WO2021204282A1 - 一种金属硅化物基发热材料及其制备方法 - Google Patents

一种金属硅化物基发热材料及其制备方法 Download PDF

Info

Publication number
WO2021204282A1
WO2021204282A1 PCT/CN2021/086349 CN2021086349W WO2021204282A1 WO 2021204282 A1 WO2021204282 A1 WO 2021204282A1 CN 2021086349 W CN2021086349 W CN 2021086349W WO 2021204282 A1 WO2021204282 A1 WO 2021204282A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
metal silicide
heating material
based heating
present
Prior art date
Application number
PCT/CN2021/086349
Other languages
English (en)
French (fr)
Inventor
刘华臣
李丹
谭健
黄婷
刘冰
Original Assignee
湖北中烟工业有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北中烟工业有限责任公司 filed Critical 湖北中烟工业有限责任公司
Publication of WO2021204282A1 publication Critical patent/WO2021204282A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • C04B35/58092Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides based on refractory metal silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention belongs to the field of metal-based composite materials and powder metallurgy. More specifically, the present invention generally relates to a metal silicide-based heating material and a preparation method thereof.
  • the metal silicide-based composite material is a potential heating material for tobacco heating without burning.
  • the heating characteristics of the material under electrical conditions are largely determined by its resistivity.
  • the main factors affecting the volume resistivity of the composite material are material composition, Organizational structure and density, etc.
  • the purpose of the present invention is to provide a metal silicide-based heating material and a preparation method thereof against the disadvantages of poor consistency of commonly used PTC resistors and MCH ceramic heating elements, complex preparation processes, etc., which can not only meet the electrical and mechanical properties of small heating elements It is required to simplify the preparation process of the product to a greater extent and reduce the production cost.
  • the present invention provides a metal silicide-based heating material composed of Si and other metals, wherein, based on the total weight of the metal silicide-based heating material, The proportion of Si is 30-45wt%.
  • the other metal is one or more of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo and W.
  • the resistivity of the metal silicide-based heating material is 500-5000 ⁇ cm, and the bending strength is ⁇ 300 MPa.
  • the present invention also provides a method for preparing the above-mentioned metal silicide-based heating material.
  • the method includes: mixing Si powder and other metal powders, pressing them into blanks, and sintering them at high temperatures to obtain In the metal silicide-based heating material, the weight of the Si powder accounts for 30-45 wt%.
  • the particle size of the Si powder is 50-200 mesh.
  • the mixing is carried out in a mixer for 24-48 hours.
  • the pressing conditions include: a pressing pressure of 300-500 MPa and a pressure holding time of 3-5 min.
  • the sintering conditions include: a vacuum degree of not less than 1 ⁇ 10 ⁇ 1 Pa, a sintering temperature of 900-1350° C., and a holding time of 120-300 min.
  • the resistivity of the metal silicide-based heating material is 500-5000 ⁇ cm, and the bending strength is ⁇ 300 MPa.
  • the present invention also provides the use of the above-mentioned metal silicide-based heating material or the metal silicide-based heating material prepared by the above method in a heating device for tobacco products.
  • the metal silicide-based heating material of the present invention and the metal silicide-based heating material prepared by the method of the present invention can not only meet the electrical and mechanical performance requirements of small heating elements, but also The preparation process of the product can be simplified to a greater extent, and the production cost can be reduced.
  • the present invention provides a metal silicide-based heating material, the metal silicide-based heating material is composed of Si and other metals, wherein, based on the total weight of the metal silicide-based heating material, the proportion of Si is 30-45wt%.
  • the types of other metals can be selected.
  • the other metal may be one or more of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, and W.
  • the other metals may be Fe, Cr, Ni, and Mo.
  • the other metals may be Fe, Cr, Ni, Mo, and W.
  • the other metals may be Ti, Y, Zr, and Mo.
  • the metal silicide-based heating material based on the present invention meets the electrical and mechanical performance requirements of a small heating element.
  • the resistivity of the metal silicide-based heating material may be 500-5000 ⁇ • cm (for example, 1000, 2000, 3000, or 4000 ⁇ •cm), and the bending strength can be ⁇ 300 MPa (for example, 350, 400, 450, or 500 MPa).
  • the present invention also provides a method for preparing a metal silicide-based heating material.
  • the method includes: mixing Si powder and other metal powders, pressing them into a blank, and sintering at a high temperature to obtain the In the metal silicide-based heating material, the weight of the Si powder accounts for 30-45 wt%.
  • the method of the mixing step is not particularly limited, and this step can be completed by various conventional technical means in the art, such as ball milling and the like. More specifically, the ball milling process can be performed in, for example, a blender such as a planetary ball mill using anhydrous ethanol as the ball milling medium, so as to achieve a better mixing effect, but the present invention is not limited to this.
  • the particle size of each raw material component may be restricted.
  • the particle size of the Si powder may be 50-200 mesh (for example, 100 or 100 mesh). 150 mesh).
  • the method may also include a drying step after the mixing step, for example, the mixed slurry obtained by ball milling
  • the material is vacuum dried, for example, at a temperature of 70-90°C, so as to obtain a dried powder.
  • the pressing step can be completed by maintaining a certain pressure for a period of time.
  • the pressing conditions may include: a pressing pressure of 300-500 MPa (for example, 350, 400 or 450 MPa, etc.) and a holding time of 3-5 min (for example, 3.5, 4 or 5min etc.).
  • the sintering step can be completed by maintaining a certain vacuum and temperature for a period of time.
  • the sintering conditions may include: the vacuum degree is not less than 1 ⁇ 10-1Pa, and the sintering temperature is 900-1350°C (for example, 1000, 1100, 1200 or 1300°C, etc. ) And the holding time is 120-300min (for example, 150, 200 or 250min, etc.).
  • the method of the present invention includes the following steps: (1) Mixing: mixing Si powder, other metal powders, and absolute ethanol on a mixing machine in proportion, time It is 24-48h; (2) drying: vacuum drying the obtained powder slurry at a temperature of 70-90°C; (3) pressing: pressing the dried powder into a blank, wherein the pressing The conditions include pressing pressure of 300-500MPa and holding time of 3-5min; and (4) sintering: the pressed blank is sintered at a vacuum degree of not less than 1 ⁇ 10 -1Pa, wherein the sintered The conditions include a sintering temperature of 900-1350°C and a holding time of 120-300min.
  • the resistivity of the metal silicide-based heating material prepared by the preparation method may be 500-5000 ⁇ cm (for example, 1000, 2000, 3000 or 4000 ⁇ cm), And the bending strength can be ⁇ 300 MPa (for example, 350, 400, 450 or 500 MPa).
  • the present invention also provides the use of the above-mentioned metal silicide-based heating material or the metal silicide-based heating material prepared by the above method in a heating device for tobacco products.
  • the metal silicide-based heating material of the present invention and the metal silicide-based heating material prepared by the method of the present invention can not only meet the requirements of electrical and mechanical properties of small heating elements, but also simplify the preparation process of the product to a greater extent and reduce Cost of production.
  • Si powder 99.0wt%, 200 mesh
  • Fe powder 99.0wt%, 100 mesh
  • Cr powder 99.0wt%, 100 mesh
  • Ni powder 99.0wt%, 100 mesh
  • Mo powder 99.0wt%, 50 mesh
  • the mass fractions of each raw material are: Si powder 35%, Fe powder 35%, Cr powder 12%, Ni powder 13%, Mo powder 5%
  • the preparation method includes the following steps:
  • the test results show that the resistivity of the metal silicide-based heating material obtained by the method of this embodiment is 2120 ⁇ •m and the bending strength is 410 MPa, which meets the requirements of electrical and mechanical properties of small heating elements.
  • Si powder 99.0wt%, 200 mesh
  • Fe powder 99.0wt%, 100 mesh
  • Cr powder 99.0wt%, 100 mesh
  • Ni powder 99.0wt%, 100 mesh
  • Mo powder 99.0wt%, 50 mesh
  • the mass fractions of each raw material are: Si powder 30%, Fe powder 35%, Cr powder 12%, Ni powder 13%, Mo powder 10%
  • the preparation method includes the following steps:
  • the results obtained by the test show that the resistivity of the metal silicide-based heating material obtained by the method of this embodiment is 4300 ⁇ •m and the bending strength is 615 MPa, which meets the electrical and mechanical performance requirements of the small heating element.
  • Si powder 99.0wt%, 200 mesh
  • Co powder 99.0wt%, 100 mesh
  • Cr powder 99.0wt%, 100 mesh
  • Ni powder 99.0wt%, 100 mesh
  • Mo powder 99.0wt%, 50 mesh
  • the mass fractions of each raw material are: Si powder 45%, Co powder 35%, Cr powder 8%, Ni powder 8%, Mo powder 4%
  • the preparation method includes the following steps:
  • the test results show that the resistivity of the metal silicide-based heating material obtained by the method of this embodiment is 782 ⁇ •m and the bending strength is 301MPa, which meets the electrical and mechanical properties of the small heating element.
  • Si powder 99.0wt%, 200 mesh
  • Fe powder 99.0wt%, 100 mesh
  • Cr powder 99.0wt%, 100 mesh
  • Ni powder 99.0wt%, 100 mesh
  • Mo powder 99.0wt%, 50 mesh
  • W powder 99.0wt%, 50 mesh
  • the mass fractions of each raw material are respectively: Si powder 37%, Fe Powder 23%, Cr powder 12%, Ni powder 13%, Mo powder 5%, W powder 10%
  • the preparation method includes the following steps:
  • the test results show that the resistivity of the metal silicide-based heating material obtained by the method of this embodiment is 3562 ⁇ •m and the bending strength is 360 MPa, which meets the requirements of electrical and mechanical properties of small heating elements.
  • select Si powder (99.0wt%, 200 mesh), Ti powder (99.0wt%, 100 mesh), Y powder (99.0wt%, 100 mesh), Zr powder (99.0wt%, 50 mesh) And Mo powder (99.0wt%, 50 mesh) are used as synthetic raw materials to prepare metal silicide-based heating materials.
  • the mass fractions of each raw material are: Si powder 40%, Ti powder 15%, Y powder 15%, Zr powder 15%, Mo powder 15%, the preparation method includes the following steps:
  • the results obtained by the test show that the resistivity of the metal silicide-based heating material obtained by the method of this embodiment is 4755 ⁇ •m and the bending strength is 320 MPa, which meets the requirements of electrical and mechanical properties of small heating elements.
  • the present invention provides a metal silicide-based heating material and a preparation method thereof.
  • the metal silicide-based heating material is composed of Si and other metals, wherein the proportion of Si is 30 based on the total weight of the metal silicide-based heating material. 45wt%; the preparation method includes mixing Si powder and other metal powders, pressing into a blank, and sintering at high temperature to obtain the metal silicide-based heating material.
  • the metal silicide-based heating material and the preparation method thereof of the present invention can not only meet the requirements of electrical and mechanical properties of the small heating element, but also simplify the preparation process of the product to a greater extent and reduce the production cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种金属硅化物基发热材料及其制备方法,金属硅化物基发热材料由Si和其他金属组成,其中基于金属硅化物基发热材料的总重量,Si的占比为30-45wt%;该制备方法包括将Si粉和其他金属粉末混合,压制成坯料,并在高温下进行烧结。该金属硅化物基发热材料不仅能够满足小型发热体的电学及力学性能的要求,还较大程度地简化产品的制备工艺,降低生产成本。

Description

一种金属硅化物基发热材料及其制备方法 技术领域
本发明属于金属基复合材料和粉末冶金的领域,更具体地,本发明通常涉及一种金属硅化物基发热材料及其制备方法。
背景技术
随着高端智能装备的不断发展,小型发热元器件的需求和应用领域不断扩大,目前市场上普遍使用的微小型发热器件主要为PTC电阻与MCH陶瓷材料。虽然一定程度上能满足各类设备的使用需求,然而还是存在着较多问题,比如PTC热敏电阻一致性差、互换性差、元件易老化及稳定性差等,而MCH陶瓷往往制备工艺复杂、成本较高,也存在着产品质量不均匀等问题,这些不足会导致下游设备成本高或者质量不稳定。因此急需开发一种低成本、工艺简单、可靠性高及可控性强的新型发热材料。
金属硅化物基复合材料是一种潜在的应用于烟草加热不燃烧发热材料,材料在电学条件下的发热特性很大程度决定于其电阻率,复合材料体积电阻率的影响因素主要有材料成分、组织结构及致密度等。
技术解决方案
本发明的目的在于针对常用PTC电阻与MCH陶瓷发热体产品一致性差、制备工艺复杂等缺点,提供一种金属硅化物基发热材料及其制备方法,不仅能够满足小型发热体的电学及力学性能的要求,更能较大程度地简化产品的制备工艺,降低生产成本。
为了实现上述目的,在一个方面,本发明提供了一种金属硅化物基发热材料,所述金属硅化物基发热材料由Si和其他金属组成,其中,基于金属硅化物基发热材料的总重量,Si的占比为30-45wt%。
在本发明的一个优选的实施方式中,所述其他金属为Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo和W中的一种或多种。
在本发明的一个优选的实施方式中,所述金属硅化物基发热材料的电阻率为500-5000μΩ•cm,且弯曲强度≥300MPa。
在另一方面,本发明还提供了一种制备上述金属硅化物基发热材料的方法,所述方法包括:将Si粉和其他金属粉末混合,压制成坯料,并在高温下进行烧结,以得到所述金属硅化物基发热材料,其中所述Si粉的重量占比为30-45wt%。
在本发明的一个优选的实施方式中,所述Si粉的粒径为50-200目。
在本发明的一个优选的实施方式中,所述混合在混料机中进行24-48h。
在本发明的一个优选的实施方式中,所述压制的条件包括:压制压力为300-500MPa和保压时间为3-5min。
在本发明的一个优选的实施方式中,所述烧结的条件包括:真空度不低于1×10 - 1Pa、烧结温度为900-1350℃和保温时间为120-300min。
在本发明的一个优选的实施方式中,所述金属硅化物基发热材料的电阻率为500-5000μΩ•cm,且弯曲强度≥300MPa。
在另一方面,本发明还提供了上述金属硅化物基发热材料或通过上述方法制备的金属硅化物基发热材料在烟草制品用发热器中的用途。
有益效果
综上所述,基于本发明的技术方案,本发明的金属硅化物基发热材料和通过本发明的方法制备的金属硅化物基发热材料不仅能够满足小型发热体的电学及力学性能的要求,更能较大程度地简化产品的制备工艺,降低生产成本。
本发明的实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
在一个方面,本发明提供了一种金属硅化物基发热材料,所述金属硅化物基发热材料由Si和其他金属组成,其中,基于金属硅化物基发热材料的总重量,Si的占比为30-45wt%。
根据本发明,为了使本发明的金属硅化物基发热材料能够更好地满足小型发热体的电学及结构特性的要求,可以对其他金属的种类进行选择。例如,在一个实施方式中,所述其他金属可以为Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo和W中的一种或多种。例如,在一个具体实施方式中,所述其他金属可以为Fe、Cr、Ni和Mo。例如,在另一个具体实施方式中,所述其他金属可以为Fe、Cr、Ni、Mo和W。例如,在另一个具体实施方式中,所述其他金属可以为Ti、Y、Zr和Mo。
根据本发明,基于本发明的金属硅化物基发热材料满足小型发热体的电学及力学性能的要求,在一个具体实施方式中,所述金属硅化物基发热材料的电阻率可以为500-5000μΩ•cm(例如1000、2000、3000或4000μΩ•cm),且弯曲强度可以≥300MPa(例如350、400、450或500MPa)。
在另一方面,本发明还提供了一种制备金属硅化物基发热材料的方法,所述方法包括:将Si粉和其他金属粉末混合,压制成坯料,并在高温下进行烧结,以得到所述金属硅化物基发热材料,其中所述Si粉的重量占比为30-45wt%。
根据本发明,对所述混合步骤的方法没有特别限制,可以通过本领域的各种常规技术手段来完成该步骤,例如球磨等。更具体地,所述球磨过程可以在例如混料机如行星球磨机中以无水乙醇作为球磨介质而进行,从而达到更好的混合效果,但本发明不限于此。另外,为了达到更好的混合效果,可以对各原料组分的粒径进行有一定的限制,例如,在一个实施方式中,所述Si粉的粒径可以为50-200目(例如100或150目)。
根据本发明,当本发明的各组分材料通过上述球磨过程进行混合时,由于混合后形成的是混合浆料,该方法还可以在混合步骤之后包括烘干步骤,例如将球磨得到的混合浆料进行真空烘干,例如在温度为70-90℃的条件下,从而得到烘干的粉料。
根据本发明,压制步骤可以通过在一定的压力下保持一段时间来完成。例如,在本发明的一个优选的实施方式中,所述压制的条件可以包括:压制压力为300-500MPa(例如350、400或450MPa等)和保压时间为3-5min(例如3.5、4或5min等)。
根据本发明,烧结步骤可以通过在一定的真空度和温度下保持一段时间来完成。例如,在本发明的一个优选的实施方式中,所述烧结的条件可以包括:真空度不低于1×10 - 1Pa、烧结温度为900-1350℃(例如1000、1100、1200或1300℃等)和保温时间为120-300min(例如150、200或250min等)。
因此,在本发明的一个更优选的实施方式中,本发明的方法包括以下步骤:(1)混料:按比例将Si粉和其他金属粉末以及无水乙醇在混料机上进行混料,时间为24-48h;(2)烘干:将所得的粉末浆料在70-90℃的温度下进行真空烘干;(3)压制:将烘干的粉料进行模压成坯,其中所述压制的条件包括压制压力为300-500MPa和保压时间为3-5min;以及(4)烧结:将压制所得的坯料在不低于1×10 -1Pa的真空度下进行烧结,其中所述烧结的条件包括烧结温度为900-1350℃和保温时间为120-300min。
基于本发明的金属硅化物基发热材料的制备方法,通过该制备方法制得的金属硅化物基发热材料的电阻率可以为500-5000μΩ•cm(例如1000、2000、3000或4000μΩ•cm),且弯曲强度可以≥300MPa(例如350、400、450或500MPa)。
在另一方面,本发明还提供了上述金属硅化物基发热材料或通过上述方法制备的金属硅化物基发热材料在烟草制品用发热器中的用途。
本发明的金属硅化物基发热材料和通过本发明的方法制备的金属硅化物基发热材料不仅能够满足小型发热体的电学及力学性能的要求,更能较大程度地简化产品的制备工艺,降低生产成本。
以下将通过实施例对本发明进行详细描述。
实施例1
在本实施例中,选取Si粉(99.0wt%,200目)、Fe粉(99.0wt%,100目)、Cr粉(99.0wt%,100目)、Ni粉(99.0wt%,100目)和Mo粉(99.0wt%,50目)作为合成原料来制备金属硅化物基发热材料,其中各原料所占质量分数分别为:Si粉35%、Fe粉35%、Cr粉12%、Ni粉13%、Mo粉5%,所述制备方法包括以下步骤:
(1)混料:按上述质量分数将Si粉、Fe粉、Cr粉、Ni粉和Mo粉以及无水乙醇在混料机上进行混料,时间为48h;
(2)烘干:将所得粉末浆料在70℃的温度下进行真空烘干;
(3)压制:将烘干后的粉料进行模压成坯,其中压制压力为400MPa,保压时间为4min;
(4)烧结:将压制所得的坯料在1×10 -1Pa的真空度下进行烧结,其中烧结温度为1200℃,保温时间为120min。
经测试得到的结果表明,通过该实施例的方法得到的金属硅化物基发热材料的电阻率为2120μΩ•m,弯曲强度为410MPa,满足小型发热体的电学及力学性能的要求。
实施例2
在本实施例中,选取Si粉(99.0wt%,200目)、Fe粉(99.0wt%,100目)、Cr粉(99.0wt%,100目)、Ni粉(99.0wt%,100目)和Mo粉(99.0wt%,50目)作为合成原料来制备金属硅化物基发热材料,其中各原料所占质量分数分别为:Si粉30%、Fe粉35%、Cr粉12%、Ni粉13%、Mo粉10%,所述制备方法包括以下步骤:
(1)混料:按上述质量分数将Si粉、Fe粉、Cr粉、Ni粉和Mo粉以及无水乙醇在混料机上进行混料,时间为24h;
(2)烘干:将所得粉末浆料在90℃的温度下进行真空烘干;
(3)压制:将烘干后的粉料进行模压成坯,其中压制压力为400MPa,保压时间为4min;
(4)烧结:将压制所得的坯料在1×10 -1Pa的真空度下进行烧结,其中烧结温度为1200℃,保温时间为150min。
经测试得到的结果表明,通过该实施例的方法得到的金属硅化物基发热材料的电阻率为4300μΩ•m,弯曲强度为615MPa,满足小型发热体的电学及力学性能的要求。
实施例3
在本实施例中,选取Si粉(99.0wt%,200目)、Co粉(99.0wt%,100目)、Cr粉(99.0wt%,100目)、Ni粉(99.0wt%,100目)和Mo粉(99.0wt%,50目)作为合成原料来制备金属硅化物基发热材料,其中各原料所占质量分数分别为:Si粉45%、Co粉35%、Cr粉8%、Ni粉8%、Mo粉4%,所述制备方法包括以下步骤:
(1)混料:按上述质量分数将Si粉、Co粉、Cr粉、Ni粉和Mo粉以及无水乙醇在混料机上进行混料,时间为36h;
(2)烘干:将所得粉末浆料在80℃的温度下进行真空烘干;
(3)压制:将烘干后的粉料进行模压成坯,其中压制压力为500MPa,保压时间为4min;
(4)烧结:将压制所得的坯料在1×10 -1Pa的真空度下进行烧结,其中烧结温度为1200℃,保温时间为300min。
经测试得到的结果表明,通过该实施例的方法得到的金属硅化物基发热材料的电阻率为782μΩ•m,弯曲强度为301MPa,满足小型发热体的电学及力学性能的要求。
实施例4
在本实施例中,选取Si粉(99.0wt%,200目)、Fe粉(99.0wt%,100目)、Cr粉(99.0wt%,100目)、Ni粉(99.0wt%,100目)、Mo粉(99.0wt%,50目)和W粉(99.0wt%,50目)作为合成原料来制备金属硅化物基发热材料,其中各原料所占质量分数分别为:Si粉37%、Fe粉23%、Cr粉12%、Ni粉13%、Mo粉5%、W粉10%,所述制备方法包括以下步骤:
(1)混料:按上述质量分数将Si粉、Fe粉、Cr粉、Ni粉、Mo粉和W粉以及无水乙醇在混料机上进行混料,时间为48h;
(2)烘干:将所得粉末浆料在70℃的温度下进行真空烘干;
(3)压制:将烘干后的粉料进行模压成坯,其中压制压力为400MPa,保压时间为4min;
(4)烧结:将压制所得的坯料在1×10 -1Pa的真空度下进行烧结,其中烧结温度为1350℃,保温时间为180min。
经测试得到的结果表明,通过该实施例的方法得到的金属硅化物基发热材料的电阻率为3562μΩ•m,弯曲强度为360MPa,满足小型发热体的电学及力学性能的要求。
实施例5
在本实施例中,选取Si粉(99.0wt%,200目)、Ti粉(99.0wt%,100目)、Y粉(99.0wt%,100目)、Zr粉(99.0wt%,50目)和Mo粉(99.0wt%,50目)作为合成原料来制备金属硅化物基发热材料,其中各原料所占质量分数分别为:Si粉40%、Ti粉15%、Y粉15%、Zr粉15%、Mo粉15%,所述制备方法包括以下步骤:
(1)混料:按上述质量分数将Si粉、Ti粉、Y粉、Zr粉和Mo粉以及无水乙醇在混料机上进行混料,时间为48h;
(2)烘干:将所得粉末浆料在90℃的温度下进行真空烘干;
(3)压制:将烘干后的粉料进行模压成坯,其中压制压力为500MPa,保压时间为3min;
(4)烧结:将压制所得的坯料在1×10 -1Pa的真空度下进行烧结,其中烧结温度为1350℃,保温时间为120min。
经测试得到的结果表明,通过该实施例的方法得到的金属硅化物基发热材料的电阻率为4755μΩ•m,弯曲强度为320MPa,满足小型发热体的电学及力学性能的要求。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。
本发明提供了一种金属硅化物基发热材料及其制备方法,所述金属硅化物基发热材料由Si和其他金属组成,其中基于金属硅化物基发热材料的总重量,Si的占比为30 45wt%;所述制备方法包括将Si粉和其他金属粉末混合,压制成坯料,并在高温下进行烧结,以得到所述金属硅化物基发热材料。本发明的金属硅化物基发热材料及其制备方法不仅能够满足小型发热体的电学及力学性能的要求,更能较大程度地简化产品的制备工艺,降低生产成本。

Claims (10)

  1. 一种金属硅化物基发热材料,其由Si和其他金属组成,其中,基于金属硅化物基发热材料的总重量,Si的占比为30-45wt%。
  2. 根据权利要求1所述的金属硅化物基发热材料,其中,所述其他金属为Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo和W中的一种或多种。
  3. 根据权利要求1所述的金属硅化物基发热材料,其中,所述金属硅化物基发热材料的电阻率为500-5000μΩ·cm,且弯曲强度≥300MPa。
  4. 一种制备根据权利要求1-3中任一项所述的金属硅化物基发热材料的方法,其包括:将Si粉和其他金属粉末混合,压制成坯料,并在高温下进行烧结,以得到所述金属硅化物基发热材料,其中,所述Si粉的重量占比为30-45wt%。
  5. 根据权利要求4所述的方法,其中,所述Si粉的粒径为50-200目。
  6. 根据权利要求4所述的方法,其中,所述混合在混料机中进行24-48h。
  7. 根据权利要求4所述的方法,其中,所述压制的条件包括:压制压力为300-500MPa和保压时间为3-5min。
  8. 根据权利要求4所述的方法,其中,所述烧结的条件包括:真空度不低于1×10 -1Pa、烧结温度为900-1350℃和保温时间为120-300min。
  9. 根据权利要求4的方法,其中,所述金属硅化物基发热材料的电阻率为500-5000μΩ·cm,且弯曲强度≥300MPa。
  10. 根据权利要求1-3中任一项所述的金属硅化物基发热材料或通过权利要求4-9中任一项所述的方法制备的金属硅化物基发热材料在烟草制品用发热器中的用途。
PCT/CN2021/086349 2020-04-11 2021-04-12 一种金属硅化物基发热材料及其制备方法 WO2021204282A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010281789.8A CN112374894B (zh) 2020-04-11 2020-04-11 一种金属硅化物基发热材料及其制备方法
CN202010281789.8 2020-04-11

Publications (1)

Publication Number Publication Date
WO2021204282A1 true WO2021204282A1 (zh) 2021-10-14

Family

ID=74586294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086349 WO2021204282A1 (zh) 2020-04-11 2021-04-12 一种金属硅化物基发热材料及其制备方法

Country Status (2)

Country Link
CN (1) CN112374894B (zh)
WO (1) WO2021204282A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112374894B (zh) * 2020-04-11 2022-06-10 湖北中烟工业有限责任公司 一种金属硅化物基发热材料及其制备方法
CN113582186A (zh) * 2021-09-06 2021-11-02 湖北中烟工业有限责任公司 一种发热元件及其制备方法
CN114176263A (zh) * 2021-11-09 2022-03-15 深圳麦克韦尔科技有限公司 发热组件、发热组件的制备方法及电子雾化装置
CN114561583B (zh) * 2022-03-14 2023-03-24 武汉理工大学 一种适用于电磁加热、电阻加热的高红外发射率的发热体及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1560303A (zh) * 2004-03-02 2005-01-05 湖南科技大学 一种添加多种元素综合提高MoSi2基复合材料硬度和断裂韧性的制备方法
WO2008054040A1 (en) * 2006-11-04 2008-05-08 Winner Technology Co., Ltd. Composition of mosi2 and the application of the same
CN102203032A (zh) * 2008-10-22 2011-09-28 山特维克知识产权股份有限公司 硅化钼复合材料
CN109832673A (zh) * 2019-02-27 2019-06-04 深圳市合元科技有限公司 电子烟雾化器、电子烟、雾化组件及其制备方法
WO2019179904A1 (en) * 2018-03-18 2019-09-26 Sandvik Intellectual Property Ab A heating element comprising chromium alloyed molybdenum disilicide and the use thereof
WO2019187711A1 (ja) * 2018-03-27 2019-10-03 株式会社デンソー 電気抵抗体、ハニカム構造体、および、電気加熱式触媒装置
CN112374894A (zh) * 2020-04-11 2021-02-19 湖北中烟工业有限责任公司 一种金属硅化物基发热材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383023B (zh) * 2011-11-08 2013-06-05 天津大学 硅锰铁合金热电材料的制备方法
CN103060654A (zh) * 2013-02-02 2013-04-24 中国矿业大学 一种抗低温氧化的二硅化钼基合金及其制备工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1560303A (zh) * 2004-03-02 2005-01-05 湖南科技大学 一种添加多种元素综合提高MoSi2基复合材料硬度和断裂韧性的制备方法
WO2008054040A1 (en) * 2006-11-04 2008-05-08 Winner Technology Co., Ltd. Composition of mosi2 and the application of the same
CN102203032A (zh) * 2008-10-22 2011-09-28 山特维克知识产权股份有限公司 硅化钼复合材料
WO2019179904A1 (en) * 2018-03-18 2019-09-26 Sandvik Intellectual Property Ab A heating element comprising chromium alloyed molybdenum disilicide and the use thereof
WO2019187711A1 (ja) * 2018-03-27 2019-10-03 株式会社デンソー 電気抵抗体、ハニカム構造体、および、電気加熱式触媒装置
CN109832673A (zh) * 2019-02-27 2019-06-04 深圳市合元科技有限公司 电子烟雾化器、电子烟、雾化组件及其制备方法
CN112374894A (zh) * 2020-04-11 2021-02-19 湖北中烟工业有限责任公司 一种金属硅化物基发热材料及其制备方法

Also Published As

Publication number Publication date
CN112374894B (zh) 2022-06-10
CN112374894A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
WO2021204282A1 (zh) 一种金属硅化物基发热材料及其制备方法
WO2021047592A1 (zh) 一种金属陶瓷发热材料及其制备方法
CN105886871A (zh) 一种以碳化钛为主要成分的高强度硬质合金及制备方法
CN106376107B (zh) 大功率氮化硅陶瓷加热片及其内软外硬的制作方法
CN107321983B (zh) 一种调节粉末冶金铜基摩擦材料孔隙度及孔隙结构的方法
CN113816734B (zh) 一种NiCuZn铁氧体材料及其制备方法和用途
CN111009370B (zh) 一种金属磁粉芯的制备方法
CN111848159A (zh) 一种黄色导电氧化锆陶瓷的制备方法
CN106448795B (zh) 亚氧化钛-金属复合导电材料及其制备方法
CN104550906A (zh) 一种预混合青铜粉、制备方法及其应用
CN114156037A (zh) 一种铁硅铬软磁粉体材料
US5284615A (en) Method for making injection molded soft magnetic material
WO2021068888A1 (zh) 一种Ni基复合材料发热体及其制备方法
CN101713043B (zh) 一种颗粒增强钛基复合材料及制备方法
CN112624768A (zh) 一种具有弱负介电性能的陶瓷基三元复合材料及制备方法
CN115533091B (zh) 一种高密度钨合金3d打印制备方法
CN104550965B (zh) 一种连接板用铬基复合材料的制备方法
CN102925728B (zh) 一种无粘结相纳米碳化钨硬质合金的制备方法
CN103236384B (zh) 在气体放电管上用陶瓷合金线取代碳线的工艺
CN103811143B (zh) 磁导率为60的铁基非晶磁粉芯及其制备方法
CN106834783A (zh) 一种Ti2AlN‑碳纳米管复合增强银基电接触材料及其制备方法
CN112144006A (zh) 高强度的耐磨无磁硬质合金及其制备方法
JP2014109049A (ja) チタン多孔体の製造方法
CN102557029A (zh) 一种纤维状纳米碳化钨的合成方法
CN114561583B (zh) 一种适用于电磁加热、电阻加热的高红外发射率的发热体及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21784435

Country of ref document: EP

Kind code of ref document: A1