WO2021066582A1 - 구형화된 카본계 음극활물질, 이의 제조방법, 이를 포함하는 음극 및 리튬 이차전지 - Google Patents

구형화된 카본계 음극활물질, 이의 제조방법, 이를 포함하는 음극 및 리튬 이차전지 Download PDF

Info

Publication number
WO2021066582A1
WO2021066582A1 PCT/KR2020/013430 KR2020013430W WO2021066582A1 WO 2021066582 A1 WO2021066582 A1 WO 2021066582A1 KR 2020013430 W KR2020013430 W KR 2020013430W WO 2021066582 A1 WO2021066582 A1 WO 2021066582A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
carbon
negative electrode
spheroidized
electrode active
Prior art date
Application number
PCT/KR2020/013430
Other languages
English (en)
French (fr)
Inventor
김현철
우상욱
정동섭
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP20871902.1A priority Critical patent/EP4024512A4/en
Priority to US17/641,322 priority patent/US20220344660A1/en
Priority to CN202080064189.4A priority patent/CN114402460A/zh
Priority to JP2022519323A priority patent/JP2022551434A/ja
Publication of WO2021066582A1 publication Critical patent/WO2021066582A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a spherical carbon-based negative electrode active material, a method for producing the same, a negative electrode and a lithium secondary battery including the same, and more particularly, a spherical carbon-based negative electrode active material with reduced internal pores and improved sphericity, It relates to a method for manufacturing the same, a negative electrode including the same, and a lithium secondary battery.
  • lithium secondary batteries having a high energy density and voltage, a long cycle life, and a low discharge rate have been commercialized and widely used.
  • the lithium secondary battery has a structure in which an electrolyte including a lithium salt is impregnated in an electrode assembly in which a porous separator is interposed between a positive electrode and a negative electrode, each of which an active material is applied on an electrode current collector, and the electrode is an active material and a binder. And a slurry in which a conductive material is dispersed in a solvent is applied to a current collector, dried and rolled.
  • lithium metal was used as the negative electrode of the conventional secondary battery, the battery short circuit due to the formation of dendrites and the risk of explosion due thereto are known, while maintaining structural and electrical properties, and reversible intercalation of lithium ions. ) And desorbable carbon-based compounds.
  • the carbon-based compound has a very low discharge potential of about -3 V with respect to the standard hydrogen electrode potential, and excellent electrode life characteristics due to very reversible charging and discharging behavior due to the uniaxial orientation of the graphene layer. Represents.
  • the electrode potential is 0V Li/Li+ when charging Li ions, it can exhibit a potential similar to that of pure lithium metal, so that higher energy can be obtained when constructing a battery with an oxide-based positive electrode.
  • carbon-based compound various types of carbon-based materials including artificial graphite, natural graphite, and hard carbon have been applied.
  • graphite is currently the most widely used.
  • natural graphite is used by changing the shape of the surface to a smooth shape through post-treatment processing such as spheronization to reduce irreversible reaction and improve the fairness of the electrode, and low crystalline carbon such as pitch is coated through heat treatment.
  • post-treatment processing such as spheronization to reduce irreversible reaction and improve the fairness of the electrode
  • low crystalline carbon such as pitch is coated through heat treatment.
  • the method of manufacturing an anode active material by coating spherical natural graphite with low crystalline carbon is a method used by most anode material manufacturing companies.
  • the negative electrode active material prepared by the above method is prepared by spheroidizing natural graphite having a scale-like particle shape, and contains a large amount of voids inside the spheroidized graphite particles. These voids lower the density of the negative electrode active material, making it difficult to manufacture a high-density negative electrode plate.
  • the low crystalline carbon coating layer was broken, and thus destruction by the electrolyte and irreversible reaction due to exposure of the graphite edge. The problem occurs.
  • natural graphite has a major disadvantage of electrode swelling compared to artificial graphite, and the internal pores generated in the spheroidization process of natural graphite are larger than that of artificial graphite, and the film layer formed by the many internal pores is gas due to side reactions at high temperatures. There may be a problem that the generation and high temperature storage performance is deteriorated.
  • the present invention is to solve the above problems, and one object of the present invention is a spheroidized carbon-based negative electrode active material with reduced internal pores and improved sphericity, a method for preparing the same, and a negative electrode and lithium including the same. It is to provide a secondary battery.
  • Another object of the present invention is to provide a negative electrode including the negative electrode active material and a lithium secondary battery having the same.
  • a negative electrode active material of the following embodiment a method for manufacturing the same, and a negative electrode and a secondary battery including the same are provided.
  • Preparing spheroidized granulated particles by mixing and spheronizing small-scale flaky graphite and opposing flaky graphite having an average particle diameter larger than that of the small-scale flaky graphite;
  • a method for producing a spheronized carbon-based negative active material comprising a step of disintegrating the carbon-coated spheroidized granulated particles.
  • the average particle diameter of the fine-grained flaky graphite may be 20 to 50 ⁇ m, and the average particle diameter of the large-grained flaky graphite may be 50 to 100 ⁇ m.
  • the weight ratio of the granular flaky graphite and the granular flaky graphite may be 70:30 to 40:60.
  • the specific surface area value of the negative active material is 1.5 to 2.8 m 2 /g
  • the total pore volume of the negative active material is 1.0e -2 to 1.8e -2 m 3 /g
  • a spheroidized carbon-based negative active material characterized in that the specific surface area of pores having a size of 24 nm or more in the negative active material is 0.1 to 0.8 m 2 /g.
  • the specific surface area value of the negative active material may be 1.8 to 2.5 m 2 /g.
  • the total pore volume of the negative active material may be 1.19e -2 to 1.57e -2 m 3 /g.
  • the specific surface area of pores having a size of 24 nm or more in the negative active material may be 0.3 to 0.7 m 2 /g.
  • the average particle diameter of the spheronized carbon-based negative active material may be 10 to 20 ⁇ m.
  • the degree of sphericity of the spheronized negative active material may be 0.82 to 0.98.
  • a negative electrode comprising a current collector and a negative electrode active material layer positioned on at least one surface of the current collector
  • a negative electrode is provided, wherein the negative electrode active material layer includes a spheroidized carbon-based negative electrode active material according to any one of the fourth to ninth embodiments.
  • a lithium secondary battery comprising the negative electrode according to the tenth embodiment is provided.
  • spheronization is not performed by applying the existing one type of flaky graphite, but spheronization is performed by mixing flaky graphite having a large average particle diameter and flaky graphite with a small scale. It is possible to provide a spheroidized carbon-based negative active material with improved and reduced internal pores. When such a negative electrode active material is applied to a negative electrode of a secondary battery, internal stress is reduced to improve swelling characteristics, and a secondary battery having excellent capacity retention during high-temperature storage can be provided.
  • FIG. 1 is a schematic diagram of a spheronization step in a method of manufacturing a spheroidized carbon-based negative electrode active material according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a spheronization step in a method of manufacturing a conventional spheroidized carbon-based negative electrode active material.
  • Preparing spheroidized granulated particles by mixing and spheronizing small-scale flaky graphite and opposing flaky graphite having an average particle diameter larger than that of the small-scale flaky graphite;
  • It includes; disintegrating the carbon-coated spheroidized granulated particles.
  • the spheroidized carbon-based negative electrode reduces internal porosity, improves spheronization, suppresses swelling of the electrode when used as an electrode of a battery, and improves performance during high-temperature storage of the battery. To provide an active material.
  • granulated granulated particles are prepared by mixing and spheronizing small-scale flaky graphite and opposite-grain flaky graphite having an average particle diameter larger than that of the small-scale flaky graphite.
  • small-scale flake-like graphite and anti-granular flake-like graphite having an average particle diameter larger than that of the small-scale flake-like graphite are prepared in a predetermined weight ratio, then mixed and spheronized to produce spheronized granulated particles.
  • the small-scale scale-like graphites are inserted and filled in the empty space (void) created between the scale-like graphites, thereby reducing internal pores, and more compact spheroidized particles. Can provide.
  • a mixture of granular flaky graphite and opposing flaky graphite is used as a raw material to perform a spheronization method commonly known in the art, for example, a method of applying mechanical treatment such as impact compression, friction, or shearing force.
  • the mechanical treatment can be carried out using a spheronization apparatus commonly known in the art, for example, a counter jet mill (Hosokawa Micron, JP), an ACM palliator (Hosokawa Micron, JP), a current jet (Nissin, JP).
  • SARARA Kawasaki Heavy Indestries, Ltd, JP
  • GRANUREX Green Corporation, JP
  • New Gramasin Seishin, JP
  • Hosokawa Micron JP, etc.
  • a kneader such as two rolls, a mechano micro system, an extruder, a ball mill, a planetary mill, a mechano fusion system, a nobilta, hybridization, compression shear processing equipment such as a rotary ball mill, and the like.
  • the mixture is introduced into a spheronizing device to which the above-described mechanical shear force is applied to form a granulated particle core, and in a concentric direction 1 It is possible to form spheroidized granulated particles in which more than one layer is stacked to form a spherically bonded surface layer.
  • the granulated particle core and the surface layer are formed at the same time to form spheroidized granulated particles.
  • spheroidized granulated particles may be obtained by repeatedly processing a mixture of small-grained flaky graphite and opposing flaky graphite using a rotary processing machine.
  • small-grained flaky graphite and opposing flaky graphite were formed through crushing by collision between the inner surface of the processing machine and small-grained flaky graphite, friction processing between the graphites, and shearing by shear stress.
  • Granulation is performed, and finally, spheroidized granulated particles can be obtained.
  • the pulverization time and pulverization speed can be adjusted within an appropriate range according to the amount of graphite to be added.
  • the present step may further include isotropically pressing the prepared spheroidized granulated particles so as to improve the contact property between the granulated granulated graphite and the granulated granular graphite contained in the spheroidized granulated particles.
  • isotropic pressurization means three-dimensionally uniform pressurization of the spheroidized granulated particles, and water or argon is used as a medium at room temperature for isotropic pressurization of the spheroidized granulated particles, or isotropically pressurized at room temperature. It is possible to use a cold isotropic pressurization treatment or the like.
  • the pressure for isotropically pressing the spheronized granulated particles is not particularly limited, but is preferably 50 to 100 atm, and more preferably 100 to 200 atm.
  • the flake graphite refers to natural graphite having a scale shape, and may be prepared by pulverizing natural graphite such as scale, plate shape, crushed shape, and tablet shape to a desired particle size.
  • the average particle diameter of the granular flaky graphite may be 20 to 50 ⁇ m, or 25 to 45 ⁇ m, and the average particle diameter of the granular flaky graphite may be 50 to 100 ⁇ m, or 55 to 90 ⁇ m. have.
  • the average particle diameter of the granular flaky graphite and the granular flaky graphite satisfies this range, the internal pores are reduced, and the film layer formed by the internal pores generates gas and lowers the high-temperature storage performance due to side reactions at high temperature. Can be.
  • the weight ratio of the granular flaky graphite and the granular flaky graphite is 70:30 to 40:60, or 70:30 to 45:55, or 70:30 to 50:50, or 50: It may be 50 to 45:55.
  • the weight ratio of the granular flaky graphite and the granular flaky graphite satisfies this range, it may be advantageous in that internal pores can be adjusted.
  • the spheroidized granulated particles 100 are formed.
  • the spheroidized granulated particles 100 may be filled with small-scale flaky graphite 110 in the space created between the opposing flaky graphite 120, so that the internal void 130 may be greatly reduced.
  • the spheroidized granulated particles are coated with carbon.
  • a carbon coating material is attached to the surface of the spheroidized granulated particles by homogeneously mixing the surface of the previously prepared spheroidized granulated particles with the carbon coating material, and then carbonized to treat the carbon coating layer on the surface of the spheroidized granulated particles.
  • These carbon materials form a coating layer on the surface of the spheroidized granulated particles, further bonding the granular flaky graphite and the opposing flaky graphite constituting the spheroidized granulated particles to each other, resulting in spheronization that can occur by repetition of charging and discharging. It is possible to prevent the stability of the granulated particles from deteriorating.
  • Such carbon coating materials include sucrose, phenol resin, naphthalene resin, polyvinyl alcohol resin, furfuryl alcohol resin, polyacrylonitrile resin, Polyamide resin, furan resin, cellulose resin, styrene resin, polyimide resin, epoxy resin or vinyl chloride resin, coal-based pitch, petroleum It may be prepared from a carbon precursor including a system pitch, polyvinyl chloride, mesophase pitch, tar, a block-copolymer, a low molecular weight heavy oil, or a mixture thereof.
  • the carbon coating material may be used in 1 to 10 parts by weight, or 3 to 6 parts by weight based on 100 parts by weight of the spheronized granulated particles.
  • the content of the carbon coating layer satisfies this range, a problem in that the capacity per weight decreases due to the formation of a coating layer that is too thick and the initial efficiency decreases due to irreversibility, or the specific surface area of the active material increases due to the formation of an excessively thin coating layer to increase side reactions.
  • the method of homogeneously mixing the surface of the spheroidized granulated particles with the carbon coating material is not particularly limited and may be performed by a method commonly known in the art.
  • a mechanical and chemical method such as a kneader such as two rolls, a blade, a mechano micro system, an extruder, a ball mill, a planetary mill, a mechano fusion system, a nobilta, a hydration, a rotary ball mill, etc. It can be carried out using a spray drying method, an emulsion method, or the like.
  • carbonization treatment is performed at a temperature of 900 to 1,300°C for 12 to 48 hours, thereby forming a carbon coating layer on the spheroidized granulated particles.
  • the formed carbon coating layer may be made of amorphous or crystalline carbon.
  • the spheroidized granulated particles obtained through carbonization treatment in the step of carbon coating the spheroidized granulated particles may exist in agglomerated form with each other.
  • the agglomerated particles are subjected to a disintegration process to separate them from each other.
  • the molded article can be easily crushed by simply applying a slight shearing force to the resulting molded article.
  • the crushing step is not particularly limited, for example, it can be carried out using a stirrer having a stirring blade, and a known pulverizer such as a conventional jet mill, vibrating mill, pin mill, hammer mill, etc. Can be implemented.
  • the specific surface area value of the negative active material is 1.5 to 2.8 m 2 /g
  • the total pore volume of the negative active material is 1.0e -2 to 1.8e -2 m 3 /g
  • the specific surface area of pores having a size of 24 nm or more in the negative active material is 0.1 to 0.8 m 2 /g.
  • the spheronized carbon-based negative active material may be prepared by the above-described method for preparing the spheroidized carbon-based negative active material.
  • the specific surface area value of the negative active material may be 1.5 to 2.8 m 2 /g, and according to an embodiment of the present invention, it may be 1.8 to 2.5 m 2 /g.
  • the specific surface area value of the negative electrode active material satisfies this range, it is advantageous in terms of high-temperature storage performance by reducing side reactions with the electrolyte.
  • the “specific surface area” is measured by the BET method, and can be specifically calculated from the amount of nitrogen gas adsorption under liquid nitrogen temperature (77K) using BELSORP-mino II of BEL Japan.
  • the total pore volume of the negative active material may be 1.0e -2 to 1.8e -2 m 3 /g, and according to an embodiment of the present invention, it may be 1.19e -2 to 1.57e -2 m 3 /g.
  • the total pore volume of the negative electrode active material satisfies this range, it is advantageous in terms of high-temperature storage performance by reducing side reactions with the electrolyte.
  • the total pore volume of the negative active material may be measured by the BET method in the same manner as the specific surface area measurement described above, and may be measured using the same equipment as the specific surface area measurement.
  • the specific surface area of the pores having a size of 24 nm or more in the negative active material may be 0.1 to 0.8 m 2 /g, and according to an embodiment of the present invention, it may be 0.3 to 0.7 m 2 /g.
  • the specific surface area of the pores having a size of 24 nm or more in the negative electrode active material satisfies this range, it is advantageous in that side reactions with the electrolyte are reduced.
  • the specific surface area of the pores having a size of 24 nm or more in the negative electrode active material can be measured by the BET method in the same manner as the specific surface area measurement described above, and can be measured using the same equipment as the specific surface area measurement.
  • the specific surface area value of the anode active material is 1.5 to 2.8 m 2 /g
  • the total pore volume of the anode active material is 1.0e -2 to 1.8e -2 m 3 /g
  • the anode active material has a size of 24 nm or more.
  • the average particle diameter of the spheroidized carbon-based negative active material may be 10 to 20 ⁇ m, or 11 to 18 ⁇ m.
  • the average particle diameter D50 means a particle diameter at 50% of the cumulative distribution of the number of particles according to the particle diameter.
  • D90 is the particle diameter at 90% of the cumulative distribution of the number of particles according to the particle diameter
  • D10 is the particle diameter at 10% of the cumulative distribution of the number of particles according to the particle diameter.
  • the average particle diameter can be measured using a laser diffraction method. Specifically, after dispersing the powder to be measured in a dispersion medium, it is introduced into a commercially available laser diffraction particle size measuring device (for example, Microtrac S3500) to measure the difference in the diffraction pattern according to the particle size when the particles pass through the laser beam. Can be calculated. D10, D50, and D90 can be measured by calculating the particle diameter at a point at 10%, 50%, and 90% of the cumulative distribution of the number of particles according to the particle diameter in the measuring device.
  • a laser diffraction particle size measuring device for example, Microtrac S3500
  • the sphericity of the spheronized carbon-based negative active material may be 0.82 to 0.98, or 0.88 to 0.92.
  • the sphericity degree may be a value obtained by dividing the circumference of a circle having the same area as the projected image by the circumference of the projected image when the anode active material is projected, and can be specifically expressed by Equation 1 below.
  • the degree of sphericity can be measured using a particle shape analyzer, for example, a particle shape analyzer such as sysmex FPIA3000 manufactured by Malvern.
  • Sphericity Circumference of a circle with the same area as the projected image of the active material/Circumference of the projected image
  • a negative electrode including the negative electrode active material is provided.
  • a negative electrode according to an embodiment of the present invention includes a current collector and a negative electrode active material layer including the negative electrode active material according to the present invention on at least one surface of the current collector.
  • the electrode layer may be prepared by coating a slurry for a negative electrode active material layer obtained by dispersing the negative electrode active material, a binder, and a conductive material according to the present invention on at least one surface of a current collector, followed by drying and rolling.
  • the current collector is not particularly limited as long as it has conductivity without causing chemical changes to the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, carbon, nickel on the surface of copper or stainless steel , Titanium, silver, etc. surface-treated, aluminum-cadmium alloy, etc. may be used.
  • the thickness of the current collector is not particularly limited, but may have a thickness of 3 to 500 ⁇ m, which is generally applied.
  • the negative electrode active material may be included in an amount of 80% to 99% by weight based on the total weight of the negative electrode slurry composition.
  • the binder is a component that aids in bonding between a conductive material, an active material, or a current collector, and is typically included in an amount of 0.1 to 20% by weight based on the total weight of the negative electrode slurry composition.
  • a binder include polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HEP), polyvinylidenefluoride, polyacrylonitrile, and polymethylmethacrylate.
  • Polyvinyl alcohol Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, styrene butyrene rubber (SBR), lithium -And substituted polyacrylate (lithium polyacrylate, Li-PAA).
  • CMC carboxymethyl cellulose
  • SBR styrene butyrene rubber
  • Li-PAA lithium -And substituted polyacrylate
  • lithium-substituted polyacrylate can provide excellent adhesion compared to other binders, such as SBS/CMC, when used for a negative electrode having a silicon content of about 80% in the active material, Due to this feature, it is advantageous in that it is applied to a Si-based negative electrode to achieve a high capacity retention rate during charge and discharge.
  • the conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • carbon such as carbon black, acetylene black, Ketjen black, channel black, Parnes black, lamp black, thermal black, etc. black
  • Conductive fibers such as carbon fibers and metal fibers
  • Metal powders such as fluorocarbon, aluminum, and nickel powder
  • Conductive whiskers such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the conductive material may be added in an amount of 0.1 to 20% by weight based on the total weight of the negative electrode slurry composition.
  • the dispersion medium may contain water or an organic solvent such as NMP (N-methyl-2-pyrrolidone), and when the negative electrode slurry contains a negative electrode active material, and optionally a binder and a conductive material, it is in an amount that becomes a desirable viscosity. Can be used.
  • NMP N-methyl-2-pyrrolidone
  • the method of coating the negative electrode slurry is not particularly limited as long as it is a method commonly used in the art.
  • a coating method using a slot die may be used, and in addition, a Mayer bar coating method, a gravure coating method, an immersion coating method, a spray coating method, and the like may be used.
  • the lithium secondary battery may be manufactured by injecting a lithium salt-containing electrolyte into an electrode assembly including a positive electrode, a negative electrode as described above, and a separator interposed therebetween.
  • a slurry is prepared by mixing a positive electrode active material, a conductive material, a binder, and a solvent, and then directly coated on a metal current collector, or cast on a separate support and a positive electrode active material film peeled from the support is laminated on the metal current collector.
  • a positive electrode can be manufactured.
  • Active materials used for the positive electrode include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCoPO 4 , LiFePO 4 and LiNi 1-xyz Co x M1 y M2 z O 2 (M1 and M2 are independently of each other Al, Ni, Co, Any one selected from the group consisting of Fe, Mn, V, Cr, Ti, W, Ta, Mg, and Mo, and x, y and z are independently of each other as atomic fractions of the oxide composition elements, 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5, 0 ⁇ x+y+z ⁇ 1), or a mixture of two or more of them.
  • the conductive material, the binder, and the solvent may be used in the same manner as those used in manufacturing the negative electrode.
  • the separator is a conventional porous polymer film used as a conventional separator, for example, a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer.
  • the prepared porous polymer film may be used alone or by laminating them.
  • an insulating thin film having high ion permeability and mechanical strength may be used.
  • the separator may include a safety reinforced separator (SRS) in which a ceramic material is thinly coated on the surface of the separator.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of a high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used, but is not limited thereto.
  • the electrolyte solution includes a lithium salt and an organic solvent for dissolving the lithium salt as an electrolyte.
  • the lithium salt may be used without limitation, if the ones commonly used in the secondary battery, the electrolytic solution, for example, is in the lithium salt anion F -, Cl -, I - , NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3 ) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, ( CF 3 SO 2) 2 CH - , (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, One selected from the group consisting of SCN
  • the organic solvent contained in the electrolyte may be used without limitation as long as it is commonly used, and typically propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, dipropyl carbonate, dimethyl sulfoxide At least one selected from the group consisting of side, acetonitrile, dimethoxyethane, diethoxyethane, vinylene carbonate, sulfolane, gamma-butyrolactone, propylene sulfite, and tetrahydrofuran may be used.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates
  • cyclic carbonates are highly viscous organic solvents and can be preferably used because they dissociate lithium salts in the electrolyte well due to their high dielectric constant.
  • These cyclic carbonates include dimethyl carbonate and diethyl
  • an electrolyte solution having a high electrical conductivity can be prepared, and thus it can be more preferably used.
  • the electrolyte stored according to the present invention may further include an additive such as an overcharge preventing agent included in a conventional electrolyte.
  • an additive such as an overcharge preventing agent included in a conventional electrolyte.
  • a separator is disposed between a positive electrode and a negative electrode to form an electrode assembly, and the electrode assembly is placed in, for example, a pouch, a cylindrical battery case, or a prismatic battery case, and then an electrolyte is added.
  • the secondary battery can be completed.
  • a lithium secondary battery may be completed by laminating the electrode assembly, impregnating the electrode assembly with an electrolyte, and sealing the obtained resultant in a battery case.
  • the lithium secondary battery may be a stack type, a wound type, a stack and folding type, or a cable type.
  • the lithium secondary battery according to the present invention can be used not only as a battery cell used as a power source for a small device, but also can be preferably used as a unit cell in a medium or large battery module including a plurality of battery cells.
  • Preferred examples of the medium and large-sized devices include electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and power storage systems, and are particularly useful for hybrid electric vehicles and batteries for storing renewable energy in areas requiring high output. Can be used.
  • Confronting flaky graphite with an average particle diameter of 75 ⁇ m and small flaky graphite with an average particle diameter of 35 ⁇ m were prepared in a weight ratio of 70:30, mixed using a ball mill, and a counter jet mill (Hosokawa Micron, JP). Then, it spheroidized to obtain spheroidized granulated particles. 100 parts by weight of the obtained spheroidized granulated particles and 5 parts by weight of pitch (solid pitch) as a carbon coating material were mixed and carbonized by carbonization at 1,500°C for 24 hours, followed by carbon-coated spheroidized granulated particles. Disintegration treatment was performed to prepare a spherical carbon-based negative electrode active material.
  • the previously prepared carbon-based negative electrode active material, Super C65 as a conductive material, styrene butadiene rubber (SBR) as a binder, and carboxymethylcellulose (CMC) as a thickener were mixed in a weight ratio of 96.6:1:1.3:1.1, respectively, and water was added to prepare a slurry.
  • the slurry prepared above was applied to a copper foil and vacuum-dried at about 130° C. for 10 hours to prepare a 1.4875 cm 2 negative electrode. At this time, the loading of the negative electrode was prepared to be 3.61mAh/cm 2.
  • An electrode assembly was manufactured by using the prepared negative electrode as a working electrode and 1.7671 cm 2 Li-metal as a counter electrode, and a polyethylene separator interposed between the working electrode and the counter electrode. Ethylene carbonate (EC) and diethylene carbonate (EMC) are mixed in a volume ratio of 1:4, and vinylene carbonate (VC) 0.5wt% and 1M LiPF 6 are added as a nonaqueous electrolyte additive to the mixed solvent to prepare a nonaqueous electrolyte. I did.
  • the electrode assembly was embedded in a coin-type case, and the prepared non-aqueous electrolyte was injected to prepare a coin-type half-cell secondary battery.
  • Sphericalized carbon-based negative electrode active material was prepared in the same manner as in Example 1, except that an average particle diameter of 75 ⁇ m was prepared in an average particle diameter of 35 ⁇ m in a weight ratio of 50:50. I did.
  • a secondary battery was manufactured in the same manner as in Example 1, except that the negative active material thus prepared was used.
  • Sphericalized carbon-based negative electrode active material was prepared in the same manner as in Example 1, except that an average particle diameter of 75 ⁇ m of granular flaky graphite and an average particle diameter of 35 ⁇ m of granular flaky graphite were prepared in a weight ratio of 45:55. I did.
  • a secondary battery was manufactured in the same manner as in Example 1, except that the negative active material thus prepared was used.
  • a spheroidized carbon-based negative electrode active material was prepared in the same manner as in Example 1, except that only granular flaky graphite having an average particle diameter of 75 ⁇ m was used and small-grained flaky graphite having an average particle diameter of 35 ⁇ m was not used. .
  • a secondary battery was manufactured in the same manner as in Example 1, except that the negative active material thus prepared was used.
  • a spheroidized carbon-based negative electrode active material was prepared in the same manner as in Example 1, except that only fine-grained flaky graphite having an average particle diameter of 75 ⁇ m was not used, and only small-grained flaky graphite having an average particle diameter of 35 ⁇ m was used.
  • a secondary battery was manufactured in the same manner as in Example 1, except that the negative active material thus prepared was used.
  • the specific surface area of the negative electrode active material of Examples 1 to 3, Comparative Example 1, and Comparative Example 2, the total pore volume of the negative electrode active material, and the specific surface area of pores having a size of 24 nm or more in the negative electrode active material were measured by the BET method, Specifically, it was calculated from the nitrogen gas adsorption amount under liquid nitrogen temperature (77 K) using BELSORP-mino II from BEL Japan.
  • the sphericity of the negative electrode active material of Examples 1 to 3, Comparative Example 1, and Comparative Example 2 is defined by the following Equation 1, and the sphericity was measured using a particle analyzer, Malvern's sysmex FPIA3000.
  • Sphericity Circumference of a circle with the same area as the projected image of the active material/Circumference of the projected image
  • the swelling ratio of the secondary batteries of Examples 1 to 3, Comparative Examples 1, and 2 was measured after 30 cycles of charging and discharging under the conditions of 0.1C charging/discharging current and 5mV to 1.5V charging/discharging voltage, and the following table It is shown in 1.
  • the swelling ratio (%) is defined by the following equation.
  • Swelling ratio (%) [(electrode thickness after charging/discharging-initial electrode thickness)/(initial electrode thickness)] X 100
  • the capacity retention rate (%) is defined by the following equation.
  • Capacity retention rate (%) [(Capacity after high temperature storage)/(Initial capacity)] X 100

Abstract

소립 인편상 흑연과 상기 소립 인편상 흑연 보다 평균 입경이 더 큰 대립 인편상 흑연을 혼합 및 구형화하여 구형화 조립 입자를 준비하는 단계; 상기 구형화 조립 입자를 카본 코팅하는 단계; 및 상기 카본 코팅된 구형화 조립 입자를 해쇄하는 단계;를 포함하는 구형화된 카본계 음극활물질의 제조방법 이 제시된다.

Description

구형화된 카본계 음극활물질, 이의 제조방법, 이를 포함하는 음극 및 리튬 이차전지
본 발명은 구형화된 카본계 음극활물질, 이의 제조방법, 이를 포함하는 음극 및 리튬 이차전지에 관한 것으로서, 보다 상세하게는 내부 기공이 감소되고, 구형화도가 개선된 구형화된 카본계 음극활물질, 이의 제조방법, 이를 포함하는 음극 및 리튬 이차전지에 관한 것이다.
본 출원은 2019년 10월 4일에 출원된 한국출원 제10-2019-0123397호에 기초한 우선권을 주장하며, 해당 출원의 명세서에 개시된 모든 내용은 본 출원에 원용된다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격히 증가하고 있다. 이러한 이차 전지 중 높은 에너지 밀도와 전압을 갖고 사이클 수명이 길며, 방전율이 낮은 리튬 이차 전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지는 전극 집전체 상에 각각 활물질이 도포되어 있는 양극과 음극 사이에 다공성의 분리막이 개재된 전극조립체에 리튬염을 포함하는 전해질이 함침되어 있는 구조로 이루어져 있으며, 상기 전극은 활물질, 바인더 및 도전재가 용매에 분산되어 있는 슬러리를 집전체에 도포하고 건조 및 압연(pressing)하여 제조된다.
종래 이차 전지의 음극으로는 리튬 금속이 사용되었으나, 덴드라이트(dendrite) 형성에 따른 전지 단락과, 이에 의한 폭발의 위험성이 알려지면서, 구조적 및 전기적 성질을 유지하면서, 가역적인 리튬 이온의 삽입(intercalation) 및 탈리가 가능한 탄소계 화합물로 대체되고 있다.
상기 탄소계 화합물은 표준 수소 전극 전위에 대해 약 -3 V의 매우 낮은 방전 전위를 갖고, 흑연판층(graphene layer)의 일축 배향성으로 인한 매우 가역적인 충방전 거동으로 인해 우수한 전극 수명 특성(cycle life)을 나타낸다. 또한, Li 이온 충전 시 전극전위가 0V Li/Li+ 로서 순수한 리튬 금속과 거의 유사한 전위를 나타낼 수 있기 때문에, 산화물계 양극과 전지를 구성할 때, 더 높은 에너지를 얻을 수 있다는 장점이 있다.
상기 탄소계 화합물로는 인조 흑연, 천연 흑연, 하드 카본을 포함한 다양한 형태의 탄소계 재료가 적용되어 왔다. 상기 탄소계 화합물 중 흑연이 현재 가장 널리 사용되고 있다.
상기 흑연 중 천연흑연은 비가역 반응을 줄이고 전극의 공정성을 향상시키기 위해 구형화 과정 등의 후처리 가공을 통해 매끈한 형태의 표면 형상으로 바꾸어 사용하며, 피치 등의 저결정성 탄소를 열처리를 통해 코팅하여 표면을 감싸줌으로써 흑연의 에지면이 그대로 노출되는 것을 방지할 수 있으며 전해질에 의한 파괴를 방지하고 비가역 반응을 감소시킬 수 있다. 구형 천연흑연에 저결정성 탄소를 코팅하여 음극활물질을 제조하는 방법은 대부분의 음극재 제조 회사에서 사용하는 방법이다.
그러나 상기 방법으로 제조된 음극 활물질은 입자형상이 인편상인 천연흑연을 구상화하여 제조된 것으로서, 구형화 흑연입자 내부에 공극이 다량 포함되어 있다. 이러한 공극은 음극활물질의 밀도를 저하시켜 고밀도 음극 극판 제조가 어려우며 집전체상의 음극 활물질층을 고밀도화 하는 과정에서 저결정성탄소 피복막의 깨짐으로 인해 흑연 에지면의 노출에 의해 전해질에 의한 파괴 및 비가역 반응의 문제가 발생하게 된다.
또한, 천연흑연은 인조 흑연 대비 전극 스웰링의 큰 단점이 있고, 천연흑연의 구형화 과정에서 생긴 내부 기공이 인조 흑연 대비 크며, 상기 많은 내부 기공에 의해 형성된 피막 층이 고온에서의 부반응으로 인해 가스 발생 및 고온 저장 성능이 저하되는 문제점이 발생할 수 있다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명의 한 목적은 내부 기공이 감소되고, 구형화도가 개선된 구형화된 카본계 음극활물질, 이의 제조방법, 이를 포함하는 음극 및 리튬 이차전지를 제공하는 것이다.
본 발명의 다른 목적은 상기 음극활물질을 포함하는 음극 및 이를 구비한 리튬 이차전지를 제공하는 것이다.
전술한 본 발명의 과제를 해결하고자, 본 발명의 일 측면에 따르면 하기 구현예의 음극활물질과 이의 제조방법, 이를 포함하는 음극 및 이차전지가 제공된다.
제1 구현예에 따르면,
소립 인편상 흑연과 상기 소립 인편상 흑연 보다 평균 입경이 더 큰 대립 인편상 흑연을 혼합 및 구형화하여 구형화 조립 입자를 준비하는 단계;
상기 구형화 조립 입자를 카본 코팅하는 단계; 및
상기 카본 코팅된 구형화 조립 입자를 해쇄하는 단계;를 포함하는 구형화된 카본계 음극활물질의 제조방법이 제공된다.
제2 구현예에 따르면, 제1 구현예에 있어서,
상기 소립 인편상 흑연의 평균 입경이 20 내지 50㎛이고, 상기 대립 인편상 흑연의 평균 입경이 50 내지 100㎛일 수 있다.
제3 구현예에 따르면, 제1 구현예 또는 제2 구현예에 있어서,
상기 대립 인편상 흑연과 소립 인편상 흑연의 중량비가 70:30 내지 40:60일 수 있다.
제4 구현예에 따르면,
구형화된 카본계 음극활물질로서,
상기 음극활물질의 비표면적 값은 1.5 내지 2.8 m 2/g 이고,
상기 음극활물질의 전체 기공 부피는 1.0e -2 내지 1.8e -2 m 3/g 이고,
상기 음극활물질에서 24nm 이상의 크기를 갖는 기공의 비표면적이 0.1 내지 0.8 m 2/g 인 것을 특징으로 하는 구형화된 카본계 음극활물질이 제공된다.
제5 구현예에 따르면, 제4 구현예에 있어서,
상기 음극활물질의 비표면적 값은 1.8 내지 2.5 m 2/g일 수 있다.
제6 구현예에 따르면, 제4 구현예 또는 제5 구현예에 있어서,
상기 음극활물질의 전체 기공 부피는 1.19e -2 내지 1.57e -2 m 3/g일 수 있다.
제7 구현예에 따르면, 제4 구현예 내지 제6 구현예 중 어느 한 구현예에 있어서,
상기 음극활물질에서 24nm 이상의 크기를 갖는 기공의 비표면적이 0.3 내지 0.7 m 2/g 일 수 있다.
제8 구현예에 따르면, 제4 구현예 내지 제7 구현예 중 어느 한 구현예에 있어서,
상기 구형화된 카본계 음극활물질의 평균 입경이 10 내지 20 ㎛일 수 있다.
제9 구현예에 따르면, 제4 구현예 내지 제8 구현예 중 어느 한 구현예에 있어서,
상기 구형화된 음극활물질의 구형화도가 0.82 내지 0.98일 수 있다.
제10 구현예에 따르면,
집전체, 및 상기 집전체의 적어도 일면에 위치된 음극활물질층을 포함하는 음극으로서,
상기 음극활물질층이 제4 구현예 내지 제9 구현예 중 어느 한 구현예에 따른 구형화된 카본계 음극활물질을 포함하는 것을 특징으로 하는 음극이 제공된다.
제11 구현예에 따르면,
제10 구현예에 따른 음극을 포함하는 것을 특징으로 하는 리튬 이차전지가 제공된다.
본 발명의 일 구현예에 따르면, 기존 1종의 인편상 흑연을 적용하여 구형화를 진행하는 것이 아니라, 평균 입경이 큰 인편상 흑연과 작은 인편상 흑연을 혼합하여 구형화를 진행함으로써, 구형화도가 개선되고 내부 기공이 감소된 구형화된 탄소계 음극활물질을 제공할 수 있다. 이러한 음극활물질을 이차전지의 음극에 적용하는 경우에 내부 응력이 감소되어 스웰링 특성이 개선되고, 고온 저장시 용량 유지율이 우수한 이차전지를 제공할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 구현예에 따른 구형화된 카본계 음극활물질의 제조방법에서 구형화 단계의 모식도이다.
도 2는 종래 구형화된 카본계 음극활물질의 제조방법에서 구형화 단계의 모식도이다.
이하, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 다른 일 측면에 따른 구형화 카본계 음극활물질의 제조방법은,
소립 인편상 흑연과 상기 소립 인편상 흑연 보다 평균 입경이 더 큰 대립 인편상 흑연을 혼합 및 구형화하여 구형화 조립 입자를 준비하는 단계;
상기 구형화 조립 입자를 카본 코팅하는 단계; 및
상기 카본 코팅된 구형화 조립 입자를 해쇄하는 단계;를 포함한다.
종래에 단일한 평균 입경을 갖는 인편상 흑연을 적용하여 구형화를 진행한 결과, 구형화 입자에서 내부 기공이 크게 발생하고 이러한 내부 기공에서 부반응이 일어나는 문제점을 해결하고자, 본 발명에서는 평균 입경이 서로 다른 2종의 인편상 흑연, 즉 소립 인편상 흑연과 상기 소립 인편상 흑연 보다 평균 입경이 더 큰 대립 인편상 흑연(평균 입경이 큰 대립 인편상 흑연과 평균 입경이 작은 소립 인편상 흑연)을 혼합하여 구형화를 진행함으로써, 내부 기공이 감소되고, 구형화가 개선되며, 전지의 전극으로 사용하는 경우에 전극의 스웰링 현상을 억제하고, 전지의 고온 저장시 성능이 향상되는 구형화된 탄소계 음극활물질을 제공하고자 한다.
이하, 각 단계별로 상세히 살펴보겠다.
먼저, 소립 인편상 흑연과 상기 소립 인편상 흑연 보다 평균 입경이 더 큰 대립 인편상 흑연대립 인편상 흑연을 혼합 및 구형화하여 구형화 조립 입자를 준비한다.
본 단계에서는 소립 인편상 흑연과 상기 소립 인편상 흑연 보다 평균 입경이 더 큰 대립 인편상 흑연을 소정 중량비로 준비한 후 이를 혼합하고, 구형화하여 구형화 조립 입자를 제조하는 단계이다.
본 단계에서 상기 대립 인편상 흑연들이 접촉하여 조립되는 동안 상기 대립 인편상 흑연들 사이에 생긴 빈 공간(공극)에 상기 소립 인편상 흑연들이 삽입되어 채워지면서 내부 기공이 감소되고, 보다 치밀한 구형화 입자를 제공할 수 있다.
본 단계에서는 소립 인편상 흑연과 대립 인편상 흑연의 혼합물을 원료물질로 사용하여 당업계에 통상적으로 공지된 구형화 방법, 예를 들어 충격 압축, 마찰 또는 전단력 등의 기계적 처리를 가하는 방법을 실시할 수 있다. 상기 기계적 처리는 당업계에 통상적으로 알려진 구형화 장치를 이용하여 수행할 수 있으며, 예를 들어 카운터 제트밀(Hosokawa Micron, JP), ACM 팔베라이저(Hosokawa Micron, JP), 커런트 제트(Nissin, JP) 등의 분쇄기, SARARA(Kawasaki Heavy Indestries, Ltd, JP), GRANUREX(Freund Corporation, JP), 뉴그라마신(Seishin, JP), 아크로마스타(Hosokawa Micron, JP) 등의 조립기, 가압니더(dispersion kneader), 2본롤 등의 혼련기, 메카노 마이크로 시스템, 압출기, 볼밀, 유성밀, 메카노 퓨전 시스템, 노빌타, 하이브리다이제이션, 회전 볼밀 등의 압축 전단식 가공 장치 등을 이용할 수 있다.
본 발명의 일 구현예에 따르면, 상기 혼합물을 전술한 기계적인 전단력(mechanical shear force)이 가해지는 구형화 장치에 투입하여 조립 입자 코어를 형성시키고, 상기 조립 입자 코어의 표면부에 동심원 방향으로 1층 이상 적층되어 구형으로 결합된 형태의 표면층이 형성된 구형화 조립 입자를 형성시킬 수 있다. 조립 입자 코어 및 표면층의 형성이 동시에 이루어져 구형화 조립 입자를 이루게 된다.
본 발명의 일 구현예에서는 회전식 가공기를 사용하여 소립 인편상 흑연과 대립 인편상 흑연의 혼합물을 반복 가공처리하여 구형화 조립 입자를 얻을 수 있다. 반복되는 회전 운동 결과, 가공기 내측면과 소립 인편상 흑연과 대립 인편상 흑연 간의 충돌에 의한 분쇄와 흑연들간의 마찰 가공, 전단 응력에 의한 전단 가공 등을 통해 소립 인편상 흑연과 대립 인편상 흑연들의 조립화가 이루어지고, 최종적으로는 구형화 조립 입자를 얻을 수 있다. 이때 분쇄 시간 및 분쇄 속도는 투입되는 흑연의 양에 따라 적정 범위내에서 조절할 수 있다.
또한, 본 단계에서는 상기 구형화 조립 입자에 포함된 소립 인편상 흑연과 대립 인편상 흑연 사이의 접촉성을 향상시킬 수 있도록, 제조된 구형화 조립 입자를 등방적으로 가압하는 단계를 추가적으로 포함할 수 있다.
이때, 등방적인 가압이란 상기 구형화 조립 입자를 삼차원적으로 균일하게 가압하는 것을 뜻하며, 구형화 조립 입자의 등방적 가압을 위해 실온에서 물 또는 아르곤 등을 매체로 사용하거나, 실온에서 등방적으로 가압하는 냉간 등방 가압처리 등을 사용할 수 있다.
아울러, 상기 구형화 조립 입자를 등방적으로 가압하기 위한 압력은, 특별히 제한되지 않으나, 50 기압 내지 100 기압이 바람직하고, 100 기압 내지 200 기압이 더욱 바람직하다.
상기 인편상 흑연이라 함은 입자형상이 인편상인 천연흑연이고, 인편상, 판 형상, 파쇄 형상, 태블릿 형상 등의 천연흑연을 목적하는 입자 크기로 분쇄하여 제조한 것일 수 있다.
본 발명의 일 구현예에서, 상기 소립 인편상 흑연의 평균 입경은 20 내지 50㎛, 또는 25 내지 45㎛이고, 상기 대립 인편상 흑연의 평균 입경이 50 내지 100㎛, 또는 55 내지 90 ㎛일 수 있다. 상기 소립 인편상 흑연과 대립 인편상 흑연의 평균 입경이 이러한 범위를 만족하는 경우에 내부 기공이 감소되어, 상기 내부 기공에 의해 형성된 피막 층이 고온에서의 부반응으로 인해 가스 발생 및 고온 저장 성능이 저하될 수 있다.
본 발명의 일 구현예에서, 상기 대립 인편상 흑연과 소립 인편상 흑연의 중량비는 70:30 내지 40:60, 또는 70:30 내지 45:55, 또는 70:30 내지 50:50, 또는 50:50 내지 45:55일 수 있다. 상기 대립 인편상 흑연과 소립 인편상 흑연의 중량비가 이러한 범위를 만족하는 경우에 내부 기공을 조절할 수 있다는 점에서 유리할 수 있다.
본 발명의 일 구현예에 따른 도 1을 참조하면, 소립 인편상 흑연(110)과 대립 인편상 흑연(120)을 혼합하여, 전술한 구형화 공정을 거치게 되면, 구형화 조립 입자(100)을 얻을 수 있고, 이때 구형화 조립 입자(100)는 대립 인편상 흑연(120)들 사이에 생긴 공간에 소립 인편상 흑연(110)들 채워지게 되어 내부 공극(130)이 매우 감소될 수 있다.
한편, 종래 기술에 따른 도 2를 참조하면, 대립 인편상 흑연(210)만을 사용하여 구형화 공정을 거치게 되면, 구형화 조립 입자(200)을 얻을 수는 있으나, 이때 구형화 조립 입자(200)는 대립 인편상 흑연(210)들 사이에 생긴 공간이 여전히 유지되어 내부 공극(220)이 매우 큰 것을 알 수 있다.
다음으로, 상기 구형화 조립 입자를 카본 코팅한다.
본 카본 코팅 단계는 앞서 준비된 구형화 조립 입자의 표면을 카본 코팅 재료와 균질하게 혼합함으로써 구형화 조립 입자의 표면에 카본 코팅 재료를 부착시키고, 이후 이를 탄화처리하여 구형화 조립 입자의 표면에 카본 코팅층을 형성할 수 있다. 이러한 카본 재료는 구형화 조립 입자의 표면에 코팅층을 형성하여, 구형화 조립 입자를 구성하는 소립 인편상 흑연과 대립 인편상 흑연를 서로 더 결합시킴에 따라, 충방전의 반복에 의해 발생할 수 있는 구형화 조립 입자의 안정성 저하를 방지할 수 있다.
이러한 카본 코팅 재료로는 수크로오스(sucrose), 페놀(phenol) 수지, 나프탈렌(naphthalene) 수지, 폴리비닐알코올(polyvinyl alcohol) 수지, 퍼푸릴 알코올(furfuryl alcohol) 수지, 폴리아크릴로니트릴(polyacrylonitrile) 수지, 폴리아미드(polyamide) 수지, 퓨란(furan) 수지, 셀룰로오스(cellulose) 수지, 스티렌(stylene) 수지, 폴리이미드(polyimide) 수지, 에폭시(epoxy) 수지 또는 염화비닐(vinyl chloride) 수지, 석탄계 핏치, 석유계 핏치, 폴리비닐클로라이드, 메조페이스 핏치, 타르, 블록공중합체(block-copolymer), 저분자량 중질유 또는 이들의 혼합물을 포함하는 카본 전구체로부터 제조된 것일 수 있다.
이때, 상기 카본 코팅 재료는 구형화 조립 입자 100 중량부 기준으로 1 내지 10 중량부, 또는 3 내지 6 중량부가 사용될 수 있다. 상기 카본 코팅층의 함량이 이러한 범위를 만족하는 경우에, 너무 두꺼운 코팅층의 형성으로 무게당 용량 감소 및 비가역에 의한 초기효율이 감소하는 문제, 또는 지나치게 얇은 코팅층이 형성되어 활물질 비표면적이 증가하여 부반응 증가 및 충방전 과정에서 코팅층의 박리가 일어나 수명 효율이 떨어지는 문제를 방지할 수 있고, 초기 SEI 층 형성에 도움이 되어 충방전의 반복에 의해 발생할 수 있는 구형화 조립 입자의 안정성을 개선할 수 있다.
먼저, 구형화 조립 입자의 표면을 카본 코팅 재료와 균질하게 혼합하는 방법은, 특별히 제한되지 않고 당업계에 통상적으로 공지된 방법에 의하여 수행할 수 있다. 예를 들어, 2본롤 등의 혼련기, 블레이드(blade), 메카노 마이크로 시스템, 압출기, 볼밀, 유성밀, 메카노 퓨전 시스템, 노빌타, 하이드리다이제이션, 회전 볼밀 등의 기계화학적 방법을 사용하거나 분무 건조법(spray dry), 에멀젼법(emulsion) 등을 사용하여 수행할 수 있다.
이렇게 카본 코팅 재료와 구형화 조립입자를 균질하게 혼합한 후에 900 내지 1,300℃의 온도에서 12 시간 내지 48 시간 동안 탄화처리하여,, 상기 구형화 조립 입자에 카본 코팅층을 형성할 수 있다. 형성된 카본 코팅층은 비정질 혹은 결정질 탄소로 이루어질 수 있다. 상기 탄화처리 조건을 만족하는 경우에, 카본 코팅 재료의 안정화가 충분히 진행되고, 카본 코팅 재료내 불순물 제거가 완벽하게 이루어지며, 지나친 고온에서 카본 코팅 재료의 피복된 표면 특성이 변성되는 것을 방지할 수 있다.
다음으로, 상기 카본 코팅된 구형화 조립 입자를 해쇄한다.
앞선 상기 구형화 조립 입자를 카본 코팅하는 단계에서의 탄화 처리를 거치면서 얻어진 구형화 조립 입자들이 서로 응집된 형태로 존재할 수 있다. 이렇게 응집된 입자들을 서로 분리시키는 해쇄 공정을 거치게 된다.
상기 해쇄 공정에서는 얻어지는 성형체에 약간의 전단력을 부여하는 것만으로, 성형체를 용이하게 해쇄할 수 있다. 상기 해쇄 공정은 특별히 한정되지 않지만, 예를 들어,예를 들면, 교반날개를 갖는 교반기를 이용해서 행할 수 있고, 통상의 제트밀, 진동밀, 핀밀, 햄머밀 등의 공지의 분쇄기 등을 사용하여 실시될 수 있다.
본 발명의 다른 일 측면에 따른 구형화된 카본계 음극활물질은,
상기 음극활물질의 비표면적 값은 1.5 내지 2.8 m 2/g이고,
상기 음극활물질의 전체 기공 부피는 1.0e -2 내지 1.8e -2 m 3/g 이고,
상기 음극활물질에서 24nm 이상의 크기를 갖는 기공의 비표면적이 0.1 내지 0.8 m 2/g 이다.
본 발명의 일 구현예에 따르면 상기 구형화된 카본계 음극활물질은, 전술한 구형화된 카본계 음극활물질의 제조방법에 의해서 제조될 수 있다.
상기 음극활물질의 비표면적 값은 1.5 내지 2.8 m 2/g이고, 본 발명의 일 구현예에 따르면, 1.8 내지 2.5 m 2/g일 수 있다. 상기 음극활물질의 비표면적 값이 이러한 범위를 만족하는 경우에 전해액과의 부반응 감소로 고온 저장 성능 측면에서 유리하다.
"비표면적"은 BET법에 의해 측정한 것으로서, 구체적으로는 BEL Japan사의 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출될 수 있다.
상기 음극활물질의 전체 기공 부피는 1.0e -2 내지 1.8e -2 m 3/g 이고, 본 발명의 일 구현예에 따르면, 1.19e -2 내지 1.57e -2 m 3/g일 수 있다. 상기 음극활물질의 전체 기공 부피가 이러한 범위를 만족하는 경우에 전해액과의 부반응 감소로 고온 저장 성능 측면에서 유리하다.
이때, 상기 음극활물질의 전체 기공 부피는 전술한 비표면적 측정과 동일하게 BET법에 의해 측정할 수 있으며, 비표면적 측정과 동일한 장비를 이용하여 측정할 수 있다.
또한, 상기 음극활물질에서 24nm 이상의 크기를 갖는 기공의 비표면적이 0.1 내지 0.8 m 2/g이고, 본 발명의 일 구현예에 따르면, 0.3 내지 0.7 m 2/g일 수 있다. 상기 음극활물질에서 24nm 이상의 크기를 갖는 기공의 비표면적이 이러한 범위를 만족하는 경우에 전해액과 부반응을 감소시키는 점에서 유리하다.
상기 음극활물질에서 24nm 이상의 크기를 갖는 기공의 비표면적은 전술한 비표면적 측정과 동일하게 BET법에 의해 측정할 수 있으며, 비표면적 측정과 동일한 장비를 이용하여 측정할 수 있다.
특히, 상기 음극활물질의 비표면적 값은 1.5 내지 2.8 m 2/g이고, 상기 음극활물질의 전체 기공 부피는 1.0e -2 내지 1.8e -2 m 3/g 이고, 상기 음극활물질에서 24nm 이상의 크기를 갖는 기공의 비표면적이 비표면적이 0.1 내지 0.8 m 2/g인 조건을 모두 만족한다는 것은 비가역 감소로 인한 부반응 억제로 장기 수명에서 가스 발생에 의한 스웰링 증가를 억제할 수 있다는 측면에서 중요하다.
본 발명의 일 구현예에 따르면, 상기 구형화된 카본계 음극활물질의 평균 입경은 10 내지 20 ㎛, 또는 11 내지 18 ㎛일 수 있다.
상기 평균 입경 D50은, 입경에 따른 입자 개수 누적 분포의 50% 지점에서의 입경을 의미한다. 예를 들어, D90은 입경에 따른 입자 개수 누적 분포의 90% 지점에서의 입경을, D10은 입경에 따른 입자 개수 누적 분포의 10% 지점에서의 입경이다.
상기 평균 입경은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출할 수 있다. 측정 장치에 있어서의 입경에 따른 입자 개수 누적 분포의 10%, 50% 및 90%가 되는 지점에서의 입자 직경을 산출함으로써, D10, D50 및 D90을 측정할 수 있다.
상기 구형화된 카본계 음극활물질의 구형화도는 0.82 내지 0.98, 또는 0.88 내지 0.92일 수 있다.
상기 구형화도는 상기 음극활물질을 투영하였을 때, 투영된 이미지와 동일 면적인 원의 원주를 투영된 이미지의 둘레길이로 나눈 값일 수 있으며, 구체적으로 하기 수학식 1로 나타낼 수 있다. 상기 구형화도는 입형분석기, 예컨대 Malvern사제 sysmex FPIA3000 등의 입형분석기를 이용하여 측정할 수 있다.
[수학식 1]
구형화도 = 활물질을 투영한 이미지와 동일 면적인 원의 원주/투영된 이미지의 둘레길이
본 발명의 다른 일 측면에 따르면, 상기 음극활물질을 포함하는 음극이 제공된다.
구체적으로, 본 발명의 일 구현예에 따른 음극은 집전체, 및 상기 집전체의 적어도 일면에 본 발명에 따른 음극활물질을 포함하는 음극활물질층을 포함한다.
상기 전극층은 본 발명에 따른 음극활물질, 바인더 및 도전재를 용매에 분산시켜 얻은 음극활물질층용 슬러리를 집전체의 적어도 일면에 코팅한 후, 건조 및 압연하여 제조할 수 있다.
상기 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 상기 집전체의 두께는 특별히 제한되지는 않으나, 통상적으로 적용되는 3 ~ 500 ㎛의 두께를 가질 수 있다.
상기 음극활물질은 음극 슬러리 조성물의 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다.
상기 바인더는 도전재, 및 활물질, 또는 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 조성물 전체 중량을 기준으로 0.1 내지 20 중량%로 포함된다. 이러한 바인더의 예로는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HEP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 스티렌 부티렌 고무(SBR), 리튬-치환된 폴리아크릴레이트(lithium polyacrylate, Li-PAA) 등을 들 수 있다. 이중에서, 특히 리튬-치환된 폴리아크릴레이트(lithium polyacrylate, Li-PAA)는 활물질 중의 규소 함량이 80% 정도로 높은 음극에 사용될 경우 다른 바인더, 예컨대 SBS/CMC에 비해 우수한 접착력을 부여할 수 있으며, 이러한 특징으로 인해 Si계 음극에 적용되어 충방전시 높은 용량 유지율을 달성할 수 있는 면에서 유리하다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 않으며, 예를 들어, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 상기 도전재는 음극 슬러리 조성물의 전체 중량을 기준으로 0.1 내지 20 중량%로 첨가될 수 있다.
상기 분산매는 물 또는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 음극 슬러리가 음극활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다.
또한, 상기 음극 슬러리의 코팅 방법은 당해 분야에서 통상적으로 사용되는 방법이라면 특별히 한정되지 않는다. 예컨대, 슬롯 다이를 이용한 코팅법이 사용될 수도 있고, 그 이외에도 메이어 바 코팅법, 그라비아 코팅법, 침지 코팅법, 분무 코팅법 등이 사용될 수 있다.
본 발명의 또 다른 일 실시형태는 상기 음극을 포함하는 리튬 이차전지에 관한 것이다. 구체적으로, 상기 리튬 이차전지는 양극, 상술한 바와 같은 음극, 및 그 사이에 개재된 세퍼레이터를 포함하는 전극 조립체에 리튬염 함유 전해질을 주입하여 제조될 수 있다.
상기 양극은 양극 활물질, 도전재, 바인더 및 용매를 혼합하여 슬러리를 제조한 후 이를 금속 집전체에 직접 코팅하거나, 별도의 지지체상에 캐스팅하고 이 지지체로부터 박리시킨 양극 활물질 필름을 금속 집전체에 라미네이션하여 양극을 제조할 수 있다.
양극에 사용되는 활물질로는 LiCoO 2, LiNiO 2, LiMn 2O 4, LiCoPO 4, LiFePO 4 및 LiNi 1-x-y-zCo xM1 yM2 zO 2(M1 및 M2는 서로 독립적으로 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, x, y 및 z는 서로 독립적으로 산화물 조성 원소들의 원자 분율로서 0≤x<0.5, 0≤y<0.5, 0≤z<0.5, 0<x+y+z<1임)로 이루어진 군으로부터 선택된 어느 하나의 활물질 입자 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
한편, 도전재, 바인더 및 용매는 상기 음극 제조시에 사용된 것과 동일하게 사용될 수 있다.
상기 세퍼레이터는 종래 세퍼레이터로 사용되는 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독 또는 이들을 적층하여 사용할 수 있다. 또한, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용될 수 있다. 상기 세퍼레이터는 세퍼레이터 표면에 세라믹 물질이 얇게 코팅된 안정성 강화 세퍼레이터(SRS, safety reinforced separator)을 포함할 수 있다. 이외에도 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 전해액은 전해질로서 리튬염 및 이를 용해시키기 위한 유기용매를 포함한다.
상기 리튬염은 이차전지용 전해액에 통상적으로 사용되는 것들이면 제한 없이 사용될 수 있으며, 예를 들어, 상기 리튬염의 음이온으로는 F -, Cl -, I -, NO 3 -, N(CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2PF 4 -, (CF 3) 3PF 3 -, (CF 3) 4PF 2 -, (CF 3) 5PF -, (CF 3) 6P -, CF 3SO 3 -, CF 3CF 2SO 3 -, (CF 3SO 2) 2N -, (FSO 2) 2N -, CF 3CF 2(CF 3) 2CO -, (CF 3SO 2) 2CH -, (SF 5) 3C -, (CF 3SO 2) 3C -, CF 3(CF 2) 7SO 3 -, CF 3CO 2 -, CH 3CO 2 -, SCN - 및 (CF 3CF 2SO 2) 2N -로 이루어진 군으로부터 선택되는 1종을 사용할 수 있다.
상기 전해액에 포함되는 유기 용매로는 통상적으로 사용되는 것들이면 제한 없이 사용될 수 있으며, 대표적으로 프로필렌 카보네이트, 에틸렌 카보네이트, 디에틸카보네이트, 디메틸카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 디프로필카보네이트, 디메틸술폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 비닐렌카보네이트, 술포란, 감마-부티로락톤, 프로필렌설파이트 및 테트라하이드로퓨란으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌카보네이트 및 프로필렌카보네이트는 고점도의 유기 용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
선택적으로, 본 발명에 따라 저장되는 전해액은 통상의 전해액에 포함되는 과충전 방지제 등과 같은 첨가제를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 리튬 이차전지는 양극과 음극 사이에 세퍼레이터를 배치하여 전극 조립체를 형성하고, 상기 전극 조립체를 예를 들어, 파우치, 원통형 전지 케이스 또는 각형 전지 케이스에 넣은 다음, 전해질을 주입하면 이차전지가 완성될 수 있다. 또는 상기 전극 조립체를 적층한 다음, 이를 전해액에 함침시키고, 얻어진 결과물을 전지 케이스에 넣어 밀봉하면 리튬 이차전지가 완성될 수 있다.
본 발명의 일 실시예에 따르면, 상기 리튬 이차전지는 스택형, 권취형, 스택 앤 폴딩형 또는 케이블형일 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다. 상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전력 저장용 시스템 등을 들 수 있으며, 특히 고출력이 요구되는 영역인 하이브리드 전기자동차 및 신재생 에너지 저장용 배터리 등에 유용하게 사용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1
(구형화된 카본계 음극활물질의 제조)
평균 입경이 75㎛인 대립 인편상 흑연과 평균 입경이 35㎛인 소립 인편상 흑연을 70:30의 중량비로 준비하고, 이를 볼밀을 이용하여 혼합하고, 카운터 제트밀(Hosokawa Micron, JP)를 이용하여 구형화하여 구형화 조립 입자를 얻었다. 얻어진 구형화 조립 입자 100 중량부와 카본 코팅 재료인 피치(고상 피치) 5 중량부와 혼합하고, 1,500℃의 온도 조건에서 24 시간 동안 탄화처리하여서 카본 코팅하고, 이후 카본 코팅된 구형화 조립 입자를 해쇄 처리하여, 구형화된 카본계 음극활물질을 제조하였다.
(음극의 제조)
앞서 제조된 구형화된 카본계 음극활물질, 도전재로 Super C65, 바인더로 스티렌 부타디엔 고무(SBR), 증점제로 카르복시메틸셀룰로오스(CMC)를 각각 96.6:1:1.3:1.1의 중량비로 혼합하고, 물을 첨가하여 슬러리를 제조하였다. 상기에서 제조된 슬러리를 구리 포일에 도포하고 약 130 ℃에서 10시간 동안 진공 건조한 후 1.4875 ㎠의 음극을 제조하였다. 이때 음극의 로딩은 3.61mAh/cm 2이 되도록 제조하였다.
(코인 타입 이차전지의 제조)
작동 전극(Working electrode)으로 상기 제조된 음극을, 상대 전극(Counter electrode)으로 1.7671㎠ Li-금속을 사용하고, 상기 작동 전극과 상대 전극 사이에 폴리에틸렌 분리막을 개재하여 전극 조립체를 제조하였다. 에틸렌 카보네이트(EC)와 디에틸렌 카보네이트(EMC)가 1:4의 부피비로 혼합하고, 혼합 용매에 비수 전해액 첨가제로 비닐렌 카보네이트(VC) 0.5wt%와 1M의 LiPF 6을 첨가하여 비수 전해액을 제조하였다. 상기 전극 조립체를 코인 타입 케이스에 내장하고, 제조된 비수 전해액을 주입하여 코인 타입의 하프셀(Half-cell) 이차전지를 제조하였다.
실시예 2
평균 입경이 75㎛인 대립 인편상 흑연과 평균 입경이 35㎛인 소립 인편상 흑연을 50:50의 중량비로 준비한 점을 제외하고는 실시예 1과 동일한 방법으로 구형화된 카본계 음극활물질을 제조하였다.
또한, 이렇게 제조된 음극활물질을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 이차전지를 제조하였다.
실시예 3
평균 입경이 75㎛인 대립 인편상 흑연과 평균 입경이 35㎛인 소립 인편상 흑연을 45:55의 중량비로 준비한 점을 제외하고는 실시예 1과 동일한 방법으로 구형화된 카본계 음극활물질을 제조하였다.
또한, 이렇게 제조된 음극활물질을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 이차전지를 제조하였다.
비교예 1
평균 입경이 75㎛인 대립 인편상 흑연만을 사용하고, 평균 입경이 35㎛인 소립 인편상 흑연을 사용하지 않은 점을 제외하고는 실시예 1과 동일한 방법으로 구형화된 카본계 음극활물질을 제조하였다.
또한, 이렇게 제조된 음극활물질을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 이차전지를 제조하였다.
비교예 2
평균 입경이 75㎛인 대립 인편상 흑연을 사용하지 않고, 평균 입경이 35㎛인 소립 인편상 흑연만을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 구형화된 카본계 음극활물질을 제조하였다.
또한, 이렇게 제조된 음극활물질을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 이차전지를 제조하였다.
평가 방법 및 결과
음극활물질의 비표면적, 음극활물질의 전체 기공 부피, 음극활물질에서 24nm 이상의 크기를 갖는 기공의 비표면적
실시예 1 내지 3, 비교예 1, 및 비교예 2의 음극활물질의 비표면적, 음극활물질의 전체 기공 부피, 및 음극활물질에서 24nm 이상의 크기를 갖는 기공의 비표면적은 BET법에 의해 측정한 것으로서, 구체적으로는 BEL Japan사의 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출하였다.
음극활물질의 평균 입경
실시예 1 내지 3, 비교예 1, 및 비교예 2의 음극활물질을 분산매인 물에 분산시킨 후, 레이저 회절 입도 측정 장치(Microtrac S3500)에 도입하여 음극활물질들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다. 측정 장치에 있어서의 입경에 따른 입자 개수 누적 분포의 50%가 되는 지점에서의 입자 직경을 산출함으로써, 평균 입경인 D50을 측정하였다.
음극활물질의 구형화도
실시예 1 내지 3, 비교예 1, 및 비교예 2의 음극활물질의 구형화도는 하기 수학식 1로 정의되고, 상기 구형화도는 입형분석기인 Malvern사제 sysmex FPIA3000를 이용하여 측정하였다.
[수학식 1]
구형화도 = 활물질을 투영한 이미지와 동일 면적인 원의 원주/투영된 이미지의 둘레길이
스웰링 특성
실시예 1 내지 3, 비교예 1, 및 비교예 2의 이차전지를 0.1C 충방전 전류와 5mV 내지 1.5V의 충방전 전압 조건으로 30 회(Cycle) 충방전 후의 스웰링 비율을 측정하여 하기 표 1에 나타내었다.
이때, 스웰링 비율(%) 은 하기 식으로 정의된다.
스웰링 비율(%) = [(충방전 후 전극 두께 - 초기 전극 두께)/(초기 전극 두께)] X 100
고온 저장 특성
실시예 1 내지 3, 비교예 1, 및 비교예 2의 이차전지를 60℃에서 SOC 100%로 4주 동안 보관 후에, 상온에서 0.1C 충방전 전류와 5mV 내지 1.5V의 충방전 전압 조전으로 충방전하여 용량 유지율을 측정하여 하기 표 1에 나타내었다.
이때, 용량 유지율(%)은 하기 식으로 정의된다.
용량 유지율(%) = [(고온 저장 후 용량)/(초기 용량)] X 100
음극활물질의 비표면적
(m 2/g)
음극활물질의 전체 기공 부피
(m 3/g)
음극활물질에서 24nm 이상의 크기를 갖는 기공의 비표면적
(m 2/g)
음극활물질의 평균 입경
(㎛)
음극활물질의
구형화도
이차전지의 스웰링 특성(%) 이차전지의 고온 저장 용량 유지율(%)
실시예 1 1.8 1.19 e -2 0.3 16 0.89 24 88
실시예 2 2.2 1.46 e -2 0.6 15 0.89 26 85
실시예 3 2.5 1.57 e -2 0.7 15 0.89 27 85
비교예 1 3.1 2.59 e -2 0.8 16 0.88 32 70
비교예 2 4.0 2.78 e -2 0.9 12 0.88 30 65
상기 표 1을 참조하면, 실시예 1 내지 3의 음극활물질을 채용한 이차전지의 스웰링 특성 및 고온 저장 용량 유지율 특성 모두 비교에 1 및 2의 음극활물질을 채용한 이차전지 보다 모두 우수한 결과를 나타냄을 알 수 있다.

Claims (11)

  1. 소립 인편상 흑연과 상기 소립 인편상 흑연 보다 평균 입경이 더 큰 대립 인편상 흑연을 혼합 및 구형화하여 구형화 조립 입자를 준비하는 단계;
    상기 구형화 조립 입자를 카본 코팅하는 단계; 및
    상기 카본 코팅된 구형화 조립 입자를 해쇄하는 단계;를 포함하는 구형화된 카본계 음극활물질의 제조방법.
  2. 제1항에 있어서,
    상기 소립 인편상 흑연의 평균 입경이 20 내지 50㎛이고, 상기 대립 인편상 흑연의 평균 입경이 50 내지 100㎛인 것을 특징으로 하는 구형화된 카본계 음극활물질의 제조방법.
  3. 제1항에 있어서,
    상기 대립 인편상 흑연과 소립 인편상 흑연의 중량비가 70:30 내지 40:60인 것을 특징으로 하는 구형화된 카본계 음극활물질의 제조방법.
  4. 구형화된 카본계 음극활물질로서,
    상기 음극활물질의 비표면적 값은 1.5 내지 2.8 m 2/g 이고,
    상기 음극활물질의 전체 기공 부피는 1.0e -2 내지 1.8e -2 m 3/g 이고,
    상기 음극활물질에서 24nm 이상의 크기를 갖는 기공의 비표면적이 0.1 내지 0.8 m 2/g 인 것을 특징으로 하는 구형화된 카본계 음극활물질.
  5. 제4항에 있어서,
    상기 음극활물질의 비표면적 값은 1.8 내지 2.5 m 2/g인 것을 특징으로 하는 구형화된 카본계 음극활물질.
  6. 제4항에 있어서,
    상기 음극활물질의 전체 기공 부피는 1.19e -2 내지 1.57e -2 m 3/g인 것을 특징으로 하는 구형화된 카본계 음극활물질.
  7. 제4항에 있어서,
    상기 음극활물질에서 24nm 이상의 크기를 갖는 기공의 비표면적이 0.3 내지 0.7 m 2/g 인 것을 특징으로 하는 구형화된 카본계 음극활물질.
  8. 제4항에 있어서,
    상기 구형화된 카본계 음극활물질의 평균 입경이 10 내지 20 ㎛인 것을 특징으로 하는 구형화된 카본계 음극활물질.
  9. 제4항에 있어서,
    상기 구형화된 음극활물질의 구형화도가 0.82 내지 0.98인 것을 특징으로 하는 구형화된 카본계 음극활물질.
  10. 집전체, 및 상기 집전체의 적어도 일면에 위치된 음극활물질층을 포함하는 음극으로서,
    상기 음극활물질층이 제4항 내지 제9항 중 어느 한 항에 따른 구형화된 카본계 음극활물질을 포함하는 것을 특징으로 하는 음극.
  11. 제10항의 음극을 포함하는 리튬 이차전지.
PCT/KR2020/013430 2019-10-04 2020-09-29 구형화된 카본계 음극활물질, 이의 제조방법, 이를 포함하는 음극 및 리튬 이차전지 WO2021066582A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20871902.1A EP4024512A4 (en) 2019-10-04 2020-09-29 GLOBULAR CARBON ANODE ACTIVE MATERIAL, METHOD FOR MAKING THEREOF, AND ANODE LITHIUM SECONDARY BATTERY COMPRISING THE SAME
US17/641,322 US20220344660A1 (en) 2019-10-04 2020-09-29 Globular carbon-based anode active material, method for manufacturing same, and anode and lithium secondary battery comprising same
CN202080064189.4A CN114402460A (zh) 2019-10-04 2020-09-29 球状化碳质负极活性材料、其制造方法、以及包含其的负极和锂二次电池
JP2022519323A JP2022551434A (ja) 2019-10-04 2020-09-29 球状化カーボン系負極活物質、その製造方法、それを含む負極、及びリチウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190123397 2019-10-04
KR10-2019-0123397 2019-10-04

Publications (1)

Publication Number Publication Date
WO2021066582A1 true WO2021066582A1 (ko) 2021-04-08

Family

ID=75338427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013430 WO2021066582A1 (ko) 2019-10-04 2020-09-29 구형화된 카본계 음극활물질, 이의 제조방법, 이를 포함하는 음극 및 리튬 이차전지

Country Status (6)

Country Link
US (1) US20220344660A1 (ko)
EP (1) EP4024512A4 (ko)
JP (1) JP2022551434A (ko)
KR (1) KR20210040809A (ko)
CN (1) CN114402460A (ko)
WO (1) WO2021066582A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927314A (ja) * 1995-07-12 1997-01-28 Matsushita Electric Ind Co Ltd 非水電解液二次電池
KR100686783B1 (ko) * 2006-01-16 2007-02-26 엘에스전선 주식회사 2차 전지용 음극재, 그 제조방법 및 이를 이용한 2차 전지
JP2007179956A (ja) * 2005-12-28 2007-07-12 Sony Corp 負極およびそれを用いた電池
JP2011060465A (ja) * 2009-09-07 2011-03-24 Kansai Coke & Chem Co Ltd リチウムイオン二次電池用黒鉛材料およびその製造方法
JP2014022041A (ja) * 2012-07-12 2014-02-03 Sony Corp 負極活物質および負極活物質の製造方法、ならびにリチウムイオン電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
KR20190123397A (ko) 2018-04-24 2019-11-01 성균관대학교산학협력단 가짜 리뷰 판별을 위한 분류 모델 선정 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4040381B2 (ja) * 2002-07-30 2008-01-30 Jfeケミカル株式会社 複合黒鉛質粒子およびその製造方法ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP5458689B2 (ja) * 2008-06-25 2014-04-02 三菱化学株式会社 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP6127370B2 (ja) * 2012-03-23 2017-05-17 三菱化学株式会社 非水系二次電池用炭素材、非水系二次電池用負極及びリチウムイオン二次電池
JP6746918B2 (ja) * 2015-01-16 2020-08-26 三菱ケミカル株式会社 非水系二次電池用炭素材、及び、リチウムイオン二次電池
WO2016125819A1 (ja) * 2015-02-06 2016-08-11 東ソー株式会社 リチウム二次電池用複合活物質およびその製造方法
CN115483391A (zh) * 2016-11-22 2022-12-16 三菱化学株式会社 非水二次电池用负极材料、非水二次电池用负极及非水二次电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927314A (ja) * 1995-07-12 1997-01-28 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2007179956A (ja) * 2005-12-28 2007-07-12 Sony Corp 負極およびそれを用いた電池
KR100686783B1 (ko) * 2006-01-16 2007-02-26 엘에스전선 주식회사 2차 전지용 음극재, 그 제조방법 및 이를 이용한 2차 전지
JP2011060465A (ja) * 2009-09-07 2011-03-24 Kansai Coke & Chem Co Ltd リチウムイオン二次電池用黒鉛材料およびその製造方法
JP2014022041A (ja) * 2012-07-12 2014-02-03 Sony Corp 負極活物質および負極活物質の製造方法、ならびにリチウムイオン電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
KR20190123397A (ko) 2018-04-24 2019-11-01 성균관대학교산학협력단 가짜 리뷰 판별을 위한 분류 모델 선정 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024512A4

Also Published As

Publication number Publication date
JP2022551434A (ja) 2022-12-09
EP4024512A4 (en) 2022-11-02
KR20210040809A (ko) 2021-04-14
US20220344660A1 (en) 2022-10-27
CN114402460A (zh) 2022-04-26
EP4024512A1 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
US11121357B2 (en) Positive electrode active material for secondary battery and method of preparing the same
WO2021066584A1 (ko) 구형화된 카본계 음극활물질, 이의 제조방법, 이를 포함하는 음극 및 리튬 이차전지
WO2019151813A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2019151814A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2016032240A1 (ko) 이중 코팅층을 갖는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2014084679A1 (ko) 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법
WO2019182364A1 (ko) 리튬-함유 복합체의 코팅층을 구비한 세퍼레이터, 이를 포함하는 리튬 이차전지 및 상기 이차전지의 제조방법
WO2019112390A1 (ko) 리튬 이차전지용 음극 활물질 및 이의 제조방법
WO2020122497A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2016148441A1 (ko) 리튬 금속 산화물 및 이를 포함하는 리튬 이차전지용 음극 활물질, 및 이의 제조방법
WO2017095074A1 (ko) 티타늄계 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020036392A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2020153728A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2019235890A1 (ko) 리튬 이차전지용 음극 슬러리, 및 이의 제조방법
WO2019083332A2 (ko) 실리콘-탄소 복합체 및 이를 포함하는 리튬 이차전지
WO2019245286A1 (ko) 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지
WO2019147084A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2021066580A1 (ko) 음극활물질, 음극활물질의 제조방법, 이를 포함하는 음극 및 리튬 이차전지
WO2024085297A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2019245284A1 (ko) 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지
WO2022139452A1 (ko) 리튬 이차전지용 양극의 제조 방법 및 이에 의하여 제조된 리튬 이차전지용 양극
WO2022191639A1 (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
WO2021066581A1 (ko) 구형화된 카본계 음극활물질, 이의 제조방법, 이를 포함하는 음극 및 리튬 이차전지
WO2022080836A1 (ko) 리튬이온 이차 전지용 음극
WO2021066582A1 (ko) 구형화된 카본계 음극활물질, 이의 제조방법, 이를 포함하는 음극 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022519323

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020871902

Country of ref document: EP

Effective date: 20220329