regulator to control the adjustable damper Output a first damping force
  • the first damping force includes (50N, 1500N), and the first damping force decreases linearly or non-linearly as the positional relationship of the first connecting part relative to the second connecting part changes;
  • the damping force of the adjustable damper increases or decreases according to the road conditions, reducing the discomfort caused by the rough road, so as to achieve the best comfort.
  • the air flow inside the pneumatic valve changes and the air pressure inside the air-driven adjusting device changes.
  • the adjustable damper is controlled to output a second damping force corresponding to a preset end impact protection coefficient, where the first damping force is located between the preset basic damping force and the second damping force.
  • the damping force corresponding to the preset end impact protection coefficient may be the maximum value of the damping force of the adjustable damper.
  • the second damping force includes 3000N.
  • the damping force of the adjustable damper can quickly increase to the damping force corresponding to the preset end impact protection coefficient according to the road conditions, so as to avoid the first connection part and the second connection part. Rigid contact of the connecting part improves comfort.
  • the motion variable further includes the speed and acceleration of the first connecting part relative to the second connecting part, wherein the speed can pass through at least two temporally continuous periods of the first connecting part relative to the second connecting part.
  • the acceleration can be determined by at least two temporally continuous velocities of the first connecting portion relative to the second connecting portion.
  • the pneumatic valve air drive adjusting device controls the adjustable damper to output the third damping force, which decreases with the increase of acceleration, or the third damping force decreases with the increase of acceleration And increase.
  • the positional relationship between the first connecting part and the second connecting part changes very little, but the acceleration of the first connecting part relative to the second connecting part is relatively large.
  • control the adjustable damper to output a smaller third damping force to reduce the discomfort caused by the road surface excitation, so as to obtain better comfort.
  • the third damping force is less than the preset basic damping force 50N, for example, the third damping force includes (10N, 45N).
  • the adjusting device controls its own air pressure to decrease within a preset time, so as to make itself
  • the internal air pressure hardly changes, so that the swing direction and swing amplitude of the adjusting pin of the adjustable damper remain almost unchanged, and the damping force output by the adjustable damper is not changed, and the damping force delay of the adjustable damper is realized.
  • a buffer period can be constructed during the transition from a severely bumpy road to a flat road, which reduces the discomfort that occurs when the high damping force is immediately changed to a low damping force, and further improves comfort.
  • FIG. 3 shows a schematic diagram of the functional structure of a system for adjusting the damping force of a damper according to an embodiment of the present invention.
  • a system 100 for adjusting the damping force of a damper includes a first connecting portion 110, the second connecting portion 120, at least one pneumatic valve 130, an adjustable damper 150, and an adjusting device 140 for adjusting the damping force of the adjustable damper; the pneumatic valve 130 and the adjustable damper 150 are arranged at the first connecting portion 110 between the pneumatic valve 130 and the adjustable damper 150, the positions of the pneumatic valve 130 and the adjustable damper 150 are adapted to the second connecting portion 120; the gas output end of the pneumatic valve 130 is connected to the gas input end of the adjusting device 140; the adjusting device 140 is connected to the adjustable damper 150 Pneumatic valve 130, for collecting at least one movement variable of the first connecting portion 110 relative to the second connecting portion 120; at the same time according to the collected movement variable and/or the change of the movement variable, the pneumatic drive adjusting device 140
  • the technical solution of this embodiment can realize the damping force adjustment through the cooperation of the mechanical mechanism.
  • the signal is collected by the sensor first, and then the damping force signal is calculated by the electronic control unit according to the signal collected by the sensor. , And then send the damping force signal to the actuator for damping force adjustment, which greatly improves the sensitivity of damping force adjustment.
  • the technical solution of this embodiment eliminates the need for the driver to manually adjust the damping force during driving, so that the driver's attention is more concentrated, and the occurrence of traffic accidents can be reduced to a certain extent.
  • the motion variable includes the positional relationship of the first connecting portion 110 relative to the second connecting portion 120; the positional relationship includes a vertical relationship and/or a horizontal relationship; The positional relationship includes the vertical relationship between the first connection portion and the second connection portion, or the horizontal relationship between the first connection portion and the second connection portion, or the vertical relationship between the first connection portion and the second connection portion.
  • the damping force can also be adjusted simultaneously according to the vertical relationship and the horizontal relationship between the first connecting portion and the second connecting portion.
  • the positional relationship of the first connecting portion 110 relative to the second connecting portion 120 is the adjusted target value, and the positional relationship is provided by the total damping stroke of the adjustable damper 150.
  • the position of the first connecting portion relative to the second connecting portion The relationship corresponds to the total damping stroke of the adjustable damper according to a preset ratio, such as 1:1, 1:2, or 1:3.
  • the positional relationship between the first connecting portion and the second connecting portion is The proportion of the total working stroke of the pneumatic valve is not further limited.
  • the total damping stroke is defined by the upper damping stroke end S31 and the lower damping stroke end S32; the maximum settable position S21 of the first connecting portion 110 relative to the second connecting portion 120 is between the total damping stroke balance position S00 and the upper damping stroke end S31
  • the minimum settable position S22 of the first connecting portion 110 relative to the second connecting portion 120 is within the range between the total damping stroke balance position S00 and the lower damping stroke end S32;
  • the balance range is set from the maximum The sub-range of the total damping stroke range defined by the fixed position S21 and the minimum settable position S22, and the balance range is defined by the balance upper limit position S11 and the balance lower limit position S12.
  • the total damping stroke range includes (-15mm, +15mm)
  • the sub-ranges of the total damping stroke range defined by the maximum settable position S21 and the minimum settable position S22 include (-10mm, +10mm)
  • the balance range includes ( -5mm, +5mm).
  • adjusting the damping force according to the position relationship is mainly divided into the following three modes:
  • the damping force of the adjustable damper 150 is a preset basic damping force, for example, the preset basic damping force includes 50 Newtons (N); in this case, it can be driving on a flat road, so that the adjustable damper
  • the damping force of 150 is the preset basic damping force, generally a small damping force, so as to achieve the best comfort.
  • the gas flow inside the pneumatic valve 130 changes to drive the gas pressure inside the regulating device 140 Is changed to control the adjustable damper 150 to output the first damping force.
  • the first damping force includes (50N, 1500N), and the first damping force follows the positional relationship of the first connecting portion 110 relative to the second connecting portion 120 Change and increase linearly or non-linearly;
  • the adjustable damper 150 is controlled to output the first damping force.
  • the first damping force includes (50N, 1500N), and the first damping force is linear as the positional relationship of the first connecting portion 110 relative to the second connecting portion 120 changes. Or non-linear reduction;
  • the damping force of the adjustable damper increases or decreases according to the road conditions, reducing the discomfort caused by the rough road, so as to achieve the best comfort.
  • the gas flow inside the pneumatic valve 130 changes to drive the inside of the adjusting device 140
  • the air pressure of the adjustable damper is changed, thereby controlling the adjustable damper 150 to output the damping force corresponding to the preset end impact protection coefficient.
  • the damping force corresponding to the preset end impact protection coefficient may be the maximum damping force of the adjustable damper value.
  • the damping force of the adjustable damper can quickly increase to the second damping force corresponding to the preset end impact protection coefficient according to the road conditions.
  • the second damping force includes 3000N, where the first damping force is located between the preset basic damping force and the second damping force, so as to avoid rigid contact between the first connecting portion and the second connecting portion and improve comfort.
  • the motion variable further includes the speed and acceleration of the first connecting part relative to the second connecting part, wherein the speed can pass through at least two temporally continuous periods of the first connecting part relative to the second connecting part.
  • the acceleration can be determined by at least two temporally continuous velocities of the first connecting portion relative to the second connecting portion.
  • the pneumatic valve 130 air-driven adjusting device 140 controls the adjustable damper to output a third damping force, and the third damping force decreases as the acceleration increases, or the third damping force increases as the acceleration increases. Decrease and increase. For example, when driving on a washboard type road, the positional relationship between the first connecting part and the second connecting part changes very little, but the acceleration of the first connecting part relative to the second connecting part is relatively large.
  • the adjustable damper controls the adjustable damper to output a smaller third damping force to reduce the discomfort caused by the road surface excitation, so as to obtain better comfort.
  • the third damping force is less than the preset basic damping force 50N, for example, the third damping force includes (10N, 45N).
  • the adjusting device 140 controls its own air pressure to decrease within a preset time, so that within the preset time The air pressure inside itself hardly changes, so that the swing direction and swing amplitude of the adjusting pin of the adjustable damper 150 remain almost unchanged, and the damping force output by the adjustable damper 150 is not changed, and the adjustable damper 150 is realized. Delay adjustment of damping force. In this case, a buffer period can be constructed during the transition from a severely bumpy road to a flat road, which reduces the discomfort that occurs when the high damping force is immediately changed to a low damping force, and further improves comfort.
  • FIG. 4 shows a schematic diagram of the functional structure of an adjusting device according to an embodiment of the present invention.
  • the adjusting device 140 includes a gas compression device 141 and a cable control device 142 driven by the gas compression device 141.
  • the control device 142 is connected to the adjustable damper 150.
  • the cable control device 142 is connected to the adjusting pin of the adjustable damper 150.
  • the cable control device 142 has a return spring that drives the adjusting pin of the adjustable damper 150 to reciprocate. .
  • the pneumatic valve 130 changes the gas flow rate inside itself according to the collected motion variables and/or changes in motion variables to drive the gas compression device 141 to drive the gas information inside the gas information and the frequency of the changes in the gas information, thereby changing the gas compression
  • the stroke size of the device 141 When the stroke of the gas compression device 141 becomes larger, the driving force of the cable control device 142 becomes larger; when the stroke of the gas compression device 141 becomes smaller, the driving force of the cable control device 142 becomes smaller.
  • the return force of the device 142 is provided by the return spring. Therefore, the return force of the cable control device 142 and the drive force of the cable control device 142 are in a linear relationship without changing the return spring.
  • the matching relationship between the driving force and the restoring force of the cable control device 142 can be adjusted, thereby driving the adjusting pin of the adjustable damper 150 to reciprocate, that is, the driving is adjustable
  • the swing direction and swing amplitude of the adjustment pin of the damper control the adjustable damper to output a corresponding damping force, so as to realize the adaptive adjustment of the damping force of the adjustable damper 150.
  • FIG. 5 shows a schematic diagram of the functional structure of another adjusting device according to an embodiment of the present invention.
  • the adjusting device 140 includes a gas compression device 143 driven by a pneumatic valve 130, the gas compression device 143 and the The adjustable damper 150 is connected; specifically, the drive rod of the gas compression device 143 is connected with the adjustment pin of the adjustable damper 150; the pneumatic valve 130 changes its internal gas flow according to the collected movement variables and/or changes in the movement variables.
  • the air pressure inside the gas compression device 143 follows the change of the gas flow rate inside the pneumatic valve 130, so that the stroke of the gas compression device 143 changes, that is, the pressure of the gas compression device 143
  • the relative displacement between the driving rod and the cylinder tube changes to achieve the purpose of adjusting the stroke size of the gas compression device 143.
  • the driving rod of the gas compression device 143 Since the driving rod of the gas compression device 143 is connected to the adjustment pin of the adjustable damper 150, when the pneumatic valve 130 When the driving rod of the gas-driven gas compression device 143 reciprocates in the cylinder, the driving rod of the gas compression device 143 drives the adjustment pin of the adjustable damper 150 to reciprocate by a corresponding amplitude, and the adjustable damper is controlled to output a corresponding damping force to achieve Adaptive adjustment of the damping force of the adjustable damper 150.
  • the functional structure and working principle of the gas compression device 143 shown in FIG. 5 and the gas compression device 141 shown in FIG. 4 are the same, and both are mainly composed of a drive rod and a cylinder.
  • the functional structure and working principle of the gas compression device 143 and the gas compression device 141 may also be different.
  • FIG. 6 shows a schematic diagram of the functional structure of another adjusting device according to an embodiment of the present invention.
  • the adjusting device 140 includes a proportional valve 145, and the proportional valve 145 communicates with the damping fluid of the adjustable damper 150
  • the valve port of the cavity is connected; the pneumatic valve 130 changes its internal gas flow according to the collected motion variables and/or changes in motion variables to change the working stroke of the proportional valve 145 by pneumatic drive, thereby controlling the damping of the adjustable damper 150
  • the diameter of the valve port of the fluid flow chamber is different, because the diameter of the valve port of the damping fluid flow chamber is different, so the flow rate and/or the flow velocity of the damping fluid are different, so as to realize the adjustment of the damping fluid flow rate of the adjustable damper 150.
  • the purpose of the damping fluid flow rate or the damping fluid flow rate and the flow velocity is to finally control the adjustable damper to output a corresponding damping force, so as to realize the adaptive adjustment of the damping force of the adjustable damper 150
  • FIG. 7 shows a schematic diagram of the functional structure of another system for adjusting the damping force of a damper according to an embodiment of the present invention.
  • the system 100 further includes at least one height control adjusting valve 160 and at least one The fluid spring 170, the height control regulating valve 160 and the fluid spring 170 are arranged between the first connecting portion 110 and the second connecting portion 120, the height control regulating valve 160 and the fluid spring 170 are connected; the height control regulating valve 160, the fluid spring 170 are connected with The position of the adjustable damper 150 is adapted, and the height control valve 160 is used to control the inflation or deflation of the fluid spring 170, so that the position between the first connecting portion 110 and the second connecting portion 120 is maintained at a preset position.
  • This system is suitable for cab suspension systems, where the first connecting portion 110 includes the cab, the second connecting portion 120 includes the chassis frame, the pneumatic valve 130, the adjusting device 140, the adjustable damper 150, and the height control adjusting valve 160
  • the fluid spring 170 is arranged between the cab and the chassis frame.
  • the position between the cab and the chassis frame is maintained at a preset position.
  • the height control adjusting valve 160 controls the fluid spring inflation; put the cab and the frame bracket
  • the height control regulating valve 160 controls the fluid spring to deflate.
  • the pneumatic valve 130 collects the position relationship between the driver's cab and the frame and changes in the position relationship in real time, and the pneumatic drive adjusting device 140 controls the adjustable damper 150 to output a corresponding damping force.
  • the damping force adjustment method of the adjustable damper has been discussed in detail above, and will not be repeated here.
  • the system for adjusting the damping force of the damper can be applied in the fields of seat suspension system, vehicle chassis suspension system or cab suspension system, etc.
  • the application of this embodiment to the system for adjusting the damping force of the damper The field is not further restricted.
  • the technical solution of this embodiment can realize the damping force adjustment through the cooperation of the mechanical mechanism.
  • the signal is collected by the sensor first, and then the electronic control unit calculates the damping force according to the signal collected by the sensor. Then, the damping force signal is sent to the actuator for damping force adjustment, which greatly improves the sensitivity of damping force adjustment.
  • the technical solution of this embodiment eliminates the need for the driver to manually adjust the damping force during driving, so that the driver's attention is more concentrated, and the occurrence of traffic accidents can be reduced to a certain extent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

一种调节阻尼器(150)的阻尼力的方法和系统。该方法包括:将气动阀(130)、可调阻尼器(150)布置在第一连接部(110)与第二连接部(120)之间,气动阀(130)和可调阻尼器(150)的位置相适应;且将气动阀(130)的气体输出端与用于调节可调阻尼器(150)阻尼力的调节装置(140)的气体输入端连接;调节装置(140)与可调阻尼器(150)连接;气动阀(130)采集第一连接部(110)相对于第二连接部(120)的至少一个运动变量;同时气动阀(130)根据采集到的运动变量和/或运动变量的变化气驱动调节装置(140)控制可调阻尼器(150)输出相应的阻尼力,实现对可调阻尼器(150)阻尼力大小的调节。因此,使得驾驶员在行驶过程中无需手动调节阻尼力,使得驾驶员的注意力更加集中,在一定程度上可以降低交通事故的发生。

Description

一种调节阻尼器的阻尼力的方法和系统
相关申请的交叉参考
本申请要求于2019年10月18日提交中国专利局、申请号为201910991452.3、名称为“一种调节阻尼器的阻尼力的方法和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及减震器领域,具体涉及一种调节阻尼器的阻尼力的方法和系统。
背景技术
为了提升车辆底盘悬架、驾驶室悬架和座椅悬架的舒适性,在应用阻尼器的同时对阻尼器的阻尼力进行调节,以降低崎岖路面产生的不适感。
目前,阻尼器的阻尼力的调节方式主要包括手动调节方式和电控调节方式。在手动调节方式中,主要是通过调节手柄对阻尼力进行调节,由于操作不便,驾驶员在行驶过程中路过不平坦路面时,几乎不会采用手动调节手柄对阻尼力进行调节。在电控调节方式中,主要是在悬架系统中应用CDC阻尼器(CDC,Continuous Damping Control)对阻尼力进行调节。基于CDC阻尼器的悬架控制系统虽然可以很好地提升悬架系统的稳定性和舒适性,但是该悬架控制系统中的电子元件在实际应用过程中易受到安装位置的限制,使得控制精度不够精确且安装维护不便;另外,电子元件在线路布局上容易受到悬架系统自身空间的限制,且该悬架控制系统的成本较高,使得该悬架控制系统没有得到广泛的应用。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的一种调节阻尼器的阻尼力的方法和系统。
依据本发明的一个方面,提供了一种调节阻尼器的阻尼力的方法,所述方法包括:将气动阀、可调阻尼器布置在第一连接部与第二连接部之间,所述气动阀和所述可调阻尼器的位置相适应;且将所述气动阀的气体输出端与用于调节所述可调阻尼器阻尼力的调节装置的气体输入端连接;所述调节装置与所述可调阻尼器连接;所述气动阀采集所述第一连接部相对于所述第二 连接部的至少一个运动变量;同时所述气动阀根据采集到的所述运动变量和/或所述运动变量的变化气驱动所述调节装置控制所述可调阻尼器输出相应的阻尼力,实现对所述可调阻尼器阻尼力大小的调节。
依据本发明的另一个方面,提供了一种调节阻尼器的阻尼力的系统,所述系统包括第一连接部、第二连接部、至少一个气动阀、可调阻尼器和用于调节所述可调阻尼器阻尼力的调节装置;所述气动阀和所述可调阻尼器布置在第一连接部和第二连接部之间,所述气动阀和所述可调阻尼器的位置相适应;所述气动阀的气体输出端与所述调节装置的气体输入端连接;所述调节装置与所述可调阻尼器连接;所述气动阀,用于采集所述第一连接部相对于所述第二连接部的至少一个运动变量;同时根据采集到的所述运动变量和/或所述运动变量的变化气驱动所述调节装置控制所述可调阻尼器输出相应的阻尼力,实现对所述可调阻尼器阻尼力大小的调节。
本发明的有益效果是:本发明的技术方案通过气动阀采集第一连接部相对于第二连接部的至少一个运动变量,并通过气动阀直接气驱动调节装置对阻尼器阻尼力的大小进行调节,通过机械机构的协同配合即可实现阻尼力调节,相比于现有技术中先通过传感器采集信号,然后由电子控制单元根据传感器采集的信号计算阻尼力信号,再将阻尼力信号发送至执行机构进行阻尼力调节,大幅度提升了阻尼力调节的灵敏度。另外,本发明的技术方案使得驾驶员在行驶过程中无需手动调节阻尼力,使得驾驶员的注意力更加集中,在一定程度上可以降低交通事故的发生。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了根据本发明一个实施例中的一种调节阻尼器的阻尼力的方法的流程图;
图2示出了根据本发明一个实施例中第一连接部相对于所述第二连接部的位置关系的示意图;
图3示出了根据本发明一个实施例中的一种调节阻尼器的阻尼力的系统的功能结构示意图;
图4示出了根据本发明一个实施例中的一种调节装置的功能结构示意图;
图5示出了根据本发明一个实施例中的另一种调节装置的功能结构示意图;
图6示出了根据本发明一个实施例中的再一种调节装置的功能结构示意图;
图7示出了根据本发明一个实施例中的另一种调节阻尼器的阻尼力的系统的功能结构示意图;
附图说明:110、第一连接部;120、第二连接部;S31、上阻尼行程端;S32、下阻尼行程端;S21、最大可设定位置;S22、最小可设定位置;S11、平衡上限位置;S12、平衡下限位置;S00、总阻尼行程平衡位置;100、调节阻尼器的阻尼力的系统;130、气动阀;140、调节装置;141、气体压缩装置;142、拉线控制装置;143、气体压缩装置;144、比例阀;150、可调阻尼器;160、高度调节装置;170、流体弹簧。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
图1示出了根据本发明一个实施例中的一种调节阻尼器的阻尼力的方法的流程图,如图1所示,一种调节阻尼器的阻尼力的方法包括:
步骤S110,将气动阀、可调阻尼器布置在第一连接部与第二连接部之间,气动阀和可调阻尼器的位置相适应;且将气动阀的气体输出端与用于调节可调阻尼器阻尼力的调节装置的气体输入端连接;调节装置与可调阻尼器连接;
在本步骤中,气动阀为线性结构,该气动阀包括驱动杆和阀体,驱动杆在阀体内做往复直线式运动,驱动杆与第一连接部连接,阀体与第二连接部连接。可调阻尼器为线性结构,气动阀与可调阻尼器的位置相适应包括气动阀的纵轴线与可调阻尼器的纵轴线平行或者重合,或者,气动阀的纵轴线与可调阻尼器的纵轴线不平行也不重合。优选地,气动阀的纵轴线与可调阻尼器的纵轴线平行或者重合。需要说明的是,本实施例对气动阀与可调阻尼器的位置不作进一步的限定,只要气动阀能够采集第一连接部和第二连接部之 间的运动变量,可调阻尼器能够为第一连接部或第二连接部提供减震效果即可。可调阻尼器阻尼力的调节装置指的是控制可调阻尼器的调节销的摆动方向和摆动幅度大小的装置。气动阀的气体输出端与用于调节可调阻尼器阻尼力的调节装置的气体输入端连接,使得气动阀与调节装置能够产生气体流动连接,从而实现气动阀驱动调节装置执行相应操作,控制可调阻尼器输出相应的阻尼力。
另外,若第一连接部包括驾驶室,则第二连接部包括底盘车架,即,将气动阀和可调阻尼器布置在驾驶室和底盘车架之间。若第一连接部包括车辆底盘,则第二连接部包括车轮,即,将气动阀和可调阻尼器布置在车辆底盘和车轮之间。若第一连接部包括座椅的上框架,则第二连接部包括座椅的下框架,即,将气动阀和可调阻尼器布置在座椅的上框架和座椅的下框架之间。若第一连接部包括座椅剪刀架的滑动横轴,则第二连接部包括座椅剪刀架的旋转销轴,即,将气动阀和可调阻尼器布置在座椅剪刀架的滑动横轴和座椅剪刀架的旋转销轴之间。
步骤S120,气动阀采集第一连接部相对于第二连接部的至少一个运动变量;
在本步骤中,运动变量包括第一连接部相对于第二连接部的位置关系,第一连接部相对于第二连接部的速度,第一连接部相对于第二连接部的加速度。本实施例对运动变量不作进一步的限定。
步骤S130,同时气动阀根据采集到的运动变量和/或运动变量的变化气驱动调节装置控制可调阻尼器输出相应的阻尼力,实现对可调阻尼器阻尼力大小的调节。
在本步骤中,运动变量的变化通过第一连接部相对于第二连接部的至少两个时间上连续的运动变量来确定。气动阀采集到第一连接部和第二连接部之间的运动变量后,或者,气动阀采集到第一连接部和第二连接部之间的运动变量的变化后,或者,气动阀采集到第一连接部和第二连接部之间的运动变量以及运动变量的变化后,气动阀内部的气体流量发生变化,由于气动阀的气体输出端与用于调节可调阻尼器阻尼力的调节装置的气体输入端连接,因此,气动阀内部的气体流量变化驱动调节装置的内部的气压发生变化,从而触发调节装置控制可调阻尼器的调节销的摆动方向和摆动幅度的大小,进而可调阻尼器输出与摆动方向和摆动幅度对应的阻尼力,使得可调阻尼器的阻尼力大小可调节。
由上可知,本实施例的技术方案通过气动阀采集第一连接部相对于第二 连接部的至少一个运动变量,并通过气动阀直接气驱动调节装置对阻尼器阻尼力的大小进行调节,通过机械机构的协同配合即可实现阻尼力调节,相比于现有技术中先通过传感器采集信号,然后由电子控制单元根据传感器采集的信号计算阻尼力信号,再将阻尼力信号发送至执行机构进行阻尼力调节,大幅度提升了阻尼力调节的灵敏度。另外,本实施例的技术方案使得驾驶员在行驶过程中无需手动调节阻尼力,使得驾驶员的注意力更加集中,在一定程度上可以降低交通事故的发生。
需要进一步说明的是,本实施例中的可调阻尼器包括CDC阻尼器和PDC阻尼器(PDC,Pneumatic Damping Control)等,本实施例对可调阻尼器的类型不作进一步限定,只需可调阻尼器的阻尼力可调即可。另外,上述内容仅对可调阻尼器的阻尼力调节装置的结构进行列举说明,其他的只要能够对可调阻尼器的阻尼力进行调节的调节装置均在本实施例的保护范围之内。
在本发明的一些实施例中,图2示出了根据本发明一个实施例中第一连接部相对于第二连接部的位置关系的示意图,如图2所示,运动变量包括第一连接部相对于第二连接部的位置关系;该位置关系包括第一连接部相对于第二连接部的竖直关系,或者,第一连接部相对于第二连接部的水平关系,或者,第一连接部相对于第二连接部的竖直关系和水平关系;也就是说,不仅可以根据第一连接部相对于第二连接部的竖直关系对阻尼力进行调节,而且可以根据第一连接部相对于第二连接部的水平关系对阻尼力进行调节,还可以同时根据第一连接部相对于第二连接部的竖直关系和水平关系对阻尼力进行调节。第一连接部相对于第二连接部的位置关系为调整的目标值,位置关系由可调阻尼器的总阻尼行程提供,优选地,第一连接部相对于第二连接部的位置关系按照预设比例与可调阻尼器的总阻尼行程相对应,例如1:1,1:2,或者1:3等,本实施例对第一连接部相对于第二连接部的位置关系与气动阀的总工作行程的比例不作进一步限定。该总阻尼行程由上阻尼行程端S31和下阻尼行程端S32界定;第一连接部相对于第二连接部的最大可设定位置S21处于总阻尼行程平衡位置S00与上阻尼行程端S31之间的范围内,第一连接部相对于第二连接部的最小可设定位置S22处于总阻尼行程平衡位置S00与下阻尼行程端S32之间的范围内;平衡范围是由最大可设定位置S21和最小可设定位置S22限定的总阻尼行程范围的子范围,该平衡范围由平衡上限位置S11和平衡下限位置S12界定。例如,总阻尼行程范围包括(-15mm,+15mm),最大可设定位置S21和最小可设定位置S22限定的总阻尼行程范围的子范围包括(-10mm,+10mm),平衡范围包括(-5mm,+5mm)。
进一步地,根据位置关系调节阻尼力主要分为以下三种模式:
第一种模式,若第一连接部相对于第二连接部的位置关系在平衡范围内,则气动阀内部的气体流量不发生变化,因此,气动阀不驱动调节装置执行相应操作,可调阻尼器的阻尼力为预设的基本阻尼力,例如预设的基本阻尼力包括50牛顿(N);这种情况下,可以是在平坦路面上行驶,使得可调阻尼器的阻尼力为预设的基本阻尼力,一般为较小的阻尼力,从而使得舒适性达到最佳。
第二种模式,在第一连接部相对于第二连接部的位置关系从平衡上限位置S11沿着最大可设定位置S21的方向产生位移的过程中,或者,在第一连接部相对于第二连接部的位置关系从平衡下限位置S12沿着最小可设定位置S22的方向产生位移的过程中,则气动阀内部的气体流量发生变化以气驱动调节装置内部的气压发生变化,从而控制可调阻尼器输出第一阻尼力,例如,第一阻尼力包括(50N,1500N),第一阻尼力随着第一连接部相对于第二连接部的位置关系变化而线性或非线性增长;
另外,在第一连接部相对于第二连接部的位置关系从最大可设定位置S21沿着平衡上限位置S11的方向产生位移的过程中,或者,在第一连接部相对于第二连接部的位置关系从最小可设定位置S22沿着平衡下限位置S12的方向产生位移的过程中,则气动阀内部的气体流量发生变化以气驱动调节装置内部的气压发生变化,从而控制可调阻尼器输出第一阻尼力,例如,第一阻尼力包括(50N,1500N),第一阻尼力随着第一连接部相对于第二连接部的位置关系变化而线性或非线性减小;
上述两种情况,使得可调阻尼器的阻尼力根据路面情况增加或者减少,降低崎岖路面产生的不适感,以使得舒适性达到最佳。
第三种模式,在第一连接部相对于第二连接部的位置关系从最大可设定位置S21沿着上阻尼行程端S31的方向产生位移的过程中,或者,在第一连接部相对于第二连接部的位置关系从最小可设定位置S22沿着下阻尼行程端S32的方向产生位移的过程中,则气动阀内部的气体流量发生变化以气驱动调节装置内部的气压发生变化,从而控制可调阻尼器输出与预设的末端冲击保护系数对应的第二阻尼力,其中第一阻尼力位于预设的基本阻尼力与第二阻尼力之间。例如,预设的末端冲击保护系数对应的阻尼力可以为可调阻尼器的阻尼力的最大值,举例而言,第二阻尼力包括3000N。这种情况下,可以是在剧烈颠簸的路面上行驶,使得可调阻尼器的阻尼力根据路面情况快速增加至预设的末端冲击保护系数对应的阻尼力,从而避免第一连接部与第二连 接部刚性接触,提升舒适性。
在本发明的一些实施例中,运动变量还包括第一连接部相对于第二连接部的速度和加速度,其中,速度能够通过第一连接部相对于第二连接部的至少两个时间上连续的位置来确定,加速度能够通过第一连接部相对于第二连接部的至少两个时间上连续的速度来确定。
进一步地,若第一连接部相对于第二连接部的位置关系在平衡范围内,例如平衡范围包括(-5mm,5mm),且第一连接部相对于第二连接部的加速度大于加速度阈值,例如6m/s 2,则气动阀气驱动调节装置控制可调阻尼器输出第三阻尼力,第三阻尼力随着加速度的增大而减小,或者,第三阻尼力随着加速度的减小而增大。例如在搓衣板类路面行驶时,第一连接部相对于第二连接部之间的位置关系变化很小的,但是第一连接部相对于第二连接部的加速度却较大,这种情况下,控制可调阻尼器输出较小的第三阻尼力来减弱路面激励带来的不适感,从而获得较佳的舒适性。需要说明的是,第三阻尼力小于预设的基本阻尼力50N,例如,第三阻尼力包括(10N,45N)。
在本发明的一些实施例中,可调阻尼器输出与预设的末端冲击保护系数对应的阻尼力后,调节装置控制自身的气压在预设时间内变小,从而在预设时间内使得自身内部的气压几乎不发生变化,从而使得可调阻尼器的调节销的摆动方向和摆动幅度几乎保持不变,进而不改变可调阻尼器输出的阻尼力,实现可调阻尼器阻尼力的延时调节。这种情况下,可以在从剧烈颠簸的路面到平坦路面的过渡过程中构建缓冲期,降低从高阻尼力立刻变换到低阻尼力时产生的不适感,进一步提升舒适性。
图3示出了根据本发明一个实施例中的一种调节阻尼器的阻尼力的系统的功能结构示意图,如图3所示,一种调节阻尼器的阻尼力的系统100包括第一连接部110、第二连接部120、至少一个气动阀130、可调阻尼器150和用于调节可调阻尼器阻尼力的调节装置140;气动阀130和可调阻尼器150布置在第一连接部110和第二连接部120之间,气动阀130和可调阻尼器150的位置相适应;气动阀130的气体输出端与调节装置140的气体输入端连接;调节装置140与可调阻尼器150连接;气动阀130,用于采集第一连接部110相对于第二连接部120的至少一个运动变量;同时根据采集到的运动变量和/或运动变量的变化气驱动调节装置140控制可调阻尼器150输出相应的阻尼力,实现对可调阻尼器150阻尼力大小的调节。由上可知,本实施例的技术方案通过机械机构的协同配合即可实现阻尼力调节,相比于现有技术中先通过传感器采集信号,然后由电子控制单元根据传感器采集的信号计算阻尼力 信号,再将阻尼力信号发送至执行机构进行阻尼力调节,大幅度提升了阻尼力调节的灵敏度。另外,本实施例的技术方案使得驾驶员在行驶过程中无需手动调节阻尼力,使得驾驶员的注意力更加集中,在一定程度上可以降低交通事故的发生。
在本发明的一些实施例中,结合图2和图3所示,运动变量包括第一连接部110相对于第二连接部120的位置关系;位置关系包括竖直关系和/或水平关系;该位置关系包括第一连接部相对于第二连接部的竖直关系,或者,第一连接部相对于第二连接部的水平关系,或者,第一连接部相对于第二连接部的竖直关系和水平关系;也就是说,不仅可以根据第一连接部相对于第二连接部的竖直关系对阻尼力进行调节,而且可以根据第一连接部相对于第二连接部的水平关系对阻尼力进行调节,还可以同时根据第一连接部相对于第二连接部的竖直关系和水平关系对阻尼力进行调节。第一连接部110相对于第二连接部120的位置关系为调整的目标值,位置关系由可调阻尼器150的总阻尼行程提供,优选地,第一连接部相对于第二连接部的位置关系按照预设比例与可调阻尼器的总阻尼行程相对应,例如1:1,1:2,或者1:3等,本实施例对第一连接部相对于第二连接部的位置关系与气动阀的总工作行程的比例不作进一步限定。总阻尼行程由上阻尼行程端S31和下阻尼行程端S32界定;第一连接部110相对于第二连接部120的最大可设定位置S21处于总阻尼行程平衡位置S00与上阻尼行程端S31之间的范围内,第一连接部110相对于第二连接部120的最小可设定位置S22处于总阻尼行程平衡位置S00与下阻尼行程端S32之间的范围内;平衡范围是由最大可设定位置S21和最小可设定位置S22限定的总阻尼行程范围的子范围,该平衡范围由平衡上限位置S11和平衡下限位置S12界定。例如,总阻尼行程范围包括(-15mm,+15mm),最大可设定位置S21和最小可设定位置S22限定的总阻尼行程范围的子范围包括(-10mm,+10mm),平衡范围包括(-5mm,+5mm)。
在本发明的一些实施例中,根据位置关系调节阻尼力主要分为以下三种模式:
第一种模式,若第一连接部110相对于第二连接部120的位置关系在平衡范围内,则气动阀130内部的气体流量不发生变化,因此,气动阀130不驱动调节装置140执行相应操作,可调阻尼器150的阻尼力为预设的基本阻尼力,例如预设的基本阻尼力包括50牛顿(N);这种情况下,可以是在平坦路面上行驶,使得可调阻尼器150的阻尼力为预设的基本阻尼力,一般为较小的阻尼力,从而使得舒适性达到最佳。
第二种模式,在第一连接部110相对于第二连接部120的位置关系从平衡上限位置S11沿着最大可设定位置S21的方向产生位移的过程中,或者,在第一连接部110相对于第二连接部120的位置关系从平衡下限位置S12沿着最小可设定位置S22的方向产生位移的过程中,则气动阀130内部的气体流量发生变化以气驱动调节装置140内部的气压发生变化,从而控制可调阻尼器150输出第一阻尼力,例如,第一阻尼力包括(50N,1500N),第一阻尼力随着第一连接部110相对于第二连接部120的位置关系变化而线性或非线性增长;
另外,在第一连接部110相对于第二连接部120的位置关系从最大可设定位置S21沿着平衡上限位置S11的方向产生位移的过程中,或者,在第一连接部110相对于第二连接部120的位置关系从最小可设定位置S22沿着平衡下限位置S12的方向产生位移的过程中,则气动阀130内部的气体流量发生变化以气驱动调节装置140内部的气压发生变化,从而控制可调阻尼器150输出第一阻尼力,例如,第一阻尼力包括(50N,1500N),第一阻尼力随着第一连接部110相对于第二连接部120的位置关系变化而线性或非线性减小;
上述两种情况,使得可调阻尼器的阻尼力根据路面情况增加或者减少,降低崎岖路面产生的不适感,以使得舒适性达到最佳。
第三种模式,在第一连接部110相对于第二连接部120的位置关系从最大可设定位置S21沿着上阻尼行程端S31的方向产生位移的过程中,或者,在第一连接部110相对于第二连接部120的位置关系从最小可设定位置S22沿着下阻尼行程端S32的方向产生位移的过程中,则气动阀130内部的气体流量发生变化以气驱动调节装置140内部的气压发生变化,从而控制可调阻尼器150输出与预设的末端冲击保护系数对应的阻尼力,例如,预设的末端冲击保护系数对应的阻尼力可以为可调阻尼器的阻尼力的最大值。这种情况下,可以是在剧烈颠簸的路面上行驶,使得可调阻尼器的阻尼力根据路面情况快速增加至预设的末端冲击保护系数对应的第二阻尼力,例如,第二阻尼力包括3000N,其中第一阻尼力位于预设的基本阻尼力与第二阻尼力之间,从而避免第一连接部与第二连接部刚性接触,提升舒适性。
在本发明的一些实施例中,运动变量还包括第一连接部相对于第二连接部的速度和加速度,其中,速度能够通过第一连接部相对于第二连接部的至少两个时间上连续的位置来确定,加速度能够通过第一连接部相对于第二连接部的至少两个时间上连续的速度来确定。
进一步地,若第一连接部相对于第二连接部的位置关系在平衡范围内, 例如平衡范围包括(-5mm,5mm),且第一连接部相对于第二连接部的加速度大于加速度阈值,例如6m/s 2,则气动阀130气驱动调节装置140控制可调阻尼器输出第三阻尼力,第三阻尼力随着加速度的增大而减小,或者,第三阻尼力随着加速度的减小而增大。例如在搓衣板类路面行驶时,第一连接部相对于第二连接部之间的位置关系变化很小的,但是第一连接部相对于第二连接部的加速度却较大,这种情况下,通过控制可调阻尼器输出较小的第三阻尼力来减弱路面激励带来的不适感,从而获得较佳的舒适性。需要说明的是,第三阻尼力小于预设的基本阻尼力50N,例如,第三阻尼力包括(10N,45N)。
在本发明的一些实施例中,可调阻尼器150输出与预设的末端冲击保护系数对应的阻尼力后,调节装置140控制自身的气压在预设时间内变小,从而在预设时间内使得自身内部的气压几乎不发生变化,从而使得可调阻尼器150的调节销的摆动方向和摆动幅度几乎保持不变,进而不改变可调阻尼器150输出的阻尼力,实现可调阻尼器150阻尼力的延时调节。这种情况下,可以在从剧烈颠簸的路面到平坦路面的过渡过程中构建缓冲期,降低从高阻尼力立刻变换到低阻尼力时产生的不适感,进一步提升舒适性。
图4示出了根据本发明一个实施例中的一种调节装置的功能结构示意图,如图4所示,调节装置140包括气体压缩装置141和被气体压缩装置141驱动的拉线控制装置142,拉线控制装置142与可调阻尼器150连接,具体地,拉线控制装置142与可调阻尼器150的调节销连接,拉线控制装置142具有驱动可调阻尼器150的调节销往复运动的回位弹簧。
气动阀130根据采集到的运动变量和/或运动变量的变化改变自身内部的气体流量发生变化以气驱动气体压缩装置141内部的气体信息的状态量和状态量的变化的频率,从而改变气体压缩装置141的行程大小,当气体压缩装置141的行程变大时,拉线控制装置142的驱动力变大;当气体压缩装置141的行程变小时,拉线控制装置142的驱动力变小,由于拉线控制装置142的回位力由回位弹簧提供,因此,在不改变回位弹簧的前提下,拉线控制装置142的回位力与拉线控制装置142的驱动力成线性关系。因此,通过改变气体压缩装置141的行程大小即可调整拉线控制装置142的驱动力和回位力之间的匹配关系,从而驱动可调阻尼器150的调节销往复摆动,即,驱动可调阻尼器的调节销的摆动方向和摆动幅度的大小,控制可调阻尼器输出相应的阻尼力,实现可调阻尼器150的阻尼力的自适应调节。
图5示出了根据本发明一个实施例中的另一种调节装置的功能结构示意 图,如图5所示,调节装置140包括被气动阀130驱动的气体压缩装置143,气体压缩装置143与可调阻尼器150连接;具体地,气体压缩装置143的驱动杆与可调阻尼器150的调节销连接;气动阀130根据采集到的运动变量和/或运动变量的变化改变自身内部的气体流量发生变化,由于气动阀130与气体压缩装置143连接,因此,气体压缩装置143内部的气压跟随气动阀130内部的气体流量发生变化,使得气体压缩装置143的行程发生变化,即,气体压缩装置143的驱动杆和缸筒之间的相对位移发生变化,实现调整气体压缩装置143的行程大小的目的,由于气体压缩装置143的驱动杆与可调阻尼器150的调节销连接,因此,当气动阀130气驱动气体压缩装置143的驱动杆在缸筒中往复运动时,气体压缩装置143的驱动杆驱动可调阻尼器150的调节销往复摆动相应幅度,控制可调阻尼器输出相应的阻尼力,实现可调阻尼器150的阻尼力的自适应调节。
需要说明的是,图5所示的气体压缩装置143与图4所示的气体压缩装置141的功能结构和工作原理均相同,均主要由驱动杆和缸筒两部分组成。当然,在其他实施例中,气体压缩装置143和气体压缩装置141的功能结构和工作原理也可以不同。
图6示出了根据本发明一个实施例中的再一种调节装置的功能结构示意图,如图6所示,调节装置140包括比例阀145,比例阀145与可调阻尼器150的阻尼液流通腔的阀口连接;气动阀130根据采集到的运动变量和/或运动变量的变化改变自身内部的气体流量发生变化以气驱动改变比例阀145的工作行程,从而控制可调阻尼器150的阻尼液流通腔的阀口的通径大小,由于阻尼液流通腔的阀口的通径大小不同,因此,阻尼液的流量和/或流速不同,进而实现调整可调阻尼器150的阻尼液流量、阻尼液流速或者阻尼液流量和流速的目的,最终控制可调阻尼器输出相应的阻尼力,实现可调阻尼器150的阻尼力的自适应调节。
图7示出了根据本发明一个实施例中的另一种调节阻尼器的阻尼力的系统的功能结构示意图,如图7所示,该系统100还包括至少一个高度控制调节阀160和至少一个流体弹簧170,高度控制调节阀160和流体弹簧170布置在第一连接部110和第二连接部120之间,高度控制调节阀160和流体弹簧170连接;高度控制调节阀160、流体弹簧170与可调阻尼器150的位置相适应,高度控制调节阀160用于控制流体弹簧170充气或者放气,使得第一连接部110和第二连接部120之间的位置维持在预设位置。这种系统适用于驾驶室悬架系统,其中第一连接部110包括驾驶室,第二连接部120包括底盘 车架,气动阀130、调节装置140、可调阻尼器150、高度控制调节阀160和流体弹簧170布置在驾驶室和底盘车架之间。驾驶室与底盘车架之间的位置维持在预设位置,当驾驶室与车架支架之间的位置小于预设位置时,高度控制调节阀160控制流体弹簧充气;放驾驶室与车架支架之间的位置大于预设位置时,高度控制调节阀160控制流体弹簧放气。同时气动阀130实时采集驾驶室与车架之间的位置关系以及位置关系的变化并气驱动调节装置140控制可调阻尼器150输出相应的阻尼力。可调阻尼器的阻尼力调节方式上文已经详细论述,在此不再赘述。
需要说明的是,调节阻尼器的阻尼力的系统可以应用在座椅悬架系统,车辆底盘悬架系统或者驾驶室悬架系统等领域,本实施例对调节阻尼器的阻尼力的系统的应用领域不作进一步限定。
综上所述,本实施例的技术方案通过机械机构的协同配合即可实现阻尼力调节,相比于现有技术中先通过传感器采集信号,然后由电子控制单元根据传感器采集的信号计算阻尼力信号,再将阻尼力信号发送至执行机构进行阻尼力调节,大幅度提升了阻尼力调节的灵敏度。另外,本实施例的技术方案使得驾驶员在行驶过程中无需手动调节阻尼力,使得驾驶员的注意力更加集中,在一定程度上可以降低交通事故的发生。
最后应说明的是,以上仅为本发明的优选实施例而已,并非用于限定本发明的保护范围,尽管参照前述各实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述个实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (16)

  1. 一种调节阻尼器的阻尼力的方法,其特征在于,所述方法包括:
    将气动阀、可调阻尼器布置在第一连接部与第二连接部之间,所述气动阀和所述可调阻尼器的位置相适应;且将所述气动阀的气体输出端与用于调节所述可调阻尼器阻尼力的调节装置的气体输入端连接;所述调节装置与所述可调阻尼器连接;
    所述气动阀采集所述第一连接部相对于所述第二连接部的至少一个运动变量;
    同时所述气动阀根据采集到的所述运动变量和/或所述运动变量的变化气驱动所述调节装置控制所述可调阻尼器输出相应的阻尼力,实现对所述可调阻尼器阻尼力大小的调节。
  2. 如权利要求1所述的调节阻尼器的阻尼力的方法,其特征在于,所述运动变量包括所述第一连接部相对于所述第二连接部的位置关系;所述位置关系包括竖直关系和/或水平关系;
    所述第一连接部相对于所述第二连接部的位置关系为调整的目标值,所述位置关系由所述可调阻尼器的总阻尼行程提供,所述总阻尼行程由上阻尼行程端和下阻尼行程端界定;
    所述第一连接部相对于所述第二连接部的最大可设定位置处于所述总阻尼行程平衡位置与所述上阻尼行程端之间的范围内,所述第一连接部相对于所述第二连接部的最小可设定位置处于总阻尼行程平衡位置与所述下阻尼行程端之间的范围内;
    平衡范围是由所述最大可设定位置和所述最小可设定位置限定的所述总阻尼行程范围的子范围,该平衡范围由平衡上限位置和平衡下限位置界定。
  3. 如权利要求2所述的调节阻尼器的阻尼力的方法,其特征在于,若所述第一连接部相对于所述第二连接部的位置关系在所述平衡范围内,则所述气动阀不驱动所述调节装置执行相应操作,所述可调阻尼器的阻尼力为预设的基本阻尼力;
    在所述第一连接部相对于所述第二连接部的位置关系从所述平衡上限位置沿着所述最大可设定位置的方向产生位移的过程中,或者,在所述第一连接部 相对于所述第二连接部的位置关系从所述平衡下限位置沿着所述最小可设定位置的方向产生位移的过程中,则所述气动阀气驱动所述调节装置控制所述可调阻尼器输出第一阻尼力,所述第一阻尼力随着所述第一连接部相对于所述第二连接部的位置关系变化而线性或非线性增长;
    在所述第一连接部相对于所述第二连接部的位置关系从所述最大可设定位置沿着所述平衡上限位置的方向产生位移的过程中,或者,在所述第一连接部相对于所述第二连接部的位置关系从所述最小可设定位置沿着所述平衡下限位置的方向产生位移的过程中,则所述气动阀气驱动所述调节装置控制所述可调阻尼器输出第一阻尼力,所述第一阻尼力随着所述第一连接部相对于所述第二连接部的位置关系变化而线性或非线性减小;
    在所述第一连接部相对于所述第二连接部的位置关系从最大可设定位置沿着所述上阻尼行程端的方向产生位移的过程中,或者,在所述第一连接部相对于所述第二连接部的位置关系从最小可设定位置沿着所述下阻尼行程端的方向产生位移的过程中,则所述气动阀气驱动所述调节装置控制所述可调阻尼器输出与预设的末端冲击保护系数对应的第二阻尼力,其中所述第一阻尼力位于所述预设的基本阻尼力与所述第二阻尼力之间。
  4. 如权利要求3所述的调节阻尼器的阻尼力的方法,其特征在于,所述运动变量还包括所述第一连接部相对于所述第二连接部的速度和加速度,其中,所述速度能够通过所述第一连接部相对于所述第二连接部的至少两个时间上连续的位置来确定,所述加速度能够通过所述第一连接部相对于所述第二连接部的至少两个时间上连续的速度来确定。
  5. 如权利要求4所述的调节阻尼器的阻尼力的方法,其特征在于,若所述第一连接部相对于所述第二连接部的位置关系在所述平衡范围内,且所述第一连接部相对于所述第二连接部的加速度大于加速度阈值,则所述气动阀气驱动所述调节装置控制所述可调阻尼器输出第三阻尼力,所述第三阻尼力随着加速度的增大而减小,或者,所述第三阻尼力随着加速度的减小而增大,所述第三阻尼力小于所述预设的基本阻尼力。
  6. 如权利要求3所述的调节阻尼器的阻尼力的方法,其特征在于,所述可调阻尼器输出与所述预设的末端冲击保护系数对应的阻尼力后,所述调节装置控制自身的气压在预设时间内变小,从而在所述预设时间内不改变所述 可调阻尼器输出的阻尼力,实现可调阻尼器阻尼力的延时调节。
  7. 一种调节阻尼器的阻尼力的系统,其特征在于,所述系统包括第一连接部、第二连接部、至少一个气动阀、可调阻尼器和用于调节所述可调阻尼器阻尼力的调节装置;
    所述气动阀和所述可调阻尼器布置在第一连接部和第二连接部之间,所述气动阀和所述可调阻尼器的位置相适应;
    所述气动阀的气体输出端与所述调节装置的气体输入端连接;所述调节装置与所述可调阻尼器连接;
    所述气动阀,用于采集所述第一连接部相对于所述第二连接部的至少一个运动变量;同时根据采集到的所述运动变量和/或所述运动变量的变化气驱动所述调节装置控制所述可调阻尼器输出相应的阻尼力,实现对所述可调阻尼器阻尼力大小的调节。
  8. 如权利要求7所述的调节阻尼器的阻尼力的系统,其特征在于,
    所述运动变量包括第一连接部相对于第二连接部的位置关系;所述位置关系包括竖直关系和/或水平关系;
    所述第一连接部相对于所述第二连接部的位置关系为调整的目标值,所述位置关系由所述可调阻尼器的总阻尼行程提供,所述总阻尼行程由上阻尼行程端和下阻尼行程端界定;
    所述第一连接部相对于所述第二连接部的最大可设定位置处于所述总阻尼行程平衡位置与所述上阻尼行程端之间的范围内,所述第一连接部相对于所述第二连接部的最小可设定位置处于总阻尼行程平衡位置与所述下阻尼行程端之间的范围内;
    平衡范围是由所述最大可设定位置和所述最小可设定位置限定的所述总阻尼行程范围的子范围,该平衡范围由平衡上限位置和平衡下限位置界定。
  9. 如权利要求8所述的调节阻尼器的阻尼力的系统,其特征在于,
    若所述第一连接部相对于所述第二连接部的位置关系在所述平衡范围内,则所述气动阀不驱动所述调节装置执行相应操作,所述可调阻尼器的阻尼力为预设的基本阻尼力;
    在所述第一连接部相对于所述第二连接部的位置关系从所述平衡上限位 置沿着所述最大可设定位置的方向产生位移的过程中,或者,在所述第一连接部相对于所述第二连接部的位置关系从所述平衡下限位置沿着所述最小可设定位置的方向产生位移的过程中,则所述气动阀气驱动所述调节装置控制所述可调阻尼器输出第一阻尼力,所述第一阻尼力随着所述第一连接部相对于所述第二连接部的位置关系变化而线性或者非线性增长;
    在所述第一连接部相对于所述第二连接部的位置关系从所述最大可设定位置沿着所述平衡上限位置的方向产生位移的过程中,或者,在所述第一连接部相对于所述第二连接部的位置关系从所述最小可设定位置沿着所述平衡下限位置的方向产生位移的过程中,则所述气动阀气驱动所述调节装置控制所述可调阻尼器输出第一阻尼力,所述第一阻尼力随着所述第一连接部相对于所述第二连接部的位置关系变化而线性或非线性减小;
    在所述第一连接部相对于所述第二连接部的位置关系从所述最大可设定位置沿着所述上阻尼行程端的方向产生位移的过程中,或者,在所述第一连接部相对于所述第二连接部的位置关系从所述最小可设定位置沿着所述下阻尼行程端的方向产生位移的过程中,则所述气动阀气驱动所述调节装置控制所述可调阻尼器输出与预设的末端冲击保护系数对应的第二阻尼力,其中所述第一阻尼力位于所述预设的基本阻尼力与所述第二阻尼力之间。
  10. 如权利要求9所述的调节阻尼器的阻尼力的系统,其特征在于,所述运动变量还包括所述第一连接部相对于所述第二连接部的速度和加速度,其中,所述速度能够通过所述第一连接部相对于所述第二连接部的至少两个时间上连续的位置来确定,所述加速度能够通过所述第一连接部相对于所述第二连接部的至少两个时间上连续的速度来确定。
  11. 如权利要求10所述的调节阻尼器的阻尼力的系统,其特征在于,若所述第一连接部相对于所述第二连接部的位置关系在所述平衡范围内,且所述第一连接部相对于所述第二连接部的加速度大于加速度阈值,则气动阀,用于气驱动所述调节装置控制所述可调阻尼器输出第三阻尼力,所述第三阻尼力随着加速度的增大而减小,或者,所述第三阻尼力随着加速度的减小而增大,所述第三阻尼力小于所述预设的基本阻尼力。
  12. 如权利要求9所述的调节阻尼器的阻尼力的系统,其特征在于,所述可调阻尼器输出与预设的末端冲击保护系数对应的阻尼力后,所述调节装置控制自身的气压在预设时间内变小,从而在所述预设时间内不改变所述可调 阻尼器输出的阻尼力,实现可调阻尼器阻尼力的延时调节。
  13. 如权利要求7所述的调节阻尼器的阻尼力的系统,其特征在于,所述调节装置包括气体压缩装置和被所述气体压缩装置驱动的拉线控制装置,所述拉线控制装置与所述可调阻尼器连接;
    所述气动阀根据采集到的所述运动变量和/或所述运动变量的变化气驱动所述气体压缩装置内部的气体信息的状态量和所述状态量的变化的频率,改变所述气体压缩装置的行程大小,进而调整所述拉线控制装置的驱动力和回位力之间的匹配关系,驱动所述可调阻尼器的调节销往复摆动,实现所述可调阻尼器的阻尼力的自适应调节。
  14. 如权利要求7所述的调节阻尼器的阻尼力的系统,其特征在于,
    所述调节装置包括被所述气动阀驱动的气体压缩装置,所述气体压缩装置与所述可调阻尼器连接;
    所述气动阀根据采集到的所述运动变量和/或所述运动变量的变化气驱动调整所述气体压缩装置的行程大小,驱动所述可调阻尼器的调节销往复摆动相应幅度,实现可调阻尼器的阻尼力的自适应调节。
  15. 如权利要求7所述的调节阻尼器的阻尼力的系统,其特征在于,所述调节装置包括比例阀,所述比例阀与所述可调阻尼器的阻尼液流通腔的阀口连接;
    所述气动阀根据采集到的所述运动变量和/或所述运动变量的变化气驱动改变所述比例阀的工作行程,从而控制所述可调阻尼器的阻尼液流通腔的阀口的通径大小,进而调整所述可调阻尼器的阻尼液流量和/或流速,实现可调阻尼器的阻尼力的自适应调节。
  16. 如权利要求7所述的调节阻尼器的阻尼力的系统,其特征在于,所述系统还包括至少一个高度控制调节阀和至少一个流体弹簧,所述高度控制调节阀和所述流体弹簧布置在第一连接部和所述第二连接部之间,所述高度控制调节阀和所述流体弹簧连接;
    所述高度控制调节阀、所述流体弹簧与所述可调阻尼器的位置相适应,所述高度控制调节阀用于控制所述流体弹簧充气或者放气,使得第一连接部和所述第二连接部之间的位置维持在预设位置。
PCT/CN2020/122007 2019-10-18 2020-10-19 一种调节阻尼器的阻尼力的方法和系统 WO2021073651A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910991452.3 2019-10-18
CN201910991452.3A CN110722953B (zh) 2019-10-18 2019-10-18 一种调节阻尼器的阻尼力的方法和系统

Publications (1)

Publication Number Publication Date
WO2021073651A1 true WO2021073651A1 (zh) 2021-04-22

Family

ID=69220276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122007 WO2021073651A1 (zh) 2019-10-18 2020-10-19 一种调节阻尼器的阻尼力的方法和系统

Country Status (2)

Country Link
CN (1) CN110722953B (zh)
WO (1) WO2021073651A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110722953B (zh) * 2019-10-18 2021-10-12 安路普(北京)汽车技术有限公司 一种调节阻尼器的阻尼力的方法和系统
CN115366699A (zh) * 2022-09-15 2022-11-22 江苏理工学院 车辆垂向振动控制方法和装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6427986B1 (en) * 1999-03-31 2002-08-06 Tokico, Ltd. Air suspension apparatus
CN101337518A (zh) * 2007-06-29 2009-01-07 格拉默股份有限公司 带滑阀的汽车座椅
US20110298266A1 (en) * 2010-06-08 2011-12-08 Grammer Ag Pneumatic Springing System for Vehicles and Method for Pneumatic Springing of Vehicle Parts
CN102616103A (zh) * 2012-04-23 2012-08-01 扬州万方电子技术有限责任公司 一种麦克纳姆轮全向移动车及其工作方法
CN107458277A (zh) * 2017-09-19 2017-12-12 安路普(北京)汽车技术有限公司 自动阻尼调节机构及气悬浮座椅
CN108099712A (zh) * 2017-11-17 2018-06-01 北汽福田汽车股份有限公司 汽车座椅减震器及汽车
CN110712492A (zh) * 2019-10-18 2020-01-21 安路普(北京)汽车技术有限公司 一种调节高度和阻尼力的方法及系统
CN110722953A (zh) * 2019-10-18 2020-01-24 安路普(北京)汽车技术有限公司 一种调节阻尼器的阻尼力的方法和系统
CN110745045A (zh) * 2019-10-18 2020-02-04 安路普(北京)汽车技术有限公司 一种阻尼力调节装置、座椅和车辆悬架系统
CN210912114U (zh) * 2019-10-18 2020-07-03 安路普(北京)汽车技术有限公司 一种阻尼力调节装置、座椅和车辆悬架系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB943262A (en) * 1959-05-06 1963-12-04 Dunlop Rubber Co Improvements in pneumatic suspension systems for vehicles
US6988599B2 (en) * 2000-12-07 2006-01-24 Visteon Global Technologies, Inc. Compressible fluid strut
CN101417595B (zh) * 2008-11-04 2011-11-09 江苏大学 空气悬架气体回路充(放)气过程数学模型的建立方法
CN102390231B (zh) * 2011-08-23 2013-08-21 中国北方车辆研究所 一种车姿调节系统轮胎载荷控制方法
KR101510018B1 (ko) * 2013-12-18 2015-04-07 현대자동차주식회사 차량용 에어스프링
CN104015581B (zh) * 2014-05-20 2016-03-02 江苏大学 一种电控空气悬架车高调节控制方法
CN106523574B (zh) * 2016-10-13 2018-04-13 湖南大学 一种多工况阻尼自适应油气弹簧及其控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6427986B1 (en) * 1999-03-31 2002-08-06 Tokico, Ltd. Air suspension apparatus
CN101337518A (zh) * 2007-06-29 2009-01-07 格拉默股份有限公司 带滑阀的汽车座椅
US20110298266A1 (en) * 2010-06-08 2011-12-08 Grammer Ag Pneumatic Springing System for Vehicles and Method for Pneumatic Springing of Vehicle Parts
CN102616103A (zh) * 2012-04-23 2012-08-01 扬州万方电子技术有限责任公司 一种麦克纳姆轮全向移动车及其工作方法
CN107458277A (zh) * 2017-09-19 2017-12-12 安路普(北京)汽车技术有限公司 自动阻尼调节机构及气悬浮座椅
CN108099712A (zh) * 2017-11-17 2018-06-01 北汽福田汽车股份有限公司 汽车座椅减震器及汽车
CN110712492A (zh) * 2019-10-18 2020-01-21 安路普(北京)汽车技术有限公司 一种调节高度和阻尼力的方法及系统
CN110722953A (zh) * 2019-10-18 2020-01-24 安路普(北京)汽车技术有限公司 一种调节阻尼器的阻尼力的方法和系统
CN110745045A (zh) * 2019-10-18 2020-02-04 安路普(北京)汽车技术有限公司 一种阻尼力调节装置、座椅和车辆悬架系统
CN210912114U (zh) * 2019-10-18 2020-07-03 安路普(北京)汽车技术有限公司 一种阻尼力调节装置、座椅和车辆悬架系统

Also Published As

Publication number Publication date
CN110722953B (zh) 2021-10-12
CN110722953A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
WO2021073653A1 (zh) 一种调节高度和阻尼力的方法及系统
US20230035897A1 (en) Electronic compression and rebound control
WO2021073651A1 (zh) 一种调节阻尼器的阻尼力的方法和系统
KR101130288B1 (ko) 전자제어 서스펜션 장치와 이를 이용한 안티 스쿼트 제어방법
US9623716B2 (en) Suspension with hydraulic preload adjust
EP1707407A1 (en) Air suspension and electronically controlled suspension system
CN210912116U (zh) 一种调节阻尼力和高度的装置、座椅和车辆悬架系统
EP1659007B1 (en) Air suspension and electronically controlled suspension system
WO2021073647A1 (zh) 一种阻尼力调节装置、座椅和车辆悬架系统
CN110439955A (zh) 一种磁流变液单向阻尼调节阀
WO2021073652A1 (zh) 一种调节悬架系统高度的方法和系统
CN202992003U (zh) 减震装置
WO2021073650A1 (zh) 一种调节阻尼力和高度的装置、座椅和车辆悬架系统
WO2021073649A1 (zh) 一种调节阻尼力和高度的装置、座椅以及车辆悬架系统
CN210912114U (zh) 一种阻尼力调节装置、座椅和车辆悬架系统
WO2022133748A1 (zh) 一种减震器
JP2006335160A (ja) 車体の振動制御システムおよび振動制御方法
RU215981U1 (ru) Подвеска сиденья транспортного средства с активным демпфированием
CN108312798A (zh) 空气悬架及使用该空气悬架的车辆
CN1272196C (zh) 车辆用椅子的缓冲力调整装置
KR20070076227A (ko) 전자제어 서스펜션 장치와 이를 이용한 안티 다이브 제어방법
KR20080109456A (ko) 전자제어 현가장치의 감쇠력 제어 장치 및 그에 의한감쇠력 제어 방법
CN115949691A (zh) 一种带双阀控压技术的减振器机构及其工作原理
JP2006513387A (ja) 動作中のショックアブソーバーの流体抵抗の調整方法
JP2006273220A (ja) 可変減衰力ダンパーの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876215

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/09/2022)