WO2016125819A1 - リチウム二次電池用複合活物質およびその製造方法 - Google Patents

リチウム二次電池用複合活物質およびその製造方法 Download PDF

Info

Publication number
WO2016125819A1
WO2016125819A1 PCT/JP2016/053177 JP2016053177W WO2016125819A1 WO 2016125819 A1 WO2016125819 A1 WO 2016125819A1 JP 2016053177 W JP2016053177 W JP 2016053177W WO 2016125819 A1 WO2016125819 A1 WO 2016125819A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium secondary
secondary battery
mass
graphite
Prior art date
Application number
PCT/JP2016/053177
Other languages
English (en)
French (fr)
Inventor
亮 玉城
壽 塚本
秀樹 川西
徹 津吉
向後 雅則
太地 荒川
日出彦 三崎
昌則 阿部
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015252325A external-priority patent/JP6759583B2/ja
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2016125819A1 publication Critical patent/WO2016125819A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a composite active material for a lithium secondary battery and a method for producing the same.
  • lithium ion secondary battery lithium secondary battery
  • Patent Document 1 discloses a composite active material for a lithium secondary battery capable of producing a lithium secondary battery having both large charge / discharge capacity, high-speed charge / discharge characteristics, and good cycle characteristics, and a manufacturing method thereof. Has been.
  • a composite active material for a lithium secondary battery containing a carbonaceous material derived from tar pitch while having a high charge / discharge capacity by adding a metal element is disclosed (for example, see Patent Document 2).
  • the composite active material for a lithium secondary battery to which a metal element is added has excellent characteristics such as charge / discharge capacity, but has a problem that the charge / discharge cycle life tends to be reduced. Therefore, a composite active material whose charge / discharge cycle life is improved by a composite active material containing soft carbon is also disclosed (for example, see Patent Document 3).
  • the volume of the electrode material does not expand even after repeated charge and discharge from the viewpoint of safety of use of the battery.
  • the volume expansion of the electrode material is large, the occurrence of leakage of the electrolytic solution and the reduction of the battery life are caused.
  • the required characteristics for battery materials have increased greatly, and the required level for cycle characteristics has further increased.
  • the inventors of the present invention manufactured a lithium secondary battery composite active material containing silicon as a battery active material that can be combined with lithium ions in accordance with the manufacturing method described in Patent Document 1 described above.
  • electrode materials for example, negative electrode materials
  • composite active materials for batteries were evaluated, irreversibly large volume expansion beyond the theoretical expansion associated with the alloying of lithium and silicon after several cycles It was found that further improvement is necessary.
  • cycle characteristics although the conventional requirement level is satisfied, the higher requirement level of recent times is not satisfied, and further improvement is necessary.
  • the present invention is capable of producing an electrode material in which volume expansion is suppressed even after repeated charge and discharge, and capable of producing a lithium secondary battery exhibiting excellent cycle characteristics. It is an object to provide a composite active material for a secondary battery and a method for producing the same.
  • Another object of the present invention is to provide a lithium secondary battery including the composite active material for lithium secondary batteries.
  • the present invention has the following gist.
  • a composite active material for a lithium secondary battery comprising Si or Si alloy and a carbonaceous material or a carbonaceous material and a graphite component
  • the active material has an average particle diameter (D50) of 1 to 40 ⁇ m, a specific surface area There 0.5 ⁇ 45m 2 / g, an average pore diameter of 10 ⁇ 40 nm, the composite active material for a lithium secondary battery open pore volume is less than 0.06 cm 3 / g.
  • a composite active material for a lithium secondary battery comprising a graphite component, hard carbon, soft carbon, and a battery active material that can be combined with lithium ions.
  • the average particle diameter (D50) of the battery active material that can be combined with lithium ions is 0.01 to 0.6 ⁇ m, D90 is 0.01 to 1.0 ⁇ m, and the BET specific surface area by the BET method is 40 to 300 m.
  • the composite active material for a lithium secondary battery according to (4) which is 2 / g. (6) 15 to 65 parts by mass of graphite component, 5 to 40 parts by mass of hard carbon, 5 to 60 parts by mass of soft carbon, and 5 to 80 parts by mass of battery active material that can be combined with lithium ions (4) or (5)
  • the graphite component contains 26 elements (Al, Ca, Cr, Fe, K, Mg, Mn, Na, Ni, V, Zn, Zr, Ag, As, Ba, Be, Cd by ICP emission spectroscopy. , Co, Cu, Mo, Pb, Sb, Se, Th, Tl, U)
  • the purity obtained from the semi-quantitative value of impurities is 99.9% or more (1000 ppm or less), and ion chromatography (IC) by oxygen flask combustion method.
  • the composite active material for a lithium secondary battery according to any one of (1) to (6), wherein an S amount by a measurement method is 0.3% by weight or less and / or a BET specific surface area is 40 m 2 / g or less.
  • Composite active material for secondary batteries. (9) The Si or Si alloy content is 10 to 60 parts by mass, the carbonaceous material content is 5 to 60 parts by mass, and the graphite component content is 20 to 80 parts by mass. 3) The composite active material for a lithium secondary battery according to any one of (7). (10) A battery active material that can be combined with lithium ions is sandwiched between thin graphite layers having a thickness of 0.2 ⁇ m or less, and the structure spreads in a laminated and / or network shape.
  • the composite active material for a lithium secondary battery according to any one of (4) to (7), wherein the thin layer is curved near the surface of the active material particles to cover the active material particles.
  • (11) A step of mixing Si or Si alloy, a carbon precursor, and if necessary, a graphite component, a step of granulating and compacting, and crushing and spheronizing the mixture to form substantially spherical composite particles
  • a step of firing the composite particles in an inert atmosphere a step of mixing the carbon precursor and the composite particles or the fired powder, and heating the mixture in an inert atmosphere to fire the carbon film.
  • the manufacturing method of the composite active material for lithium secondary batteries in any one of (1)-(3), (7)-(9) including the process of obtaining the carbon-coated composite particle.
  • the carbon-coated composite particles obtained in (11), the spheroidized composite particles, or the fired powder and the carbon precursor are fired in an inert atmosphere, and the carbon film is coated on the inside and outside of the composite particles or the fired powder.
  • a method for producing a composite active material is performed.
  • the soft carbon precursor is at least one selected from the group consisting of coal pitch, petroleum pitch, mesophase pitch, coke, low molecular weight heavy oil, and derivatives thereof.
  • the manufacturing method of the composite active material for lithium secondary batteries in any one of.
  • the heating temperature is 400 ° C. or higher and the temperature rising rate is 1 ° C./min or higher.
  • the composite for lithium secondary batteries which can produce the electrode material by which volume expansion was suppressed even after repeating charging / discharging, and can produce the lithium secondary battery which shows the outstanding cycling characteristics is possible.
  • An active material and a manufacturing method thereof can be provided.
  • a lithium secondary battery including the above-described composite active material for lithium secondary batteries can also be provided.
  • the composite active material for a lithium secondary battery according to the present invention is a composite active material for a lithium secondary battery comprising Si or a Si alloy, and a carbonaceous material or a carbonaceous material and a graphite component.
  • D50 1 to 40 ⁇ m, specific surface area 0.5 to 45 m 2 / g, average pore diameter 10 to 40 nm, open pore volume 0.06 cm 3 / g or less composite active material for lithium secondary battery
  • Si in the active material A is a general grade metal silicon having a purity of about 98% by weight, a chemical grade metal silicon having a purity of 2 to 4N, a polysilicon having a purity higher than 4N purified by chlorination and distillation, a single crystal Ultrahigh-purity single crystal silicon that has undergone a deposition process by a growth method, or those that are doped with elements of Group 13 or 15 of the periodic table to be p-type or n-type, wafers generated in the semiconductor manufacturing process, There is no particular limitation as long as it has a purity equal to or higher than that of general-purpose grade metal silicon, such as cutting scraps and discarded wafers that are defective in the process.
  • the Si alloy referred to as the active material A is an alloy containing Si as a main component.
  • the element contained other than Si is preferably one or more of elements of Groups 2 to 15 of the periodic table, and the selection and / or addition amount of the element having a melting point of the phase contained in the alloy of 900 ° C. or more. Is preferred.
  • the average particle diameter (D50) of the Si compound is preferably 0.01 to 5 ⁇ m, more preferably 0.01 to 1 ⁇ m, particularly preferably 0.05 to 0.6 ⁇ m. If it is smaller than 0.01 ⁇ m, the capacity and initial efficiency due to surface oxidation are drastically reduced, and if it is larger than 5 ⁇ m, cracking is severely caused by expansion due to lithium insertion, and cycle deterioration tends to be severe.
  • the average particle size (D50) is a volume average particle size measured with a laser particle size distribution meter.
  • the content of the Si compound is preferably 10 to 80 parts by mass, particularly preferably 15 to 50 parts by mass.
  • the content of the Si compound is less than 10 parts by mass, a sufficiently large capacity cannot be obtained as compared with the conventional graphite, and when it is greater than 80 parts by mass, cycle deterioration tends to become severe.
  • the carbonaceous material referred to as the active material A is an amorphous or microcrystalline carbon material, easily graphitized carbon (soft carbon) that is graphitized by a heat treatment exceeding 2000 ° C., and hardly graphitized carbon (hard). Carbon).
  • Hard carbon is preferably obtained by carbonizing a precursor such as a resin or a resin composition.
  • a precursor such as a resin or a resin composition.
  • the resin or resin composition is carbonized and can be used as a carbon material for a lithium ion secondary battery.
  • the resin or resin composition that is the raw material (precursor) of the hard carbon include polymer compounds (for example, thermosetting resins and thermoplastic resins).
  • the thermosetting resin is not particularly limited.
  • a phenol resin such as a novolac type phenol resin or a resol type phenol resin
  • an epoxy resin such as a bisphenol type epoxy resin or a novolac type epoxy resin
  • a melamine resin such as a bisphenol type epoxy resin or a novolac type epoxy resin
  • a melamine resin such as a bisphenol type epoxy resin or a novolac type epoxy resin
  • a melamine resin such as a bisphenol type epoxy resin or a novolac type epoxy resin
  • a melamine resin such as a bisphenol type epoxy resin or a novolac type epoxy resin
  • a melamine resin such as a bisphenol type epoxy resin or a novolac type epoxy resin
  • a melamine resin such as a bisphenol type epoxy resin or a novolac type epoxy resin
  • a melamine resin such as a bisphenol type epoxy resin or a novolac type epoxy resin
  • a melamine resin such as a bisphenol type epoxy resin or a novolac
  • thermoplastic resin is not particularly limited.
  • polyethylene polystyrene, acrylonitrile-styrene (AS) resin, acrylonitrile-butadiene-styrene (ABS) resin, polypropylene, polyethylene terephthalate, polycarbonate, polyacetal, polyphenylene ether, poly Examples include butylene terephthalate, polyphenylene sulfide, polysulfone, polyethersulfone, and polyetheretherketone.
  • hard carbon raw materials include phenolic resins such as novolac type phenolic resins and resol type phenolic resins.
  • the shape of the hard carbon precursor is not particularly limited, and any shape such as powder, plate, granule, fiber, lump, and sphere can be used. These precursors are preferably dissolved in a solvent used when various components are mixed.
  • the weight average molecular weight of the hard carbon precursor used is preferably 1000 or more, more preferably 1,000,000 or less, from the viewpoint that the effect of the active material A is more excellent.
  • Soft carbon is preferably obtained by carbonizing a precursor such as a resin or a resin composition.
  • a precursor such as a resin or a resin composition.
  • the resin or resin composition is carbonized and can be used as a carbon material for a lithium ion secondary battery.
  • the resin or resin composition that is the raw material (precursor) of the soft carbon is not particularly limited, and coal-based pitch (for example, coal tar pitch), petroleum-based pitch, mesophase pitch, coke, low molecular weight heavy oil, Alternatively, derivatives thereof are exemplified, and coal-based pitch (for example, coal tar pitch), petroleum-based pitch, mesophase pitch, coke, low molecular weight heavy oil, or derivatives thereof are preferable.
  • the soft carbon obtained from precursors, such as coal pitch is preferable at the point which the effect of the active material A is more excellent.
  • the shape of the soft carbon precursor is not particularly limited, and any shape such as powder, plate, granule, fiber, lump, and sphere can be used. These precursors are preferably dissolved in a solvent used when various components are mixed.
  • the weight average molecular weight of the soft carbon precursor used is preferably 1000 or more, more preferably 1,000,000 or less, from the viewpoint that the effect of the active material A is more excellent.
  • the content of the carbonaceous material is preferably 90 to 10 parts by mass, and particularly preferably 60 to 10 parts by mass.
  • the content of the carbonaceous material is less than 10 parts by mass, the carbonaceous material cannot cover the Si compound, the conductive path becomes insufficient, and the capacity deterioration easily occurs.
  • the content is larger than 90 parts by mass, the capacity is sufficient. I can't get it.
  • Examples of the graphite component include natural graphite materials and artificial graphite. Among them, exfoliated graphite obtained by exfoliating natural graphite usually called graphite is preferable.
  • exfoliated graphite means graphite having 400 or less graphene sheets stacked.
  • the graphene sheets are bonded to each other mainly by van der Waals force.
  • the number of graphene sheets laminated in exfoliated graphite is such that the battery active material that can combine with lithium ions and exfoliated graphite are more evenly dispersed, and the expansion of the battery material using the composite active material for lithium secondary batteries is further suppressed. And / or 300 or less, more preferably 200 or less, and even more preferably 150 or less in that the cycle characteristics of the lithium secondary battery are more excellent. From the viewpoint of handleability, 5 or more layers are preferable.
  • the number of graphene sheets stacked in exfoliated graphite can be measured using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the average thickness of exfoliated graphite is preferably 40 nm or less, and more preferably 22 nm or less, from the viewpoint that the effect of the active material A is more excellent.
  • the lower limit is not particularly limited, but is usually 4 nm or more because the production procedure becomes complicated.
  • the average thickness is measured by observing exfoliated graphite by electron microscope observation (TEM), measuring the thickness of 10 or more layers of laminated graphene sheets in exfoliated graphite, and calculating the value as arithmetic. By averaging, an average thickness is obtained.
  • TEM electron microscope observation
  • Exfoliated graphite is obtained by exfoliating a graphite compound between its layer surfaces.
  • exfoliated graphite examples include so-called expanded graphite.
  • the expanded graphite contains graphite, for example, scaly graphite is treated with concentrated sulfuric acid, nitric acid, hydrogen peroxide, etc., and these chemicals are intercalated into the gaps in the graphene sheet, and further heated. It is obtained by widening the gap between the graphene sheets when the intercalated chemical solution is vaporized.
  • a predetermined composite active material for a lithium secondary battery can be produced using expanded graphite as a starting material. That is, expanded graphite can also be used as the graphite component in the composite active material for a lithium secondary battery.
  • the graphite component expanded graphite subjected to spheroidizing treatment can be mentioned.
  • the procedure of the spheronization process will be described in detail later.
  • the expanded graphite is subjected to spheronization treatment, it is spheroidized together with other components (for example, hard carbon and soft carbon precursors, battery active materials that can be combined with lithium ions). Processing may be performed.
  • the specific surface area of the graphite component is not particularly limited, but is preferably 10 m 2 / g or more, and more preferably 20 m 2 / g or more in that the effect of the active material A is more excellent.
  • the upper limit is not particularly limited, but the specific surface area is preferably 200 m 2 / g or less in that the production procedure is complicated and the synthesis is difficult.
  • the specific surface area of the graphite component is measured using a BET method (JIS Z 8830, one-point method) by nitrogen adsorption.
  • the graphite component preferably has a purity of 99.9 wt% or more, or an impurity amount of 1000 ppm or less, an S amount of 0.3 wt% or less, and / or a BET specific surface area of 200 m 2 / g or less. If the purity is less than 99.9% by weight or the amount of impurities is more than 1000 ppm, the irreversible capacity due to the formation of SEI derived from impurities increases, so the initial charge / discharge efficiency, which is the discharge capacity with respect to the initial charge capacity, decreases. Tend. Moreover, since the irreversible capacity
  • the amount of S is preferably 0.1% by weight or less.
  • the BET specific surface area of the graphite component is higher than 40 m 2 / g, the area where the graphite component reacts increases, and the initial charge / discharge efficiency decreases.
  • Impurity is measured by ICP emission spectroscopic analysis using the following 26 elements (Al, Ca, Cr, Fe, K, Mg, Mn, Na, Ni, V, Zn, Zr, Ag, As, Ba, Be, Cd. , Co, Cu, Mo, Pb, Sb, Se, Th, Tl, U). Further, the amount of S is measured by ion chromatography (IC) measurement after filtering and filtering by an oxygen flask combustion method.
  • IC ion chromatography
  • the content of each is preferably 5 to 60 parts by mass and 20 to 80 parts by mass, and 10 to 55 parts by mass. A ratio of 30 to 70 parts by mass is particularly preferable.
  • the content of the carbonaceous material is less than 5 parts by mass, the carbonaceous material cannot cover the Si compound and graphite, adhesion between the Si compound and graphite becomes insufficient, and formation of active material particles tends to be difficult.
  • the effect of the graphite whose electroconductivity is higher than a carbonaceous material is not fully drawn out.
  • the particle size (D50: 50% volume particle size) of the active material A is not particularly limited, but is preferably 2 to 40 ⁇ m, more preferably 5 to 35 ⁇ m, and further preferably 5 to 30 ⁇ m in terms of more excellent effects of the active material A. preferable.
  • the particle size (D90: 90% volume particle size) is not particularly limited, but is preferably from 10 to 75 ⁇ m, more preferably from 10 to 60 ⁇ m, and even more preferably from 20 to 45 ⁇ m from the viewpoint that the effect of the active material A is more excellent.
  • the particle size (D10: 10% volume particle size) is not particularly limited, but is preferably 1 to 20 ⁇ m, more preferably 2 to 10 ⁇ m, from the viewpoint that the effect of the active material A is more excellent.
  • D10, D50, and D90 correspond to the particle sizes of 10%, 50%, and 90% from the fine particle side of the cumulative particle size distribution measured by the laser diffraction scattering method, respectively.
  • the composite active material for a lithium secondary battery is added to the liquid and mixed vigorously using ultrasonic waves, and the prepared dispersion is introduced as a sample into the apparatus for measurement.
  • the liquid it is preferable to use water, alcohol, or a low-volatile organic solvent for work.
  • the obtained particle size distribution diagram preferably shows a normal distribution.
  • the composite active material for lithium secondary batteries of active material A has a specific surface area of 0.5 to 45 m 2 / g, preferably 0.5 to 30 m 2 / g, particularly preferably 0.5 to 10 m 2 / g. It is. By setting it as this range, the solid electrolyte layer (SEI) formed on the active material surface by contact with the electrolytic solution and charge / discharge can be suppressed, and the initial Coulomb efficiency and the capacity retention rate can be improved.
  • SEI solid electrolyte layer
  • the average pore diameter is 10 to 40 nm, preferably 10 to 30 nm, particularly preferably 10 to 20 nm.
  • the open pore volume is at most 0.06 cm 3 / g, preferably 0.04 cm 3 / g, particularly preferably at most 0.02 cm 3 / g.
  • the specific surface area (BET specific surface area), average pore diameter, and open pore volume of the composite active material for a lithium secondary battery are measured by the nitrogen adsorption multipoint method after vacuum drying the sample at 300 ° C. for 30 minutes.
  • the active material A has a structure in which the battery active material is sandwiched between graphite thin layers having a thickness of 0.2 ⁇ m or less, and the structure spreads in a laminated and / or network shape. It is preferable that the active material particles are covered near the surface.
  • the electron transfer effect of the graphite thin layer is diminished.
  • the graphite thin layer is linear when viewed in cross section, its length is preferably at least half the size of the composite active material particles for lithium secondary batteries for electron transfer, and the size of the composite material particles for lithium secondary batteries More preferably, they are comparable.
  • the graphite thin layer is network-like, it is preferable for electron transfer that the network of the graphite thin layer is connected to more than half of the size of the active material particles, and more preferably about the same size as the size of the active material particles. .
  • the graphite thin layer bends near the surface of the active material particles to cover the active material particles.
  • the electrolyte enters from the end face of the graphite thin layer, the battery active material or the end face of the graphite thin layer is in direct contact with the electrolyte, and a reaction product is formed during charge and discharge, which reduces efficiency. Risk is reduced.
  • a composite active material for a lithium secondary battery includes a step of mixing Si or a Si alloy, a carbon precursor, and, if necessary, a graphite component, a step of granulating and compacting, and a pulverizing mixture. And forming a substantially spherical composite particle by spheronization treatment, firing the composite particle in an inert atmosphere, mixing the carbon precursor with the composite particle or fired powder, and a mixture thereof. It includes a step of obtaining a composite particle in which a carbon film is fired powder or carbon-coated by heating in an inert atmosphere.
  • the raw material Si compound is preferably a powder having an average particle diameter (D50) of 0.01 to 5 ⁇ m.
  • D50 average particle diameter
  • the above-described Si compound raw material (ingot, wafer, powder, etc.) is pulverized by a pulverizer, and in some cases, a classifier is used. In the case of a lump such as an ingot or wafer, it can first be pulverized using a coarse pulverizer such as a jaw crusher.
  • a ball or bead is used to move the grinding medium, and the impact force, frictional force, or compression force of the kinetic energy is used to grind the material to be crushed, the media agitation mill, or the compression force of the roller.
  • It can be finely pulverized by using a hammer mill, pin mill, disk mill that pulverizes the material to be crushed using the impact force of the colloid, a colloid mill that uses shear force, or a high-pressure wet-on-front collision disperser "Ultimizer”. .
  • Fine pulverization very fine particles can be obtained, for example, by using a wet bead mill and gradually reducing the diameter of the beads.
  • dry classification wet classification, or sieving classification can be used.
  • the process of dispersion, separation (separation of fine particles and coarse particles), collection (separation of solid and gas), and discharge are performed sequentially or simultaneously, mainly using air flow.
  • Pre-classification adjustment of moisture, dispersibility, humidity, etc.
  • the moisture in the airflow used so that the classification efficiency is not lowered due to the influence of shape, air flow disturbance, velocity distribution, static electricity, etc. Adjust the oxygen concentration.
  • pulverization and classification are performed at a time, and a desired particle size distribution can be obtained.
  • a method for obtaining a Si compound having a predetermined particle size a method in which the Si compound is heated and evaporated by plasma, laser, or the like, and solidified in an inert atmosphere, or CVD or plasma CVD using a gas raw material is used. These methods are suitable for obtaining ultrafine particles of 0.1 ⁇ m or less.
  • the carbon precursor as a raw material is not particularly limited as long as it is a carbon-based compound mainly composed of carbon and becomes a carbonaceous material by heat treatment in an inert atmosphere.
  • the graphitizable carbon (soft carbon), graphite Examples include non-graphitizable carbon (hard carbon) that is difficult to form.
  • raw material graphite component natural graphite, artificial graphite obtained by graphitizing petroleum or coal pitch, etc. can be used, and scale-like, oval or spherical, cylindrical or fiber-like are used.
  • these graphite components are subjected to acid treatment, oxidation treatment, and then expanded by heat treatment, and part of the graphite layer is peeled off to form an accordion, or by pulverized expanded graphite or ultrasonic waves, etc.
  • Graphene or the like exfoliated can also be used.
  • Expanded graphite or a pulverized product of expanded graphite is superior in flexibility to other graphites, and in the process of forming composite particles, which will be described later, the pulverized particles can be rebound to easily form substantially spherical composite particles. Can be formed.
  • the raw material graphite component is adjusted to a size that can be used in the mixing process in advance, and the particle size before mixing is 1 to 100 ⁇ m for natural graphite or artificial graphite, or 5 ⁇ m to crushed expanded graphite or expanded graphite, or graphene. It is about 5 mm.
  • the graphite component can be kneaded.
  • an Si compound, a carbon precursor, and, if necessary, a graphite component are added to the solvent, and the Si compound and carbon are dissolved in the solution in which the carbon precursor is dissolved. It can be carried out by dispersing and mixing the precursor and, if necessary, the graphite component, and then removing the solvent.
  • the solvent to be used can be used without particular limitation as long as it can dissolve the carbon precursor.
  • pitch or tar when pitch or tar is used as the carbon precursor, quinoline, pyridine, toluene, benzene, tetrahydrofuran, creosote oil or the like can be used.
  • polyvinyl chloride tetrahydrofuran, cyclohexanone, nitrobenzene or the like can be used.
  • phenol resin or furan resin is used, ethanol, methanol or the like can be used.
  • a kneader As a mixing method, when the carbon precursor is heat-softened, a kneader (kneader) can be used.
  • a solvent in addition to the above-described kneader, a Nauter mixer, a Roedige mixer, a Henschel mixer, a high speed mixer, a homomixer, or the like can be used. Further, the jacket is heated with these apparatuses, and then the solvent is removed with a vibration dryer, a paddle dryer or the like.
  • the carbon precursor is solidified, or stirring in the process of solvent removal is continued for a certain amount of time, so that the mixture of Si compound, carbon precursor, and, if necessary, the graphite component is granulated and consolidated. Is done. Further, the carbon precursor is solidified or the mixture after removing the solvent is compressed by a compressor such as a roller compactor and coarsely pulverized by a crusher, whereby granulation and consolidation can be achieved.
  • the size of the granulated / consolidated product is preferably 0.1 to 5 mm in view of ease of handling in the subsequent pulverization step.
  • the granulation / consolidation methods include ball mills that pulverize the material to be crushed using compressive force, media agitation mills, roller mills that pulverize using the compressive force of rollers, and crushed material to lining material at high speed.
  • a jet mill that collides or collides with particles and pulverizes by the impact force of the impact, and a hammer mill and pin mill that crushes the material to be crushed using the impact force of the rotation of a rotor with a fixed hammer, blade, pin, etc.
  • a dry pulverization method such as a disk mill is preferred.
  • dry classification such as air classification and sieving is used.
  • pulverization and classification are performed at a time, and a desired particle size distribution can be obtained.
  • the granulated and consolidated mixture is pulverized and spheroidized by the above-mentioned pulverization method to adjust the particle size, and then passed through a special spheronizing device, and the above-mentioned jet mill and rotor
  • a method of spheroidizing by repeating a method of pulverizing an object to be crushed using an impact force caused by rotation or extending a processing time.
  • Dedicated spheroidizing devices include Hosokawa Micron's Faculty (registered trademark), Nobilta (registered trademark), Mechano-Fusion (registered trademark), Nippon Coke Industrial Co., Ltd. COMPOSI, Nara Machinery Co., Ltd. hybridization system, Earth Technica Co., Ltd. Examples include kryptron orb and kryptron eddy.
  • substantially spherical composite particles can be obtained.
  • the obtained composite particles are fired in an argon gas or nitrogen gas stream or in a vacuum.
  • the firing temperature is preferably 300 to 1200 ° C., particularly preferably 600 to 1200 ° C.
  • the firing temperature is less than 300 ° C.
  • the electric resistance between the graphite layer and Si inside the composite particles and the composite particles increases due to the remaining unheated components of the carbon precursor, and the discharge capacity tends to decrease. It is in.
  • the firing temperature exceeds 1200 ° C., there is a strong possibility that a reaction between the Si compound and the amorphous carbon derived from the carbon precursor or the graphite component occurs, and the discharge capacity tends to decrease.
  • the composite active material for a lithium secondary battery of the present invention is a carbon film obtained by firing the carbon-coated composite particles, the spheroidized composite particles or the fired powder and the carbon precursor obtained in the previous step in an inert atmosphere. It is preferable to manufacture by carrying out the step of coating the inside and outside of the composite particles or fired powder.
  • Examples of the carbon precursor used include coal-based pitch (for example, coal tar pitch), petroleum-based pitch, mesophase pitch, coke, and low molecular weight heavy oil.
  • the carbon precursor is crucible or the like , Heated in an inert atmosphere so as not to come into direct contact with the composite particles, or by adding a hydrocarbon gas such as methane, ethane, ethylene, acetyl, propylene to the inert atmosphere and heating, It is preferable to coat the carbon film in the gas phase inside or outside of the fired powder, carbon-coated composite particles, or carbon-coated fired powder.
  • the composite active material for a lithium secondary battery of the present invention is subjected to a step of coating the carbon film in the gas phase, or a step of air classification of the spherically processed powder, the fired powder, or the carbon-coated powder. It is preferable to manufacture.
  • the particle size of the powder to be classified is adjusted by putting the powder into an air classification device such as ATP-50 manufactured by Hosokawa Micron and adjusting the operating conditions such as rotor speed and differential pressure. Can be controlled.
  • an air classification device such as ATP-50 manufactured by Hosokawa Micron
  • the operating conditions such as rotor speed and differential pressure. Can be controlled.
  • ⁇ Graphite component> As a graphite component, the same thing as the graphite component of the active material A can be mentioned.
  • ⁇ Hard carbon> Examples of the hard carbon include those similar to the hard carbon in the carbonaceous material of the active material A.
  • Soft carbon> Examples of the soft carbon include those similar to the soft carbon in the carbonaceous material of the active material A.
  • ⁇ Battery active material that can be combined with lithium ion> A battery active material that can be combined with lithium ions (hereinafter, also simply referred to as “battery active material”) is a material that can combine with lithium ions to absorb and release lithium ions (eg, metal, metal carbide, nitride). Or oxide). For example, a metal or nonmetal capable of absorbing and releasing lithium ions, or a metal oxide capable of being alloyed with lithium.
  • the battery active material may contain at least one element selected from the group consisting of Group 13 elements of the periodic table, Group 14 elements of the periodic table, Group 15 elements of the periodic table, magnesium, and manganese. More specifically, more specifically, more specifically, a metal such as Si, Sn, Al, Sb, Zn, Bi, Cd, Pb, In, Ag, Ga, or Ge (a metal that can be alloyed with lithium) or an alloy containing these metals (for example, a Si alloy, a Sb alloy, a Sn alloy, an In alloy, or a metal oxide such as SnO or SnO 2 (a metal oxide that can be alloyed with lithium) may be used.
  • a metal such as Si, Sn, Al, Sb, Zn, Bi, Cd, Pb, In, Ag, Ga, or Ge
  • an alloy containing these metals For example, a Si alloy, a Sb alloy, a Sn alloy, an In alloy, or a metal oxide such as SnO or SnO 2 (a
  • the battery active material is made of Si, Sn, Al, Sb, and In in that the discharge capacity and cycle characteristics of the lithium secondary battery obtained using the obtained composite active material for lithium secondary battery are more excellent. It is preferable to contain at least one element selected from the group, and it is more preferable to contain Si and Sn elements.
  • release lithium ion other than the alloy which consists of a combination of the above-mentioned metal may be sufficient.
  • the content of the metal that can be alloyed with the lithium in the alloy is preferably larger.
  • the upper limit of the metal content is preferably 70% by mass, and more preferably 60% by mass or less.
  • the shape of the battery active material to be used is not particularly limited, and any shape such as powder, plate, granule, fiber, lump, and sphere can be used.
  • the average particle diameter (D50) of the battery active material used is preferably 0.01 to 0.6 ⁇ m, particularly preferably 0.01 to 0.3 ⁇ m.
  • the average particle diameter (D50) is a volume average particle diameter measured by a laser diffraction method or a dynamic light scattering method.
  • D90 is preferably 0.01 to 1.0 ⁇ m, particularly preferably 0.01 to 0.6 ⁇ m.
  • D90 is a particle diameter corresponding to a cumulative value of 90% from the minimum particle diameter value measured by the laser diffraction method or the dynamic light scattering method.
  • the BET specific surface area measured by the BET method is preferably 40 to 300 m 2 / g, particularly preferably 70 to 300 m 2 / g.
  • the above-mentioned particle size is obtained by pulverizing the battery active material using a known apparatus such as a stirring tank type stirring mill (bead mill or the like). Small powder can be obtained.
  • a stirring tank type stirring mill bead mill or the like.
  • Small powder can be obtained.
  • the content of the graphite component in the active material B is not particularly limited, but is preferably 15 to 65 parts by mass, more preferably 25 to 55 parts by mass, and 35 to 50 parts by mass in terms of more excellent effects of the active material B. Further preferred.
  • the content of hard carbon is not particularly limited, but is preferably 5 to 40 parts by mass, more preferably 8 to 30 parts by mass, from the viewpoint that the effect of the active material B is more excellent.
  • the content of soft carbon is preferably 5 to 60 parts by mass, more preferably 15 to 50 parts by mass, and still more preferably 20 to 40 parts by mass from the viewpoint that the effect of the invention is more excellent.
  • the content of the battery active material in the active material B is not particularly limited, but is preferably 5 to 80 parts by weight, more preferably 10 to 70 parts by weight, and 15 to 50% by weight from the viewpoint that the effect of the active material B is more excellent. Is more preferable.
  • the shape of the active material B is not particularly limited, but preferably has a substantially spherical shape in that the effect of the active material B is more excellent.
  • the substantially spherical shape means that particles produced by pulverization or the like have rounded corners, spherical or spheroid shapes, discs or oblong shapes with thick rounded corners, or those deformed And the roundness is 0.7 to 1.0.
  • the circularity was measured by image analysis of a particle image taken with a scanning electron microscope. That is, when the projected area (A) and the perimeter (PM) of a particle are measured from a photograph and the area of a perfect circle having the same perimeter (PM) is (B), the circularity is defined as A / B.
  • the particle size (D50: 50% volume particle size) of the active material B is not particularly limited, but is preferably 2 to 40 ⁇ m, more preferably 5 to 35 ⁇ m, and further preferably 5 to 30 ⁇ m in terms of more excellent effects of the active material B. preferable.
  • the particle size (D90: 90% volume particle size) is not particularly limited, but is preferably from 10 to 75 ⁇ m, more preferably from 10 to 60 ⁇ m, and even more preferably from 20 to 45 ⁇ m from the viewpoint that the effect of the active material B is more excellent.
  • the particle size (D10: 10% volume particle size) is not particularly limited, but is preferably 1 to 20 ⁇ m, more preferably 2 to 10 ⁇ m, in view of the superior effect of the active material B.
  • D10, D50, and D90 correspond to the particle sizes of 10%, 50%, and 90% from the fine particle side of the cumulative particle size distribution measured by the laser diffraction scattering method, respectively.
  • active material B is added to the liquid and mixed vigorously using ultrasonic waves, and the prepared dispersion is introduced as a sample into the apparatus for measurement.
  • the liquid it is preferable to use water, alcohol, or a low-volatile organic solvent for work.
  • the obtained particle size distribution diagram preferably shows a normal distribution.
  • the specific surface area of the composite active material B is not particularly limited, in terms of the effect of the active material B is more excellent, preferably 30 m 2 / g or less, 10 m 2 / g or less is more preferable. Although a minimum in particular is not restrict
  • the measurement method of the specific surface area (BET specific surface area) of the active material B is measured by a nitrogen adsorption one-point method after vacuum drying the sample at 300 ° C. for 30 minutes.
  • the active material B has a structure in which the battery active material is sandwiched between thin graphite layers having a thickness of 0.2 ⁇ m or less, and the structure spreads in a laminated and / or network shape. It is preferable that the active material particles are covered near the surface.
  • the electron transfer effect of the graphite thin layer is diminished.
  • the graphite thin layer is linear when viewed in cross section, its length is preferably at least half the size of the negative electrode active material particles for electron transfer, and more preferably about the same as the size of the active material particles.
  • the graphite thin layer is network-like, it is preferable for electron transfer that the network of the graphite thin layer is connected to more than half of the size of the active material particles, and more preferably about the same size as the size of the active material particles. .
  • the graphite thin layer bends near the surface of the active material particles to cover the active material particles.
  • the electrolyte enters from the end face of the graphite thin layer, the battery active material or the end face of the graphite thin layer is in direct contact with the electrolyte, and a reaction product is formed during charge and discharge, which reduces efficiency. Risk is reduced.
  • the active material B has a structure in which the composite active material contains soft carbon so that the graphite component and the battery active material are covered with soft carbon.
  • the surface of the active material B is further covered with a carbonaceous material.
  • the carbonaceous material include those similar to soft carbon.
  • the spheronization step is a step of spheronizing a first mixture containing a graphite component and a battery active material that can be combined with lithium ions.
  • the definitions of the graphite component and battery active material used are as described above.
  • expanded graphite can also be used as the graphite component. That is, the first mixture containing expanded graphite and the battery active material may be spheroidized.
  • the expanded graphite a commercially available product may be used, or it may be produced by a known method.
  • graphite eg, scaly graphite
  • heat treatment preferably treated at 700 to 1000 ° C.
  • the acid is removed, washed with water and dried.
  • the obtained acid-treated graphite is put into a furnace at about 850 ° C., so that the acid that enters the graphite layer is ejected as a gas, and the interlayer partially expands and spreads like a fold or accordion. Shaped expanded graphite is obtained.
  • expanded graphite can also be obtained by using graphite formed with an interlayer compound such as alkali metal instead of acid-treated graphite.
  • the expanded graphite includes a layer (flaky graphite) in which a plurality of graphene sheets are stacked in the direction in which the graphite surfaces overlap, and the graphene sheets are bonded to each other mainly by van der Waals force.
  • the bulk density of the acid-treated graphite obtained above is not particularly limited, 0.6 g / cm 3 or more is preferable and 0.7 g / cm 3 or more is more preferable in view of sufficient expansion of the acid-treated graphite.
  • the upper limit is not particularly limited, but is often 1.0 g / cm 3 or less due to manufacturing problems.
  • the bulk density is measured by inserting the sample into a 100 ml glass graduated cylinder so as not to compress it and dividing the sample mass by the sample volume.
  • While bulk density of the expanded graphite to be used is not particularly limited, in terms of the effect of the active material B is more excellent, preferably 0.05 g / cm 3 or less, 0.01 g / cm 3 or less is more preferable.
  • the lower limit is not particularly limited, but is often 0.001 g / cm 3 or more due to manufacturing problems.
  • the specific surface area of the expanded graphite is not particularly limited, but the specific surface area is preferably 10 m 2 / g or more, more preferably 20 m 2 / g or more, in that the effect of the active material B is more excellent.
  • the upper limit is not particularly limited, the procedure of manufacture becomes complicated, synthesis in terms of difficulty, the specific surface area is preferably 200 meters 2 / g or less.
  • the specific surface area of expanded graphite is measured using the BET method (JIS Z 8830, one-point method) by nitrogen adsorption.
  • the method for obtaining the first mixture containing the graphite component and the battery active material is not particularly limited, and a known method can be adopted, and examples thereof include so-called dry processing or wet processing.
  • the aspect of a wet process is preferable from the point which each component in the obtained 1st mixture mixes more uniformly.
  • the dry treatment for example, there is a method in which a graphite component and a battery active material are added to a known stirrer (for example, a Henschel mixer) and mixed.
  • a known stirrer for example, a Henschel mixer
  • Examples of the wet treatment include a method in which a graphite component and a battery active material are dispersed in a solvent, and the resulting solution is mixed and stirred to remove the solvent.
  • the solvent used in the wet treatment is not particularly limited as long as it can disperse the graphite component and the battery active material.
  • alcohol solvents eg, methanol, ethanol, isopropanol
  • ketone solvents eg, acetone, methyl ethyl ketone, cyclohexanone
  • amide solvents eg, formamide, dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone
  • Nitrile solvents eg acetonitrile, propionitrile
  • ester solvents eg methyl acetate, ethyl acetate
  • carbonate solvents eg dimethyl carbonate, diethyl carbonate
  • ether solvents eg cellosolve
  • halogens examples thereof include a solvent, water, and a mixture thereof.
  • an alcohol-based solvent is preferable in that the cycle characteristics of the lithium secondary battery using the obtained composite active material for a lithium secondary battery are more excellent.
  • the conditions for mixing and stirring the graphite component and the battery active material are not particularly limited, and optimal conditions are appropriately selected according to the materials used.
  • the first mixture may be manufactured by mixing the graphite component and the battery active material while performing ultrasonic treatment.
  • the first mixture may be a mixture obtained by subjecting a composition containing a graphite component and a battery active material to ultrasonic treatment.
  • the method for removing the solvent is not particularly limited, and examples thereof include a method using a known apparatus (for example, an evaporator).
  • the mixing ratio of the graphite component and the battery active material is not particularly limited, but it is preferable that the battery active material is mixed in an amount of 25 to 150 parts by mass with respect to 100 parts by mass of the graphite component because the effect of the active material B is more excellent. 50 to 100 parts by mass is more preferable.
  • the first mixture may contain components other than the graphite component and the battery active material, and examples thereof include a polymer compound used as a precursor of the hard carbon described above.
  • the mixing ratio of the graphite component and the hard carbon precursor is not particularly limited, but the hard carbon precursor is 1 to 50 parts by mass with respect to 100 parts by mass of the graphite component in that the effect of the active material B is more excellent. It is preferably 10 to 30 parts by mass.
  • the press process of pressing the obtained 1st mixture may be included before the spheroidization process mentioned later as needed. If a press process is implemented, the distance between graphite layers will become smaller and the spheroidization process mentioned later advances more efficiently.
  • the pressing method is not particularly limited, and a known method can be adopted.
  • the method of spheroidizing treatment is not particularly limited as long as it is a pulverizer that mainly applies impact stress.
  • the pulverizer include a high-speed rotational impact pulverizer. More specifically, a sample mill, a hammer mill, a pin mill, or the like can be used. Among these, a pin mill is preferable in that the effect of the active material B is more excellent.
  • Examples of high-speed rotary impact type pulverizers include those that collide a sample with a rotor that rotates at high speed and achieve miniaturization by the impact force.
  • a hammer with a fixed or swing type impactor attached to the rotor Mill type hammer type pin mill type rotary disc type with a pin and impact head attached to a rotating disc, an axial flow type that crushes while the sample is conveyed in the shaft direction, and an annular type that refines particles in a narrow annular part Examples include molds. More specifically, a hammer mill, a pin mill, a screen mill, a turbo mill, a centrifugal classification mill, and the like can be given.
  • the collision speed is preferably about 20 m / sec to 100 m / sec.
  • the processing time varies depending on the type of the pulverizer to be used, the amount charged, and the like, but is usually within 2 minutes, and the processing time can be completed in about 10 seconds if the apparatus is provided with an appropriate pin or collision plate. .
  • the spheronization treatment is preferably performed in air. Further, the above process may be performed a plurality of times.
  • First heating step (first firing step) A 1st heating process is a process of heat-processing with respect to the 1st mixture (1st mixture in which the spheronization process was performed) obtained at the said spheronization process.
  • the heating temperature is preferably 400 ° C. or higher, more preferably 600 ° C. or higher, and further preferably 700 ° C. or higher in that the effect of the active material B is more excellent.
  • the upper limit is not particularly limited, but is preferably 2000 ° C. or less, more preferably 1500 ° C. or less, and further preferably 1000 ° C. or less from the viewpoint of heat resistance.
  • the heating time is preferably 0.5 hours or more, and more preferably 1 hour or more.
  • the upper limit is not particularly limited, but is often 5 hours or less from the point where the effects of the invention are saturated.
  • the atmosphere for the heat treatment is preferably an inert atmosphere from the viewpoint of preventing the oxidation of carbon.
  • the mixing step is a step of obtaining the second mixture by mixing the fired product obtained in the first heating step and the soft carbon precursor.
  • a soft carbon precursor is attached to the surface of the fired product (composite particles) containing the graphite component and the battery active material. Therefore, when the 2nd heating process mentioned later is implemented, the precursor of the soft carbon on the surface of a baked material will be baked, and the composite particle covered with soft carbon, ie, a composite active material, will be obtained.
  • the mixing method is not particularly limited, and a known method can be adopted, and examples thereof include the dry processing or the wet processing described in the spheronization process.
  • the mixing ratio of the second mixture and the soft carbon precursor is not particularly limited, but the soft carbon precursor is added in an amount of 0.1 to 100 parts by mass with respect to 100 parts by mass of the second mixture in that the effect of the active material B is more excellent. It is preferable to mix 70 parts by mass, and it is more preferable to mix 15 to 50 parts by mass.
  • a 2nd heating process is a process of heat-processing with respect to the 2nd mixture obtained at the said mixing process.
  • the heat treatment conditions are preferably a heating temperature of 400 ° C. or higher and a temperature increase rate of 1 ° C./min or higher, particularly preferably 3 ° C./min or higher.
  • the heating temperature is less than 400 ° C., the formation of soft carbon becomes insufficient and the battery evaluation characteristics deteriorate.
  • the heating temperature is 1200 ° C. or higher, the reaction between the additive metal element and the graphite element easily occurs, and the battery evaluation characteristics are similarly deteriorated.
  • the rate of temperature increase is less than 1 ° C./min, the specific surface area of the composite active material is increased, the electrolyte is easily immersed, and the battery evaluation characteristics are deteriorated.
  • the composite active material (second mixture) obtained by the firing can be further crushed and classified.
  • the crushing and classification methods are not particularly limited, but crushing to the extent that the first mixture is not broken at the time of crushing is necessary, and a method such as a ball mill having a weak crushing force is preferable. Further, long-time pulverization increases the distribution of small particle diameters and degrades battery evaluation characteristics.
  • a spheronization step of subjecting a first mixture containing a predetermined component to a spheronization process, a first mixture subjected to the spheronization process, and a soft carbon precursor As a second embodiment of the method for producing the active material B, a spheronization step of subjecting a first mixture containing a predetermined component to a spheronization process, a first mixture subjected to the spheronization process, and a soft carbon precursor, The method which has a mixing process which mixes and obtains the 3rd mixture, and a heating process which heat-processes with respect to the obtained 3rd mixture is mentioned.
  • the spheronization step is a step of spheronizing a first mixture containing a graphite component and a battery active material that can be combined with lithium ions.
  • the mixing step is a step of obtaining a third mixture by mixing the spheroidized first mixture and the soft carbon precursor.
  • the definition of the soft carbon precursor used is as described above.
  • the mixing method for obtaining the third mixture is not particularly limited, and a known method can be adopted, and examples thereof include the dry process or the wet process described in the spheronization process of the first embodiment.
  • a heating process is a process which heat-processes with respect to the 3rd mixture obtained at the said mixing process.
  • the conditions for the heat treatment are preferably a heating temperature of 400 ° C. or higher and a temperature increase rate of 1 ° C./min or higher, particularly preferably 3 ° C./min or higher. If the heating temperature is less than 400 ° C., the formation of soft carbon becomes insufficient and the battery evaluation characteristics deteriorate. On the other hand, when the heating temperature is 1200 ° C.
  • the reaction between the additive metal element and the graphite element easily occurs, and the battery evaluation characteristics are similarly deteriorated.
  • the rate of temperature increase is less than 1 ° C./min, the specific surface area of the composite active material is increased, the electrolyte is easily immersed, and the battery evaluation characteristics are deteriorated.
  • the active material (third mixture) obtained by the firing can be further crushed and classified.
  • the crushing and classification methods are not particularly limited, but crushing to the extent that the first mixture is not broken at the time of crushing is necessary, and a method such as a ball mill having a weak crushing force is preferable. Further, long-time pulverization increases the distribution of small particle diameters and degrades battery evaluation characteristics.
  • the spheronization process which performs spheroidization processing to the 4th mixture containing a predetermined ingredient, the heating process which heat-processes with respect to the obtained 4th mixture, The method which has this is mentioned.
  • the spheronization step is a step of spheronizing a fourth mixture containing a graphite component, a hard carbon precursor and a soft carbon precursor, and a battery active material that can be combined with lithium ions.
  • the definitions of the graphite component, the hard carbon precursor and the soft carbon precursor, and the battery active material used are as described above.
  • the mixing method for obtaining the fourth mixture is not particularly limited, and a known method can be adopted, and examples thereof include the dry process or the wet process described in the spheronization process of the first embodiment.
  • Examples of the spheronization processing method include the spheronization processing method of the first embodiment.
  • a heating process is a process of heat-processing with respect to the 4th mixture obtained at the said spheronization process.
  • the heat treatment conditions are preferably a heating temperature of 400 ° C. or higher and a temperature increase rate of 1 ° C./min or higher, particularly preferably 3 ° C./min or higher. If the heating temperature is less than 400 ° C., the formation of soft carbon becomes insufficient and the battery evaluation characteristics deteriorate. On the other hand, when the heating temperature is 1200 ° C. or higher, the reaction between the additive metal element and the graphite element easily occurs, and the battery evaluation characteristics are similarly deteriorated. On the other hand, when the rate of temperature increase is less than 1 ° C./min, the specific surface area of the composite active material is increased, the electrolyte is easily immersed, and the battery evaluation characteristics are deteriorated.
  • the active material (fourth mixture) obtained by the above firing can be further crushed and classified.
  • the crushing and classification methods are not particularly limited, but crushing to the extent that the first mixture is not broken at the time of crushing is necessary, and a method such as a ball mill having a weak crushing force is preferable. Further, long-time pulverization increases the distribution of small particle diameters and degrades battery evaluation characteristics.
  • a vapor phase coating method in which a precursor of soft carbon is heated and melted and vapor phase is adhered to the composite active material obtained above in the gas phase Is mentioned.
  • a soft carbon precursor is not directly mixed in a crucible container containing a composite active material, but the precursor is placed in the same graphite container, sealed with a graphite lid, and heated while flowing nitrogen.
  • the molten / vapor phase of the body adheres to the composite active material, the precursor is modified to soft carbon, and the surface can be covered with a carbonaceous material.
  • the precursor of soft carbon is not particularly limited, and coal tar pitch having a high carbonization rate is preferable.
  • the composite active material for lithium secondary battery (active materials A and B) of the present invention is useful as an active material used for battery materials (electrode materials) used in lithium secondary batteries.
  • the method for producing a negative electrode for a lithium secondary battery using the active materials A and B is not particularly limited, and a known method can be used.
  • a composite active material for a lithium secondary battery and a binder can be mixed, pasted using a solvent, and coated on a copper foil to form a negative electrode for a lithium secondary battery.
  • the current collector is preferably a current collector having a three-dimensional structure in addition to the copper foil in that the battery cycle is more excellent.
  • the current collector material having a three-dimensional structure include carbon fiber, sponge-like carbon (a sponge-like resin coated with carbon), metal, and the like.
  • a current collector having a three-dimensional structure
  • a metal or carbon conductor porous body having a three-dimensional structure
  • a plain weave wire mesh expanded metal, lath net, metal foam, metal woven fabric, metal nonwoven fabric, Carbon fiber woven fabric or carbon fiber non-woven fabric may be used.
  • binder to be used known materials can be used, for example, fluorine-based resins such as polyvinylidene fluoride and polytetrafluoroethylene, SBR, polyethylene, polyvinyl alcohol, carboxymethyl cellulose, polyacrylic acid, glue and the like are used. It is done.
  • fluorine-based resins such as polyvinylidene fluoride and polytetrafluoroethylene, SBR, polyethylene, polyvinyl alcohol, carboxymethyl cellulose, polyacrylic acid, glue and the like are used. It is done.
  • solvent examples include water, isopropyl alcohol, N-methylpyrrolidone, dimethylformamide and the like.
  • conductive carbon black, carbon nanotubes or a mixture thereof As a conductive material.
  • the shape of the composite active material for a lithium secondary battery obtained by the above process is often relatively granulated (particularly substantially spherical), and the contact between particles tends to be point contact.
  • a method of blending carbon black, carbon nanotubes or a mixture thereof into the slurry can be mentioned. Since carbon black, carbon nanotubes, or a mixture thereof can be intensively aggregated in the capillary part formed by contact with the composite active material when the slurry solvent is dried, contact loss (increased resistance) associated with the cycle is prevented. I can do it.
  • the blending amount of carbon black, carbon nanotube, or a mixture thereof is not particularly limited, but is preferably 0.2 to 4 parts by mass with respect to 100 parts by mass of the composite active material for a lithium secondary battery, and 0.5 to 2 parts. More preferably, it is part by mass.
  • the carbon nanotube include a single wall carbon nanotube and a multi-wall carbon nanotube.
  • the positive electrode material positive electrode active material
  • examples of the positive electrode material include metal oxides such as chromium oxide, titanium oxide, cobalt oxide, and vanadium pentoxide, LiCoO 2 , LiNiO 2 , LiNi 1-y Co y O 2 , and LiNi 1-xy.
  • LiMnO 2 O 4 LiFeO 2 lithium metal oxides such as titanium sulfide, chalcogen compounds of transition metals such as molybdenum sulfide, or polyacetylene, polyparaphenylene, conductive polypyrrole Conjugated polymer substances having (Electrolyte)
  • a known electrolytic solution can be used as an electrolytic solution used for a lithium secondary battery having a negative electrode obtained by using the active materials A and B.
  • LiPF 6 LiBF 4, LiAsF 6, LiClO 4, LiB (C 6 H 5), LiCl, LiBr, LiCF 3 SO 3, LiCH 3 SO 3, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) 3, LiN (CF 3 CH 2 OSO 2) 2, LiN (CF 3 CF 3 OSO 2) 2, LiN (HCF 2 CF 2 CH 2 OSO 2) 2, LiN ⁇ (CF 3 ) 2 CHOSO 2 ⁇ 2 , LiB ⁇ C 6 H 3 (CF 3 ) 2 ⁇ 4 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6 Lithium salts can be used.
  • LiPF 6 and LiBF 4 are preferable from the viewpoint of oxidation stability.
  • the electrolyte salt concentration in the electrolyte solution is preferably from 0.1 to 5 mol / liter, more preferably from 0.5 to 3 mol / liter.
  • Examples of the solvent used in the electrolytic solution include carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2 -Methyltetrahydrofuran, ⁇ -butyrolactone, 1,3-dioxofuran, 4-methyl-1,3-dioxolane, ethers such as anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, acetonitrile, chloronitrile, propionitrile, etc.
  • carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate
  • 1,1- or 1,2-dimethoxyethane 1,2-diethoxyethane
  • tetrahydrofuran 2 -Methyltetrahydrofuran
  • a polymer electrolyte such as a polymer solid electrolyte or a polymer gel electrolyte may be used.
  • the polymer compound constituting the matrix of the polymer solid electrolyte or polymer gel electrolyte include ether polymer compounds such as polyethylene oxide and cross-linked products thereof, methacrylate polymer compounds such as polymethacrylate, and acrylate compounds such as polyacrylate.
  • Fluorine polymer compounds such as polymer compounds and polyvinylidene fluoride (PVDF) and vinylidene fluoride-hexafluoropropylene copolymers are preferred. These can also be mixed and used.
  • a fluorine-based polymer compound such as PVDF or vinylidene fluoride-hexafluoropropylene copolymer is particularly preferable.
  • a known material can be used.
  • a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. are illustrated.
  • a synthetic resin microporous membrane is preferred, and among them, a polyolefin microporous membrane is preferred from the viewpoint of film thickness, membrane strength, membrane resistance, and the like.
  • it is a microporous film made of polyethylene and polypropylene, or a microporous film in which these are combined.
  • the lithium secondary battery uses the negative electrode, the positive electrode, the separator, the electrolyte, and other battery components (for example, a current collector, a gasket, a sealing plate, a case, etc.), and is cylindrical, square, or It can have a form such as a button type.
  • the lithium secondary battery of the present invention is used in various portable electronic devices, particularly notebook computers, notebook word processors, palmtop (pocket) computers, mobile phones, mobile faxes, mobile printers, headphone stereos, video cameras, and mobile TVs.
  • Example 1 Preparation of expanded graphite
  • a mixed acid 9 parts by mass of sulfuric acid and 1 part by mass of nitric acid at room temperature for 1 hour
  • the mixed acid was removed with a No 3 glass filter to obtain acid-treated graphite.
  • the acid-treated graphite was washed with water and dried.
  • 5 g of dried acid-treated graphite was stirred in 100 g of distilled water and the pH was measured after 1 hour, the pH was 6.7.
  • the dried acid-treated graphite was put into a vertical electric furnace under a nitrogen atmosphere set at 850 ° C. to obtain expanded graphite.
  • the expanded graphite had a bulk density of 0.002 g / cm 3 and a specific surface area of 45 m 2 / g.
  • Acid-treated natural graphite having a particle diameter of 0.3 mm (width in the (200) plane direction) and a thickness of 10 ⁇ m was placed in a vibrating powder feeder, placed on nitrogen gas at a flow rate of 12 L / min, and heated to 850 ° C. with an electric heater. It was passed through a mullite tube having a length of 1 m and an inner diameter of 20 mm, discharged from the end face to the atmosphere, and a gas such as sulfurous acid was exhausted at the top and expanded graphite was collected at the bottom in a stainless steel container.
  • the expanded graphite had a (200) plane width of 0.3 mm and maintained the original graphite value, but the thickness expanded 2.4 times to 2.4 mm, the appearance was coiled, and the graphite layer was observed by SEM observation. Was peeled off and confirmed to be in the form of an accordion.
  • This mixed dried product was passed through a three-roll mill twice, passed through a sieve having an opening of 1 mm, and granulated and consolidated to a light bulk density of 457 g / L.
  • a substantially spherical calcined powder having a light bulk density of 635 g / L, an average particle diameter (D50) of 22.0 ⁇ m, and a BET specific surface area of 63.3 m 2 / g was obtained through a mesh having an opening of 45 ⁇ m.
  • Carbon coating by vapor phase coating 3 g of pulverized powder coated with carbon by coal tar pitch and 8.5 g of coal tar pitch in an alumina crucible were placed in a graphite boat, and while the nitrogen was flowing (4.3 L / min), the temperature rising rate was 5 ° C./min. The mixture was heated at 900 ° C. for 1 hour to perform carbon coating.
  • the weight increase due to the carbon coating is 1.5% by weight, so that the content of the graphite component is 60 parts by mass, the Si content is 30 parts by mass, the carbonaceous material is 42 parts by mass (the content of hard carbon derived from phenol resin is 10 masses).
  • a composite active material for a lithium secondary battery comprising 32 parts by mass of soft carbon derived from coal tar pitch).
  • the physical properties are as follows. Particle size distribution D50: 32 ⁇ m, D90: 52 ⁇ m, BET specific surface area: 3.3 m 2 / g, average pore diameter: 18.6 nm, open pore volume: 0.017 cm 3 / g, shape: substantially spherical.
  • FIG. 1 shows a secondary electron image of the composite active material by SEM (scanning electron microscope), and FIG. 2 shows a secondary electron image of the particle cross section of the composite active material.
  • the composite active material has a structure in which the graphite component and the battery active material are covered with soft carbon.
  • the BET specific surface area of the substantially spherical mixture before carrying out the above (coating with coal tar pitch) is 63.3 m 2 / g
  • the BET ratio of the obtained substantially spherical composite active material for lithium secondary battery From the point that the surface area is 3.3 m 2 / g and the BET specific surface area is greatly reduced, it can be seen that the graphite component and Si have a structure covered with soft carbon which is a carbonaceous material.
  • the obtained slurry was applied to a copper foil having a thickness of 18 ⁇ m using an applicator so that the solid content was 2.6 mg / cm 2, and dried at 110 ° C. in a vacuum dryer for 0.5 hour. . After drying, it was punched into a circle of 14 mm ⁇ , uniaxially pressed under the condition of a pressure of 0.6 t / cm 2 , and further heat-treated at 110 ° C. for 3 hours under vacuum to form a lithium ion layer having a negative electrode mixture layer having a thickness of 23 ⁇ m. A negative electrode for a secondary battery was obtained.
  • the evaluation cell was prepared by dipping the negative electrode, a 24 mm ⁇ polypropylene separator, a 21 mm ⁇ glass filter, a 18 mm ⁇ 0.2 mm thick metal lithium and a stainless steel foil of the base material into the electrolyte solution in the glove box. After that, the layers were laminated in this order, and finally the lid was screwed in.
  • the electrolyte used was a mixture of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1, FEC (fluoroethylene carbonate), and LiPF 6 dissolved to a concentration of 1.2 vol / L.
  • the cell for evaluation was further put in a sealed glass container containing silica gel, and an electrode through a silicon rubber lid was connected to the charging / discharging device.
  • the evaluation cell was cycle tested in a constant temperature room at 25 ° C. Charging was performed after charging to 0.01 V at a constant current of 2.2 mA until the current value reached 0.2 mA at a constant voltage of 0.01 V. The discharge was performed at a constant current of 2.2 mA up to a voltage value of 1.5V.
  • the initial discharge capacity and initial charge / discharge efficiency were the results of the initial charge / discharge test.
  • the cycle characteristics were evaluated as the capacity retention rate by comparing the discharge capacity after 100 charge / discharge tests under the charge / discharge conditions with the initial discharge capacity.
  • Example 2 70 g of pulverized powder coated with carbon by coal tar pitch prepared in Example 1 and 198 g of coal tar pitch in an alumina crucible were placed in a graphite boat, and while flowing nitrogen (4.3 L / min), the temperature rising rate was 5 The mixture was heated at 900 ° C. for 1 hour, and the carbon coating was performed. The weight increase due to the carbon coating is 0.5% by weight, so that the content of the graphite component is 60 parts by mass, the Si content is 30 parts by mass, the carbonaceous material is 41 parts by mass (the content of hard carbon derived from phenol resin is 10 masses).
  • a composite active material for a lithium secondary battery comprising 31 parts by mass of soft carbon derived from coal tar pitch).
  • This composite active material for a lithium secondary battery was put into an air classifier (ATP-50 manufactured by Hosokawa Micron Corporation), classified at a classifier rotation speed of 15,000 rpm, an average particle diameter (D50) of 6.2 ⁇ m, and D90 of 12
  • a composite active material for a lithium secondary battery having a thickness of 0.0 ⁇ m, a BET specific surface area of 9.5 m 2 / g, an average pore diameter of 15.9 nm, an open pore volume of 0.042 cm 3 / g, and a light bulk density of 220 g / L. Obtained.
  • the BET specific surface area of the substantially spherical mixture before carrying out the above is 63.3 m 2 / g
  • the obtained substantially spherical composite active for lithium secondary battery Since the BET specific surface area of the substance is 9.5 m 2 / g and the BET specific surface area is greatly reduced, the graphite component and Si have a structure covered with soft carbon which is a carbonaceous material. I understand.
  • the obtained slurry was applied to a copper foil having a thickness of 18 ⁇ m using an applicator so that the solid content was 2.2 mg / cm 2 and dried at 110 ° C. in a vacuum dryer for 0.5 hours. . After drying, it was punched out into a circle of 14 mm ⁇ , uniaxially pressed under the condition of a pressure of 2.0 t / cm 2 , and further heat-treated at 110 ° C. for 3 hours under vacuum to form a lithium ion layer having a negative electrode mixture layer having a thickness of 14 ⁇ m. A negative electrode for a secondary battery was obtained.
  • the evaluation cell was prepared by dipping the negative electrode, a 24 mm ⁇ polypropylene separator, a 21 mm ⁇ glass filter, a 18 mm ⁇ 0.2 mm thick metal lithium and a stainless steel foil of the base material into the electrolyte solution in the glove box. After that, the layers were laminated in this order, and finally the lid was screwed in.
  • the electrolyte used was a mixture of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1, FEC (fluoroethylene carbonate), and LiPF 6 dissolved to a concentration of 1.2 vol / L.
  • the evaluation cell was further placed in a sealed glass container containing silica gel, and an electrode through a silicon rubber lid was connected to the charge / discharge device.
  • the evaluation cell was cycle tested in a constant temperature room at 25 ° C. Charging was performed after charging to 0.01 V at a constant current of 2.2 mA until the current value reached 0.2 mA at a constant voltage of 0.01 V. The discharge was performed at a constant current of 2.2 mA up to a voltage value of 1.5V.
  • the initial discharge capacity and initial charge / discharge efficiency were the results of the initial charge / discharge test.
  • the cycle characteristics were evaluated as the capacity retention rate by comparing the discharge capacity after 100 charge / discharge tests under the charge / discharge conditions with the initial discharge capacity.
  • Example 3> Chemical grade metal Si (purity 3N) having an average particle size (D50) of 7 ⁇ m was mixed with ethanol in an amount of 21% by weight and subjected to fine grinding wet bead mill using zirconia beads having a diameter of 0.3 mm for 6 hours. D50) An ultrafine Si slurry having a diameter of 0.3 ⁇ m and a dry BET specific surface area of 100 m 2 / g was obtained.
  • Acid-treated natural graphite having a particle diameter of 0.3 mm (width in the (200) plane direction) and a thickness of 10 ⁇ m was placed in a vibrating powder feeder, placed on nitrogen gas at a flow rate of 12 L / min, and heated to 850 ° C. with an electric heater. The gas was passed through a quartz tube and released from the end face to the atmosphere. A gas such as sulfurous acid was exhausted at the top and expanded graphite was collected at the bottom in a stainless steel container.
  • This mixed dried product was passed through a three-roll mill twice, passed through a sieve having an opening of 1 mm, and granulated and consolidated to a light bulk density of 455 g / L.
  • the obtained composite active material for a lithium secondary battery was pulverized by a stamp mill and then pulverized by a ball mill, and passed through a mesh having an opening of 45 ⁇ m to obtain a pulverized powder having a light bulk density of 396 g / L.
  • Carbon coating by vapor phase coating 3 g of pulverized powder coated with carbon by coal tar pitch and 8.5 g of coal tar pitch in an alumina crucible were placed in a graphite boat, and while the nitrogen was flowing (4.3 L / min), the temperature rising rate was 5 ° C./min. The mixture was heated at 900 ° C. for 1 hour to perform carbon coating.
  • the weight increase due to the carbon coating is 1.5% by weight, whereby the graphite component content is 40 parts by mass, the silicon content is 50 parts by mass, the carbonaceous material is 42 parts by mass (the content of hard carbon derived from phenol resin is 10 parts by mass).
  • a composite active material for a lithium secondary battery comprising a mass part and a soft carbon content derived from coal tar pitch (32 parts by mass) was obtained.
  • the physical properties are as follows. Particle size distribution D50: 17 ⁇ m, D90: 34 ⁇ m, BET specific surface area: 12.4 m 2 / g, average pore diameter 11.5 nm, open pore volume: 0.025 cm 3 / g, shape: substantially spherical.
  • FIG. 3 shows a secondary electron image of the composite active material by SEM (scanning electron microscope).
  • the composite active material has a structure in which the graphite component and the battery active material are covered with soft carbon.
  • the obtained slurry was applied to a copper foil having a thickness of 18 ⁇ m using an applicator so that the solid content was 3 mg / cm 2 and dried at 110 ° C. in a vacuum dryer for 0.5 hour. After drying, it is punched into a circle of 14 mm ⁇ , uniaxially pressed under conditions of a pressure of 0.6 t / cm 2 , and further heat-treated at 110 ° C. for 2 hours under vacuum to form a negative electrode mixture layer for a lithium secondary battery having a thickness of 25 ⁇ m. The formed negative electrode for lithium ion secondary batteries was obtained.
  • the evaluation cell was prepared by dipping the negative electrode, a 24 mm ⁇ polypropylene separator, a 21 mm ⁇ glass filter, a 18 mm ⁇ 0.2 mm thick metal lithium and a stainless steel foil of the base material into the electrolyte solution in the glove box. After that, the layers were laminated in this order, and finally the lid was screwed in.
  • the electrolyte used was a mixture of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1, FEC (fluoroethylene carbonate), and LiPF 6 dissolved to a concentration of 1.2 vol / L.
  • the cell for evaluation was further put in a sealed glass container containing silica gel, and an electrode through a silicon rubber lid was connected to the charging / discharging device.
  • the evaluation cell was cycle tested in a constant temperature room at 25 ° C. Charging was performed after charging to 0.01 V at a constant current of 2.2 mA until the current value reached 0.2 mA at a constant voltage of 0.01 V. The discharge was performed at a constant current of 2.2 mA up to a voltage value of 1.5V.
  • the initial discharge capacity and initial charge / discharge efficiency were the results of the initial charge / discharge test.
  • the cycle characteristics were evaluated as the capacity retention rate by comparing the discharge capacity after 100 charge / discharge tests under the charge / discharge conditions with the initial discharge capacity.
  • Example 4 The carbon-coated substantially spherical calcined powder 3.05 g prepared in Example 1 and 8.46 g of coal tar pitch placed in an alumina crucible were placed in a graphite boat, and nitrogen was allowed to flow (4.3 L / min). The temperature increase rate was 5 ° C./min, and the mixture was heated at 900 ° C. for 1 hour to perform carbon coating. The weight increase due to the carbon coating is 4.7% by weight, whereby the graphite component content is 60 parts by mass, the Si content is 30 parts by mass, and the carbonaceous material is 15 parts by mass (the content of hard carbon derived from phenol resin is 10 masses).
  • a composite active material for a lithium secondary battery comprising 5 parts by mass of soft carbon derived from coal tar pitch). The physical properties are as follows.
  • Average particle diameter (D50) is 32 ⁇ m, D90 is 52 ⁇ m, BET specific surface area is 4.5 m 2 / g, average pore diameter is 30.9 nm, and open pore volume is 0.036 cm 3 / g. Shape: almost spherical.
  • FIG. 4 shows a secondary electron image of the composite active material by SEM (scanning electron microscope).
  • the composite active material has a structure in which the graphite component and the battery active material are covered with soft carbon.
  • the BET specific surface area of the substantially spherical mixture before the carbon coating is 63.3 m 2 / g
  • the obtained BET specific surface area of the substantially spherical composite active material for lithium secondary battery is 4.5 m. 2 / g, and also from the point that the BET specific surface area is greatly reduced, it can be seen that the graphite component and the battery active material have a structure covered with soft carbon.
  • the obtained slurry was applied to a copper foil having a thickness of 18 ⁇ m using an applicator so that the solid content was 3.1 mg / cm 2 and dried at 110 ° C. in a vacuum dryer for 0.5 hours. .
  • the lithium ion 2 was punched into a circle of 14 mm ⁇ , uniaxially pressed under conditions of a pressure of 0.6 t / cm 2 , and further heat-treated at 110 ° C. for 2 hours under vacuum to form a negative electrode mixture layer having a thickness of 25 ⁇ m.
  • a negative electrode for a secondary battery was obtained.
  • the evaluation cell was prepared by dipping the negative electrode, a 24 mm ⁇ polypropylene separator, a 21 mm ⁇ glass filter, a 18 mm ⁇ 0.2 mm thick metal lithium and a stainless steel foil of the base material into the electrolyte solution in the glove box. After that, the layers were laminated in this order, and finally the lid was screwed in.
  • the electrolyte used was a mixture of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1, FEC (fluoroethylene carbonate), and LiPF 6 dissolved to a concentration of 1.2 vol / L.
  • the cell for evaluation was further put in a sealed glass container containing silica gel, and an electrode through a silicon rubber lid was connected to the charging / discharging device.
  • the evaluation cell was cycle tested in a constant temperature room at 25 ° C. Charging was performed after charging to 0.01 V at a constant current of 2.2 mA until the current value reached 0.2 mA at a constant voltage of 0.01 V. The discharge was performed at a constant current of 2.2 mA up to a voltage value of 1.5V.
  • the initial discharge capacity and initial charge / discharge efficiency were the results of the initial charge / discharge test.
  • the cycle characteristics were evaluated as the capacity retention rate by comparing the discharge capacity after 100 charge / discharge tests under the charge / discharge conditions with the initial discharge capacity.
  • Example 5 Chemical grade metal Si (purity 3N) having an average particle size (D50) of 7 ⁇ m was mixed with ethanol in an amount of 21% by weight and subjected to fine grinding wet bead mill using zirconia beads having a diameter of 0.3 mm for 6 hours. D50) An ultrafine Si slurry having a diameter of 0.3 ⁇ m and a dry BET specific surface area of 100 m 2 / g was obtained.
  • Acid-treated natural graphite having a particle diameter of 0.3 mm (width in the (200) plane direction) and a thickness of 10 ⁇ m was placed in a vibrating powder feeder, placed on nitrogen gas at a flow rate of 12 L / min, and heated to 850 ° C. with an electric heater. The gas was passed through a quartz tube and released from the end face to the atmosphere. A gas such as sulfurous acid was exhausted at the top and expanded graphite was collected at the bottom in a stainless steel container.
  • This mixed dried product was passed through a three-roll mill twice, passed through a sieve having an opening of 1 mm, and granulated and consolidated to a light bulk density of 489 g / L.
  • the obtained composite active material for a lithium secondary battery was pulverized by a stamp mill and then pulverized by a ball mill, and passed through a mesh having a mesh size of 45 ⁇ m to obtain a pulverized powder having a light bulk density of 394 g / L.
  • the pulverized powder is set in a quartz tube, the inside of the tube is evacuated by a rotary pump, nitrogen gas at a flow rate of 200 SCCM and ethylene gas at a flow rate of 100 SCCM are flowed into the tube, and an electric heater is used to increase the temperature at a rate of 1 ° C./min.
  • the carbon coating was performed by heating to °C and maintaining the state for 2.5 hours.
  • the weight increase due to the carbon coating is 11.4% by weight, and as a result, the content of the graphite component is 60 parts by mass, the Si content is 30 parts by mass, the carbonaceous material is 41 parts by mass (the content of hard carbon derived from phenol resin is 10 mass Part, coal tar pitch and ethylene gas-derived soft carbon content 41 parts by mass).
  • the physical properties are as follows. Particle size distribution D50: 22 ⁇ m, D90: 43 ⁇ m, BET specific surface area: 2.4 m 2 / g, average pore diameter 15.1 nm, open pore volume: 0.010 cm 3 / g, shape: substantially spherical.
  • FIG. 5 shows a secondary electron image of the composite active material for a lithium secondary battery by SEM (scanning electron microscope).
  • the composite active material for a lithium secondary battery has a structure in which the graphite component and the battery active material are covered with soft carbon.
  • the BET specific surface area of the carbon coating (carbon coating by coal tar pitch) before carrying out the above (carbon coating by pyrolysis of ethylene gas as a carbon precursor) is 18.3 m 2 / g, and obtained.
  • the BET specific surface area of the substantially spherical composite active material for lithium secondary battery is 2.4 m 2 / g and the BET specific surface area is greatly reduced, the soft carbon in which the graphite component and Si are carbonaceous materials It can be seen that the structure covered with is taken.
  • the obtained slurry was applied to a copper foil having a thickness of 18 ⁇ m using an applicator so that the solid content was 4.1 mg / cm 2, and dried at 110 ° C. in a vacuum dryer for 0.5 hours. . After drying, it was punched into a circle of 14 mm ⁇ , uniaxially pressed under conditions of a pressure of 0.6 t / cm 2 , and further heat-treated at 110 ° C. for 2 hours under vacuum to form a lithium ion layer having a negative electrode mixture layer having a thickness of 20 ⁇ m. A negative electrode for a secondary battery was obtained.
  • the evaluation cell was prepared by dipping the negative electrode, a 24 mm ⁇ polypropylene separator, a 21 mm ⁇ glass filter, a 18 mm ⁇ 0.2 mm thick metal lithium and a stainless steel foil of the base material into the electrolyte solution in the glove box. After that, the layers were laminated in this order, and finally the lid was screwed in.
  • the electrolyte used was a mixture of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1, FEC (fluoroethylene carbonate), and LiPF 6 dissolved to a concentration of 1.2 vol / L.
  • the evaluation cell was further placed in a sealed glass container containing silica gel, and an electrode through a silicon rubber lid was connected to the charge / discharge device.
  • the evaluation cell was cycle tested in a constant temperature room at 25 ° C. Charging was performed after charging to 0.01 V at a constant current of 2.2 mA until the current value reached 0.2 mA at a constant voltage of 0.01 V. The discharge was performed at a constant current of 2.2 mA up to a voltage value of 1.5V. The initial discharge capacity and initial charge / discharge efficiency were the results of the initial charge / discharge test.
  • ⁇ Comparative Example 1> The substantially spherical calcined powder obtained in Example 1 was used as the composite active material for a lithium secondary battery of Comparative Example 1, and the composite active material for the lithium secondary battery was 95.4% by weight (content in the total solid content.
  • a negative electrode mixture-containing slurry for a lithium secondary battery was prepared.
  • the obtained slurry was applied to a copper foil having a thickness of 18 ⁇ m using an applicator so that the solid content was 2.7 mg / cm 2 and dried at 110 ° C. in a vacuum dryer for 0.5 hours. . After drying, it was punched into a circle of 14 mm ⁇ , uniaxially pressed under the condition of a pressure of 0.6 t / cm 2 , and further heat-treated at 110 ° C. for 2 hours under vacuum to form a lithium ion secondary material having a negative electrode mixture layer having a thickness of 24 ⁇ m. A negative electrode for a secondary battery was obtained.
  • the evaluation cell was prepared by dipping the negative electrode, a 24 mm ⁇ polypropylene separator, a 21 mm ⁇ glass filter, a 18 mm ⁇ 0.2 mm thick metal lithium and a stainless steel foil of the base material into the electrolyte solution in the glove box. After that, the layers were laminated in this order, and finally the lid was screwed in.
  • the electrolyte used was a mixture of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1, FEC (fluoroethylene carbonate), and LiPF 6 dissolved to a concentration of 1.2 vol / L.
  • the cell for evaluation was further put in a sealed glass container containing silica gel, and an electrode through a silicon rubber lid was connected to the charging / discharging device.
  • the evaluation cell was cycle tested in a constant temperature room at 25 ° C. Charging was performed after charging to 0.01 V at a constant current of 2.2 mA until the current value reached 0.2 mA at a constant voltage of 0.01 V. The discharge was performed at a constant current of 2.2 mA up to a voltage value of 1.5V.
  • the initial discharge capacity and initial charge / discharge efficiency were the results of the initial charge / discharge test.
  • the cycle characteristics were evaluated as the capacity retention rate by comparing the discharge capacity after 100 charge / discharge tests under the charge / discharge conditions with the initial discharge capacity.
  • Acid-treated natural graphite having a particle diameter of 0.3 mm (width in the (200) plane direction) and a thickness of 10 ⁇ m was placed in a vibrating powder feeder, placed on nitrogen gas at a flow rate of 12 L / min, and heated to 850 ° C. with an electric heater. The gas was passed through a quartz tube and released from the end face to the atmosphere. A gas such as sulfurous acid was exhausted at the top and expanded graphite was collected at the bottom in a stainless steel container.
  • This mixed dried product was passed through a three-roll mill twice, passed through a sieve having an opening of 1 mm, and granulated and consolidated to a light bulk density of 423 g / L.
  • a substantially spherical fired powder having a light bulk density of 573 g / L, an average particle diameter (D50) of 11.0 ⁇ m, and a BET specific surface area of 68.8 m 2 / g was obtained through a mesh having an opening of 45 ⁇ m.
  • the substantially spherical fired powder was used as the composite active material for lithium secondary battery of Comparative Example 2, and the composite active material for lithium secondary battery was 92.5% by weight (content in the total solid content; the same applies hereinafter).
  • a negative electrode mixture-containing slurry for a lithium secondary battery was prepared by mixing 0.5% by weight of acetylene black as a conductive additive, 7% by weight of gelled polyacrylic acid as a binder, and water.
  • the obtained slurry was applied to a copper foil having a thickness of 18 ⁇ m using an applicator so that the solid content was 3.2 mg / cm 2, and dried at 110 ° C. in a vacuum dryer for 0.5 hours. . After drying, it was punched into a circle of 14 mm ⁇ , uniaxially pressed under conditions of a pressure of 0.6 t / cm 2 , and further heat-treated at 110 ° C. for 2 hours under vacuum to form a lithium ion layer having a negative electrode mixture layer having a thickness of 20 ⁇ m. A negative electrode for a secondary battery was obtained.
  • the evaluation cell was prepared by dipping the negative electrode, a 24 mm ⁇ polypropylene separator, a 21 mm ⁇ glass filter, a 18 mm ⁇ 0.2 mm thick metal lithium and a stainless steel foil of the base material into the electrolyte solution in the glove box. After that, the layers were laminated in this order, and finally the lid was screwed in.
  • the electrolyte used was a mixture of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1, FEC (fluoroethylene carbonate), and LiPF 6 dissolved to a concentration of 1.2 vol / L.
  • the cell for evaluation was further put in a sealed glass container containing silica gel, and an electrode through a silicon rubber lid was connected to the charging / discharging device.
  • the evaluation cell was subjected to a cycle test in a constant temperature room at 25 ° C. Charging was performed after charging to 0.01 V at a constant current of 2.2 mA until the current value reached 0.2 mA at a constant voltage of 0.01 V. The discharge was performed at a constant current of 2.2 mA up to a voltage value of 1.5V.
  • the initial discharge capacity and initial charge / discharge efficiency were the results of the initial charge / discharge test.
  • the cycle characteristics were evaluated as the capacity retention rate by comparing the discharge capacity after 100 charge / discharge tests under the charge / discharge conditions with the initial discharge capacity.
  • Example 6> (Preparation of expanded graphite) After immersing scaly natural graphite having an average particle diameter of 1 mm in a mixed acid of 9 parts by mass of sulfuric acid and 1 part by mass of nitric acid at room temperature for 1 hour, the mixed acid was removed with a No 3 glass filter to obtain acid-treated graphite. Further, the acid-treated graphite was washed with water and dried. When 5 g of dried acid-treated graphite was stirred in 100 g of distilled water and the pH was measured after 1 hour, the pH was 6.7. The dried acid-treated graphite was put into a vertical electric furnace under a nitrogen atmosphere set at 850 ° C. to obtain expanded graphite.
  • the expanded graphite had a bulk density of 0.002 g / cm 3 and a specific surface area of 45 m 2 / g.
  • Mating process An ethanol slurry of silicon fine powder having an average particle size of 0.3 ⁇ m (solid concentration 26.6%, 22.56 parts by mass) was introduced into 1600 parts by mass of ethanol in a beaker, and phenol resin (carbonization degree 40%, 5% (Mass parts) was added and sonication was performed for 10 minutes while stirring.
  • the expanded graphite (12 parts by mass) was added to a silicon fine powder and an ethanol solution in which a phenol resin was dispersed to prepare a homogeneous mixed slurry containing the expanded graphite, the silicon fine powder, and the phenol resin. Ethanol was recovered from this slurry using an evaporator to obtain a powder mixture. (Pressing process) Using a three-roller (EKAKT50), the powder mixture was pressed. The expanded graphite layer opened by this treatment is closed, the distance between the layers is reduced, the density is also increased, and the impact energy in the next spheronization process is increased, so that the efficiency of spheronization can be increased. .
  • a substantially spherical shape comprising a graphite component content of 60 parts by mass, a silicon content of 30 parts by mass, a phenolic resin-derived hard carbon content of 10 parts by mass, and a coal tar pitch-derived soft carbon content of 30 parts by mass.
  • the composite active material for lithium secondary batteries was obtained.
  • the physical properties are as follows. Particle size distribution D50: 19 ⁇ m, BET specific surface area: 7.6 m 2 / g, shape: substantially spherical shape 2 of composite active material for lithium secondary battery using SEM (scanning electron microscope) at low acceleration voltage of 10 kV or less From the secondary electron image, it was found that in the composite active material for a lithium secondary battery, the graphite component and the battery active material were covered with soft carbon.
  • the BET specific surface area of the substantially spherical mixture before the above (coating with coal tar pitch) is 54 m 2 / g
  • the obtained BET specific surface area of the substantially spherical composite active material for lithium secondary battery is It is 7.6 m 2 / g, and it can be seen that the graphite component and the battery active material are covered with soft carbon from the point that the BET specific surface area is greatly reduced.
  • the area ratio of the exposed silicon exposed on the surface of the composite active material for a lithium secondary battery observed by SEM was 2% or less.
  • graphite was observed in the composite active material for lithium secondary batteries. Note that the thickness of graphite was about 20 nm (total number of graphene sheets 60).
  • an electrolytic solution (ethylene carbonate and diethyl carbonate is used as a mixed solvent having a volume ratio of 1: 1 and LiPF 6 is dissolved to a concentration of 1.2 mol / L in the completed composite active material for a lithium secondary battery. 2% by volume of fluoroethylene carbonate was used) was immersed in an argon atmosphere for 12 hours, dried, and the cross-section was mapped with FDS and P elements, which are components of the electrolytic solution, by EDS. As a result of confirming the presence or absence, immersion was not recognized (FIG. 6).
  • Nitative electrode manufacturing 95.5 parts by mass of the composite active material for lithium secondary battery, 2.5 parts by mass of SBR (styrene butadiene rubber), 1.5 parts by mass of CMC (carboxymethyl cellulose), 0.5 parts by mass of carbon black for conduction, and water 100 parts by weight were weighed and mixed for 3 minutes using a double-arm mixer to prepare a slurry for coating. The slurry was applied to a copper foil and dried to produce a negative electrode.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • PVDF-containing NMP solution PVDF: polyvinylidene fluoride, NMP: methylpyrrolidone
  • content 12 wt%
  • carbon black 8 wt conductive Part and 29 parts by mass of NMP
  • the shape of the electrode before the cycle test was a disk shape with a diameter of 14 mm and a thickness of 55 ⁇ m.
  • thickness is an average value, and is the value which measured the thickness of the center of a disk, and three other arbitrary points, and arithmetically averaged them.
  • the thickness of the electrode after the cycle test is a value obtained by measuring the thickness of the center of the disk and any other three points and arithmetically averaging them.
  • the electrode expansion rate is a value obtained by dividing the increase amount by the reference value based on the thickness of the electrode before the cycle test.
  • the amount of overexpansion was measured using an electrode displacement cell that measures the expansion displacement of the negative electrode.
  • a positive electrode is used for the lower part
  • a negative electrode is used for the upper part
  • a piston-like support is fixed to the upper part of the negative electrode with a spring so that the expansion displacement of the electrode is transmitted to the support.
  • only the expansion displacement on the negative electrode side was measured by inserting and fixing a hard glass filter between the positive electrode and the negative electrode.
  • the displacement displacement of the electrode can be measured by installing a laser displacement meter on the surface of the column. A commercially available displacement meter was used as the laser displacement meter. The displacement data was connected to a data logger and recorded.
  • the evaluation cell was assembled in a glove box.
  • 16 mm ⁇ metallic lithium, 16 mm ⁇ glass filter, 21 mm ⁇ hard glass filter, 21 mm ⁇ polypropylene separator, and 13.8 mm ⁇ negative electrode were each dipped in the electrolyte solution, and then laminated in this order.
  • the piston-like column was fixed with a spring and sealed with a lid.
  • the electrolyte is a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1, the additive is FEC (fluoroethylene carbonate), and LiPF 6 is dissolved to a concentration of 1.2 mol / L. used.
  • the electrode was connected to a charge / discharge device.
  • the evaluation cell was subjected to a cycle test in a constant temperature room at 25 ° C. Charging was performed after charging to 0.01 V at a constant current of 2 mA until the current value reached 0.2 mA at a constant voltage of 0.01 V. The discharge was performed at a constant current of 2 mA up to a voltage value of 1.5 V. Recording of the laser displacement meter was started simultaneously with the start of charge / discharge. After preparing an electrode according to the above using the composite active material and measuring the initial thickness, an electrode displacement evaluation cell was assembled, and a change in electrode thickness due to charge / discharge was examined with a laser displacement meter.
  • the height obtained by subtracting the initial thickness of the electrode from the initial position of the laser displacement meter as the origin (0%)
  • the maximum position by the initial charge as 100%
  • the overexpansion rate is defined, and the charge / discharge capacity by the charge / discharge cycle And the change of expansion coefficient was measured.
  • Example 7 In the same manner as in Example 6, (preparation of expanded graphite), (mixing step), (pressing step), and (spheronizing step) were performed to obtain a substantially spherical mixture. (Mixed with coal tar pitch) The substantially spherical mixture obtained (100 parts by mass) was added in a solution obtained by dissolving coal tar pitch (carbonization degree 38%, 78.62 parts by mass) in quinoline (100 parts by mass), and stirred for 10 minutes. A mixture was obtained. (Baking) While flowing nitrogen (5 L / min), the temperature rising rate was 5 ° C./min, and the mixture was heated at 750 ° C.
  • the physical properties are as follows. Particle size distribution D50: 12 ⁇ m, D90: 27 ⁇ m, specific surface area: 22.0 m 2 / g, shape: substantially spherical Composite active for lithium secondary battery using SEM (scanning electron microscope) at low acceleration voltage of 10 kV or less From the secondary electron image of the material, it was found that in the composite active material for a lithium secondary battery, the graphite component and the battery active material were covered with soft carbon.
  • exfoliated graphite was observed in the composite active material for lithium secondary batteries.
  • the thickness of exfoliated graphite was about 20 nm (total number of graphene sheets 60).
  • immersion was not recognized.
  • the obtained slurry was applied to a copper foil having a thickness of 15 ⁇ m using an applicator so that the solid content was 3 mg / cm 2 and dried at 110 ° C. in a stationary operation dryer for 0.5 hour. After drying, it was punched into a circle of 14 mm ⁇ , and further heat-treated at 110 ° C. for 3 hours under vacuum to obtain a negative electrode for a lithium secondary battery in which a negative electrode mixture layer was formed.
  • the evaluation cell was prepared by dipping the negative electrode, a 24 mm ⁇ polypropylene separator, a 21 mm ⁇ glass filter, a 18 mm ⁇ 0.2 mm thick metal lithium and a stainless steel foil of the base material into the electrolyte solution in the glove box. After that, the layers were laminated in this order, and finally the lid was screwed in.
  • the electrolyte used was a mixture of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1, dissolved LiPF 6 to a concentration of 1.2 mol / L, and added with 2% by volume of fluoroethylene carbonate. did.
  • the evaluation cell was further placed in a sealed glass container containing silica gel, and an electrode through a silicon rubber lid was connected to the charge / discharge device.
  • the half evaluation cell was subjected to a cycle test in a constant temperature room at 25 ° C. Charging was performed after charging to 0.01 V at a constant current of 2 mA until the current value reached 0.2 mA at a constant voltage of 0.01 V. The discharge was performed at a constant current of 2 mA up to a voltage value of 1.5 V. The discharge capacity and the initial charge / discharge efficiency were the results of the initial charge / discharge test.
  • Example 8 In the same manner as in Example 6, (preparation of expanded graphite), (mixing step), (pressing step), and (spheronizing step) were performed to obtain a substantially spherical mixture. (Mixed with coal tar pitch) The obtained substantially spherical mixture (100 parts by mass) was dissolved in ethanol (800 parts by mass) of coal tar pitch (carbonization degree 38%, 78.62 parts by mass) having an average particle size (D50) of 30 ⁇ m.
  • the physical properties are as follows. Particle size distribution D50: 16 ⁇ m, D90: 33 ⁇ m, specific surface area: 16.0 m 2 / g, shape: substantially spherical Composite active for lithium secondary battery using SEM (scanning electron microscope) at a low acceleration voltage of 10 kV or less From the secondary electron image of the material, it was found that in the composite active material for a lithium secondary battery, the graphite component and the battery active material were covered with soft carbon.
  • exfoliated graphite was observed in the composite active material for lithium secondary batteries.
  • the thickness of exfoliated graphite was about 20 nm (total number of graphene sheets 60).
  • immersion was not recognized.
  • Example 9 In the same manner as in Example 6, (preparation of expanded graphite), (mixing step), (pressing step), and (spheronizing step) were performed to obtain a substantially spherical mixture. (Mixed with coal tar pitch) The substantially spherical mixture (100 parts by mass) obtained was added to a coal tar pitch (carbonization degree 38%, 78.62 parts by mass) having an average particle diameter (D50) of 30 ⁇ m, and stirred for 20 minutes to obtain a mixture.
  • a coal tar pitch carbonization degree 38%, 78.62 parts by mass
  • the physical properties are as follows. Particle size distribution D50: 15 ⁇ m, D90: 32 ⁇ m, specific surface area: 28.0 m 2 / g, shape: substantially spherical Composite active for lithium secondary battery using SEM (scanning electron microscope) at low acceleration voltage of 10 kV or less From the secondary electron image of the material, it was found that in the composite active material for a lithium secondary battery, the graphite component and the battery active material were covered with soft carbon.
  • exfoliated graphite was observed in the composite active material for lithium secondary batteries.
  • the thickness of exfoliated graphite was about 20 nm (total number of graphene sheets 60).
  • immersion was not recognized.
  • Example 10 In the same manner as in Example 6, (preparation of expanded graphite), (mixing step), (pressing step), and (spheronizing step) were performed to obtain a substantially spherical mixture. (Mixed with coal tar pitch) The obtained substantially spherical mixture (100 parts by mass) was added in a solution in which coal tar pitch (carbonization degree 38%, 131.58 parts by mass) was dissolved in quinoline (100 parts by mass), and stirred for 10 minutes. A mixture was obtained.
  • coal tar pitch carbonization degree 38%, 131.58 parts by mass
  • the physical properties are as follows. Particle size distribution D50: 19 ⁇ m, D90: 35 ⁇ m, specific surface area: 10.0 m 2 / g, shape: substantially spherical Composite active for lithium secondary battery using SEM (scanning electron microscope) at low acceleration voltage of 10 kV or less From the secondary electron image of the material, it was found that in the composite active material for a lithium secondary battery, the graphite component and the battery active material were covered with soft carbon.
  • exfoliated graphite was observed in the composite active material for lithium secondary batteries.
  • the thickness of exfoliated graphite was about 20 nm (total number of graphene sheets 60).
  • immersion was not recognized.
  • Example 11 In the same manner as in Example 6, (preparation of expanded graphite), (mixing step), (pressing step), and (spheronizing step) were performed to obtain a substantially spherical mixture. (Mixed with coal tar pitch) The obtained substantially spherical mixture (100 parts by mass) was added in a solution in which coal tar pitch (carbonization degree 38%, 13.16 parts by mass) was dissolved in quinoline (100 parts by mass), and stirred for 10 minutes. A mixture was obtained.
  • the physical properties are as follows. Particle size distribution D50: 12 ⁇ m, D90: 28 ⁇ m, specific surface area: 43.0 m 2 / g, shape: substantially spherical Composite active for lithium secondary battery using SEM (scanning electron microscope) at low acceleration voltage of 10 kV or less From the secondary electron image of the material, it was found that in the composite active material for a lithium secondary battery, the graphite component and the battery active material were covered with soft carbon.
  • exfoliated graphite was observed in the composite active material for lithium secondary batteries.
  • the thickness of exfoliated graphite was about 20 nm (total number of graphene sheets 60).
  • Example 12 In the same manner as in Example 6, (preparation of expanded graphite), (mixing step), (pressing step), and (spheronizing step) were performed to obtain a substantially spherical mixture. (Mixed with coal tar pitch) In the same manner as in Example 8, coal tar pitch was mixed to obtain a mixture. (Baking) While flowing nitrogen (5 L / min), the temperature rising rate was 1 ° C./min, and the mixture was heated at 900 ° C. for 2 hours to modify the coal tar pitch to soft carbon.
  • a substantially spherical shape comprising a graphite component content of 60 parts by mass, a silicon content of 30 parts by mass, a phenolic resin-derived hard carbon content of 10 parts by mass, and a coal tar pitch-derived soft carbon content of 30 parts by mass.
  • the composite active material for lithium secondary batteries was obtained.
  • the physical properties are as follows. Particle size distribution D50: 16 ⁇ m, D90: 33 ⁇ m, specific surface area: 41.0 m 2 / g, shape: substantially spherical Composite active for lithium secondary battery using SEM (scanning electron microscope) at a low acceleration voltage of 10 kV or less From the secondary electron image of the material, it was found that in the composite active material for a lithium secondary battery, the graphite component and the battery active material were covered with soft carbon.
  • exfoliated graphite was observed in the composite active material for lithium secondary batteries.
  • the thickness of exfoliated graphite was about 20 nm (total number of graphene sheets 60).
  • Example 13 In the same manner as in Example 6, (preparation of expanded graphite), (mixing step), (pressing step), and (spheronizing step) were performed to obtain a substantially spherical mixture. (Preparation for dry gas phase mixing with coal tar pitch) The substantially spherical mixture obtained (100 parts by mass) and the coal tar pitch (carbonization degree 38%, 280 parts by mass) with an average particle diameter (D50) of 30 ⁇ m placed in a crucible container were not directly mixed but made of the same graphite. It was put in a container and sealed with a graphite lid.
  • the physical properties are as follows. Particle size distribution D50: 27 ⁇ m, D90: 55 ⁇ m, specific surface area: 5.1 m 2 / g, shape: substantially spherical Composite active for lithium secondary battery using SEM (scanning electron microscope) at a low acceleration voltage of 10 kV or less From the secondary electron image of the material, it was found that in the composite active material for a lithium secondary battery, the graphite component and the battery active material were covered with soft carbon.
  • exfoliated graphite was observed in the composite active material for lithium secondary batteries.
  • the thickness of exfoliated graphite was about 20 nm (total number of graphene sheets 60).
  • Example 14 As in Example 6, the content of the graphite component is 60 parts by mass, the content of silicon is 30 parts by mass, the content of hard carbon derived from phenol resin is 10 parts by mass, and the content of soft carbon derived from coal tar pitch is 30 parts by mass. Thus, a substantially spherical composite active material for a lithium secondary battery was obtained.
  • a substantially spherical shape comprising a graphite component content of 60 parts by mass, a silicon content of 30 parts by mass, a phenolic resin-derived hard carbon content of 10 parts by mass, and a coal tar pitch-derived soft carbon content of 7 parts by mass.
  • the composite active material for lithium secondary batteries was obtained.
  • the physical properties are as follows. Particle size distribution D50: 19 ⁇ m, D90: 35 ⁇ m, specific surface area: 9.0 m 2 / g, shape: substantially spherical Composite active for lithium secondary battery using SEM (scanning electron microscope) at a low acceleration voltage of 10 kV or less From the secondary electron image of the material, it was found that in the composite active material for a lithium secondary battery, the graphite component and the battery active material were covered with soft carbon.
  • exfoliated graphite was observed in the composite active material for lithium secondary batteries.
  • the thickness of exfoliated graphite was about 20 nm (total number of graphene sheets 60).
  • Example 15 As in Example 6, the content of the graphite component is 60 parts by mass, the content of silicon is 30 parts by mass, the content of hard carbon derived from phenol resin is 10 parts by mass, and the content of soft carbon derived from coal tar pitch is 30 parts by mass. Thus, a substantially spherical composite active material for a lithium secondary battery was obtained.
  • a substantially spherical shape comprising a graphite component content of 60 parts by mass, a silicon content of 30 parts by mass, a phenolic resin-derived hard carbon content of 10 parts by mass, and a coal tar pitch-derived soft carbon content of 7 parts by mass.
  • the composite active material for lithium secondary batteries was obtained.
  • the physical properties are as follows. Specific surface area: 10.0 m 2 / g, shape: substantially spherical From a secondary electron image of a composite active material for a lithium secondary battery using a SEM (scanning electron microscope) at a low acceleration voltage of 10 kV or less, lithium secondary
  • the composite active material for secondary batteries was found to have a structure in which the graphite component and the battery active material were covered with soft carbon.
  • exfoliated graphite was observed in the composite active material for lithium secondary batteries.
  • the thickness of exfoliated graphite was about 20 nm (total number of graphene sheets 60).
  • immersion was not recognized.
  • Example 16 Except for the silicon content of 50 parts by mass, the graphite component content of 60 parts by mass, the phenolic resin-derived hard carbon content of 10 parts by mass, and the coal carbon pitch-derived soft carbon content of 30 as in Example 6. A substantially spherical composite active material for a lithium secondary battery having a mass part was obtained.
  • a substantially spherical shape comprising a graphite component content of 60 parts by mass, a silicon content of 30 parts by mass, a phenolic resin-derived hard carbon content of 10 parts by mass, and a coal tar pitch-derived soft carbon content of 7 parts by mass.
  • the composite active material for lithium secondary batteries was obtained.
  • the physical properties are as follows. Specific surface area: 6.2 m 2 / g, shape: substantially spherical shape From a secondary electron image of the composite active material for a lithium secondary battery using a scanning electron microscope (SEM) at a low acceleration voltage of 10 kV or less, lithium secondary The composite active material for secondary batteries was found to have a structure in which the graphite component and the battery active material were covered with soft carbon.
  • SEM scanning electron microscope
  • exfoliated graphite was observed in the composite active material for lithium secondary batteries.
  • the thickness of exfoliated graphite was about 20 nm (total number of graphene sheets 60).
  • immersion was not recognized.
  • Example 3 A substantially spherical composite active material for a lithium secondary battery comprising 70 parts by mass of graphite and 30 parts by mass of metal Si was obtained.
  • the composite active material for a lithium secondary battery does not contain hard carbon and soft carbon.
  • immersion was recognized.
  • Example 4 As in Example 1, (preparation of expanded graphite), (mixing step), (pressing step), and (spheronizing step) were carried out to obtain a substantially spherical mixture, and mixing with coal tar pitch was I did not.
  • a substantially spherical composite active material for a lithium secondary battery having a graphite component content of 60 parts by mass, a silicon content of 30 parts by mass, and a phenolic resin-derived hard carbon content of 10 parts by mass was obtained.
  • the physical properties are as follows. Particle size distribution D50: 20 ⁇ m, D90: 37 ⁇ m, specific surface area: 44.0 m 2 / g, shape: substantially spherical Composite active for lithium secondary battery using SEM (scanning electron microscope) at a low acceleration voltage of 10 kV or less From the secondary electron image of the material, the presence of soft carbon was not observed in the composite active material for lithium secondary batteries. In addition, exfoliated graphite was observed in the composite active material for lithium secondary batteries. The thickness of exfoliated graphite was about 20 nm (total number of graphene sheets 60). Moreover, as a result of confirming the presence or absence of electrolyte solution immersion similarly, immersion was recognized (FIG. 7).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 充放電を繰り返した後でも体積膨張が抑制された電極材料の作製が可能で、かつ、優れたサイクル特性を示すリチウム二次電池の作製が可能なリチウム二次電池用複合活物質およびその製造方法を提供する。 SiまたはSi合金と、炭素質物または炭素質物と黒鉛成分とを、含んでなるリチウム二次電池用複合活物質において、該活物質の平均粒径(D50)が1~40μm、比表面積が0.5~45m/g、平均細孔径が10~40nm、開気孔体積が0.06cm/g以下であるリチウム二次電池用複合活物質及び黒鉛成分、ハードカーボン、ソフトカーボン、及びリチウムイオンと化合可能な電池活物質とを含む、リチウム二次電池用複合活物質を用いる。

Description

リチウム二次電池用複合活物質およびその製造方法
 本発明は、リチウム二次電池用複合活物質およびその製造方法に関するものである。
 電子材料の小型軽量化、および、HEVまたはEVの開発の進展に伴い、大容量、高速充放電特性、良好なサイクル特性、かつ安全性に優れた電池の開発の要望は益々増大している。なかでも、リチウムイオン二次電池(リチウム二次電池)が最も有望な電池として注目されている。
 しかしながら、優れた性能を示すリチウム二次電池が開発される前提として、各種性能に優れた負極材料、正極材料、電解液、セパレータ、または集電体などが開発され、且つ、それらの特性を十分に生した電池設計がなされなくてはならない。
 なかでも、負極材料は基本的な電池特性を決定するものであるため、充放電容量などの特性がより優れる材料の開発が活発に行われている。例えば、特許文献1では、大充放電容量、高速充放電特性、および良好なサイクル特性を併せ持ったリチウム二次電池の作製が可能なリチウム二次電池用複合活物質、並びに、その製造方法が開示されている。同様に金属元素を添加することで、高い充放電容量を有しながら、タールピッチ由来の炭素質を含ませたリチウム二次電池用複合活物質が開示されている(例えば特許文献2参照)。
 しかし、金属元素を添加したリチウム二次電池用複合活物質は、充放電容量などの特性が優れるが、充放電サイクル寿命が低下し易い問題があった。そのため、ソフトカーボンを含ませた複合活物質により、充放電サイクル寿命を改善した複合活物質も開示されている(例えば特許文献3参照)。
 しかしながら、これらの方法でも長いサイクルを実施した場合には、不可逆な膨張の抑制は不十分であった。
日本国特許第5227483号公報 日本国特許第3289231号公報 日本国特許第4281099号公報
 一方、近年、電池の使用安全性の点から、充放電を繰り返した後においても電極材料の体積が膨張しないことが求められている。電極材料の体積膨張が大きいと、電解液の液漏れの発生や、電池の寿命の低下が引き起こされる。また、近年、電池材料に対する要求特性が非常に高まってきており、サイクル特性に対する要求水準もより一層高まっている。
 本発明者らは、上述した特許文献1に記載の製造方法に従って、リチウムイオンと化合可能な電池活物質としてシリコンを含むリチウム二次電池用複合活物質を製造して、得られたリチウム二次電池用複合活物質を含む電極材料(例えば、負極材料)の膨張特性について評価を行ったところ、数サイクル後にはリチウムとシリコンの合金化に伴う理論的な膨張以上の不可逆的な大きな体積の膨張が認められ、更なる改良が必要であることを知見した。また、サイクル特性に関しては、従来の要求レベルは満たすものの、昨今のより高い要求レベルを満たしておらず、更なる改良が必要であった。
 本発明は、上記実情に鑑みて、充放電を繰り返した後でも体積膨張が抑制された電極材料の作製が可能で、かつ、優れたサイクル特性を示すリチウム二次電池の作製が可能なリチウム二次電池用複合活物質およびその製造方法を提供することを課題とする。
 また、本発明は、上記リチウム二次電池用複合活物質を含むリチウム二次電池を提供することも課題とする。
 本発明者らは、従来技術について鋭意検討を行った結果、以下の構成によって上記課題を解決できることを見出した。
 すなわち本発明は、以下の要旨を有するものである。
(1) SiまたはSi合金と、炭素質物または炭素質物と黒鉛成分とを、含んでなるリチウム二次電池用複合活物質において、該活物質の平均粒径(D50)が1~40μm、比表面積が0.5~45m/g、平均細孔径が10~40nm、開気孔体積が0.06cm/g以下であるリチウム二次電池用複合活物質。
(2) 前記SiまたはSi合金の平均粒径(D50)が0.01~5μmであり、炭素質物が少なくとも活物質表面を覆っている(1)に記載のリチウム二次電池用複合活物質。
(3) 前記SiまたはSi合金が、炭素質物と共に0.2μm以下の厚みの黒鉛薄層の間に挟まった構造であり、その構造が積層および/または網目状に広がっており、該黒鉛薄層が活物質粒子の表面付近で湾曲して活物質粒子を覆っており、最外層の表面を炭素質物が覆っている(1)又は(2)に記載のリチウム二次電池用複合活物質。
(4) 黒鉛成分、ハードカーボン、ソフトカーボン、及びリチウムイオンと化合可能な電池活物質を含む、リチウム二次電池用複合活物質。
(5) リチウムイオンと化合可能な電池活物質の平均粒径(D50)が0.01~0.6μm、D90が0.01~1.0μmであり、BET法によるBET比表面積が40~300m/gである(4)に記載のリチウム二次電池用複合活物質。
(6) 黒鉛成分15~65質量部、ハードカーボン5~40質量部、ソフトカーボン5~60質量部、リチウムイオンと化合可能な電池活物質5~80質量部である(4)又は(5)に記載のリチウム二次電池用複合活物質。
(7) 該黒鉛成分は、ICP発光分光分析法による26元素(Al、Ca、Cr、Fe、K、Mg、Mn、Na、Ni、V、Zn、Zr、Ag、As、Ba、Be、Cd、Co、Cu、Mo、Pb、Sb、Se、Th、Tl、U)の不純物半定量値より求めた純度が99.9%以上(1000ppm以下)で酸素フラスコ燃焼法によるイオンクロマトグラフィー(IC)測定法によるS量が0.3重量%以下、及び/又はBET比表面積40m/g以下である(1)~(6)のいずれかに記載のリチウム二次電池用複合活物質。
(8) 前記SiまたはSi合金の含有量が10~80質量部、前記炭素質物の含有量が90~10質量部である(1)~(3)、(7)のいずれかに記載のリチウム二次電池用複合活物質。
(9) 前記SiまたはSi合金の含有量が10~60質量部、前記炭素質物の含有量が5~60質量部、前記黒鉛成分の含有量が20~80質量部である(1)~(3)、(7)のいずれかに記載のリチウム二次電池用複合活物質。
(10) リチウムイオンと化合可能な電池活物質が、0.2μm以下の厚みの黒鉛薄層の間に挟まれた構造であり、その構造が積層および/または網目状に広がっており、該黒鉛薄層が活物質粒子の表面付近で湾曲して活物質粒子を覆っている(4)~(7)のいずれかに記載のリチウム二次電池用複合活物質。
(11) SiまたはSi合金、炭素前駆体、必要に応じて黒鉛成分を混合する工程と、造粒・圧密化する工程と、混合物を粉砕および球形化処理して略球状の複合粒子を形成する工程と、該複合粒子を不活性雰囲気中で焼成する工程と、炭素前駆体と該複合粒子もしくは焼成粉とを混合する工程及びその混合物を不活性雰囲気中で加熱する事で炭素膜を焼成粉もしくは炭素被覆した複合粒子を得る工程を含む(1)~(3),(7)~(9)のいずれかに記載のリチウム二次電池用複合活物質の製造方法。
(12) (11)で得られた炭素被覆した複合粒子、球形化した複合粒子もしくは焼成粉と炭素前駆体とを不活性雰囲気中で焼成し炭素膜を複合粒子もしくは焼成粉の内外に被覆する工程を行う(11)に記載のリチウム二次電池用複合活物質の製造方法。
(13) 気相で被覆する工程の後、粉砕および球形処理した粉体もしくは焼成粉もしくは炭素被覆した粉体を風力分級する工程を行う(11)又は(12)に記載のリチウム二次電池用複合活物質の製造方法。
(14) 複合粒子及び焼成粉を炭素前駆体と共に不活性雰囲気中で焼成する工程及び炭素前駆体を不活性雰囲気中で加熱する事で炭素膜を焼成粉もしくは炭素被覆した複合粒子もしくは炭素被覆した焼成粉の内外に気相で被覆する工程の温度が、それぞれ300~1200℃である(11)~(13)のいずれかに記載のリチウム二次電池用複合活物質の製造方法。
(15) 黒鉛成分、および、リチウムイオンと化合可能な電池活物質を含む第1混合物に球形化処理を施す球形化工程と、
 球形化処理が施された前記第1混合物に対して加熱処理を施す第1加熱工程と、
 前記第1加熱工程で得られた焼成物とソフトカーボンの前駆体とを混合して第2混合物を得る混合工程と、
 前記第2混合物に対して加熱処理を施す第2加熱工程と、を有する(4)~(7)、(10)のいずれかに記載のリチウム二次電池用複合活物質の製造方法。
(16) 黒鉛成分、および、リチウムイオンと化合可能な電池活物質を含む第1混合物に球形化処理を施す球形化工程と、
 球形化処理が施された第1混合物とソフトカーボンの前駆体とを混合して第3混合物を得る混合工程と、
 前記第3混合物に対して加熱処理を施す加熱工程と、を有する(4)~(7)、(10)いずれかに記載のリチウム二次電池用複合活物質の製造方法。
(17) 黒鉛成分、ハードカーボン、ソフトカーボンの前駆体、及びリチウムイオンと化合可能な電池活物質を含む第4混合物に球形化処理を施す球形化工程と、
 球形化処理が施された前記第4混合物に対して加熱処理を施す加熱工程と、を有する(4)~(7)、(10)のいずれかに記載のリチウム二次電池用複合活物質の製造方法。
(18) 前記ソフトカーボンの前駆体が、石炭系ピッチ、石油系ピッチ、メソフェーズピッチ、コークス、低分子重質油、およびそれらの誘導体からなる群から選択される少なくとも1つである(15)~(17)のいずれかに記載のリチウム二次電池用複合活物質の製造方法。
(19) 前記、第2~4混合物に対して、加熱処理を施す加熱工程において、加熱温度400℃以上、昇温速度を1℃/min以上にする(15)~(18)のいずれかに記載のリチウム二次電池用複合活物質の製造方法。
(20) (1)~(10)のいずれかに記載のリチウム二次電池用複合活物質を含むリチウム二次電池。
 本発明によれば、充放電を繰り返した後でも体積膨張が抑制された電極材料の作製が可能で、かつ、優れたサイクル特性を示すリチウム二次電池の作製が可能なリチウム二次電池用複合活物質およびその製造方法を提供することができる。
 また、本発明によれば、上記リチウム二次電池用複合活物質を含むリチウム二次電池を提供することもできる。
本発明の実施例1で製造した複合活物質のSEM像である。 本発明の実施例1で製造した複合活物質の断面SEM像である。 本発明の実施例3で製造した複合活物質の断面SEM像である。 本発明の実施例4で製造した複合活物質の断面SEM像である。 本発明の実施例5で製造した複合活物質の断面SEM像である。 本発明の実施例6で製造した複合活物質の断面写真である。 本発明の比較例4で製造した複合活物質の断面写真である。
 以下に、本発明のリチウム二次電池用複合活物質およびその製造方法について詳述する。
 本発明のリチウム二次電池用複合活物質は、SiまたはSi合金と、炭素質物または炭素質物と黒鉛成分とを、含んでなるリチウム二次電池用複合活物質において、該活物質の平均粒径(D50)が1~40μm、比表面積が0.5~45m/g、平均細孔径が10~40nm、開気孔体積が0.06cm/g以下であるリチウム二次電池用複合活物質(活物質A)及び黒鉛成分、ハードカーボン、ソフトカーボン、及びリチウムイオンと化合可能な電池活物質を含むリチウム二次電池用複合活物質(活物質B)である。
 最初に活物質A及びその製造方法について説明する。
 活物質AでいうSiとは、純度が98重量%程度の汎用グレードの金属シリコン、純度が2~4Nのケミカルグレードの金属シリコン、塩素化して蒸留精製した4Nより高純度のポリシリコン、単結晶成長法による析出工程を経た超高純度の単結晶シリコン、もしくはそれらに周期表13族もしくは15族元素をドーピングして、p型またはn型としたもの、半導体製造プロセスで発生したウエハの研磨や切断の屑、プロセスで不良となった廃棄ウエハなど、汎用グレードの金属シリコン以上の純度のものであれば特に限定されない。
 活物質AでいうSi合金とは、Siが主成分の合金である。前記Si合金において、Si以外に含まれる元素としては、周期表2~15族の元素の一つ以上が好ましく、合金に含まれる相の融点が900℃以上となる元素の選択および/または添加量が好ましい。
 活物質Aのリチウム二次電池用複合活物質において、Si化合物の平均粒径(D50)は0.01~5μmが好ましく、さらに好ましくは0.01~1μmであり、特に好ましくは0.05~0.6μmである。0.01μmより小さいと、表面酸化による容量や初期効率の低下が激しく、5μmより大きいと、リチウム挿入による膨張で割れが激しく生じ、サイクル劣化が激しくなりやすい。なお、平均粒径(D50)はレーザー粒度分布計で測定した体積平均の粒子径である。
 Si化合物の含有量は10~80質量部が好ましく、15~50質量部が特に好ましい。Si化合物の含有量が10質量部未満の場合、従来の黒鉛に比べて十分に大きい容量が得られず、80質量部より大きい場合、サイクル劣化が激しくなりやすい。
 活物質Aでいう炭素質物とは、非晶質もしくは微結晶の炭素物質であり、2000℃を超える熱処理で黒鉛化する易黒鉛化炭素(ソフトカーボン)と、黒鉛化しにくい難黒鉛化炭素(ハードカーボン)が挙げられる。
 ハードカーボンは、樹脂または樹脂組成物などの前駆体を炭化処理して得ることが好ましい。炭化処理することで、樹脂または樹脂組成物が炭化処理され、リチウムイオン二次電池用炭素材として用いることができる。ハードカーボンの原材料(前駆体)となる、樹脂又は樹脂組成物としては、高分子化合物など(例えば、熱硬化性樹脂、熱可塑性樹脂)が挙げられる。熱硬化性樹脂としては特に限定されず、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂;ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂などのエポキシ樹脂;メラミン樹脂;尿素樹脂;アニリン樹脂;シアネート樹脂;フラン樹脂;ケトン樹脂;不飽和ポリエステル樹脂;ウレタン樹脂などが挙げられる。また、これらが種々の成分で変性された変性物を用いることもできる。
 また、熱可塑性樹脂としては、特に限定されず、例えば、ポリエチレン、ポリスチレン、アクリロニトリル-スチレン(AS)樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリプロピレン、ポリエチレンテレフタレート、ポリカーボネート、ポリアセタール、ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトンなどが挙げられる。
 これらのうち1種または2種以上を組み合わせて用いることができる。
 これらの中でも特に好ましいハードカーボンの原材料(前駆体)は、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂等が挙げられる。
 ハードカーボンの前駆体の形状は特に制限されず、粉状、板状、粒状、繊維状、塊状、球状など、あらゆる形状のものが使用可能である。これらの前駆体は、各種成分を混合する際に使用する溶剤に溶解することが好ましい。
 使用されるハードカーボンの前駆体の重量平均分子量としては、活物質Aの効果がより優れる点で1000以上が好ましく、1,000,000以下がより好ましい。
 ソフトカーボンは、樹脂または樹脂組成物などの前駆体を炭化処理して得ることが好ましい。炭化処理することで、樹脂または樹脂組成物が炭化処理され、リチウムイオン二次電池用炭素材として用いることができる。ソフトカーボンの原材料(前駆体)となる、樹脂又は樹脂組成物としては、特に限定されず、石炭系ピッチ(例えば、コールタールピッチ)、石油系ピッチ、メソフェーズピッチ、コークス、低分子重質油、またはそれらの誘導体などが挙げられ、石炭系ピッチ(例えば、コールタールピッチ)、石油系ピッチ、メソフェーズピッチ、コークス、低分子重質油、またはそれらの誘導体などが好ましい。なかでも、活物質Aの効果がより優れる点で、石炭系ピッチなどの前駆体から得られるソフトカーボンが好ましい。
 ソフトカーボンの前駆体の形状は特に制限されず、粉状、板状、粒状、繊維状、塊状、球状など、あらゆる形状のものが使用可能である。これらの前駆体は、各種成分を混合する際に使用する溶剤に溶解することが好ましい。
 使用されるソフトカーボンの前駆体の重量平均分子量としては、活物質Aの効果がより優れる点で1000以上が好ましく、1,000,000以下がより好ましい。
 活物質Aのリチウム二次電池用複合活物質において、炭素質物が含まれる場合、炭素質物の含有量は90~10質量部が好ましく、60~10質量部が特に好ましい。炭素質物の含有量が10質量部未満の場合、炭素質物がSi化合物を覆うことができず、導電パスが不十分となって容量劣化が激しく起こりやすく、90質量部より大きい場合、容量が十分に得られない。
 黒鉛成分としては、天然黒鉛材、人造黒鉛等が挙げられ、その中でも通常グラファイトと呼ばれる天然黒鉛を薄片化した薄片化黒鉛が好ましい。
 本明細書においては、薄片化黒鉛とは、グラフェンシートの積層数が400層以下の黒鉛を意図する。なお、グラフェンシートは主にファンデルワールス力によって互いに結合している。
 薄片化黒鉛におけるグラフェンシートの積層数は、リチウムイオンと化合可能な電池活物質と薄片化黒鉛とがより均一に分散し、リチウム二次電池用複合活物質を用いた電池材料の膨張がより抑制される、および/または、リチウム二次電池のサイクル特性がより優れる点で、300層以下が好ましく、200層以下がより好ましく、150層以下がさらに好ましい。取り扱い性の点からは、5層以上が好ましい。
 なお、薄片化黒鉛におけるグラフェンシートの積層数は透過型電子顕微鏡(TEM)を用いて測定することができる。
 薄片化黒鉛の平均厚みは、活物質Aの効果がより優れる点で、40nm以下が好ましく、22nm以下がより好ましい。下限は特に制限されないが、製造手順が煩雑になることから、通常、4nm以上である場合が多い。
 なお、上記平均厚みの測定方法としては、電子顕微鏡観察(TEM)によって薄片化黒鉛を観察し、薄片化黒鉛中の積層したグラフェンシートの層の厚みを10個以上測定して、その値を算術平均することによって、平均厚みが得られる。
 薄片化黒鉛は、黒鉛化合物をその層面間において剥離し薄片化して得られる。
 薄片化黒鉛としては、例えば、いわゆる膨張黒鉛が挙げられる。
 膨張黒鉛中には、黒鉛が含まれており、例えば、鱗片状黒鉛を濃硫酸や硝酸や過酸化水素水等で処理し、グラフェンシートの隙間にこれら薬液をインターカレートさせ、さらに加熱してインターカレートされた薬液が気化する際にグラフェンシートの隙間を広げることによって得られる。なお、後述するように、膨張黒鉛を出発原料として所定のリチウム二次電池用複合活物質を製造することができる。つまり、リチウム二次電池用複合活物質中の黒鉛成分として、膨張黒鉛を使用することもできる。
 また、黒鉛成分として、球形化処理が施された膨張黒鉛も挙げられる。球形化処理の手順は後段で詳述する。なお、後述するように、膨張黒鉛に球形化処理を実施する際には、他の成分(例えば、ハードカーボン及びソフトカーボンの前駆体、リチウムイオンと化合可能な電池活物質など)と共に、球形化処理が実施されてもよい。
 なお、黒鉛成分の比表面積は特に制限されないが、活物質Aの効果がより優れる点で、10m/g以上が好ましく、20m/g以上がより好ましい。上限は特に制限されないが、製造の手順が煩雑となり、合成が困難な点で、比表面積は200m/g以下が好ましい。
 なお、黒鉛成分の比表面積は、窒素吸着によるBET法(JIS Z 8830、一点法)を用いて測定したものである。
 黒鉛成分は、純度99.9重量%以上、若しくは不純物量1000ppm以下であり、S量が0.3重量%以下及び/又はBET比表面積が200m/g以下であることが好ましい。純度が99.9重量%よりも少なく、若しくは不純物量が1000ppmよりも多いと、不純物由来のSEI形成による不可逆容量が多くなるため、初回の充電容量に対する放電容量である初回充放電効率が低くなる傾向がある。また、S量が0.3重量%よりも高くなると同様に不可逆容量が高くなるため、初回充放電効率が低くなる。さらに好ましくは、S量が0.1重量%以下が好ましい。黒鉛成分のBET比表面積が40m/gよりも高いと、電解液との反応する面積が多くなるため、初回充放電効率が低くなる。
 不純物の測定は、ICP発光分光分析法により、以下の26元素(Al、Ca、Cr、Fe、K、Mg、Mn、Na、Ni、V、Zn、Zr、Ag、As、Ba、Be、Cd、Co、Cu、Mo、Pb、Sb、Se、Th、Tl、U)の不純物半定量値により測定する。また、S量は、酸素フラスコ燃焼法で燃焼吸収処理した後、フィルター濾過してイオンクロマトグラフィー(IC)測定により行う。
 活物質Aのリチウム二次電池用複合活物質において、炭素質物と黒鉛成分が含まれる場合、各々の含有量は5~60質量部と20~80質量部の割合が好ましく、10~55質量部と30~70質量部の割合が特に好ましい。炭素質物の含有量が5質量部未満の場合、炭素質物がSi化合物および黒鉛を覆うことができず、Si化合物と黒鉛との接着が不十分となり、活物質粒子の形成が困難となりやすい。また、60質量部より大きい場合、導電性が炭素質物より高い黒鉛の効果が十分に引き出されない。一方、黒鉛成分の含有量が20質量部未満の場合、炭素質物より高い導電性を有する黒鉛の効果が十分でなく、80質量部より多い場合、従来の黒鉛に比べて十分に大きい容量が得られない。
 活物質Aの粒径(D50:50%体積粒径)は特に制限されないが、活物質Aの効果がより優れる点で、2~40μmが好ましく、5~35μmがより好ましく、5~30μmがさらに好ましい。
 なお、粒径(D90:90%体積粒径)は特に制限されないが、活物質Aの効果がより優れる点で、10~75μmが好ましく、10~60μmがより好ましく、20~45μmがさらに好ましい。
 さらに、粒径(D10:10%体積粒径)は特に制限されないが、活物質Aの効果がより優れる点で、1~20μmが好ましく、2~10μmがより好ましい。
 D10、D50およびD90は、レーザー回折散乱法により測定した累積粒度分布の微粒側から累積10%、累積50%、累積90%の粒径にそれぞれ該当する。
 なお、測定に際しては、リチウム二次電池用複合活物質を液体に加えて超音波などを利用しながら激しく混合し、作製した分散液を装置にサンプルとして導入し、測定を行う。液体としては作業上、水やアルコール、低揮発性の有機溶媒を用いることが好ましい。この時、得られる粒度分布図は正規分布を示すことが好ましい。
 活物質Aのリチウム二次電池用複合活物質は、比表面積が0.5~45m/gであり、好ましくは0.5~30m/g、特に好ましくは0.5~10m/gである。この範囲とすることによりで電解液との接触及び充放電により活物質表面に形成される固体電解質層(SEI)を抑制し、初回クーロン効率と容量維持率を改善できる。
 また、平均細孔径が10~40nmであり、好ましくは10~30nm、特に好ましくは10~20nmである。また開気孔体積が0.06cm/g以下であり、好ましくは0.04cm/g以下、特に好ましくは0.02cm/g以下である。平均細孔径及び開気孔体積をこの範囲とすることにより活物質内部への電解液侵入を抑制し、容量維持率、過膨張率を改善できる。
 リチウム二次電池用複合活物質の比表面積(BET比表面積)、平均細孔径、開気孔体積の測定方法は、試料を300℃で30分真空乾燥後、窒素吸着多点法で測定する。
 活物質Aにおいては、電池活物質が0.2μm以下の厚みの黒鉛薄層の間に挟まった構造であり、その構造が積層および/または網目状に広がっており、黒鉛薄層が活物質粒子の表面付近で湾曲して活物質粒子を覆っていることが好ましい。
 厚みが0.2μmを超えると黒鉛薄層の電子伝達効果が薄まる。黒鉛薄層を断面で見て線状の場合、その長さはリチウム二次電池用複合活物質粒子のサイズの半分以上あることが電子伝達に好ましく、リチウム二次電池用複合物質粒子のサイズと同等程度であることがさらに好ましい。黒鉛薄層が網目状の場合、黒鉛薄層の網が活物質粒子のサイズの半分以上に渡って繋がっていることが電子伝達に好ましく、活物質粒子のサイズと同等程度であることがさらに好ましい。
 活物質Aにおいては、黒鉛薄層が活物質粒子の表面付近で湾曲して活物質粒子を覆うことが好ましい。そのような形状にすることで、黒鉛薄層端面から電解液が侵入して、電池活物質や黒鉛薄層端面と電解液が直接接して、充放電時に反応物が形成され、効率が下がるというリスクが低減する。
 活物質Aのリチウム二次電池用複合活物質の製造方法は、SiまたはSi合金、炭素前駆体、必要に応じて黒鉛成分を混合する工程と、造粒・圧密化する工程と、混合物を粉砕および球形化処理して略球状の複合粒子を形成する工程と、該複合粒子を不活性雰囲気中で焼成する工程と、炭素前駆体と該複合粒子もしくは焼成粉とを混合する工程及びその混合物を不活性雰囲気中で加熱する事で炭素膜を焼成粉もしくは炭素被覆した複合粒子を得る工程含むものである。
 原料であるSi化合物は、平均粒径(D50)が0.01~5μmの粉末を使用することが好ましい。所定の粒子径のSi化合物を得るためには、上述のSi化合物の原料(インゴット、ウエハ、粉末などの状態)を粉砕機で粉砕し、場合によっては分級機を用いる。インゴット、ウエハなどの塊の場合、最初はジョークラッシャー等の粗粉砕機を用いて粉末化することができる。その後、例えば、ボール、ビーズなどの粉砕媒体を運動させ、その運動エネルギーによる衝撃力や摩擦力、圧縮力を利用して被砕物を粉砕するボールミル、媒体撹拌ミルや、ローラによる圧縮力を利用して粉砕を行うローラミルや、被砕物を高速で内張材に衝突もしくは粒子相互に衝突させ、その衝撃による衝撃力によって粉砕を行うジェットミルや、ハンマー、ブレード、ピンなどを固設したローターの回転による衝撃力を利用して被砕物を粉砕するハンマーミル、ピンミル、ディスクミルや、剪断力を利用するコロイドミルや高圧湿式対向衝突式分散機「アルティマイザー」などを用いて微粉砕することができる。
 粉砕は、湿式、乾式共に用いることができる。さらに微粉砕するには、例えば、湿式のビーズミルを用い、ビーズの径を段階的に小さくすること等により非常に細かい粒子を得ることができる。また、粉砕後に粒度分布を整えるため、乾式分級や湿式分級もしくはふるい分け分級を用いることができる。乾式分級は、主として気流を用い、分散、分離(細粒子と粗粒子の分離)、捕集(固体と気体の分離)、排出のプロセスが逐次もしくは同時に行われ、粒子相互間の干渉、粒子の形状、気流の乱れ、速度分布、静電気の影響などで分級効率を低下させないように、分級をする前に前処理(水分、分散性、湿度などの調整)を行うか、使用される気流の水分や酸素濃度を調整して行う。乾式で分級機が一体となっているタイプでは、一度に粉砕、分級が行われ、所望の粒度分布とすることが可能となる。
 別の所定の粒子径のSi化合物を得る方法としては、プラズマやレーザー等でSi化合物を加熱して蒸発させ、不活性雰囲気中で凝固させて得る方法、ガス原料を用いてCVDやプラズマCVD等で得る方法があり、これらの方法は0.1μm以下の超微粒子を得るのに適している。
 原料の炭素前駆体としては、炭素を主体とする炭素系化合物で、不活性雰囲気中での熱処理により炭素質物になるものであれば特に限定はなく、前記易黒鉛化炭素(ソフトカーボン)、黒鉛化しにくい難黒鉛化炭素(ハードカーボン)等が挙げられる。
 原料である黒鉛成分は、天然黒鉛、石油や石炭のピッチを黒鉛化した人造黒鉛等が利用でき、鱗片状、小判状もしくは球状、円柱状もしくはファイバー状等が用いられる。また、それらの黒鉛成分を酸処理、酸化処理した後、熱処理することにより膨張させて黒鉛層間の一部が剥離してアコーディオン状となった膨張黒鉛もしくは膨張黒鉛の粉砕物、または超音波等により層間剥離させたグラフェン等も用いることができる。膨張黒鉛もしくは膨張黒鉛の粉砕物はその他の黒鉛に比べて可とう性に優れており、後述する複合粒子を形成する工程において、粉砕された粒子が再結着して略球状の複合粒子を容易に形成することができる。上記の点で、膨張黒鉛もしくは膨張黒鉛の粉砕物を用いることが好ましい。原料の黒鉛成分は予め混合工程で使用可能な大きさに整えて使用し、混合前の粒子サイズとしては天然黒鉛や人造黒鉛では1~100μm、膨張黒鉛もしくは膨張黒鉛の粉砕物、グラフェンでは5μm~5mm程度である。
 これらのSi化合物、炭素前駆体、さらに必要に応じて黒鉛成分との混合は、炭素前駆体が加熱により軟化、液状化するものである場合は、加熱下でSi化合物、炭素前駆体、さらに必要に応じて黒鉛成分を混練することによって行うことができる。また、炭素前駆体が溶媒に溶解するものである場合には、溶媒にSi化合物、炭素前駆体、さらに必要に応じて黒鉛成分を投入し、炭素前駆体が溶解した溶液中でSi化合物、炭素前駆体、さらに必要に応じて黒鉛成分を分散、混合し、次いで溶媒を除去することで行うことができる。用いる溶媒は、炭素前駆体を溶解できるものであれば特に制限なく使用できる。例えば、炭素前駆体としてピッチ、タール類を用いる場合には、キノリン、ピリジン、トルエン、ベンゼン、テトラヒドロフラン、クレオソート油等が使用でき、ポリ塩化ビニルを用いる場合には、テトラヒドロフラン、シクロヘキサノン、ニトロベンゼン等が使用でき、フェノール樹脂、フラン樹脂を用いる場合には、エタノール、メタノール等が使用できる。
 混合方法としては、炭素前駆体を加熱軟化させる場合は、混練機(ニーダー)を用いることができる。溶媒を用いる場合は、上述の混練機の他、ナウターミキサー、レーディゲミキサー、ヘンシェルミキサ、ハイスピードミキサー、ホモミキサー等を用いることができる。また、これらの装置でジャケット加熱したり、その後、振動乾燥機、パドルドライヤーなどで溶媒を除去する。
 これらの装置で、炭素前駆体を固化、または、溶媒除去の過程における撹拌をある程度の時間続けることで、Si化合物、炭素前駆体、さらに必要に応じて黒鉛成分との混合物は造粒・圧密化される。また、炭素前駆体を固化、または溶媒除去後の混合物をローラーコンパクタ等の圧縮機によって圧縮し、解砕機で粗粉砕することにより、造粒・圧密化することができる。これらの造粒・圧密化物の大きさは、その後の粉砕工程での取り扱いの容易さから0.1~5mmが好ましい。
 造粒・圧密化の方法は、圧縮力を利用して被砕物を粉砕するボールミル、媒体撹拌ミルや、ローラによる圧縮力を利用して粉砕を行うローラミルや、被砕物を高速で内張材に衝突もしくは粒子相互に衝突させ、その衝撃による衝撃力によって粉砕を行うジェットミルや、ハンマー、ブレード、ピンなどを固設したローターの回転による衝撃力を利用して被砕物を粉砕するハンマーミル、ピンミル、ディスクミル等の乾式の粉砕方法が好ましい。また、粉砕後に粒度分布を整えるため、風力分級、ふるい分け等の乾式分級が用いられる。粉砕機と分級機が一体となっているタイプでは、一度に粉砕、分級が行われ、所望の粒度分布とすることが可能となる。
 造粒・圧密化した混合物を粉砕及び球形化処理を施す方法としては、上述の粉砕方法により粉砕して粒度を整えた後、専用の球形化装置を通す方法と、上述のジェットミルやローターの回転による衝撃力を利用して被砕物を粉砕する方法を繰り返す、もしくは処理時間を延長することで球形化する方法がある。専用の球形化装置としては、ホソカワミクロン社のファカルティ(登録商標)、ノビルタ(登録商標)、メカノフュージョン(登録商標)、日本コークス工業社のCOMPOSI、奈良機械製作所社のハイブリダイゼーションシステム、アーステクニカ社のクリプトロンオーブ、クリプトロンエディ等が挙げられる。
 上記粉砕および球形化処理を行うことにより、略球状の複合粒子を得ることができる。
 得られた複合粒子は、アルゴンガスや窒素ガス気流中、もしくは真空などで焼成する。焼成温度は300~1200℃とすることが好ましく、特に好ましくは600~1200℃である。焼成温度が300℃未満であると、炭素前駆体の未熱分解成分の残存により、複合粒子内部の黒鉛層とSi、及び、複合粒子間の電気抵抗が増大するため、放電容量が低下する傾向にある。一方、焼成温度が1200℃を超える場合、Si化合物と炭素前駆体由来の非晶質炭素や黒鉛成分との反応が起こる可能性が強くなり、放電容量の低下が発生する傾向にある。
 また、本発明のリチウム二次電池用複合活物質は、前工程で得られた炭素被覆した複合粒子、球形化した複合粒子もしくは焼成粉と炭素前駆体とを不活性雰囲気中で焼成し炭素膜を複合粒子もしくは焼成粉の内外に被覆する工程を行い、製造することが好ましい。
 用いる炭素前駆体としては、石炭系ピッチ(例えば、コールタールピッチ)、石油系ピッチ、メソフェーズピッチ、コークス、低分子重質油等が挙げられる。
 炭素被覆した複合粒子、球形化した複合粒子もしくは焼成粉と炭素前駆体とを不活性雰囲気中で焼成し炭素膜を複合粒子もしくは焼成粉の内外に被覆する際には、炭素前駆体を坩堝等に入れ、複合粒子と直接接触しないようにした状態で不活性雰囲気で加熱、もしくは、不活性雰囲気中にメタン、エタン、エチレン、アセチレ、プロピレン等の炭化水素ガスを添加し、加熱する事により、炭素膜を焼成粉もしくは炭素被覆した複合粒子もしくは炭素被覆した焼成粉の内外に気相で被覆することが好ましい。
 さらに、本発明のリチウム二次電池用複合活物質は、気相で炭素膜を被覆する工程の後、もしくは、球形処理した粉体もしくは焼成粉もしくは炭素被覆した粉体を風力分級する工程を行い、製造することが好ましい。
 風力分級の方法としては、ホソカワミクロン製ATP-50のような風力分級装置に粉体を投入し、ローター回転数、や差圧等の運転条件を調整することで、分級される粉体の粒径を制御することが可能である。
 次に活物質B及びその製造方法について説明する。
<黒鉛成分>
 黒鉛成分としては、活物質Aの黒鉛成分と同様のものを挙げることができる。
<ハードカーボン>
 ハードカーボンとしては、活物質Aの炭素質物におけるハードカーボンと同様のものを挙げることができる。
<ソフトカーボン>
 ソフトカーボンとしては、活物質Aの炭素質物におけるソフトカーボンと同様のものを挙げることができる。
<リチウムイオンと化合可能な電池活物質>
 リチウムイオンと化合可能な電池活物質(以後、単に「電池活物質」とも称する)は、リチウムイオンと化合して、リチウムイオンを吸蔵および放出し得る物質(例えば、金属、金属の炭化物、窒化物、酸化物など)であればよい。例えば、リチウムイオンの吸収および放出が可能な金属もしくは非金属、または、リチウムと合金化可能な金属酸化物である。
 電池活物質は、周期表の13族の元素、周期表の14族の元素、周期表の15族の元素、マグネシウム、および、マンガンからなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より具体的には、Si、Sn、Al、Sb、Zn、Bi、Cd、Pb、In、Ag、Ga、Geなどの金属(リチウムと合金化可能な金属)もしくはこれら金属を含む合金(例えば、Si合金、Sb合金、Sn合金、In合金)、または、SnO、SnOなどの金属酸化物(リチウムと合金化可能な金属酸化物)などが挙げられる。なかでも、得られるリチウム二次電池用複合活物質を用いて得られるリチウム二次電池の放電容量およびサイクル特性がより優れる点で、電池活物質がSi、Sn、Al、Sb、およびInからなる群から選ばれる少なくとも1種の元素を含有することが好ましく、Si、Snの元素を含有することがより好ましい。
 なお、該合金については、上記した金属の組み合わせからなる合金の他、リチウムイオンを吸蔵および放出しない金属を含む合金であってもよい。この場合、合金中の上記リチウムと合金化可能な金属の含有量はより多いほうが好ましい。SEM観察で得られる2次電子像で判断する粒子の均一性やサイクル特性などから判断すると、金属含有量の上限は70質量%であることが好ましく、60質量%以下がより好ましい。
 使用される電池活物質の形状は特に制限されず、粉状、板状、粒状、繊維状、塊状、球状など、あらゆる形状のものが使用可能である。
 使用される電池活物質の平均粒径(D50)は、0.01~0.6μmが好ましく、特に好ましくは0.01~0.3μmである。なお、平均粒径(D50)はレーザー回折法または動的光散乱法で測定した体積平均の粒子径である。
 また、D90は0.01~1.0μmが好ましく、特に好ましくは0.01~0.6μmである。D90はレーザー回折法又は動的光散乱法による測定された最少粒径値より累積値90%にあたる粒子径である。
 BET法で測定されるBET比表面積は、40~300m/gが好ましく、特に好ましくは70~300m/gである。
 なお、上記所定の平均粒子径の電池活物質を得る方法としては、攪拌槽型攪拌ミル(ビーズミル等)等などの公知の装置を用いて電池活物質の粉砕を行うことによって、上記した粒径の小さい粉末を得ることが可能である。
<リチウム二次電池用複合活物質(以後、単に複合活物質とも称する)>
 リチウム二次電池用複合活物質(活物質B)には、上述した黒鉛成分、ハードカーボン、ソフトカーボン、および、電池活物質が含まれる。
 活物質B中における黒鉛成分の含有量は特に制限されないが、活物質Bの効果がより優れる点で、15~65質量部が好ましく、25~55質量部がより好ましく、35~50質量部がさらに好ましい。
 ハードカーボンの含有量は特に制限されないが、活物質Bの効果がより優れる点で、5~40質量部が好ましく、8~30質量部がより好ましい。
 また、ソフトカーボンの含有量は、発明の効果がより優れる点で、5~60質量部が好ましく、15~50質量部がより好ましく、20~40質量部がさらに好ましい。
 活物質B中における電池活物質の含有量は特に制限されないが、活物質Bの効果がより優れる点で、5~80質量部が好ましく、10~70質量部がより好ましく、15~50質量%がさらに好ましい。
 活物質Bの形状は特に制限されないが、活物質Bの効果がより優れる点で、略球状の形状を有することが好ましい。なお、略球状とは、粉砕等により生成した粒子の角が取れているもの、球状もしくは回転楕円体形状、円板もしくは小判形状で厚みを有して角が丸いもの、またはそれらが変形したもので角が丸いものなどを含み、その円形度は0.7~1.0である。なお、円形度は走査型電子顕微鏡で撮影した粒子像を画像解析して測定した。すなわち、粒子の投影面積(A)と周囲長(PM)を写真から測定し、等しい周囲長(PM)を持つ真円の面積を(B)とした時に、円形度はA/Bで定義される。前記真円の半径をrとした時、PM=2πr、及びB=πrが成り立つので、これより円形度A/B=A×4π/(PM)で算出される。これにより任意の100個以上の複合粒子の球形度を求め、その平均値を複合粒子の平均円形度とした。この際、短軸長さが1μm未満の扁平状微粒子を除いた略球状粒子の平均値を複合粒子の平均円形度とすることもできる。形状が丸みを帯びることにより複合粒子のかさ密度が高まり、負極にした時の充填密度が高まる。
 活物質Bの粒径(D50:50%体積粒径)は特に制限されないが、活物質Bの効果がより優れる点で、2~40μmが好ましく、5~35μmがより好ましく、5~30μmがさらに好ましい。
 なお、粒径(D90:90%体積粒径)は特に制限されないが、活物質Bの効果がより優れる点で、10~75μmが好ましく、10~60μmがより好ましく、20~45μmがさらに好ましい。
 さらに、粒径(D10:10%体積粒径)は特に制限されないが、活物質Bの効果がより優れる点で、1~20μmが好ましく、2~10μmがより好ましい。
 D10、D50およびD90は、レーザー回折散乱法により測定した累積粒度分布の微粒側から累積10%、累積50%、累積90%の粒径にそれぞれ該当する。
 なお、測定に際しては、活物質Bを液体に加えて超音波などを利用しながら激しく混合し、作製した分散液を装置にサンプルとして導入し、測定を行う。液体としては作業上、水やアルコール、低揮発性の有機溶媒を用いることが好ましい。この時、得られる粒度分布図は正規分布を示すことが好ましい。
 複合活物質Bの比表面積(BET比表面積)は特に制限されないが、活物質Bの効果がより優れる点で、30m/g以下が好ましく、10m/g以下がより好ましい。下限は特に制限されないが、0.1m/g以上が好ましい。
 活物質Bの比表面積(BET比表面積)の測定方法は、試料を300℃で30分真空乾燥後、窒素吸着1点法で測定する。
 活物質Bにおいては、電池活物質が0.2μm以下の厚みの黒鉛薄層の間に挟まった構造であり、その構造が積層および/または網目状に広がっており、黒鉛薄層が活物質粒子の表面付近で湾曲して活物質粒子を覆っていることが好ましい。
 厚みが0.2μmを超えると黒鉛薄層の電子伝達効果が薄まる。黒鉛薄層を断面で見て線状の場合、その長さは負極活物質粒子のサイズの半分以上あることが電子伝達に好ましく、活物質粒子のサイズと同等程度であることがさらに好ましい。黒鉛薄層が網目状の場合、黒鉛薄層の網が活物質粒子のサイズの半分以上に渡って繋がっていることが電子伝達に好ましく、活物質粒子のサイズと同等程度であることがさらに好ましい。
 活物質Bにおいては、黒鉛薄層が活物質粒子の表面付近で湾曲して活物質粒子を覆うことが好ましい。そのような形状にすることで、黒鉛薄層端面から電解液が侵入して、電池活物質や黒鉛薄層端面と電解液が直接接して、充放電時に反応物が形成され、効率が下がるというリスクが低減する。
 また、活物質Bでは、複合活物質がソフトカーボンを含有することにより、黒鉛成分及び電池活物質がソフトカーボンで覆われている構造を有する。該構造を有することにより、充放電を繰り返した後でも体積膨張が抑制された電極材料の作製が可能で、かつ、優れたサイクル特性を示すリチウム二次電池の作製が可能なリチウム二次電池用複合活物質が得られるものである。
 活物質Bは、さらに表面を炭素質材料で覆われていることが好ましい。炭素質材料としては、ソフトカーボンと同様のものを挙げることができる。
<リチウム二次電池用複合活物質の製造方法>
 上記リチウム二次電池用複合活物質(活物質B)の製造方法は特に制限されないが、製造工程が簡便であり、かつ、活物質Bの効果がより優れる点で、以下の第1実施態様~第3実施態様の方法が挙げられる。
 以下、各実施態様について詳述する。
(第1実施態様)
 活物質Bの製造方法の第1実施態様としては、所定の成分を含む第1混合物に球形化処理を施す球形化工程と、得られた第1混合物に対して加熱処理を施す第1加熱工程と、第1加熱工程で得られた焼成物とソフトカーボンの前駆体とを混合して第2混合物を得る混合工程と、第2混合物に対して加熱処理を施す第2加熱工程と、を有する方法が挙げられる。
 以下、各工程の手順について詳述する。
[球形化工程]
 球形化工程は、黒鉛成分、および、リチウムイオンと化合可能な電池活物質を含む第1混合物に球形化処理を施す工程である。
 使用される黒鉛成分および電池活物質の定義は、上述の通りである。
 なお、上記黒鉛成分としては、膨張黒鉛を使用することもできる。つまり、膨張黒鉛、および、電池活物質を含む第1混合物に球形化処理を施してもよい。
 膨張黒鉛としては、市販品を使用してもよいし、公知の方法で製造してもよい。
 膨張黒鉛の製造方法としては、例えば、酸中に黒鉛(例えば、鱗片状黒鉛)を室温で浸漬した後、得られた酸処理黒鉛に加熱処理(好ましくは、700~1000℃で処理)を施すことにより製造することができる。より具体的には、硫酸9質量部と硝酸1質量部の混酸に鱗片状天然黒鉛を1時間程度浸漬後、酸を除去し、水洗・乾燥を行う。その後、得られた酸処理黒鉛を850℃程度の炉に投入することで、黒鉛の層間に入った酸がガスとして噴出し、層間が部分的に広がり、広がったひだ状、或いはアコーディオンのような形状の膨張黒鉛が得られる。なお、酸処理黒鉛の代わりに、アルカリ金属など黒鉛と層間化合物を形成した黒鉛を使用しても、膨張黒鉛を得ることができる。
 なお、膨張黒鉛中には、黒鉛面を重ねる方向でグラフェンシートが複数枚重なった層(薄片化黒鉛)が含まれており、グラフェンシートは主にファンデルワールス力によって互いに結合している。
 上記で得られた酸処理黒鉛の嵩密度は特に限定されないが、酸処理黒鉛が十分に膨張する点で、0.6g/cm以上が好ましく、0.7g/cm以上がより好ましい。上限は特に制限されないが、製造上の問題から、1.0g/cm以下の場合が多い。
 なお、嵩密度の測定方法としては、100mlのガラス製メスシリンダーに試料を圧縮しないように挿入し、その試料質量を試料体積で除して求める。
 使用される膨張黒鉛の嵩比重は特に制限されないが、活物質Bの効果がより優れる点で、0.05g/cm以下が好ましく、0.01g/cm以下がより好ましい。下限は特に限定されないが、製造上の問題から、0.001g/cm以上の場合が多い。
 なお、嵩比重の測定方法としては、500mlのガラス製メスシリンダーに試料を圧縮しないように挿入し、その試料質量を試料体積で除して求める。
 膨張黒鉛の比表面積は特に制限されないが、活物質Bの効果がより優れる点で、比表面積が10m/g以上が好ましく、20m/g以上がより好ましい。上限は特に制限されないが、製造の手順が煩雑となり、合成が困難な点で、比表面積は200m/g以下が好ましい。
 なお、膨張黒鉛の比表面積は、窒素吸着によるBET法(JIS Z 8830、一点法)を用いて測定したものである。
 黒鉛成分および電池活物質を含む第1混合物を得る方法は特に制限されず、公知の方法を採用することができ、いわゆる乾式処理または湿式処理などが挙げられる。なお、得られる第1混合物中での各成分がより均一に混合する点より、湿式処理の態様が好ましい。
 乾式処理としては、例えば、公知の攪拌機(例えば、ヘンシェルミキサー)に黒鉛成分および電池活物質を加え、混合する方法がある。
 湿式処理としては、例えば、黒鉛成分と電池活物質とを溶媒中に分散させ、得られた溶液を混合攪拌して、溶媒を除去する方法が挙げられる。
 湿式処理の際に使用される溶媒は特に制限されず、黒鉛成分と電池活物質とを分散させることができる溶媒であればよい。例えば、アルコール系溶媒(例えば、メタノール、エタノール、イソプロパノール)、ケトン系溶媒(例えば、アセトン、メチルエチルケトン、シクロヘキサノン)、アミド系溶媒(例えば、ホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン)、ニトリル系溶媒(例えば、アセトニトリル、プロピオニトリル)、エステル系溶媒(例えば、酢酸メチル、酢酸エチル)、カーボネート系溶媒(例えば、ジメチルカーボネート、ジエチルカーボネート)、エーテル系溶媒(例えば、セロソルブ)、ハロゲン系溶媒、水およびこれらの混合物などが挙げられる。
 なかでも、得られるリチウム二次電池用複合活物質を用いたリチウム二次電池のサイクル特性がより優れる点で、アルコール系溶媒が好ましい。
 湿式処理において、黒鉛成分と電池活物質とを混合攪拌する条件は特に制限されず、使用される材料に応じて適宜最適な条件が選択される。
 また、必要に応じて、攪拌処理時に超音波処理を実施してもよい。つまり、黒鉛成分と電池活物質とを超音波処理を施しながら混合して第1混合物を製造してもよい。言い換えると、第1混合物としては、黒鉛成分および電池活物質を含む組成物に対して超音波処理を施して得られる混合物であってもよい。
 溶媒を除去する方法は特に制限されず、公知の装置(例えば、エバポレータ)などを使用する方法が挙げられる。
 黒鉛成分と電池活物質との混合比は特に制限されないが、活物質Bの効果がより優れる点で、黒鉛成分100質量部に対して、電池活物質を25~150質量部混合することが好ましく、50~100質量部混合することがより好ましい。
 なお、第1混合物には、黒鉛成分および電池活物質以外の成分が含まれていてもよく、例えば、上述したハードカーボンの前駆体として使用される高分子化合物が挙げられる。
 黒鉛成分とハードカーボンの前駆体との混合比率は特に制限されないが、活物質Bの効果がより優れる点で、黒鉛成分100質量部に対して、ハードカーボンの前駆体が1~50質量部であることが好ましく、10~30質量部であることがより好ましい。
 なお、後述する球形化処理の前に、必要に応じて、得られた第1混合物をプレスするプレス工程が含まれていてもよい。プレス工程を実施すると、黒鉛層間の距離がより小さくなり、後述する球形化処理がより効率的に進行する。
 なお、プレスの方法は特に制限されず、公知の方法を採用できる。
 球形化処理の方法は特に制限されず、主に衝撃応力を加えられる粉砕機であれば特に限定されない。粉砕機としては、例えば、高速回転衝撃式粉砕機が挙げられ、より具体的にはサンプルミル、ハンマミル、ピンミル等を用いることができる。なかでも、活物質Bの効果がより優れる点で、ピンミルが好ましい。
 高速回転衝撃式粉砕機としては、高速回転するローターに試料を衝突させて、その衝撃力による微細化を達成するものが挙げられ、例えば、ローターに固定式またはスイング式の衝撃子を取り付けたハンマーミルタイプのハンマー型、回転する円盤にピンや衝撃ヘッドを取り付けたピンミルタイプの回転円盤型、試料がシャフト方向に搬送されながら粉砕する軸流型、狭い環状部での粒子の微細化を行うアニュラー型等が挙げられる。より具体的には、ハンマミル、ピンミル、スクリーンミル、ターボ型ミル、遠心分級型ミルなどが挙げられる。
 なお、本工程を上記高速回転衝撃式粉砕機で行なう場合には、通常100rpm以上、好ましくは1500rpm以上、また、通常30000rpm以下の回転速度で球形化を行うことが好ましい。過度の衝撃力により球形化より粉砕が進行する。したがって衝突速度は20m/秒~100m/秒程度とすることが好ましい。
 粉砕と異なり、球形化処理は低い衝撃力で処理するため、本工程は通常循環処理を行うことが好ましい。その処理時間は、使用する粉砕機の種類や仕込み量等によって異なるが、通常2分以内であり、適切なピン或いは衝突板の配置がなされた装置であれば処理時間は10秒程度で終了する。
 また、球形化処理は空気中で行うことが好ましい。さらに、上記処理は、複数回実施してもよい。
[第1加熱工程(第1焼成工程)]
 第1加熱工程は、上記球形化工程にて得られた第1混合物(球形化処理が施された第1混合物)に対して加熱処理を施す工程である。
 加熱処理(焼成処理)の条件としては、活物質Bの効果がより優れる点で、加熱温度としては400℃以上が好ましく、600℃以上がより好ましく、700℃以上がさらに好ましい。なお、上限は特に制限されないが、耐熱性の点から、2000℃以下が好ましく、1500℃以下がより好ましく、1000℃以下がさらに好ましい。
 また、加熱時間としては、0.5時間以上が好ましく、1時間以上がより好ましい。なお、上限は特に制限されないが、発明の効果が飽和する点から、5時間以下の場合が多い。
 加熱処理を行う雰囲気は、炭素の酸化を防ぐ観点から、不活性雰囲気下が好ましい。
 なお、上記加熱工程の後、必要に応じて、得られた複合活物質をより微細化するための粉砕処理を実施してもよい。粉砕方法としては、公知の手段が実施できる。
[混合工程]
 混合工程は、上記第1加熱工程で得られた焼成物とソフトカーボンの前駆体とを混合して第2混合物を得る工程である。本工程で得られる第2混合物中では、黒鉛成分および電池活物質を含む焼成物(複合粒子)の表面に、ソフトカーボンの前駆体が付着している。そのため、後述する第2加熱工程を実施すると、焼成物表面のソフトカーボンの前駆体が焼成され、ソフトカーボンで覆われた複合粒子、つまり、複合活物質が得られる。
 混合方法は特に制限されず、公知の方法を採用することができ、上記球形化処理にて述べた乾式処理または湿式処理などが挙げられる。
 第2混合物とソフトカーボンの前駆体との混合比は特に制限されないが、活物質Bの効果がより優れる点で、第2混合物100質量部に対して、ソフトカーボンの前駆体を0.1~70質量部混合することが好ましく、15~50質量部混合することがより好ましい。
[第2加熱工程(第2焼成工程)]
 第2加熱工程は、上記混合工程で得られた第2混合物に対して加熱処理を施す工程である。加熱処理の条件は、加熱温度400℃以上、昇温速度を1℃/min以上にすることが好ましく、3℃/min以上とすることが特に好ましい。加熱温度が400℃未満であると、ソフトカーボンの形成が不十分となり電池評価の特性が悪くなる。一方、加熱温度が1200℃以上では、添加金属元素と黒鉛元素の反応が起き易く、同様に電池評価の特性が悪くなる。また、昇温速度が1℃/min未満では、複合活物質の比表面積が大きくなり、電解液が浸漬し易く、電池評価の特性が低下する。
 上記焼成で得られた複合活物質(第2混合物)は、さらに解砕、分級することができる。解砕、分級方法は特に限定しないが、解砕時に第1混合物を壊さない程度の解砕が必要であり、解砕力が弱いボールミルなどの方法が好ましい。また長時間の粉砕は、小粒径の分布が増え、電池評価の特性が低下する。
(第2実施形態)
 活物質Bの製造方法の第2実施態様としては、所定の成分を含む第1混合物に球形化処理を施す球形化工程と、球形化処理が施された第1混合物とソフトカーボンの前駆体とを混合して第3混合物を得る混合工程と、得られた第3混合物に対して加熱処理を施す加熱工程と、を有する方法が挙げられる。
 以下、各工程の手順について詳述する。
[球形化工程]
 球形化工程は、黒鉛成分、および、リチウムイオンと化合可能な電池活物質を含む第1混合物に球形化処理を施す工程である。
 本工程は、上述した第1の実施形態の球形化工程と同じ工程であるため、説明を省略する。
[混合工程]
 混合工程は、上記球形化処理が施された第1混合物とソフトカーボンの前駆体とを混合して第3混合物を得る工程である。
 使用されるソフトカーボンの前駆体の定義は、上述の通りである。
 第3混合物を得るための混合方法は特に制限されず、公知の方法を採用することができ、上記第1の実施形態の球形化処理にて述べた乾式処理または湿式処理などが挙げられる。
[加熱工程]
 加熱工程は、上記混合工程で得られた第3混合物に対して加熱処理を施す工程である。加熱処理の条件は、加熱温度400℃以上、昇温速度を1℃/min以上とすることが好ましく、特に3℃/min以上とすることが好ましい。加熱温度が400℃未満であると、ソフトカーボンの形成が不十分となり電池評価の特性が悪くなる。一方、加熱温度が1200℃以上では、添加金属元素と黒鉛元素の反応が起き易く、同様に電池評価の特性が悪くなる。また、昇温速度が1℃/min未満では、複合活物質の比表面積が大きくなり、電解液が浸漬し易く、電池評価の特性が低下する。
 上記焼成で得られた活物質(第3混合物)は、さらに解砕、分級することができる。解砕、分級方法は特に限定しないが、解砕時に第1混合物を壊さない程度の解砕が必要であり、解砕力が弱いボールミルなどの方法が好ましい。また長時間の粉砕は、小粒径の分布が増え、電池評価の特性が低下する。
(第3実施態様)
 活物質Bの製造方法の第3実施態様としては、所定の成分を含む第4混合物に球形化処理を施す球形化工程と、得られた第4混合物に対して加熱処理を施す加熱工程と、を有する方法が挙げられる。
 以下、各工程の手順について詳述する。
[球形化工程]
 球形化工程は、黒鉛成分、ハードカーボンの前駆体及びソフトカーボンの前駆体、および、リチウムイオンと化合可能な電池活物質を含む第4混合物に球形化処理を施す工程である。
 使用される黒鉛成分、ハードカーボンの前駆体及びソフトカーボンの前駆体、および、電池活物質の定義は、上述の通りである。
 第4混合物を得るための混合方法は特に制限されず、公知の方法を採用することができ、上記第1の実施形態の球形化処理にて述べた乾式処理または湿式処理などが挙げられる。
 球形化処理の方法は、上記第1の実施形態の球形化処理の方法が挙げられる。
 なお、球形化処理の前に、必要に応じて、得られた第4混合物をプレスするプレス工程が含まれていてもよい。
[加熱工程]
 加熱工程は、上記球形化工程で得られた第4混合物に対して加熱処理を施す工程である。加熱処理の条件は、加熱温度400℃以上、昇温速度を1℃/min以上にすることが好ましく、3℃/min以上とすることが特に好ましい。加熱温度が400℃未満であると、ソフトカーボンの形成が不十分となり電池評価の特性が悪くなる。一方、加熱温度が1200℃以上では、添加金属元素と黒鉛元素の反応が起き易く、同様に電池評価の特性が悪くなる。また、昇温速度が1℃/min未満では、複合活物質の比表面積が大きくなり、電解液が浸漬し易く、電池評価の特性が低下する。
 上記焼成で得られた活物質(第4混合物)は、さらに解砕、分級することができる。解砕、分級方法は特に限定しないが、解砕時に第1混合物を壊さない程度の解砕が必要であり、解砕力が弱いボールミルなどの方法が好ましい。また長時間の粉砕は、小粒径の分布が増え、電池評価の特性が低下する。
 活物質Bをさらに表面を炭素質材料で覆う方法としては、ソフトカーボンの前駆体を加熱し、溶融、気相状のものを上記で得られた複合活物質に気相付着させる気相コート方法が挙げられる。例えば、複合活物質を入れた坩堝の容器にソフトカーボンの前駆体を直接混合せずに同じ黒鉛製の容器に入れ、黒鉛製の蓋をして密閉し、窒素を流しながら加熱することで前駆体の溶融・気相状のものが複合活物質に付着し、前駆体がソフトカーボンに変性し表面を炭素質材料で覆うことができる。ソフトカーボンの前駆体は特に限定はなく、炭化率の高いコールタールピッチなどが好ましい。
 本発明のリチウム二次電池用複合活物質(活物質A,B)は、リチウム二次電池で使用される電池材料(電極材料)に使用される活物質として有用である。
 活物質A,Bを使用してリチウム二次電池用負極を製造する方法は特に制限されず、公知の方法を使用することができる。
 例えば、リチウム二次電池用複合活物質と結着剤とを混合し、溶剤を用いてペースト化し、銅箔上に塗布してリチウム二次電池用負極とすることができる。
 なお、集電体としては銅箔以外に、電池のサイクルがより優れる点で、三次元構造を有する集電体が好ましい。三次元構造を有する集電体の材料としては、例えば、炭素繊維、スポンジ状カーボン(スポンジ状樹脂にカーボンを塗工したもの)、金属などが挙げられる。
 三次元構造を有する集電体(多孔質集電体)としては、金属や炭素の導電体の多孔質体として、平織り金網、エキスパンドメタル、ラス網、金属発泡体、金属織布、金属不織布、炭素繊維織布、または炭素繊維不織布などが挙げられる。
 使用される結着剤としては、公知の材料を使用でき、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素系樹脂、SBR、ポリエチレン、ポリビニルアルコール、カルボキシメチルセルロース、ポリアクリル酸、膠などが用いられる。
 また、溶剤としては、例えば、水、イソプロピルアルコール、N-メチルピロリドン、ジメチルホルムアミドなどが挙げられる。
 なお、ペースト化する際には、上記のように必要に応じて、公知の攪拌機、混合機、混練機、ニーダーなどを用いて攪拌混合してもよい。
 活物質A,Bを用いて塗工用スラリーを調製する場合、導電材として導電性カーボンブラック、カーボンナノチューブまたはその混合物を添加することが好ましい。上記工程により得られたリチウム二次電池用複合活物質の形状は、比較的、粒状化(特に、略球形化)している場合が多く、粒子間の接触は点接触となりやすい。この弊害を避けるために、スラリーにカーボンブラック、カーボンナノチューブまたはその混合物を配合する方法が挙げられる。カーボンブラック、カーボンナノチューブまたはその混合物はスラリー溶剤の乾燥時に該複合活物質が接触して形成する毛細管部分に集中的に凝集することが出来るので、サイクルに伴う接点切れ(抵抗増大)を防止することが出来る。
 カーボンブラック、カーボンナノチューブまたはその混合物の配合量は特に制限されないが、リチウム二次電池用複合活物質100質量部に対して、0.2~4質量部であることが好ましく、0.5~2質量部であることがより好ましい。カーボンナノチューブの例としては、シングルウォールカーボンナノチューブ、マルチウォールカーボンナノチューブがある。
(正極)
 上記活物質A,Bを使用して得られる負極を有するリチウム二次電池に使用される正極としては、公知の正極材料を使用した正極を使用することができる。
 正極の製造方法としては公知の方法が挙げられ、正極材料と結合剤および導電剤よりなる正極合剤を集電体の表面に塗布する方法などが挙げられる。正極材料(正極活物質)としては、酸化クロム、酸化チタン、酸化コバルト、五酸化バナジウムなどの金属酸化物や、LiCoO、LiNiO、LiNi1-yCo、LiNi1-x-yCoAl、LiMnO、LiMn、LiFeOなどのリチウム金属酸化物、硫化チタン、硫化モリブデンなどの遷移金属のカルコゲン化合物、または、ポリアセチレン、ポリパラフェニレン、ポリピロールなどの導電性を有する共役系高分子物質などが挙げられる。
(電解液)
 上記活物質A,Bを使用して得られる負極を有するリチウム二次電池に使用される電解液としては、公知の電解液を使用することができる。
 例えば、電解液中に含まれる電解質塩として、LiPF、LiBF、LiAsF、LiClO、LiB(C)、LiCl、LiBr、LiCFSO、LiCHSO、LiN(CFSO、LiC(CFSO、LiN(CFCHOSO、LiN(CFCFOSO、LiN(HCFCFCHOSO、LiN{(CFCHOSO、LiB{C(CF、LiN(SOCF、LiC(SOCF、LiAlCl、LiSiFなどのリチウム塩を用いることができる。特にLiPFおよびLiBFが酸化安定性の点から好ましい。
 電解質溶液中の電解質塩濃度は0.1~5モル/リットルが好ましく、0.5~3モル/リットルがより好ましい。
 電解液で使用される溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート、1,1-または1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、γ-ブチロラクトン、1,3-ジオキソフラン、4-メチル-1,3-ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N-メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3-メチル-2-オキサゾリン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒を用いることができる。
 なお、電解液の代わりに、高分子固体電解質、高分子ゲル電解質などの高分子電解質を使用してもよい。高分子固体電解質または高分子ゲル電解質のマトリクスを構成する高分子化合物としては、ポリエチレンオキサイドやその架橋体などのエーテル系高分子化合物、ポリメタクリレートなどのメタクリレート系高分子化合物、ポリアクリレートなどのアクリレート系高分子化合物、ポリビニリデンフルオライド(PVDF)やビニリデンフルオライド-ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物が好ましい。これらを混合して使用することもできる。酸化還元安定性などの観点から、PVDFやビニリデンフルオライド-ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物が特に好ましい。
(セパレータ)
 上記活物質A,Bを使用して得られる負極を有するリチウム二次電池に使用されるセパレータとしては、公知の材料を使用できる。例えば、織布、不織布、合成樹脂製微多孔膜などが例示される。合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、膜厚、膜強度、膜抵抗などの点から好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜などである。
 リチウム二次電池は、上述した負極、正極、セパレータ、電解液、その他電池構成要素(例えば、集電体、ガスケット、封口板、ケースなど)を用いて、常法にしたがって円筒型、角型あるいはボタン型などの形態を有することができる。
 本発明のリチウム二次電池は、各種携帯電子機器に用いられ、特にノート型パソコン、ノート型ワープロ、パームトップ(ポケット)パソコン、携帯電話、携帯ファックス、携帯プリンター、ヘッドフォンステレオ、ビデオカメラ、携帯テレビ、ポータブルCD、ポータブルMD、電動髭剃り機、電子手帳、トランシーバー、電動工具、ラジオ、テープレコーダー、デジタルカメラ、携帯コピー機、携帯ゲーム機などに用いることができる。また、さらに、電気自動車、ハイブリッド自動車、自動販売機、電動カート、ロードレベリング用蓄電システム、家庭用蓄電器、分散型電力貯蔵機システム(据置型電化製品に内蔵)、非常時電力供給システムなどの二次電池として用いることもできる。
 以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
<実施例1>
(膨張黒鉛の調製)
 平均粒子径1mmの鱗片状天然黒鉛を硫酸9質量部、硝酸1質量部の混酸に室温で1時間浸漬後、No3ガラスフィルターで混酸を除去して酸処理黒鉛を得た。さらに酸処理黒鉛を水洗後、乾燥した。乾燥した酸処理黒鉛5gを蒸留水100g中で攪拌し、1時間後にpHを測定したところ、pHは6.7であった。乾燥した酸処理黒鉛を850℃に設定した窒素雰囲気下の縦型電気炉に投入し、膨張黒鉛を得た。膨張黒鉛の嵩密度は0.002g/cm、比表面積は45m/gであった。
 (混合工程)
 平均粒径(D50)が7μmのケミカルグレードの金属Si(純度3N)をエタノールに21重量%混合し、直径0.3mmのジルコニアビーズを用いた微粉砕湿式ビーズミルを6時間行い、平均粒径(D50)0.3μm、乾燥時のBET比表面積が100m/gの超微粒子Siスラリーを得た。
 粒子径0.3mm((200)面方向の幅)、厚み10μmの酸処理した天然黒鉛を振動粉末供給器に入れ、12L/分の流量の窒素ガスに乗せて電気ヒーターで850℃に加熱した長さ1m、内径20mmのムライト管に通し、端面から大気に放出し、亜硫酸等のガスを上部に排気、下部に膨張黒鉛をステンレス容器で捕集した。膨張黒鉛の(200)面方向の幅は0.3mmで元の黒鉛の値を保っていたが、厚みは2.4mmと240倍に膨張し、外観はコイル状であり、SEM観察で黒鉛層が剥離し、アコーディオン状であることが確認された。
 上記超微粒子Siスラリーを1049g、上記膨張黒鉛を300g、レゾール型のフェノール樹脂(重量平均分子量(Mw)=370)を125g、エタノール5Lを撹拌容器に入れ、インラインミキサーで22分混合撹拌した。その後、混合液をロータリーエバポレーターに移し、回転しながら温浴で40℃に加熱し、アスピレータで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、588gの混合乾燥物(軽装かさ密度266g/L)を得た。
 (プレス工程)
 この混合乾燥物を3本ロールミルに2回通し、目開き1mmの篩を通し、軽装かさ密度457g/Lに造粒・圧密化した。
 (球形化工程)
 次に、この造粒・圧密化物をニューパワーミルに入れて水冷しながら、21000rpmで300秒粉砕し、同時に球形化し、軽装かさ密度509g/Lの略球状複合粉末を得た。
 (焼成工程)
 得られた粉末を石英ボートに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成する事でフェノール樹脂の炭化を同時に行った。これにより、黒鉛成分の含有量60質量部、Si含有量30質量部、炭素質物10質量部(フェノール樹脂由来のハードカーボン含有量)からなる略球状焼成粉を得た。
 その後、目開き45μmのメッシュを通し、軽装かさ密度635g/L、平均粒径(D50)が22.0μm、BET比表面積:63.3m/gの略球状焼成粉を得た。
 (コールタールピッチによる炭素被覆)
 得らえた略球状焼成粉150gとコールタールピッチ118gをボールミルにより混合した後、キノリン150gを加え、10分間撹拌した後、以下の方法を用い焼成を行い、被覆を行った。
 (焼成)
 窒素を流しながら(4L/min)、昇温度速度を5℃/minとし、混合物を600℃で2時間加熱することで、コールタールピッチをソフトカーボンへ変性させた。これにより、黒鉛成分の含有量60質量部、Si含有量30質量部、炭素質物40質量部(フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量30質量部)からなる複合活物質を得た。
 (解砕・篩)
 得られた複合活物質をスタンプミルにて解砕した後にボールミルによって粉砕し、目開き45μmのメッシュを通し、軽装かさ密度405g/L、平均粒径(D50)が15.9μmの粉砕粉を得た。
 (気相コートによる炭素被覆)
 コールタールピッチによる炭素被覆された粉砕粉3gとアルミナ坩堝に入れたコールタールピッチ8.5gを黒鉛ボートに入れ、窒素を流しながら(4.3L/min)、昇温度速度を5℃/minとし、混合物を900℃で1時間加熱することで、炭素被覆を行った。炭素被覆による重量増は1.5重量%であり、これにより、黒鉛成分の含有量60質量部、Si含有量30質量部、炭素質物42質量部(フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量32質量部)からなるリチウム二次電池用複合活物質を得た。
 その物性は以下の通りである。粒度分布D50:32μm、D90:52μm、BET比表面積:3.3m/g、平均細孔径:18.6nm、開気孔体積:0.017cm/g、形状:略球状。
 SEM(走査型電子顕微鏡)による、複合活物質の二次電子像を図1に、また複合活物質の粒子断面の二次電子像を図2に示す。
 これにより複合活物質においては、黒鉛成分および電池活物質がソフトカーボンで覆われた構造であることが分かる。
 また、上記(コールタールピッチによる被覆)を実施する前の略球形の混合物のBET比表面積が63.3m/gであり、得られた略球形のリチウム二次電池用複合活物質のBET比表面積が3.3m/gであり、BET比表面積が大きく低下している点からも、黒鉛成分およびSiが炭素質物であるソフトカーボンで覆われた構造をとっていることが分かる。
 (リチウム二次電池用負極の作製」
 得られたリチウム二次電池用複合活物質95.4重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%と、バインダとしてカルボキシメチルセルロース(CMC)1.5重量%とスチレンブタジエンゴム(SBR)2.6重量%、水とを混合して負極合剤含有スラリーを調製した。
 得られたスラリーを、アプリケータを用いて固形分塗布量が2.6mg/cmになるように厚みが18μmの銅箔に塗布し、110℃で真空乾燥機にて0.5時間乾燥した。乾燥後、14mmφの円形に打ち抜き、圧力0.6t/cmの条件で一軸プレスし、さらに真空下、110℃で3時間熱処理して、厚みが23μmの負極合剤層を形成したリチウムイオン二次電池用負極を得た。
 「評価用セルの作製」
 評価用セルは、グローブボックス中でスクリューセルに上記負極、24mmφのポリプロピレン製セパレータ、21mmφのガラスフィルター、18mmφで厚み0.2mmの金属リチウムおよびその基材のステンレス箔を、各々、電解液にディップしたのち、この順に積層し、最後に蓋をねじ込み作製した。電解液はエチレンカーボネートとジエチルカーボネートを体積比1対1の混合溶媒とし、にFEC(フルオロエチレンカーボネイト)とし、LiPFを1.2vol/Lの濃度になるように溶解させたものを使用した。評価用セルは、さらにシリカゲルを入れた密閉ガラス容器に入れて、シリコンゴムの蓋を通した電極を充放電装置(に接続した。
 評価用セルは25℃の恒温室にて、サイクル試験した。充電は、2.2mAの定電流で0.01Vまで充電後、0.01Vの定電圧で電流値が0.2mAになるまで行った。また放電は、2.2mAの定電流で1.5Vの電圧値まで行った。初回放電容量と初期充放電効率は、初回充放電試験の結果とした。また、サイクル特性は、前記充放電条件にて100回充放電試験した後の放電容量を初回の放電容量と比較し、その容量維持率として評価した。
<実施例2>
 実施例1で作成したコールタールピッチによる炭素被覆された粉砕粉70gとアルミナ坩堝に入れたコールタールピッチ198gを黒鉛ボートに入れ、窒素を流しながら(4.3L/min)、昇温度速度を5℃/minとし、混合物を900℃で1時間加熱することで、炭素被覆を行った。炭素被覆による重量増は0.5重量%であり、これにより、黒鉛成分の含有量60質量部、Si含有量30質量部、炭素質物41質量部(フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量31質量部)からなるリチウム二次電池用複合活物質を得た。
 (分級工程)
 このリチウム二次電池用複合活物質を風力分級装置(ホソカワミクロン製 ATP-50)に投入し、分級機回転速度15,000rpmにて分級し、平均粒径(D50)が6.2μm、D90が12.0μm、BET比表面積が9.5m2/g、平均細孔径が15.9nm、開気孔体積:0.042cm/g、軽装かさ密度が220g/Lのリチウム二次電池用複合活物質を得た。
 また、上記(炭素質物であるコールタールピッチによる被覆)を実施する前の略球形の混合物のBET比表面積が63.3m/gであり、得られた略球形のリチウム二次電池用複合活物質のBET比表面積が9.5m/gであり、BET比表面積が大きく低下している点からも、黒鉛成分およびSiが炭素質物であるソフトカーボンで覆われた構造をとっていることが分かる。
 (リチウムイオン2次電池用負極の作製」
 得られたリチウム二次電池用複合活物質95.4重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%と、バインダとしてカルボキシメチルセルロース(CMC)1.5重量%とスチレンブタジエンゴム(SBR)2.6重量%、水とを混合してリチウム二次電池用負極合剤含有スラリーを調製した。
 得られたスラリーを、アプリケータを用いて固形分塗布量が2.2mg/cmになるように厚みが18μmの銅箔に塗布し、110℃で真空乾燥機にて0.5時間乾燥した。乾燥後、14mmφの円形に打ち抜き、圧力2.0t/cmの条件で一軸プレスし、さらに真空下、110℃で3時間熱処理して、厚みが14μmの負極合剤層を形成したリチウムイオン二次電池用負極を得た。
 「評価用セルの作製」
 評価用セルは、グローブボックス中でスクリューセルに上記負極、24mmφのポリプロピレン製セパレータ、21mmφのガラスフィルター、18mmφで厚み0.2mmの金属リチウムおよびその基材のステンレス箔を、各々、電解液にディップしたのち、この順に積層し、最後に蓋をねじ込み作製した。電解液はエチレンカーボネートとジエチルカーボネートを体積比1対1の混合溶媒とし、にFEC(フルオロエチレンカーボネイト)とし、LiPFを1.2vol/Lの濃度になるように溶解させたものを使用した。評価用セルは、さらにシリカゲルを入れた密閉ガラス容器に入れて、シリコンゴムの蓋を通した電極を充放電装置に接続した。
 評価用セルは25℃の恒温室にて、サイクル試験した。充電は、2.2mAの定電流で0.01Vまで充電後、0.01Vの定電圧で電流値が0.2mAになるまで行った。また放電は、2.2mAの定電流で1.5Vの電圧値まで行った。初回放電容量と初期充放電効率は、初回充放電試験の結果とした。また、サイクル特性は、前記充放電条件にて100回充放電試験した後の放電容量を初回の放電容量と比較し、その容量維持率として評価した。
<実施例3>
 (混合工程)
 平均粒径(D50)が7μmのケミカルグレードの金属Si(純度3N)をエタノールに21重量%混合し、直径0.3mmのジルコニアビーズを用いた微粉砕湿式ビーズミルを6時間行い、平均粒径(D50)0.3μm、乾燥時のBET比表面積が100m/gの超微粒子Siスラリーを得た。
 粒子径0.3mm((200)面方向の幅)、厚み10μmの酸処理した天然黒鉛を振動粉末供給器に入れ、12L/分の流量の窒素ガスに乗せて電気ヒーターで850℃に加熱した石英管に通し、端面から大気に放出し、亜硫酸等のガスを上部に排気、下部に膨張黒鉛をステンレス容器で捕集した。上記超微粒子Siスラリーを1397g、上記膨張黒鉛を200g、レゾール型のフェノール樹脂(重量平均分子量(Mw)=370)を125g、エタノール5Lを撹拌容器に入れ、インラインミキサーで22分混合撹拌した。その後、混合液をロータリーエバポレーターに移し、回転しながら温浴で40℃に加熱し、アスピレータで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、525gの混合乾燥物(軽装かさ密度305g/L)を得た。
 (プレス工程)
 この混合乾燥物を3本ロールミルに2回通し、目開き1mmの篩を通し、軽装かさ密度455g/Lに造粒・圧密化した。
 (球形化工程)
 次に、この造粒・圧密化物をニューパワーミルに入れて水冷しながら、21000rpmで300秒粉砕し、同時に球形化し、軽装かさ密度521g/Lの略球状複合粉末を得た。
 (焼成工程)
 得られた粉末を石英ボートに入れて、管状炉で窒素ガスを流しながら、温度900℃で1時間焼成する事でフェノール樹脂の炭化を同時に行った。これにより、黒鉛成分の含有量40質量部、シリコンの含有量50質量部、炭素質物10質量部(フェノール樹脂由来のハードカーボンの含有量10質量部)からなる略球状焼成粉を得た。その後、目開き45μmのメッシュを通し、軽装かさ密度668g/Lの略球状焼成粉を得た。
 (コールタールピッチによる炭素被覆)
 得らえた略球状焼成粉150gとコールタールピッチ118gをボールミルにより混合した後、キノリン150gを加え、10分間撹拌した後、以下の方法を用い焼成を行い、被覆を行った。
 (焼成)
 窒素を流しながら(4L/min)、昇温度速度を5℃/minとし、混合物を600℃で2時間加熱することで、コールタールピッチをソフトカーボンへ変性させた。これにより、黒鉛成分の含有量40質量部、Si含有量50質量部、炭素質物40質量部(フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量30質量部)からなるリチウム二次電池用複合活物質を得た。
 (解砕・篩)
 得られたリチウム二次電池用複合活物質をスタンプミルにて解砕した後にボールミルによって粉砕し、目開き45μmのメッシュを通し、軽装かさ密度396g/Lの粉砕粉を得た。
 (気相コートによる炭素被覆)
 コールタールピッチによる炭素被覆された粉砕粉3gとアルミナ坩堝に入れたコールタールピッチ8.5gを黒鉛ボートに入れ、窒素を流しながら(4.3L/min)、昇温度速度を5℃/minとし、混合物を900℃で1時間加熱することで、炭素被覆を行った。炭素被覆による重量増は1.5重量%であり、これにより、黒鉛成分の含有量40質量部、シリコンの含有量50質量部、炭素質物42質量部(フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量32質量部)からなるリチウム二次電池用複合活物質を得た。
 その物性は以下の通りである。粒度分布D50:17μm、D90:34μm、BET比表面積:12.4m/g、平均細孔径11.5nm、開気孔体積:0.025cm/g、形状:略球状。
 SEM(走査型電子顕微鏡)による、複合活物質の二次電子像を図3に示す。
 これにより複合活物質においては、黒鉛成分および電池活物質がソフトカーボンで覆われた構造であることが分かる。
 (リチウムイオン2次電池用負極の作製」
 得られたリチウム二次電池用複合活物質92.5重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%と、バインダとしてゲル化ポリアクリル酸7重量%と水を混合してリチウム二次電池用負極合剤含有スラリーを調製した。
 得られたスラリーを、アプリケータを用いて固形分塗布量が3mg/cmになるように厚みが18μmの銅箔に塗布し、110℃で真空乾燥機にて0.5時間乾燥した。乾燥後、14mmφの円形に打ち抜き、圧力0.6t/cmの条件で一軸プレスし、さらに真空下、110℃で2時間熱処理して、厚みが25μmのリチウム二次電池用負極合剤層を形成したリチウムイオン二次電池用負極を得た。
 「評価用セルの作製」
 評価用セルは、グローブボックス中でスクリューセルに上記負極、24mmφのポリプロピレン製セパレータ、21mmφのガラスフィルター、18mmφで厚み0.2mmの金属リチウムおよびその基材のステンレス箔を、各々、電解液にディップしたのち、この順に積層し、最後に蓋をねじ込み作製した。電解液はエチレンカーボネートとジエチルカーボネートを体積比1対1の混合溶媒とし、にFEC(フルオロエチレンカーボネイト)とし、LiPFを1.2vol/Lの濃度になるように溶解させたものを使用した。評価用セルは、さらにシリカゲルを入れた密閉ガラス容器に入れて、シリコンゴムの蓋を通した電極を充放電装置(に接続した。
 評価用セルは25℃の恒温室にて、サイクル試験した。充電は、2.2mAの定電流で0.01Vまで充電後、0.01Vの定電圧で電流値が0.2mAになるまで行った。また放電は、2.2mAの定電流で1.5Vの電圧値まで行った。初回放電容量と初期充放電効率は、初回充放電試験の結果とした。また、サイクル特性は、前記充放電条件にて100回充放電試験した後の放電容量を初回の放電容量と比較し、その容量維持率として評価した。
<実施例4>
 実施例1で作成したコールタールピッチによる炭素被覆された略球状焼成粉3.05gとアルミナ坩堝に入れたコールタールピッチ8.46gを黒鉛ボートに入れ、窒素を流しながら(4.3L/min)、昇温度速度を5℃/minとし、混合物を900℃で1時間加熱することで、炭素被覆を行いった。炭素被覆による重量増は4.7重量%であり、これにより、黒鉛成分の含有量60質量部、Si含有量30質量部、炭素質物15質量部(フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量5質量部)からなるリチウム二次電池用複合活物質を得た。その物性は以下の通りである。
 平均粒径(D50)が32μm、D90が52μm、BET比表面積が4.5m2/g、平均細孔径が30.9nm、開気孔体積:0.036cm/g。形状:略球状。
 SEM(走査型電子顕微鏡)による、複合活物質の二次電子像を図4に示す。
 これにより複合活物質においては、黒鉛成分および電池活物質がソフトカーボンで覆われた構造であることが分かる。
 また、上記炭素被覆を実施する前の略球形の混合物のBET比表面積が63.3m/gであり、得られた略球形のリチウム二次電池用複合活物質のBET比表面積が4.5m/gであり、BET比表面積が大きく低下している点からも、黒鉛成分および電池活物質がソフトカーボンで覆われた構造をとっていることが分かる。
 (リチウムイオン2次電池用負極の作製」
 得られたリチウム二次電池用複合活物質95.4重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%と、バインダとしてカルボキシメチルセルロース(CMC)1.5重量%とスチレンブタジエンゴム(SBR)2.6重量%、水とを混合してリチウム二次電池用負極合剤含有スラリーを調製した。
 得られたスラリーを、アプリケータを用いて固形分塗布量が3.1mg/cmになるように厚みが18μmの銅箔に塗布し、110℃で真空乾燥機にて0.5時間乾燥した。乾燥後、14mmφの円形に打ち抜き、圧力0.6t/cmの条件で一軸プレスし、さらに真空下、110℃で2時間熱処理して、厚みが25μmの負極合剤層を形成したリチウムイオン2次電池用負極を得た。
 「評価用セルの作製」
 評価用セルは、グローブボックス中でスクリューセルに上記負極、24mmφのポリプロピレン製セパレータ、21mmφのガラスフィルター、18mmφで厚み0.2mmの金属リチウムおよびその基材のステンレス箔を、各々、電解液にディップしたのち、この順に積層し、最後に蓋をねじ込み作製した。電解液はエチレンカーボネートとジエチルカーボネートを体積比1対1の混合溶媒とし、にFEC(フルオロエチレンカーボネイト)とし、LiPFを1.2vol/Lの濃度になるように溶解させたものを使用した。評価用セルは、さらにシリカゲルを入れた密閉ガラス容器に入れて、シリコンゴムの蓋を通した電極を充放電装置(に接続した。
 評価用セルは25℃の恒温室にて、サイクル試験した。充電は、2.2mAの定電流で0.01Vまで充電後、0.01Vの定電圧で電流値が0.2mAになるまで行った。また放電は、2.2mAの定電流で1.5Vの電圧値まで行った。初回放電容量と初期充放電効率は、初回充放電試験の結果とした。また、サイクル特性は、前記充放電条件にて100回充放電試験した後の放電容量を初回の放電容量と比較し、その容量維持率として評価した。
<実施例5>
 平均粒径(D50)が7μmのケミカルグレードの金属Si(純度3N)をエタノールに21重量%混合し、直径0.3mmのジルコニアビーズを用いた微粉砕湿式ビーズミルを6時間行い、平均粒径(D50)0.3μm、乾燥時のBET比表面積が100m/gの超微粒子Siスラリーを得た。
 粒子径0.3mm((200)面方向の幅)、厚み10μmの酸処理した天然黒鉛を振動粉末供給器に入れ、12L/分の流量の窒素ガスに乗せて電気ヒーターで850℃に加熱した石英管に通し、端面から大気に放出し、亜硫酸等のガスを上部に排気、下部に膨張黒鉛をステンレス容器で捕集した。上記超微粒子Siスラリーを1397g、上記膨張黒鉛を200g、レゾール型のフェノール樹脂(重量平均分子量(Mw)=370)を125g、エタノール5Lを撹拌容器に入れ、インラインミキサーで22分混合撹拌した。その後、混合液をロータリーエバポレーターに移し、回転しながら温浴で40℃に加熱し、アスピレータで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、464gの混合乾燥物(軽装かさ密度250g/L)を得た。
 (プレス工程)
 この混合乾燥物を3本ロールミルに2回通し、目開き1mmの篩を通し、軽装かさ密度489g/Lに造粒・圧密化した。
 (球形化工程)
 次に、この造粒・圧密化物をニューパワーミルに入れて水冷しながら、21000rpmで360秒粉砕し、同時に球形化し、軽装かさ密度429g/Lの略球状複合粉末を得た。
 (焼成工程)
 得られた粉末を石英ボートに入れて、管状炉で窒素ガスを流しながら、温度900℃で1時間焼成する事でフェノール樹脂の炭化を同時に行った。これにより、黒鉛成分の含有量60質量部、シリコンの含有量30質量部、炭素質物10質量部(フェノール樹脂由来のハードカーボンの含有量10質量部)からなる略球状焼成粉を得た。その後、目開き45μmのメッシュを通し、軽装かさ密度570g/Lの略球状焼成粉を得た。
 (コールタールピッチによる炭素被覆)
 得らえた略球状焼成粉215gとコールタールピッチ160gをボールミルにより混合した後、キノリン150gを加え、10分間撹拌した後、以下の方法を用い焼成を行い、被覆を行った。
 (焼成)
 窒素を流しながら(4L/min)、昇温度速度を5℃/minとし、混合物を600℃で2時間加熱することで、コールタールピッチをソフトカーボンへ変性させた。これにより、黒鉛成分の含有量60質量部、Si含有量30質量部、炭素質物40質量部(フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量30質量部)からなるリチウム二次電池用複合活物質を得た。
 (解砕・篩)
 得られたリチウム二次電池用複合活物質をスタンプミルにて解砕した後にボールミルによって粉砕し、目開き45μmのメッシュを通し、軽装かさ密度394g/Lの粉砕粉を得た。
 (気相コートによる炭素被覆)
 粉砕粉を石英管内にセットし、ロータリーポンプにより管内を真空引きした後に管内に200SCCMの流量の窒素ガス及び、100SCCMの流量のエチレンガスを流し、電気ヒーターで1℃/分の昇温速度で1000℃まで加熱し、その状態を2.5時間保持することで炭素被覆を行った。炭素被覆による重量増は11.4重量%であり、これにより、黒鉛成分の含有量60質量部、Si含有量30質量部、炭素質物41質量部(フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ及びエチレンガス由来のソフトカーボンの含有量41質量部)からなるリチウム二次電池用複合活物質を得た。その物性は以下の通りである。粒度分布D50:22μm、D90:43μm、BET比表面積:2.4m/g、平均細孔径15.1nm、開気孔体積:0.010cm/g、形状:略球状。
 SEM(走査型電子顕微鏡)による、リチウム二次電池用複合活物質の二次電子像を図5に示す。
 これによりリチウム二次電池用複合活物質においては、黒鉛成分および電池活物質がソフトカーボンで覆われた構造であることが分かる。
 また、上記(炭素前駆体であるエチレンガスの熱分解による炭素被覆)を実施する前の炭素被覆物(コールタールピッチによる炭素被覆)のBET比表面積が18.3m/gであり、得られた略球形のリチウム二次電池用複合活物質のBET比表面積が2.4m/gであり、BET比表面積が大きく低下している点からも、黒鉛成分およびSiが炭素質物であるソフトカーボンで覆われた構造をとっていることが分かる。
 得られたリチウム二次電池用複合活物質95.5重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%と、バインダとしてゲル化ポリアクリル酸4重量%と水を混合してリチウム二次電池用負極合剤含有スラリーを調製した。
 得られたスラリーを、アプリケータを用いて固形分塗布量が4.1mg/cmになるように厚みが18μmの銅箔に塗布し、110℃で真空乾燥機にて0.5時間乾燥した。乾燥後、14mmφの円形に打ち抜き、圧力0.6t/cmの条件で一軸プレスし、さらに真空下、110℃で2時間熱処理して、厚みが20μmの負極合剤層を形成したリチウムイオン二次電池用負極を得た。
 「評価用セルの作製」
 評価用セルは、グローブボックス中でスクリューセルに上記負極、24mmφのポリプロピレン製セパレータ、21mmφのガラスフィルター、18mmφで厚み0.2mmの金属リチウムおよびその基材のステンレス箔を、各々、電解液にディップしたのち、この順に積層し、最後に蓋をねじ込み作製した。電解液はエチレンカーボネートとジエチルカーボネートを体積比1対1の混合溶媒とし、にFEC(フルオロエチレンカーボネイト)とし、LiPFを1.2vol/Lの濃度になるように溶解させたものを使用した。評価用セルは、さらにシリカゲルを入れた密閉ガラス容器に入れて、シリコンゴムの蓋を通した電極を充放電装置に接続した。
 評価用セルは25℃の恒温室にて、サイクル試験した。充電は、2.2mAの定電流で0.01Vまで充電後、0.01Vの定電圧で電流値が0.2mAになるまで行った。また放電は、2.2mAの定電流で1.5Vの電圧値まで行った。初回放電容量と初期充放電効率は、初回充放電試験の結果とした。
<比較例1>
 実施例1で得られた略球状焼成粉を比較例1のリチウム二次電池用複合活物質とし、リチウム二次電池用複合活物質を95.4重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%と、バインダとしてカルボキシメチルセルロース(CMC)1.5重量%とスチレンブタジエンゴム(SBR)2.6重量%、水とを混合してリチウム二次電池用負極合剤含有スラリーを調製した。
 得られたスラリーを、アプリケータを用いて固形分塗布量が2.7mg/cmになるように厚みが18μmの銅箔に塗布し、110℃で真空乾燥機にて0.5時間乾燥した。乾燥後、14mmφの円形に打ち抜き、圧力0.6t/cmの条件で一軸プレスし、さらに真空下、110℃で2時間熱処理して、厚みが24μmの負極合剤層を形成したリチウムイオン二次電池用負極を得た。
 「評価用セルの作製」
 評価用セルは、グローブボックス中でスクリューセルに上記負極、24mmφのポリプロピレン製セパレータ、21mmφのガラスフィルター、18mmφで厚み0.2mmの金属リチウムおよびその基材のステンレス箔を、各々、電解液にディップしたのち、この順に積層し、最後に蓋をねじ込み作製した。電解液はエチレンカーボネートとジエチルカーボネートを体積比1対1の混合溶媒とし、にFEC(フルオロエチレンカーボネイト)とし、LiPFを1.2vol/Lの濃度になるように溶解させたものを使用した。評価用セルは、さらにシリカゲルを入れた密閉ガラス容器に入れて、シリコンゴムの蓋を通した電極を充放電装置(に接続した。
 評価用セルは25℃の恒温室にて、サイクル試験した。充電は、2.2mAの定電流で0.01Vまで充電後、0.01Vの定電圧で電流値が0.2mAになるまで行った。また放電は、2.2mAの定電流で1.5Vの電圧値まで行った。初回放電容量と初期充放電効率は、初回充放電試験の結果とした。また、サイクル特性は、前記充放電条件にて100回充放電試験した後の放電容量を初回の放電容量と比較し、その容量維持率として評価した。
<比較例2>
 (混合工程)
 平均粒径(D50)が7μmのケミカルグレードの金属Si(純度3N)をエタノールに21重量%混合し、直径0.3mmのジルコニアビーズを用いた微粉砕湿式ビーズミルを6時間行い、平均粒径(D50)0.3μm、乾燥時のBET比表面積が100m/gの超微粒子Siスラリーを得た。
 粒子径0.3mm((200)面方向の幅)、厚み10μmの酸処理した天然黒鉛を振動粉末供給器に入れ、12L/分の流量の窒素ガスに乗せて電気ヒーターで850℃に加熱した石英管に通し、端面から大気に放出し、亜硫酸等のガスを上部に排気、下部に膨張黒鉛をステンレス容器で捕集した。上記超微粒子Siスラリーを1397g、上記膨張黒鉛を500g、レゾール型のフェノール樹脂(重量平均分子量(Mw)=370)を125g、エタノール5Lを撹拌容器に入れ、インラインミキサーで22分混合撹拌した。その後、混合液をロータリーエバポレーターに移し、回転しながら温浴で40℃に加熱し、アスピレータで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、561gの混合乾燥物(軽装かさ密度327g/L)を得た。
 (プレス工程)
 この混合乾燥物を3本ロールミルに2回通し、目開き1mmの篩を通し、軽装かさ密度423g/Lに造粒・圧密化した。
 (球形化工程)
 次に、この造粒・圧密化物をニューパワーミルに入れて水冷しながら、21000rpmで360秒粉砕し、同時に球形化し、軽装かさ密度453g/Lの略球状複合粉末を得た。
 (焼成工程)
 得られた粉末を石英ボートに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成する事でフェノール樹脂の炭化を同時に行った。これにより、黒鉛成分の含有量40質量部、シリコンの含有量50質量部、炭素質物10重量部(フェノール樹脂由来のハードカーボンの含有量10質量部)からなる略球状焼成粉を得た。
 その後、目開き45μmのメッシュを通し、軽装かさ密度573g/L、平均粒径(D50)が11.0μm、BET比表面積:68.8m/gの略球状焼成粉を得た。
 上記略球状焼成粉を比較例2のリチウム二次電池用複合活物質とし、リチウム二次電池用複合活物質92.5重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%と、バインダとしてゲル化ポリアクリル酸7重量%と水を混合してリチウム二次電池用負極合剤含有スラリーを調製した。
 得られたスラリーを、アプリケータを用いて固形分塗布量が3.2mg/cmになるように厚みが18μmの銅箔に塗布し、110℃で真空乾燥機にて0.5時間乾燥した。乾燥後、14mmφの円形に打ち抜き、圧力0.6t/cmの条件で一軸プレスし、さらに真空下、110℃で2時間熱処理して、厚みが20μmの負極合剤層を形成したリチウムイオン二次電池用負極を得た。
 「評価用セルの作製」
 評価用セルは、グローブボックス中でスクリューセルに上記負極、24mmφのポリプロピレン製セパレータ、21mmφのガラスフィルター、18mmφで厚み0.2mmの金属リチウムおよびその基材のステンレス箔を、各々、電解液にディップしたのち、この順に積層し、最後に蓋をねじ込み作製した。電解液はエチレンカーボネートとジエチルカーボネートを体積比1対1の混合溶媒とし、にFEC(フルオロエチレンカーボネイト)とし、LiPFを1.2vol/Lの濃度になるように溶解させたものを使用した。評価用セルは、さらにシリカゲルを入れた密閉ガラス容器に入れて、シリコンゴムの蓋を通した電極を充放電装置(に接続した。
 評価用セルは25℃の恒温室にて、サイクル試験した。充電は、2.2mAの定電流で0.01Vまで充電後、0.01Vの定電圧で電流値が0.2mAになるまで行った。また放電は、2.2mAの定電流で1.5Vの電圧値まで行った。初回放電容量と初期充放電効率は、初回充放電試験の結果とした。また、サイクル特性は、前記充放電条件にて100回充放電試験した後の放電容量を初回の放電容量と比較し、その容量維持率として評価した。
Figure JPOXMLDOC01-appb-T000001
<実施例6>
(膨張黒鉛の調製)
 平均粒子径1mmの鱗片状天然黒鉛を硫酸9質量部、硝酸1質量部の混酸に室温で1時間浸漬後、No3ガラスフィルターで混酸を除去して酸処理黒鉛を得た。さらに酸処理黒鉛を水洗後、乾燥した。乾燥した酸処理黒鉛5gを蒸留水100g中で攪拌し、1時間後にpHを測定したところ、pHは6.7であった。乾燥した酸処理黒鉛を850℃に設定した窒素雰囲気下の縦型電気炉に投入し、膨張黒鉛を得た。膨張黒鉛の嵩密度は0.002g/cm、比表面積は45m/gであった。
(混合工程)
 平均粒子径0.3μmのシリコン微粉末のエタノールスラーリー(固体濃度26.6%、22.56質量部)をビーカー中で1600質量部のエタノールに投入し、フェノール樹脂(炭化度40%、5質量部)を加え、撹拌を行いながら10分間、超音波処理を行った。
 シリコン微粉末、および、フェノール樹脂が分散したエタノール溶液に上記膨張黒鉛(12質量部)を加え、膨張黒鉛とシリコン微粉末とフェノール樹脂とを含む均一混合スラリーを調製した。エバポレーターを用い、このスラリーからエタノールを回収し、粉末の混合物を得た。
(プレス工程)
 3本ローラー(EKAKT50)を用い、上記粉末の混合物のプレスを行った。この処理で開いていた膨張黒鉛の層が閉じ、層間距離が縮まり、また密度も上昇し、次の球形化工程での衝突エネルギーを上昇させることで、球形化の効率を上げることが可能となる。
(球形化工程)
 ニューパワーミル、PM-2005M-1380W(大阪ケミカル株式会社)(回転速度:20000rpm、処理時間:90秒を10回)を用いて、上記で得られた粉末の混合物を球形状に造粒成形を行った。
(加熱処理(焼成、炭化処理))
 窒素を流しながら(1L/min)、球状の混合物を900℃で1時間加熱することで、フェノール樹脂の炭化を同時に行った。これにより、黒鉛成分の含有量60質量部、シリコンの含有量30質量部、フェノール樹脂由来のハードカーボンの含有量10質量部からなる略球形の混合物を得た。
(コールタールピッチによる被覆)
 得らえた略球形の混合物(100質量部)を、コールタールピッチ(炭化度45%、66.67質量部)をキノリン(300質量部)に溶解させた溶液中で加え、10分間撹拌した後、以下の方法を用い焼成を行い、被覆を行った。
(焼成)
 窒素を流しながら(1L/min)、昇温度速度を5℃/minとし、混合物を600℃で2時間加熱することで、コールタールピッチをソフトカーボンへ変性させた。これにより、黒鉛成分の含有量60質量部、シリコンの含有量30質量部、フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量30質量部からなる略球形のリチウム二次電池用複合活物質を得た。
 その物性は以下の通りである。粒度分布D50:19μm、BET比表面積:7.6m/g、形状:略球状
 10kV以下の低加速電圧にて、SEM(走査型電子顕微鏡)を用いてリチウム二次電池用複合活物質の2次電子像から、リチウム二次電池用複合活物質においては、黒鉛成分および電池活物質がソフトカーボンで覆われた構造であることが分かった。
 また、上記(コールタールピッチによる被覆)を実施する前の略球形の混合物のBET比表面積が54m/gであり、得られた略球形のリチウム二次電池用複合活物質のBET比表面積が7.6m/gであり、BET比表面積が大きく低下している点からも、黒鉛成分および電池活物質がソフトカーボンで覆われた構造をとっていることが分かる。
 なお、SEM観察により観察されるリチウム二次電池用複合活物質表面上に露出している露出しているシリコンの面積率は2%以下であった。
 さらに、リチウム二次電池用複合活物質中には、黒鉛が観察された。なお、黒鉛の厚みは20nm程度(グラフェンシートの積総数60)であった。
 また、完成したリチウム二次電池用複合活物質に電解液(エチレンカーボネートとジエチルカーボネートを体積比1対1の混合溶媒とし、LiPFを1.2mol/Lの濃度になるように溶解させ、これにフルオロエチレンカーボネートを2体積%添加したものを使用した)をアルゴン雰囲気中に12時間浸漬し、乾燥後、断面をEDSにて電解液の成分であるF元素、P元素のマッピングを行い、浸漬の有無を確認した結果、浸漬は認められなかった(図6)。
(負極製造)
 上記リチウム二次電池用複合活物質95.5質量部、SBR(スチレンブタジエンゴム)2.5質量部、CMC(カルボキシメチルセルロース)1.5質量部、導電用カーボンブラック0.5質量部、および水100質量部を秤り取り、双腕型ミキサーを用いて3分間混合することで塗工用スラリーを調製した。本スラリーを銅箔に塗工し、乾燥して、負極を製造した。
(正極製造)
 LiNi1-x-yCoAl84質量部、PVDF含有NMP溶液(PVDF:ポリフッ化ビニリデン、NMP:メチルピロリドン)(含有量:12重量%)66質量部、導電用カーボンブラック8質量部、およびNMP29質量部を秤り取り、双腕型ミキサーを用いて3分間混合することで塗工用スラリーを調製した。本スラリーをアルミ箔に塗工し、乾燥して、正極を製造した。
(フルセル製造)
 上記負極と正極を電極とし、エチレンカーボネート:ジエチルカーボネート=1:1、1.2モル/リットルのLiPF電解液、さらに2体積%のフルオロエチレンカーボネートを加えてフルセルを作製し、以下の電池評価を行った。
(電池評価:電極膨張測定)
 上記フルセルを用いて、サイクル試験を行った。その際、充放電容量を測定すると共に、100サイクルでの1サイクル目に対する容量維持率を比較した。その後、セルを分解し、電極を取り出し、電極の厚みの変化(電極膨張率){(試験後の電極の厚み-試験前の電極の厚み)/試験前の電極の厚み×100}を測定した。なお、充放電のレートは0.5Cを用い、充電側でのカットオフ電圧は4.0V、放電側のカットオフ電圧は2.7Vとし、サイクル実験(100回)を行った。
 なお、サイクル試験前の電極の形状は、直径14mmで厚みが55μmの円盤状であった。なお、厚みは平均値であり、円盤の中心と、他の任意の3点の厚みを測定して、それらを算術平均した値である。また、サイクル試験後の電極の厚みも、同様に、円盤の中心と、他の任意の3点の厚みを測定して、それらを算術平均した値である。電極膨張率は、上述したように、サイクル試験前の電極の厚みを基準とし、その増加量を基準値で割った値である。
(電極変位評価用セルによる過膨張測定)
 負極電極の膨張変位を測定する電極変位セルを用いて過膨張量を測定した。下部に正極、上部に負極とし、負極電極上部にピストン状の支柱をバネで固定することで電極の膨張変位が支柱に伝わる構造とした。また、正極電極と負極電極の間に硬質状のガラスフィルターを挿入し、固定することで負極側の膨張変位のみを測定した。さらに支柱の表面にレーザー変位計を設置することで、電極の膨張変位の測定を可能とした。レーザー変位計は、一般に市販されている変位計を用いた。変位量のデータは、データーロガーに接続し、データ記録を行った。
 評価用セルは、グローブボックス中で組み立てた。評価セルに、16mmφの金属リチウム、16mmφのガラスフィルター、21mmφの硬質ガラスフィルター、21mmφのポリプロピレン製セパレータ、13.8mmφの上記負極を、各々、電解液にディップした後、この順に積層し、最後に上記のピストン状の支柱をバネで固定し、蓋で密閉した。電解液はエチレンカーボネートとジエチルカーボネートを体積比1対1の混合溶媒とし、添加剤はFEC(フルオロエチレンカボネート)とし、LiPFを1.2mol/Lの濃度になるように溶解させたものを使用した。組立後、電極を充放電装置に接続した。
 評価用セルは25℃の恒温室にて、サイクル試験した。充電は、2mAの定電流で0.01Vまで充電後、0.01Vの定電圧で電流値が0.2mAになるまで行った。また放電は、2mAの定電流で1.5Vの電圧値まで行った。充放電開始と同時にレーザー変位計の記録を開始した。上記複合活物質を用いて上述に従って電極を作製して初期厚みを測定した後、電極変位評価用セルを組み立て、レーザー変位計で電極厚みの充放電による変化を調べた。ここで、レーザー変位計の初期位置から電極の初期厚みを差し引いた高さを原点(0%)、初回充電による極大位置を100%として、過膨張率を定義し、充放電サイクルによる充放電容量および膨張率の変化を測定した。
 また、100サイクル中の最大のクーロン効率「Maxクーロン効率」も合わせて測定した。
 結果を表2にまとめて示す。
<実施例7>
 実施例6と同様に(膨張黒鉛の調製)、(混合工程)、(プレス工程)、および、(球形化工程)を実施して、略球形の混合物を得た。
(コールタールピッチとの混合)
 得らえた略球形の混合物(100質量部)を、コールタールピッチ(炭化度38%、78.62質量部)をキノリン(100質量部)に溶解させた溶液中で加え、10分間撹拌し、混合物を得た。
(焼成)
 窒素を流しながら(5L/min)、昇温度速度を5℃/minとし、混合物を750℃で1時間、加熱することで、コールタールピッチをソフトカーボンへ変性させた。これにより、黒鉛成分の含有量60質量部、シリコンの含有量30質量部、フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量30質量部からなる略球形のリチウム二次電池用複合活物質を得た。
 その物性は以下の通りである。粒度分布D50:12μm、D90:27μm、比表面積:22.0m/g、形状:略球状
 10kV以下の低加速電圧にて、SEM(走査型電子顕微鏡)を用いてリチウム二次電池用複合活物質の2次電子像から、リチウム二次電池用複合活物質においては、黒鉛成分および電池活物質がソフトカーボンで覆われた構造であることが分かった。
 また、リチウム二次電池用複合活物質中には、薄片化黒鉛が観察された。なお、薄片化黒鉛の厚みは20nm程度(グラフェンシートの積総数60)であった。また、同様に浸漬の有無を確認した結果、浸漬は認められなかった。
 次に、得られたリチウム二次電池用複合活物質を用いて、ハーフセルを製造して、各種評価を実施した。
(ハーフセル用リチウム二次電池用負極の作製)
 得られたリチウム二次電池用複合活物質を95.5質量部(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5質量部と、バインダとしてCMC1.5質量部とSBR2.5質量部、水とを混合してリチウム二次電池用負極合剤含有スラリーを調製した。
 得られたスラリーを、アプリケータを用いて固形分塗布量が3mg/cmになるように厚みが15μmの銅箔に塗布し、110℃で定置運転乾燥機にて0.5時間乾燥した。乾燥後、14mmφの円形に打ち抜き、さらに真空下、110℃で3時間熱処理して、負極合剤層を形成したリチウム二次電池用負極を得た。
 (評価用ハーフセルの作製)
 評価用セルは、グローブボックス中でスクリューセルに上記負極、24mmφのポリプロピレン製セパレータ、21mmφのガラスフィルター、18mmφで厚み0.2mmの金属リチウムおよびその基材のステンレス箔を、各々、電解液にディップしたのち、この順に積層し、最後に蓋をねじ込み作製した。電解液はエチレンカーボネートとジエチルカーボネートを体積比1対1の混合溶媒とし、LiPFを1.2mol/Lの濃度になるように溶解させ、これにフルオロエチレンカーボネートを2体積%添加したものを使用した。評価用セルは、さらにシリカゲルを入れた密閉ガラス容器に入れて、シリコンゴムの蓋を通した電極を充放電装置に接続した。
 (ハーフセル評価条件)
 ハーフ評価用セルは25℃の恒温室にて、サイクル試験した。充電は、2mAの定電流で0.01Vまで充電後、0.01Vの定電圧で電流値が0.2mAになるまで行った。また放電は、2mAの定電流で1.5Vの電圧値まで行った。放電容量と初期充放電効率は、初回充放電試験の結果とした。
 また、サイクル特性は、前記充放電条件にて50回及び、100回充放電試験した後の放電容量を初回の放電容量を比較し、その容量維持率として評価した。
<実施例8>
 実施例6と同様に(膨張黒鉛の調製)、(混合工程)、(プレス工程)、および、(球形化工程)を実施して、略球形の混合物を得た。
(コールタールピッチとの混合)
 得らえた略球形の混合物(100質量部)を、平均粒径(D50)30μmのコールタールピッチ(炭化度38%、78.62質量部)をエタノール(800質量部)に溶解させた溶液中で加え、30分間撹拌後、エバポレーターで乾燥し、混合物を得た。
(焼成)
 窒素を流しながら(5L/min)、昇温度速度を5℃/minとし、混合物を900℃で1時間、加熱することで、コールタールピッチをソフトカーボンへ変性させた。これにより、黒鉛成分の含有量60質量部、シリコンの含有量30質量部、フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量30質量部からなる略球形のリチウム二次電池用複合活物質を得た。
 その物性は以下の通りである。粒度分布D50:16μm、D90:33μm、比表面積:16.0m/g、形状:略球状
 10kV以下の低加速電圧にて、SEM(走査型電子顕微鏡)を用いてリチウム二次電池用複合活物質の2次電子像から、リチウム二次電池用複合活物質においては、黒鉛成分および電池活物質がソフトカーボンで覆われた構造であることが分かった。
 また、リチウム二次電池用複合活物質中には、薄片化黒鉛が観察された。なお、薄片化黒鉛の厚みは20nm程度(グラフェンシートの積総数60)であった。また、同様に電解液浸漬の有無を確認した結果、浸漬は認められなかった。
 次に、得られたリチウム二次電池用複合活物質を用いて、ハーフセルを製造して、各種評価を実施した。
<実施例9>
 実施例6と同様に(膨張黒鉛の調製)、(混合工程)、(プレス工程)、および、(球形化工程)を実施して、略球形の混合物を得た。
(コールタールピッチとの混合)
 得らえた略球形の混合物(100質量部)を、平均粒径(D50)30μmのコールタールピッチ(炭化度38%、78.62質量部)に加え、20分間撹拌後、混合物を得た。
(焼成)
 窒素を流しながら(5L/min)、昇温度速度を5℃/minとし、混合物を750℃で1時間、加熱することで、コールタールピッチをソフトカーボンへ変性させた。これにより、黒鉛成分の含有量60質量部、シリコンの含有量30質量部、フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量30質量部からなる略球形のリチウム二次電池用複合活物質を得た。
 その物性は以下の通りである。粒度分布D50:15μm、D90:32μm、比表面積:28.0m/g、形状:略球状
 10kV以下の低加速電圧にて、SEM(走査型電子顕微鏡)を用いてリチウム二次電池用複合活物質の2次電子像から、リチウム二次電池用複合活物質においては、黒鉛成分および電池活物質がソフトカーボンで覆われた構造であることが分かった。
 また、リチウム二次電池用複合活物質中には、薄片化黒鉛が観察された。なお、薄片化黒鉛の厚みは20nm程度(グラフェンシートの積総数60)であった。また、同様に電解液浸漬の有無を確認した結果、浸漬は認められなかった。
 次に、得られたリチウム二次電池用複合活物質を用いて、ハーフセルを製造して、各種評価を実施した。
<実施例10>
 実施例6と同様に(膨張黒鉛の調製)、(混合工程)、(プレス工程)、および、(球形化工程)を実施して、略球形の混合物を得た。
(コールタールピッチとの混合)
 得らえた略球形の混合物(100質量部)を、コールタールピッチ(炭化度38%、131.58質量部)をキノリン(100質量部)に溶解させた溶液中で加え、10分間撹拌し、混合物を得た。
(焼成)
 窒素を流しながら(5L/min)、昇温度速度を5℃/minとし、混合物を600℃で2時間、加熱することで、コールタールピッチをソフトカーボンへ変性させた。これにより、黒鉛成分の含有量60質量部、シリコンの含有量30質量部、フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量50質量部からなる略球形のリチウム二次電池用複合活物質を得た。
 その物性は以下の通りである。粒度分布D50:19μm、D90:35μm、比表面積:10.0m/g、形状:略球状
 10kV以下の低加速電圧にて、SEM(走査型電子顕微鏡)を用いてリチウム二次電池用複合活物質の2次電子像から、リチウム二次電池用複合活物質においては、黒鉛成分および電池活物質がソフトカーボンで覆われた構造であることが分かった。
 また、リチウム二次電池用複合活物質中には、薄片化黒鉛が観察された。なお、薄片化黒鉛の厚みは20nm程度(グラフェンシートの積総数60)であった。また、同様に電解液浸漬の有無を確認した結果、浸漬は認められなかった。
 次に、得られたリチウム二次電池用複合活物質を用いて、ハーフセルを製造して、各種評価を実施した。
<実施例11>
 実施例6と同様に(膨張黒鉛の調製)、(混合工程)、(プレス工程)、および、(球形化工程)を実施して、略球形の混合物を得た。
(コールタールピッチとの混合)
 得らえた略球形の混合物(100質量部)を、コールタールピッチ(炭化度38%、13.16質量部)をキノリン(100質量部)に溶解させた溶液中で加え、10分間撹拌し、混合物を得た。
(焼成)
 窒素を流しながら(5L/min)、昇温度速度を5℃/minとし、混合物を600℃で2時間、加熱することで、コールタールピッチをソフトカーボンへ変性させた。これにより、黒鉛成分の含有量60質量部、シリコンの含有量30質量部、フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量5質量部からなる略球形のリチウム二次電池用複合活物質を得た。
 その物性は以下の通りである。粒度分布D50:12μm、D90:28μm、比表面積:43.0m/g、形状:略球状
 10kV以下の低加速電圧にて、SEM(走査型電子顕微鏡)を用いてリチウム二次電池用複合活物質の2次電子像から、リチウム二次電池用複合活物質においては、黒鉛成分および電池活物質がソフトカーボンで覆われた構造であることが分かった。
 また、リチウム二次電池用複合活物質中には、薄片化黒鉛が観察された。なお、薄片化黒鉛の厚みは20nm程度(グラフェンシートの積総数60)であった。
 次に、得られたリチウム二次電池用複合活物質を用いて、ハーフセルを製造して、各種評価を実施した。
<実施例12>
 実施例6と同様に(膨張黒鉛の調製)、(混合工程)、(プレス工程)、および、(球形化工程)を実施して、略球形の混合物を得た。
(コールタールピッチとの混合)
 実施例8と同様にコールタールピッチを混合し、混合物を得た。
(焼成)
 窒素を流しながら(5L/min)、昇温度速度を1℃/minとし、混合物を900℃で2時間、加熱することで、コールタールピッチをソフトカーボンへ変性させた。これにより、黒鉛成分の含有量60質量部、シリコンの含有量30質量部、フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量30質量部からなる略球形のリチウム二次電池用複合活物質を得た。
 その物性は以下の通りである。粒度分布D50:16μm、D90:33μm、比表面積:41.0m/g、形状:略球状
 10kV以下の低加速電圧にて、SEM(走査型電子顕微鏡)を用いてリチウム二次電池用複合活物質の2次電子像から、リチウム二次電池用複合活物質においては、黒鉛成分および電池活物質がソフトカーボンで覆われた構造であることが分かった。
 また、リチウム二次電池用複合活物質中には、薄片化黒鉛が観察された。なお、薄片化黒鉛の厚みは20nm程度(グラフェンシートの積総数60)であった。
 次に、得られたリチウム二次電池用複合活物質を用いて、ハーフセルを製造して、各種評価を実施した。
<実施例13>
 実施例6と同様に(膨張黒鉛の調製)、(混合工程)、(プレス工程)、および、(球
形化工程)を実施して、略球形の混合物を得た。
(コールタールピッチとの乾式気相混合の準備)
 得らえた略球形の混合物(100質量部)と坩堝の容器に入れた平均粒径(D50)30μmのコールタールピッチ(炭化度38%、280質量部)を直接混合せずに同じ黒鉛製の容器に入れ、黒鉛製の蓋をして密閉した。
(焼成)
 窒素を流しながら(5L/min)、昇温度速度を5℃/minとし、混合物を900℃で1時間、加熱することで、コールタールピッチの溶融、気相状のものが上記略球形の混合物に気相付着し、コールタールピッチをソフトカーボンへ変性させた。これにより、黒鉛成分の含有量60質量部、シリコンの含有量30質量部、フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量5質量部からなる略球形のリチウム二次電池用複合活物質を得た。
 その物性は以下の通りである。粒度分布D50:27μm、D90:55μm、比表面積:5.1m/g、形状:略球状
 10kV以下の低加速電圧にて、SEM(走査型電子顕微鏡)を用いてリチウム二次電池用複合活物質の2次電子像から、リチウム二次電池用複合活物質においては、黒鉛成分および電池活物質がソフトカーボンで覆われた構造であることが分かった。
 また、リチウム二次電池用複合活物質中には、薄片化黒鉛が観察された。なお、薄片化黒鉛の厚みは20nm程度(グラフェンシートの積総数60)であった。
 次に、得られたリチウム二次電池用複合活物質を用いて、ハーフセルを製造して、各種評価を実施した。
<実施例14>
 実施例6と同様に黒鉛成分の含有量60質量部、シリコンの含有量30質量部、フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量30質量部からなる略球形のリチウム二次電池用複合活物質を得た。
(コールタールピッチとの乾式気相混合の準備)
 得らえた略球形の混合物(100質量部)と坩堝の容器に入れた平均粒径(D50)30μmのコールタールピッチ(炭化度38%、280質量部)を直接混合せずに同じ黒鉛製の容器に入れ、黒鉛製の蓋をして密閉した。
(焼成)
 窒素を流しながら(5L/min)、昇温度速度を5℃/minとし、混合物を900℃で1時間、加熱することで、コールタールピッチの溶融、気相状のものが上記略球形の混合物に気相付着し、コールタールピッチをソフトカーボンへ変性させた。これにより、黒鉛成分の含有量60質量部、シリコンの含有量30質量部、フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量7質量部からなる略球形のリチウム二次電池用複合活物質を得た。
 その物性は以下の通りである。粒度分布D50:19μm、D90:35μm、比表面積:9.0m/g、形状:略球状
 10kV以下の低加速電圧にて、SEM(走査型電子顕微鏡)を用いてリチウム二次電池用複合活物質の2次電子像から、リチウム二次電池用複合活物質においては、黒鉛成分および電池活物質がソフトカーボンで覆われた構造であることが分かった。
 また、リチウム二次電池用複合活物質中には、薄片化黒鉛が観察された。なお、薄片化黒鉛の厚みは20nm程度(グラフェンシートの積総数60)であった。
 次に、得られたリチウム二次電池用複合活物質を用いて、ハーフセルを製造して、各種評価を実施した。
<実施例15>
 実施例6と同様に黒鉛成分の含有量60質量部、シリコンの含有量30質量部、フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量30質量部からなる略球形のリチウム二次電池用複合活物質を得た。
(コールタールピッチとの乾式気相混合の準備)
 得らえた略球形の混合物(100質量部)と坩堝の容器に入れた平均粒径(D50)30μmのコールタールピッチ(炭化度38%、280質量部)を直接混合せずに同じ黒鉛製の容器に入れ、黒鉛製の蓋をして密閉した。
(焼成)
 窒素を流しながら(5L/min)、昇温度速度を5℃/minとし、混合物を900℃で1時間、加熱することで、コールタールピッチの溶融、気相状のものが上記略球形の混合物に気相付着し、コールタールピッチをソフトカーボンへ変性させた。これにより、黒鉛成分の含有量60質量部、シリコンの含有量30質量部、フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量7質量部からなる略球形のリチウム二次電池用複合活物質を得た。
 その物性は以下の通りである。比表面積:10.0m/g、形状:略球状
 10kV以下の低加速電圧にて、SEM(走査型電子顕微鏡)を用いてリチウム二次電池用複合活物質の2次電子像から、リチウム二次電池用複合活物質においては、黒鉛成分および電池活物質がソフトカーボンで覆われた構造であることが分かった。
 また、リチウム二次電池用複合活物質中には、薄片化黒鉛が観察された。なお、薄片化黒鉛の厚みは20nm程度(グラフェンシートの積総数60)であった。また、同様に電解液浸漬の有無を確認した結果、浸漬は認められなかった。
 次に、得られたリチウム二次電池用複合活物質を用いて、ハーフセルを製造して、各種評価を実施した。
<実施例16>
 シリコンの含有量50質量部とした以外、実施例6と同様に黒鉛成分の含有量60質量部、フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量30質量部からなる略球形のリチウム二次電池用複合活物質を得た。
(コールタールピッチとの乾式気相混合の準備)
 得らえた略球形の混合物(100質量部)と坩堝の容器に入れた平均粒径(D50)30μmのコールタールピッチ(炭化度38%、280質量部)を直接混合せずに同じ黒鉛製の容器に入れ、黒鉛製の蓋をして密閉した。
(焼成)
 窒素を流しながら(5L/min)、昇温度速度を5℃/minとし、混合物を900℃で1時間、加熱することで、コールタールピッチの溶融、気相状のものが上記略球形の混合物に気相付着し、コールタールピッチをソフトカーボンへ変性させた。これにより、黒鉛成分の含有量60質量部、シリコンの含有量30質量部、フェノール樹脂由来のハードカーボンの含有量10質量部、コールタールピッチ由来のソフトカーボンの含有量7質量部からなる略球形のリチウム二次電池用複合活物質を得た。
 その物性は以下の通りである。比表面積:6.2m/g、形状:略球状
 10kV以下の低加速電圧にて、SEM(走査型電子顕微鏡)を用いてリチウム二次電池用複合活物質の2次電子像から、リチウム二次電池用複合活物質においては、黒鉛成分および電池活物質がソフトカーボンで覆われた構造であることが分かった。
 また、リチウム二次電池用複合活物質中には、薄片化黒鉛が観察された。なお、薄片化黒鉛の厚みは20nm程度(グラフェンシートの積総数60)であった。また、同様に電解液浸漬の有無を確認した結果、浸漬は認められなかった。
 次に、得られたリチウム二次電池用複合活物質を用いて、ハーフセルを製造して、各種評価を実施した。
<比較例3>
 黒鉛の含有量70質量部、金属Siの含有量30質量部からなる略球形のリチウム二次電池用複合活物質を得た。なお、このリチウム二次電池用複合活物質には、ハードカーボンとソフトカーボンは含まれていない。また、同様に電解液浸漬の有無を確認した結果、浸漬が認められた。
<比較例4>
 実施例1と同様に(膨張黒鉛の調製)、(混合工程)、(プレス工程)、および、(球
形化工程)を実施して、略球形の混合物を得て、コールタールピッチとの混合はしなかった。これにより、黒鉛成分の含有量60質量部、シリコンの含有量30質量部、フェノール樹脂由来のハードカーボンの含有量10質量部、からなる略球形のリチウム二次電池用複合活物質を得た。
 その物性は以下の通りである。粒度分布D50:20μm、D90:37μm、比表面
積:44.0m/g、形状:略球状
 10kV以下の低加速電圧にて、SEM(走査型電子顕微鏡)を用いてリチウム二次電池用複合活物質の2次電子像から、リチウム二次電池用複合活物質においては、ソフトカーボンの存在は認められなかった
 また、リチウム二次電池用複合活物質中には、薄片化黒鉛が観察された。なお、薄片化黒鉛の厚みは20nm程度(グラフェンシートの積総数60)であった。また、同様に電解液浸漬の有無を確認した結果、浸漬が認められた(図7)。
 次に、得られたリチウム二次電池用複合活物質を用いて、ハーフセルを製造して、各種評価を実施した。
Figure JPOXMLDOC01-appb-T000002
 上記表2に示すように、本発明のリチウム二次電池用複合活物質を用いたフルセル及びハーフセルの評価の結果、優れたクーロン効率を示し、サイクル特性に優れることが確認された。また、該複合活物質を含む電極も膨張が抑制されていることが確認された。
 一方、比較例3~4では、実施例6~16と比較して、サイクル特性に劣り、電極の膨張率及び、過膨張率も大きかった。
 1 複合活物質(黒部)
 2 電解液成分F元素(白部)
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2015年02月6日出願の日本国特許出願(特願2015-022640)及び2015年12月24日出願の日本国特許出願(特願2015-252325)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (20)

  1. SiまたはSi合金と、炭素質物または炭素質物と黒鉛成分とを、含んでなるリチウム二次電池用複合活物質において、該活物質の平均粒径(D50)が1~40μm、比表面積が0.5~45m/g、平均細孔径が10~40nm、開気孔体積が0.06cm/g以下であるリチウム二次電池用複合活物質。
  2. 前記SiまたはSi合金の平均粒径(D50)が0.01~5μmであり、炭素質物が少なくとも活物質表面を覆っている請求項1に記載のリチウム二次電池用複合活物質。
  3. 前記SiまたはSi合金が、炭素質物と共に0.2μm以下の厚みの黒鉛薄層の間に挟まった構造であり、その構造が積層および/または網目状に広がっており、該黒鉛薄層が活物質粒子の表面付近で湾曲して活物質粒子を覆っており、最外層の表面を炭素質物が覆っている請求項1又は2に記載のリチウム二次電池用複合活物質。
  4.  黒鉛成分、ハードカーボン、ソフトカーボン、及びリチウムイオンと化合可能な電池活物質を含む、リチウム二次電池用複合活物質。
  5.  リチウムイオンと化合可能な電池活物質の平均粒径(D50)が0.01~0.6μm、D90が0.01~1.0μmであり、BET法によるBET比表面積が40~300m/gである請求項4に記載のリチウム二次電池用複合活物質。
  6.  黒鉛成分15~65質量部、ハードカーボン5~40質量部、ソフトカーボン5~60質量部、リチウムイオンと化合可能な電池活物質5~80質量部である請求項4又は5に記載のリチウム二次電池用複合活物質。
  7. 該黒鉛成分は、ICP発光分光分析法による26元素(Al、Ca、Cr、Fe、K、Mg、Mn、Na、Ni、V、Zn、Zr、Ag、As、Ba、Be、Cd、Co、Cu、Mo、Pb、Sb、Se、Th、Tl、U)の不純物半定量値より求めた純度が99.9%以上(1000ppm以下)で酸素フラスコ燃焼法によるイオンクロマトグラフィー(IC)測定法によるS量が0.3重量wt%以下、及び/又はBET比表面積40m/g以下である請求項1~6のいずれかに記載のリチウム二次電池用複合活物質。
  8. 前記SiまたはSi合金の含有量が10~80質量部、前記炭素質物の含有量が90~10質量部である請求項1~3、7のいずれかに記載のリチウム二次電池用複合活物質。
  9. 前記SiまたはSi合金の含有量が10~60質量部、前記炭素質物の含有量が5~60質量部、前記黒鉛成分の含有量が20~80質量部である請求項1~3,7のいずれかに記載のリチウム二次電池用複合活物質。
  10.  リチウムイオンと化合可能な電池活物質が、0.2μm以下の厚みの黒鉛薄層の間に挟まれた構造であり、その構造が積層および/または網目状に広がっており、該黒鉛薄層が活物質粒子の表面付近で湾曲して活物質粒子を覆っている請求項4~7のいずれかに記載のリチウム二次電池用複合活物質。
  11. SiまたはSi合金、炭素前駆体、必要に応じて黒鉛成分を混合する工程と、造粒・圧密化する工程と、混合物を粉砕および球形化処理して略球状の複合粒子を形成する工程と、該複合粒子を不活性雰囲気中で焼成する工程と、炭素前駆体と該複合粒子もしくは焼成粉とを混合する工程及びその混合物を不活性雰囲気中で加熱する事で炭素膜を焼成粉もしくは炭素被覆した複合粒子を得る工程を含む請求項1~3,7~9のいずれかに記載のリチウム二次電池用複合活物質の製造方法。
  12. 請求項11で得られた炭素被覆した複合粒子、球形化した複合粒子もしくは焼成粉と炭素前駆体とを不活性雰囲気中で焼成し炭素膜を複合粒子もしくは焼成粉の内外に被覆する工程を行う請求項11に記載のリチウム二次電池用複合活物質の製造方法。
  13. 気相で被覆する工程の後、粉砕および球形処理した粉体もしくは焼成粉もしくは炭素被覆した粉体を風力分級する工程を行う請求項11又は12に記載のリチウム二次電池用複合活物質の製造方法。
  14. 複合粒子及び焼成粉を炭素前駆体と共に不活性雰囲気中で焼成する工程及び炭素前駆体を不活性雰囲気中で加熱する事で炭素膜を焼成粉もしくは炭素被覆した複合粒子もしくは炭素被覆した焼成粉の内外に気相で被覆する工程の温度が、それぞれ300~1200℃である請求項11~13のいずれかに記載のリチウム二次電池用複合活物質の製造方法。
  15.  黒鉛成分、および、リチウムイオンと化合可能な電池活物質を含む第1混合物に球形化処理を施す球形化工程と、
     球形化処理が施された前記第1混合物に対して加熱処理を施す第1加熱工程と、
     前記第1加熱工程で得られた焼成物とソフトカーボンの前駆体とを混合して第2混合物を得る混合工程と、
     前記第2混合物に対して加熱処理を施す第2加熱工程と、を有する請求項4~7,10のいずれかに記載のリチウム二次電池用複合活物質の製造方法。
  16.  黒鉛成分、および、リチウムイオンと化合可能な電池活物質を含む第1混合物に球形化処理を施す球形化工程と、
     球形化処理が施された第1混合物とソフトカーボンの前駆体とを混合して第3混合物を得る混合工程と、
     前記第3混合物に対して加熱処理を施す加熱工程と、を有する請求項4~7,10いずれかに記載のリチウム二次電池用複合活物質の製造方法。
  17.  黒鉛成分、ハードカーボン、ソフトカーボンの前駆体、及びリチウムイオンと化合可能な電池活物質を含む第4混合物に球形化処理を施す球形化工程と、
     球形化処理が施された前記第4混合物に対して加熱処理を施す加熱工程と、を有する請求項4~7、10のいずれかに記載のリチウム二次電池用複合活物質の製造方法。
  18.  前記ソフトカーボンの前駆体が、石炭系ピッチ、石油系ピッチ、メソフェーズピッチ、コークス、低分子重質油、およびそれらの誘導体からなる群から選択される少なくとも1つである請求項15~17のいずれかに記載のリチウム二次電池用複合活物質の製造方法。
  19.  前記、第2~4混合物に対して、加熱処理を施す加熱工程において、加熱温度400℃以上、昇温速度を1℃/min以上にする請求15~18のいずれかに記載のリチウム二次電池用複合活物質の製造方法。
  20.  請求項1~10のいずれかに記載のリチウム二次電池用複合活物質を含むリチウム二次電池。
PCT/JP2016/053177 2015-02-06 2016-02-03 リチウム二次電池用複合活物質およびその製造方法 WO2016125819A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015022640 2015-02-06
JP2015-022640 2015-02-06
JP2015-252325 2015-12-24
JP2015252325A JP6759583B2 (ja) 2015-02-06 2015-12-24 リチウム二次電池用複合活物質およびその製造方法、リチウム二次電池

Publications (1)

Publication Number Publication Date
WO2016125819A1 true WO2016125819A1 (ja) 2016-08-11

Family

ID=56564159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053177 WO2016125819A1 (ja) 2015-02-06 2016-02-03 リチウム二次電池用複合活物質およびその製造方法

Country Status (1)

Country Link
WO (1) WO2016125819A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048070A (ja) * 2016-09-19 2018-03-29 三星電子株式会社Samsung Electronics Co., Ltd. 多孔性シリコン複合体クラスタ、それを利用した炭素複合体、並びにそれを含んだ、電極、リチウム電池、電界放出素子、バイオセンサ、半導体素子及び熱電素子
JP2018170247A (ja) * 2017-03-30 2018-11-01 東ソー株式会社 リチウム二次電池用複合活物質およびその製造方法
JP2019145468A (ja) * 2018-02-23 2019-08-29 東ソー株式会社 リチウムイオン二次電池負極用バインダー及び負極材
JPWO2019031601A1 (ja) * 2017-08-10 2019-11-07 三井金属鉱業株式会社 Si系負極活物質
JP2020510962A (ja) * 2017-09-30 2020-04-09 貝特瑞新材料集団股▲ふん▼有限公司 炭素系複合材料、その製造方法、およびそれを含むリチウムイオン二次電池
CN110993943A (zh) * 2019-11-23 2020-04-10 凯盛石墨碳材料有限公司 一种锂离子电池用石墨负极材料的制备方法
CN114514638A (zh) * 2019-10-04 2022-05-17 株式会社Lg新能源 球化后的碳质负极活性材料、其制造方法以及包含其的负极和锂二次电池
CN114843480A (zh) * 2022-05-23 2022-08-02 常州烯源谷新材料科技有限公司 一种硅磷共掺杂硬碳复合材料及其制备方法和应用
JP2022551434A (ja) * 2019-10-04 2022-12-09 エルジー エナジー ソリューション リミテッド 球状化カーボン系負極活物質、その製造方法、それを含む負極、及びリチウム二次電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216751A (ja) * 2000-11-14 2002-08-02 Mitsui Mining Co Ltd リチウム二次電池負極用複合材料及びリチウム二次電池
JP2010282942A (ja) * 2009-06-08 2010-12-16 Tohoku Univ 電極材料および電極材料の製造方法
JP2011076744A (ja) * 2009-09-29 2011-04-14 Sumitomo Bakelite Co Ltd リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池
WO2012014259A1 (ja) * 2010-07-30 2012-02-02 日立ビークルエナジー株式会社 非水電解液二次電池
JP2014044921A (ja) * 2012-08-29 2014-03-13 Hitachi Ltd リチウムイオン二次電池及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216751A (ja) * 2000-11-14 2002-08-02 Mitsui Mining Co Ltd リチウム二次電池負極用複合材料及びリチウム二次電池
JP2010282942A (ja) * 2009-06-08 2010-12-16 Tohoku Univ 電極材料および電極材料の製造方法
JP2011076744A (ja) * 2009-09-29 2011-04-14 Sumitomo Bakelite Co Ltd リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池
WO2012014259A1 (ja) * 2010-07-30 2012-02-02 日立ビークルエナジー株式会社 非水電解液二次電池
JP2014044921A (ja) * 2012-08-29 2014-03-13 Hitachi Ltd リチウムイオン二次電池及びその製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048070A (ja) * 2016-09-19 2018-03-29 三星電子株式会社Samsung Electronics Co., Ltd. 多孔性シリコン複合体クラスタ、それを利用した炭素複合体、並びにそれを含んだ、電極、リチウム電池、電界放出素子、バイオセンサ、半導体素子及び熱電素子
JP7133914B2 (ja) 2016-09-19 2022-09-09 三星電子株式会社 多孔性シリコン複合体クラスタ、それを利用した炭素複合体、並びにそれを含んだ、電極、リチウム電池、電界放出素子、バイオセンサ、半導体素子及び熱電素子
JP2018170247A (ja) * 2017-03-30 2018-11-01 東ソー株式会社 リチウム二次電池用複合活物質およびその製造方法
JPWO2019031601A1 (ja) * 2017-08-10 2019-11-07 三井金属鉱業株式会社 Si系負極活物質
JP2020205268A (ja) * 2017-08-10 2020-12-24 三井金属鉱業株式会社 Si系負極活物質
JP2020510962A (ja) * 2017-09-30 2020-04-09 貝特瑞新材料集団股▲ふん▼有限公司 炭素系複合材料、その製造方法、およびそれを含むリチウムイオン二次電池
JP2019145468A (ja) * 2018-02-23 2019-08-29 東ソー株式会社 リチウムイオン二次電池負極用バインダー及び負極材
JP7009255B2 (ja) 2018-02-23 2022-01-25 東ソー株式会社 リチウムイオン二次電池負極用バインダー及び負極材
CN114514638A (zh) * 2019-10-04 2022-05-17 株式会社Lg新能源 球化后的碳质负极活性材料、其制造方法以及包含其的负极和锂二次电池
EP4024511A4 (en) * 2019-10-04 2022-11-02 Lg Energy Solution, Ltd. GLOBULAR CARBON-BASED ANODE ACTIVE MATERIAL, METHOD FOR THE PREPARATION THEREOF, AND LITHIUM ANODE AND SECONDARY BATTERY COMPRISING THE SAME
JP2022550820A (ja) * 2019-10-04 2022-12-05 エルジー エナジー ソリューション リミテッド 球状化カーボン系負極活物質、その製造方法、それを含む負極、及びリチウム二次電池
JP2022551434A (ja) * 2019-10-04 2022-12-09 エルジー エナジー ソリューション リミテッド 球状化カーボン系負極活物質、その製造方法、それを含む負極、及びリチウム二次電池
JP7480284B2 (ja) 2019-10-04 2024-05-09 エルジー エナジー ソリューション リミテッド 球状化カーボン系負極活物質、その製造方法、それを含む負極、及びリチウム二次電池
JP7498267B2 (ja) 2019-10-04 2024-06-11 エルジー エナジー ソリューション リミテッド 球状化カーボン系負極活物質、その製造方法、それを含む負極、及びリチウム二次電池
CN110993943A (zh) * 2019-11-23 2020-04-10 凯盛石墨碳材料有限公司 一种锂离子电池用石墨负极材料的制备方法
CN114843480A (zh) * 2022-05-23 2022-08-02 常州烯源谷新材料科技有限公司 一种硅磷共掺杂硬碳复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP6334195B2 (ja) リチウム二次電池用複合活物質およびその製造方法
JP5227483B1 (ja) リチウム二次電池用複合活物質およびその製造方法
WO2016125819A1 (ja) リチウム二次電池用複合活物質およびその製造方法
JP6508870B2 (ja) リチウム二次電池用複合活物質およびその製造方法
WO2015080203A1 (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP7293645B2 (ja) リチウム二次電池用複合活物質およびその製造方法
JP2017130274A (ja) リチウム二次電池用負極材およびその製造方法、リチウム二次電池
JP6961948B2 (ja) シリコン系リチウム二次電池用複合活物質およびその製造方法
KR20160137518A (ko) 리튬 이온 2 차 전지용 부극 활물질 및 그 제조 방법
JP6617403B2 (ja) リチウムイオン2次電池用負極活物質およびその製造方法
JP6961980B2 (ja) リチウム二次電池用複合活物質およびその製造方法
WO2015146864A1 (ja) リチウムイオン2次電池用負極活物質およびその製造方法
JP2017134937A (ja) リチウム二次電池用複合活物質およびその製造方法
JP2016110969A (ja) リチウムイオン2次電池用負極活物質およびその製造方法
JP6808959B2 (ja) リチウムイオン二次電池用複合活物質およびその製造方法
JP6451071B2 (ja) リチウムイオン2次電池用カーボンシリコン系負極活物質およびその製造方法
JP6759583B2 (ja) リチウム二次電池用複合活物質およびその製造方法、リチウム二次電池
JP2019145468A (ja) リチウムイオン二次電池負極用バインダー及び負極材
JP6961981B2 (ja) リチウム二次電池用複合活物質およびその製造方法
JP2017112057A (ja) シリコン系粒子およびそれを含むリチウムイオン二次電池用負極活物質並びにそれらの製造方法
JP2016178008A (ja) リチウムイオン2次電池用負極活物質およびその製造方法
JP6739142B2 (ja) リチウムイオン2次電池用負極活物質およびその製造方法
JP2017168376A (ja) リチウム二次電池用複合活物質およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746650

Country of ref document: EP

Kind code of ref document: A1