CN108745342A - 黄土颗粒负载三氧化钨光催化剂及其制备方法 - Google Patents

黄土颗粒负载三氧化钨光催化剂及其制备方法 Download PDF

Info

Publication number
CN108745342A
CN108745342A CN201810666833.XA CN201810666833A CN108745342A CN 108745342 A CN108745342 A CN 108745342A CN 201810666833 A CN201810666833 A CN 201810666833A CN 108745342 A CN108745342 A CN 108745342A
Authority
CN
China
Prior art keywords
loess
tungsten trioxide
particulate load
preparation
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810666833.XA
Other languages
English (en)
Inventor
王荣民
汪倩倩
何玉凤
申雅
高娣
何自强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201810666833.XA priority Critical patent/CN108745342A/zh
Publication of CN108745342A publication Critical patent/CN108745342A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种黄土颗粒负载三氧化钨光催化剂的制备方法,是将钨源前驱体、有机酸溶解于去离子水中,向其中加入无机酸溶液、小颗粒黄土,充分搅拌分散均匀后在150℃~200℃下水热反应12 h~18 h,冷却至室温,产物依次用乙醇和去离子水清洗,干燥,得浅褐色粉状固体颗粒。本发明通过一锅法将三氧化钨原位负载于黄土颗粒表面,使黄土颗粒的吸附性能与三氧化钨的光催化活性有效结合并产生协同,大大提高了光催化剂对有机污染物的光催化降解性能。同时有效减少三氧化钨催化剂的用量,不仅降低了成本,而且能回收利用,有效提高了三氧化钨的利用效率,因此在光催化降解染料废水领域具有很好的应用前景。

Description

黄土颗粒负载三氧化钨光催化剂及其制备方法
技术领域
本发明涉及一种三氧化钨复合光催化剂,尤其涉及一种黄土颗粒负载三氧化钨光催化剂及其制备方法,属于复合材料科学领域和光催化领域。
背景技术
水在地球生态系统的正常运转扮演着重要角色。近几十年以来,在工业化程度提高的同时引起了环境污染问题,尤其是水体污染问题日显突出。工业废水的典型处理方法有物化法,生化法,化学法以及几种工艺结合的方法。近年来,随着半导体光催化技术的发展,提供了一种高效的能源使用途径。当然,开发高效、廉价且环境友好的光催化剂是该领域的重点发展方向。目前最有应用价值的光催化材料是TiO2,其特殊的半导体结构使其具有较高的催化活性,能在不同环境中对难降解的有机污染物发挥高效降解作用,并且具有无毒、无二次污染、稳定性高等优点。当然,纯纳米二氧化钛也有一些缺陷,如:禁带较宽、量子效率低;颗粒太细、易团聚、难回收等缺点。研究表明:掺杂改性(如:金属离子掺杂、非金属离子掺杂、离子共掺杂等)可使其禁带宽度变窄,从而能够吸收波长更长的可见光,提高对太阳光的利用率。
三氧化钨(WO3)是一种独特的N型半导体材料,具有较宽的光吸收带、光稳定性高、价格便宜、制备容易等特点,成为继TiO2之后研究较多的半导体催化材料,在污染物处理方面表现出较好的催化性能,可成为一种非常有前景的光催化剂。然而,六方相三氧化钨纳米材料应用于光催化降解有机物,由于禁带较宽、量子效率低,对太阳光的利用率较低。
为了改善光催化剂在实际应用中存在的一些问题,可将光催化剂负载到无机、有机高分子载体。黄土是一种来源广泛、廉价易得的天然无机材料,其疏松片层结构使其具有一定的吸附能力和负载能力。若将三氧化钨光催化剂负载到黄土颗粒表面,使黄土颗粒的吸附性能与三氧化钨的光催化活性相结合,可有效提高三氧化钨对于有机污染物的光催化降解性能。
发明内容
本发明目的是提供一种黄土颗粒负载三氧化钨光催化剂的制备方法,以提高三氧化钨的光催化活性。
一、黄土颗粒负载三氧化钨光催化剂的制备
本发明黄土颗粒负载三氧化钨光催化剂的制备方法,是将钨源前驱体、有机酸溶解于去离子水中,向其中依次加入无机酸溶液、小颗粒黄土,充分搅拌使黄土颗粒均匀分散,然后将混合液转移到水热合成反应釜中,并密封反应釜,控制温度在150℃~200℃下水热反应12 h~18 h,冷却至室温,产物依次用乙醇和去离子水清洗,得到深褐色湿产物;干燥,得浅褐色粉状固体颗粒,即为黄土颗粒负载三氧化钨光催化剂。
所述钨源前驱体为二水合钨酸钠或无水钨酸钠。
所述有机酸指柠檬酸或酒石酸,有机酸作为还原剂。钨源前驱体与有机酸的质量比为1:0.6~1:1。
所述无机酸为盐酸,其浓度为0.5~5.0 mol/L,无机酸起中和作用。钨源前驱体与无机酸的摩尔比为1:0.6 ~ 1:2。
所述小颗粒黄土是通过重力沉降法分离出的颗粒较均匀的小颗粒黄土,其粒径为1~10 μm。钨源前驱体与颗粒黄土的质量比为1:3 ~ 1:6。
所述清洗是采用离心以及超声辅助的清洗方法。
所述干燥是在60℃~100℃下真空干燥4h~10 h。
上述制备的黄土颗粒负载三氧化钨光催化剂中,三氧化钨的负载量为15~30%。
二、黄土颗粒负载三氧化钨光催化剂的形貌与结构分析
1、微观形貌
采用扫描电镜观察了黄土颗粒负载三氧化钨光催化剂的微观形貌(图1)。从图1可以看出,黄土颗粒负载三氧化钨光催化剂基底为典型的黄土颗粒形貌,在疏松且多缝隙的黄土颗粒表面负载了三氧化钨纳米六方体。这种疏松且多缝隙上负载纳米六方体的结构,既具有吸附性能,也具有光催化性能,并有可能发生协同作用。
2、红外光谱分析
图2是黄土颗粒负载三氧化钨光催化剂的红外谱图,其中645~800 cm-1处是W-O-W键的伸缩振动峰,1084 cm-1附近为Si-O-Si的伸缩振动吸收峰,3624~3735 cm-1附近出现的吸收峰为黄土表面O-H的伸缩振动峰。由图2可知,黄土颗粒的结构基本保持,也可以检测到三氧化钨的特征峰,说明复合材料是由黄土颗粒和三氧化钨组成,这与SEM结果一致。
3、X射线衍射分析
图3是黄土颗粒负载三氧化钨的X射线衍射图,其中在23°、35°、50°处出现的衍射峰属于三氧化钨的特征衍射峰,26°处出现很强的衍射峰是黄土中石英的特征衍射峰,28°附近出现的衍射峰是黄土中无定形硅酸盐或者硅铝酸盐的特征衍射峰,这些都说明复合材料是由黄土和三氧化钨组成,并且三氧化钨的加入没有破坏黄土原来的分子结构。
三、黄土颗粒负载三氧化钨光催化剂的光降解性能测试
为了测试黄土颗粒负载三氧化钨的光催化活性,选取亚甲基蓝作为代表性的难降解有机污染物,进行光催化降解试验。称取0.05 g黄土颗粒负载三氧化钨光催化剂,分散到50mL的亚甲基蓝溶液(浓度20 mg/L)中,暗反应20 min达到吸附脱附平衡。然后,在光催化反应器中光催化60 min,每隔一定的时间取5 mL样离心,上层液通过0.22 µm的滤膜,采用紫外可见分光光度法测定残余亚甲基蓝的浓度,计算脱色率。
结果表明:黄土颗粒负载三氧化钨在暗反应20 min后对亚甲基蓝的去除率达到66.15%,说明黄土颗粒负载三氧化钨对亚甲基蓝具有一定的吸附能力。开启光源后主要是光催化降解发挥主要作用。光照1 h后黄土颗粒负载三氧化钨对亚甲基蓝的去除率达到99.84%,说明黄土颗粒负载三氧化钨光催化剂在模拟太阳光下对亚甲基蓝具有很好的催化降解性能,且降解反应是黄土颗粒的吸附和三氧化钨光催化降解协同作用的结果。
综上所述,本发明以黄土颗粒作为载体,通过一锅法将三氧化钨原位负载于黄土颗粒表面,制得黄土颗粒负载三氧化钨光复合催化剂,使黄土颗粒的吸附性能与三氧化钨的光催化活性有效结合并产生协同作用,大大提高了光催化剂对于有机污染物的光催化降解性能。同时有效减少三氧化钨催化剂的用量,不仅降低了成本,而且能回收利用,有效提高了三氧化钨的利用效率。因此在光催化降解染料废水领域具有很好的应用前景。
附图说明
图1为黄土颗粒负载三氧化钨光催化剂的扫描电镜图。
图2为黄土颗粒负载三氧化钨光催化剂的红外吸收光谱图。
图3为黄土颗粒负载三氧化钨光催化剂的X射线衍射图。
具体实施方式
下面通过具体实施例对本发明黄土颗粒负载三氧化钨光催化剂的制备和光催化性能做进一步说明。
采用一锅水热法将三氧化钨原位负载于黄土颗粒表面:首先,将0.5~3.5 g的前驱体和0.3~3.3 g有机酸溶解在30~150 mL去离子水中,随后,逐滴缓慢加入10~100 mL无机酸溶液。其次,加入1.5~5.0 g小颗粒黄土,充分搅拌,使黄土颗粒均匀分散,然后将混合液转移到水热合成反应釜中,并将反应釜密封,在150~200℃下保温12~18 h,使其充分反应。第三,将反应釜自然冷却至室温,取出样品,依次用乙醇和去离子水清洗3~6遍,得到深褐色湿粘的固体样品。最后在60~100℃下真空干燥4~10 h,得到浅褐色粉状固体颗粒,即为黄土颗粒负载三氧化钨光催化剂。
实施例1
取0.5 g二水合钨酸钠和0.5 g柠檬酸,溶解在30 mL去离子水中,随后,逐滴缓慢加入20 mL盐酸溶液(浓度为0.5 mol/L),搅拌均匀后再加入2.5 g小颗粒黄土,充分搅拌使黄土颗粒均匀分散,然后将混合液转移到水热合成反应釜中,并将反应釜密封,在150℃下保温反应12 h;反应结束后自然冷却至室温,取出样品,依次用乙醇和去离子水清洗3遍,得到深褐色湿粘的固体样品;最后将固体样品在60℃下真空干燥4 h,得到浅褐色粉状的固体颗粒,即为黄土颗粒负载三氧化钨光催化剂。
该黄土颗粒负载三氧化钨光催化剂对于废水中亚甲基蓝的光降解去除率为99.80%。
实施例2
取1.5 g无水合钨酸钠和1.0 g酒食酸,溶解在50 mL去离子水中,随后逐滴缓慢加入50mL盐酸溶液(浓度为1.5 mol/L),搅拌均匀后加入3.5 g小颗粒黄土,充分搅拌,使黄土颗粒均匀分散;然后将混合液转移到水热合成反应釜中,并将反应釜密封,在160℃下保温反应15 h;反应结束后自然冷却至室温,取出样品,依次用乙醇和去离子水清洗3遍,得到深褐色湿粘的固体样品;最后将固体样品在80℃下真空干燥5 h,得到浅褐色粉状的固体颗粒,即为黄土颗粒负载三氧化钨光催化剂。
该黄土颗粒负载三氧化钨光催化剂对于机染料亚甲基蓝光降解去除率为99.87%。
实施例3
取3.5 g二水合钨酸钠和3.0 g柠檬酸,溶解在80 mL去离子水中,随后逐滴缓慢加入100 mL盐酸溶液(浓度为3.5 mol/L),搅拌均匀后加入4.8 g小颗粒黄土,充分搅拌,使黄土颗粒均匀分散,然后将混合液转移到水热合成反应釜中,并将反应釜密封,在170℃下保温反应15 h;反应结束后自然冷却至室温,取出样品,依次用乙醇和去离子水清洗5遍,得到深褐色湿粘的固体样品;最后将固体样品在90℃下真空干燥6 h,得到浅褐色粉状的固体颗粒,即为黄土颗粒负载三氧化钨光催化剂。
该黄土颗粒负载三氧化钨光催化剂对于亚甲基蓝的光降解去除率为99.85%。
实施例4
取4.5 g无水合钨酸钠和4.0 g酒食酸,溶解在90 mL去离子水中,随后逐滴缓慢加入500 mL盐酸溶液(浓度为1.5 mol/L),搅拌均匀后加入3.5 g小颗粒黄土,充分搅拌,使黄土颗粒均匀分散;然后将混合液转移到水热合成反应釜中,并将反应釜密封,在160℃下保温反应15 h;反应结束后自然冷却至室温,取出样品,依次用乙醇和去离子水清洗3遍,得到深褐色湿粘的固体样品;最后将固体样品在80℃下真空干燥5 h,得到浅褐色粉状的固体颗粒,即为黄土颗粒负载三氧化钨光催化剂。
该黄土颗粒负载三氧化钨光催化剂对于亚甲基蓝的光降解去除率为99.82 %。
上述各实施例中,小颗粒黄土是通过重力沉降法分离出颗粒较均匀的小颗粒黄土,其粒径为1~10μm。

Claims (10)

1.黄土颗粒负载三氧化钨光催化剂的制备方法,是将钨源前驱体、有机酸溶解于去离子水中,向其中依次加入无机酸溶液、小颗粒黄土,充分搅拌使黄土颗粒均匀分散,然后将混合液转移到水热合成反应釜中,并密封反应釜,控制温度在150℃~200℃下水热反应12 h~18 h,冷却至室温,产物依次用乙醇和去离子水清洗,得到深褐色湿产物;干燥,得浅褐色粉状固体颗粒,即为黄土颗粒负载三氧化钨光催化剂。
2.如权利要求1所述黄土颗粒负载三氧化钨光催化剂的制备方法,其特征在于:所述钨源前驱体为二水合钨酸钠或无水钨酸钠。
3.如权利要求1所述黄土颗粒负载三氧化钨光催化剂的制备方法,其特征在于:所述有机酸指柠檬酸或酒石酸。
4.如权利要求3所述黄土颗粒负载三氧化钨光催化剂的制备方法,其特征在于:钨源前驱体与有机酸的质量比为1:0.6~1:1。
5.如权利要求1所述黄土颗粒负载三氧化钨光催化剂的制备方法,其特征在于:所述无机酸为盐酸,其浓度为0.5~5.0 mol/L。
6.如权利要求5所述黄土颗粒负载三氧化钨光催化剂的制备方法,其特征在于:钨源前驱体与无机酸的摩尔比为1:0.6~1:2。
7.如权利要求1所述黄土颗粒负载三氧化钨光催化剂的制备方法,其特征在于:所述小颗粒黄土的粒径为1~10μm。
8.如权利要求1所述黄土颗粒负载三氧化钨光催化剂的制备方法,其特征在于:钨源前驱体与颗粒黄土的质量比为1:3~1:6。
9.如权利要求1所述黄土颗粒负载三氧化钨光催化剂的制备方法,其特征在于:所述干燥是在60℃~100℃下真空干燥4 h~10 h。
10.如权利要求1所述方法制备的黄土颗粒负载三氧化钨光催化剂,其特征在于:三氧化钨的负载量为15~30%。
CN201810666833.XA 2018-06-26 2018-06-26 黄土颗粒负载三氧化钨光催化剂及其制备方法 Pending CN108745342A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810666833.XA CN108745342A (zh) 2018-06-26 2018-06-26 黄土颗粒负载三氧化钨光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810666833.XA CN108745342A (zh) 2018-06-26 2018-06-26 黄土颗粒负载三氧化钨光催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN108745342A true CN108745342A (zh) 2018-11-06

Family

ID=63977733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810666833.XA Pending CN108745342A (zh) 2018-06-26 2018-06-26 黄土颗粒负载三氧化钨光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN108745342A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110624534A (zh) * 2019-10-21 2019-12-31 吉林建筑大学 一种生物遗态的wo3光催化剂及其制备方法和应用
CN112973669A (zh) * 2021-02-25 2021-06-18 南京大学 三氧化钨包覆金刚石的制备方法及其在染料废水光降解中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105854905A (zh) * 2016-05-06 2016-08-17 江苏大学 一种碘化银氧化钨复合纳米材料及其制备方法和用途
CN106902731A (zh) * 2017-03-18 2017-06-30 西北师范大学 一种黄土负载二氧化钛光催化剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105854905A (zh) * 2016-05-06 2016-08-17 江苏大学 一种碘化银氧化钨复合纳米材料及其制备方法和用途
CN106902731A (zh) * 2017-03-18 2017-06-30 西北师范大学 一种黄土负载二氧化钛光催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XINTAI SU ET AL.: ""Synthesis of uniform WO3 square nanoplates via an organic acid-assisted hydrothermal process"", 《MATERIALS LETTERS》 *
陈国俊等: ""光催化剂WO3固载研究"", 《科技创新导报》 *
高小青等: ""水热法制备微纳结构氧化钨"", 《化学进展》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110624534A (zh) * 2019-10-21 2019-12-31 吉林建筑大学 一种生物遗态的wo3光催化剂及其制备方法和应用
CN112973669A (zh) * 2021-02-25 2021-06-18 南京大学 三氧化钨包覆金刚石的制备方法及其在染料废水光降解中的应用

Similar Documents

Publication Publication Date Title
Ao et al. Fabrication of novel p–n heterojunction BiOI/La 2 Ti 2 O 7 composite photocatalysts for enhanced photocatalytic performance under visible light irradiation
Liao et al. Enhanced photocatalytic performance through the ferroelectric synergistic effect of pn heterojunction BiFeO3/TiO2 under visible-light irradiation
Wang et al. In situ gC 3 N 4 self-sacrificial synthesis of a gC 3 N 4/LaCO 3 OH heterostructure with strong interfacial charge transfer and separation for photocatalytic NO removal
Jiang et al. Synthesis of flowerlike g‐C3N4/BiOBr with enhanced visible light photocatalytic activity for dye degradation
CN103657619B (zh) 一种尺寸可控的二氧化钛纳米片光催化材料的制备方法
Cui et al. Enhanced visible-light-responsive photocatalytic property of PbS-sensitized K4Nb6O17 nanocomposite photocatalysts
Wang et al. Defects and internal electric fields synergistically optimized g-C3N4− x/BiOCl/WO2. 92 heterojunction for photocatalytic NO deep oxidation
Cao et al. Visible-light-driven prompt and quantitative production of lactic acid from biomass sugars over a N-TiO 2 photothermal catalyst
Zhao et al. Efficient visible light photocatalytic activity of p–n junction CuO/TiO 2 loaded on natural zeolite
CN107159295A (zh) 一种可见光催化降解有机污染物的反蛋白石材料及其制备方法
Arif et al. Enhance photocatalysis performance and mechanism of CdS and Ag synergistic co-catalyst supported on mesoporous g-C3N4 nanosheets under visible-light irradiation
CN106944074B (zh) 一种可见光响应型复合光催化剂及其制备方法和应用
CN107376968A (zh) 三氧化钨/氮化碳/氧化铋双z型光催化剂及其制备方法和应用
Yan et al. Construction of 2D/2D Bi2WO6/BN heterojunction for effective improvement on photocatalytic degradation of tetracycline
CN110639620A (zh) 用于降解四环素的复合光催化剂及其制备方法和应用
Zhao et al. Bi4O5Br2 nanoflower and CdWO4 nanorod heterojunctions for photocatalytic synthesis of ammonia
CN113426467B (zh) 一种z型硼掺杂氮化碳与碘化银复合可见光催化剂及其制备方法
CN111686770B (zh) 一种金属离子共掺杂BiOBr微球、制备方法及其应用
Han et al. Enhanced photocatalytic activity over g-C3N4/(BiO) 2 (OH) xCl2− x Z-scheme heterojunction
CN113663732A (zh) 一种ZIF-67(Co)/空心微球状β-Bi2O3/g-C3N4可见光催化剂
Zhao et al. Synthesis of bismuth oxyiodide/kaolinite composite with enhanced photocatalytic activity
Plubphon et al. Rapid preparation of g-C3N4/Bi2O2CO3 composites and their enhanced photocatalytic performance
Liu et al. BiOCl/BiOBr heterojunction with rich oxygen vacancies induced by ultraviolet and its enhanced photocatalytic performance
Wu et al. Synthesis of a novel ternary BiOBr/g-C3N4/Ti3C2Tx hybrid for effectively removing tetracycline hydrochloride and rhodamine B
CN108745342A (zh) 黄土颗粒负载三氧化钨光催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181106

RJ01 Rejection of invention patent application after publication