WO2021068905A1 - 铑掺杂钛酸锶反蛋白石材料及其制备方法与其在压电协同光催化去除有机污染物中的应用 - Google Patents

铑掺杂钛酸锶反蛋白石材料及其制备方法与其在压电协同光催化去除有机污染物中的应用 Download PDF

Info

Publication number
WO2021068905A1
WO2021068905A1 PCT/CN2020/120049 CN2020120049W WO2021068905A1 WO 2021068905 A1 WO2021068905 A1 WO 2021068905A1 CN 2020120049 W CN2020120049 W CN 2020120049W WO 2021068905 A1 WO2021068905 A1 WO 2021068905A1
Authority
WO
WIPO (PCT)
Prior art keywords
rhodium
source
strontium
inverse opal
strontium titanate
Prior art date
Application number
PCT/CN2020/120049
Other languages
English (en)
French (fr)
Inventor
路建美
李娜君
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US17/623,974 priority Critical patent/US20220347666A1/en
Publication of WO2021068905A1 publication Critical patent/WO2021068905A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/20Constitutive chemical elements of heterogeneous catalysts of Group II (IIA or IIB) of the Periodic Table
    • B01J2523/24Strontium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/40Constitutive chemical elements of heterogeneous catalysts of Group IV (IVA or IVB) of the Periodic Table
    • B01J2523/47Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/82Metals of the platinum group
    • B01J2523/822Rhodium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention belongs to the technical field of inorganic nano materials and piezoelectric cooperative photocatalysis, and specifically relates to a preparation method of a three-dimensional ordered macroporous rhodium-doped strontium titanate inverse opal material that responds to visible light and its application in piezoelectric cooperative visible light catalytic degradation of water Application of organic pollutants in China.
  • Strontium titanate (SrTiO 3 ) is a perovskite-type photocatalytic material. It has the advantages of high stability, good acid and alkali resistance, no anode photo corrosion after light exposure, abundant sources, safety, non-toxicity, and low cost. It also has excellent ferroelectric, piezoelectric, photoelectric and other properties, so it has been widely studied. However, the wide band gap of strontium titanate can only absorb ultraviolet light in sunlight, which greatly limits its practical application.
  • the purpose of the present invention is to provide a three-dimensional ordered macroporous inverse opal material that responds to visible light, and uses relatively inexpensive transition metal rhodium chloride instead of precious metals such as gold, platinum, palladium, etc. to dope strontium titanate in a small amount
  • the modification solves the problem of high cost; at the same time, the material disclosed in the present invention can quickly and efficiently degrade organic pollutants in the water body through piezoelectric synergistic photocatalysis.
  • the three-dimensional ordered macroporous rhodium-doped strontium titanate inverse opal material of the present invention can be applied in the field of photocatalysis. Under the action of external forces such as ultrasound, the built-in electric field formed by the spontaneous polarization of the material can effectively separate photo-induced carriers. Thereby, the photocatalytic performance can be enhanced, and the photocatalytic efficiency can be improved.
  • the preparation method of strontium titanate inverse opal material includes the following steps:
  • the three-dimensional ordered photonic crystal opal template is immersed in a solution containing a titanium source and a strontium source, and then calcined to prepare a strontium titanate inverse opal material.
  • the preparation method of rhodium-doped strontium titanate inverse opal material includes the following steps:
  • the three-dimensional ordered photonic crystal opal template is immersed in a solution containing a rhodium source, a titanium source, and a strontium source, and then calcined to prepare a rhodium-doped strontium titanate inverse opal material.
  • a method for catalytically removing pollutants in water including the following steps:
  • the monodisperse polystyrene microsphere emulsion is spread on the conductive surface of the FTO glass, and treated at a constant temperature to prepare a three-dimensional ordered photonic crystal opal template; preferably, the FTO glass is used in sequence Ultrasonic cleaning with acetone, ethanol and deionized water; the concentration of the monodisperse polystyrene microsphere emulsion is 0.125 wt%; more preferably, the particle size of the monodisperse polystyrene microspheres is 250-300 nm, preferably 280 nm; The temperature of the treatment is 40-50°C, and the time is 45-75 hours.
  • step (2) drying is carried out before calcination, preferably the drying temperature is 50-70°C, the calcination temperature is 400-650°C, the heating rate is 1-2°C/min, and the time is 1.5-2.5 hours; rhodium;
  • the source is rhodium chloride or rhodium nitrate, the strontium source is strontium nitrate or strontium acetate, the titanium source is tetra-n-butyl titanate or tetraisopropyl titanate; the solution containing rhodium, titanium, strontium sources or titanium In the solution of the source and the strontium source, the solvent is water.
  • the solution containing the rhodium source, the titanium source, the strontium source or the solution containing the titanium source and the strontium source and also contains acetic acid and citric acid.
  • the doping amount of rhodium is 0 to 1% of the molar amount of strontium.
  • the contaminant is bisphenol A;
  • the light treatment is 300 W xenon lamp light treatment, and the power of the ultrasonic treatment is 100 ⁇ 150 W; preferably, the light is simultaneously applied with ultrasound to provide additional mechanical vibration to excite the inside of the material Under the action of external force, the built-in electric field formed by the spontaneous polarization of the material can effectively separate the photo-induced carriers, thereby enhancing the photocatalytic performance and improving the photocatalytic efficiency.
  • the perovskite strontium titanate is one of the most important n-type semiconductors. It has a large number of photocatalytic sites, excellent light corrosion resistance, thermal stability, and serves as a metal load.
  • the main body has good structural stability and low cost; the periodic structure of the inverse opal material shows obvious slow photon effect, which can prohibit certain wavelengths of light from propagating in the material and produce stop band reflection, and the slow photon effect can also be increased
  • the path length of light enhances the photon-matter interaction and further improves the light energy conversion efficiency of semiconductors.
  • the present invention discloses the application of the above-mentioned strontium titanate inverse opal material or rhodium-doped strontium titanate inverse opal material in removing organic pollutants; the preferred organic pollutant is bisphenol A.
  • the present invention has the following advantages compared with the prior art:
  • the dopant can occupy its A and B positions, and at the same time, it can maintain a stable perovskite structure after doping, and the choice of dopant has great flexibility
  • the photoresponse range of the rhodium-doped strontium titanate inverse opal material of the present invention moves from the ultraviolet light region to the visible light region and can effectively improve the photocatalytic activity of strontium titanate in the visible light region, and solves the problem of many existing transition metal element doping Into the strontium titanate lattice, but not able to move the light response range of strontium titanate from the ultraviolet light region to the visible light region.
  • the strontium titanate inverse opal material disclosed in the present invention self-assembles polystyrene microspheres on an FTO substrate, then prepares doped strontium titanate precursors, and fills the precursors into the gaps of the opal template by capillary force, The template is removed by a calcination method to obtain a three-dimensional pore structure.
  • the periodic structure of rhodium-doped strontium titanate inverse opal can increase the path length of light, enhance photon-matter interaction, further enhance light absorption, and use more photons, thereby further improving the light energy conversion efficiency of semiconductors and enhancing materials
  • the photocatalytic performance At the same time, its three-dimensional ordered porous structure has a larger specific surface area than ordinary nano-particle materials, which is conducive to exposing the active sites of the catalyst and has multiple scattering effects on the propagation of light inside it.
  • the rhodium-doped strontium titanate inverse opal disclosed in the present invention is also a piezoelectric material.
  • an electric field is formed inside the strontium titanate, which can effectively separate electrons and holes to achieve
  • the photocatalytic decomposition of organic pollutants under the action of external force improves the photocatalytic activity.
  • it does not have the toxicity of the traditional piezoelectric material lead zirconate titanate (PZT), and the cost is low, which is conducive to further popularization and application.
  • Figure 1 is a scanning electron micrograph of the strontium titanate inverse opal (SrTiO 3 IO) of Example 3;
  • Example 2 is a scanning electron micrograph of the rhodium-doped strontium titanate inverse opal (Rh-SrTiO 3 IO) of Example 4;
  • Fig. 3 is a transmission electron microscope image of rhodium-doped strontium titanate inverse opal (Rh-SrTiO 3 IO) in Example 4;
  • Fig. 4 is an ultraviolet-visible absorption spectrum diagram of rhodium-doped strontium titanate inverse opal (Rh-SrTiO 3 IO) of Example 4;
  • Fig. 5 is a diagram showing the degradation effect of strontium titanate inverse opal (SrTiO 3 IO) and rhodium-doped strontium titanate inverse opal (Rh-SrTiO 3 IO) in Example 6 on the degradation of bisphenol A.
  • the present invention modifies strontium titanate nanomaterials by doping transition metal elements and microscopic morphology control, and prepares rhodium-doped strontium titanate inverse opal (Rh-SrTiO 3 IO) by using a template calcination method to achieve
  • the purpose of adjusting the band gap of strontium titanate is to make it respond to visible light; at the same time, it can take advantage of the unique three-dimensional ordered macroporous structural characteristics of inverse opal to improve light absorption, expose more active sites, and enhance photocatalytic performance.
  • the three-dimensional ordered macroporous rhodium-doped strontium titanate inverse opal material of the present invention is a good piezoelectric material.
  • the present invention applies external mechanical force to it to generate a built-in polarization electric field, so that The photo-generated electrons and holes are further separated, thereby further improving the photocatalytic performance and realizing the efficient removal of organic pollutants in the water body.
  • the preparation method of the strontium titanate inverse opal material of the present invention is as follows:
  • the three-dimensional ordered photonic crystal opal template is immersed in a solution containing a titanium source and a strontium source, and then calcined to prepare a strontium titanate inverse opal material.
  • the three-dimensional ordered photonic crystal opal template is immersed in a solution containing a rhodium source, a titanium source, and a strontium source, and then calcined to prepare a rhodium-doped strontium titanate inverse opal material.
  • the solution containing the rhodium source, the titanium source, and the strontium source is composed of acetic acid, citric acid, water, the rhodium source, the titanium source, and the strontium source; the solution containing the titanium source and the strontium source is composed of acetic acid, citric acid, water, and the titanium source.
  • Strontium source composition is composed of acetic acid, citric acid, water, and the titanium source.
  • Preparation of photonic crystal opal template Prepare by vertical deposition method. Firstly, FTO glass is sonicated with acetone, ethanol and deionized water in sequence. min; then disperse the freeze-dried 280 nm polystyrene microsphere powder into deionized water to obtain 0.125 wt% monodisperse polystyrene microsphere emulsion. Then measure 1 ml of monodisperse polystyrene microsphere emulsion with a concentration of 0.125 wt% in a weighing bottle, and put the ultrasonically cleaned FTO glass with the conductive side up and put it into the weighing bottle vertically.
  • the weighing bottle is appropriately tilted so that the liquid surface just touches the edge of the FTO glass substrate (that is, the monodisperse polystyrene microsphere emulsion is spread on the conductive surface of the FTO glass), and then placed in an electric thermostatic incubator at 45°C After two days (48 hours), a three-dimensional ordered photonic crystal template can be prepared for use in Examples 2 to 5.
  • the prepared polystyrene opal template is soaked in solution A, and then placed in an oven at 60 °C to dry and dry, and then the dried precursor template is calcined in the air in a tube furnace for 2 h, and the calcination temperature is 650 °C.
  • the heating rate is 2 °C/min (room temperature rises to 650 °C), and the strontium titanate inverse opal film photocatalyst (SrTiO 3 IO) is obtained by natural cooling. It can be seen from Figure 1 that the strontium titanate inverse opal has a three-dimensional ordered macroporous structure with uniform pore size and regular arrangement.
  • the prepared polystyrene opal template was soaked in solution A, and then placed in an oven at 60 °C for drying.
  • the dried precursor template was calcined in the air in a tube furnace for 2 h, and the calcination temperature was 650 °C.
  • the rhodium-doped strontium titanate inverse opal film photocatalyst (0.3 mol% Rh-SrTiO 3 IO) is obtained by natural cooling.
  • the prepared polystyrene opal template was soaked in solution A, and then placed in an oven at 60 °C for drying.
  • the dried precursor template was calcined in the air in a tube furnace for 2 h, and the calcination temperature was 650 °C.
  • the rate is 2 °C/min (room temperature rises to 650 °C), and the rhodium-doped strontium titanate inverse opal film photocatalyst (0.5 mol% Rh-SrTiO 3 IO) is obtained by natural cooling. It can be seen from Figure 2 that 0.5 mol% rhodium-doped strontium titanate inverse opal still maintains a stable skeleton, uniform pores and regular structure.
  • the prepared polystyrene opal template was immersed in solution A, and then dried in an oven at 60 °C.
  • the dried precursor template was calcined in the air using a tube furnace for 2 h at a calcination temperature of 650 °C and a heating rate of 2 °C/min (room temperature rises to 650°C), natural cooling to obtain rhodium-doped strontium titanate inverse opal film photocatalyst (1.0 mol% Rh-SrTiO 3 IO).
  • rhodium-doped strontium titanate nanoparticles synthesized by hydrothermal method, first dissolve tetrabutyl titanate in 20 mL ethylene glycol to form a clear solution, and then add 20 mL 0.5 M dropwise to it under magnetic stirring A mixed aqueous solution of strontium nitrate and rhodium trichloride trihydrate and 10 mL of 5 M sodium hydroxide solution (the molar ratio of strontium nitrate, tetrabutyl titanate, and rhodium trichloride trihydrate is 1:0.995:0.005).
  • the piezoelectric photocatalytic degradation experiment of 0.5 mol% Rh-SrTiO 3 IO on bisphenol A Weigh 6 mg of the 0.5 mol% Rh-SrTiO 3 IO photocatalyst obtained in Example 4 above, and place it in 10 mL at a concentration of 10 mg/L ⁇ bisphenol A aqueous solution. Stir in the dark for one hour to reach adsorption-desorption equilibrium.
  • test tube containing the bisphenol A aqueous solution was placed in an ultrasonic cleaner obliquely, the catalyst was irradiated with a 300 W xenon lamp and the ultrasonic cleaner was turned on, the power was adjusted to 150 W, and 1 mL was sampled every 15 minutes, using high performance liquid chromatography Record retention time, record this retention time
  • FIG. 5 is a graph showing the relationship between the residual rate of bisphenol A and time. It can be seen from the figure that after adding 0.5 mol% Rh-SrTiO 3 IO photocatalyst and applying light and ultrasound at the same time, the bisphenol A in the aqueous solution is completely removed (residual 0%) after 30 minutes of light irradiation. The catalyst materials of other examples were tested in the same way. After 30 min of light, the residual rate of bisphenol A in the aqueous solution was 15% in Example 2, 7% in Example 3, 9% in Example 5, and 43% in Comparative Example.
  • Example 4 The rhodium doping in Example 4 was replaced with the same molar amount of ruthenium doping.
  • the 0.5 mol% Ru-SrTiO 3 IO obtained by the same preparation method was subjected to the same piezoelectric photocatalytic degradation experiment of bisphenol A as described above. After 30 minutes of light exposure, 13% of bisphenol A remained in the aqueous solution .
  • Example 1 The particle size of the polystyrene microspheres in Example 1 was changed to 420 nm, and the other methods were the same to obtain 0.5 mol% Rh-SrTiO 3 IO. After the same piezoelectric photocatalytic degradation experiment of bisphenol A as described above, the light was used for 30 min. Afterwards, 6% of bisphenol A remained in the aqueous solution, indicating that the pore size of the template has a certain impact on the slow photon effect (light absorption and utilization) of the inverse opal, which in turn affects the photocatalytic performance of the material.
  • Example 6 The ultrasonic in Example 6 was replaced with magnetic stirring (200rpm), and the other methods were the same.
  • the 0.5 mol% Rh-SrTiO 3 IO was subjected to the same photocatalytic degradation experiment of bisphenol A as mentioned above. After 30 min of light, the bisphenol in the aqueous solution 52% of A remained, which indicates that the mechanical stress caused by ultrasonic vibration played a greater role in the photocatalytic degradation of bisphenol A.
  • the invention discloses a preparation method of a rhodium-doped strontium titanate inverse opal material and its application in the removal of organic pollutants (bisphenol A) in water in cooperation with piezoelectric photocatalysis.
  • polystyrene is prepared by soap-free emulsion polymerization
  • polystyrene opal is obtained by vertical deposition method
  • a new type of rhodium-doped strontium titanate inverse opal is obtained by a one-step calcination method.
  • the transition metal element Rh 3+ containing d orbital electrons can be doped into the lattice of strontium titanate, effectively reducing the band gap of strontium titanate and making it have visible light response. It solves the problem that strontium titanate only responds to ultraviolet light and its application is limited.
  • the strontium titanate inverse opal prepared by the present invention has a three-dimensional periodic pore structure and has a slow photon effect, so that it has better photocatalytic performance than ordinary porous materials.
  • strontium titanate is also a good piezoelectric material.
  • the low band gap after doping and its own piezoelectric properties enable strontium titanate to make full use of slow photon effect and vibration energy to catalyze the degradation of organic pollutants, without coupling it with other materials or using external bias, reducing the cost of use .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

一种铑掺杂钛酸锶反蛋白石材料及其制备方法与其在去除有机污染物中的应用;通过垂直沉积法将单分散的聚苯乙烯微球自组装在FTO玻璃具有导电性的一面,制备三维有序的光子晶体蛋白石模板;将三维有序的光子晶体蛋白石模板浸入含有铑源、钛源、锶源的溶液中,再通过煅烧制备铑掺杂钛酸锶反蛋白石材料;将铑掺杂钛酸锶反蛋白石材料加入含有污染物的水中,然后光照和/或超声处理,完成水中污染物的去除。所述三维有序大孔铑掺杂钛酸锶反蛋白石材料能够被应用在光催化领域,在外力作用下,材料自发极化所形成的内置电场能够有效分离光致载流子,从而能够增强光催化性能,提高光催化效率。

Description

铑掺杂钛酸锶反蛋白石材料及其制备方法与其在压电协同光催化去除有机污染物中的应用 技术领域
本发明属于无机纳米材料及压电协同光催化技术领域,具体涉及一种对可见光响应的三维有序大孔铑掺杂钛酸锶反蛋白石材料的制备方法及其在压电协同可见光催化降解水体中有机污染物的应用。
背景技术
随着工业化快速发展,污水排放量迅速增加,水污染问题越来越严峻。传统的废水处理方法通常具有能耗大,不能兼容环境的特点,因此需要寻求高效绿色的污水处理方法以治理环境。最近,已报道了许多安全有效、绿色环保的修复方法来消除水生环境中的有机污染物,包括物理吸附、化学氧化、生物降解等。在这些方法中,光催化降解因具有环境友好性高,效率高,成本相对较低,操作条件简便等优点,被认为是最有潜力的选择。
然而,一些单组分光催化剂在应用中存在着一些缺陷,例如较高的光生电子-空穴复合率,这导致了其较低的光量子效率和较低的光催化性能。钛酸锶(SrTiO 3)是一种钙钛矿型光催化材料,具有高稳定性、耐酸碱性好、光照后不发生阳极光腐蚀、来源丰富、安全无毒、低成本等优点,同时它也拥有优异的铁电、压电、光电等性能,因而被广泛研究。然而,钛酸锶的宽带隙仅能吸收太阳光中的紫外光,这极大地限制了它的实际应用。
技术解决方案
本发明的目的是提供一种对可见光响应的三维有序大孔反蛋白石材料,并且用相对廉价的过渡金属铑的氯化盐代替金、铂、钯等贵金属对钛酸锶进行微量的掺杂改性,解决了高昂的成本问题;同时本发明公开的材料能够通过压电协同光催化作用快速高效降解水体中的有机污染物。本发明的三维有序大孔铑掺杂钛酸锶反蛋白石材料能够被应用在光催化领域,在超声等外力作用下,材料自发极化所形成的内置电场能够有效分离光致载流子,从而能够增强光催化性能,提高光催化效率。
为达到上述目的,本发明具体技术方案如下:
钛酸锶反蛋白石材料,其制备方法包括以下步骤:
(1)通过垂直沉积法将单分散的聚苯乙烯微球自组装在FTO玻璃具有导电性的一面,制备三维有序的光子晶体蛋白石模板;
(2)将三维有序的光子晶体蛋白石模板浸入含有钛源、锶源的溶液中,再通过煅烧制备钛酸锶反蛋白石材料。
铑掺杂钛酸锶反蛋白石材料,其制备方法包括以下步骤:
(1)通过垂直沉积法将单分散的聚苯乙烯微球自组装在FTO玻璃具有导电性的一面,制备三维有序的光子晶体蛋白石模板;
(2)将三维有序的光子晶体蛋白石模板浸入含有铑源、钛源、锶源的溶液中,再通过煅烧制备铑掺杂钛酸锶反蛋白石材料。
一种催化去除水中污染物的方法,包括以下步骤:
(1)通过垂直沉积法将单分散的聚苯乙烯微球自组装在FTO玻璃具有导电性的一面,制备三维有序的光子晶体蛋白石模板;
(2)将三维有序的光子晶体蛋白石模板浸入含有铑源、钛源、锶源的溶液中,再通过煅烧制备铑掺杂钛酸锶反蛋白石材料;或将三维有序的光子晶体蛋白石模板浸入含有钛源、锶源的溶液中,再通过煅烧制备钛酸锶反蛋白石材料;
(3)将铑掺杂钛酸锶反蛋白石材料或者钛酸锶反蛋白石材料加入含有污染物的水中,然后光照和/或超声处理,完成水中污染物的去除。
本发明中,步骤(1)中,将单分散聚苯乙烯微球乳液铺在FTO玻璃具有导电性的一面上,恒温处理,制备三维有序的光子晶体蛋白石模板;优选的,FTO玻璃依次用丙酮、乙醇和去离子水超声清洗;单分散聚苯乙烯微球乳液的浓度为0.125 wt%;进一步优选的,单分散的聚苯乙烯微球的粒径为250~300nm,优选280 nm;恒温处理的温度为40~50℃,时间为45~75小时。
本发明中,步骤(2)中,煅烧前经过干燥,优选干燥温度为50~70 ℃,煅烧温度为400~650 ℃,升温速率为1~2 ℃/min,时间为1.5~2.5小时;铑源为氯化铑或硝酸铑,锶源为硝酸锶或醋酸锶,钛源为钛酸四正丁酯或钛酸四异丙酯;含有铑源、钛源、锶源的溶液中或者含有钛源、锶源的溶液中,溶剂为水,优选的,含有铑源、钛源、锶源的溶液或者含有钛源、锶源的溶液,还含有乙酸、柠檬酸。优选的,铑掺杂钛酸锶反蛋白石材料中,铑的掺杂量为锶摩尔量的0~1%。
本发明中,步骤(3)中,污染物为双酚A;光照处理为300 W氙灯光照处理,超声处理的功率为100~150 W;优选光照同时通过施加超声提供外加机械振动以激发材料内部的压电效应,在外力作用下,材料自发极化所形成的内置电场能够有效分离光致载流子,从而能够增强光催化性能,提高光催化效率。
本发明铑掺杂钛酸锶反蛋白石材料中,钙钛矿钛酸锶是最重要的n型半导体之一,具有大量的光催化位点,优异的耐光腐蚀性,热稳定性以及作为金属负载主体的良好结构稳定性并且成本低廉;反蛋白石材料的周期性结构表现出明显的慢光子效应,它可以禁止某些波长的光在材料中传播并产生阻带反射,并且慢光子效应也可以增加光的路径长度,增强光子-物质相互作用进一步提高半导体的光能转换效率。
本发明公开了上述钛酸锶反蛋白石材料或者铑掺杂钛酸锶反蛋白石材料在去除有机污染物中的应用;优选的有机污染物为双酚A。
有益效果
由于上述技术方案的运用,本发明与现有技术相比具有下列优点:
1. 本发明的ABO 3型钙钛矿结构,掺杂剂可以占据其A和B位置,同时掺杂后还能够保持稳定的钙钛矿结构,并且掺杂剂的选择具有极大的灵活性,尤其是本发明铑掺杂钛酸锶反蛋白石材料光响应范围从紫外光区移动到可见光区并且能有效地改善钛酸锶在可见光区的光催化活性,解决了现有许多过渡金属元素掺入钛酸锶晶格,但不能够将钛酸锶光响应范围从紫外光区移动到可见光区的缺陷。
2. 本发明公开的钛酸锶反蛋白石材料是在FTO基底上自组装聚苯乙烯微球,然后制备掺杂钛酸锶前驱体,并通过毛细管力将前驱体填充到蛋白石模板的缝隙中,通过煅烧的方法将模板去除,从而得到三维孔洞结构。铑掺杂钛酸锶反蛋白石的周期性结构可以增加光的路径长度,增强光子-物质相互作用,进一步增强光的吸收,利用更多的光子,从而进一步提高半导体的光能转换效率,增强材料的光催化性能。同时,其三维有序多孔结构比普通纳米颗粒材料具有更大的比表面积,有利于暴露催化剂的活性位,对光在其内部的传播有多重散射作用。
3. 本发明公开的铑掺杂钛酸锶反蛋白石也是一种压电材料,当外力作用时,由于其自发极化,在钛酸锶内部形成电场,可以有效地分离电子和空穴,实现在外力作用下对有机污染物的光催化分解,提高光催化活性。同时它又不具有传统压电材料锆钛酸铅(PZT)所具有的毒性,且成本低廉,有利于进一步的推广应用。
附图说明
图1为实施例三的钛酸锶反蛋白石(SrTiO 3 IO)的扫描电镜图;
图2为实施例四的铑掺杂钛酸锶反蛋白石(Rh-SrTiO 3 IO)的扫描电镜图;
图3为实施例四的铑掺杂钛酸锶反蛋白石(Rh-SrTiO 3 IO)的透射电镜图;
图4为实施例四的铑掺杂钛酸锶反蛋白石(Rh-SrTiO 3 IO)的紫外可见吸收光谱图;
图5为实施例六的钛酸锶反蛋白石(SrTiO 3 IO)和铑掺杂钛酸锶反蛋白石(Rh-SrTiO3 IO)降解双酚A的效果图。
本发明的实施方式
[0008] 本发明通过掺杂过渡金属元素和微观形貌调控对钛酸锶纳米材料进行改性,采用模板煅烧法制备得到铑掺杂钛酸锶反蛋白石(Rh-SrTiO 3 IO),以达到调节钛酸锶带隙的目的,使其对可见光产生响应;同时能够利用反蛋白石独特的三维有序大孔的结构特点,提高光的吸收、暴露更多的活性位点,增强光催化性能。此外,本发明的三维有序大孔铑掺杂钛酸锶反蛋白石材料是一种良好的压电材料,本发明在光催化过程中,对其施加外部机械力,产生内置极化电场,使得光生电子空穴进一步分离,从而进一步提高光催化性能,实现对水体中有机污染物的高效去除。
本发明钛酸锶反蛋白石材料的制备方法如下:
(1)通过垂直沉积法将单分散的聚苯乙烯微球自组装在FTO玻璃具有导电性的一面,制备三维有序的光子晶体蛋白石模板;
(2)将三维有序的光子晶体蛋白石模板浸入含有钛源、锶源的溶液中,再通过煅烧制备钛酸锶反蛋白石材料。
铑掺杂钛酸锶反蛋白石材料的制备方法如下:
(1)通过垂直沉积法将单分散的聚苯乙烯微球自组装在FTO玻璃具有导电性的一面,制备三维有序的光子晶体蛋白石模板;
(2)将三维有序的光子晶体蛋白石模板浸入含有铑源、钛源、锶源的溶液中,再通过煅烧制备铑掺杂钛酸锶反蛋白石材料。
优选的,含有铑源、钛源、锶源的溶液由乙酸、柠檬酸、水、铑源、钛源、锶源组成;含有钛源、锶源的溶液由乙酸、柠檬酸、水、钛源、锶源组成。
下面结合实施例对本发明作进一步描述。
实施例一
光子晶体蛋白石模板的制备:通过垂直沉积法制备,首先将FTO玻璃依次用丙酮、乙醇和去离子水超声20 min;再将冻干的280 nm聚苯乙烯微球粉末分散到去离子水中,得到0.125 wt%单分散聚苯乙烯微球乳液。然后量取1 ml的浓度为0.125 wt%的单分散聚苯乙烯微球乳液于称量瓶中,把超声干净的FTO玻璃具有导电性的一面朝上垂直放入到称量瓶中,将称量瓶适当倾斜,使液面恰好接触到FTO玻璃基板边缘(即将单分散聚苯乙烯微球乳液铺在FTO玻璃具有导电性的一面上),再放入到45℃的电热恒温培养箱中,保持两天(48小时),即可制得三维有序的光子晶体模板,用于实施例二至实施例五。
实施例二
钛酸锶反蛋白石的制备:首先,将0.01 mol钛酸四丁酯与10 mL乙酸混合,然后在连续搅拌下将10 mL去离子水滴加到该溶液中。之后,在上述溶液中滴加10 mL 1M Sr(NO 3) 2。最后,再加入10 mL 2M柠檬酸溶液。将所得溶液在室温下再搅拌30分钟,得到澄清溶液,记为溶液A。将制备好的聚苯乙烯蛋白石模板浸泡在溶液A中,然后置于60 ℃烘箱干燥烘干,再将干燥好的前驱体模板使用管式炉在空气中煅烧2 h,煅烧温度为650 ℃,升温速率2 ℃/min(室温升至650℃),自然冷却得到钛酸锶反蛋白石薄膜光催化剂(SrTiO 3 IO)。从附图1中可以看出,钛酸锶反蛋白石呈三维有序大孔结构,孔径均一,排列规则。
实施例三
0.3 mol%铑掺杂钛酸锶反蛋白石的制备:首先,将钛酸四丁酯与10 mL乙酸混合,然后在连续搅拌下将10 mL去离子水滴加到该溶液中。之后,在上述溶液中滴加10 mL 1 M硝酸锶和三水合三氯化铑的混合溶液(钛酸四丁酯与三水合三氯化铑的摩尔数之和为硝酸锶的摩尔数),三水合三氯化铑的摩尔数为硝酸锶摩尔数的0.3 %。最后,再加入10 mL 2 M柠檬酸溶液。将所得溶液在室温下再搅拌30分钟,得到澄清溶液,记为溶液A。将制备好的聚苯乙烯蛋白石模板浸泡在溶液A中,然后置于60 ℃烘箱干燥烘干,将干燥好的前驱体模板使用管式炉在空气中煅烧2 h,煅烧温度为650 ℃,升温速率2 ℃/min(室温升至650℃),自然冷却得到铑掺杂钛酸锶反蛋白石薄膜光催化剂(0.3 mol% Rh-SrTiO 3 IO)。
实施例四
0.5 mol%铑掺杂钛酸锶反蛋白石的制备:首先,将钛酸四丁酯与10 mL乙酸混合,然后在连续搅拌下将10 mL去离子水滴加到该溶液中。之后,在上述溶液中滴加10 mL 1 M硝酸锶和三水合三氯化铑的混合溶液(钛酸四丁酯与三水合三氯化铑的摩尔数之和为硝酸锶的摩尔数),三水合三氯化铑的摩尔数为硝酸锶摩尔数的0.5 %。最后,再加入10 mL 2 M柠檬酸溶液。将所得溶液在室温下再搅拌30分钟,得到澄清溶液,记为溶液A。将制备好的聚苯乙烯蛋白石模板浸泡在溶液A中,然后置于60 ℃烘箱干燥烘干,将干燥好的前驱体模板使用管式炉在空气中煅烧2 h,煅烧温度为650 ℃,升温速率2 ℃/min(室温升至650℃),自然冷却得到铑掺杂钛酸锶反蛋白石薄膜光催化剂(0.5 mol% Rh-SrTiO 3 IO)。从附图2中可以看出,0.5 mol%铑掺杂钛酸锶反蛋白石依然保持稳定的骨架,孔洞均匀,结构规则。
实施例五
1.0 mol%铑掺杂钛酸锶反蛋白石的制备:首先,将钛酸四丁酯与10 mL乙酸混合,然后在连续搅拌下将10 mL去离子水滴加到该溶液中。之后,在上述溶液中滴加10 mL 1 M硝酸锶和三水合三氯化铑的混合溶液(钛酸四丁酯与三水合三氯化铑的摩尔数之和为硝酸锶的摩尔数),三水合三氯化铑的摩尔数为硝酸锶摩尔数的1.0 %。最后,再加入10 mL 2 M柠檬酸溶液。将所得溶液在室温下再搅拌30分钟,得到澄清溶液,记为溶液A。将制备好的聚苯乙烯蛋白石模板浸泡在溶液A中,然后置于60 ℃烘箱干燥,将干燥好的前驱体模板使用管式炉在空气中煅烧2 h,煅烧温度为650 ℃,升温速率2 ℃/min(室温升至650℃),自然冷却得到铑掺杂钛酸锶反蛋白石薄膜光催化剂(1.0 mol% Rh-SrTiO 3 IO)。
对比例
铑掺杂钛酸锶纳米颗粒的制备:通过水热法合成,首先将钛酸四丁酯溶解于20 mL乙二醇中形成澄清溶液,然后在磁力搅拌下向其中逐滴加入20 mL 0.5 M硝酸锶和三水合三氯化铑的混合水溶液以及10 mL 5 M氢氧化钠溶液(其中硝酸锶、钛酸四丁酯、三水合三氯化铑的摩尔数比为1:0.995:0.005)。搅拌30分钟后,将混合物加入100mL高压反应釜中,在200℃下反应24小时。反应结束后,用去离子水和无水乙醇洗涤产物多次,直到pH达到7。然后将产物在70℃下干燥过夜,获得铑掺杂钛酸锶纳米颗粒(Rh-SrTiO 3 NPs)。
实施例六
0.5 mol% Rh-SrTiO 3 IO对双酚A的压电光催化降解实验:称取6 mg上述实施例四中所得光催化剂0.5 mol% Rh-SrTiO 3 IO,置于10mL 浓度为10 mg/L 的双酚A水溶液。避光搅拌一小时,达到吸附-解吸平衡。平衡后,将装有双酚A水溶液的试管斜置于超声清洁器中,使用300 W氙灯照射催化剂并打开超声清洁器,功率调至150 W,每15分钟取样1 mL,使用高效液相色谱记录保留时间,记录此保留时间
对应的液相出峰面积,得到相应水样中双酚A的浓度。附图5为双酚A的残留率与时间的关系曲线图。从图中可以看出,在加入0.5 mol% Rh-SrTiO 3 IO光催化剂,并且在同时施加光照和超声的条件下,光照30 min后,水溶液中双酚A被完全去除(残留0%)。同样的方法测试其他实施例的催化剂材料,光照30 min后,水溶液中双酚A的残留率分别为,实施例二15%、实施例三7%、实施例五9%、对比例43%。
将实施例四中的铑掺杂更换为同摩尔量的钌掺杂,同样的制备方法得到的0.5 mol% Ru-SrTiO 3 IO,经过上述同样的双酚A的压电协同光催化降解实验,光照30 min后,水溶液中双酚A残留13%
将实施例一的聚苯乙烯微球的粒径更换为420 nm,其余方法一样,得到0.5 mol% Rh-SrTiO 3 IO经过上述同样的双酚A的压电协同光催化降解实验,光照30 min后,水溶液中双酚A残留6%,说明模板的孔径大小对反蛋白石的慢光子效应(对光的吸收利用率)有一定影响,进而影响材料的光催化性能。
将实施例六中的超声更换为磁力搅拌(200rpm),其余方法一样,将0.5 mol% Rh-SrTiO 3 IO经过上述同样的双酚A的光催化降解实验,光照30 min后,水溶液中双酚A残留52%,由此说明超声振动引起的机械应力在光催化降解双酚A实验中起到了较大的作用。
本发明公开了一种铑掺杂钛酸锶反蛋白石材料的制备方法及其在压电协同光催化去除水体中有机污染物(双酚A)的应用。首先通过无皂乳液聚合制备聚苯乙烯,使用垂直沉积法得到聚苯乙烯蛋白石,通过一步煅烧法得到一种铑掺杂钛酸锶反蛋白石新型无机纳米材料。本发明制备的铑掺杂钛酸锶反蛋白石,含d轨道电子的过渡金属元素Rh 3+可被掺杂进钛酸锶的晶格,有效降低钛酸锶的带隙使其具有可见光响应,解决了钛酸锶仅对紫外光产生响应导致其应用得到限制的问题。同时,本发明制备的钛酸锶反蛋白石是一种三维周期性孔洞结构,且具有慢光子效应,使其相对于普通的多孔材料,在光催化方面表现出更好的催化性能。此外,钛酸锶还是一种良好的压电材料,在光催化过程中,可对其施加外部机械压力,产生内置极化电场,使得光生电子空穴进一步得到分离。因此,掺杂后的低带隙加上自身压电性质使得钛酸锶能够充分利用慢光子效应和振动能量催化降解有机污染物,无需将其与其他材料耦合或利用外部偏压,降低使用成本。

Claims (10)

  1. 钛酸锶反蛋白石材料,其特征在于,所述钛酸锶反蛋白石材料的制备方法包括以下步骤:
    (1)通过垂直沉积法将单分散的聚苯乙烯微球自组装在FTO玻璃具有导电性的一面,制备三维有序的光子晶体蛋白石模板;
    (2)将三维有序的光子晶体蛋白石模板浸入含有钛源、锶源的溶液中,再通过煅烧制备钛酸锶反蛋白石材料。
  2. 根据权利要求1所述钛酸锶反蛋白石材料,其特征在于,步骤(1)中,单分散的聚苯乙烯微球的粒径为250~300 nm;步骤(2)中,煅烧的温度为400~650 ℃;煅烧前经过干燥。
  3. 根据权利要求1所述钛酸锶反蛋白石材料,其特征在于,锶源为硝酸锶或醋酸锶;钛源为钛酸四正丁酯或钛酸四异丙酯。
  4. 根据权利要求1所述钛酸锶反蛋白石材料,其特征在于,含有钛源、锶源的溶液中,溶剂为水;含有钛源、锶源的溶液还含有乙酸、柠檬酸。
  5. 铑掺杂钛酸锶反蛋白石材料,其特征在于,所述铑掺杂钛酸锶反蛋白石材料制备方法包括以下步骤:
    (1)通过垂直沉积法将单分散的聚苯乙烯微球自组装在FTO玻璃具有导电性的一面,制备三维有序的光子晶体蛋白石模板;
    (2)将三维有序的光子晶体蛋白石模板浸入含有铑源、钛源、锶源的溶液中,再通过煅烧制备铑掺杂钛酸锶反蛋白石材料。
  6. 根据权利要求5所述铑掺杂钛酸锶反蛋白石材料,其特征在于,步骤(1)中,单分散的聚苯乙烯微球的粒径为250~300 nm;步骤(2)中,煅烧的温度为400~650 ℃;煅烧前经过干燥。
  7. 根据权利要求5所述铑掺杂钛酸锶反蛋白石材料,其特征在于,铑源为氯化铑或硝酸铑;锶源为硝酸锶或醋酸锶;钛源为钛酸四正丁酯或钛酸四异丙酯;铑掺杂钛酸锶反蛋白石材料中,铑的掺杂量为锶摩尔量的0~1%。
  8. 根据权利要求5所述铑掺杂钛酸锶反蛋白石材料,其特征在于,含有铑源、钛源、锶源的溶液中,溶剂为水;含有铑源、钛源、锶源的溶液还含有乙酸、柠檬酸。
  9. 权利要求1所述钛酸锶反蛋白石材料或者权利要求5所述铑掺杂钛酸锶反蛋白石材料在去除有机污染物中的应用。
  10. 反蛋白石材料的制备方法,其特征在于,包括以下步骤:
    (1)通过垂直沉积法将单分散的聚苯乙烯微球自组装在FTO玻璃具有导电性的一面,制备三维有序的光子晶体蛋白石模板;
    (2)将三维有序的光子晶体蛋白石模板浸入含有钛源、锶源的溶液中,再通过煅烧制备反蛋白石材料;或者将三维有序的光子晶体蛋白石模板浸入含有铑源、钛源、锶源的溶液中,再通过煅烧制备反蛋白石材料。
PCT/CN2020/120049 2019-10-10 2020-10-09 铑掺杂钛酸锶反蛋白石材料及其制备方法与其在压电协同光催化去除有机污染物中的应用 WO2021068905A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/623,974 US20220347666A1 (en) 2019-10-10 2020-10-09 Rhodium-doped strontium titanate inverse opal material, preparation method thereof, and application thereof in piezoelectric synergistic photocatalytic removal of organic pollutants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910960100.1A CN110743541B (zh) 2019-10-10 2019-10-10 铑掺杂钛酸锶反蛋白石材料及其制备方法与其在压电协同光催化去除有机污染物中的应用
CN201910960100.1 2019-10-10

Publications (1)

Publication Number Publication Date
WO2021068905A1 true WO2021068905A1 (zh) 2021-04-15

Family

ID=69277880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120049 WO2021068905A1 (zh) 2019-10-10 2020-10-09 铑掺杂钛酸锶反蛋白石材料及其制备方法与其在压电协同光催化去除有机污染物中的应用

Country Status (3)

Country Link
US (1) US20220347666A1 (zh)
CN (1) CN110743541B (zh)
WO (1) WO2021068905A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743541B (zh) * 2019-10-10 2022-09-09 苏州大学 铑掺杂钛酸锶反蛋白石材料及其制备方法与其在压电协同光催化去除有机污染物中的应用
CN112121821A (zh) * 2020-10-20 2020-12-25 苏州大学 硫化镉/氧化锌复合材料及其制备方法与在压电-光催化去除有机污染物中的应用
CN113308743B (zh) * 2021-04-29 2022-09-16 北京科技大学 基于单一N掺杂调控4H-SiC纳米结构同时收集机械能和光能用于裂解水的方法
CN113684679B (zh) * 2021-07-29 2023-11-03 超越者新材料科技河北有限公司 一种碳纤维基纳米复合材料的制备方法及其应用
CN113980249B (zh) * 2021-09-30 2022-11-25 北京理工大学 反蛋白石相钙钛矿Cs3BixSb(2-x)Br9在EDOT光催化聚合中的应用
CN114538504A (zh) * 2022-02-28 2022-05-27 江苏科技大学 一种PbTiO3花状颗粒及其制备和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160361248A1 (en) * 2015-06-12 2016-12-15 L'oreal Novel ordered macroporous materials
KR101774353B1 (ko) * 2016-06-23 2017-09-04 서강대학교산학협력단 이중 다공성 구조체 및 이의 제조 방법, 및 이를 포함하는 광전기화학전지용 전극
CN107159295A (zh) * 2017-06-01 2017-09-15 苏州大学 一种可见光催化降解有机污染物的反蛋白石材料及其制备方法
CN107552033A (zh) * 2017-08-31 2018-01-09 南昌大学 一种含氧空位钛酸锶光催化剂的制备方法
CN109529814A (zh) * 2018-11-29 2019-03-29 苏州大学 一种可见光驱动的反蛋白石光催化材料、其制备方法及其对水体有机污染物的降解去除
CN109706468A (zh) * 2019-01-25 2019-05-03 西安电子科技大学 一种铑掺杂钛酸锶超薄纳米层覆盖的钒酸铋光阳极及其制备方法和应用
CN110743541A (zh) * 2019-10-10 2020-02-04 苏州大学 铑掺杂钛酸锶反蛋白石材料及其制备方法与其在压电协同光催化去除有机污染物中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160361248A1 (en) * 2015-06-12 2016-12-15 L'oreal Novel ordered macroporous materials
KR101774353B1 (ko) * 2016-06-23 2017-09-04 서강대학교산학협력단 이중 다공성 구조체 및 이의 제조 방법, 및 이를 포함하는 광전기화학전지용 전극
CN107159295A (zh) * 2017-06-01 2017-09-15 苏州大学 一种可见光催化降解有机污染物的反蛋白石材料及其制备方法
CN107552033A (zh) * 2017-08-31 2018-01-09 南昌大学 一种含氧空位钛酸锶光催化剂的制备方法
CN109529814A (zh) * 2018-11-29 2019-03-29 苏州大学 一种可见光驱动的反蛋白石光催化材料、其制备方法及其对水体有机污染物的降解去除
CN109706468A (zh) * 2019-01-25 2019-05-03 西安电子科技大学 一种铑掺杂钛酸锶超薄纳米层覆盖的钒酸铋光阳极及其制备方法和应用
CN110743541A (zh) * 2019-10-10 2020-02-04 苏州大学 铑掺杂钛酸锶反蛋白石材料及其制备方法与其在压电协同光催化去除有机污染物中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YAN, FEI-NAN ET AL.: "Studies on the Formation Energies and Electronic Structures of Rh Doped SrTiO3", JOURNAL OF SYNTHETIC CRYSTALS, vol. 45, no. 1, 31 January 2016 (2016-01-31), pages 279 - 284, XP055798829, ISSN: 1000-985X *
YU, KAI ET AL.: "Novel three-dimensionally ordered macroporous SrTiO3 photocatalysts with remarkably enhanced hydrogen production performance", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 200, 27 July 2016 (2016-07-27), XP029715659, ISSN: 0926-3373, DOI: 10.1016/j.apcatb.2016.07.049 *

Also Published As

Publication number Publication date
CN110743541B (zh) 2022-09-09
CN110743541A (zh) 2020-02-04
US20220347666A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
US20220347666A1 (en) Rhodium-doped strontium titanate inverse opal material, preparation method thereof, and application thereof in piezoelectric synergistic photocatalytic removal of organic pollutants
Zhang et al. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst
CN106732524B (zh) 一种α/β-氧化铋相异质结光催化剂及其制法和用途
CN103100398B (zh) 一种制备高催化活性天然沸石负载一维TiO2纳米线的方法
CN103223338B (zh) 一种二氧化钛微球阵列负载铂可见光光催化剂及制备方法
CN108993550B (zh) 一种表面氧空位改性的溴氧铋光催化剂及其制备方法
CN109126758B (zh) 蓝色二氧化钛的制备方法及其用途
CN103263920B (zh) 一种TiO2负载的高分散金属催化剂及其制备方法
CN102674451A (zh) 一种{001}面暴露二氧化钛纳米晶的制备方法
CN105195131A (zh) 一种石墨烯量子点/钒掺杂介孔二氧化钛复合光催剂的制备方法
Feng et al. Two-step construction of WO3@ TiO2/CS-biochar S-scheme heterojunction and its synergic adsorption/photocatalytic removal performance for organic dye and antibiotic
CN103157477A (zh) 氧化镍掺杂钛酸钠-二氧化钛复合光催化剂及其制备方法
Kaid et al. Effective photocatalytic degradation of organic dyes using ZNC/rGO nanocomposite photocatalyst derived from ZIF-8/rGO thermolysis for water treatment
CN104071833A (zh) 一种锐钛矿型TiO2纳米片的制备方法及应用
CN109382088B (zh) SnO2/α~Bi2O3/β~Bi2O3复合材料及其制备方法
CN108212187B (zh) Fe掺杂Bi2O2CO3光催化剂的制备方法及Fe掺杂Bi2O2CO3光催化剂
Wu et al. Effect of the combination of inverse opal photon superficial areaic crystal and heterojunction on active free radicals and its effect on the mechanism of photocatalytic removal of organic pollutants
CN115518649B (zh) (CoCuZnMnMg)3O4高熵氧化物的制备方法
CN113304742B (zh) 一种活性炭负载Ti3+自掺杂TiO2光催化材料制备方法
CN114192143B (zh) 一种钨酸银/偏钒酸银复合光催化剂的制备及其应用
CN108745342A (zh) 黄土颗粒负载三氧化钨光催化剂及其制备方法
CN115301225A (zh) 一种中空微球结构的铋/二氧化钛光催化降解材料的制备方法及其应用
CN110743579B (zh) 一种Cu2O@TiOF2/TiO2光催化剂及其制备方法和应用
CN111774056B (zh) 一种银修饰的二氧化钛-钛酸钙晶体薄膜材料的制备方法
CN110624532B (zh) 一种TiO2-BiVO4-石墨烯三元复合光催化材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20875576

Country of ref document: EP

Kind code of ref document: A1