WO2021068888A1 - 一种Ni基复合材料发热体及其制备方法 - Google Patents

一种Ni基复合材料发热体及其制备方法 Download PDF

Info

Publication number
WO2021068888A1
WO2021068888A1 PCT/CN2020/119979 CN2020119979W WO2021068888A1 WO 2021068888 A1 WO2021068888 A1 WO 2021068888A1 CN 2020119979 W CN2020119979 W CN 2020119979W WO 2021068888 A1 WO2021068888 A1 WO 2021068888A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
heating element
based composite
nio
present
Prior art date
Application number
PCT/CN2020/119979
Other languages
English (en)
French (fr)
Inventor
刘华臣
李丹
陈义坤
刘磊
刘冰
Original Assignee
湖北中烟工业有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北中烟工业有限责任公司 filed Critical 湖北中烟工业有限责任公司
Publication of WO2021068888A1 publication Critical patent/WO2021068888A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the present invention belongs to the field of metal-based composite materials and powder metallurgy. More specifically, the present invention generally relates to a Ni-based composite material heating element and a preparation method thereof.
  • Metal matrix composite material is a kind of composite material with metal as the matrix.
  • the research on the performance of metal matrix composite material mainly focuses on its mechanical properties, while the research on electrical properties has not yet been reported.
  • the purpose of the present invention is to provide a metal-based heating material and a preparation method thereof against the shortcomings of poor consistency of commonly used PTC resistors and MCH ceramic heating elements, complicated preparation processes, etc., which can not only meet the electrical and structural characteristics of small heating elements, but also It can simplify the preparation process of the product to a greater extent and reduce the production cost.
  • the inventor of this patent found to a great surprise after a large number of experiments that the heating characteristics of the material under electrical conditions are largely determined by its electrical resistivity, and the main factors affecting the volume resistivity of the composite material are
  • the present invention is completed on the basis of material composition, tissue structure and density.
  • the present invention provides a Ni-based composite material heating element, the heating element is made of NiO powder, aluminum powder and Si powder, wherein the mass fraction of each component is: NiO 10-38% powder, 8-20% aluminum powder, 42-80% Si powder, the sum of the three is 100%.
  • the heating element includes each component in the following mass fractions: NiO powder 10%, aluminum powder 8%, Si powder 82%, and its resistivity is 0.83 ⁇ m.
  • the tensile strength is 510MPa.
  • the heating element includes each component in the following mass fractions: 18% of NiO powder, 11% of aluminum powder, 71% of Si powder, and its resistivity is 0.67 ⁇ m.
  • the tensile strength is 544MPa.
  • the heating element includes each component in the following mass fractions: NiO powder 23%, aluminum powder 13%, Si powder 64%, and its resistivity is 0.52 ⁇ m.
  • the tensile strength is 610MPa.
  • the heating element includes each component in the following mass fractions: NiO powder 29%, aluminum powder 17%, Si powder 54%, and its resistivity is 0.47 ⁇ m, tensile strength The tensile strength is 566MPa.
  • the heating element includes each component in the following mass fractions: NiO powder 38%, aluminum powder 20%, Si powder 42%, and its resistivity is 0.20 ⁇ m.
  • the tensile strength is 710MPa.
  • the present invention also provides a method for preparing the above-mentioned Ni-based composite material heating element, which comprises: mixing NiO powder, aluminum powder and Si powder according to the mass fraction of each component, and then pressing into The billet is subjected to a combustion synthesis-melting-casting reaction at a high temperature, thereby obtaining the Ni-based composite material heating element.
  • the pressing conditions include: a pressure of 200-400 MPa and a time of 0.5-2 min.
  • the conditions of the combustion synthesis-melting-casting reaction include: a vacuum degree higher than 1 ⁇ 10 -1 Pa, a temperature of 700-800° C. and a time of 60-100 min.
  • the resistivity of the Ni-based composite heating element is 0.20-0.83 ⁇ m, and the tensile strength is ⁇ 500MPa.
  • the present invention also provides the use of the above-mentioned Ni-based composite material heating element or the Ni-based composite material heating element prepared by the above-mentioned method in a new type of tobacco product heater.
  • the Ni-based composite heating element of the present invention and the Ni-based composite heating element prepared by the method of the present invention can not only meet the electrical and structural characteristics of the small heating element, but also simplify the product to a greater extent.
  • the preparation process reduces the production cost.
  • the Ni-based composite material prepared by the present invention also has better impact resistance, wear resistance, high temperature red hardness, chemical stability and anti-adhesion properties.
  • the present invention provides a Ni-based composite material heating element, the heating element is made of NiO powder, aluminum powder and Si powder, wherein the mass fraction of each component is: NiO powder 10-38% , Aluminum powder 8-20%, Si powder 42-80%, the sum of the three is 100%.
  • the content of each component in the Ni-based composite heating element can be selected within the above range. , So that it can better meet the requirements of the present invention.
  • the heating element may include the following components in mass fraction: NiO powder 10%, aluminum powder 8%, Si powder 82%, and its resistivity is 0.83 ⁇ m, stretched The strength is 510MPa; in another embodiment of the present invention, the heating element may include the following components in mass fraction: NiO powder 18%, aluminum powder 11%, Si powder 71%, and its resistivity is 0.67 ⁇ m , The tensile strength is 544MPa; in another embodiment of the present invention, the heating element may include the following components in mass fraction: NiO powder 23%, aluminum powder 13%, Si powder 64%, and its resistivity is 0.52 ⁇ m, the tensile strength is 610MPa; in another embodiment of the present invention, the heating element may include the following mass fractions of components: NiO powder 29%, aluminum powder 17%, Si powder 54%, and its electrical resistance The rate is 0.47 ⁇ m, and the tensile strength is 566MPa; in another embodiment of the present invention, the heating element may include the following components in mass fraction
  • the present invention also provides a method for preparing a Ni-based composite heating element, which includes: mixing NiO powder, aluminum powder, and Si powder according to the mass fraction of each component, and then pressing into a blank , And carry out combustion synthesis-melting and casting reaction at high temperature, thereby obtaining the Ni-based composite material heating element.
  • combustion synthesis-melting-casting reaction also known as SHS-Casting reaction
  • SHS-Casting reaction refers to the combination of the combustion synthesis of materials and the solidification forming process of the parts, which can prepare near-net-shape parts in one step, while retaining the SHS technology
  • the time-saving advantage also solves the problem that ordinary SHS technology is difficult to prepare dense materials, thereby simultaneously realizing the synthesis and compact integration of materials.
  • the method of the mixing step is not particularly limited, and this step can be completed by various conventional technical means in the art, such as ball milling. More specifically, the ball milling process can be performed in, for example, a planetary ball mill using absolute ethanol as the ball milling medium, so as to achieve a better mixing effect, but the present invention is not limited to this.
  • the method may also include a drying step after the mixing step, for example, the mixed slurry obtained by ball milling
  • the material is vacuum dried, for example, at a temperature of 70-90°C, so as to obtain a dried powder.
  • the pressing step can be completed by maintaining a certain pressure for a period of time.
  • the pressing conditions may include: a pressure of 200-400 MPa (for example, 300 MPa, etc.) and a time of 0.5-2 min (for example, 1 min, etc.).
  • the combustion synthesis-melting-casting reaction step can be completed by maintaining a certain vacuum and temperature for a period of time.
  • the conditions of the combustion synthesis-melting-casting reaction may include: a vacuum degree higher than 1 ⁇ 10 -1 Pa, a temperature of 700-800°C (for example, 750°C, etc.) and time It is 60-100min (for example, 80min, etc.).
  • the method of the present invention includes the following steps:
  • Drying vacuum drying the obtained powder slurry, wherein the drying conditions include a temperature of 70-90°C;
  • the dried powder is molded into a blank, wherein the conditions of the pressing include a pressure of 200-400 MPa and a time of 0.5-2 min;
  • Combustion synthesis-melting-casting reaction the pressed billet is subjected to a combustion synthesis-melting-casting reaction at a vacuum degree higher than 1 ⁇ 10 -1 Pa, wherein the conditions of the combustion synthesis-melting-casting reaction include a temperature of 700-800 °C and time is 60-100min.
  • the present invention also provides the use of the above-mentioned Ni-based composite material heating element or the Ni-based composite material heating element prepared by the above-mentioned method in a new type of tobacco product heater.
  • Ni-based composite heating element of the present invention and the Ni-based composite heating element prepared by the method of the present invention can not only meet the electrical and structural characteristics of the small heating element, but also simplify the preparation process of the product to a greater extent and reduce Cost of production.
  • the Ni-based composite material prepared by the present invention also has better impact resistance, wear resistance, high temperature red hardness, chemical stability and anti-adhesion properties.
  • NiO powder 99.0% by weight, 200 mesh
  • aluminum powder 99.0% by weight, 100 mesh
  • Si powder 99.0% by weight, 50 mesh
  • the mass fraction of each raw material is: NiO powder 10%, aluminum powder 8%, Si powder 82%
  • the preparation method includes the following steps:
  • the result of the test shows that the resistivity of the composite heating element obtained by the method of this embodiment is 0.83 ⁇ m and the tensile strength is 510MPa, which meets the electrical and structural characteristics of the small heating element.
  • NiO powder 99.0% by weight, 200 mesh
  • aluminum powder 99.0% by weight, 100 mesh
  • Si powder 99.0% by weight, 50 mesh
  • the preparation method includes the following steps:
  • the test results show that the composite material heating element obtained by the method of this embodiment has a resistivity of 0.67 ⁇ m and a tensile strength of 544 MPa, which meets the electrical and structural characteristics of the small heating element.
  • NiO powder 99.0% by weight, 200 mesh
  • aluminum powder 99.0% by weight, 100 mesh
  • Si powder 99.0% by weight, 50 mesh
  • the preparation method includes the following steps:
  • the result of the test shows that the resistivity of the composite heating element obtained by the method of this embodiment is 0.52 ⁇ m and the tensile strength is 610MPa, which meets the electrical and structural characteristics of the small heating element.
  • NiO powder 99.0% by weight, 200 mesh
  • aluminum powder 99.0% by weight, 100 mesh
  • Si powder 99.0% by weight, 50 mesh
  • the preparation method includes the following steps:
  • the test results show that the resistivity of the composite heating element obtained by the method of this embodiment is 0.47 ⁇ m and the tensile strength is 566 MPa, which meets the electrical and structural characteristics of the small heating element.
  • NiO powder 99.0% by weight, 200 mesh
  • aluminum powder 99.0% by weight, 100 mesh
  • Si powder 99.0% by weight, 50 mesh
  • the preparation method includes the following steps:
  • the test results show that the resistivity of the composite heating element obtained by the method of this embodiment is 0.20 ⁇ m and the tensile strength is 710 MPa, which meets the electrical and structural characteristics of the small heating element.

Abstract

一种Ni基复合材料发热体及其制备方法,该发热体由NiO粉末、铝粉和Si粉制成,其中各组分所占的质量分数分别为:NiO粉末10-38%、铝粉8-20%、Si粉42-80%,三者总和为100%;该发热体的制备方法包括按照各组分的所述质量分数将NiO粉末、铝粉和Si粉进行混合,然后压制成坯料,并在高温下进行燃烧合成-熔铸反应。该Ni基复合材料发热体及其制备方法不仅能够满足小型发热体的电学及结构特性的要求,更能较大程度地简化产品的制备工艺,降低生产成本。

Description

一种Ni基复合材料发热体及其制备方法 技术领域
本发明属于金属基复合材料和粉末冶金的领域,更具体地,本发明通常涉及一种Ni基复合材料发热体及其制备方法。
背景技术
随着高端智能装备的不断发展,小型发热元器件的需求和应用领域不断扩大,目前市场上普遍使用的微小型发热器件主要为PTC电阻与MCH陶瓷材料。虽然一定程度上能满足各类设备的使用需求,然而还是存在着较多问题,比如PTC热敏电阻一致性差、互换性差、元件易老化及稳定性差等,而MCH陶瓷往往制备工艺复杂、成本较高,也存在着产品质量不均匀等问题,这些不足会导致下游设备成本高或者质量不稳定。因此急需开发一种低成本、工艺简单、可靠性高及可控性强的新型发热材料。
金属基复合材料是一种以金属为基体的复合材料,关于金属基复合材料性能的研究主要集中在其力学性能上,而电学特性方面的研究尚未有相关报道。
发明内容
本发明的目的在于针对常用PTC电阻与MCH陶瓷发热体产品一致性差、制备工艺复杂等缺点,提供一种金属基发热材料及其制备方法,不仅能够满足小型发热体的电学及结构特性的要求,更能较大程度地简化产品的制备工艺,降低生产成本。
在现有技术的基础上,本专利的发明人经过大量试验非常惊奇地发现,该材料在电学条件下的发热特性很大程度决定于其电阻率,而复合材料体积电阻率的影响因素主要有材料成分、组织结构及致密度等,从而在此基础上完成了本发明。
为了实现上述目的,在一个方面,本发明提供了一种Ni基复合材料发热体,该发热体由NiO粉末、铝粉和Si粉制成,其中各组分所占的质量分数分别为:NiO粉末10-38%、铝粉8-20%、Si粉42-80%,三者总和为100%。
在本发明的一个优选的实施方式中,所述发热体以如下质量分数包括各组分:NiO粉末10%、铝粉8%、Si粉82%,并且其电阻率为0.83Ω·m,拉伸强度为510MPa。
在本发明的一个优选的实施方式中,所述发热体以如下质量分数包括各组分:NiO粉末18%、铝粉11%、Si粉71%,并且其电阻率为0.67Ω·m,拉伸强度为544MPa。
在本发明的一个优选的实施方式中,所述发热体以如下质量分数包括各组分:NiO粉末23%、铝粉13%、Si粉64%,并且其电阻率为0.52Ω·m,拉伸强度为610MPa。
在本发明的一个优选的实施方式中,所述发热体以如下质量分数包括各组分:NiO粉末29%、铝粉17%、Si粉54%,并且其电阻率为0.47Ω·m,拉伸强度为566MPa。
在本发明的一个优选的实施方式中,所述发热体以如下质量分数包括各组分:NiO粉末38%、铝粉20%、Si粉42%,并且其电阻率为0.20Ω·m,拉伸强度为710MPa。
在另一方面,本发明还提供了一种制备上述Ni基复合材料发热体的方法,其包括:按照各组分的所述质量分数将NiO粉末、铝粉和Si粉进行混合,然后压制成坯料,并在高温下进行燃烧合成-熔铸反应,从而得到所述Ni基复合材料发热体。
在本发明的一个优选的实施方式中,所述压制的条件包括:压力为200-400MPa和时间为0.5-2min。
在本发明的一个优选的实施方式中,所述燃烧合成-熔铸反应的条件包括:真空度高于1×10 -1Pa,温度为700-800℃和时间为60-100min。
在本发明的一个优选的实施方式中,所述Ni基复合材料发热体的电阻率为0.20-0.83Ω·m,拉伸强度≥500MPa。
在另一方面,本发明还提供了上述Ni基复合材料发热体或通过上述方法制备的Ni基复合材料发热体在新型烟草制品用发热器中的用途。
综上所述,本发明的Ni基复合材料发热体和通过本发明的方法制备的Ni基复合材料发热体不仅能够满足小型发热体的电学及结构特性的要求,更能较大程度地简化产品的制备工艺,降低生产成本。此外,本发明所制备的Ni基复合材料还具有较好的抗冲击性、耐磨性、高温红硬性、化学稳定性和抗粘附性。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
在一个方面,本发明提供了一种Ni基复合材料发热体,该发热体由NiO粉末、铝粉和Si粉制成,其中各组分所占的质量分数分别为:NiO粉末10-38%、铝粉8-20%、Si粉42-80%,三者总和为100%。
根据本发明,为了使得本发明的Ni基复合材料发热体能够满足小型发热体的电学及结构特性的要求,可以对Ni基复合材料发热体中的各组分含量在上述范围中进行一定的选择,从而使其能够更好地满足本发明的需求。
因此,在本发明的一个实施方式中,该发热体可以如下质量分数包括各组分:NiO粉末10%、铝粉8%、Si粉82%,并且其电阻率为0.83Ω·m,拉伸强度为510MPa;在本发明的另一个实施方式中,该发热体可以如下质量分数包括各组分:NiO粉末18%、铝粉11%、Si粉71%,并且其电阻率为0.67Ω·m,拉伸强度为544MPa;在本发明的另一个实施方式中,该发热体可以如下质量分数包括各组分:NiO粉末23%、铝粉13%、Si粉64%,并且其电阻率为0.52Ω·m,拉伸强度为610MPa;在本发明的另一个实施方式中,该发热体可以如下质量分 数包括各组分:NiO粉末29%、铝粉17%、Si粉54%,并且其电阻率为0.47Ω·m,拉伸强度为566MPa;在本发明的另一个实施方式中,该发热体可以如下质量分数包括各组分:NiO粉末38%、铝粉20%、Si粉42%,并且其电阻率为0.20Ω·m,拉伸强度为710MPa,但本发明的实施方式不限于此。
在另一方面,本发明还提供了一种制备Ni基复合材料发热体的方法,其包括:按照各组分的所述质量分数将NiO粉末、铝粉和Si粉进行混合,然后压制成坯料,并在高温下进行燃烧合成-熔铸反应,从而得到所述Ni基复合材料发热体。
如本文所用,术语“燃烧合成-熔铸反应”又称为SHS-Casting反应,是指将材料的燃烧合成与零件的凝固成形工艺结合起来,可一步到位制备近净形零件,既保留了SHS技术能省时的优点,也较好地解决了普通SHS技术难以制备致密材料的难题,从而同步实现了材料的合成与致密一体化。
根据本发明,对所述混合步骤的方法没有特别限制,可以通过本领域的各种常规技术手段来完成该步骤,例如球磨等。更具体地,所述球磨过程可以在例如行星球磨机中以无水乙醇作为球磨介质而进行,从而达到更好的混合效果,但本发明不限于此。
根据本发明,当本发明的各组分材料通过上述球磨过程进行混合时,由于混合后形成的是混合浆料,该方法还可以在混合步骤之后包括烘干步骤,例如将球磨得到的混合浆料进行真空烘干,例如在温度为70-90℃的条件下,从而得到烘干的粉料。
根据本发明,压制步骤可以通过在一定的压力下保持一段时间来完成。例如,在本发明的一个优选的实施方式中,所述压制的条件可以包括:压力为200-400MPa(例如300MPa等)和时间为0.5-2min(例如1min等)。
根据本发明,燃烧合成-熔铸反应步骤可以通过在一定的真空度和温度下保持一段时间来完成。例如,在本发明的一个优选的实施方式中,所述燃烧合成-熔铸反应的条件可以包括:真空度高于1×10 -1Pa,温度为700-800℃(例如750℃等)和时间为60-100min(例如80min等)。
因此,在本发明的一个更优选的实施方式中,本发明的方法包括以下步骤:
(1)球磨:按所述质量分数将NiO粉末、铝粉和Si粉以及无水乙醇在行星球磨机中进行球磨12-48h;
(2)烘干:将所得的粉末浆料进行真空烘干,其中所述烘干的条件包括温度为70-90℃;
(3)压制:将烘干的粉料进行模压成坯,其中所述压制的条件包括压力为200-400MPa和时间为0.5-2min;
(4)燃烧合成-熔铸反应:将压制所得的坯料在高于1×10 -1Pa的真空度下进行燃烧合成-熔铸反应,其中所述燃烧合成-熔铸反应的条件包括温度为700-800℃和时间为60-100min。
在另一方面,本发明还提供了上述Ni基复合材料发热体或通过上述方法制备的Ni基复合材料发热体在新型烟草制品用发热器中的用途。
本发明的Ni基复合材料发热体和通过本发明的方法制备的Ni基复合材料发热体不仅能够满足小型发热体的电学及结构特性的要求,更能较大程度地简化产品的制备工艺,降低生产成本。此外,本发明所制备的Ni基复合材料还具有较好的抗冲击性、耐磨性、高温红硬性、化学稳定性和抗粘附性。
以下将通过实施例对本发明进行详细描述。
实施例1
在本实施例中,选取NiO粉末(99.0wt%,200目)、铝粉(99.0wt%,100目)和Si粉(99.0wt%,50目)作为合成原料来制备Ni基复合材料发热体,其中各原料所占质量分数为:NiO粉末10%、铝粉8%、Si粉82%,所述制备方法包括以下步骤:
(1)球磨:按上述质量分数将NiO粉末、铝粉和Si粉以及无水乙醇在行星球磨机上进行球磨,时间为48h。
(2)烘干:将所得粉末浆料在进行真空烘干,其中温度为70℃;
(3)压制:将烘干后的粉料进行模压成坯,其中压力为200MPa,时间为2min;
(4)燃烧合成-熔铸反应:将压制所得的坯料在1×10 -2Pa的真空度下进行燃 烧合成-熔铸反应,其中温度为800℃,时间为80min。
经测试得到的结果表明,通过该实施例的方法得到的复合材料发热体的电阻率为0.83Ω·m,拉伸强度为510MPa,满足小型发热体的电学及结构特性的要求。
实施例2
在本实施例中,选取NiO粉末(99.0wt%,200目)、铝粉(99.0wt%,100目)和Si粉(99.0wt%,50目)作为合成原料来制备Ni基复合材料发热体,其中各原料所占质量分数为:NiO粉末18%、铝粉11%、Si粉71%,所述制备方法包括以下步骤:
(1)球磨:按上述质量分数将NiO粉末、铝粉和Si粉以及无水乙醇在行星球磨机上进行球磨,时间为36h。
(2)烘干:将所得粉末浆料进行真空烘干,温度为90℃;
(3)压制:将烘干后的粉料进行模压成坯,其中压力为400MPa,时间为0.5min;
(4)燃烧合成-熔铸反应:将压制所得的坯料在1×10 -2Pa的真空度下进行燃烧合成-熔铸反应,其中温度为700℃,时间为100min。
经测试得到的结果表明,通过该实施例的方法得到的复合材料发热体的电阻率为0.67Ω·m,拉伸强度为544MPa,满足小型发热体的电学及结构特性的要求。
实施例3
在本实施例中,选取NiO粉末(99.0wt%,200目)、铝粉(99.0wt%,100目)和Si粉(99.0wt%,50目)作为合成原料来制备Ni基复合材料发热体,其中各原料所占质量分数为:NiO粉末23%、铝粉13%、Si粉64%,所述制备方法包括以下步骤:
(1)球磨:按上述质量分数将NiO粉末、铝粉和Si粉以及无水乙醇在行星球磨机上进行球磨,时间为48h。
(2)烘干:将所得粉末浆料进行真空烘干,温度为90℃;
(3)压制:将烘干后的粉料进行模压成坯,其中压力为300MPa,时间为1min;
(4)燃烧合成-熔铸反应:将压制所得的坯料在1×10 -2Pa的真空度下进行燃烧合成-熔铸反应,其中温度为800℃,时间为70min。
经测试得到的结果表明,通过该实施例的方法得到的复合材料发热体的电阻率为0.52Ω·m,拉伸强度为610MPa,满足小型发热体的电学及结构特性的要求。
实施例4
在本实施例中,选取NiO粉末(99.0wt%,200目)、铝粉(99.0wt%,100目)和Si粉(99.0wt%,50目)作为合成原料来制备Ni基复合材料发热体,其中各原料所占质量分数为:NiO粉末29%、铝粉17%、Si粉54%,所述制备方法包括以下步骤:
(1)球磨:按上述质量分数将NiO粉末、铝粉和Si粉以及无水乙醇在行星球磨机上进行球磨,时间为24h。
(2)烘干:将所得粉末浆料进行真空烘干,温度为80℃;
(3)压制:将烘干后的粉料进行模压成坯,其中压力为300MPa,时间为1.5min;
(4)燃烧合成-熔铸反应:将压制所得的坯料在1×10 -2Pa的真空度下进行燃烧合成-熔铸反应,其中温度为700℃,时间为85min。
经测试得到的结果表明,通过该实施例的方法得到的复合材料发热体的电阻率为0.47Ω·m,拉伸强度为566MPa,满足小型发热体的电学及结构特性的要求。
实施例5
在本实施例中,选取NiO粉末(99.0wt%,200目)、铝粉(99.0wt%,100目)和Si粉(99.0wt%,50目)作为合成原料来制备Ni基复合材料发热体,其中各原料所占质量分数为:NiO粉末38%、铝粉20%、Si粉42%,所述制备方法包括以下步骤:
(1)球磨:按上述质量分数将NiO粉末、铝粉和Si粉以及无水乙醇在行星球磨机上进行球磨,时间为48h。
(2)烘干:将所得粉末浆料进行真空烘干,温度为90℃;
(3)压制:将烘干后的粉料进行模压成坯,其中压力为350MPa,时间为1min;
(4)燃烧合成-熔铸反应:将压制所得的坯料在1×10 -2Pa的真空度下进行燃烧合成-熔铸反应,其中温度为800℃,时间为75min。
经测试得到的结果表明,通过该实施例的方法得到的复合材料发热体的电阻率为0.20Ω·m,拉伸强度为710MPa,满足小型发热体的电学及结构特性的要求。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (11)

  1. 一种Ni基复合材料发热体,其特征在于,所述发热体由NiO粉末、铝粉和Si粉制成,其中各组分所占的质量分数分别为:NiO粉末10-38%、铝粉8-20%、Si粉42-80%,三者总和为100%。
  2. 根据权利要求1所述的Ni基复合材料发热体,其中,所述发热体以如下质量分数包括各组分:NiO粉末10%、铝粉8%、Si粉82%,并且其电阻率为0.83Ω·m,拉伸强度为510MPa。
  3. 根据权利要求1所述的Ni基复合材料发热体,其中,所述发热体以如下质量分数包括各组分:NiO粉末18%、铝粉11%、Si粉71%,并且其电阻率为0.67Ω·m,拉伸强度为544MPa。
  4. 根据权利要求1所述的Ni基复合材料发热体,其中,所述发热体以如下质量分数包括各组分:NiO粉末23%、铝粉13%、Si粉64%,并且其电阻率为0.52Ω·m,拉伸强度为610MPa。
  5. 根据权利要求1所述的Ni基复合材料发热体,其中,所述发热体以如下质量分数包括各组分:NiO粉末29%、铝粉17%、Si粉54%,并且其电阻率为0.47Ω·m,拉伸强度为566MPa。
  6. 根据权利要求1所述的Ni基复合材料发热体,其中,所述发热体以如下质量分数包括各组分:NiO粉末38%、铝粉20%、Si粉42%,并且其电阻率为0.20Ω·m,拉伸强度为710MPa。
  7. 一种制备权利要求1-6中任一项所述的Ni基复合材料发热体的方法,其包括:按照各组分的所述质量分数将NiO粉末、铝粉和Si粉进行混合,然后压制成坯料,并在高温下进行燃烧合成-熔铸反应,从而得到所述Ni基复合材料发热体。
  8. 根据权利要求7所述的方法,其中,所述压制的条件包括:压力为200-400MPa和时间为0.5-2min。
  9. 根据权利要求7所述的方法,其中,所述燃烧合成-熔铸反应的条件包括:真空度高于1×10 -1Pa,温度为700-800℃和时间为60-100min。
  10. 根据权利要求7-9中任一项所述的方法,其中,所述Ni基复合材料发热体的电阻率为0.20-0.83Ω·m,拉伸强度≥500MPa。
  11. 根据权利要求1-6中任一项所述的Ni基复合材料发热体或通过权利要求7-10中任一项所述的方法制备的Ni基复合材料发热体在新型烟草制品用发热器中的用途。
PCT/CN2020/119979 2019-10-09 2020-10-09 一种Ni基复合材料发热体及其制备方法 WO2021068888A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910954064.8 2019-10-09
CN201910954064.8A CN112391567B (zh) 2019-10-09 2019-10-09 一种Si基复合材料发热体及其制备方法

Publications (1)

Publication Number Publication Date
WO2021068888A1 true WO2021068888A1 (zh) 2021-04-15

Family

ID=74603712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119979 WO2021068888A1 (zh) 2019-10-09 2020-10-09 一种Ni基复合材料发热体及其制备方法

Country Status (2)

Country Link
CN (1) CN112391567B (zh)
WO (1) WO2021068888A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561583B (zh) * 2022-03-14 2023-03-24 武汉理工大学 一种适用于电磁加热、电阻加热的高红外发射率的发热体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227376A (ja) * 1988-03-07 1989-09-11 Tokai Konetsu Kogyo Co Ltd 遠赤外線ヒータ
CN1598969A (zh) * 2004-09-06 2005-03-23 云南大学 可在空气中烧结的含镍铬基电阻材料及其制备方法
CN108002746A (zh) * 2017-11-23 2018-05-08 苏州南尔材料科技有限公司 一种ntc热敏电阻材料的制备方法
CN109874185A (zh) * 2019-02-25 2019-06-11 毕平均 一种发热装置及发热设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225111A (en) * 1990-08-29 1993-07-06 Ngk Insulators, Ltd. Voltage non-linear resistor and method of producing the same
JP2003138353A (ja) * 2001-10-31 2003-05-14 Taiheiyo Cement Corp 金属−セラミックス複合材料
CN101350239B (zh) * 2007-07-16 2011-02-02 深圳振华富电子有限公司 一种叠层片式压敏电阻器及其制造方法
CN105725281A (zh) * 2016-05-04 2016-07-06 湖北中烟工业有限责任公司 一种复合功能雾化器及含有该雾化器的电子烟
CN106086494B (zh) * 2016-06-08 2017-12-22 航天材料及工艺研究所 一种电子封装用硅铝合金的制备方法
CN108963194A (zh) * 2017-05-18 2018-12-07 中国科学院物理研究所 一种硅基复合材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227376A (ja) * 1988-03-07 1989-09-11 Tokai Konetsu Kogyo Co Ltd 遠赤外線ヒータ
CN1598969A (zh) * 2004-09-06 2005-03-23 云南大学 可在空气中烧结的含镍铬基电阻材料及其制备方法
CN108002746A (zh) * 2017-11-23 2018-05-08 苏州南尔材料科技有限公司 一种ntc热敏电阻材料的制备方法
CN109874185A (zh) * 2019-02-25 2019-06-11 毕平均 一种发热装置及发热设备

Also Published As

Publication number Publication date
CN112391567B (zh) 2022-02-08
CN112391567A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2021204282A1 (zh) 一种金属硅化物基发热材料及其制备方法
CN102628138B (zh) 一种含微量钴的无粘结相碳化钨硬质合金及其制备方法
JP4812381B2 (ja) 金属基カーボンナノチューブ複合材料の製造方法
WO2021047592A1 (zh) 一种金属陶瓷发热材料及其制备方法
JP2018513919A (ja) グラフェン/銀複合材料及びその調製方法
JP5863329B2 (ja) 超硬合金及びその製造方法
TWI690608B (zh) 合金基複合材料的製備方法
CN107602131B (zh) 一种碳化硅复相陶瓷
WO2021068888A1 (zh) 一种Ni基复合材料发热体及其制备方法
JP5077660B2 (ja) 金属粉末複合材を製造するコーティング組成物と、該金属粉末複合材によって製造された金属複合材、金属積層複合材、およびこれらの製造方法
JPS6221060B2 (zh)
TW201718901A (zh) 以還原反應製備多孔球狀鐵基合金粉的方法、其粉末和燒結體
WO2016179734A1 (zh) 一种镁-铝-碳化硅中间合金材料及其制备方法
TW200533763A (en) Aluminum alloy for plastic working, and its manufacturing method
WO1986002669A1 (en) Process for producing super-heat-resistant alloy material
CN103205589B (zh) 一种以Ni-Al金属间化合物为粘结相的硬质合金及其制备方法
CN104962794A (zh) 一种TiCN/Al2O3金属陶瓷刀具及其微波制备工艺
CN108085526B (zh) 一种低密度铌基复合材料及制备方法
CN108034877B (zh) 一种无钴梯度wc硬质合金高压方块及其制备方法
CN114657433B (zh) 一种固溶强化金属陶瓷及其制备方法
CN106367631B (zh) 一种高耐磨性铜基复合材料及其制备方法
CN110699584B (zh) 脉冲冲击吸能用高密度低强度低塑性合金材料的制备方法
CN114262833A (zh) 一种具有高硬度和高韧性的高熵碳化物增强TiCN基金属陶瓷及其制备方法和应用
CN111621684A (zh) 一种抗热裂混晶硬质合金及其制备方法
US2966734A (en) Aluminum base alloy powder product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20875196

Country of ref document: EP

Kind code of ref document: A1