WO2021065722A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2021065722A1
WO2021065722A1 PCT/JP2020/036289 JP2020036289W WO2021065722A1 WO 2021065722 A1 WO2021065722 A1 WO 2021065722A1 JP 2020036289 W JP2020036289 W JP 2020036289W WO 2021065722 A1 WO2021065722 A1 WO 2021065722A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
less
layer
plating layer
opening
Prior art date
Application number
PCT/JP2020/036289
Other languages
English (en)
French (fr)
Inventor
貴晶 山中
佑紀 中野
山本 兼司
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to DE212020000619.9U priority Critical patent/DE212020000619U1/de
Priority to CN202080066090.8A priority patent/CN114430861A/zh
Priority to DE112020003413.5T priority patent/DE112020003413T5/de
Priority to JP2021551185A priority patent/JPWO2021065722A1/ja
Priority to US17/639,528 priority patent/US20220336598A1/en
Publication of WO2021065722A1 publication Critical patent/WO2021065722A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0475Changing the shape of the semiconductor body, e.g. forming recesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0495Schottky electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3192Multilayer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02123Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body inside the bonding area
    • H01L2224/02125Reinforcing structures
    • H01L2224/02126Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49537Plurality of lead frames mounted in one device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Definitions

  • the present invention relates to a semiconductor device.
  • Patent Document 1 discloses a semiconductor device including a semiconductor substrate, an aluminum film (electrode), a polyimide film (organic insulating layer), and a Ni plating film (Ni plating layer).
  • the aluminum film is formed on the semiconductor substrate.
  • the polyimide film is formed on the aluminum film and has an opening for exposing the aluminum film.
  • the Ni plating film is formed on an aluminum film exposed from the opening of the polyimide film.
  • the organic insulating layer has a property of low adhesion to Ni. Therefore, when the Ni plating layer is formed on the electrode exposed from the opening of the organic insulating layer, the Ni plating layer forms a gap extending toward the electrode with the organic insulating layer. As a result, the connection of the Ni plating layer to the electrode becomes insufficient, and the reliability of the Ni plating layer decreases.
  • One embodiment of the present invention provides a semiconductor device capable of improving the reliability of the Ni plating layer in a structure in which the Ni plating layer is formed on an electrode exposed from the opening of the organic insulating layer.
  • One embodiment of the present invention covers a chip, an electrode formed on the chip, an inorganic insulating layer having a first opening for covering the electrode and exposing the electrode, and the inorganic insulating layer.
  • An organic insulating layer having a second opening that surrounds the first opening at a distance from the first opening, and exposing the inner peripheral edge of the inorganic insulating layer in the region between the first opening and the second opening.
  • a semiconductor device including a Ni-plated layer in which the electrode is coated in the first opening and the inner peripheral edge of the inorganic insulating layer is coated in the second opening.
  • the Ni plating layer covers the inner peripheral edge of the inorganic insulating layer, which has higher adhesion to Ni than the organic insulating layer.
  • the formation region of the gap can be kept away from the electrode, and at the same time, the formation of the gap extending toward the electrode can be suppressed.
  • the region where a gap is formed with the organic insulating layer can be reduced. Therefore, the reliability of the Ni plating layer can be improved.
  • FIG. 1 is a plan view showing a semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a cross-sectional view taken along the line II-II shown in FIG. 1 together with the outer surface plating layer according to the first embodiment.
  • FIG. 3 is an enlarged view of the region III shown in FIG.
  • FIG. 4A is a corresponding diagram of FIG. 3, which is an enlarged view showing an outer surface plating layer according to a second embodiment.
  • FIG. 4B is a corresponding diagram of FIG. 3, which is an enlarged view showing an outer surface plating layer according to a third embodiment.
  • FIG. 4C is a corresponding diagram of FIG. 3, which is an enlarged view showing an outer surface plating layer according to a fourth embodiment.
  • FIG. 4A is a corresponding diagram of FIG. 3, which is an enlarged view showing an outer surface plating layer according to a second embodiment.
  • FIG. 4B is a corresponding diagram of FIG. 3, which is an enlarged
  • FIG. 4D is a corresponding diagram of FIG. 3, which is an enlarged view showing an outer surface plating layer according to a fifth embodiment.
  • FIG. 5A is a cross-sectional view for explaining an example of a method for manufacturing the semiconductor device shown in FIG.
  • FIG. 5B is a cross-sectional view showing a step after FIG. 5A.
  • FIG. 5C is a cross-sectional view showing a step after FIG. 5B.
  • FIG. 5D is a cross-sectional view showing a step after FIG. 5C.
  • FIG. 5E is a cross-sectional view showing the steps after FIG. 5D.
  • FIG. 5F is a cross-sectional view showing a step after FIG. 5E.
  • FIG. 5G is a cross-sectional view showing a step after FIG. 5F.
  • FIG. 5H is a cross-sectional view showing a step after FIG. 5G.
  • FIG. 5I is a cross-sectional view showing a step after FIG. 5H.
  • FIG. 5J is a cross-sectional view showing a step after FIG. 5I.
  • FIG. 5K is a cross-sectional view showing a step after FIG. 5J.
  • FIG. 5L is a cross-sectional view showing a step after FIG. 5K.
  • FIG. 5M is a cross-sectional view showing a step after FIG. 5L.
  • FIG. 5N is a cross-sectional view showing a step after FIG. 5M.
  • FIG. 5O is a cross-sectional view showing a step after FIG. 5N.
  • FIG. 6 is a corresponding diagram of FIG.
  • FIG. 7 is an enlarged view of region VII shown in FIG.
  • FIG. 8A is a corresponding diagram of FIG. 7, and is an enlarged view showing an outer surface plating layer according to a second embodiment.
  • FIG. 8B is a corresponding diagram of FIG. 7, and is an enlarged view showing an outer surface plating layer according to a third embodiment.
  • FIG. 8C is a corresponding diagram of FIG. 7, which is an enlarged view showing an outer surface plating layer according to a fourth embodiment.
  • FIG. 8D is a corresponding diagram of FIG. 7, which is an enlarged view showing an outer surface plating layer according to a fifth embodiment.
  • FIG. 8A is a corresponding diagram of FIG. 7, and is an enlarged view showing an outer surface plating layer according to a second embodiment.
  • FIG. 8B is a corresponding diagram of FIG. 7, and is an enlarged view showing an outer surface plating layer according to a third embodiment.
  • FIG. 8C is a corresponding diagram of FIG. 7, which is an enlarged view showing
  • FIG. 9 is a plan view showing a semiconductor device according to a third embodiment of the present invention.
  • FIG. 10 is an enlarged view of the region X shown in FIG.
  • FIG. 11 is a cross-sectional view taken along the line XI-XI shown in FIG.
  • FIG. 12 is a cross-sectional view taken along the line XII-XII shown in FIG.
  • FIG. 13 is an enlarged view of the region XIII shown in FIG.
  • FIG. 14 is an enlarged view of the region XIV shown in FIG.
  • FIG. 15 is a corresponding diagram of FIG. 12, which is a cross-sectional view showing a semiconductor device according to a fourth embodiment of the present invention.
  • FIG. 16 is an enlarged view of the region XVI shown in FIG. FIG.
  • FIG. 17 is an enlarged view of region XVII shown in FIG.
  • FIG. 18 is a plan view of a semiconductor package in which the semiconductor devices according to the first to fourth embodiments are incorporated, as viewed from one side.
  • FIG. 19 is a plan view of the semiconductor package shown in FIG. 18 as viewed from the other side.
  • FIG. 20 is a perspective view of the semiconductor package shown in FIG.
  • FIG. 21 is an exploded perspective view of the semiconductor package shown in FIG.
  • FIG. 22 is a cross-sectional view taken along the line XXII-XXII shown in FIG.
  • FIG. 23 is a circuit diagram of the semiconductor package shown in FIG.
  • FIG. 1 is a plan view showing a semiconductor device 1 according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a cross-sectional view taken along the line II-II shown in FIG. 1 together with the outer surface plating layer 42 according to the first embodiment.
  • FIG. 3 is an enlarged view of the region III shown in FIG.
  • the semiconductor device 1 is composed of a SiC semiconductor device including a SiC chip 2 (chip) in this embodiment.
  • the SiC chip 2 contains a SiC single crystal composed of hexagonal crystals.
  • the SiC single crystal composed of hexagonal crystals has a plurality of types of polytypes including 2H (Hexagonal) -SiC single crystal, 4H-SiC single crystal, 6H-SiC single crystal and the like.
  • the SiC chip 2 is composed of a 4H-SiC single crystal in this form, but does not exclude other polytypes.
  • the SiC chip 2 is formed in a rectangular parallelepiped shape.
  • the SiC chip 2 has a first main surface 3 on one side, a second main surface 4 on the other side, and side surfaces 5A, 5B, 5C, and 5D connecting the first main surface 3 and the second main surface 4. ing.
  • the first main surface 3 and the second main surface 4 are formed in a square shape (in this form, a square shape) in a plan view (hereinafter, simply referred to as “planar view”) viewed from their normal direction Z. ..
  • the thickness of the SiC chip 2 may be 40 ⁇ m or more and 300 ⁇ m or less.
  • the thickness of the SiC chip 2 may be 40 ⁇ m or more and 100 ⁇ m or less, 100 ⁇ m or more and 150 ⁇ m or less, 150 ⁇ m or more and 200 ⁇ m or less, 200 ⁇ m or more and 250 ⁇ m or less, or 250 ⁇ m or more and 300 ⁇ m or less.
  • the thickness of the SiC chip 2 is preferably 60 ⁇ m or more and 150 ⁇ m or less.
  • the first main surface 3 and the second main surface 4 face the c-plane of the SiC single crystal.
  • the first main surface 3 faces the silicon surface ((0001) surface) of the SiC single crystal
  • the second main surface 4 faces the carbon surface ((000-1) surface) of the SiC single crystal.
  • the second main surface 4 may consist of a rough surface having either or both of grinding marks and annealing marks.
  • the annealing marks are laser irradiation marks.
  • the second main surface 4 may be an ohmic surface having annealing marks.
  • the first main surface 3 and the second main surface 4 may have an off angle inclined at a predetermined off angle in a predetermined off direction with respect to the c surface of the SiC single crystal.
  • the off direction is preferably the a-axis direction ([11-20] direction) of the SiC single crystal.
  • the off angle is preferably inclined at an angle of 0 ° or more and 10 ° or less in the off direction.
  • the off angle may be 0 ° or more and 6 ° or less.
  • the off angle may be 0 ° or more and 2 ° or less, 2 ° or more and 4 ° or less, or 4 ° or more and 6 ° or less.
  • the off angle is preferably more than 0 ° and 4.5 ° or less.
  • the off angle may be 3 ° or more and 4.5 ° or less. In this case, the off angle is preferably 3 ° or more and 3.5 ° or less, or 3.5 ° or more and 4 ° or less.
  • the off angle may be 1.5 ° or more and 3 ° or less. In this case, the off angle is preferably 1.5 ° or more and 2 ° or less, or 2 ° or more and 2.5 ° or less.
  • Side surfaces 5A to 5D include a first side surface 5A, a second side surface 5B, a third side surface 5C, and a fourth side surface 5D.
  • the first side surface 5A and the second side surface 5B extend along the first direction X and face the second direction Y intersecting the first direction X.
  • the third side surface 5C and the fourth side surface 5D extend along the second direction Y and face the first direction X.
  • the second direction Y is orthogonal to the first direction X.
  • the first side surface 5A and the second side surface 5B are formed by the a-plane of the SiC single crystal.
  • the first side surface 5A and the second side surface 5B form an inclined surface inclined in the c-axis direction ([0001] direction) of the SiC single crystal with respect to the normal direction Z with respect to the normal direction Z. You may.
  • the first side surface 5A and the second side surface 5B may be inclined at an angle corresponding to the off angle with respect to the normal direction Z when the normal direction Z is 0 °.
  • the angle according to the off angle may be equal to the off angle, or may be an angle exceeding 0 ° and less than the off angle.
  • the third side surface 5C and the fourth side surface 5D are formed by the m-plane of the SiC single crystal.
  • the third side surface 5C and the fourth side surface 5D extend in a plane along the normal direction Z.
  • the third side surface 5C and the fourth side surface 5D are formed substantially perpendicular to the first main surface 3 and the second main surface 4.
  • the side surfaces 5A to 5D may consist of a cleavage surface or a ground surface.
  • the length of the side surfaces 5A to 5D may be 0.1 mm or more and 10 mm or less.
  • the length of the side surfaces 5A to 5D is preferably 0.5 mm or more and 2.5 mm or less.
  • the SiC chip 2 has a laminated structure including an n + type SiC substrate 6 and an n-type SiC epitaxial layer 7.
  • the SiC substrate 6 forms a part of the second main surface 4 and the side surfaces 5A to 5D of the SiC chip 2.
  • the SiC epitaxial layer 7 forms a part of the first main surface 3 and the side surfaces 5A to 5D of the SiC chip 2.
  • the n-type impurity concentration of the SiC epitaxial layer 7 is less than the n-type impurity concentration of the SiC substrate 6.
  • the concentration of n-type impurities in the SiC substrate 6 may be 1.0 ⁇ 10 18 cm -3 or more and 1.0 ⁇ 10 21 cm -3 or less.
  • the concentration of n-type impurities in the SiC epitaxial layer 7 may be 1.0 ⁇ 10 15 cm -3 or more and 1.0 ⁇ 10 18 cm -3 or less.
  • the thickness of the SiC substrate 6 may be 40 ⁇ m or more and 250 ⁇ m or less.
  • the thickness of the SiC substrate 6 may be 40 ⁇ m or more and 100 ⁇ m or less, 100 ⁇ m or more and 150 ⁇ m or less, 150 ⁇ m or more and 200 ⁇ m or less, or 200 ⁇ m or more and 250 ⁇ m or less.
  • the thickness of the SiC substrate 6 is preferably 40 ⁇ m or more and 150 ⁇ m or less.
  • the thickness of the SiC epitaxial layer 7 may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the SiC epitaxial layer 7 may be 1 ⁇ m or more and 5 ⁇ m or less, 5 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 15 ⁇ m or less, 15 ⁇ m or more and 20 ⁇ m or less, 20 ⁇ m or more and 30 ⁇ m or less, 30 ⁇ m or more and 40 ⁇ m or less, or 40 ⁇ m or more and 50 ⁇ m or less. ..
  • the thickness of the SiC epitaxial layer 7 is preferably 5 ⁇ m or more and 15 ⁇ m or less.
  • the SiC chip 2 includes an active region 8 and an outer region 9.
  • the active region 8 is an region including an SBD (Schottky Barrier Diode) as an example of a functional device (diode).
  • the active region 8 is formed in the central portion of the SiC chip 2 at intervals inward from the side surfaces 5A to 5D in a plan view.
  • the active region 8 is formed in a quadrangular shape having four sides parallel to the side surfaces 5A to 5D in a plan view.
  • the outer region 9 is an region outside the active region 8.
  • the outer region 9 is formed in the region between the side surfaces 5A to 5D and the active region 8.
  • the outer region 9 is formed in an annular shape (specifically, an endless shape) surrounding the active region 8 in a plan view.
  • the semiconductor device 1 includes an n-type diode region 10 formed on the surface layer portion of the first main surface 3 in the active region 8.
  • the diode region 10 is formed in the central portion of the first main surface 3.
  • the planar shape of the diode region 10 is arbitrary.
  • the diode region 10 may be formed in a quadrangular shape having four sides parallel to the side surfaces 5A to 5D in a plan view.
  • the diode region 10 is formed by utilizing a part of the SiC epitaxial layer 7.
  • the n-type impurity concentration in the diode region 10 is equal to the n-type impurity concentration in the SiC epitaxial layer 7.
  • the n-type impurity concentration in the diode region 10 may exceed the n-type impurity concentration in the SiC epitaxial layer 7.
  • the diode region 10 is formed by introducing an n-type impurity into the surface layer portion of the SiC epitaxial layer 7.
  • a guard region 11 containing p-type impurities is formed on the surface layer portion of the first main surface 3.
  • the p-type impurity in the guard region 11 may not be activated or may be activated.
  • the guard region 11 is formed in a band shape extending along the diode region 10 in a plan view. Specifically, the guard region 11 is formed in an annular shape (specifically, an endless shape) surrounding the diode region 10 in a plan view.
  • the guard area 11 is formed as a guard ring area.
  • the guard region 11 defines the active region 8 (diode region 10).
  • the planar shape of the active region 8 (diode region 10) is adjusted by the planar shape of the guard region 11.
  • the guard region 11 may be formed in a polygonal ring or an annular shape in a plan view.
  • the semiconductor device 1 includes a main surface insulating layer 12 formed on the first main surface 3.
  • the main surface insulating layer 12 may have a laminated structure including a silicon oxide layer and a silicon nitride layer.
  • the main surface insulating layer 12 may have a single-layer structure composed of a silicon oxide layer or a silicon nitride layer. In this form, the main surface insulating layer 12 has a single-layer structure composed of a silicon oxide layer.
  • the main surface insulating layer 12 has a contact opening 13 that exposes the diode region 10.
  • the contact opening 13 also exposes the inner peripheral edge of the guard region 11.
  • the planar shape of the contact opening 13 is arbitrary.
  • the contact opening 13 may be partitioned in a quadrangular shape having four sides parallel to the side surfaces 5A to 5D in a plan view.
  • the peripheral edge of the main surface insulating layer 12 is exposed from the side surfaces 5A to 5D.
  • the peripheral edge of the main surface insulating layer 12 is continuous with the side surfaces 5A to 5D.
  • the peripheral edge of the main surface insulating layer 12 may be formed at intervals inward from the side surfaces 5A to 5D. In this case, the main surface insulating layer 12 exposes a portion of the first main surface 3 located in the outer region 9.
  • the thickness of the main surface insulating layer 12 may be 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the main surface insulating layer 12 may be 0.1 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 2 ⁇ m or less, 2 ⁇ m or more and 4 ⁇ m or less, 4 ⁇ m or more and 6 ⁇ m or less, 6 ⁇ m or more and 8 ⁇ m or less, or 8 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the main surface insulating layer 12 is preferably 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the semiconductor device 1 includes a first main surface electrode 21 (electrode) formed on the first main surface 3.
  • the first main surface electrode 21 is connected to the diode region 10 and the guard region 11 in the contact opening 13.
  • the first main surface electrode 21 is drawn out from the contact opening 13 onto the main surface insulating layer 12.
  • the peripheral edge of the first main surface electrode 21 is formed on the main surface insulating layer 12 at intervals inward from the side surfaces 5A to 5D. As a result, the first main surface electrode 21 exposes the peripheral edge portion of the main surface insulating layer 12.
  • the thickness T1 of the first main surface electrode 21 may be 10 ⁇ m or more and 100 ⁇ m or less.
  • the thickness T1 may be 10 ⁇ m or more and 20 ⁇ m or less, 20 ⁇ m or more and 40 ⁇ m or less, 40 ⁇ m or more and 60 ⁇ m or less, 60 ⁇ m or more and 80 ⁇ m or less, or 80 ⁇ m or more and 100 ⁇ m or less.
  • the thickness T1 is preferably 20 ⁇ m or more and 60 ⁇ m or less.
  • the first main surface electrode 21 has a laminated structure including a barrier electrode 22 and a main electrode 23 that are laminated in this order from the first main surface 3 side.
  • the barrier electrode 22 is formed in a film shape along the first main surface 3 and the main surface insulating layer 12.
  • the barrier electrode 22 forms a Schottky junction with the diode region 10.
  • an SBD having the first main surface electrode 21 as the anode and the diode region 10 as the cathode is formed. That is, the first main surface electrode 21 is the anode electrode of the SBD.
  • the barrier electrode 22 may include at least one of a Ti layer, a Pd layer, a Cr layer, a V layer, a Mo layer, a W layer, a Pt layer, and a Ni layer.
  • the thickness of the barrier electrode 22 may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the barrier electrode 22 is 0.01 ⁇ m or more and 0.1 ⁇ m or less, 0.1 ⁇ m or more and 0.2 ⁇ m or less, 0.2 ⁇ m or more and 0.4 ⁇ m or less, 0.4 ⁇ m or more and 0.6 ⁇ m or less, 0.6 ⁇ m or more and 0. It may be 8 ⁇ m or less, or 0.8 ⁇ m or more and 1 ⁇ m or less.
  • the main electrode 23 is formed in a film shape on the barrier electrode 22.
  • the main electrode 23 covers the entire main surface of the barrier electrode 22.
  • the main electrode 23 is made of an Al-based metal layer.
  • the main electrode 23 includes at least one of a pure Al layer (an Al layer having a purity of 99% or more made of Al), an AlSi alloy layer, an AlCu alloy layer, and an AlSiCu alloy layer.
  • the main electrode 23 may have a laminated structure in which two or more of a pure Al layer, an AlSi alloy layer, an AlCu alloy layer and an AlSiCu alloy layer are laminated in any order.
  • the main electrode 23 may have a single-layer structure composed of a pure Al layer, an AlSi alloy layer, an AlCu alloy layer, or an AlSiCu alloy layer.
  • the main electrode 23 preferably has a single-layer structure composed of an AlSi alloy layer, an AlCu alloy layer, or an AlSiCu alloy layer.
  • the thickness of the main electrode 23 exceeds the thickness of the barrier electrode 22.
  • the thickness of the main electrode 23 may be 10 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the main electrode 23 may be 10 ⁇ m or more and 20 ⁇ m or less, 20 ⁇ m or more and 40 ⁇ m or less, 40 ⁇ m or more and 60 ⁇ m or less, 60 ⁇ m or more and 80 ⁇ m or less, or 80 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the main electrode 23 is preferably 20 ⁇ m or more and 60 ⁇ m or less. Since the thickness of the barrier electrode 22 is extremely small as compared with the thickness of the main electrode 23, the thickness T1 of the first main surface electrode 21 is approximated to the thickness of the main electrode 23.
  • the semiconductor device 1 includes an insulating layer 24 that covers the first main surface electrode 21 on the first main surface 3.
  • the insulating layer 24 is shown by hatching. Specifically, the insulating layer 24 is formed on the main surface insulating layer 12. The peripheral edge of the insulating layer 24 is formed at intervals inward from the side surfaces 5A to 5D. As a result, the insulating layer 24 exposes the peripheral edge portion of the main surface insulating layer 12.
  • the peripheral edge of the insulating layer 24 partitions the dicing street 25 between the side surfaces 5A to 5D. According to the dicing street 25, when the semiconductor device 1 is cut out from the wafer, the insulating layer 24 does not have to be physically cut. As a result, the semiconductor device 1 can be smoothly cut out from the wafer, and at the same time, peeling and deterioration of the insulating layer 24 can be suppressed. As a result, the insulating layer 24 can appropriately protect the object to be protected such as the SiC chip 2 and the first main surface electrode 21.
  • the width of the dicing street 25 may be 1 ⁇ m or more and 25 ⁇ m or less.
  • the width of the dicing street 25 is the width in the direction orthogonal to the direction in which the dicing street 25 extends.
  • the width of the dicing street 25 may be 1 ⁇ m or more and 5 ⁇ m or less, 5 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 15 ⁇ m or less, 15 ⁇ m or more and 20 ⁇ m or less, or 20 ⁇ m or more and 25 ⁇ m or less.
  • the insulating layer 24 has a pad opening 26 that exposes the first main surface electrode 21.
  • the pad opening 26 exposes the first main surface electrode 21 in a region surrounded by the contact opening 13 in a plan view.
  • the pad opening 26 may surround the contact opening 13 in a region outside the contact opening 13 in a plan view.
  • the planar shape of the pad opening 26 is arbitrary.
  • the pad opening 26 may be formed in a quadrangular shape having four sides parallel to the side surfaces 5A to 5D in a plan view.
  • the insulating layer 24 has a laminated structure including an inorganic insulating layer 30 and an organic insulating layer 31 laminated in this order from the SiC chip 2 side.
  • the inorganic insulating layer 30 is formed in a film shape along the main surface insulating layer 12 and the first main surface electrode 21.
  • the inorganic insulating layer 30 includes a first inner wall 32 and a first outer wall 33.
  • the first inner wall 32 of the inorganic insulating layer 30 defines a first opening 34 that exposes a part of the first main surface electrode 21.
  • the first opening 34 forms a part of the pad opening 26.
  • the first opening 34 is partitioned in the area surrounded by the contact opening 13 in a plan view.
  • the first opening 34 may surround the contact opening 13 from the outside of the contact opening 13 in a plan view.
  • the planar shape of the first opening 34 is arbitrary.
  • the first opening 34 may be partitioned in a quadrangular shape having four sides parallel to the side surfaces 5A to 5D in a plan view.
  • the first outer wall 33 of the inorganic insulating layer 30 is formed at intervals inward from the side surfaces 5A to 5D to expose the peripheral edge portion of the main surface insulating layer 12.
  • the inorganic insulating layer 30 partitions a part of the dicing street 25 between the side surfaces 5A to 5D.
  • the first outer wall 33 may be formed in a quadrangular shape having four sides parallel to the side surfaces 5A to 5D in a plan view.
  • the angle formed by the first inner wall 32 (first outer wall 33) with the main surface of the first main surface electrode 21 in the inorganic insulating layer 30 may be 30 ° or more and 90 ° or less.
  • the angle formed by the first inner wall 32 (first outer wall 33) with the main surface of the first main surface electrode 21 in the inorganic insulating layer 30 is preferably 45 ° or more and less than 90 °.
  • the angle of the first inner wall 32 (first outer wall 33) is the angle formed by the straight line connecting the lower end and the upper end of the first inner wall 32 (first outer wall 33) with the main surface of the first main surface electrode 21. Defined by.
  • the inorganic insulating layer 30 has a property of having high adhesion to Ni.
  • the inorganic insulating layer 30 includes at least one of a silicon oxide layer and a silicon nitride layer.
  • the inorganic insulating layer 30 may have a laminated structure including a silicon oxide layer and a silicon nitride layer laminated in this order from the SiC chip 2 side.
  • the inorganic insulating layer 30 may have a single-layer structure composed of a silicon oxide layer or a silicon nitride layer.
  • the inorganic insulating layer 30 preferably contains an insulating material different from that of the main surface insulating layer 12. In this form, the inorganic insulating layer 30 has a single-layer structure composed of a silicon nitride layer.
  • the thickness T2 of the inorganic insulating layer 30 is preferably less than the thickness T1 of the first main surface electrode 21 (T2 ⁇ T1).
  • the thickness T2 may be 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the thickness T2 may be 0.1 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 2 ⁇ m or less, 2 ⁇ m or more and 4 ⁇ m or less, 4 ⁇ m or more and 6 ⁇ m or less, 6 ⁇ m or more and 8 ⁇ m or less, or 8 ⁇ m or more and 10 ⁇ m or less.
  • the thickness T2 is preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the thickness T2 is particularly preferably 1 ⁇ m or more and 2 ⁇ m or less.
  • the organic insulating layer 31 is formed in a film shape on the inorganic insulating layer 30.
  • the organic insulating layer 31 includes a second inner wall 35 and a second outer wall 36.
  • the second inner wall 35 of the organic insulating layer 31 partitions a second opening 37 that exposes a part of the first main surface electrode 21.
  • the second inner wall 35 is formed in a curved shape recessed toward the inorganic insulating layer 30 side.
  • the second opening 37 communicates with the first opening 34 of the inorganic insulating layer 30 and forms a pad opening 26 with the first opening 34.
  • the second opening 37 is partitioned within the area surrounded by the contact opening 13 in plan view.
  • the second opening 37 may surround the contact opening 13 from the outside of the contact opening 13 in a plan view.
  • the planar shape of the second opening 37 is arbitrary.
  • the second opening 37 may be divided into a quadrangular shape having four sides parallel to the side surfaces 5A to 5D in a plan view.
  • the second opening 37 surrounds the first opening 34 at a distance from the first opening 34, exposing a part of the inorganic insulating layer 30.
  • the organic insulating layer 31 exposes a part of the main surface of the inorganic insulating layer 30 as the inner peripheral edge 38 in the region between the first opening 34 and the second opening 37.
  • the width W of the inner peripheral edge 38 of the inorganic insulating layer 30 may exceed 0 ⁇ m and be 10 ⁇ m or less.
  • the width W may be more than 0 ⁇ m and 1 ⁇ m or less, 1 ⁇ m or more and 2 ⁇ m or less, 2 ⁇ m or more and 4 ⁇ m or less, 4 ⁇ m or more and 6 ⁇ m or less, 6 ⁇ m or more and 8 ⁇ m or less, or 8 ⁇ m or more and 10 ⁇ m or less.
  • the width W is preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the width W is arbitrary, but is preferably a thickness T2 or less (W ⁇ T2) of the inorganic insulating layer 30.
  • the width W is particularly preferably 1 ⁇ m or more and 2 ⁇ m or less.
  • the second outer wall 36 of the organic insulating layer 31 is formed in a curved shape recessed toward the inorganic insulating layer 30 side.
  • the second outer wall 36 is formed on the inorganic insulating layer 30 at intervals inward from the side surfaces 5A to 5D, and partitions a part of the dicing street 25 from the side surfaces 5A to 5D.
  • the organic insulating layer 31 exposes the peripheral edge portion of the main surface insulating layer 12.
  • the second outer wall 36 may be formed in a quadrangular shape having four sides parallel to the side surfaces 5A to 5D in a plan view.
  • the second outer wall 36 of the organic insulating layer 31 may be formed on the main surface insulating layer 12 across the first outer wall 33 of the inorganic insulating layer 30.
  • the dicing street 25 is partitioned by the second outer wall 36 of the organic insulating layer 31.
  • the angle formed by the second inner wall 35 (second outer wall 36) of the organic insulating layer 31 with the main surface of the inorganic insulating layer 30 in the organic insulating layer 31 may be 30 ° or more and 90 ° or less.
  • the angle formed by the second inner wall 35 (second outer wall 36) with the main surface of the inorganic insulating layer 30 in the organic insulating layer 31 is preferably 45 ° or more and less than 90 °.
  • the angle of the second inner wall 35 (second outer wall 36) is defined by the angle formed by the straight line connecting the lower end and the upper end of the second inner wall 35 (second outer wall 36) with the main surface of the inorganic insulating layer 30. Will be done.
  • the organic insulating layer 31 has a property of having lower adhesion to Ni than the inorganic insulating layer 30.
  • the organic insulating layer 31 contains a negative type or positive type photosensitive resin.
  • the organic insulating layer 31 may contain at least one of polyimide, polyamide and polybenzoxazole.
  • the organic insulating layer 31 contains polyimide in this form.
  • the organic insulating layer 31 preferably has a thickness T3 (T2 ⁇ T3) that exceeds the thickness T2 of the inorganic insulating layer 30.
  • the ratio T3 / T2 of the thickness T3 of the organic insulating layer 31 to the thickness T2 of the inorganic insulating layer 30 may be more than 1 and 10 or less.
  • the ratio T3 / T2 may be more than 1 and 2 or less, 2 or more and 4 or less, 4 or more and 6 or less, 6 or more and 8 or less, or 8 or more and 10 or less.
  • the ratio T3 / T2 is preferably 2 or more and 6 or less.
  • the thickness T3 may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness T3 may be 1 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 20 ⁇ m or less, 20 ⁇ m or more and 30 ⁇ m or less, 30 ⁇ m or more and 40 ⁇ m or less, or 40 ⁇ m or more and 50 ⁇ m or less.
  • the thickness T3 is preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the semiconductor device 1 includes a rough surface region 39 formed on an exposed surface exposed from a pad opening 26 (first opening 34 of the inorganic insulating layer 30) in the first main surface electrode 21.
  • the rough surface region 39 includes a recess formed in a region directly below the first inner wall 32 of the inorganic insulating layer 30.
  • the first inner wall 32 of the inorganic insulating layer 30 includes a portion overhanging the rough surface region 39.
  • the semiconductor device 1 includes a pad electrode 40 formed in the pad opening 26.
  • the pad electrode 40 includes a Ni plating layer 41 formed on the first main surface electrode 21 in the pad opening 26.
  • the Ni plating layer 41 covers the first main surface electrode 21 in the first opening 34, and covers the inner peripheral edge 38 of the inorganic insulating layer 30 in the second opening 37.
  • the Ni plating layer 41 has an outer surface formed at intervals from the main surface of the organic insulating layer 31 (insulating layer 24) to the first main surface electrode 21 side. In this form, the Ni plating layer 41 covers the organic insulating layer 31 in the second opening 37.
  • the Ni plating layer 41 has a first portion 41A covering the first main surface electrode 21 and a second portion 41B covering the inner peripheral edge 38 of the inorganic insulating layer 30.
  • the first portion 41A of the Ni plating layer 41 fills the rough surface region 39 in the first opening 34 and covers the first main surface electrode 21.
  • the first portion 41A covers the entire area of the first inner wall 32 of the inorganic insulating layer 30, and projects from the opening end of the first opening 34 toward the opening end of the second opening 37.
  • the first portion 41A is connected to the first inner wall 32 of the inorganic insulating layer 30 and has a first connecting portion extending in the thickness direction of the inorganic insulating layer 30.
  • the second portion 41B of the Ni plating layer 41 is drawn out from the first portion 41A toward the organic insulating layer 31 side in the second opening 37.
  • the second portion 41B is formed in an arc shape from the opening end of the first opening 34 toward the organic insulating layer 31.
  • the second portion 41B covers the inner peripheral edge 38 of the inorganic insulating layer 30 in the second opening 37. As a result, the second portion 41B faces the first main surface electrode 21 with the inner peripheral edge 38 of the inorganic insulating layer 30 interposed therebetween.
  • the second portion 41B is connected to the main surface of the inorganic insulating layer 30 and has a second connecting portion extending in the width direction of the inorganic insulating layer 30.
  • the second portion 41B further covers the second inner wall 35 of the organic insulating layer 31 in the second opening 37.
  • the second portion 41B covers the region on the inorganic insulating layer 30 side with respect to the intermediate portion of the second inner wall 35 of the organic insulating layer 31.
  • the second portion 41B covers the organic insulating layer 31 so that the exposed area of the second inner wall 35 (organic insulating layer 31) exceeds the concealed area of the second inner wall 35 (organic insulating layer 31).
  • the Ni plating layer 41 is formed so that the first portion 41A and the second portion 41B engage with the opening end of the first opening 34 from two different directions.
  • the Ni plating layer 41 has a thickness T4 (T2 ⁇ T4) that exceeds the thickness T2 of the inorganic insulating layer 30.
  • the thickness T4 is less than the thickness T3 of the organic insulating layer 31 (T4 ⁇ T3).
  • the thickness T4 exceeds the value (T2 + W) obtained by adding the width W of the inner peripheral edge 38 to the thickness T2 of the inorganic insulating layer 30 (T2 + W ⁇ T4). This is a condition in which the Ni plating layer 41 is in contact with the second inner wall 35 of the organic insulating layer 31.
  • the thickness T4 is defined by the thickness of the Ni plating layer 41 with respect to the main surface of the first main surface electrode 21.
  • the ratio T4 / T2 of the thickness T4 of the Ni plating layer 41 to the thickness T2 of the inorganic insulating layer 30 may be more than 1 and 5 or less.
  • the ratio T4 / T2 may be more than 1 and 2 or less, 2 or more and 3 or less, 3 or more and 4 or less, or 4 or more and 5 or less.
  • the thickness T4 may be 0.1 ⁇ m or more and 15 ⁇ m or less.
  • the thickness T4 may be 0.1 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 3 ⁇ m or less, 3 ⁇ m or more and 6 ⁇ m or less, 6 ⁇ m or more and 9 ⁇ m or less, 9 ⁇ m or more and 12 ⁇ m or less, or 12 ⁇ m or more and 15 ⁇ m or less.
  • the thickness T4 is preferably 2 ⁇ m or more and 8 ⁇ m or less.
  • the pad electrode 40 is made of a metal material different from the Ni plating layer 41, and includes an outer surface plating layer 42 that covers the outer surface of the Ni plating layer 41 in the second opening 37.
  • the outer surface plating layer 42 has a thickness T5 (T5 ⁇ T4) that is less than the thickness T4 of the Ni plating layer 41.
  • the outer surface plating layer 42 covers the second inner wall 35 of the organic insulating layer 31 in the second opening 37.
  • the outer surface plating layer 42 has a terminal surface 42A that is externally connected via a conductive bonding material (for example, solder).
  • the terminal surface 42A is located on the Ni plating layer 41 side with respect to the main surface of the organic insulating layer 31 (the opening end of the second opening 37). As a result, the outer surface plating layer 42 exposes a part of the second inner wall 35 of the organic insulating layer 31.
  • the outer surface plating layer 42 has a laminated structure including a Pd plating layer 43 and an Au plating layer 44 that are laminated in this order from the Ni plating layer 41 side.
  • the Pd plating layer 43 is formed in a film shape along the outer surface of the Ni plating layer 41.
  • the Pd plating layer 43 covers the Ni plating layer 41 at intervals from the opening end of the second opening 37 to the inorganic insulating layer 30 side.
  • the Pd plating layer 43 covers the second inner wall 35 of the organic insulating layer 31 in the second opening 37.
  • the Pd plating layer 43 has a thickness less than the thickness T4 of the Ni plating layer 41.
  • the thickness of the Pd plating layer 43 may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the Pd plating layer 43 is 0.01 ⁇ m or more and 0.1 ⁇ m or less, 0.1 ⁇ m or more and 0.2 ⁇ m or less, 0.2 ⁇ m or more and 0.4 ⁇ m or less, 0.4 ⁇ m or more and 0.6 ⁇ m or less, 0.6 ⁇ m or more and 0. It may be 0.8 ⁇ m or less, or 0.8 ⁇ m or more and 1 ⁇ m or less.
  • the Au plating layer 44 is formed in a film shape along the outer surface of the Pd plating layer 43.
  • the Au plating layer 44 covers the Pd plating layer 43 at intervals from the opening end of the second opening 37 to the inorganic insulating layer 30 side.
  • the Au plating layer 44 covers the second inner wall 35 of the organic insulating layer 31 in the second opening 37.
  • the Au plating layer 44 has a thickness less than the thickness T4 of the Ni plating layer 41.
  • the thickness of the Au plating layer 44 may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the Au plating layer 44 is 0.01 ⁇ m or more and 0.1 ⁇ m or less, 0.1 ⁇ m or more and 0.2 ⁇ m or less, 0.2 ⁇ m or more and 0.4 ⁇ m or less, 0.4 ⁇ m or more and 0.6 ⁇ m or less, 0.6 ⁇ m or more and 0. It may be 0.8 ⁇ m or less, or 0.8 ⁇ m or more and 1 ⁇ m or less.
  • the outer surface plating layer 42 can take various forms shown in FIGS. 4A to 4D.
  • FIG. 4A is a corresponding diagram of FIG. 3, which is an enlarged view showing an outer surface plating layer 42 according to a second embodiment.
  • FIG. 4A is a corresponding diagram of FIG. 3, which is an enlarged view showing an outer surface plating layer 42 according to a second embodiment.
  • the outer surface plating layer 42 has a single layer structure composed of the Au plating layer 44 in this form.
  • the Au plating layer 44 is formed in a film shape along the outer surface of the Ni plating layer 41.
  • the Au plating layer 44 covers the Ni plating layer 41 at intervals from the opening end of the second opening 37 to the inorganic insulating layer 30 side.
  • the Au plating layer 44 covers the second inner wall 35 of the organic insulating layer 31 in the second opening 37.
  • FIG. 4B is a corresponding diagram of FIG. 3, which is an enlarged view showing an outer surface plating layer 42 according to a third embodiment.
  • FIG. 4B is a corresponding diagram of FIG. 3, which is an enlarged view showing an outer surface plating layer 42 according to a third embodiment.
  • a portion different from the outer surface plating layer 42 according to the first embodiment will be described.
  • the outer surface plating layer 42 has a single layer structure composed of the Pd plating layer 43 in this form.
  • the Pd plating layer 43 is formed in a film shape along the outer surface of the Ni plating layer 41.
  • the Pd plating layer 43 covers the Ni plating layer 41 at intervals from the opening end of the second opening 37 to the inorganic insulating layer 30 side.
  • the Pd plating layer 43 covers the second inner wall 35 of the organic insulating layer 31 in the second opening 37.
  • FIG. 4C is a corresponding diagram of FIG. 3, which is an enlarged view showing an outer surface plating layer 42 according to a fourth embodiment.
  • FIG. 4C is a corresponding diagram of FIG. 3, which is an enlarged view showing an outer surface plating layer 42 according to a fourth embodiment.
  • a portion different from the outer surface plating layer 42 according to the first embodiment will be described.
  • the outer surface plating layer 42 has a single layer structure composed of the Ag plating layer 45 in this form.
  • the Ag plating layer 45 is formed in a film shape along the outer surface of the Ni plating layer 41.
  • the Ag plating layer 45 covers the Ni plating layer 41 at intervals from the opening end of the second opening 37 to the inorganic insulating layer 30 side.
  • the Ag plating layer 45 covers the second inner wall 35 of the organic insulating layer 31 in the second opening 37.
  • the Ag plating layer 45 has a thickness less than the thickness T4 of the Ni plating layer 41.
  • the thickness of the Ag plating layer 45 may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the Ag plating layer 45 is 0.01 ⁇ m or more and 0.1 ⁇ m or less, 0.1 ⁇ m or more and 0.2 ⁇ m or less, 0.2 ⁇ m or more and 0.4 ⁇ m or less, 0.4 ⁇ m or more and 0.6 ⁇ m or less, 0.6 ⁇ m or more and 0. It may be 0.8 ⁇ m or less, or 0.8 ⁇ m or more and 1 ⁇ m or less.
  • FIG. 4D is a corresponding diagram of FIG. 3, which is an enlarged view showing an outer surface plating layer 42 according to a fifth embodiment.
  • FIG. 4D is a corresponding diagram of FIG. 3, which is an enlarged view showing an outer surface plating layer 42 according to a fifth embodiment.
  • the outer surface plating layer 42 has a laminated structure including a Pd plating layer 43, an Au plating layer 44, and an Ag plating layer 45 that are laminated in this order from the Ni plating layer 41 side.
  • the Pd plating layer 43 is formed in a film shape along the outer surface of the Ni plating layer 41.
  • the Pd plating layer 43 covers the Ni plating layer 41 at intervals from the opening end of the second opening 37 to the inorganic insulating layer 30 side.
  • the Pd plating layer 43 covers the second inner wall 35 of the organic insulating layer 31 in the second opening 37.
  • the Au plating layer 44 is formed in a film shape along the outer surface of the Pd plating layer 43.
  • the Au plating layer 44 covers the Pd plating layer 43 at intervals from the opening end of the second opening 37 to the inorganic insulating layer 30 side.
  • the Au plating layer 44 covers the second inner wall 35 of the organic insulating layer 31 in the second opening 37.
  • the Ag plating layer 45 is formed in a film shape along the outer surface of the Au plating layer 44.
  • the Ag plating layer 45 covers the Au plating layer 44 at intervals from the opening end of the second opening 37 to the inorganic insulating layer 30 side.
  • the Ag plating layer 45 covers the second inner wall 35 of the organic insulating layer 31 in the second opening 37.
  • the semiconductor device 1 includes a second main surface electrode 46 formed on the second main surface 4.
  • the second main surface electrode 46 covers the entire area of the second main surface 4.
  • the second main surface electrode 46 forms ohmic contact with the second main surface 4.
  • the second main surface electrode 46 is formed as a cathode electrode of the SBD.
  • the second main surface electrode 46 includes at least one of a Ti layer, a Ni layer, a Pd layer, an Au layer, and an Ag layer.
  • the second main surface electrode 46 may have a laminated structure in which at least two of the Ti layer, the Ni layer, the Pd layer, the Au layer and the Ag layer are laminated in any order.
  • the second main surface electrode 46 may have a single-layer structure including a Ti layer, a Ni layer, a Pd layer, an Au layer and an Ag layer.
  • the second main surface electrode 46 preferably includes a Ti layer as an ohmic electrode. In this form, the second main surface electrode 46 has a laminated structure including a Ti layer, a Ni layer, a Pd layer, an Au layer, and an Ag layer, which are laminated in this order from the second main surface 4 side.
  • 5A to 5O are cross-sectional views for explaining an example of the manufacturing method of the semiconductor device 1 shown in FIG.
  • the SiC epitaxial wafer 50 which is the base of the SiC chip 2, is prepared.
  • the SiC epitaxial wafer 50 has a laminated structure including the SiC wafer 51 and the SiC epitaxial layer 52.
  • the SiC wafer 51 serves as a base for the SiC substrate 6.
  • the SiC epitaxial layer 52 serves as a base for the SiC epitaxial layer 7.
  • the SiC epitaxial layer 52 is formed by epitaxially growing SiC from the main surface of the SiC wafer 51.
  • the SiC epitaxial wafer 50 has a first wafer main surface 53 on one side and a second wafer main surface 54 on the other side.
  • the first wafer main surface 53 and the second wafer main surface 54 correspond to the first main surface 3 and the second main surface 4 of the SiC chip 2, respectively.
  • a plurality of device areas 55 corresponding to the semiconductor device 1 and a planned cutting line 56 for partitioning the plurality of device areas 55 are set.
  • FIG. 5A one device region 55 is shown, and the other regions are omitted (the same applies hereinafter in FIGS. 5B to 5O).
  • the plurality of device regions 55 are set in a matrix along the first direction X and the second direction Y.
  • the planned cutting line 56 is set in a grid pattern extending along the first direction X and the second direction Y.
  • n-type impurities and / or p-type impurities are selectively introduced into the surface layer portion of the first wafer main surface 53 to form an n-type diode region 10 and a p-type guard region 11.
  • the n-type impurities and / or p-type impurities are introduced into the surface layer portion of the first wafer main surface 53 by an ion implantation method via an ion implantation mask (not shown).
  • the main surface insulating layer 12 is formed on the first wafer main surface 53.
  • the main surface insulating layer 12 may be formed by a CVD (Chemical Vapor Deposition) method and / or an oxidation treatment method (for example, a thermal oxidation treatment method).
  • a resist mask 57 having a predetermined pattern is formed on the main surface insulating layer 12.
  • the resist mask 57 exposes the region where the contact opening 13 is to be formed in the main surface insulating layer 12, and covers the other regions.
  • the unnecessary portion of the main surface insulating layer 12 is removed by an etching method via a resist mask 57.
  • the etching method may be a wet etching method and / or a dry etching method. As a result, the contact opening 13 is formed in the main surface insulating layer 12.
  • the base electrode layer 58 which is the base of the first main surface electrode 21, is formed on the main surface insulating layer 12.
  • the base electrode layer 58 has a laminated structure including a barrier electrode 22 and a main electrode 23 laminated in this order from the main surface insulating layer 12 side.
  • the barrier electrode 22 and the main electrode 23 may be formed by a sputtering method and / or a vapor deposition method, respectively.
  • a resist mask 59 having a predetermined pattern is formed on the base electrode layer 58.
  • the resist mask 59 exposes a region in the base electrode layer 58 on which the first main surface electrode 21 should be formed, and covers the other regions.
  • the unnecessary portion of the base electrode layer 58 is removed by an etching method via a resist mask 59.
  • the etching method may be a wet etching method and / or a dry etching method. As a result, the first main surface electrode 21 is formed on the main surface insulating layer 12.
  • the inorganic insulating layer 30 is formed on the main surface insulating layer 12 so as to cover the first main surface electrode 21.
  • the inorganic insulating layer 30 has a single-layer structure composed of a silicon nitride layer.
  • the inorganic insulating layer 30 may have a laminated structure including a silicon oxide layer and a silicon nitride layer laminated in this order from the SiC epitaxial wafer 50 side.
  • the inorganic insulating layer 30 may be formed by a CVD method.
  • a resist mask 60 having a predetermined pattern is formed on the inorganic insulating layer 30.
  • the resist mask 60 exposes the region where the first opening 34 and the dicing street 25 are to be formed in the inorganic insulating layer 30, and covers the other regions.
  • the unnecessary portion of the inorganic insulating layer 30 is removed by an etching method via a resist mask 60.
  • the etching method may be a wet etching method and / or a dry etching method.
  • the first opening 34 that exposes the first main surface electrode 21 and the dicing street 25 that extends in a grid pattern along the planned cutting line 56 are formed in the inorganic insulating layer 30.
  • the organic insulating layer 31 is formed on the main surface insulating layer 12 so as to cover the first main surface electrode 21 and the inorganic insulating layer 30.
  • the organic insulating layer 31 is formed by applying polyimide as an example of a photosensitive resin to the main surface 53 side of the first wafer.
  • the organic insulating layer 31 is exposed in a pattern corresponding to the second opening 37 and the dicing street 25, and then developed. As a result, a second opening 37 that exposes the first main surface electrode 21 and a dicing street 25 that extends in a grid pattern along the planned cutting line 56 are formed in the organic insulating layer 31.
  • the second opening 37 of the organic insulating layer 31 is formed so as to surround the first opening 34 at a distance from the first opening 34 of the inorganic insulating layer 30.
  • the organic insulating layer 31 that exposes the inner peripheral edge 38 of the inorganic insulating layer 30 is formed in the region between the first opening 34 and the second opening 37.
  • a rough surface region 39 is formed in a portion of the first main surface electrode 21 exposed from the first opening 34 and the second opening 37.
  • the rough surface region 39 is formed by a zincate treatment method (zinc substitution treatment method) for the exposed portion of the first main surface electrode 21.
  • the Ni plating layer 41 is formed on the portion of the first main surface electrode 21 exposed from the first opening 34 and the second opening 37.
  • the Ni plating layer 41 is formed by forming Ni from the first main surface electrode 21 by an electroplating method or an electroless plating method (electroless plating method in this form).
  • a Ni plating layer 41 is formed in the first opening 34, which covers the first main surface electrode 21, and in the second opening 37, which covers the inner peripheral edge 38 of the inorganic insulating layer 30. Since the specific structure of the Ni plating layer 41 is as described above, the description thereof will be omitted.
  • the outer surface plating layer 42 is formed on the outer surface of the Ni plating layer 41 in the second opening 37.
  • the outer surface plating layer 42 includes at least one of the Pd plating layer 43, the Au plating layer 44, and the Ag plating layer 45.
  • the outer surface plating layer 42 is formed by forming an arbitrary material among Pd, Au and Ag from the first main surface electrode 21 by an electrolytic plating method or an electroless plating method (electroless plating method in this form). Will be done.
  • the SiC epitaxial wafer 50 is thinned to a desired thickness by grinding the second wafer main surface 54.
  • the second wafer main surface 54 may be ground by a CMP (Chemical Mechanical Polishing) method.
  • an annealing treatment may be performed on the second wafer main surface 54.
  • the annealing treatment may be carried out by a laser irradiation method.
  • the second wafer main surface 54 (second main surface 4) becomes an ohmic surface.
  • the second main surface electrode 46 is formed on the second wafer main surface 54.
  • the second main surface electrode 46 may be formed by a sputtering method, a vapor deposition method and / or a plating method.
  • the SiC epitaxial wafer 50 is cut or cleaved along the dicing street 25, and a plurality of semiconductor devices 1 are cut out.
  • the semiconductor device 1 is manufactured through the steps including the above.
  • the semiconductor device 1 includes the SiC chip 2, the first main surface electrode 21, the inorganic insulating layer 30, the organic insulating layer 31, and the Ni plating layer 41.
  • the first main surface electrode 21 is formed on the SiC chip 2.
  • the inorganic insulating layer 30 has a first opening 34 that covers the first main surface electrode 21 and exposes the first main surface electrode 21.
  • the organic insulating layer 31 has a second opening 37 that covers the inorganic insulating layer 30 and surrounds the first opening 34 at intervals from the first opening 34, and is a region between the first opening 34 and the second opening 37.
  • the inner peripheral edge 38 of the inorganic insulating layer 30 is exposed.
  • the Ni plating layer 41 is connected to the first main surface electrode 21 in the first opening 34, and covers the inner peripheral edge 38 of the inorganic insulating layer 30 in the second opening 37.
  • the inorganic insulating layer 30 has a property of having high adhesion to Ni, while the organic insulating layer 31 has a property of having low adhesion to Ni as compared with the inorganic insulating layer 30. Therefore, for example, when the inorganic insulating layer 30 does not exist, or when the organic insulating layer 31 is formed flush with the inorganic insulating layer 30, the Ni plating layer 41 is the first main component between the organic insulating layer 31 and the organic insulating layer 31. A gap extending toward the surface electrode 21 is formed. As a result, the connection of the Ni plating layer 41 to the first main surface electrode 21 becomes insufficient, and the reliability of the Ni plating layer 41 decreases.
  • an organic insulating layer 31 that exposes the inner peripheral edge 38 of the inorganic insulating layer 30 having a property of having high adhesion to Ni is formed, and the Ni plating layer 41 covers the inner peripheral edge 38 of the inorganic insulating layer 30.
  • the Ni plating layer 41 forms a first connecting portion extending in the thickness direction of the inorganic insulating layer 30 and a second connecting portion extending in the width direction of the inorganic insulating layer 30 with the inorganic insulating layer 30. To do.
  • the formation region of the gap can be kept away from the first main surface electrode 21, and at the same time, the formation of the gap extending toward the first main surface electrode 21 can be appropriately suppressed. Further, the formation region of the gap between the inorganic insulating layer 30 and the organic insulating layer 31 can be reduced as compared with the case where the inner peripheral edge 38 of the inorganic insulating layer 30 does not exist. Therefore, the reliability of the Ni plating layer 41 can be improved.
  • the second portion 41B of the Ni plating layer 41 covers the region on the inorganic insulating layer 30 side with respect to the intermediate portion of the second inner wall 35 of the organic insulating layer 31.
  • the second portion 41B of the Ni plating layer 41 has an organic insulating layer 31 so that the concealed area of the second inner wall 35 (organic insulating layer 31) is smaller than the exposed area of the second inner wall 35 (organic insulating layer 31). Is covered. According to such a Ni plating layer 41, the gap forming region can be appropriately reduced.
  • the semiconductor device 1 further includes an outer surface plating layer 42 that covers the outer surface of the Ni plating layer 41.
  • an outer surface plating layer 42 that covers the outer surface of the Ni plating layer 41.
  • the outer surface plating layer 42 can include at least one of the Pd plating layer 43, the Au plating layer 44, and the Ag plating layer 45. Therefore, it is possible to suppress poor connection of the Ni plating layer 41 due to abnormal film formation of the Pd plating layer 43, the Au plating layer 44, and the Ag plating layer 45. At the same time, peeling (connection failure) of the Pd plating layer 43, the Au plating layer 44, and the Ag plating layer 45 can be suppressed.
  • FIG. 6 is a corresponding diagram of FIG. 2, which is a cross-sectional view showing the semiconductor device 61 according to the second embodiment of the present invention together with the outer surface plating layer 42 according to the first embodiment.
  • FIG. 7 is an enlarged view of region VII shown in FIG.
  • the structures corresponding to the structures described for the semiconductor device 1 will be designated by the same reference numerals and description thereof will be omitted.
  • the organic insulating layer 31 exposes the inner peripheral edge 38 of the inorganic insulating layer 30 in the region between the first opening 34 and the second opening 37.
  • the width W of the inner peripheral edge 38 of the inorganic insulating layer 30 is arbitrary, but preferably exceeds the thickness T2 of the inorganic insulating layer 30 (T2 ⁇ W).
  • the ratio W / T2 of the width W of the inner peripheral edge 38 to the thickness T2 of the inorganic insulating layer 30 may be more than 1 and 10 or less.
  • the ratio W / T2 may be more than 1 and 2 or less, 2 or more and 4 or less, 4 or more and 6 or less, 6 or more and 8 or less, or 8 or more and 10 or less.
  • the ratio W / T2 is preferably 2 or more and 5 or less.
  • the width W may exceed 0 ⁇ m and be 10 ⁇ m or less.
  • the width W may be more than 0 ⁇ m and 2 ⁇ m or less, 2 ⁇ m or more and 4 ⁇ m or less, 4 ⁇ m or more and 6 ⁇ m or less, 6 ⁇ m or more and 8 ⁇ m or less, or 8 ⁇ m or more and 10 ⁇ m or less.
  • the Ni plating layer 41 is formed on the first main surface electrode 21 in the pad opening 26.
  • the Ni plating layer 41 covers the first main surface electrode 21 in the first opening 34, and covers the inner peripheral edge 38 of the inorganic insulating layer 30 in the second opening 37.
  • the Ni plating layer 41 has an outer surface formed at intervals from the main surface of the organic insulating layer 31 (insulating layer 24) to the first main surface electrode 21 side.
  • the Ni plating layer 41 covers the inner peripheral edge 38 of the inorganic insulating layer 30 at intervals from the organic insulating layer 31 in the second opening 37.
  • the Ni plating layer 41 has a first portion 41A that covers the first main surface electrode 21, and a second portion 41B that covers the inner peripheral edge 38 of the inorganic insulating layer 30.
  • the first portion 41A of the Ni plating layer 41 fills the rough surface region 39 in the first opening 34 and covers the first main surface electrode 21.
  • the first portion 41A covers the entire area of the first inner wall 32 of the inorganic insulating layer 30 in the first opening 34, and projects from the opening end of the first opening 34 toward the opening end of the second opening 37.
  • the first portion 41A is connected to the first inner wall 32 of the inorganic insulating layer 30 and has a first connecting portion extending in the thickness direction of the inorganic insulating layer 30.
  • the second portion 41B of the Ni plating layer 41 is drawn out from the first portion 41A toward the organic insulating layer 31 side in the second opening 37.
  • the second portion 41B is formed in an arc shape from the opening end of the first opening 34 toward the second inner wall 35 of the organic insulating layer 31.
  • the second portion 41B covers the inner peripheral edge 38 of the inorganic insulating layer 30 in the second opening 37.
  • the second portion 41B is the first of the inorganic insulating layer 30 from the second inner wall 35 of the organic insulating layer 31 in the second opening 37 so that a part of the inner peripheral edge 38 of the inorganic insulating layer 30 is exposed.
  • the inner peripheral edge 38 of the inorganic insulating layer 30 is partially covered with an interval on the inner wall 32 side.
  • the Ni plating layer 41 exposes a part of the inner peripheral edge 38 of the inorganic insulating layer 30 and the entire second inner wall 35 of the organic insulating layer 31.
  • the second portion 41B faces the first main surface electrode 21 with the inner peripheral edge 38 of the inorganic insulating layer 30 interposed therebetween.
  • the second portion 41B is connected to the main surface of the inorganic insulating layer 30 and has a second connecting portion extending in the width direction of the inorganic insulating layer 30.
  • the Ni plating layer 41 has a thickness T4 (T2 ⁇ T4) that exceeds the thickness T2 of the inorganic insulating layer 30.
  • the thickness T4 is less than the thickness T3 of the organic insulating layer 31 (T4 ⁇ T3).
  • the thickness T4 is less than (T2 + W) (T4 ⁇ T2 + W), which is the sum of the thickness T2 of the inorganic insulating layer 30 and the width W of the inner peripheral edge 38. This is a condition in which the Ni plating layer 41 exposes the second inner wall 35 of the organic insulating layer 31.
  • the thickness T4 is defined by the thickness of the Ni plating layer 41 with respect to the main surface of the first main surface electrode 21.
  • the ratio T4 / T2 of the thickness T4 of the Ni plating layer 41 to the thickness T2 of the inorganic insulating layer 30 may be more than 1 and 5 or less.
  • the ratio T4 / T2 may be more than 1 and 2 or less, 2 or more and 3 or less, 3 or more and 4 or less, or 4 or more and 5 or less.
  • the thickness T4 may be 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the thickness T4 may be 0.1 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 2 ⁇ m or less, 2 ⁇ m or more and 4 ⁇ m or less, 4 ⁇ m or more and 6 ⁇ m or less, 6 ⁇ m or more and 8 ⁇ m or less, or 8 ⁇ m or more and 10 ⁇ m or less.
  • the outer surface plating layer 42 covers the outer surface of the Ni plating layer 41 in the second opening 37.
  • the outer surface plating layer 42 has a thickness T5 (T5 ⁇ T4) that is less than the thickness T4 of the Ni plating layer 41.
  • the outer surface plating layer 42 has an inner peripheral edge 38 of the inorganic insulating layer 30 spaced from the second inner wall 35 of the organic insulating layer 31 to the first inner wall 32 side of the inorganic insulating layer 30 in the second opening 37. Partially covered.
  • the outer surface plating layer 42 has a terminal surface 42A that is externally connected via a conductive bonding material (for example, solder).
  • the terminal surface 42A is located on the Ni plating layer 41 side with respect to the main surface of the organic insulating layer 31 (the opening end of the second opening 37).
  • the outer surface plating layer 42 exposes a part of the inner peripheral edge 38 of the inorganic insulating layer 30 and the entire second inner wall 35 of the organic insulating layer 31 in the second opening 37.
  • the outer surface plating layer 42 has a laminated structure including a Pd plating layer 43 and an Au plating layer 44 that are laminated in this order from the Ni plating layer 41 side.
  • the Pd plating layer 43 is formed in a film shape along the outer surface of the Ni plating layer 41.
  • the Pd plating layer 43 covers the Ni plating layer 41 at intervals from the opening end of the second opening 37 to the inorganic insulating layer 30 side.
  • the Pd plating layer 43 is formed from the second inner wall 35 of the organic insulating layer 31 to the first inner wall 32 side of the inorganic insulating layer 30 in the second opening 37 so that a part of the inner peripheral edge 38 of the inorganic insulating layer 30 is exposed.
  • the inner peripheral edge 38 of the inorganic insulating layer 30 is partially covered with a gap.
  • the Pd plating layer 43 exposes a part of the inner peripheral edge 38 of the inorganic insulating layer 30 and the entire second inner wall 35 of the organic insulating layer 31 in the second opening 37.
  • the Pd plating layer 43 has a thickness less than the thickness T4 of the Ni plating layer 41.
  • the thickness of the Pd plating layer 43 may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the Pd plating layer 43 is 0.01 ⁇ m or more and 0.1 ⁇ m or less, 0.1 ⁇ m or more and 0.2 ⁇ m or less, 0.2 ⁇ m or more and 0.4 ⁇ m or less, 0.4 ⁇ m or more and 0.6 ⁇ m or less, 0.6 ⁇ m or more and 0. It may be 0.8 ⁇ m or less, or 0.8 ⁇ m or more and 1 ⁇ m or less.
  • the Au plating layer 44 is formed in a film shape along the outer surface of the Pd plating layer 43.
  • the Au plating layer 44 covers the Pd plating layer 43 at intervals from the opening end of the second opening 37 to the inorganic insulating layer 30 side.
  • the Au plating layer 44 is formed from the second inner wall 35 of the organic insulating layer 31 to the first inner wall 32 side of the inorganic insulating layer 30 in the second opening 37 so that a part of the inner peripheral edge 38 of the inorganic insulating layer 30 is exposed.
  • the inner peripheral edge 38 of the inorganic insulating layer 30 is partially covered with an interval. As a result, the Au plating layer 44 exposes a part of the inner peripheral edge 38 of the inorganic insulating layer 30 and the entire second inner wall 35 of the organic insulating layer 31 in the second opening 37.
  • the Au plating layer 44 has a thickness less than the thickness T4 of the Ni plating layer 41.
  • the thickness of the Au plating layer 44 may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the Au plating layer 44 is 0.01 ⁇ m or more and 0.1 ⁇ m or less, 0.1 ⁇ m or more and 0.2 ⁇ m or less, 0.2 ⁇ m or more and 0.4 ⁇ m or less, 0.4 ⁇ m or more and 0.6 ⁇ m or less, 0.6 ⁇ m or more and 0. It may be 0.8 ⁇ m or less, or 0.8 ⁇ m or more and 1 ⁇ m or less.
  • an outer surface plating layer 42 that exposes the entire second inner wall 35 of the organic insulating layer 31 has been described.
  • an outer surface plating layer 42 that covers a part of the second inner wall 35 of the organic insulating layer 31 may be adopted.
  • at least one of the Pd plating layer 43 and the Au plating layer 44 may cover a part of the second inner wall 35 of the organic insulating layer 31.
  • the outer surface plating layer 42 can take various forms shown in FIGS. 8A to 8D.
  • FIG. 8A is a corresponding diagram of FIG. 7, and is an enlarged view showing an outer surface plating layer 42 according to a second embodiment.
  • FIG. 8A is a corresponding diagram of FIG. 7, and is an enlarged view showing an outer surface plating layer 42 according to a second embodiment.
  • a portion different from the outer surface plating layer 42 according to the first embodiment will be described.
  • the outer surface plating layer 42 has a single layer structure composed of the Au plating layer 44 in this form.
  • the Au plating layer 44 is formed in a film shape along the outer surface of the Ni plating layer 41.
  • the Au plating layer 44 is formed from the second inner wall 35 of the organic insulating layer 31 to the first inner wall 32 side of the inorganic insulating layer 30 in the second opening 37 so that a part of the inner peripheral edge 38 of the inorganic insulating layer 30 is exposed.
  • the inner peripheral edge 38 of the inorganic insulating layer 30 is partially covered with an interval.
  • the Au plating layer 44 covers the Ni plating layer 41 at intervals from the opening end of the second opening 37 to the inorganic insulating layer 30 side. As a result, the Au plating layer 44 exposes a part of the inner peripheral edge 38 of the inorganic insulating layer 30 and the entire second inner wall 35 of the organic insulating layer 31 in the second opening 37. The Au plating layer 44 may cover a part of the second inner wall 35 of the organic insulating layer 31.
  • FIG. 8B is a corresponding diagram of FIG. 7, and is an enlarged view showing an outer surface plating layer 42 according to a third embodiment.
  • FIG. 8B is a corresponding diagram of FIG. 7, and is an enlarged view showing an outer surface plating layer 42 according to a third embodiment.
  • a portion different from the outer surface plating layer 42 according to the first embodiment will be described.
  • the outer surface plating layer 42 has a single layer structure composed of the Pd plating layer 43 in this form.
  • the Pd plating layer 43 is formed in a film shape along the outer surface of the Ni plating layer 41.
  • the Pd plating layer 43 is formed from the second inner wall 35 of the organic insulating layer 31 to the first inner wall 32 side of the inorganic insulating layer 30 in the second opening 37 so that a part of the inner peripheral edge 38 of the inorganic insulating layer 30 is exposed.
  • the inner peripheral edge 38 of the inorganic insulating layer 30 is partially covered with a gap.
  • the Pd plating layer 43 covers the Ni plating layer 41 at intervals from the opening end of the second opening 37 to the inorganic insulating layer 30 side. As a result, the Pd plating layer 43 exposes a part of the inner peripheral edge 38 of the inorganic insulating layer 30 and the entire second inner wall 35 of the organic insulating layer 31 in the second opening 37.
  • the Pd plating layer 43 may cover a part of the second inner wall 35 of the organic insulating layer 31.
  • FIG. 8C is a corresponding diagram of FIG. 7, and is an enlarged view showing an outer surface plating layer 42 according to a fourth embodiment.
  • FIG. 8C is a corresponding diagram of FIG. 7, and is an enlarged view showing an outer surface plating layer 42 according to a fourth embodiment.
  • a portion different from the outer surface plating layer 42 according to the first embodiment will be described.
  • the outer surface plating layer 42 has a single layer structure composed of the Ag plating layer 45 in this form.
  • the Ag plating layer 45 is formed in a film shape along the outer surface of the Ni plating layer 41.
  • the Ag plating layer 45 is formed from the second inner wall 35 of the organic insulating layer 31 to the first inner wall 32 side of the inorganic insulating layer 30 in the second opening 37 so that a part of the inner peripheral edge 38 of the inorganic insulating layer 30 is exposed.
  • the inner peripheral edge 38 of the inorganic insulating layer 30 is partially covered with a gap.
  • the Ag plating layer 45 covers the Ni plating layer 41 at intervals from the opening end of the second opening 37 to the inorganic insulating layer 30 side. As a result, the Ag plating layer 45 exposes a part of the inner peripheral edge 38 of the inorganic insulating layer 30 and the entire second inner wall 35 of the organic insulating layer 31 in the second opening 37. The Ag plating layer 45 may cover a part of the second inner wall 35 of the organic insulating layer 31.
  • the Ag plating layer 45 has a thickness less than the thickness T4 of the Ni plating layer 41.
  • the thickness of the Ag plating layer 45 may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the Ag plating layer 45 is 0.01 ⁇ m or more and 0.1 ⁇ m or less, 0.1 ⁇ m or more and 0.2 ⁇ m or less, 0.2 ⁇ m or more and 0.4 ⁇ m or less, 0.4 ⁇ m or more and 0.6 ⁇ m or less, 0.6 ⁇ m or more and 0. It may be 0.8 ⁇ m or less, or 0.8 ⁇ m or more and 1 ⁇ m or less.
  • FIG. 8D is a corresponding diagram of FIG. 7, which is an enlarged view showing an outer surface plating layer 42 according to a fifth embodiment.
  • FIG. 8D is a corresponding diagram of FIG. 7, which is an enlarged view showing an outer surface plating layer 42 according to a fifth embodiment.
  • a portion different from the outer surface plating layer 42 according to the first embodiment will be described.
  • the outer surface plating layer 42 has a laminated structure including a Pd plating layer 43, an Au plating layer 44, and an Ag plating layer 45 that are laminated in this order from the Ni plating layer 41 side.
  • the Pd plating layer 43 is formed in a film shape along the outer surface of the Ni plating layer 41.
  • the Pd plating layer 43 is formed from the second inner wall 35 of the organic insulating layer 31 to the first inner wall 32 side of the inorganic insulating layer 30 in the second opening 37 so that a part of the inner peripheral edge 38 of the inorganic insulating layer 30 is exposed.
  • the inner peripheral edge 38 of the inorganic insulating layer 30 is partially covered with a gap.
  • the Pd plating layer 43 covers the Ni plating layer 41 at intervals from the opening end of the second opening 37 to the inorganic insulating layer 30 side. As a result, the Pd plating layer 43 exposes a part of the inner peripheral edge 38 of the inorganic insulating layer 30 and the entire second inner wall 35 of the organic insulating layer 31 in the second opening 37.
  • the Au plating layer 44 is formed in a film shape along the outer surface of the Pd plating layer 43.
  • the Au plating layer 44 is formed from the second inner wall 35 of the organic insulating layer 31 to the first inner wall 32 side of the inorganic insulating layer 30 in the second opening 37 so that a part of the inner peripheral edge 38 of the inorganic insulating layer 30 is exposed.
  • the inner peripheral edge 38 of the inorganic insulating layer 30 is partially covered with an interval.
  • the Au plating layer 44 covers the Pd plating layer 43 at intervals from the opening end of the second opening 37 to the inorganic insulating layer 30 side. As a result, the Au plating layer 44 exposes a part of the inner peripheral edge 38 of the inorganic insulating layer 30 and the entire second inner wall 35 of the organic insulating layer 31 in the second opening 37.
  • the Ag plating layer 45 is formed in a film shape along the outer surface of the Au plating layer 44.
  • the Ag plating layer 45 is formed from the second inner wall 35 of the organic insulating layer 31 to the first inner wall 32 side of the inorganic insulating layer 30 in the second opening 37 so that a part of the inner peripheral edge 38 of the inorganic insulating layer 30 is exposed.
  • the inner peripheral edge 38 of the inorganic insulating layer 30 is partially covered with a gap.
  • the Ag plating layer 45 covers the Au plating layer 44 at intervals from the opening end of the second opening 37 to the inorganic insulating layer 30 side.
  • the Ag plating layer 45 exposes a part of the inner peripheral edge 38 of the inorganic insulating layer 30 and the entire second inner wall 35 of the organic insulating layer 31 in the second opening 37. At least one of the Pd plating layer 43, the Au plating layer 44, and the Ag plating layer 45 may cover a part of the second inner wall 35 of the organic insulating layer 31.
  • the semiconductor device 61 can also exert the same effect as the effect described for the semiconductor device 1.
  • the Ni plating layer 41 according to the semiconductor device 61 covers the inner peripheral edge 38 of the inorganic insulating layer 30 at intervals from the organic insulating layer 31 in the second opening 37. This makes it possible to prevent the formation of an undesired gap between the organic insulating layer 31 and the Ni plating layer 41. Therefore, the reliability of the Ni plating layer 41 can be reliably improved.
  • the semiconductor device 61 includes an outer surface plating layer 42 that covers the outer surface of the Ni plating layer 41. According to such a structure, no gap is formed between the organic insulating layer 31 and the Ni plating layer 41, so that the outer surface plating layer 42 can be appropriately formed along the outer surface of the Ni plating layer 41. Therefore, it is possible to appropriately suppress the connection failure of the Ni plating layer 41 due to the abnormal film formation of the outer surface plating layer 42, and at the same time, it is possible to appropriately suppress the peeling (connection failure) of the outer surface plating layer 42.
  • the outer surface plating layer 42 can include at least one of the Pd plating layer 43, the Au plating layer 44, and the Ag plating layer 45. Therefore, it is possible to suppress poor connection of the Ni plating layer 41 due to abnormal film formation of the Pd plating layer 43, the Au plating layer 44, and the Ag plating layer 45. At the same time, peeling (connection failure) of the Pd plating layer 43, the Au plating layer 44, and the Ag plating layer 45 can be suppressed.
  • FIG. 9 is a plan view showing the semiconductor device 101 according to the third embodiment.
  • FIG. 10 is an enlarged view of the region X shown in FIG.
  • FIG. 11 is a cross-sectional view taken along the line XI-XI shown in FIG.
  • FIG. 12 is a cross-sectional view taken along the line XII-XII shown in FIG.
  • FIG. 13 is an enlarged view of the region XIII shown in FIG.
  • FIG. 14 is an enlarged view of the region XIV shown in FIG.
  • the same reference numerals will be given to the structures corresponding to the structures described for the semiconductor device 1, and the description thereof will be omitted.
  • the semiconductor device 101 is a SiC semiconductor device in which a MISFET (Metal Insulator Semiconductor Field Effect Transistor) as an example of a functional device is formed in the active region 8 instead of the SBD.
  • MISFET Metal Insulator Semiconductor Field Effect Transistor
  • the semiconductor device 101 includes a SiC chip 2, a main surface insulating layer 12, a first main surface electrode 21, an insulating layer 24, a pad electrode 40, and a second main surface electrode 46.
  • the insulating layer 24 is shown by hatching.
  • the first main surface 3 and the second main surface 4 of the SiC chip 2 are formed in a rectangular shape (rectangular shape in this form) in a plan view.
  • the first side surface 5A and the second side surface 5B extend along the first direction X and face the second direction Y intersecting the first direction X.
  • the first side surface 5A and the second side surface 5B form the short side of the SiC chip 2.
  • the third side surface 5C and the fourth side surface 5D extend along the second direction Y and face the first direction X.
  • the third side surface 5C and the fourth side surface 5D form the long side of the SiC chip 2.
  • the length of the first side surface 5A may be 0.1 mm or more and 8 mm or less.
  • the length of the first side surface 5A (second side surface 5B) is preferably 0.1 mm or more and 2.5 mm or less.
  • the length of the third side surface 5C (fourth side surface 5D) may be 0.2 mm or more and 16 mm or less.
  • the length of the third side surface 5C (fourth side surface 5D) is preferably 0.5 mm or more and 5 mm or less.
  • the SiC chip 2 has a laminated structure including the SiC substrate 6 and the SiC epitaxial layer 7 as in the case of the first embodiment.
  • the SiC substrate 6 is formed as a drain region of the MISFET.
  • the SiC epitaxial layer 7 is formed as a drift region of the MISFET.
  • the SiC epitaxial layer 7 has different n-type impurity concentrations along the normal direction Z. Specifically, the SiC epitaxial layer 7 includes a high concentration region 102 having a high n-type impurity concentration and a low concentration region 103 having a lower n-type impurity concentration than the high concentration region 102.
  • the high concentration region 102 is formed in the region on the 3rd side of the first main surface.
  • the low concentration region 103 is formed in a region on the second main surface 4 side with respect to the high concentration region 102.
  • the thickness of the high concentration region 102 is less than the thickness of the low concentration region 103.
  • the thickness of the high concentration region 102 is less than half of the total thickness of the SiC epitaxial layer 7.
  • the n-type impurity concentration in the high concentration region 102 may be 1.0 ⁇ 10 16 cm -3 or more and 1.0 ⁇ 10 18 cm -3 or less.
  • the n-type impurity concentration in the low concentration region 103 may be 1.0 ⁇ 10 15 cm -3 or more and 1.0 ⁇ 10 16 cm -3 or less.
  • the concentration of n-type impurities in the SiC epitaxial layer 7 is in the range of 1.0 ⁇ 10 15 cm -3 or more and 1.0 ⁇ 10 18 cm -3 or less, and n from the SiC substrate 6 toward the first main surface 3. It may have a concentration gradient in which the type impurity concentration gradually decreases.
  • the active region 8 is formed in the central portion of the SiC chip 2 with a space inward from the side surfaces 5A to 5D in a plan view.
  • the active region 8 is formed in a rectangular shape having four sides parallel to the side surfaces 5A to 5D in a plan view.
  • the outer region 9 is formed in a rectangular ring shape surrounding the active region 8 in a plan view.
  • the semiconductor device 101 includes a plurality of trench gate structures 104 formed on the first main surface 3 in the active region 8.
  • the plurality of trench gate structures 104 are each formed in a band shape extending along the first direction X, and are formed at intervals in the second direction Y.
  • the plurality of trench gate structures 104 are formed in a striped shape extending along the first direction X in a plan view.
  • the plurality of trench gate structures 104 extend in a band shape from the peripheral edge portion on one side (third side surface 5C side) to the peripheral edge portion on the other side (fourth side surface 5D side) in the active region 8.
  • the plurality of trench gate structures 104 cross an intermediate portion between one peripheral edge and the other peripheral edge in the active region 8.
  • the length of each trench gate structure 104 may be 1 mm or more and 10 mm or less.
  • the length of each trench gate structure 104 may be 1 mm or more and 2 mm or less, 2 mm or more and 4 mm or less, 4 mm or more and 6 mm or less, 6 mm or more and 8 mm or less, or 8 mm or more and 10 mm or less.
  • the length of each trench gate structure 104 is preferably 2 mm or more and 6 mm or less.
  • the total length of one trench gate structure 104 per unit area may be 0.5 ⁇ m / ⁇ m 2 or more and 0.75 ⁇ m / ⁇ m 2 or less.
  • Each trench gate structure 104 includes a gate trench 105, a gate insulating layer 106, and a gate electrode 107.
  • the gate insulating layer 106 and the gate electrode 107 are shown by hatching.
  • the gate trench 105 is formed in the SiC epitaxial layer 7.
  • the gate trench 105 includes a side wall and a bottom wall.
  • the side wall forming the long side of the gate trench 105 is formed by the a-plane of the SiC single crystal.
  • the side wall forming the short side of the gate trench 105 is formed by the m-plane of the SiC single crystal.
  • the side wall of the gate trench 105 may extend along the normal direction Z.
  • the angle formed by the side wall of the gate trench 105 with respect to the first main surface 3 in the SiC chip 2 may be 90 ° or more and 95 ° or less (for example, 91 ° or more and 93 ° or less).
  • the side wall of the gate trench 105 may be formed substantially perpendicular to the first main surface 3.
  • the gate trench 105 may be formed in a tapered shape in which the opening width narrows from the first main surface 3 toward the bottom wall.
  • the bottom wall of the gate trench 105 is located in the high concentration region 102.
  • the bottom wall of the gate trench 105 faces the c-plane of the SiC single crystal.
  • the bottom wall of the gate trench 105 has an off angle inclined in the a-axis direction with respect to the c-plane of the SiC single crystal.
  • the bottom wall of the gate trench 105 may be formed parallel to the first main surface 3.
  • the bottom wall of the gate trench 105 may be formed in a curved shape toward the second main surface 4.
  • the gate trench 105 has a first depth D1.
  • the first depth D1 may be 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the first depth D1 may be 0.5 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 1.5 ⁇ m or less, 1.5 ⁇ m or more and 2 ⁇ m or less, 2 ⁇ m or more and 2.5 ⁇ m or less, or 2.5 ⁇ m or more and 3 ⁇ m or less.
  • the width of the gate trench 105 along the second direction Y may be 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the width of the gate trench 105 may be 0.1 ⁇ m or more and 0.5 ⁇ m or less, 0.5 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 1.5 ⁇ m or less, or 1.5 ⁇ m or more and 2 ⁇ m or less.
  • the opening edge portion of the gate trench 105 includes an inclined portion that is inclined downward from the first main surface 3 toward the inside of the gate trench 105.
  • the opening edge portion of the gate trench 105 is a portion connecting the first main surface 3 and the side wall of the gate trench 105.
  • the inclined portion of the gate trench 105 is formed in a curved shape recessed toward the SiC chip 2.
  • the inclined portion of the gate trench 105 may be formed in a curved shape toward the gate trench 105.
  • the inclined portion of the gate trench 105 relaxes the electric field concentration on the opening edge portion of the gate trench 105.
  • the gate insulating layer 106 contains at least one of silicon oxide, silicon nitride, aluminum oxide, zirconium oxide and tantalum oxide.
  • the gate insulating layer 106 may have a laminated structure in which a silicon oxide layer and a silicon nitride layer are laminated in any order.
  • the gate insulating layer 106 may have a single-layer structure composed of a silicon oxide layer or a silicon nitride layer. In this form, the gate insulating layer 106 has a single-layer structure composed of a silicon oxide layer.
  • the gate insulating layer 106 is formed in a film shape along the inner wall of the gate trench 105, and partitions the recess space in the gate trench 105.
  • the gate insulating layer 106 includes a first region 108, a second region 109, and a third region 110.
  • the first region 108 is formed along the side wall of the gate trench 105.
  • the second region 109 is formed along the bottom wall of the gate trench 105.
  • the third region 110 partially covers the first main surface 3 via the opening edge of the gate trench 105.
  • the thickness of the first region 108 may be 0.01 ⁇ m or more and 0.2 ⁇ m or less.
  • the thickness of the second region 109 may be 0.05 ⁇ m or more and 0.5 ⁇ m or less.
  • the thickness of the second region 109 may exceed the thickness of the first region 108.
  • the thickness of the third region 110 may be 0.05 ⁇ m or more and 0.5 ⁇ m or less.
  • the thickness of the third region 110 may exceed the thickness of the first region 108.
  • the gate insulating layer 106 includes a bulging portion 111 that bulges toward the inside of the gate trench 105 at the opening edge portion.
  • the bulging portion 111 is formed at the connecting portion of the first region 108 and the third region 110 of the gate insulating layer 106.
  • the bulging portion 111 is formed in a curved shape toward the inside of the gate trench 105.
  • the bulging portion 111 narrows the opening of the gate trench 105 at the opening edge portion.
  • the gate insulating layer 106 having no bulging portion 111 may be formed.
  • the gate insulating layer 106 having a uniform thickness may be formed.
  • the gate electrode 107 is embedded in the gate trench 105 with the gate insulating layer 106 interposed therebetween. Specifically, the gate electrode 107 is embedded in the recess space partitioned by the gate insulating layer 106 in the gate trench 105.
  • the gate electrode 107 has an electrode surface exposed from the opening of the gate trench 105.
  • the electrode surface of the gate electrode 107 is formed in a curved shape recessed toward the bottom wall of the gate trench 105.
  • the electrode surface of the gate electrode 107 is narrowed by the bulging portion 111 of the gate insulating layer 106.
  • the gate electrode 107 is made of a conductive material other than a metal material.
  • the gate electrode 107 is preferably made of conductive polysilicon.
  • the gate electrode 107 contains p-type polysilicon to which p-type impurities have been added.
  • the p-type impurity concentration of the gate electrode 107 may be 1.0 ⁇ 10 18 cm -3 or more and 1.0 ⁇ 10 22 cm -3 or less.
  • the p-type impurity of the gate electrode 107 may contain at least one of boron, aluminum, indium and gallium.
  • the sheet resistance of the gate electrode 107 may be 10 ⁇ / ⁇ or more and 500 ⁇ / ⁇ or less (about 200 ⁇ / ⁇ in this form).
  • the thickness of the gate electrode 107 may be 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the semiconductor device 101 includes a first low resistance layer 112 that covers the gate electrode 107.
  • the first low resistance layer 112 covers the gate electrode 107 in the gate trench 105.
  • the first low resistance layer 112 forms a part of the trench gate structure 104.
  • the first low resistance layer 112 contains a conductive material having a sheet resistance less than the sheet resistance of the gate electrode 107.
  • the sheet resistance of the first low resistance layer 112 may be 0.01 ⁇ / ⁇ or more and 10 ⁇ / ⁇ or less.
  • the thickness of the first low resistance layer 112 may be 0.01 ⁇ m or more and 3 ⁇ m or less.
  • the thickness of the first low resistance layer 112 is preferably less than the thickness of the gate electrode 107.
  • the first low resistance layer 112 includes a polyside layer.
  • the polyside layer is formed by silicating the surface layer portion of the gate electrode 107 with a metal material. That is, the electrode surface of the gate electrode 107 is formed by the first low resistance layer 112.
  • the polyside layer is composed of a p-type polyside layer containing p-type impurities added to the gate electrode 107.
  • the polyside layer preferably has a specific resistance of 10 ⁇ ⁇ cm or more and 110 ⁇ ⁇ cm or less.
  • the sheet resistance in the gate trench 105 in which the gate electrode 107 and the first low resistance layer 112 are embedded is less than the sheet resistance of the gate electrode 107 alone.
  • the sheet resistance in the gate trench 105 is preferably equal to or less than the sheet resistance of n-type polysilicon to which n-type impurities are added.
  • the sheet resistance in the gate trench 105 is approximated to the sheet resistance of the first low resistance layer 112.
  • the sheet resistance in the gate trench 105 may be 0.01 ⁇ / ⁇ or more and 10 ⁇ / ⁇ or less.
  • the sheet resistance in the gate trench 105 is preferably less than 10 ⁇ / ⁇ .
  • the first low resistance layer 112 may contain at least one of TiSi, TiSi 2 , NiSi, CoSi, CoSi 2 , MoSi 2 and WSi 2.
  • NiSi, CoSi 2 and TiSi 2 are suitable as the polyside layer forming the first low resistance layer 112 because of their relatively small resistivity values and temperature dependence.
  • the first low resistance layer 112 is made of CoSi 2, which has a property of having little diffusion into other regions.
  • the first low resistance layer 112 includes a contact portion in contact with the gate insulating layer 106. Specifically, the contact portion of the first low resistance layer 112 is in contact with the third region 110 (bulging portion 111) of the gate insulating layer 106. As a result, the current path between the first low resistance layer 112 and the SiC epitaxial layer 7 can be suppressed. In particular, a design in which the contact portion of the first low resistance layer 112 is connected to a relatively thick corner portion in the gate insulating layer 106 is effective in reducing the risk of the current path.
  • the gate threshold voltage Vth can be increased by about 1 V.
  • p-type polysilicon has a sheet resistance that is several tens of times (approximately 20 times) higher than the sheet resistance of n-type polysilicon. Therefore, when p-type polysilicon is used as the material for the gate electrode 107, the energy loss increases as the parasitic resistance in the gate trench 105 (hereinafter, simply referred to as “gate resistance”) increases.
  • the first low resistance layer 112 (p-type polysilicon) is formed on the gate electrode 107 (p-type polysilicon). According to the first low resistance layer 112, the sheet resistance in the gate trench 105 can be reduced while allowing an increase in the gate threshold voltage Vth.
  • the sheet resistance can be reduced to 1/100 or less as compared with the structure without the first low resistance layer 112.
  • the sheet resistance can be reduced to one-fifth or less as compared with the gate electrode 107 containing n-type polysilicon.
  • the gate resistance can be reduced, so that the current can be efficiently diffused along the trench gate structure 104. That is, the first low resistance layer 112 is formed as a current diffusion layer that diffuses a current in the gate trench 105.
  • the gate trench 105 having a length on the order of millimeters (length of 1 mm or more), it takes time to transmit the current, but according to the first low resistance layer 112, the switching delay can be appropriately suppressed.
  • the gate threshold voltage Vth can be appropriately increased while suppressing the increase in the channel resistance.
  • the semiconductor device 101 includes a plurality of trench source structures 121 each formed in a region between a plurality of adjacent trench gate structures 104.
  • the plurality of trench source structures 121 are formed so as to sandwich one trench gate structure 104 at intervals in the second direction Y.
  • the plurality of trench source structures 121 are each formed in a strip shape extending along the first direction X.
  • the plurality of trench source structures 121 are formed in a striped shape extending along the first direction X in a plan view.
  • the pitch PS between the central portions of the trench source structures 121 adjacent to each other in the second direction Y may be 1 ⁇ m or more and 5 ⁇ m or less.
  • the pitch PS may be 1 ⁇ m or more and 2 ⁇ m or less, 2 ⁇ m or more and 3 ⁇ m or less, 3 ⁇ m or more and 4 ⁇ m or less, or 4 ⁇ m or more and 5 ⁇ m or less.
  • the pitch PS is preferably 1.5 ⁇ m or more and 3 ⁇ m or less.
  • Each trench source structure 121 includes a source trench 122, a source insulating layer 123, and a source electrode 124.
  • the source electrode 124 is shown by hatching.
  • the source trench 122 is formed in the SiC epitaxial layer 7.
  • the source trench 122 includes a side wall and a bottom wall.
  • the side wall forming the long side of the source trench 122 is formed by the a-plane of the SiC single crystal.
  • the side wall forming the short side of the source trench 122 is formed by the m-plane of the SiC single crystal.
  • the bottom wall of the source trench 122 is located in the high concentration region 102.
  • the bottom wall of the source trench 122 is located in the region on the second main surface 4 side with respect to the bottom wall of the gate trench 105.
  • the bottom wall of the source trench 122 is located in the region between the bottom wall of the gate trench 105 and the low concentration region 103 with respect to the normal direction Z.
  • the bottom wall of the source trench 122 faces the c-plane of the SiC single crystal.
  • the bottom wall of the source trench 122 has an off angle inclined in the a-axis direction with respect to the c-plane of the SiC single crystal.
  • the bottom wall of the source trench 122 may be formed parallel to the first main surface 3.
  • the bottom wall of the source trench 122 may be formed in a curved shape toward the second main surface 4.
  • the source trench 122 has a second depth D2 that exceeds the first depth D1 of the gate trench 105.
  • the ratio DS / DG of the second depth D2 to the first depth D1 may be 1.5 or more under the condition that the source trench 122 is located in the high concentration region 102.
  • the ratio DS / DG is preferably 2 or more.
  • the second depth D2 may be 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the second depth D2 may be 0.5 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 2 ⁇ m or less, 2 ⁇ m or more and 4 ⁇ m or less, 4 ⁇ m or more and 6 ⁇ m or less, 6 ⁇ m or more and 8 ⁇ m or less, or 8 ⁇ m or more and 10 ⁇ m or less.
  • a source trench 122 having a second depth D2 that is approximately equal to the first depth D1 may be formed.
  • the source trench 122 includes a first trench portion 125 and a second trench portion 126.
  • the first trench portion 125 is formed on the opening side of the source trench 122.
  • the first trench portion 125 has a first width W1 with respect to the second direction Y.
  • the first trench portion 125 may be formed in a tapered shape in which the first width W1 narrows from the first main surface 3 toward the bottom wall side.
  • the first trench portion 125 is preferably formed in a region on the first main surface 3 side with respect to the bottom wall of the gate trench 105. That is, the depth of the first trench portion 125 is preferably less than the first depth D1 of the gate trench 105.
  • a first trench portion 125 may be formed across the bottom wall of the gate trench 105. That is, the depth of the first trench portion 125 may exceed the first depth D1 of the gate trench 105.
  • the depth of the first trench portion 125 may be 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the depth of the first trench portion 125 may be 0.1 ⁇ m or more and 0.5 ⁇ m or less, 0.5 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 1.5 ⁇ m or less, or 1.5 ⁇ m or more and 2 ⁇ m or less.
  • the first width W1 of the first trench portion 125 may be equal to or larger than the width of the gate trench 105 or less than the width of the gate trench 105.
  • the first width W1 preferably exceeds the width of the gate trench 105.
  • the first width W1 may be 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the first width W1 may be 0.1 ⁇ m or more and 0.5 ⁇ m or less, 0.5 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 1.5 ⁇ m or less, or 1.5 ⁇ m or more and 2 ⁇ m or less.
  • the second trench portion 126 is formed on the bottom wall side of the source trench 122.
  • the second trench 126 is formed in the region between the first trench 125 and the bottom of the SiC epitaxial layer 7 in the normal direction Z and crosses the bottom wall of the gate trench 105. With respect to the normal direction Z, the depth of the second trench portion 126 with respect to the first trench portion 125 preferably exceeds the first depth D1 of the gate trench 105.
  • the second trench portion 126 has a second width W2 that is less than the first width W1 with respect to the second direction Y.
  • the second width W2 may be equal to or greater than the width of the gate trench 105 or less than the width of the gate trench 105 under the condition that the width is less than the first width W1.
  • the second width W2 may be 0.1 ⁇ m or more and less than 2 ⁇ m.
  • the second width W2 may be 0.1 ⁇ m or more and less than 2 ⁇ m.
  • the second width W2 may be 0.1 ⁇ m or more and 0.5 ⁇ m or less, 0.5 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 1.5 ⁇ m or less, or 1.5 ⁇ m or more and less than 2 ⁇ m.
  • a second trench portion 126 having a second width W2 substantially equal to the first width W1 may be formed.
  • the overall opening width of the source trench 122 is formed to be the same as the opening width of the gate trench 105.
  • the fact that the opening width of the source trench 122 is about the same as the opening width of the gate trench 105 means that the opening width of the source trench 122 is within ⁇ 20% of the opening width of the gate trench 105.
  • the side wall of the second trench portion 126 may extend along the normal direction Z.
  • the angle formed by the side wall of the second trench portion 126 with respect to the first main surface 3 in the SiC chip 2 may be 90 ° or more and 95 ° or less (for example, 91 ° or more and 93 ° or less).
  • the side wall of the second trench portion 126 may be formed substantially perpendicular to the first main surface 3.
  • the second trench portion 126 may be formed in a tapered shape in which the second width W2 narrows from the first trench portion 125 toward the bottom wall side.
  • the source insulating layer 123 contains at least one of silicon oxide, silicon nitride, aluminum oxide, zirconium oxide or tantalum oxide.
  • the source insulating layer 123 may have a laminated structure in which a silicon oxide layer and a silicon nitride layer are laminated in any order.
  • the source insulating layer 123 may have a single-layer structure composed of a silicon oxide layer or a silicon nitride layer. In this form, the source insulating layer 123 has a single-layer structure composed of a silicon oxide layer.
  • the source insulating layer 123 is formed in a film shape along the inner wall of the source trench 122, and partitions the recess space in the source trench 122. Specifically, the source insulating layer 123 is formed in a film shape along the inner wall of the source trench 122 so as to expose the first trench portion 125 and cover the second trench portion 126.
  • the source insulating layer 123 partitions the recess space in the second trench portion 126.
  • the source insulating layer 123 has a side wall window portion 127 that exposes the first trench portion 125.
  • the source insulating layer 123 includes a first region 128 and a second region 129.
  • the first region 128 is formed along the side wall of the source trench 122.
  • the second region 129 is formed along the bottom wall of the source trench 122.
  • the thickness of the first region 128 is less than the thickness of the second region 129.
  • the thickness of the first region 128 may be 0.01 ⁇ m or more and 0.2 ⁇ m or less.
  • the thickness of the second region 129 may be 0.05 ⁇ m or more and 0.5 ⁇ m or less.
  • the thickness of the first region 128 may be substantially equal to the thickness of the first region 128 of the gate insulating layer 106.
  • the thickness of the second region 129 may be substantially equal to the thickness of the second region 129 of the gate insulating layer 106.
  • the source insulating layer 123 having a uniform thickness may be formed.
  • the source electrode 124 is embedded in the source trench 122 with the source insulating layer 123 interposed therebetween. Specifically, the source electrode 124 is embedded in the first trench portion 125 and the second trench portion 126 with the source insulating layer 123 interposed therebetween.
  • the source electrode 124 is embedded in the recess space partitioned by the second trench portion 126 on the bottom wall side of the source trench 122.
  • the source electrode 124 has a side wall contact portion 130 in contact with the side wall of the first trench portion 125 exposed from the side wall window portion 127 on the opening side of the source trench 122.
  • the source electrode 124 has an electrode surface exposed from the opening of the source trench 122.
  • the electrode surface of the source electrode 124 is formed in a curved shape recessed toward the bottom wall of the source trench 122.
  • the electrode surface of the source electrode 124 may be formed parallel to the first main surface 3.
  • the thickness of the source electrode 124 may be 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the source electrode 124 may be 0.5 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 2 ⁇ m or less, 2 ⁇ m or more and 4 ⁇ m or less, 4 ⁇ m or more and 6 ⁇ m or less, 6 ⁇ m or more and 8 ⁇ m or less, or 8 ⁇ m or more and 10 ⁇ m or less.
  • the source electrode 124 is made of a conductive material other than a metal material.
  • the source electrode 124 is preferably made of conductive polysilicon.
  • the source electrode 124 contains p-type polysilicon to which p-type impurities have been added.
  • the p-type impurity concentration of the source electrode 124 may be 1.0 ⁇ 10 18 cm -3 or more and 1.0 ⁇ 10 22 cm -3 or less.
  • the p-type impurity concentration of the source electrode 124 is preferably equal to the p-type impurity concentration of the gate electrode 107.
  • the p-type impurity of the source electrode 124 may contain at least one of boron, aluminum, indium and gallium.
  • the semiconductor device 101 includes a second low resistance layer 131 that covers the source electrode 124.
  • the second low resistance layer 131 covers the source electrode 124 in the source trench 122.
  • the second low resistance layer 131 forms a part of the trench source structure 121.
  • the second low resistance layer 131 has the same structure as the first low resistance layer 112. As for the description of the second low resistance layer 131, the description of the first low resistance layer 112 applies mutatis mutandis.
  • the semiconductor device 101 includes a p-shaped body region 141 formed on the surface layer portion of the first main surface 3 in the active region 8.
  • the body region 141 defines the active region 8.
  • the p-type impurity concentration in the body region 141 is less than the p-type impurity concentration in the gate electrode 107 and the source electrode 124.
  • the peak value of the p-type impurity concentration in the body region 141 may be 1.0 ⁇ 10 17 cm -3 or more and 1.0 ⁇ 10 19 cm -3 or less.
  • the body region 141 covers the side wall of the gate trench 105 and the side wall of the source trench 122 in the surface layer portion of the first main surface 3.
  • the body region 141 is formed in a region on the first main surface 3 side with respect to the bottom wall of the gate trench 105.
  • the body region 141 faces the gate electrode 107 with the gate insulating layer 106 interposed therebetween.
  • the body region 141 is formed in a region on the side of the first trench portion 125 with respect to the second trench portion 126.
  • the body region 141 covers the first trench portion 125.
  • the body region 141 is connected to the side wall contact portion 130 of the source electrode 124 exposed from the first trench portion 125.
  • the body region 141 is source-grounded in the SiC chip 2.
  • the body region 141 may cover a part of the second trench portion 126. In this case, the body region 141 may face the source electrode 124 with a part of the source insulating layer 123 interposed therebetween.
  • the semiconductor device 101 includes an n + type source region 142 formed on the surface layer portion of the body region 141.
  • the source region 142 is formed along the gate trench 105.
  • the peak value of the n-type impurity concentration in the source region 142 exceeds the peak value of the n-type impurity concentration in the high concentration region 102.
  • the peak value of the n-type impurity concentration in the source region 142 may be 1.0 ⁇ 10 18 cm -3 or more and 1.0 ⁇ 10 21 cm -3 or less.
  • the source region 142 covers the side wall of the gate trench 105 and the side wall of the source trench 122 in the surface layer portion of the body region 141.
  • the source region 142 faces the gate electrode 107 with the gate insulating layer 106 interposed therebetween.
  • the source region 142 preferably faces the first low resistance layer 112 with the gate insulating layer 106 interposed therebetween.
  • the source region 142 is further formed in a region on the side of the first trench portion 125 with respect to the second trench portion 126.
  • the source region 142 covers the first trench portion 125.
  • the source region 142 is connected to the side wall contact portion 130 of the source electrode 124 exposed from the first trench portion 125. As a result, the source region 142 is source-grounded in the SiC chip 2.
  • the source region 142 has a concealed portion concealed by the third region 110 of the gate insulating layer 106 on the first main surface 3 and an exposed portion exposed from the third region 110.
  • the entire area of the source region 142 may be covered by the third region 110.
  • the portion of the source region 142 along the side wall of the gate trench 105 defines the channel of the MISFET in the body region 141 with the high concentration region 102. ON / OFF of the channel is controlled by the gate electrode 107.
  • the semiconductor device 101 includes a plurality of p + type contact regions 143 formed on the surface layer portion of the first main surface 3 in the active region 8.
  • the peak value of the p-type impurity concentration in each contact region 143 exceeds the peak value of the p-type impurity concentration in the body region 141.
  • the peak value of the p-type impurity concentration in each contact region 143 may be 1.0 ⁇ 10 18 cm -3 or more and 1.0 ⁇ 10 21 cm -3 or less.
  • the plurality of contact regions 143 are formed in regions along the plurality of source trenches 122, respectively. Specifically, the plurality of contact regions 143 are formed in a one-to-many relationship with respect to one corresponding source trench 122. The plurality of contact regions 143 are formed at intervals along the corresponding source trench 122. The plurality of contact regions 143 are formed at intervals from the gate trench 105.
  • Each contact area 143 covers the corresponding first trench portion 125.
  • Each contact region 143 is interposed between the side wall contact portion 130 of the source electrode 124 and the source region 142 in the corresponding first trench portion 125.
  • Each contact region 143 is further interposed between the side wall contact portion 130 of the source electrode 124 and the body region 141 in the corresponding first trench portion 125.
  • each contact region 143 is electrically connected to the source electrode 124, the body region 141, and the source region 142.
  • Each contact region 143 is source-grounded in the SiC chip 2.
  • each contact region 143 that covers the first trench portion 125 is pulled out toward the gate trench 105.
  • a portion of each contact region 143 that covers the first trench portion 125 is formed in a region on the first main surface 3 side with respect to the bottom portion of the body region 141.
  • the portion of each contact region 143 that covers the first trench portion 125 may extend to an intermediate region between the gate trench 105 and the source trench 122.
  • Each contact area 143 further covers the corresponding second trench portion 126.
  • Each contact region 143 faces the source electrode 124 with the source insulating layer 123 interposed therebetween in the corresponding second trench portion 126.
  • Each contact area 143 further covers the bottom wall of the corresponding source trench 122.
  • Each contact region 143 faces the source electrode 124 across the bottom wall of the corresponding source trench 122.
  • the bottom of each contact region 143 may be formed parallel to the bottom wall of the corresponding source trench 122.
  • the semiconductor device 101 includes a plurality of p-type deep well regions 144 formed on the surface layer portion of the first main surface 3 in the active region 8.
  • the peak value of the p-type impurity concentration in each deep well region 144 is less than the peak value of the p-type impurity concentration in the contact region 143.
  • the peak value of the p-type impurity concentration in each deep well region 144 may be equal to or higher than the peak value of the p-type impurity concentration in the body region 141, or may be less than the peak value of the p-type impurity concentration in the body region 141. Good.
  • the peak value of the p-type impurity concentration in each deep well region 144 may be 1.0 ⁇ 10 17 cm -3 or more and 1.0 ⁇ 10 19 cm -3 or less.
  • the plurality of deep well regions 144 are formed in a one-to-one correspondence with the plurality of source trenches 122. Each deep well region 144 is formed in a strip extending along the corresponding source trench 122 in plan view. Each deep well region 144 is formed in a high concentration region 102. Each deep well region 144 is formed in a region on the second main surface 4 side with respect to the body region 141. Each deep well region 144 is connected to the body region 141.
  • Each deep well region 144 includes a portion covering the corresponding second trench portion 126. Each deep well region 144 includes a portion that covers the corresponding second trench portion 126 with the contact region 143 in between. Each deepwell region 144 further includes a portion covering the bottom wall of the corresponding source trench 122. Each deep well region 144 includes a portion covering the bottom wall of the corresponding source trench 122 across the contact region 143.
  • Each deep well region 144 has a bottom portion located on the second main surface 4 side with respect to the bottom wall of the gate trench 105.
  • the bottom of each deepwell region 144 may be formed parallel to the bottom wall of each source trench 122.
  • the plurality of deep well regions 144 are preferably formed at a constant depth.
  • Each deep well region 144 forms a pn junction with the high concentration region 102. From this pn junction, a depletion layer extends toward the gate trench 105. The depletion layer may overlap the bottom wall of the gate trench 105.
  • the semiconductor device 101 having only a pn junction diode has less problem of electric field concentration in the SiC chip 2 due to the structure that does not have a trench.
  • Each deep well region 144 brings a trench gate type MISFET closer to the structure of a pn junction diode.
  • the electric field in the SiC chip 2 can be relaxed.
  • the depletion layer can appropriately relax the electric field concentration on the gate trench 105. Narrowing the pitch PS between the plurality of source trenches 122 (deep well region 144) is effective in alleviating the electric field concentration and improving the withstand voltage.
  • the plurality of deep well regions 144 are formed at a constant depth. As a result, it is possible to prevent the withstand voltage (for example, fracture resistance) of the SiC chip 2 from being limited by each deep well region 144, so that the withstand voltage can be appropriately improved.
  • the withstand voltage for example, fracture resistance
  • the deep well region 144 can be appropriately formed in a relatively deep region of the SiC chip 2. Since the deep well region 144 can be formed along the source trench 122, it is possible to appropriately suppress the occurrence of variations in the depths of the plurality of deep well regions 144.
  • a part of the high concentration region 102 is interposed in the region between the plurality of deep well regions 144.
  • the JFET Joint Field Effect Transistor
  • each deep well region 144 is located in the high concentration region 102.
  • a current path can be formed in the lateral direction parallel to the first main surface 3 in the region immediately below each deep well region 144 in the high concentration region 102.
  • the low concentration region 103 increases the withstand voltage of the SiC chip 2 in such a structure.
  • the main surface insulating layer 12 covers the entire area of the first main surface 3.
  • the main surface insulating layer 12 covers the source region 142 and the contact region 143 in the active region 8. Specifically, the main surface insulating layer 12 covers the entire area of the source area 142 and the entire area of the contact area 143 in the active region 8 in the cross-sectional view along the second direction Y.
  • the main surface insulating layer 12 covers the entire area of the source region 142 and the entire area of the contact area 143 in a plan view.
  • the main surface insulating layer 12 covers the source electrode 124 across the first trench portion 125 in the active region 8.
  • the main surface insulating layer 12 covers the side wall contact portion 130 of the source electrode 124 on the first main surface 3.
  • the main surface insulating layer 12 has a plurality of contact openings 151 that expose a plurality of source electrodes 124 in the active region 8.
  • the plurality of contact openings 151 are formed in a one-to-one correspondence with respect to the plurality of source electrodes 124.
  • Each contact opening 151 may be formed in a strip shape extending along the trench source structure 121.
  • Each contact opening 151 is formed in a region surrounded by a side wall of the source trench 122 (first trench portion 125) in a plan view.
  • Each contact opening 151 exposes the source electrode 124 at a distance from the side wall of the source trench 122 (first trench portion 125) to the inside of the source trench 122.
  • the contact opening 151 exposes only the source electrode 124.
  • the opening edge portion of the contact opening 151 is formed in a curved shape toward the inside of the contact opening 151.
  • a recess 152 recessed toward the bottom wall of the source trench 122 is formed on the electrode surface of the source electrode 124.
  • the recess 152 may be formed in a band shape extending along the trench source structure 121.
  • the recess 152 is formed in a region surrounded by the side wall of the source trench 122 (first trench portion 125) in a plan view.
  • the recess 152 is formed at intervals from the side wall of the source trench 122 (first trench portion 125) to the inside of the source trench 122.
  • the recess 152 exposes the second low resistance layer 131.
  • the recess 152 may penetrate the second low resistance layer 131.
  • the contact opening 151 communicates with the recess 152 of the source electrode 124.
  • the peripheral edge of the main surface insulating layer 12 is exposed from the side surfaces 5A to 5D.
  • the peripheral edge of the main surface insulating layer 12 is continuous with the side surfaces 5A to 5D.
  • the peripheral edge of the main surface insulating layer 12 may be formed at intervals inward from the side surfaces 5A to 5D. In this case, the main surface insulating layer 12 exposes a portion of the first main surface 3 located in the outer region 9.
  • the thickness of the main surface insulating layer 12 may be 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the main surface insulating layer 12 may be 0.1 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 2 ⁇ m or less, 2 ⁇ m or more and 4 ⁇ m or less, 4 ⁇ m or more and 6 ⁇ m or less, 6 ⁇ m or more and 8 ⁇ m or less, or 8 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the main surface insulating layer 12 is preferably 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the first main surface electrode 21 is formed on the main surface insulating layer 12.
  • the thickness T1 of the first main surface electrode 21 may be 1 ⁇ m or more and 100 ⁇ m or less.
  • the thickness T1 may be 1 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 20 ⁇ m or less, 20 ⁇ m or more and 40 ⁇ m or less, 40 ⁇ m or more and 60 ⁇ m or less, 60 ⁇ m or more and 80 ⁇ m or less, or 80 ⁇ m or more and 100 ⁇ m or less.
  • the thickness T1 is preferably 20 ⁇ m or more and 60 ⁇ m or less.
  • the first main surface electrode 21 includes a gate main surface electrode 153, a gate wiring electrode 154, and a source main surface electrode 155.
  • a gate voltage is applied to the gate main surface electrode 153 (gate wiring electrode 154).
  • the gate voltage may be 10 V or more and 50 V or less (for example, about 30 V).
  • a source voltage is applied to the source main surface electrode 155.
  • the source voltage may be a reference voltage (eg, GND voltage).
  • the gate main surface electrode 153 is formed in the active region 8.
  • the gate main surface electrode 153 is formed in a region on the first side surface 5A side in a plan view. Specifically, the gate main surface electrode 153 is formed at the center of the first side surface 5A in a plan view.
  • the gate main surface electrode 153 may be formed at a corner portion connecting any two of the side surfaces 5A to 5D in a plan view.
  • the gate main surface electrode 153 may be formed in a rectangular shape in a plan view.
  • the gate wiring electrode 154 is drawn out from the gate main surface electrode 153 and extends in a band shape along the peripheral edge of the active region 8. In this embodiment, the gate wiring electrode 154 extends along the first side surface 5A, the third side surface 5C, and the fourth side surface 5D, and partitions the inside of the active region 8 from three directions.
  • the gate wiring electrode 154 is electrically connected to the gate electrode 107 via a main surface insulating layer 12. The electric signal from the gate main surface electrode 153 is transmitted to the gate electrode 107 via the gate wiring electrode 154.
  • the source main surface electrode 155 is formed in the active region 8 at intervals from the gate main surface electrode 153 and the gate wiring electrode 154.
  • the source main surface electrode 155 covers the region partitioned by the gate main surface electrode 153 and the gate wiring electrode 154, and is formed in a C shape in a plan view.
  • the source main surface electrode 155 is electrically connected to the source electrode 124 via the contact opening 151. That is, in this form, the source main surface electrode 155 made of a metal material is electrically connected to the source electrode 124 made of conductive polysilicon.
  • the first main surface electrode 21 (gate main surface electrode 153, gate wiring electrode 154, and source main surface electrode 155) has a laminated structure including a barrier electrode 22 and a main electrode 23 laminated in this order from the SiC chip 2 side, respectively. doing.
  • the barrier electrode 22 includes at least one of the Ti layer and the TiN layer in this form.
  • the barrier electrode 22 preferably has a laminated structure including a Ti layer and a TiN layer laminated in this order from the SiC chip 2 side.
  • the barrier electrode 22 may have a single-layer structure composed of a Ti layer or a TiN layer.
  • the thickness of the barrier electrode 22 may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the barrier electrode 22 is 0.01 ⁇ m or more and 0.1 ⁇ m or less, 0.1 ⁇ m or more and 0.2 ⁇ m or less, 0.2 ⁇ m or more and 0.4 ⁇ m or less, 0.4 ⁇ m or more and 0.6 ⁇ m or less, 0.6 ⁇ m or more and 0. It may be 8 ⁇ m or less, or 0.8 ⁇ m or more and 1 ⁇ m or less.
  • the main electrode 23 is formed in a film shape on the barrier electrode 22.
  • the main electrode 23 covers the entire main surface of the barrier electrode 22.
  • the main electrode 23 has a resistance value less than the resistance value of the barrier electrode 22.
  • the main electrode 23 is made of an Al-based metal layer.
  • the main electrode 23 includes at least one of a pure Al layer, an AlSi alloy layer, an AlCu alloy layer, and an AlSiCu alloy layer.
  • the main electrode 23 may have a laminated structure in which two or more of a pure Al layer, an AlSi alloy layer, an AlCu alloy layer and an AlSiCu alloy layer are laminated in any order.
  • the main electrode 23 may have a single-layer structure composed of a pure Al layer, an AlSi alloy layer, an AlCu alloy layer, or an AlSiCu alloy layer.
  • the main electrode 23 preferably has a single-layer structure composed of an AlSi alloy layer, an AlCu alloy layer, or an AlSiCu alloy layer.
  • the thickness of the main electrode 23 exceeds the thickness of the barrier electrode 22.
  • the thickness of the main electrode 23 may be 10 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the main electrode 23 may be 10 ⁇ m or more and 20 ⁇ m or less, 20 ⁇ m or more and 40 ⁇ m or less, 40 ⁇ m or more and 60 ⁇ m or less, 60 ⁇ m or more and 80 ⁇ m or less, or 80 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the main electrode 23 is preferably 20 ⁇ m or more and 60 ⁇ m or less. Since the thickness of the barrier electrode 22 is extremely small as compared with the thickness of the main electrode 23, the thickness T1 of the first main surface electrode 21 is approximated to the thickness of the main electrode 23.
  • the insulating layer 24 covers the first main surface electrode 21 on the first main surface 3.
  • the insulating layer 24 is shown by hatching. Specifically, the insulating layer 24 is formed on the main surface insulating layer 12. The peripheral edge of the insulating layer 24 is formed at intervals inward from the side surfaces 5A to 5D. As a result, the insulating layer 24 exposes the peripheral edge portion of the main surface insulating layer 12.
  • the peripheral edge of the insulating layer 24 partitions the dicing street 25 between the side surfaces 5A to 5D. According to the dicing street 25, when the semiconductor device 101 is cut out from the wafer, the insulating layer 24 does not have to be physically cut. As a result, the semiconductor device 101 can be smoothly cut out from the wafer, and at the same time, peeling and deterioration of the insulating layer 24 can be suppressed. As a result, the insulating layer 24 can appropriately protect the object to be protected such as the SiC chip 2 and the first main surface electrode 21.
  • the width of the dicing street 25 may be 1 ⁇ m or more and 25 ⁇ m or less.
  • the width of the dicing street 25 is the width in the direction orthogonal to the direction in which the dicing street 25 extends.
  • the width of the dicing street 25 may be 1 ⁇ m or more and 5 ⁇ m or less, 5 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 15 ⁇ m or less, 15 ⁇ m or more and 20 ⁇ m or less, or 20 ⁇ m or more and 25 ⁇ m or less.
  • the insulating layer 24 has a pad opening 26 that exposes the first main surface electrode 21.
  • the pad opening 26 includes a gate pad opening 161 that exposes the gate main surface electrode 153 and a source pad opening 162 that exposes the source main surface electrode 155.
  • the gate pad opening 161 may be formed in a polygonal shape having four sides parallel to the side surfaces 5A to 5D in a plan view.
  • the source pad opening 162 may be formed in a polygonal shape having four sides parallel to the side surfaces 5A to 5D in a plan view.
  • the planar shape of the gate pad opening 161 and the planar shape of the source pad opening 162 are arbitrary.
  • the insulating layer 24 has a laminated structure including an inorganic insulating layer 30 and an organic insulating layer 31 laminated in this order from the SiC chip 2 side.
  • the inorganic insulating layer 30 is formed in a film shape along the main surface insulating layer 12, the gate main surface electrode 153, and the source main surface electrode 155.
  • the inorganic insulating layer 30 includes a first gate inner wall 163, a first source inner wall 164, and a first outer wall 165.
  • the first gate inner wall 163, the first source inner wall 164, and the first outer wall 165 may be collectively referred to as the first wall surface.
  • the first gate inner wall 163 partitions the first gate opening 166 that exposes a part of the gate main surface electrode 153.
  • the first gate opening 166 forms a part of the gate pad opening 161.
  • the first gate opening 166 has a planar shape similar to the planar shape of the gate main surface electrode 153, and exposes the inner portion of the gate main surface electrode 153.
  • the planar shape of the first gate opening 166 is arbitrary.
  • the first gate opening 166 may be partitioned into a polygonal shape having four sides parallel to the side surfaces 5A to 5D in a plan view.
  • the first source inner wall 164 partitions the first source opening 167 that exposes a part of the source main surface electrode 155.
  • the first source opening 167 forms part of the source pad opening 162.
  • the first source opening 167 has a planar shape similar to the planar shape of the source main surface electrode 155, and exposes the inner portion of the source main surface electrode 155.
  • the planar shape of the first source opening 167 is arbitrary.
  • the first source opening 167 may be partitioned into a polygonal shape having four sides parallel to the side surfaces 5A to 5D in a plan view.
  • the first outer wall 165 of the inorganic insulating layer 30 is formed at intervals inward from the side surfaces 5A to 5D, and a part of the dicing street 25 is partitioned between the side surfaces 5A to 5D. As a result, the inorganic insulating layer 30 exposes the peripheral edge portion of the main surface insulating layer 12.
  • the first outer wall 165 may be formed in a quadrangular shape having four sides parallel to the side surfaces 5A to 5D in a plan view.
  • the angle formed by the first wall surface of the inorganic insulating layer 30 with the main surface of the first main surface electrode 21 in the inorganic insulating layer 30 may be 30 ° or more and 90 ° or less.
  • the angle formed by the first wall surface with the main surface of the first main surface electrode 21 in the inorganic insulating layer 30 is preferably 45 ° or more and less than 90 °.
  • the angle of the first wall surface is defined by the angle formed by the straight line connecting the lower end portion and the upper end portion of the first wall surface with the main surface of the first main surface electrode 21.
  • the inorganic insulating layer 30 has a property of having high adhesion to Ni.
  • the inorganic insulating layer 30 includes at least one of a silicon oxide layer and a silicon nitride layer.
  • the inorganic insulating layer 30 may have a laminated structure including a silicon oxide layer and a silicon nitride layer laminated in this order from the SiC chip 2 side.
  • the inorganic insulating layer 30 may have a single-layer structure composed of a silicon oxide layer or a silicon nitride layer.
  • the inorganic insulating layer 30 preferably contains an insulating material different from that of the main surface insulating layer 12. In this form, the inorganic insulating layer 30 has a single-layer structure composed of a silicon nitride layer.
  • the thickness T2 of the inorganic insulating layer 30 is preferably less than the thickness T1 of the first main surface electrode 21 (T2 ⁇ T1).
  • the thickness T2 may be 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the thickness T2 may be 0.1 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 2 ⁇ m or less, 2 ⁇ m or more and 4 ⁇ m or less, 4 ⁇ m or more and 6 ⁇ m or less, 6 ⁇ m or more and 8 ⁇ m or less, or 8 ⁇ m or more and 10 ⁇ m or less.
  • the thickness T2 is preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the thickness T2 is particularly preferably 1 ⁇ m or more and 2 ⁇ m or less.
  • the organic insulating layer 31 is formed in a film shape on the inorganic insulating layer 30.
  • the organic insulating layer 31 includes a second gate inner wall 168, a second source inner wall 169, and a second outer wall 170.
  • the second gate inner wall 168, the second source inner wall 169, and the second outer wall 170 may be collectively referred to as the second wall surface.
  • the second gate inner wall 168 is formed in a curved shape recessed toward the inorganic insulating layer 30 side in this form.
  • the second gate inner wall 168 partitions the second gate opening 171 that exposes a part of the gate main surface electrode 153.
  • the second gate opening 171 has a planar shape similar to the planar shape of the gate main surface electrode 153, and exposes the inner portion of the gate main surface electrode 153.
  • the planar shape of the second gate opening 171 is arbitrary.
  • the second gate opening 171 may be partitioned into a polygonal shape having four sides parallel to the side surfaces 5A to 5D in a plan view.
  • the second gate opening 171 communicates with the first gate opening 166 of the inorganic insulating layer 30 and forms a gate pad opening 161 with the first gate opening 166.
  • the second gate opening 171 surrounds the first gate opening 166 at a distance from the first gate opening 166, and a part of the inorganic insulating layer 30 is exposed.
  • the organic insulating layer 31 exposes a part of the main surface of the inorganic insulating layer 30 as the inner peripheral edge of the gate 172 in the region between the first gate opening 166 and the second gate opening 171.
  • the width WG of the inner peripheral edge of the gate 172 may exceed 0 ⁇ m and be 10 ⁇ m or less.
  • the width WG may be more than 0 ⁇ m and 1 ⁇ m or less, 1 ⁇ m or more and 2 ⁇ m or less, 2 ⁇ m or more and 4 ⁇ m or less, 4 ⁇ m or more and 6 ⁇ m or less, 6 ⁇ m or more and 8 ⁇ m or less, or 8 ⁇ m or more and 10 ⁇ m or less.
  • the width WG is preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the width WG is arbitrary, but it is preferably that the thickness of the inorganic insulating layer 30 is T2 or less (WG ⁇ T2).
  • the width WG is particularly preferably 1 ⁇ m or more and 2 ⁇ m or less.
  • the second source inner wall 169 is formed in this form in a curved shape recessed toward the inorganic insulating layer 30 side.
  • the second source inner wall 169 partitions a second source opening 173 that exposes a portion of the source main surface electrode 155.
  • the second source opening 173 has a planar shape similar to the planar shape of the source main surface electrode 155, and exposes the inner portion of the source main surface electrode 155.
  • the planar shape of the second source opening 173 is arbitrary.
  • the second source opening 173 may be partitioned into a polygonal shape having four sides parallel to the side surfaces 5A to 5D in a plan view.
  • the second source opening 173 communicates with the first source opening 167 of the inorganic insulating layer 30 and forms a source pad opening 162 with the first source opening 167.
  • the second source opening 173 surrounds the first source opening 167 at intervals from the first source opening 167, exposing a part of the inorganic insulating layer 30.
  • the organic insulating layer 31 exposes a part of the main surface of the inorganic insulating layer 30 as the inner peripheral edge of the source in the region between the first source opening 167 and the second source opening 173.
  • the width WS of the inner peripheral edge 174 of the source may exceed 0 ⁇ m and be 10 ⁇ m or less.
  • the width WS may be more than 0 ⁇ m and 1 ⁇ m or less, 1 ⁇ m or more and 2 ⁇ m or less, 2 ⁇ m or more and 4 ⁇ m or less, 4 ⁇ m or more and 6 ⁇ m or less, 6 ⁇ m or more and 8 ⁇ m or less, or 8 ⁇ m or more and 10 ⁇ m or less.
  • the width WS is preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the width WS is arbitrary, but it is preferably that the thickness of the inorganic insulating layer 30 is T2 or less (WS ⁇ T2).
  • the width WS is particularly preferably 1 ⁇ m or more and 2 ⁇ m or less.
  • the second outer wall 170 of the organic insulating layer 31 is formed in a curved shape recessed toward the inorganic insulating layer 30 side.
  • the second outer wall 170 is formed on the inorganic insulating layer 30 at intervals inward from the side surfaces 5A to 5D, and partitions a part of the dicing street 25 from the side surfaces 5A to 5D.
  • the organic insulating layer 31 exposes the peripheral edge portion of the main surface insulating layer 12.
  • the second outer wall 170 may be formed in a quadrangular shape having four sides parallel to the side surfaces 5A to 5D in a plan view.
  • the second outer wall 170 of the organic insulating layer 31 may be formed on the main surface insulating layer 12 across the first outer wall 165 of the inorganic insulating layer 30. In this case, the dicing street 25 is partitioned by the second outer wall 170 of the organic insulating layer 31.
  • the angle formed by the second wall surface of the organic insulating layer 31 with the main surface of the inorganic insulating layer 30 in the organic insulating layer 31 may be 30 ° or more and 90 ° or less.
  • the angle formed by the second wall surface with the main surface of the inorganic insulating layer 30 in the organic insulating layer 31 is preferably 45 ° or more and less than 90 °.
  • the angle of the second wall surface is defined by the angle formed by the straight line connecting the lower end portion and the upper end portion of the second wall surface with the main surface of the inorganic insulating layer 30.
  • the organic insulating layer 31 has a property of having lower adhesion to Ni than the inorganic insulating layer 30.
  • the organic insulating layer 31 contains a negative type or positive type photosensitive resin.
  • the organic insulating layer 31 may contain at least one of polyimide, polyamide and polybenzoxazole.
  • the organic insulating layer 31 contains polyimide in this form.
  • the organic insulating layer 31 preferably has a thickness T3 (T2 ⁇ T3) that exceeds the thickness T2 of the inorganic insulating layer 30.
  • the ratio T3 / T2 of the thickness T3 of the organic insulating layer 31 to the thickness T2 of the inorganic insulating layer 30 may be more than 1 and 10 or less.
  • the ratio T3 / T2 may be more than 1, 2 or less, 2 or more and 4 or less, 4 or more and 6 or less, 6 or more and 8 or less, and 8 or more and 10 or less.
  • the ratio T3 / T2 is preferably 2 or more and 6 or less.
  • the thickness T3 may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness T3 may be 1 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 20 ⁇ m or less, 20 ⁇ m or more and 30 ⁇ m or less, 30 ⁇ m or more and 40 ⁇ m or less, or 40 ⁇ m or more and 50 ⁇ m or less.
  • the thickness T3 is preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the rough surface region 39 of the first main surface electrode 21 includes the gate rough surface region 175 and the source rough surface region 176 in this form.
  • the gate rough surface region 175 is formed on an exposed surface exposed from the gate pad opening 161 (first gate opening 166 of the inorganic insulating layer 30) in the gate main surface electrode 153.
  • the gate rough surface region 175 includes a recess formed in the region directly below the first gate inner wall 163.
  • the first gate inner wall 163 includes a portion overhanging the gate rough surface region 175.
  • the source rough surface region 176 is formed on an exposed surface exposed from the source pad opening 162 (first source opening 167 of the inorganic insulating layer 30) in the source main surface electrode 155.
  • the source rough surface region 176 includes a recess formed in the region directly below the first source inner wall 164.
  • the first source inner wall 164 includes a portion overhanging the source rough surface region 176.
  • the pad electrode 40 includes a gate pad electrode 181 and a source pad electrode 182 in this form.
  • the gate pad electrode 181 includes a first Ni plating layer 183 formed on the gate main surface electrode 153 in the gate pad opening 161.
  • the first Ni plating layer 183 corresponds to the Ni plating layer 41 according to the first embodiment.
  • the first Ni plating layer 183 covers the gate main surface electrode 153 in the first gate opening 166, and covers the gate inner peripheral edge 172 of the inorganic insulating layer 30 in the second gate opening 171.
  • the first Ni plating layer 183 has an outer surface formed at intervals from the main surface of the organic insulating layer 31 (insulating layer 24) to the gate main surface electrode 153 side.
  • the first Ni plating layer 183 covers the organic insulating layer 31 in the second gate opening 171.
  • the first Ni plating layer 183 specifically covers the first portion 183A that covers the gate main surface electrode 153 and the second portion 183B that covers the gate inner peripheral edge 172 of the inorganic insulating layer 30. have.
  • the first portion 183A of the first Ni plating layer 183 fills the gate rough surface region 175 in the first gate opening 166 and covers the gate main surface electrode 153.
  • the first portion 183A covers the entire area of the first gate inner wall 163 of the inorganic insulating layer 30, and projects from the opening end of the first gate opening 166 toward the opening end of the second gate opening 171.
  • the first portion 183A is connected to the inner wall 163 of the first gate of the inorganic insulating layer 30, and has a first connecting portion extending in the thickness direction of the inorganic insulating layer 30.
  • the second portion 183B of the first Ni plating layer 183 is drawn out from the first portion 183A toward the organic insulating layer 31 side in the second gate opening 171.
  • the second portion 183B is formed in an arc shape from the opening end of the first gate opening 166 toward the organic insulating layer 31.
  • the second portion 183B covers the inner peripheral edge 172 of the inorganic insulating layer 30 in the second gate opening 171. As a result, the second portion 183B faces the gate main surface electrode 153 with the inner peripheral edge 172 of the inorganic insulating layer 30 interposed therebetween.
  • the second portion 183B is connected to the main surface of the inorganic insulating layer 30 and has a second connecting portion extending in the width direction of the inorganic insulating layer 30.
  • the second portion 183B further covers the second gate inner wall 168 of the organic insulating layer 31 in the second gate opening 171.
  • the second portion 183B covers the region on the inorganic insulating layer 30 side with respect to the intermediate portion of the second gate inner wall 168 of the organic insulating layer 31.
  • the second portion 183B covers the organic insulating layer 31 so that the exposed area of the second gate inner wall 168 (organic insulating layer 31) exceeds the concealed area of the second gate inner wall 168 (organic insulating layer 31).
  • the first Ni plating layer 183 is formed so that the first portion 183A and the second portion 183B engage with the opening end of the first gate opening 166 from two different directions.
  • the first Ni plating layer 183 has a thickness T4 (T2 ⁇ T4) that exceeds the thickness T2 of the inorganic insulating layer 30.
  • the thickness T4 is less than the thickness T3 of the organic insulating layer 31 (T3 ⁇ T4).
  • the thickness T4 exceeds the value (T2 + WG) obtained by adding the width WG of the inner peripheral edge of the gate 172 to the thickness T2 of the inorganic insulating layer 30 (T2 + WG ⁇ T4). This is a condition in which the first Ni plating layer 183 is in contact with the second gate inner wall 168 of the organic insulating layer 31.
  • the thickness T4 is defined by the thickness of the first Ni plating layer 183 with respect to the main surface of the gate main surface electrode 153.
  • the ratio T4 / T2 of the thickness T4 of the first Ni plating layer 183 to the thickness T2 of the inorganic insulating layer 30 may be more than 1 and 5 or less.
  • the ratio T4 / T2 may be more than 1 and 2 or less, 2 or more and 3 or less, 3 or more and 4 or less, or 4 or more and 5 or less.
  • the thickness T4 may be 0.1 ⁇ m or more and 15 ⁇ m or less.
  • the thickness T4 may be 0.1 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 3 ⁇ m or less, 3 ⁇ m or more and 6 ⁇ m or less, 6 ⁇ m or more and 9 ⁇ m or less, 9 ⁇ m or more and 12 ⁇ m or less, or 12 ⁇ m or more and 15 ⁇ m or less.
  • the thickness T4 is preferably 2 ⁇ m or more and 8 ⁇ m or less.
  • the gate pad electrode 181 is made of a metal material different from that of the first Ni plating layer 183, and includes a first outer surface plating layer 184 that covers the outer surface of the first Ni plating layer 183 in the second gate opening 171.
  • the first outer surface plating layer 184 corresponds to the outer surface plating layer 42 according to the first embodiment.
  • the first outer surface plating layer 184 has a thickness T5 (T5 ⁇ T4) less than the thickness T4 of the first Ni plating layer 183.
  • the first outer surface plating layer 184 covers the second gate inner wall 168 of the organic insulating layer 31 in the second gate opening 171.
  • the first outer surface plating layer 184 has a gate terminal surface 185A that is externally connected via a conductive bonding material (for example, solder).
  • the gate terminal surface 185A is located on the side of the first Ni plating layer 183 with respect to the main surface of the organic insulating layer 31 (the opening end of the second gate opening 171). As a result, the first outer surface plating layer 184 exposes a part of the second gate inner wall 168 of the organic insulating layer 31.
  • the first outer surface plating layer 184 has a laminated structure including a first Pd plating layer 185 and a first Au plating layer 186 laminated in this order from the first Ni plating layer 183 side.
  • the first Pd plating layer 185 and the first Au plating layer 186 correspond to the Pd plating layer 43 and the Au plating layer 44 according to the first embodiment, respectively.
  • the first Pd plating layer 185 is formed in a film shape along the outer surface of the first Ni plating layer 183.
  • the first Pd plating layer 185 covers the first Ni plating layer 183 at intervals from the opening end of the second gate opening 171 toward the inorganic insulating layer 30 side.
  • the first Pd plating layer 185 covers the second gate inner wall 168 of the organic insulating layer 31 in the second gate opening 171.
  • the first Pd plating layer 185 has a thickness less than the thickness T4 of the first Ni plating layer 183.
  • the thickness of the first Pd plating layer 185 may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the first Pd plating layer 185 is 0.01 ⁇ m or more and 0.1 ⁇ m or less, 0.1 ⁇ m or more and 0.2 ⁇ m or less, 0.2 ⁇ m or more and 0.4 ⁇ m or less, 0.4 ⁇ m or more and 0.6 ⁇ m or less, 0.6 ⁇ m or more. It may be 0.8 ⁇ m or less, or 0.8 ⁇ m or more and 1 ⁇ m or less.
  • the first Au plating layer 186 is formed in a film shape along the outer surface of the first Pd plating layer 185.
  • the first Au plating layer 186 covers the first Pd plating layer 185 at intervals from the opening end of the second gate opening 171 toward the inorganic insulating layer 30 side.
  • the first Au plating layer 186 covers the second gate inner wall 168 of the organic insulating layer 31 in the second gate opening 171.
  • the first Au plating layer 186 has a thickness less than the thickness T4 of the first Ni plating layer 183.
  • the thickness of the first Au plating layer 186 may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the first Au plating layer 186 is 0.01 ⁇ m or more and 0.1 ⁇ m or less, 0.1 ⁇ m or more and 0.2 ⁇ m or less, 0.2 ⁇ m or more and 0.4 ⁇ m or less, 0.4 ⁇ m or more and 0.6 ⁇ m or less, 0.6 ⁇ m or more. It may be 0.8 ⁇ m or less, or 0.8 ⁇ m or more and 1 ⁇ m or less.
  • first outer surface plating layer 184 has a laminated structure including the first Pd plating layer 185 and the first Au plating layer 186 has been described.
  • first outer surface plating layer 184 having the same form as any one of the outer surface plating layers 42 according to the second to fourth forms shown in FIGS. 4A to 4D may be adopted. ..
  • the source pad electrode 182 includes a second Ni plating layer 193 formed on the source main surface electrode 155 in the source pad opening 162.
  • the second Ni plating layer 193 corresponds to the Ni plating layer 41 according to the first embodiment.
  • the second Ni plating layer 193 covers the source main surface electrode 155 in the first source opening 167, and covers the source inner peripheral edge 174 of the inorganic insulating layer 30 in the second source opening 173.
  • the second Ni plating layer 193 has an outer surface formed at intervals from the main surface of the organic insulating layer 31 (insulating layer 24) to the source main surface electrode 155 side.
  • the second Ni plating layer 193 covers the organic insulating layer 31 in the second source opening 173.
  • the second Ni plating layer 193 specifically covers the first portion 193A that covers the source main surface electrode 155 and the second portion 193B that covers the source inner peripheral edge 174 of the inorganic insulating layer 30. have.
  • the first portion 193A of the second Ni plating layer 193 fills the source rough surface region 176 in the first source opening 167 and covers the source main surface electrode 155.
  • the first portion 193A covers the entire area of the first source inner wall 164 of the inorganic insulating layer 30, and projects from the opening end of the first source opening 167 toward the opening end of the second source opening 173.
  • the first portion 193A is connected to the first source inner wall 164 of the inorganic insulating layer 30 and has a first connecting portion extending in the thickness direction of the inorganic insulating layer 30.
  • the second portion 193B of the second Ni plating layer 193 is drawn out from the first portion 193A toward the organic insulating layer 31 side in the second source opening 173.
  • the second portion 193B is formed in an arc shape from the opening end of the first source opening 167 toward the organic insulating layer 31.
  • the second portion 193B covers the inner peripheral edge of the source of the inorganic insulating layer 30 in the second source opening 173. As a result, the second portion 193B faces the source main surface electrode 155 with the inner peripheral edge 174 of the source of the inorganic insulating layer 30 interposed therebetween.
  • the second portion 193B is connected to the main surface of the inorganic insulating layer 30 and has a second connecting portion extending in the width direction of the inorganic insulating layer 30.
  • the second portion 193B further covers the second source inner wall 169 of the organic insulating layer 31 in the second source opening 173.
  • the second portion 193B covers the region on the inorganic insulating layer 30 side with respect to the intermediate portion of the second source inner wall 169 of the organic insulating layer 31.
  • the second portion 193B covers the organic insulating layer 31 so that the exposed area of the second source inner wall 169 (organic insulating layer 31) exceeds the concealed area of the second source inner wall 169 (organic insulating layer 31).
  • the second Ni plating layer 193 is formed so that the first portion 193A and the second portion 193B engage with the opening end of the first source opening 167 from two different directions.
  • the second Ni plating layer 193 has a thickness T4 (T2 ⁇ T4) that exceeds the thickness T2 of the inorganic insulating layer 30.
  • the thickness T4 is less than the thickness T3 of the organic insulating layer 31 (T3 ⁇ T4).
  • the thickness T4 exceeds the value (T2 + WS) obtained by adding the width WS of the inner peripheral edge of the source 174 to the thickness T2 of the inorganic insulating layer 30 (T2 + WS ⁇ T4). This is a condition in which the second Ni plating layer 193 is in contact with the second source inner wall 169 of the organic insulating layer 31.
  • the thickness T4 is defined by the thickness of the second Ni plating layer 193 relative to the main surface of the source main surface electrode 155.
  • the ratio T4 / T2 of the thickness T4 of the second Ni plating layer 193 to the thickness T2 of the inorganic insulating layer 30 may be more than 1 and 5 or less.
  • the ratio T4 / T2 may be more than 1 and 2 or less, 2 or more and 3 or less, 3 or more and 4 or less, or 4 or more and 5 or less.
  • the thickness T4 may be 0.1 ⁇ m or more and 15 ⁇ m or less.
  • the thickness T4 may be 0.1 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 3 ⁇ m or less, 3 ⁇ m or more and 6 ⁇ m or less, 6 ⁇ m or more and 9 ⁇ m or less, 9 ⁇ m or more and 12 ⁇ m or less, or 12 ⁇ m or more and 15 ⁇ m or less.
  • the thickness T4 is preferably 2 ⁇ m or more and 8 ⁇ m or less.
  • the source pad electrode 182 is made of a metal material different from that of the second Ni plating layer 193, and includes a second outer surface plating layer 194 that covers the outer surface of the second Ni plating layer 193 in the second source opening 173.
  • the second outer surface plating layer 194 corresponds to the outer surface plating layer 42 according to the first embodiment.
  • the second outer surface plating layer 194 has a thickness T5 (T5 ⁇ T4) less than the thickness T4 of the second Ni plating layer 193.
  • the second outer surface plating layer 194 covers the second source inner wall 169 of the organic insulating layer 31 in the second source opening 173.
  • the second outer surface plating layer 194 has a source terminal surface 194A that is externally connected via a conductive bonding material (for example, solder).
  • the source terminal surface 194A is located on the second Ni plating layer 193 side with respect to the main surface of the organic insulating layer 31 (the opening end of the second source opening 173). As a result, the second outer surface plating layer 194 exposes a part of the second source inner wall 169 of the organic insulating layer 31.
  • the second outer surface plating layer 194 has a laminated structure including a second Pd plating layer 195 and a second Au plating layer 196 laminated in this order from the second Ni plating layer 193 side.
  • the second Pd plating layer 195 and the second Au plating layer 196 correspond to the Pd plating layer 43 and the Au plating layer 44 according to the first embodiment, respectively.
  • the second Pd plating layer 195 is formed in a film shape along the outer surface of the second Ni plating layer 193.
  • the second Pd plating layer 195 covers the second Ni plating layer 193 at intervals from the opening end of the second source opening 173 to the inorganic insulating layer 30 side.
  • the second Pd plating layer 195 covers the second source inner wall 169 of the organic insulating layer 31 in the second source opening 173.
  • the second Pd plating layer 195 has a thickness less than the thickness T4 of the second Ni plating layer 193.
  • the thickness of the second Pd plating layer 195 may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the second Pd plating layer 195 is 0.01 ⁇ m or more and 0.1 ⁇ m or less, 0.1 ⁇ m or more and 0.2 ⁇ m or less, 0.2 ⁇ m or more and 0.4 ⁇ m or less, 0.4 ⁇ m or more and 0.6 ⁇ m or less, 0.6 ⁇ m or more. It may be 0.8 ⁇ m or less, or 0.8 ⁇ m or more and 1 ⁇ m or less.
  • the second Au plating layer 196 is formed in a film shape along the outer surface of the second Pd plating layer 195.
  • the second Au plating layer 196 covers the second Pd plating layer 195 at intervals from the opening end of the second source opening 173 to the inorganic insulating layer 30 side.
  • the second Au plating layer 196 covers the second source inner wall 169 of the organic insulating layer 31 in the second source opening 173.
  • the second Au plating layer 196 has a thickness less than the thickness T4 of the second Ni plating layer 193.
  • the thickness of the second Au plating layer 196 may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the second Au plating layer 196 is 0.01 ⁇ m or more and 0.1 ⁇ m or less, 0.1 ⁇ m or more and 0.2 ⁇ m or less, 0.2 ⁇ m or more and 0.4 ⁇ m or less, 0.4 ⁇ m or more and 0.6 ⁇ m or less, 0.6 ⁇ m or more. It may be 0.8 ⁇ m or less, or 0.8 ⁇ m or more and 1 ⁇ m or less.
  • the second outer surface plating layer 194 has a laminated structure including the second Pd plating layer 195 and the second Au plating layer 196 has been described.
  • the second outer surface plating layer 194 having the same form as any one of the outer surface plating layers 42 according to the second to fourth forms shown in FIGS. 4A to 4D may be adopted. ..
  • the second main surface electrode 46 covers the entire area of the second main surface 4.
  • the second main surface electrode 46 forms ohmic contact with the second main surface 4.
  • the second main surface electrode 46 is formed as a drain electrode.
  • the second main surface electrode 46 includes at least one of a Ti layer, a Ni layer, a Pd layer, an Au layer, and an Ag layer.
  • the second main surface electrode 46 may have a laminated structure in which at least two of the Ti layer, the Ni layer, the Pd layer, the Au layer and the Ag layer are laminated in any order.
  • the second main surface electrode 46 may have a single-layer structure including a Ti layer, a Ni layer, a Pd layer, an Au layer and an Ag layer.
  • the second main surface electrode 46 preferably includes a Ti layer as an ohmic electrode. In this form, the second main surface electrode 46 has a laminated structure including a Ti layer, a Ni layer, a Pd layer, an Au layer, and an Ag layer, which are laminated in this order from the second main surface 4 side.
  • the semiconductor device 101 including the MISFET instead of the SBD can also exert the same effect as the effect described for the semiconductor device 1.
  • FIG. 15 is a corresponding diagram of FIG. 12, which is a cross-sectional view showing a semiconductor device 201 according to a fourth embodiment of the present invention.
  • FIG. 16 is an enlarged view of the region XVI shown in FIG.
  • FIG. 17 is an enlarged view of region XVII shown in FIG.
  • the same reference numerals will be given to the structures corresponding to the structures described for the semiconductor device 101 (see FIGS. 9 to 14), and the description thereof will be omitted.
  • the organic insulating layer 31 exposes the gate inner peripheral edge 172 of the inorganic insulating layer 30 in the region between the first gate opening 166 and the second gate opening 171.
  • the width WG of the inner peripheral edge of the gate 172 preferably exceeds the thickness T2 of the inorganic insulating layer 30 (T2 ⁇ WG).
  • the ratio WG / T2 of the width WG of the inner peripheral edge 172 of the gate to the thickness T2 of the inorganic insulating layer 30 may be more than 1 and 10 or less.
  • the ratio WG / T2 may be more than 1 and 2 or less, 2 or more and 4 or less, 4 or more and 6 or less, 6 or more and 8 or less, or 8 or more and 10 or less.
  • the ratio WG / T2 is preferably 2 or more and 5 or less.
  • the width WG may exceed 0 ⁇ m and be 10 ⁇ m or less.
  • the width WG may be more than 0 ⁇ m and 2 ⁇ m or less, 2 ⁇ m or more and 4 ⁇ m or less, 4 ⁇ m or more and 6 ⁇ m or less, 6 ⁇ m or more and 8 ⁇ m or less, or 8 ⁇ m or more and 10 ⁇ m or less.
  • the first Ni plating layer 183 is formed on the gate main surface electrode 153 in the gate pad opening 161.
  • the first Ni plating layer 183 covers the gate main surface electrode 153 in the first gate opening 166, and covers the gate inner peripheral edge 172 of the inorganic insulating layer 30 in the second gate opening 171.
  • the first Ni plating layer 183 has an outer surface formed at intervals from the main surface of the organic insulating layer 31 (insulating layer 24) to the gate main surface electrode 153 side.
  • the first Ni plating layer 183 covers the inner peripheral edge 172 of the inorganic insulating layer 30 at intervals from the organic insulating layer 31 in the second gate opening 171.
  • the first Ni plating layer 183 specifically covers the first portion 183A that covers the gate main surface electrode 153 and the second portion 183B that covers the gate inner peripheral edge 172 of the inorganic insulating layer 30. have.
  • the first portion 183A of the first Ni plating layer 183 fills the gate rough surface region 175 in the first gate opening 166 and covers the gate main surface electrode 153.
  • the first portion 183A covers the entire area of the first gate inner wall 163 of the inorganic insulating layer 30 in the first gate opening 166, and projects from the opening end of the first gate opening 166 toward the opening end of the second gate opening 171. ing.
  • the first portion 183A is connected to the inner wall 163 of the first gate of the inorganic insulating layer 30, and has a first connecting portion extending in the thickness direction of the inorganic insulating layer 30.
  • the second portion 183B of the first Ni plating layer 183 is drawn out from the first portion 183A toward the organic insulating layer 31 side in the second gate opening 171.
  • the second portion 183B is formed in an arc shape starting from the opening end of the first gate opening 166 and heading toward the second gate inner wall 168 of the organic insulating layer 31.
  • the second portion 183B covers the inner peripheral edge 172 of the inorganic insulating layer 30 in the second gate opening 171.
  • the second portion 183B is formed from the second gate inner wall 168 of the organic insulating layer 31 to the inorganic insulating layer 30 in the second gate opening 171 so that a part of the inner peripheral edge 38 of the inorganic insulating layer 30 is exposed.
  • the inner peripheral edge 172 of the inorganic insulating layer 30 is partially covered with a space on the inner wall 163 side of the first gate.
  • the first Ni plating layer 183 exposes a part of the inner peripheral edge 172 of the gate of the inorganic insulating layer 30 and the entire area of the inner wall 168 of the second gate of the organic insulating layer 31.
  • the second portion 183B faces the gate main surface electrode 153 with the inner peripheral edge 172 of the inorganic insulating layer 30 interposed therebetween.
  • the second portion 183B is connected to the main surface of the inorganic insulating layer 30 and has a second connecting portion extending in the width direction of the inorganic insulating layer 30.
  • the first Ni plating layer 183 has a thickness T4 (T2 ⁇ T4) that exceeds the thickness T2 of the inorganic insulating layer 30.
  • the thickness T4 is less than the value (T2 + WG) obtained by adding the width WG of the inner peripheral edge of the gate 172 to the thickness T2 of the inorganic insulating layer 30 (T4 ⁇ T2 + WG). This is a condition that the first Ni plating layer 183 exposes the second gate inner wall 168 of the organic insulating layer 31.
  • the thickness T4 is defined by the thickness of the first Ni plating layer 183 with respect to the main surface of the gate main surface electrode 153.
  • the ratio T4 / T2 of the thickness T4 of the first Ni plating layer 183 to the thickness T2 of the inorganic insulating layer 30 may be more than 1 and 5 or less.
  • the ratio T4 / T2 may be more than 1 and 2 or less, 2 or more and 3 or less, 3 or more and 4 or less, or 4 or more and 5 or less.
  • the thickness T4 may be 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the thickness T4 may be 0.1 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 2 ⁇ m or less, 2 ⁇ m or more and 4 ⁇ m or less, 4 ⁇ m or more and 6 ⁇ m or less, 6 ⁇ m or more and 8 ⁇ m or less, or 8 ⁇ m or more and 10 ⁇ m or less.
  • the first outer surface plating layer 184 covers the outer surface of the first Ni plating layer 183 in the second gate opening 171.
  • the first outer surface plating layer 184 has a thickness T5 (T5 ⁇ T4) less than the thickness T4 of the first Ni plating layer 183.
  • the first outer surface plating layer 184 is an inorganic insulating layer from the second gate inner wall 168 of the organic insulating layer 31 in the second gate opening 171 so that a part of the inner peripheral edge 38 of the inorganic insulating layer 30 is exposed.
  • the inner peripheral edge 172 of the inorganic insulating layer 30 is partially covered with an interval on the inner wall 163 side of the first gate of 30.
  • the first outer surface plating layer 184 has a gate terminal surface 184A that is externally connected via a conductive bonding material (for example, solder).
  • the gate terminal surface 184A is located on the side of the first Ni plating layer 183 with respect to the main surface of the organic insulating layer 31 (the opening end of the second gate opening 171).
  • the first outer surface plating layer 184 exposes a part of the gate inner peripheral edge 172 of the inorganic insulating layer 30 and the entire area of the second gate inner wall 168 of the organic insulating layer 31 in the second gate opening 171.
  • the first outer surface plating layer 184 has a laminated structure including the first Pd plating layer 185 and the Pd plating layer 186 laminated in this order from the first Ni plating layer 183 side.
  • the first Pd plating layer 185 is formed in a film shape along the outer surface of the first Ni plating layer 183.
  • the first Pd plating layer 185 covers the first Ni plating layer 183 at intervals from the opening end of the second gate opening 171 toward the inorganic insulating layer 30 side.
  • the first Pd plating layer 185 is formed from the second gate inner wall 168 of the organic insulating layer 31 to the first gate of the inorganic insulating layer 30 in the second gate opening 171 so that a part of the inner peripheral edge 38 of the inorganic insulating layer 30 is exposed.
  • the inner peripheral edge 172 of the gate of the inorganic insulating layer 30 is partially covered with an interval on the inner wall 163 side.
  • the first Pd plating layer 185 exposes a part of the inner peripheral edge 172 of the inorganic insulating layer 30 and the entire area of the inner wall 168 of the second gate of the organic insulating layer 31 in the second gate opening 171.
  • the first Pd plating layer 185 has a thickness less than the thickness T4 of the first Ni plating layer 183.
  • the thickness of the first Pd plating layer 185 may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the first Pd plating layer 185 is 0.01 ⁇ m or more and 0.1 ⁇ m or less, 0.1 ⁇ m or more and 0.2 ⁇ m or less, 0.2 ⁇ m or more and 0.4 ⁇ m or less, 0.4 ⁇ m or more and 0.6 ⁇ m or less, 0.6 ⁇ m or more. It may be 0.8 ⁇ m or less, or 0.8 ⁇ m or more and 1 ⁇ m or less.
  • the Pd plating layer 186 is formed in a film shape along the outer surface of the first Pd plating layer 185.
  • the Pd plating layer 186 covers the first Pd plating layer 185 at intervals from the opening end of the second gate opening 171 toward the inorganic insulating layer 30 side.
  • the Pd plating layer 186 In the Pd plating layer 186, from the second gate inner wall 168 of the organic insulating layer 31 to the first gate inner wall of the inorganic insulating layer 30 in the second gate opening 171 so that a part of the inner peripheral edge 38 of the inorganic insulating layer 30 is exposed.
  • the inner peripheral edge 172 of the gate of the inorganic insulating layer 30 is partially covered with a space on the 163 side.
  • the Pd plating layer 186 exposes a part of the inner peripheral edge 172 of the inorganic insulating layer 30 and the entire area of the inner wall 168 of the second gate of the organic insulating layer 31 in the second gate opening 171.
  • the Pd plating layer 186 has a thickness less than the thickness T4 of the first Ni plating layer 183.
  • the thickness of the Pd plating layer 186 may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the Pd plating layer 186 is 0.01 ⁇ m or more and 0.1 ⁇ m or less, 0.1 ⁇ m or more and 0.2 ⁇ m or less, 0.2 ⁇ m or more and 0.4 ⁇ m or less, 0.4 ⁇ m or more and 0.6 ⁇ m or less, 0.6 ⁇ m or more and 0. It may be 0.8 ⁇ m or less, or 0.8 ⁇ m or more and 1 ⁇ m or less.
  • first outer surface plating layer 184 has a laminated structure including the first Pd plating layer 185 and the Pd plating layer 186 has been described.
  • first outer surface plating layer 184 having the same form as any one of the outer surface plating layers 42 according to the second to fourth forms shown in FIGS. 8A to 8D may be adopted. ..
  • the organic insulating layer 31 exposes the inner peripheral edge 174 of the inorganic insulating layer 30 in the region between the first source opening 167 and the second source opening 173.
  • the width WS of the inner peripheral edge of the source 174 exceeds the thickness T2 of the inorganic insulating layer 30 in this form (T2 ⁇ WS).
  • the ratio of the width WS of the inner peripheral edge 172 of the gate to the thickness T2 of the inorganic insulating layer 30 WS / T2 may be more than 1 and 10 or less.
  • the ratio WS / T2 may be more than 1 and 2 or less, 2 or more and 4 or less, 4 or more and 6 or less, 6 or more and 8 or less, or 8 or more and 10 or less.
  • the ratio WS / T2 is preferably 2 or more and 5 or less.
  • the width WS may exceed 0 ⁇ m and be 10 ⁇ m or less.
  • the width WS may be more than 0 ⁇ m and 2 ⁇ m or less, 2 ⁇ m or more and 4 ⁇ m or less, 4 ⁇ m or more and 6 ⁇ m or less, 6 ⁇ m or more and 8 ⁇ m or less, or 8 ⁇ m or more and 10 ⁇ m or less.
  • the second Ni plating layer 193 is formed on the source main surface electrode 155 in the source pad opening 162.
  • the second Ni plating layer 193 covers the source main surface electrode 155 in the second source opening 173, and covers the source inner peripheral edge 174 of the inorganic insulating layer 30 in the second source opening 173.
  • the second Ni plating layer 193 has an outer surface formed at intervals from the main surface of the organic insulating layer 31 (insulating layer 24) to the source main surface electrode 155 side.
  • the second Ni plating layer 193 covers the inner peripheral edge of the source of the inorganic insulating layer 30 at intervals from the organic insulating layer 31 in the second source opening 173.
  • the second Ni plating layer 193 specifically covers the first portion 193A that covers the source main surface electrode 155 and the second portion 193B that covers the inner peripheral edge 174 of the source of the inorganic insulating layer 30. have.
  • the first portion 193A of the second Ni plating layer 193 fills the source rough surface region 176 in the first source opening 167 and covers the source main surface electrode 155.
  • the first portion 193A covers the entire area of the first source inner wall 164 of the inorganic insulating layer 30 in the first source opening 167, and projects from the opening end of the first source opening 167 toward the opening end of the second source opening 173. ing.
  • the first portion 193A is connected to the first source inner wall 164 of the inorganic insulating layer 30 and has a first connecting portion extending in the thickness direction of the inorganic insulating layer 30.
  • the second portion 193B of the second Ni plating layer 193 is drawn out from the first portion 193A toward the organic insulating layer 31 side in the second source opening 173.
  • the second portion 193B is formed in an arc shape starting from the opening end of the first source opening 167 and heading toward the second source inner wall 169 of the organic insulating layer 31.
  • the second portion 193B covers the inner peripheral edge of the source of the inorganic insulating layer 30 in the second source opening 173.
  • the second portion 193B is formed from the second source inner wall 169 of the organic insulating layer 31 to the inorganic insulating layer 30 in the second source opening 173 so that a part of the inner peripheral edge 38 of the inorganic insulating layer 30 is exposed.
  • the inner peripheral edge of the source of the inorganic insulating layer 30 is partially covered with an interval on the inner wall 164 side of the first source.
  • the second Ni plating layer 193 exposes a part of the inner peripheral edge of the source of the inorganic insulating layer 30 and the entire area of the inner wall 169 of the second source of the organic insulating layer 31.
  • the second portion 193B faces the source main surface electrode 155 with the inner peripheral edge 174 of the source of the inorganic insulating layer 30 interposed therebetween.
  • the second portion 193B is connected to the main surface of the inorganic insulating layer 30 and has a second connecting portion extending in the width direction of the inorganic insulating layer 30.
  • the second Ni plating layer 193 has a thickness T4 (T2 ⁇ T4) that exceeds the thickness T2 of the inorganic insulating layer 30.
  • the thickness T4 is less than the thickness T3 of the organic insulating layer 31 (T3 ⁇ T4).
  • the thickness T4 is less than the value (T2 + WS) obtained by adding the width WS of the inner peripheral edge of the source 174 to the thickness T2 of the inorganic insulating layer 30 (T4 ⁇ T2 + WS). This is a condition that the second Ni plating layer 193 exposes the second source inner wall 169 of the organic insulating layer 31.
  • the thickness T4 is defined by the thickness of the second Ni plating layer 193 relative to the main surface of the source main surface electrode 155.
  • the ratio T4 / T2 of the thickness T4 of the second Ni plating layer 193 to the thickness T2 of the inorganic insulating layer 30 may be more than 1 and 5 or less.
  • the ratio T4 / T2 may be more than 1 and 2 or less, 2 or more and 3 or less, 3 or more and 4 or less, or 4 or more and 5 or less.
  • the thickness T4 may be 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the thickness T4 may be 0.1 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 2 ⁇ m or less, 2 ⁇ m or more and 4 ⁇ m or less, 4 ⁇ m or more and 6 ⁇ m or less, 6 ⁇ m or more and 8 ⁇ m or less, or 8 ⁇ m or more and 10 ⁇ m or less.
  • the second outer surface plating layer 194 covers the outer surface of the second Ni plating layer 193 in the second source opening 173.
  • the second outer surface plating layer 194 has a thickness T5 (T5 ⁇ T4) less than the thickness T4 of the second Ni plating layer 193.
  • the second outer surface plating layer 194 is an inorganic insulating layer from the second source inner wall 169 of the organic insulating layer 31 in the second source opening 173 so that a part of the inner peripheral edge 38 of the inorganic insulating layer 30 is exposed.
  • the inner peripheral edge of the source of the inorganic insulating layer 30 is partially covered with an interval on the inner wall 164 side of the first source of 30.
  • the second outer surface plating layer 194 has a source terminal surface 194A that is externally connected via a conductive bonding material (for example, solder).
  • the source terminal surface 194A is located on the second Ni plating layer 193 side with respect to the main surface of the organic insulating layer 31 (the opening end of the second source opening 173).
  • the second outer surface plating layer 194 exposes a part of the source inner peripheral edge 174 of the inorganic insulating layer 30 and the entire area of the second source inner wall 169 of the organic insulating layer 31 in the second source opening 173.
  • the second outer surface plating layer 194 has a laminated structure including a second Pd plating layer 195 and a second Au plating layer 196 laminated in this order from the second Ni plating layer 193 side.
  • the second Pd plating layer 195 is formed in a film shape along the outer surface of the second Ni plating layer 193.
  • the second Pd plating layer 195 covers the second Ni plating layer 193 at intervals from the opening end of the second source opening 173 to the inorganic insulating layer 30 side.
  • the first source of the inorganic insulating layer 30 is formed from the second source inner wall 169 of the organic insulating layer 31 in the second source opening 173 so that a part of the inner peripheral edge 38 of the inorganic insulating layer 30 is exposed.
  • the inner peripheral edge of the source of the inorganic insulating layer 30 is partially covered with an interval on the inner wall 164 side.
  • the second Pd plating layer 195 exposes a part of the source inner peripheral edge 174 of the inorganic insulating layer 30 and the entire area of the second source inner wall 169 of the organic insulating layer 31 in the second source opening 173.
  • the second Pd plating layer 195 has a thickness less than the thickness T4 of the second Ni plating layer 193.
  • the thickness of the second Pd plating layer 195 may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the second Pd plating layer 195 is 0.01 ⁇ m or more and 0.1 ⁇ m or less, 0.1 ⁇ m or more and 0.2 ⁇ m or less, 0.2 ⁇ m or more and 0.4 ⁇ m or less, 0.4 ⁇ m or more and 0.6 ⁇ m or less, 0.6 ⁇ m or more. It may be 0.8 ⁇ m or less, or 0.8 ⁇ m or more and 1 ⁇ m or less.
  • the second Au plating layer 196 is formed in a film shape along the outer surface of the second Pd plating layer 195.
  • the second Au plating layer 196 covers the second Pd plating layer 195 at intervals from the opening end of the second source opening 173 to the inorganic insulating layer 30 side.
  • the second Au plating layer 196 is the first source of the inorganic insulating layer 30 from the second source inner wall 169 of the organic insulating layer 31 in the second source opening 173 so that a part of the inner peripheral edge 38 of the inorganic insulating layer 30 is exposed.
  • the inner peripheral edge of the source of the inorganic insulating layer 30 is partially covered with an interval on the inner wall 164 side.
  • the second Au plating layer 196 exposes a part of the source inner peripheral edge 174 of the inorganic insulating layer 30 and the entire area of the second source inner wall 169 of the organic insulating layer 31 in the second source opening 173.
  • the second Au plating layer 196 has a thickness less than the thickness T4 of the second Ni plating layer 193.
  • the thickness of the second Au plating layer 196 may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the second Au plating layer 196 is 0.01 ⁇ m or more and 0.1 ⁇ m or less, 0.1 ⁇ m or more and 0.2 ⁇ m or less, 0.2 ⁇ m or more and 0.4 ⁇ m or less, 0.4 ⁇ m or more and 0.6 ⁇ m or less, 0.6 ⁇ m or more. It may be 0.8 ⁇ m or less, or 0.8 ⁇ m or more and 1 ⁇ m or less.
  • the second outer surface plating layer 194 has a laminated structure including the second Pd plating layer 195 and the second Au plating layer 196 has been described.
  • the second outer surface plating layer 194 having the same form as any one of the outer surface plating layers 42 according to the second to fourth forms shown in FIGS. 8A to 8D may be adopted. ..
  • the semiconductor device 201 can also exert the same effect as the effect described for the semiconductor device 101. According to the semiconductor device 201, the same effect as that described for the semiconductor device 61 can be obtained.
  • FIG. 18 is a plan view of the semiconductor package 301 in which the semiconductor device (reference numeral omitted) according to the first to fourth embodiments is incorporated, as viewed from one side.
  • FIG. 19 is a plan view of the semiconductor package 301 shown in FIG. 18 as viewed from the other side.
  • FIG. 20 is a perspective view of the semiconductor package 301 shown in FIG.
  • FIG. 21 is an exploded perspective view of the semiconductor package 301 shown in FIG.
  • FIG. 22 is a cross-sectional view taken along the line XXII-XXII shown in FIG.
  • FIG. 23 is a circuit diagram of the semiconductor package 301 shown in FIG.
  • the semiconductor package 301 has a form called a power guard in this form.
  • the semiconductor package 301 includes a resin package body 302.
  • the package body 302 is made of a mold resin containing a filler (for example, an insulating filler) and a matrix resin.
  • the matrix resin is preferably made of an epoxy resin.
  • the package body 302 has a first main surface 303 (first surface) on one side, a second main surface 304 (second surface) on the other side, and a side surface connecting the first main surface 303 and the second main surface 304. It has 305A to 305D.
  • the first main surface 303 and the second main surface 304 are formed in a rectangular shape (rectangular shape in this form) in a plan view viewed from their normal direction Z.
  • the side surfaces 305A to 305D include the first side surface 305A, the second side surface 305B, the third side surface 305C, and the fourth side surface 305D.
  • the first side surface 305A and the second side surface 305B extend along the first direction X and face the second direction Y intersecting the first direction X.
  • the first side surface 305A and the second side surface 305B form the long side of the package body 302.
  • the third side surface 305C and the fourth side surface 305D extend along the second direction Y and face the first direction X.
  • the third side surface 305C and the fourth side surface 305D form the short side of the package body 302.
  • the second direction Y is orthogonal to the first direction X.
  • the semiconductor package 301 includes a first metal plate 310 arranged in the package body 302.
  • the first metal plate 310 is arranged on the first main surface 303 side of the package main body 302, and integrally includes the first heat radiating portion 311 and the first terminal portion 312.
  • the first heat radiating unit 311 is arranged in the package main body 302 so as to be exposed from the first main surface 303.
  • the first heat radiating unit 311 is formed in a rectangular shape extending along the first direction X in a plan view.
  • the first heat radiating portion 311 has a flat area smaller than the flat area of the first main surface 303, and is exposed from the first main surface 303 at intervals inward from the side surfaces 305A to 305D.
  • the first terminal portion 312 is exposed from the first side surface 305A. Specifically, the first terminal portion 312 extends from the first heat radiating portion 311 toward the first side surface 305A in a band shape, penetrates the first side surface 305A, and is pulled out of the package main body 302. When the central line LC that crosses the central portion of the first side surface 305A (second side surface 305B) in the second direction Y is set, the first heat radiating portion 311 is located on the fourth side surface 305D side with respect to the central line LC. ing.
  • the first terminal portion 312 has a first length L1 with respect to the second direction Y.
  • the width of the first terminal portion 312 in the first direction X is less than the width of the first heat radiating portion 311 in the first direction X.
  • the first terminal portion 312 is connected to the first heat radiating portion 311 via a bent portion 313 bent from the first main surface 303 side to the second main surface 304 side in the package main body 302. As a result, the first terminal portion 312 is exposed from the first side surface 305A at intervals from the first main surface 303 to the second main surface 304 side.
  • the semiconductor package 301 includes a second metal plate 320 arranged in the package body 302.
  • the second metal plate 320 is arranged on the second main surface 304 side of the package main body 302 at a distance from the first metal plate 310, and integrally includes the second heat radiating portion 321 and the second terminal portion 322.
  • the second heat radiating unit 321 is arranged in the package main body 302 so as to be exposed from the second main surface 304.
  • the second heat radiating unit 321 is formed in a rectangular shape extending along the first direction X in a plan view.
  • the second heat radiating portion 321 has a flat area smaller than the flat area of the second main surface 304, and is exposed from the second main surface 304 at intervals inward from the side surfaces 305A to 305D.
  • the second terminal portion 322 is exposed from the first side surface 305A. Specifically, the second terminal portion 322 extends from the second heat radiating portion 321 toward the first side surface 305A in a band shape, penetrates the first side surface 305A, and is pulled out of the package main body 302. The second terminal portion 322 is located on the third side surface 305C side with respect to the central line LC.
  • the second terminal portion 322 has a second length L2 different from the first length L1 of the first terminal portion 312 with respect to the second direction Y.
  • the first terminal portion 312 and the second terminal portion 322 are identified from their shapes (lengths).
  • the second length L2 of the second terminal portion 322 may exceed the first length L1 or may be less than the first length L1.
  • a second terminal portion 322 having a second length L2 equal to the first length L1 may be formed.
  • the width of the first direction X of the second terminal portion 322 is less than the width of the first direction X of the second heat radiating portion 321.
  • the second terminal portion 322 is connected to the second heat radiating portion 321 via a bent portion 323 bent from the second main surface 304 side to the first main surface 303 side in the package main body 302. As a result, the second terminal portion 322 is exposed from the second side surface 305B at intervals from the second main surface 304 to the first main surface 303 side.
  • the second terminal portion 322 is drawn out from a thickness position different from that of the first terminal portion 312 in the normal direction Z.
  • the second terminal portion 322 is formed at intervals from the first terminal portion 312 to the second main surface 304 side.
  • the second terminal portion 322 does not face the first terminal portion 312 with respect to the first direction X.
  • the semiconductor package 301 includes one or more (five in this form) control terminals 330 arranged in the package body 302.
  • the plurality of control terminals 330 are exposed from the second side surface 305B on the side opposite to the first side surface 305A where the first terminal portion 312 and the second terminal portion 322 are exposed.
  • the plurality of control terminals 330 are located on the third side surface 305C side with respect to the central line LC.
  • the plurality of control terminals 330 are located in the same linear shape as the second terminal portion 322 of the second metal plate 320 in a plan view.
  • the arrangement of the plurality of control terminals 330 is arbitrary.
  • the plurality of control terminals 330 are each formed in a band shape extending along the second direction Y.
  • the plurality of control terminals 330 include an internal connection portion 331, an external connection portion 332, and a strip-shaped portion 333, respectively.
  • the internal connection portion 331 is arranged in the package main body 302.
  • the external connection portion 332 is arranged outside the package main body 302.
  • the strip-shaped portion 333 penetrates the second side surface 305B from the internal connecting portion 331 and extends in a strip shape toward the external connecting portion 332.
  • the strip-shaped portion 333 may have a curved portion 334 that is recessed toward the second main surface 304 side in a portion located outside the package main body 302.
  • a strip-shaped portion 333 having no curved portion 334 may be formed.
  • the plurality of control terminals 330 are drawn out from different thickness positions from the first heat radiating unit 311 and the second heat radiating unit 321 in the normal direction Z.
  • the plurality of control terminals 330 are arranged in a region between the first heat radiating unit 311 and the second heat radiating unit 321 at intervals from the first heat radiating unit 311 and the second heat radiating unit 321.
  • the semiconductor package 301 includes an SBD chip 341 and a MISFET chip 342 arranged in the package body 302.
  • the SBD chip 341 includes any one of the semiconductor devices (reference numerals omitted) according to the first to second embodiments.
  • the MISFET chip 342 comprises any one of the semiconductor devices (reference numerals omitted) according to the third to fourth embodiments.
  • the SBD chip 341 is arranged in the space sandwiched between the first heat radiating unit 311 and the second heat radiating unit 321 in the package main body 302.
  • the SBD chip 341 is arranged on the fourth side surface 305D side of the package main body 302 with respect to the central line LC.
  • the SBD chip 341 is arranged on the second heat radiating unit 321 in a posture in which the second main surface electrode 46 faces the second heat radiating unit 321.
  • the MISFET chip 342 is arranged in the space sandwiched between the first heat radiating unit 311 and the second heat radiating unit 321 in the package main body 302 at intervals from the SBD chip 341.
  • the MISFET chip 342 is arranged on the third side surface 305C side of the package main body 302 with respect to the central line LC.
  • the MISFET chip 342 is arranged on the second heat radiating unit 321 in a posture in which the second main surface electrode 46 faces the second heat radiating unit 321.
  • the semiconductor package 301 includes a first conductive bonding material 343 and a second conductive bonding material 344.
  • the first conductive bonding material 343 and the second conductive bonding material 344 contain solder or metal paste, respectively.
  • the first conductive bonding material 343 is interposed between the second main surface electrode 46 and the second heat radiating portion 321 of the SBD chip 341, and thermally, mechanically and electrically connects the SBD chip 341 and the second heat radiating portion 321.
  • the second conductive bonding material 344 is interposed between the second main surface electrode 46 and the second heat radiating portion 321 of the MISFET chip 342, and thermally, mechanically and electrically connects the MISFET chip 342 and the second heat radiating portion 321. doing.
  • the cathode of the SBD chip 341 is electrically connected to the drain of the MISFET chip 342. That is, the second metal plate 320 (second heat radiating unit 321) functions as a cathode / drain terminal for the SBD chip 341 and the MISFET chip 342.
  • the semiconductor package 301 includes a first metal spacer 351 and a second metal spacer 352.
  • the first metal spacer 351 and the second metal spacer 352 each consist of a plate-shaped member containing copper in this form.
  • the second metal spacer 352 has a thickness equal to the thickness of the first metal spacer 351.
  • the first metal spacer 351 is interposed between the SBD chip 341 and the first heat radiating portion 311 to separate the first heat radiating portion 311 from the SBD chip 341.
  • the second metal spacer 352 is interposed between the MISFET chip 342 and the first heat radiating unit 311 to separate the first heat radiating unit 311 from the MISFET chip 342.
  • the first metal spacer 351 and the second metal spacer 352 are separate bodies, but the first metal spacer 351 and the second metal spacer 352 may be integrally formed.
  • the semiconductor package 301 includes a third conductive bonding material 353 and a fourth conductive bonding material 354.
  • the third conductive bonding material 353 and the fourth conductive bonding material 354 contain solder or metal paste, respectively. It is preferable that the third conductive bonding material 353 and the fourth conductive bonding material 354 are each made of solder.
  • the third conductive bonding material 353 is interposed between the pad electrode 40 of the SBD chip 341 and the first metal spacer 351 to thermally, mechanically and electrically connect the SBD chip 341 and the first metal spacer 351.
  • the fourth conductive bonding material 354 is interposed between the source pad electrode 182 and the second metal spacer 352 of the MISFET chip 342, and thermally, mechanically, and electrically connects the MISFET chip 342 and the second metal spacer 352.
  • the semiconductor package 301 includes a fifth conductive bonding material 355 and a sixth conductive bonding material 356.
  • the fifth conductive bonding material 355 and the sixth conductive bonding material 356 contain solder or metal paste, respectively.
  • the fifth conductive bonding material 355 is interposed between the first heat radiating portion 311 and the first metal spacer 351 and thermally, mechanically and electrically connects the first heat radiating portion 311 and the first metal spacer 351.
  • the sixth conductive bonding material 356 is interposed between the first heat radiating portion 311 and the second metal spacer 352, and thermally, mechanically and electrically connects the first heat radiating portion 311 and the second metal spacer 352. ..
  • the anode of the SBD chip 341 is electrically connected to the source of the MISFET chip 342. That is, the first metal plate 310 (first heat dissipation unit 311) functions as an anode / source terminal for the SBD chip 341 and the MISFET chip 342.
  • the semiconductor package 301 includes one or more (five in this form) lead wires 357.
  • the lead wire 357 is also referred to as a bonding wire.
  • the lead wire 357 may consist of a gold wire, a copper wire or an aluminum wire.
  • the plurality of lead wires 357 are connected to the gate pad electrode 181 of the MISFET chip 342 and the internal connection portion 331 of the plurality of control terminals 330, respectively.
  • the gate of the MISFET chip 342 is electrically connected to the plurality of control terminals 330. That is, each of the plurality of control terminals 330 functions as a gate terminal of the MISFET chip 342.
  • the lead wire 357 does not need to connect all the control terminals 330 and the gate pad electrode 181.
  • the optional control terminal 330 may be electrically open.
  • the first conductive bonding material 343 is connected to the pad electrode 40 of the SBD chip 341.
  • the pad electrode 40 of the SBD chip 341 includes a Ni plating layer 41 and an outer surface plating layer 42 as described in the first to second embodiments.
  • the first conductive bonding material 343 can be appropriately connected to the pad electrode 40 of the SBD chip 341. Therefore, the SBD chip 341 can be appropriately thermally, mechanically, and electrically connected to the first heat radiating unit 311 and the second heat radiating unit 321.
  • the SBD chip 341 does not have the organic insulating layer 31, cracks or peeling may occur in the pad electrode 40 or the like of the SBD chip 341 due to the filler contained in the package body 302. This kind of problem is called a filler attack and contributes to a decrease in the reliability of the pad electrode 40 and the like. Therefore, in the SBD chip 341, the organic insulating layer 31 is formed on the inorganic insulating layer 30. As a result, the organic insulating layer 31 serves as a cushion against the filler, so that the pad electrode 40 and the like can be appropriately protected from the filler attack.
  • the SBD chip 341 has a structure in which the Ni plating layer 41 is connected to the inner peripheral edge 38 of the inorganic insulating layer 30 in the structure provided with the organic insulating layer 31 as described in the first to second embodiments. ing. As a result, cracks and peeling of the Ni plating layer 41 (outer surface plating layer 42) due to the filler attack can be appropriately suppressed.
  • the second conductive bonding material 344 is connected to the source pad electrode 182 of the MISFET chip 342.
  • the source pad electrode 182 of the MISFET chip 342 includes a second Ni plating layer 193 and a second outer surface plating layer 194 as described in the third to fourth embodiments.
  • the second conductive bonding material 344 can be appropriately connected to the source pad electrode 182 of the MISFET chip 342. Therefore, the MOSFET chip 342 can be appropriately thermally, mechanically, and electrically connected to the first heat radiating unit 311 and the second heat radiating unit 321.
  • the MISFET chip 342 does not include the organic insulating layer 31, cracks or peeling may occur in the source pad electrode 182 or the like of the MISFET chip 342 due to the filler contained in the package body 302. This kind of problem is called a filler attack and contributes to a decrease in reliability of the source pad electrode 182 and the like. Therefore, in the MISFET chip 342, the organic insulating layer 31 is formed on the inorganic insulating layer 30. As a result, the organic insulating layer 31 serves as a cushion against the filler, so that the source pad electrode 182 and the like can be appropriately protected from the filler attack.
  • the second Ni plating layer 193 is connected to the first source inner wall 164 of the inorganic insulating layer 30. have.
  • the same effect as that of the source pad electrode 182 can be obtained on the gate pad electrode 181 side.
  • the semiconductor package 301 includes the SBD chip 341 and the MISFET chip 342 has been described.
  • a semiconductor package 301 containing only one of the SBD chip 341 and the MISFET chip 342 may be adopted.
  • a semiconductor package 301 including a plurality of SBD chips 341 and / or a plurality of MISFET chips 342 may be adopted.
  • the gate electrode 107 contains n-type polysilicon to which n-type impurities are added instead of p-type polysilicon. You may be.
  • the first low resistance layer 112 made of n-type polyside is formed. In the case of such a structure, the gate resistance can be further reduced.
  • n-type polysilicon to which n-type impurities are added may be contained instead of p-type polysilicon.
  • a structure in which either or both of the first low resistance layer 112 and the second low resistance layer 131 are not formed may be adopted.
  • a p + type collector region may be adopted instead of the n + type drain region.
  • an IGBT Insulated Gate Bipolar Transistor
  • the "source” of the MISFET is read as the "emitter” of the IGBT
  • the "drain” of the MISFET is read as the "collector” of the IGBT.
  • a Si chip made of a Si single crystal may be adopted instead of the SiC chip 2. That is, the semiconductor device (reference numeral omitted) according to each of the above-described embodiments may be a Si semiconductor device.
  • the semiconductor device (reference numeral omitted) according to each of the above-described embodiments may be a Si semiconductor device.
  • a structure in which the conductive type of each semiconductor portion is inverted may be adopted. That is, the p-type portion may be n-type and the n-type portion may be p-type.
  • a chip, an electrode formed on the chip, an inorganic insulating layer having a first opening for covering the electrode and exposing the electrode, and the inorganic insulating layer are coated with the first opening.
  • a resin package body having a first surface on one side, a second surface on the other side, and a side surface, a first heat radiating portion exposed from the first surface, and a first exposed from the side surface.
  • the first metal plate having a terminal portion and arranged in the package main body, a second heat radiating portion exposed from the second surface, and a second terminal portion exposed from the side surface.
  • a second metal plate arranged in the package main body at a distance from the metal plate to the second surface side, and arranged in a space sandwiched between the first heat radiating portion and the second heat radiating portion in the package main body.
  • a semiconductor package comprising the semiconductor device according to any one of A1 to A18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

半導体装置は、チップと、前記チップの上に形成された電極と、前記電極を被覆し、前記電極を露出させる第1開口を有する無機絶縁層と、前記無機絶縁層を被覆し、前記第1開口から間隔を空けて前記第1開口を取り囲む第2開口を有し、前記第1開口および前記第2開口の間の領域において前記無機絶縁層の内周縁を露出させる有機絶縁層と、前記第1開口内において前記電極を被覆し、前記第2開口内において前記無機絶縁層の前記内周縁を被覆するNiめっき層と、を含む。

Description

半導体装置
 本発明は、半導体装置に関する。
 特許文献1(図4)は、半導体基板、アルミニウム膜(電極)、ポリイミド膜(有機絶縁層)およびNiめっき膜(Niめっき層)を備えた半導体装置を開示している。アルミニウム膜は、半導体基板の上に形成されている。ポリイミド膜は、アルミニウム膜の上に形成され、アルミニウム膜を露出させる開口を有している。Niめっき膜は、ポリイミド膜の開口から露出するアルミニウム膜の上に形成されている。
国際公開第2018/167925A1号
 有機絶縁層は、Niに対する密着性が低い性質を有している。したがって、有機絶縁層の開口から露出する電極の上にNiめっき層を形成した場合、Niめっき層は、有機絶縁層との間で電極に向かって延びる間隙を形成する。その結果、電極に対するNiめっき層の接続が不十分となり、Niめっき層の信頼性が低下する。
 本発明の一実施形態は、有機絶縁層の開口から露出する電極の上にNiめっき層が形成される構造において、Niめっき層の信頼性を向上できる半導体装置を提供する。
 本発明の一実施形態は、チップと、前記チップの上に形成された電極と、前記電極を被覆し、前記電極を露出させる第1開口を有する無機絶縁層と、前記無機絶縁層を被覆し、前記第1開口から間隔を空けて前記第1開口を取り囲む第2開口を有し、前記第1開口および前記第2開口の間の領域において前記無機絶縁層の内周縁を露出させる有機絶縁層と、前記第1開口内において前記電極を被覆し、前記第2開口内において前記無機絶縁層の前記内周縁を被覆するNiめっき層と、を含む、半導体装置を提供する。
 この半導体装置によれば、Niめっき層が、有機絶縁層と比較してNiに対する密着性が高い無機絶縁層の内周縁を被覆している。これにより、間隙の形成領域を電極から遠ざけることができると同時に、電極に向かって延びる間隙の形成を抑制できる。無機絶縁層の内周縁が露出しない構造と比較した場合、有機絶縁層との間における間隙の形成領域を低減できる。よって、Niめっき層の信頼性を向上できる。
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
図1は、本発明の第1実施形態に係る半導体装置を示す平面図である。 図2は、図1に示すII-II線に沿う断面図を第1形態例に係る外面めっき層と共に示す断面図である。 図3は、図2に示す領域IIIの拡大図である。 図4Aは、図3の対応図であって、第2形態例に係る外面めっき層を示す拡大図である。 図4Bは、図3の対応図であって、第3形態例に係る外面めっき層を示す拡大図である。 図4Cは、図3の対応図であって、第4形態例に係る外面めっき層を示す拡大図である。 図4Dは、図3の対応図であって、第5形態例に係る外面めっき層を示す拡大図である。 図5Aは、図1に示す半導体装置の製造方法の一例を説明するための断面図である。 図5Bは、図5Aの後の工程を示す断面図である。 図5Cは、図5Bの後の工程を示す断面図である。 図5Dは、図5Cの後の工程を示す断面図である。 図5Eは、図5Dの後の工程を示す断面図である。 図5Fは、図5Eの後の工程を示す断面図である。 図5Gは、図5Fの後の工程を示す断面図である。 図5Hは、図5Gの後の工程を示す断面図である。 図5Iは、図5Hの後の工程を示す断面図である。 図5Jは、図5Iの後の工程を示す断面図である。 図5Kは、図5Jの後の工程を示す断面図である。 図5Lは、図5Kの後の工程を示す断面図である。 図5Mは、図5Lの後の工程を示す断面図である。 図5Nは、図5Mの後の工程を示す断面図である。 図5Oは、図5Nの後の工程を示す断面図である。 図6は、図2の対応図であって、本発明の第2実施形態に係る半導体装置を第1形態例に係る外面めっき層と共に示す断面図である。 図7は、図6に示す領域VIIの拡大図である。 図8Aは、図7の対応図であって、第2形態例に係る外面めっき層を示す拡大図である。 図8Bは、図7の対応図であって、第3形態例に係る外面めっき層を示す拡大図である。 図8Cは、図7の対応図であって、第4形態例に係る外面めっき層を示す拡大図である。 図8Dは、図7の対応図であって、第5形態例に係る外面めっき層を示す拡大図である。 図9は、本発明の第3実施形態に係る半導体装置を示す平面図である。 図10は、図9に示す領域Xの拡大図である。 図11は、図10に示すXI-XI線に沿う断面図である。 図12は、図9に示すXII-XII線に沿う断面図である。 図13は、図12に示す領域XIIIの拡大図である。 図14は、図12に示す領域XIVの拡大図である。 図15は、図12の対応図であって、本発明の第4実施形態に係る半導体装置を示す断面図である。 図16は、図15に示す領域XVIの拡大図である。 図17は、図15に示す領域XVIIの拡大図である。 図18は、第1~第4実施形態に係る半導体装置が組み込まれる半導体パッケージを一方側から見た平面図である。 図19は、図18に示す半導体パッケージを他方側から見た平面図である。 図20は、図18に示す半導体パッケージの斜視図である。 図21は、図18に示す半導体パッケージの分解斜視図である。 図22は、図18に示すXXII-XXII線に沿う断面図である。 図23は、図18に示す半導体パッケージの回路図である。
 図1は、本発明の第1実施形態に係る半導体装置1を示す平面図である。図2は、図1に示すII-II線に沿う断面図を第1形態例に係る外面めっき層42と共に示す断面図である。図3は、図2に示す領域IIIの拡大図である。
 図1~図3を参照して、半導体装置1は、この形態(this embodiment)では、SiCチップ2(チップ)を含むSiC半導体装置からなる。SiCチップ2は、六方晶からなるSiC単結晶を含む。六方晶からなるSiC単結晶は、2H(Hexagonal)-SiC単結晶、4H-SiC単結晶、6H-SiC単結晶等を含む複数種のポリタイプを有している。SiCチップ2は、この形態では、4H-SiC単結晶からなるが、他のポリタイプを除外するものではない。
 SiCチップ2は、直方体形状に形成されている。SiCチップ2は、一方側の第1主面3、他方側の第2主面4、ならびに、第1主面3および第2主面4を接続する側面5A、5B、5C、5Dを有している。第1主面3および第2主面4は、それらの法線方向Zから見た平面視(以下、単に「平面視」という。)において四角形状(この形態では正方形状)に形成されている。
 SiCチップ2の厚さは、40μm以上300μm以下であってもよい。SiCチップ2の厚さは、40μm以上100μm以下、100μm以上150μm以下、150μm以上200μm以下、200μm以上250μm以下、または、250μm以上300μm以下であってもよい。SiCチップ2の厚さは、60μm以上150μm以下であることが好ましい。
 第1主面3および第2主面4は、SiC単結晶のc面に面している。第1主面3はSiC単結晶のシリコン面((0001)面)に面し、第2主面4はSiC単結晶のカーボン面((000-1)面)に面している。第2主面4は、研削痕およびアニール痕のいずれか一方または双方を有する粗面からなっていてもよい。アニール痕は、レーザ照射痕である。第2主面4は、アニール痕を有するオーミック面であってもよい。
 第1主面3および第2主面4は、SiC単結晶のc面に対して所定のオフ方向に所定のオフ角で傾斜したオフ角を有していてもよい。オフ方向は、SiC単結晶のa軸方向([11-20]方向)であることが好ましい。オフ角は、オフ方向に0°以上10°以下の角度で傾斜していることが好ましい。オフ角は、0°以上6°以下であってもよい。オフ角は、0°以上2°以下、2°以上4°以下、または、4°以上6°以下であってもよい。
 オフ角は、0°を超えて4.5°以下であることが好ましい。オフ角は、3°以上4.5°以下であってもよい。この場合、オフ角は、3°以上3.5°以下、または、3.5°以上4°以下であることが好ましい。オフ角は、1.5°以上3°以下であってもよい。この場合、オフ角は、1.5°以上2°以下、または、2°以上2.5°以下であることが好ましい。
 側面5A~5Dは、第1側面5A、第2側面5B、第3側面5Cおよび第4側面5Dを含む。第1側面5Aおよび第2側面5Bは、第1方向Xに沿って延び、第1方向Xに交差する第2方向Yに対向している。第3側面5Cおよび第4側面5Dは、第2方向Yに沿って延び、第1方向Xに対向している。第2方向Yは、具体的には、第1方向Xに直交している。
 第1側面5Aおよび第2側面5Bは、SiC単結晶のa面によって形成されている。第1側面5Aおよび第2側面5Bは、法線方向Zを基準にしたとき、法線方向Zに対してSiC単結晶のc軸方向([0001]方向)に傾斜した傾斜面を形成していてもよい。第1側面5Aおよび第2側面5Bは、法線方向Zを0°としたとき、法線方向Zに対してオフ角に応じた角度で傾斜していてもよい。オフ角に応じた角度は、オフ角と等しくてもよいし、0°を超えてオフ角未満の角度であってもよい。
 第3側面5Cおよび第4側面5Dは、SiC単結晶のm面によって形成されている。第3側面5Cおよび第4側面5Dは、法線方向Zに沿って平面的に延びている。第3側面5Cおよび第4側面5Dは、具体的には、第1主面3および第2主面4に対して略垂直に形成されている。
 側面5A~5Dは、劈開面または研削面からなっていてもよい。側面5A~5Dの長さは、0.1mm以上10mm以下であってもよい。側面5A~5Dの長さは、0.5mm以上2.5mm以下であることが好ましい。
 SiCチップ2は、この形態では、n型のSiC基板6およびn型のSiCエピタキシャル層7を含む積層構造を有している。SiC基板6によって、SiCチップ2の第2主面4および側面5A~5Dの一部が形成されている。SiCエピタキシャル層7によって、SiCチップ2の第1主面3および側面5A~5Dの一部が形成されている。
 SiCエピタキシャル層7のn型不純物濃度は、SiC基板6のn型不純物濃度未満である。SiC基板6のn型不純物濃度は、1.0×1018cm-3以上1.0×1021cm-3以下であってもよい。SiCエピタキシャル層7のn型不純物濃度は、1.0×1015cm-3以上1.0×1018cm-3以下であってもよい。
 SiC基板6の厚さは、40μm以上250μm以下であってもよい。SiC基板6の厚さは、40μm以上100μm以下、100μm以上150μm以下、150μm以上200μm以下、または、200μm以上250μm以下であってもよい。SiC基板6の厚さは、40μm以上150μm以下であることが好ましい。SiC基板6を薄化することにより、SiC基板6の抵抗値を低減できる。
 SiCエピタキシャル層7の厚さは、1μm以上50μm以下であってもよい。SiCエピタキシャル層7の厚さは、1μm以上5μm以下、5μm以上10μm以下、10μm以上15μm以下、15μm以上20μm以下、20μm以上30μm以下、30μm以上40μm以下、または、40μm以上50μm以下であってもよい。SiCエピタキシャル層7の厚さは、5μm以上15μm以下であることが好ましい。
 SiCチップ2は、アクティブ領域8および外側領域9を含む。アクティブ領域8は、機能デバイス(ダイオード)の一例としてのSBD(Schottky Barrier Diode)を含む領域である。アクティブ領域8は、平面視において側面5A~5Dから内方に間隔を空けてSiCチップ2の中央部に形成されている。アクティブ領域8は、平面視において側面5A~5Dに平行な4辺を有する四角形状に形成されている。
 外側領域9は、アクティブ領域8外の領域である。外側領域9は、側面5A~5Dおよびアクティブ領域8の間の領域に形成されている。外側領域9は、平面視においてアクティブ領域8を取り囲む環状(具体的には、無端状)に形成されている。
 半導体装置1は、アクティブ領域8において第1主面3の表層部に形成されたn型のダイオード領域10を含む。ダイオード領域10は、第1主面3の中央部に形成されている。ダイオード領域10の平面形状は任意である。ダイオード領域10は、平面視において側面5A~5Dに平行な4辺を有する四角形状に形成されていてもよい。
 ダイオード領域10は、この形態では、SiCエピタキシャル層7の一部を利用して形成されている。ダイオード領域10のn型不純物濃度は、SiCエピタキシャル層7のn型不純物濃度と等しい。ダイオード領域10のn型不純物濃度は、SiCエピタキシャル層7のn型不純物濃度を超えていてもよい。この場合、ダイオード領域10は、SiCエピタキシャル層7の表層部に対するn型不純物の導入によって形成される。
 外側領域9において第1主面3の表層部には、p型不純物を含むガード領域11が形成されている。ガード領域11のp型不純物は、活性化されていなくてもよいし、活性化されていてもよい。ガード領域11は、平面視においてダイオード領域10に沿って延びる帯状に形成されている。ガード領域11は、具体的には、平面視においてダイオード領域10を取り囲む環状(具体的には、無端状)に形成されている。
 これにより、ガード領域11は、ガードリング領域として形成されている。ガード領域11は、アクティブ領域8(ダイオード領域10)を画定している。アクティブ領域8(ダイオード領域10)の平面形状は、ガード領域11の平面形状によって調整される。ガード領域11は、平面視において多角環状や円環状に形成されていてもよい。
 半導体装置1は、第1主面3の上に形成された主面絶縁層12を含む。主面絶縁層12は、酸化シリコン層および窒化シリコン層を含む積層構造を有していてもよい。主面絶縁層12は、酸化シリコン層または窒化シリコン層からなる単層構造を有していてもよい。主面絶縁層12は、この形態では、酸化シリコン層からなる単層構造を有している。
 主面絶縁層12は、ダイオード領域10を露出させるコンタクト開口13を有している。コンタクト開口13は、ガード領域11の内周縁も露出させている。コンタクト開口13の平面形状は、任意である。コンタクト開口13は、平面視において側面5A~5Dに平行な4辺を有する四角形状に区画されていてもよい。
 主面絶縁層12の周縁は、側面5A~5Dから露出している。主面絶縁層12の周縁は、この形態では、側面5A~5Dに連なっている。主面絶縁層12の周縁は、側面5A~5Dから内方に間隔を空けて形成されていてもよい。この場合、主面絶縁層12は、第1主面3において外側領域9に位置する部分を露出させる。
 主面絶縁層12の厚さは、0.1μm以上10μm以下であってもよい。主面絶縁層12の厚さは、0.1μm以上1μm以下、1μm以上2μm以下、2μm以上4μm以下、4μm以上6μm以下、6μm以上8μm以下、または、8μm以上10μm以下であってもよい。主面絶縁層12の厚さは、0.5μm以上5μm以下であることが好ましい。
 半導体装置1は、第1主面3の上に形成された第1主面電極21(電極)を含む。第1主面電極21は、コンタクト開口13内においてダイオード領域10およびガード領域11に接続されている。第1主面電極21は、コンタクト開口13から主面絶縁層12の上に引き出されている。第1主面電極21の周縁は、側面5A~5Dから内方に間隔を空けて主面絶縁層12の上に形成されている。これにより、第1主面電極21は、主面絶縁層12の周縁部を露出させている。
 第1主面電極21の厚さT1は、10μm以上100μm以下であってもよい。厚さT1は、10μm以上20μm以下、20μm以上40μm以下、40μm以上60μm以下、60μm以上80μm以下、または、80μm以上100μm以下であってもよい。厚さT1は、20μm以上60μm以下であることが好ましい。
 第1主面電極21は、具体的には、第1主面3側からこの順に積層されたバリア電極22および主電極23を含む積層構造を有している。バリア電極22は、第1主面3および主面絶縁層12に沿って膜状に形成されている。バリア電極22は、ダイオード領域10との間でショットキー接合を形成する。これにより、第1主面電極21をアノードとし、ダイオード領域10をカソードとして有するSBDが形成されている。つまり、第1主面電極21は、SBDのアノード電極である。
 バリア電極22は、Ti層、Pd層、Cr層、V層、Mo層、W層、Pt層およびNi層のうちの少なくとも1つを含んでいてもよい。バリア電極22の厚さは、0.01μm以上1μm以下であってもよい。バリア電極22の厚さは、0.01μm以上0.1μm以下、0.1μm以上0.2μm以下、0.2μm以上0.4μm以下、0.4μm以上0.6μm以下、0.6μm以上0.8μm以下、または、0.8μm以上1μm以下であってもよい。
 主電極23は、バリア電極22の上に膜状に形成されている。主電極23は、バリア電極22の主面の全域を被覆している。主電極23は、Al系金属層からなる。主電極23は、具体的には、純Al層(純度が99%以上のAlからなるAl層)、AlSi合金層、AlCu合金層およびAlSiCu合金層のうちの少なくとも1つを含む。
 主電極23は、純Al層、AlSi合金層、AlCu合金層およびAlSiCu合金層のうちの2つ以上が任意の順序で積層された積層構造を有していてもよい。主電極23は、純Al層、AlSi合金層、AlCu合金層またはAlSiCu合金層からなる単層構造を有していてもよい。主電極23は、AlSi合金層、AlCu合金層またはAlSiCu合金層からなる単層構造を有していることが好ましい。
 主電極23の厚さは、バリア電極22の厚さを超えている。主電極23の厚さは、10μm以上100μm以下であってもよい。主電極23の厚さは、10μm以上20μm以下、20μm以上40μm以下、40μm以上60μm以下、60μm以上80μm以下、または、80μm以上100μm以下であってもよい。主電極23の厚さは、20μm以上60μm以下であることが好ましい。バリア電極22の厚さは主電極23の厚さと比較して極めて小さいため、第1主面電極21の厚さT1は、主電極23の厚さに近似される。
 半導体装置1は、第1主面3の上において第1主面電極21を被覆する絶縁層24を含む。図1では、絶縁層24がハッチングによって示されている。絶縁層24は、具体的には、主面絶縁層12の上に形成されている。絶縁層24の周縁は、側面5A~5Dから内方に間隔を空けて形成されている。これにより、絶縁層24は、主面絶縁層12の周縁部を露出させている。
 絶縁層24の周縁は、側面5A~5Dとの間でダイシングストリート25を区画している。ダイシングストリート25によれば、ウエハから半導体装置1を切り出す際に、絶縁層24を物理的に切断せずに済む。これにより、ウエハから半導体装置1を円滑に切り出すことができると同時に、絶縁層24の剥離や劣化を抑制できる。その結果、絶縁層24によってSiCチップ2や第1主面電極21等の保護対象物を適切に保護できる。
 ダイシングストリート25の幅は、1μm以上25μm以下であってもよい。ダイシングストリート25の幅は、ダイシングストリート25が延びる方向に直交する方向の幅である。ダイシングストリート25の幅は、1μm以上5μm以下、5μm以上10μm以下、10μm以上15μm以下、15μm以上20μm以下、または、20μm以上25μm以下であってもよい。
 絶縁層24は、第1主面電極21を露出させるパッド開口26を有している。パッド開口26は、平面視においてコンタクト開口13によって取り囲まれた領域内において第1主面電極21を露出させている。パッド開口26は、平面視においてコンタクト開口13外の領域でコンタクト開口13を取り囲んでいてもよい。パッド開口26の平面形状は任意である。パッド開口26は、平面視において側面5A~5Dに平行な4辺を有する四角形状に形成されていてもよい。
 絶縁層24は、具体的には、SiCチップ2側からこの順に積層された無機絶縁層30および有機絶縁層31を含む積層構造を有している。無機絶縁層30は、主面絶縁層12および第1主面電極21に沿って膜状に形成されている。無機絶縁層30は、第1内壁32および第1外壁33を含む。無機絶縁層30の第1内壁32は、第1主面電極21の一部を露出させる第1開口34を区画している。第1開口34は、パッド開口26の一部を形成している。
 第1開口34は、平面視においてコンタクト開口13によって取り囲まれた領域内に区画されている。第1開口34は、平面視においてコンタクト開口13の外側からコンタクト開口13を取り囲んでいてもよい。第1開口34の平面形状は任意である。第1開口34は、平面視において側面5A~5Dに平行な4辺を有する四角形状に区画されていてもよい。
 無機絶縁層30の第1外壁33は、側面5A~5Dから内方に間隔を空けて形成され、主面絶縁層12の周縁部を露出させている。無機絶縁層30は、側面5A~5Dとの間でダイシングストリート25の一部を区画している。第1外壁33は、平面視において側面5A~5Dに平行な4辺を有する四角形状に形成されていてもよい。
 第1内壁32(第1外壁33)が、無機絶縁層30内において第1主面電極21の主面との間で成す角度は、30°以上90°以下であってもよい。第1内壁32(第1外壁33)が、無機絶縁層30内において第1主面電極21の主面との間で成す角度は、45°以上90°未満であることが好ましい。第1内壁32(第1外壁33)の角度は、第1内壁32(第1外壁33)の下端部および上端部を結ぶ直線が、第1主面電極21の主面との間で成す角度によって定義される。
 無機絶縁層30は、Niに対する密着性が高い性質を有している。無機絶縁層30は、酸化シリコン層および窒化シリコン層のうちの少なくとも1つを含む。無機絶縁層30は、SiCチップ2側からこの順に積層された酸化シリコン層および窒化シリコン層を含む積層構造を有していてもよい。無機絶縁層30は、酸化シリコン層または窒化シリコン層からなる単層構造を有していてもよい。無機絶縁層30は、主面絶縁層12とは異なる絶縁材料を含むことが好ましい。無機絶縁層30は、この形態では、窒化シリコン層からなる単層構造を有している。
 無機絶縁層30の厚さT2は、第1主面電極21の厚さT1未満(T2<T1)であることが好ましい。厚さT2は、0.1μm以上10μm以下であってもよい。厚さT2は、0.1μm以上1μm以下、1μm以上2μm以下、2μm以上4μm以下、4μm以上6μm以下、6μm以上8μm以下、または、8μm以上10μm以下であってもよい。厚さT2は、1μm以上5μm以下であることが好ましい。厚さT2は、1μm以上2μm以下であることが特に好ましい。
 有機絶縁層31は、無機絶縁層30の上に膜状に形成されている。有機絶縁層31は、第2内壁35および第2外壁36を含む。有機絶縁層31の第2内壁35は、第1主面電極21の一部を露出させる第2開口37を区画している。第2内壁35は、この形態では、無機絶縁層30側に向けて窪んだ湾曲状に形成されている。
 図3を参照して、第2開口37は、無機絶縁層30の第1開口34に連通し、第1開口34との間でパッド開口26を形成している。第2開口37は、平面視においてコンタクト開口13によって取り囲まれた領域内に区画されている。第2開口37は、平面視においてコンタクト開口13の外側からコンタクト開口13を取り囲んでいてもよい。第2開口37の平面形状は任意である。第2開口37は、平面視において側面5A~5Dに平行な4辺を有する四角形状に区画されていてもよい。
 第2開口37は、第1開口34から間隔を空けて第1開口34を取り囲み、無機絶縁層30の一部を露出させている。有機絶縁層31は、具体的には、第1開口34および第2開口37の間の領域において無機絶縁層30の主面の一部を内周縁38として露出させている。
 無機絶縁層30の内周縁38の幅Wは、0μmを超えて10μm以下であってもよい。幅Wは、0μmを超えて1μm以下、1μm以上2μm以下、2μm以上4μm以下、4μm以上6μm以下、6μm以上8μm以下、または、8μm以上10μm以下であってもよい。幅Wは、1μm以上5μm以下であることが好ましい。幅Wは、任意であるが、無機絶縁層30の厚さT2以下(W≦T2)であることが好ましい。幅Wは、1μm以上2μm以下であることが特に好ましい。
 有機絶縁層31の第2外壁36は、この形態では、無機絶縁層30側に向けて窪んだ湾曲状に形成されている。第2外壁36は、側面5A~5Dから内方に間隔を空けて無機絶縁層30の上に形成され、側面5A~5Dとの間でダイシングストリート25の一部を区画している。これにより、有機絶縁層31は、主面絶縁層12の周縁部を露出させている。第2外壁36は、平面視において側面5A~5Dに平行な4辺を有する四角形状に形成されていてもよい。
 有機絶縁層31の第2外壁36は、無機絶縁層30の第1外壁33を横切って主面絶縁層12の上に形成されていてもよい。この場合、有機絶縁層31の第2外壁36によってダイシングストリート25が区画される。
 有機絶縁層31の第2内壁35(第2外壁36)が有機絶縁層31内において無機絶縁層30の主面との間で成す角度は、30°以上90°以下であってもよい。第2内壁35(第2外壁36)が、有機絶縁層31内において無機絶縁層30の主面との間で成す角度は、45°以上90°未満であることが好ましい。第2内壁35(第2外壁36)の角度は、第2内壁35(第2外壁36)の下端部および上端部を結ぶ直線が、無機絶縁層30の主面との間で成す角度によって定義される。
 有機絶縁層31は、無機絶縁層30と比較してNiに対する密着性が低い性質を有している。有機絶縁層31は、ネガティブタイプまたはポジティブタイプの感光性樹脂を含む。有機絶縁層31は、ポリイミド、ポリアミドおよびポリベンゾオキサゾールのうちの少なくとも1つを含んでいてもよい。有機絶縁層31は、この形態では、ポリイミドを含む。
 有機絶縁層31は、無機絶縁層30の厚さT2を超える厚さT3(T2<T3)を有していることが好ましい。無機絶縁層30の厚さT2に対する有機絶縁層31の厚さT3の比T3/T2は、1を超えて10以下であってもよい。比T3/T2は、1を超えて2以下、2以上4以下、4以上6以下、6以上8以下、または、8以上10以下であってもよい。比T3/T2は、2以上6以下であることが好ましい。
 厚さT3は、1μm以上50μm以下であってもよい。厚さT3は、1μm以上10μm以下、10μm以上20μm以下、20μm以上30μm以下、30μm以上40μm以下、または、40μm以上50μm以下であってもよい。厚さT3は、5μm以上30μm以下であることが好ましい。
 半導体装置1は、第1主面電極21においてパッド開口26(無機絶縁層30の第1開口34)から露出する露出面に形成された粗面領域39を含む。粗面領域39は、無機絶縁層30の第1内壁32の直下の領域に形成された窪みを含む。これにより、無機絶縁層30の第1内壁32は、粗面領域39にオーバハングした部分を含む。
 半導体装置1は、パッド開口26内に形成されたパッド電極40を含む。パッド電極40は、パッド開口26内において第1主面電極21の上に形成されたNiめっき層41を含む。Niめっき層41は、第1開口34内において第1主面電極21を被覆し、第2開口37内において無機絶縁層30の内周縁38を被覆している。Niめっき層41は、有機絶縁層31(絶縁層24)の主面から第1主面電極21側に間隔を空けて形成された外面を有している。Niめっき層41は、この形態では、第2開口37内において有機絶縁層31を被覆している。
 図3を参照して、Niめっき層41は、第1主面電極21を被覆する第1部分41A、および、無機絶縁層30の内周縁38を被覆する第2部分41Bを有している。Niめっき層41の第1部分41Aは、第1開口34内において粗面領域39を埋めて第1主面電極21を被覆している。第1部分41Aは、無機絶縁層30の第1内壁32の全域を被覆し、第1開口34の開口端から第2開口37の開口端に向かって突出している。第1部分41Aは、無機絶縁層30の第1内壁32に接続され、無機絶縁層30の厚さ方向に延びる第1接続部を有している。
 Niめっき層41の第2部分41Bは、第2開口37内において第1部分41Aから有機絶縁層31側に向けて引き出されている。第2部分41Bは、第1開口34の開口端を起点に有機絶縁層31に向かう円弧状に形成されている。
 第2部分41Bは、第2開口37内において無機絶縁層30の内周縁38を被覆している。これにより、第2部分41Bは、無機絶縁層30の内周縁38を挟んで第1主面電極21に対向している。第2部分41Bは、無機絶縁層30の主面に接続され、無機絶縁層30の幅方向に延びる第2接続部を有している。
 第2部分41Bは、この形態では、第2開口37内において有機絶縁層31の第2内壁35をさらに被覆している。第2部分41Bは、有機絶縁層31の第2内壁35の中間部に対して無機絶縁層30側の領域を被覆している。換言すると、第2部分41Bは、第2内壁35(有機絶縁層31)の露出面積が第2内壁35(有機絶縁層31)の隠蔽面積を超えるように有機絶縁層31を被覆している。このように、Niめっき層41は、第1部分41Aおよび第2部分41Bが第1開口34の開口端に異なる2方向から係合(engage)するように形成されている。
 Niめっき層41は、無機絶縁層30の厚さT2を超える厚さT4(T2<T4)を有している。厚さT4は、有機絶縁層31の厚さT3未満(T4<T3)である。厚さT4は、無機絶縁層30の厚さT2に内周縁38の幅Wを加算した値(T2+W)を超えている(T2+W<T4)。これは、Niめっき層41が有機絶縁層31の第2内壁35に接する条件である。厚さT4は、第1主面電極21の主面を基準とするNiめっき層41の厚さによって定義される。
 無機絶縁層30の厚さT2に対するNiめっき層41の厚さT4の比T4/T2は、1を超えて5以下であってもよい。比T4/T2は、1を超えて2以下、2以上3以下、3以上4以下、または、4以上5以下であってもよい。
 厚さT4は、0.1μm以上15μm以下であってもよい。厚さT4は、0.1μm以上1μm以下、1μm以上3μm以下、3μm以上6μm以下、6μm以上9μm以下、9μm以上12μm以下、または、12μm以上15μm以下であってもよい。厚さT4は、2μm以上8μm以下であることが好ましい。
 パッド電極40は、Niめっき層41とは異なる金属材料からなり、第2開口37内においてNiめっき層41の外面を被覆する外面めっき層42を含む。外面めっき層42は、Niめっき層41の厚さT4未満の厚さT5(T5<T4)を有している。外面めっき層42は、第2開口37内において有機絶縁層31の第2内壁35を被覆している。
 外面めっき層42は、導電接合材(たとえば半田)を介して外部接続される端子面42Aを有している。端子面42Aは、有機絶縁層31の主面(第2開口37の開口端)に対してNiめっき層41側に位置している。これにより、外面めっき層42は、有機絶縁層31の第2内壁35の一部を露出させている。
 外面めっき層42は、この形態では、Niめっき層41側からこの順に積層されたPdめっき層43およびAuめっき層44を含む積層構造を有している。Pdめっき層43は、Niめっき層41の外面に沿って膜状に形成されている。Pdめっき層43は、第2開口37の開口端から無機絶縁層30側に間隔を空けてNiめっき層41を被覆している。Pdめっき層43は、第2開口37内において有機絶縁層31の第2内壁35を被覆している。
 Pdめっき層43は、Niめっき層41の厚さT4未満の厚さを有している。Pdめっき層43の厚さは、0.01μm以上1μm以下であってもよい。Pdめっき層43の厚さは、0.01μm以上0.1μm以下、0.1μm以上0.2μm以下、0.2μm以上0.4μm以下、0.4μm以上0.6μm以下、0.6μm以上0.8μm以下、または、0.8μm以上1μm以下であってもよい。
 Auめっき層44は、Pdめっき層43の外面に沿って膜状に形成されている。Auめっき層44は、第2開口37の開口端から無機絶縁層30側に間隔を空けてPdめっき層43を被覆している。Auめっき層44は、第2開口37内において有機絶縁層31の第2内壁35を被覆している。
 Auめっき層44は、Niめっき層41の厚さT4未満の厚さを有している。Auめっき層44の厚さは、0.01μm以上1μm以下であってもよい。Auめっき層44の厚さは、0.01μm以上0.1μm以下、0.1μm以上0.2μm以下、0.2μm以上0.4μm以下、0.4μm以上0.6μm以下、0.6μm以上0.8μm以下、または、0.8μm以上1μm以下であってもよい。
 外面めっき層42は、図4A~図4Dに示される種々の形態を取り得る。
 図4Aは、図3の対応図であって、第2形態例に係る外面めっき層42を示す拡大図である。以下、第1形態例に係る外面めっき層42と異なる箇所について説明する。
 図4Aを参照して、外面めっき層42は、この形態では、Auめっき層44からなる単層構造を有している。Auめっき層44は、Niめっき層41の外面に沿って膜状に形成されている。Auめっき層44は、第2開口37の開口端から無機絶縁層30側に間隔を空けてNiめっき層41を被覆している。Auめっき層44は、第2開口37内において有機絶縁層31の第2内壁35を被覆している。
 図4Bは、図3の対応図であって、第3形態例に係る外面めっき層42を示す拡大図である。以下、第1形態例に係る外面めっき層42と異なる箇所について説明する。
 図4Bを参照して、外面めっき層42は、この形態では、Pdめっき層43からなる単層構造を有している。Pdめっき層43は、Niめっき層41の外面に沿って膜状に形成されている。Pdめっき層43は、第2開口37の開口端から無機絶縁層30側に間隔を空けてNiめっき層41を被覆している。Pdめっき層43は、第2開口37内において有機絶縁層31の第2内壁35を被覆している。
 図4Cは、図3の対応図であって、第4形態例に係る外面めっき層42を示す拡大図である。以下、第1形態例に係る外面めっき層42と異なる箇所について説明する。
 図4Cを参照して、外面めっき層42は、この形態では、Agめっき層45からなる単層構造を有している。Agめっき層45は、Niめっき層41の外面に沿って膜状に形成されている。Agめっき層45は、第2開口37の開口端から無機絶縁層30側に間隔を空けてNiめっき層41を被覆している。Agめっき層45は、第2開口37内において有機絶縁層31の第2内壁35を被覆している。
 Agめっき層45は、Niめっき層41の厚さT4未満の厚さを有している。Agめっき層45の厚さは、0.01μm以上1μm以下であってもよい。Agめっき層45の厚さは、0.01μm以上0.1μm以下、0.1μm以上0.2μm以下、0.2μm以上0.4μm以下、0.4μm以上0.6μm以下、0.6μm以上0.8μm以下、または、0.8μm以上1μm以下であってもよい。
 図4Dは、図3の対応図であって、第5形態例に係る外面めっき層42を示す拡大図である。以下、第1形態例に係る外面めっき層42と異なる箇所について説明する。
 図4Dを参照して、外面めっき層42は、Niめっき層41側からこの順に積層されたPdめっき層43、Auめっき層44およびAgめっき層45を含む積層構造を有している。
 Pdめっき層43は、Niめっき層41の外面に沿って膜状に形成されている。Pdめっき層43は、第2開口37の開口端から無機絶縁層30側に間隔を空けてNiめっき層41を被覆している。Pdめっき層43は、第2開口37内において有機絶縁層31の第2内壁35を被覆している。
 Auめっき層44は、Pdめっき層43の外面に沿って膜状に形成されている。Auめっき層44は、第2開口37の開口端から無機絶縁層30側に間隔を空けてPdめっき層43を被覆している。Auめっき層44は、第2開口37内において有機絶縁層31の第2内壁35を被覆している。
 Agめっき層45は、Auめっき層44の外面に沿って膜状に形成されている。Agめっき層45は、第2開口37の開口端から無機絶縁層30側に間隔を空けてAuめっき層44を被覆している。Agめっき層45は、第2開口37内において有機絶縁層31の第2内壁35を被覆している。
 図2を再度参照して、半導体装置1は、第2主面4の上に形成された第2主面電極46を含む。第2主面電極46は、第2主面4の全域を被覆している。第2主面電極46は、第2主面4との間でオーミック接触を形成している。第2主面電極46は、SBDのカソード電極として形成されている。
 第2主面電極46は、Ti層、Ni層、Pd層、Au層およびAg層のうちの少なくとも1つを含む。第2主面電極46は、Ti層、Ni層、Pd層、Au層およびAg層のうちの少なくとも2つを任意の順序で積層した積層構造を有していてもよい。第2主面電極46は、Ti層、Ni層、Pd層、Au層およびAg層からなる単層構造を有していてもよい。第2主面電極46は、オーミック電極としてのTi層を含むことが好ましい。第2主面電極46は、この形態では、第2主面4側からこの順に積層されたTi層、Ni層、Pd層、Au層およびAg層を含む積層構造を有している。
 図5A~図5Oは、図1に示す半導体装置1の製造方法の一例を説明するための断面図である。
 図5Aを参照して、まず、SiCチップ2のベースとなるSiCエピタキシャルウエハ50が用意される。SiCエピタキシャルウエハ50は、SiCウエハ51およびSiCエピタキシャル層52を含む積層構造を有している。SiCウエハ51は、SiC基板6のベースとなる。SiCエピタキシャル層52は、SiCエピタキシャル層7のベースとなる。SiCエピタキシャル層52は、SiCウエハ51の主面からSiCをエピタキシャル成長することによって形成されている。
 SiCエピタキシャルウエハ50は、一方側の第1ウエハ主面53、および、他方側の第2ウエハ主面54を有している。第1ウエハ主面53および第2ウエハ主面54は、SiCチップ2の第1主面3および第2主面4にそれぞれ対応している。
 SiCエピタキシャルウエハ50には、半導体装置1にそれぞれ対応した複数の装置領域55、および、複数の装置領域55を区画する切断予定ライン56が設定される。図5Aでは、1つの装置領域55が示されており、それ以外の領域の図示は省略されている(以下、図5B~図5Oにおいて同じ)。複数の装置領域55は、第1方向Xおよび第2方向Yに沿う行列状に設定される。切断予定ライン56は、第1方向Xおよび第2方向Yに沿って延びる格子状に設定される。
 次に、図5Bを参照して、機能デバイスの主要部が、各装置領域55に形成される。この形態では、第1ウエハ主面53の表層部にn型不純物および/またはp型不純物が選択的に導入されて、n型のダイオード領域10およびp型のガード領域11が形成される。n型不純物および/またはp型不純物は、イオン注入マスク(図示せず)を介するイオン注入法によって第1ウエハ主面53の表層部に導入される。
 次に、図5Cを参照して、主面絶縁層12が、第1ウエハ主面53の上に形成される。主面絶縁層12は、CVD(Chemical Vapor Deposition)法および/または酸化処理法(たとえば熱酸化処理法)によって形成されてもよい。
 次に、図5Dを参照して、所定パターンを有するレジストマスク57が、主面絶縁層12の上に形成される。レジストマスク57は、主面絶縁層12においてコンタクト開口13を形成すべき領域を露出させ、それ以外の領域を被覆している。次に、主面絶縁層12の不要な部分が、レジストマスク57を介するエッチング法によって除去される。エッチング法は、ウエットエッチング法および/またはドライエッチング法であってもよい。これにより、コンタクト開口13が、主面絶縁層12に形成される。
 次に、図5Eを参照して、第1主面電極21のベースとなるベース電極層58が、主面絶縁層12の上に形成される。ベース電極層58は、主面絶縁層12側からこの順に積層されたバリア電極22および主電極23を含む積層構造を有している。バリア電極22および主電極23は、スパッタ法および/または蒸着法によってそれぞれ形成されてもよい。
 次に、図5Fを参照して、所定パターンを有するレジストマスク59が、ベース電極層58の上に形成される。レジストマスク59は、ベース電極層58において第1主面電極21を形成すべき領域を露出させ、それ以外の領域を被覆している。次に、ベース電極層58の不要な部分が、レジストマスク59を介するエッチング法によって除去される。エッチング法は、ウエットエッチング法および/またはドライエッチング法であってもよい。これにより、第1主面電極21が、主面絶縁層12の上に形成される。
 次に、図5Gを参照して、無機絶縁層30が、第1主面電極21を被覆するように主面絶縁層12の上に形成される。無機絶縁層30は、この形態では、窒化シリコン層からなる単層構造を有している。無機絶縁層30は、SiCエピタキシャルウエハ50側からこの順に積層された酸化シリコン層および窒化シリコン層を含む積層構造を有していてもよい。無機絶縁層30は、CVD法によって形成されてもよい。
 次に、図5Hを参照して、所定パターンを有するレジストマスク60が、無機絶縁層30の上に形成される。レジストマスク60は、無機絶縁層30において第1開口34およびダイシングストリート25を形成すべき領域を露出させ、それら以外の領域を被覆している。
 次に、無機絶縁層30の不要な部分が、レジストマスク60を介するエッチング法によって除去される。エッチング法は、ウエットエッチング法および/またはドライエッチング法であってもよい。これにより、第1主面電極21を露出させる第1開口34、および、切断予定ライン56に沿って格子状に延びるダイシングストリート25が、無機絶縁層30に形成される。
 次に、図5Iを参照して、有機絶縁層31が、第1主面電極21および無機絶縁層30を被覆するように主面絶縁層12の上に形成される。有機絶縁層31は、感光性樹脂の一例としてのポリイミドを第1ウエハ主面53側に塗布することによって形成される。
 次に、図5Jを参照して、有機絶縁層31が、第2開口37およびダイシングストリート25に対応したパターンで露光された後、現像される。これにより、第1主面電極21を露出させる第2開口37、および、切断予定ライン56に沿って格子状に延びるダイシングストリート25が、有機絶縁層31に形成される。
 有機絶縁層31の第2開口37は、無機絶縁層30の第1開口34から間隔を空けて第1開口34を取り囲むように形成される。これにより、第1開口34および第2開口37の間の領域において無機絶縁層30の内周縁38を露出させる有機絶縁層31が形成される。
 次に、図5Kを参照して、第1主面電極21において第1開口34および第2開口37から露出する部分に、粗面領域39が形成される。粗面領域39は、第1主面電極21の露出部に対するジンケート処理法(亜鉛置換処理法)によって形成される。
 次に、図5Lを参照して、Niめっき層41が、第1主面電極21において第1開口34および第2開口37から露出する部分の上に形成される。Niめっき層41は、電解めっき法または無電解めっき法(この形態では無電解めっき法)によって、第1主面電極21からNiを成膜することによって形成される。これにより、第1開口34内において第1主面電極21を被覆し、第2開口37内において無機絶縁層30の内周縁38を被覆するNiめっき層41が形成される。Niめっき層41の具体的な構造は、前述の通りであるので、説明を省略する。
 次に、図5Mを参照して、外面めっき層42が、第2開口37内においてNiめっき層41の外面の上に形成される。外面めっき層42は、Pdめっき層43、Auめっき層44およびAgめっき層45のうちの少なくとも1つを含む。外面めっき層42は、電解めっき法または無電解めっき法(この形態では無電解めっき法)によって、第1主面電極21からPd、AuおよびAgのうちの任意の材料を成膜することによって形成される。
 次に、図5Nを参照して、SiCエピタキシャルウエハ50が、第2ウエハ主面54の研削によって、所望の厚さになるまで薄化される。第2ウエハ主面54は、CMP(Chemical Mechanical Polishing)法によって研削されてもよい。第2ウエハ主面54の研削工程後、第2ウエハ主面54に対してアニール処理が実施されてもよい。アニール処理は、レーザ照射法によって実施されてもよい。これにより、第2ウエハ主面54(第2主面4)が、オーミック面となる。
 次に、図5Oを参照して、第2主面電極46が、第2ウエハ主面54の上に形成される。第2主面電極46は、スパッタ法、蒸着法および/またはめっき法によって形成されてもよい。その後、ダイシングストリート25に沿ってSiCエピタキシャルウエハ50が切断または劈開され、複数の半導体装置1が切り出される。以上を含む工程を経て、半導体装置1が製造される。
 以上、半導体装置1は、SiCチップ2、第1主面電極21、無機絶縁層30、有機絶縁層31およびNiめっき層41を含む。第1主面電極21は、SiCチップ2の上に形成されている。無機絶縁層30は、第1主面電極21を被覆し、第1主面電極21を露出させる第1開口34を有している。有機絶縁層31は、無機絶縁層30を被覆し、第1開口34から間隔を空けて第1開口34を取り囲む第2開口37を有し、第1開口34および第2開口37の間の領域において無機絶縁層30の内周縁38を露出させている。Niめっき層41は、第1開口34内において第1主面電極21に接続され、第2開口37内において無機絶縁層30の内周縁38を被覆している。
 無機絶縁層30は、Niに対する密着性が高い性質を有している一方、有機絶縁層31は、無機絶縁層30と比較してNiに対する密着性が低い性質を有している。したがって、たとえば、無機絶縁層30が存在しない場合や、有機絶縁層31が無機絶縁層30と面一に形成されている場合、Niめっき層41は、有機絶縁層31との間で第1主面電極21に向かって延びる間隙を形成する。その結果、第1主面電極21に対するNiめっき層41の接続が不十分となり、Niめっき層41の信頼性が低下する。
 そこで、半導体装置1では、Niに対する密着性が高い性質を有する無機絶縁層30の内周縁38を露出させる有機絶縁層31を形成し、Niめっき層41が無機絶縁層30の内周縁38を被覆する構造を採用した。この場合、Niめっき層41は、無機絶縁層30との間で、無機絶縁層30の厚さ方向に延びる第1接続部、および、無機絶縁層30の幅方向に延びる第2接続部を形成する。
 これにより、間隙の形成領域を第1主面電極21から遠ざけることができると同時に、第1主面電極21に向かって延びる間隙の形成を適切に抑制できる。また、無機絶縁層30の内周縁38が存在しない場合と比較して、有機絶縁層31との間における間隙の形成領域を低減させることができる。よって、Niめっき層41の信頼性を向上できる。
 半導体装置1では、Niめっき層41の第2部分41Bが、有機絶縁層31の第2内壁35の中間部に対して無機絶縁層30側の領域を被覆している。換言すると、Niめっき層41の第2部分41Bは、第2内壁35(有機絶縁層31)の隠蔽面積が第2内壁35(有機絶縁層31)の露出面積未満になるように有機絶縁層31を被覆している。このようなNiめっき層41によれば、間隙の形成領域を適切に削減できる。
 半導体装置1は、Niめっき層41の外面を被覆する外面めっき層42をさらに含む。このような構造によれば、有機絶縁層31およびNiめっき層41の間において間隙の形成が抑制されているので、当該間隙内へのめっき液の進入を抑制できる。これにより、間隙を起点とする外面めっき層42の異常成膜を抑制できる。その結果、外面めっき層42の異常成膜に起因するNiめっき層41の接続不良を抑制できると同時に、外面めっき層42の剥離(接続不良)を抑制できる。
 外面めっき層42は、具体的には、Pdめっき層43、Auめっき層44およびAgめっき層45のうちの少なくとも1つを含むことができる。したがって、Pdめっき層43、Auめっき層44およびAgめっき層45の異常成膜に起因するNiめっき層41の接続不良を抑制できる。これと同時に、Pdめっき層43、Auめっき層44およびAgめっき層45の剥離(接続不良)を抑制できる。
 図6は、図2の対応図であって、本発明の第2実施形態に係る半導体装置61を第1形態例に係る外面めっき層42と共に示す断面図である。図7は、図6に示す領域VIIの拡大図である。以下、半導体装置1に対して述べた構造に対応する構造については、同一の参照符号を付して説明を省略する。
 図6および図7を参照して、有機絶縁層31は、第1開口34および第2開口37の間の領域において無機絶縁層30の内周縁38を露出させている。無機絶縁層30の内周縁38の幅Wは任意であるが、無機絶縁層30の厚さT2を超えていることが好ましい(T2<W)。
 無機絶縁層30の厚さT2に対する内周縁38の幅Wの比W/T2は、1を超えて10以下であってもよい。比W/T2は、1を超えて2以下、2以上4以下、4以上6以下、6以上8以下、または、8以上10以下であってもよい。比W/T2は、2以上5以下であることが好ましい。幅Wは、0μmを超えて10μm以下であってもよい。幅Wは、0μmを超えて2μm以下、2μm以上4μm以下、4μm以上6μm以下、6μm以上8μm以下、または、8μm以上10μm以下であってもよい。
 Niめっき層41は、パッド開口26内において第1主面電極21の上に形成されている。Niめっき層41は、第1開口34内において第1主面電極21を被覆し、第2開口37内において無機絶縁層30の内周縁38を被覆している。Niめっき層41は、有機絶縁層31(絶縁層24)の主面から第1主面電極21側に間隔を空けて形成された外面を有している。Niめっき層41は、第2開口37内において有機絶縁層31から間隔を空けて無機絶縁層30の内周縁38を被覆している。
 Niめっき層41は、具体的には、第1主面電極21を被覆する第1部分41A、および、無機絶縁層30の内周縁38を被覆する第2部分41Bを有している。Niめっき層41の第1部分41Aは、第1開口34内において粗面領域39を埋めて第1主面電極21を被覆している。第1部分41Aは、第1開口34内において無機絶縁層30の第1内壁32の全域を被覆し、第1開口34の開口端から第2開口37の開口端に向かって突出している。第1部分41Aは、無機絶縁層30の第1内壁32に接続され、無機絶縁層30の厚さ方向に延びる第1接続部を有している。
 Niめっき層41の第2部分41Bは、第2開口37内において第1部分41Aから有機絶縁層31側に向けて引き出されている。第2部分41Bは、第1開口34の開口端を起点に有機絶縁層31の第2内壁35に向かう円弧状に形成されている。
 第2部分41Bは、第2開口37内において無機絶縁層30の内周縁38を被覆している。第2部分41Bは、この形態では、無機絶縁層30の内周縁38の一部が露出するように、第2開口37内において有機絶縁層31の第2内壁35から無機絶縁層30の第1内壁32側に間隔を空けて無機絶縁層30の内周縁38を部分的に被覆している。
 これにより、Niめっき層41は、無機絶縁層30の内周縁38の一部および有機絶縁層31の第2内壁35の全域を露出させている。第2部分41Bは、無機絶縁層30の内周縁38を挟んで第1主面電極21に対向している。第2部分41Bは、無機絶縁層30の主面に接続され、無機絶縁層30の幅方向に延びる第2接続部を有している。
 Niめっき層41は、無機絶縁層30の厚さT2を超える厚さT4(T2<T4)を有している。厚さT4は、有機絶縁層31の厚さT3未満(T4<T3)である。厚さT4は、無機絶縁層30の厚さT2に内周縁38の幅Wを加算した値(T2+W)未満(T4<T2+W)である。これは、Niめっき層41が有機絶縁層31の第2内壁35を露出させる条件である。厚さT4は、第1主面電極21の主面を基準とするNiめっき層41の厚さによって定義される。
 無機絶縁層30の厚さT2に対するNiめっき層41の厚さT4の比T4/T2は、1を超えて5以下であってもよい。比T4/T2は、1を超えて2以下、2以上3以下、3以上4以下、または、4以上5以下であってもよい。厚さT4は、0.1μm以上10μm以下であってもよい。厚さT4は、0.1μm以上1μm以下、1μm以上2μm以下、2μm以上4μm以下、4μm以上6μm以下、6μm以上8μm以下、または、8μm以上10μm以下であってもよい。
 外面めっき層42は、第2開口37内においてNiめっき層41の外面を被覆している。外面めっき層42は、Niめっき層41の厚さT4未満の厚さT5(T5<T4)を有している。外面めっき層42は、この形態では、第2開口37内において有機絶縁層31の第2内壁35から無機絶縁層30の第1内壁32側に間隔を空けて無機絶縁層30の内周縁38を部分的に被覆している。
 外面めっき層42は、導電接合材(たとえば半田)を介して外部接続される端子面42Aを有している。端子面42Aは、有機絶縁層31の主面(第2開口37の開口端)に対してNiめっき層41側に位置している。これにより、外面めっき層42は、第2開口37内において無機絶縁層30の内周縁38の一部および有機絶縁層31の第2内壁35の全域を露出させている。
 外面めっき層42は、具体的には、Niめっき層41側からこの順に積層されたPdめっき層43およびAuめっき層44を含む積層構造を有している。Pdめっき層43は、Niめっき層41の外面に沿って膜状に形成されている。Pdめっき層43は、第2開口37の開口端から無機絶縁層30側に間隔を空けてNiめっき層41を被覆している。Pdめっき層43は、無機絶縁層30の内周縁38の一部が露出するように、第2開口37内において有機絶縁層31の第2内壁35から無機絶縁層30の第1内壁32側に間隔を空けて無機絶縁層30の内周縁38を部分的に被覆している。これにより、Pdめっき層43は、第2開口37内において無機絶縁層30の内周縁38の一部および有機絶縁層31の第2内壁35の全域を露出させている。
 Pdめっき層43は、Niめっき層41の厚さT4未満の厚さを有している。Pdめっき層43の厚さは、0.01μm以上1μm以下であってもよい。Pdめっき層43の厚さは、0.01μm以上0.1μm以下、0.1μm以上0.2μm以下、0.2μm以上0.4μm以下、0.4μm以上0.6μm以下、0.6μm以上0.8μm以下、または、0.8μm以上1μm以下であってもよい。
 Auめっき層44は、Pdめっき層43の外面に沿って膜状に形成されている。Auめっき層44は、第2開口37の開口端から無機絶縁層30側に間隔を空けてPdめっき層43を被覆している。Auめっき層44は、無機絶縁層30の内周縁38の一部が露出するように、第2開口37内において有機絶縁層31の第2内壁35から無機絶縁層30の第1内壁32側に間隔を空けて無機絶縁層30の内周縁38を部分的に被覆している。これにより、Auめっき層44は、第2開口37内において無機絶縁層30の内周縁38の一部および有機絶縁層31の第2内壁35の全域を露出させている。
 Auめっき層44は、Niめっき層41の厚さT4未満の厚さを有している。Auめっき層44の厚さは、0.01μm以上1μm以下であってもよい。Auめっき層44の厚さは、0.01μm以上0.1μm以下、0.1μm以上0.2μm以下、0.2μm以上0.4μm以下、0.4μm以上0.6μm以下、0.6μm以上0.8μm以下、または、0.8μm以上1μm以下であってもよい。
 この形態では、有機絶縁層31の第2内壁35の全域を露出させる外面めっき層42が形成された例について説明した。しかし、有機絶縁層31の第2内壁35の一部を被覆する外面めっき層42が採用されてもよい。この場合、Pdめっき層43およびAuめっき層44の少なくとも1つが有機絶縁層31の第2内壁35の一部を被覆していてもよい。外面めっき層42は、図8A~図8Dに示される種々の形態を取り得る。
 図8Aは、図7の対応図であって、第2形態例に係る外面めっき層42を示す拡大図である。以下、第1形態例に係る外面めっき層42と異なる箇所について説明する。
 図8Aを参照して、外面めっき層42は、この形態では、Auめっき層44からなる単層構造を有している。Auめっき層44は、Niめっき層41の外面に沿って膜状に形成されている。Auめっき層44は、無機絶縁層30の内周縁38の一部が露出するように、第2開口37内において有機絶縁層31の第2内壁35から無機絶縁層30の第1内壁32側に間隔を空けて無機絶縁層30の内周縁38を部分的に被覆している。
 Auめっき層44は、第2開口37の開口端から無機絶縁層30側に間隔を空けてNiめっき層41を被覆している。これにより、Auめっき層44は、第2開口37内において無機絶縁層30の内周縁38の一部および有機絶縁層31の第2内壁35の全域を露出させている。Auめっき層44は、有機絶縁層31の第2内壁35の一部を被覆していてもよい。
 図8Bは、図7の対応図であって、第3形態例に係る外面めっき層42を示す拡大図である。以下、第1形態例に係る外面めっき層42と異なる箇所について説明する。
 図8Bを参照して、外面めっき層42は、この形態では、Pdめっき層43からなる単層構造を有している。Pdめっき層43は、Niめっき層41の外面に沿って膜状に形成されている。Pdめっき層43は、無機絶縁層30の内周縁38の一部が露出するように、第2開口37内において有機絶縁層31の第2内壁35から無機絶縁層30の第1内壁32側に間隔を空けて無機絶縁層30の内周縁38を部分的に被覆している。
 Pdめっき層43は、第2開口37の開口端から無機絶縁層30側に間隔を空けてNiめっき層41を被覆している。これにより、Pdめっき層43は、第2開口37内において無機絶縁層30の内周縁38の一部および有機絶縁層31の第2内壁35の全域を露出させている。Pdめっき層43は、有機絶縁層31の第2内壁35の一部を被覆していてもよい。
 図8Cは、図7の対応図であって、第4形態例に係る外面めっき層42を示す拡大図である。以下、第1形態例に係る外面めっき層42と異なる箇所について説明する。
 図8Cを参照して、外面めっき層42は、この形態では、Agめっき層45からなる単層構造を有している。Agめっき層45は、Niめっき層41の外面に沿って膜状に形成されている。Agめっき層45は、無機絶縁層30の内周縁38の一部が露出するように、第2開口37内において有機絶縁層31の第2内壁35から無機絶縁層30の第1内壁32側に間隔を空けて無機絶縁層30の内周縁38を部分的に被覆している。
 Agめっき層45は、第2開口37の開口端から無機絶縁層30側に間隔を空けてNiめっき層41を被覆している。これにより、Agめっき層45は、第2開口37内において無機絶縁層30の内周縁38の一部および有機絶縁層31の第2内壁35の全域を露出させている。Agめっき層45は、有機絶縁層31の第2内壁35の一部を被覆していてもよい。
 Agめっき層45は、Niめっき層41の厚さT4未満の厚さを有している。Agめっき層45の厚さは、0.01μm以上1μm以下であってもよい。Agめっき層45の厚さは、0.01μm以上0.1μm以下、0.1μm以上0.2μm以下、0.2μm以上0.4μm以下、0.4μm以上0.6μm以下、0.6μm以上0.8μm以下、または、0.8μm以上1μm以下であってもよい。
 図8Dは、図7の対応図であって、第5形態例に係る外面めっき層42を示す拡大図である。以下、第1形態例に係る外面めっき層42と異なる箇所について説明する。
 図8Dを参照して、外面めっき層42は、Niめっき層41側からこの順に積層されたPdめっき層43、Auめっき層44およびAgめっき層45を含む積層構造を有している。
 Pdめっき層43は、Niめっき層41の外面に沿って膜状に形成されている。Pdめっき層43は、無機絶縁層30の内周縁38の一部が露出するように、第2開口37内において有機絶縁層31の第2内壁35から無機絶縁層30の第1内壁32側に間隔を空けて無機絶縁層30の内周縁38を部分的に被覆している。Pdめっき層43は、第2開口37の開口端から無機絶縁層30側に間隔を空けてNiめっき層41を被覆している。これにより、Pdめっき層43は、第2開口37内において無機絶縁層30の内周縁38の一部および有機絶縁層31の第2内壁35の全域を露出させている。
 Auめっき層44は、Pdめっき層43の外面に沿って膜状に形成されている。Auめっき層44は、無機絶縁層30の内周縁38の一部が露出するように、第2開口37内において有機絶縁層31の第2内壁35から無機絶縁層30の第1内壁32側に間隔を空けて無機絶縁層30の内周縁38を部分的に被覆している。Auめっき層44は、第2開口37の開口端から無機絶縁層30側に間隔を空けてPdめっき層43を被覆している。これにより、Auめっき層44は、第2開口37内において無機絶縁層30の内周縁38の一部および有機絶縁層31の第2内壁35の全域を露出させている。
 Agめっき層45は、Auめっき層44の外面に沿って膜状に形成されている。Agめっき層45は、無機絶縁層30の内周縁38の一部が露出するように、第2開口37内において有機絶縁層31の第2内壁35から無機絶縁層30の第1内壁32側に間隔を空けて無機絶縁層30の内周縁38を部分的に被覆している。Agめっき層45は、第2開口37の開口端から無機絶縁層30側に間隔を空けてAuめっき層44を被覆している。これにより、Agめっき層45は、第2開口37内において無機絶縁層30の内周縁38の一部および有機絶縁層31の第2内壁35の全域を露出させている。Pdめっき層43、Auめっき層44およびAgめっき層45の少なくとも1つが有機絶縁層31の第2内壁35の一部を被覆していてもよい。
 以上、半導体装置61によっても半導体装置1に対して述べた効果と同様の効果を奏することができる。特に、半導体装置61に係るNiめっき層41は、第2開口37内において有機絶縁層31から間隔を空けて無機絶縁層30の内周縁38を被覆している。これにより、有機絶縁層31およびNiめっき層41の間に不所望な間隙が形成されることを防止できる。よって、Niめっき層41の信頼性を確実に向上できる。
 さらに、半導体装置61は、Niめっき層41の外面を被覆する外面めっき層42を含む。このような構造によれば、有機絶縁層31およびNiめっき層41の間に間隙が形成されないので、Niめっき層41の外面に沿って外面めっき層42を適切に形成できる。よって、外面めっき層42の異常成膜に起因するNiめっき層41の接続不良を適切に抑制できると同時に、外面めっき層42の剥離(接続不良)を適切に抑制できる。
 外面めっき層42は、具体的には、Pdめっき層43、Auめっき層44およびAgめっき層45のうちの少なくとも1つを含むことができる。したがって、Pdめっき層43、Auめっき層44およびAgめっき層45の異常成膜に起因するNiめっき層41の接続不良を抑制できる。これと同時に、Pdめっき層43、Auめっき層44およびAgめっき層45の剥離(接続不良)を抑制できる。
 図9は、第3実施形態に係る半導体装置101を示す平面図である。図10は、図9に示す領域Xの拡大図である。図11は、図10に示すXI-XI線に沿う断面図である。図12は、図9に示すXII-XII線に沿う断面図である。図13は、図12に示す領域XIIIの拡大図である。図14は、図12に示す領域XIVの拡大図である。以下では、半導体装置1に対して述べた構造に対応する構造については、同一の参照符号を付して説明を省略する。
 図9~図14を参照して、半導体装置101は、SBDに代えて、機能デバイスの一例としてのMISFET(Metal Insulator Semiconductor Field Effect Transistor)が、アクティブ領域8に形成されたSiC半導体装置である。
 半導体装置101は、SiCチップ2、主面絶縁層12、第1主面電極21、絶縁層24、パッド電極40および第2主面電極46を含む。図9では、絶縁層24がハッチングによって示されている。SiCチップ2の第1主面3および第2主面4は、平面視において四角形状(この形態では長方形状)に形成されている。
 第1側面5Aおよび第2側面5Bは、第1方向Xに沿って延び、第1方向Xに交差する第2方向Yに対向している。第1側面5Aおよび第2側面5Bは、SiCチップ2の短辺を形成している。第3側面5Cおよび第4側面5Dは、第2方向Yに沿って延び、第1方向Xに対向している。第3側面5Cおよび第4側面5Dは、SiCチップ2の長辺を形成している。
 第1側面5A(第2側面5B)の長さは、0.1mm以上8mm以下であってもよい。第1側面5A(第2側面5B)の長さは、0.1mm以上2.5mm以下であることが好ましい。第3側面5C(第4側面5D)の長さは、0.2mm以上16mm以下であってもよい。第3側面5C(第4側面5D)の長さは、0.5mm以上5mm以下であることが好ましい。
 SiCチップ2は、第1実施形態の場合と同様に、SiC基板6およびSiCエピタキシャル層7を含む積層構造を有している。SiC基板6は、MISFETのドレイン領域として形成されている。SiCエピタキシャル層7は、MISFETのドリフト領域として形成されている。
 SiCエピタキシャル層7は、この形態では、法線方向Zに沿って異なるn型不純物濃度を有している。SiCエピタキシャル層7は、具体的には、n型不純物濃度が高い高濃度領域102、および、高濃度領域102よりもn型不純物濃度が低い低濃度領域103を含む。
 高濃度領域102は、第1主面3側の領域に形成されている。低濃度領域103は、高濃度領域102に対して第2主面4側の領域に形成されている。高濃度領域102の厚さは、低濃度領域103の厚さ未満である。高濃度領域102の厚さは、SiCエピタキシャル層7の総厚さの2分の1未満である。
 高濃度領域102のn型不純物濃度は、1.0×1016cm-3以上1.0×1018cm-3以下であってもよい。低濃度領域103のn型不純物濃度は、1.0×1015cm-3以上1.0×1016cm-3以下であってもよい。むろん、SiCエピタキシャル層7のn型不純物濃度は、1.0×1015cm-3以上1.0×1018cm-3以下の範囲で、SiC基板6から第1主面3に向けてn型不純物濃度が漸減する濃度勾配を有していてもよい。
 アクティブ領域8は、平面視において側面5A~5Dから内方に間隔を空けてSiCチップ2の中央部に形成されている。アクティブ領域8は、平面視において側面5A~5Dに平行な4辺を有する長方形状に形成されている。一方、外側領域9は、平面視においてアクティブ領域8を取り囲む長方形環状に形成されている。
 半導体装置101は、アクティブ領域8において第1主面3に形成された複数のトレンチゲート構造104を含む。複数のトレンチゲート構造104は、第1方向Xに沿って延びる帯状にそれぞれ形成され、第2方向Yに間隔を空けて形成されている。複数のトレンチゲート構造104は、平面視において第1方向Xに沿って延びるストライプ状に形成されている。
 複数のトレンチゲート構造104は、この形態では、アクティブ領域8において一方側(第3側面5C側)の周縁部から他方側(第4側面5D側)の周縁部に向けて帯状に延びている。複数のトレンチゲート構造104は、アクティブ領域8において一方側の周縁部および他方側の周縁部の間の中間部を横切っている。
 各トレンチゲート構造104の長さは、1mm以上10mm以下であってもよい。各トレンチゲート構造104の長さは、1mm以上2mm以下、2mm以上4mm以下、4mm以上6mm以下、6mm以上8mm以下、または、8mm以上10mm以下であってもよい。各トレンチゲート構造104の長さは、2mm以上6mm以下であることが好ましい。1つのトレンチゲート構造104の単位面積当たりの総延長は、0.5μm/μm以上0.75μm/μm以下であってもよい。
 各トレンチゲート構造104は、ゲートトレンチ105、ゲート絶縁層106およびゲート電極107を含む。図10では、ゲート絶縁層106およびゲート電極107がハッチングによって示されている。
 ゲートトレンチ105は、SiCエピタキシャル層7に形成されている。ゲートトレンチ105は、側壁および底壁を含む。ゲートトレンチ105の長辺を形成する側壁は、SiC単結晶のa面によって形成されている。ゲートトレンチ105の短辺を形成する側壁は、SiC単結晶のm面によって形成されている。
 ゲートトレンチ105の側壁は、法線方向Zに沿って延びていてもよい。SiCチップ2内においてゲートトレンチ105の側壁が第1主面3に対して成す角度は、90°以上95°以下(たとえば91°以上93°以下)であってもよい。ゲートトレンチ105の側壁は、第1主面3に対してほぼ垂直に形成されていてもよい。ゲートトレンチ105は、第1主面3から底壁に向けて開口幅が狭まる先細り形状に形成されていてもよい。
 ゲートトレンチ105の底壁は、高濃度領域102に位置している。ゲートトレンチ105の底壁は、SiC単結晶のc面に面している。ゲートトレンチ105の底壁は、SiC単結晶のc面に対してa軸方向に傾斜したオフ角を有している。ゲートトレンチ105の底壁は、第1主面3に対して平行に形成されていてもよい。ゲートトレンチ105の底壁は、第2主面4に向かう湾曲状に形成されていてもよい。
 ゲートトレンチ105は、第1深さD1を有している。第1深さD1は、0.5μm以上3μm以下であってもよい。第1深さD1は、0.5μm以上1μm以下、1μm以上1.5μm以下、1.5μm以上2μm以下、2μm以上2.5μm以下、または、2.5μm以上3μm以下であってもよい。
 ゲートトレンチ105の第2方向Yに沿う幅は、0.1μm以上2μm以下であってもよい。ゲートトレンチ105の幅は、0.1μm以上0.5μm以下、0.5μm以上1μm以下、1μm以上1.5μm以下、または、1.5μm以上2μm以下であってもよい。
 ゲートトレンチ105の開口エッジ部は、第1主面3からゲートトレンチ105の内方に向かって下り傾斜した傾斜部を含む。ゲートトレンチ105の開口エッジ部は、第1主面3およびゲートトレンチ105の側壁を接続する部分である。ゲートトレンチ105の傾斜部は、SiCチップ2に向けて窪んだ湾曲状に形成されている。ゲートトレンチ105の傾斜部は、ゲートトレンチ105に向かう湾曲状に形成されていてもよい。ゲートトレンチ105の傾斜部は、ゲートトレンチ105の開口エッジ部に対する電界集中を緩和する。
 ゲート絶縁層106は、酸化シリコン、窒化シリコン、酸化アルミニウム、酸化ジルコニウムおよび酸化タンタルのうちの少なくとも1つを含む。ゲート絶縁層106は、酸化シリコン層および窒化シリコン層が任意の順で積層された積層構造を有していてもよい。ゲート絶縁層106は、酸化シリコン層または窒化シリコン層からなる単層構造を有していてもよい。ゲート絶縁層106は、この形態では、酸化シリコン層からなる単層構造を有している。
 ゲート絶縁層106は、ゲートトレンチ105の内壁に沿って膜状に形成され、ゲートトレンチ105内においてリセス空間を区画している。ゲート絶縁層106は、第1領域108、第2領域109および第3領域110を含む。第1領域108は、ゲートトレンチ105の側壁に沿って形成されている。第2領域109は、ゲートトレンチ105の底壁に沿って形成されている。第3領域110は、ゲートトレンチ105の開口エッジ部を介して第1主面3を部分的に被覆している。
 第1領域108の厚さは、0.01μm以上0.2μm以下であってもよい。第2領域109の厚さは、0.05μm以上0.5μm以下であってもよい。第2領域109の厚さは、第1領域108の厚さを超えていてもよい。第3領域110の厚さは、0.05μm以上0.5μm以下であってもよい。第3領域110の厚さは、第1領域108の厚さを超えていてもよい。
 ゲート絶縁層106は、開口エッジ部においてゲートトレンチ105内に向けて膨出した膨出部111を含む。膨出部111は、ゲート絶縁層106の第1領域108および第3領域110の接続部に形成されている。膨出部111は、ゲートトレンチ105の内方に向かう湾曲状に形成されている。膨出部111は、開口エッジ部においてゲートトレンチ105の開口を狭めている。膨出部111を有さないゲート絶縁層106が形成されていてもよい。一様な厚さを有するゲート絶縁層106が形成されていてもよい。
 ゲート電極107は、ゲート絶縁層106を挟んでゲートトレンチ105に埋設されている。ゲート電極107は、具体的には、ゲートトレンチ105内においてゲート絶縁層106によって区画されたリセス空間に埋設されている。ゲート電極107は、ゲートトレンチ105の開口から露出する電極面を有している。ゲート電極107の電極面は、ゲートトレンチ105の底壁に向かって窪んだ湾曲状に形成されている。ゲート電極107の電極面は、ゲート絶縁層106の膨出部111によって狭められている。
 ゲート電極107は、金属材料以外の導電材料からなる。ゲート電極107は、導電性ポリシリコンからなることが好ましい。ゲート電極107は、この形態では、p型不純物が添加されたp型ポリシリコンを含む。
 ゲート電極107のp型不純物濃度は、1.0×1018cm-3以上1.0×1022cm-3以下であってもよい。ゲート電極107のp型不純物は、ホウ素、アルミニウム、インジウムおよびガリウムのうちの少なくとも1つを含んでいてもよい。ゲート電極107のシート抵抗は、10Ω/□以上500Ω/□以下(この形態では200Ω/□程度)であってもよい。ゲート電極107の厚さは、0.5μm以上3μm以下であってもよい。
 半導体装置101は、ゲート電極107を被覆する第1低抵抗層112を含む。第1低抵抗層112は、ゲートトレンチ105内においてゲート電極107を被覆している。第1低抵抗層112は、トレンチゲート構造104の一部を形成している。
 第1低抵抗層112は、ゲート電極107のシート抵抗未満のシート抵抗を有する導電材料を含む。第1低抵抗層112のシート抵抗は、0.01Ω/□以上10Ω/□以下であってもよい。第1低抵抗層112の厚さは、0.01μm以上3μm以下であってもよい。第1低抵抗層112の厚さは、ゲート電極107の厚さ未満であることが好ましい。
 第1低抵抗層112は、具体的には、ポリサイド層を含む。ポリサイド層は、ゲート電極107の表層部を金属材料によってシリサイド化することによって形成されている。つまり、ゲート電極107の電極面は、第1低抵抗層112によって形成されている。ポリサイド層は、具体的には、ゲート電極107に添加されたp型不純物を含むp型ポリサイド層からなる。ポリサイド層は、10μΩ・cm以上110μΩ・cm以下の比抵抗を有していることが好ましい。
 ゲート電極107および第1低抵抗層112が埋め込まれたゲートトレンチ105内のシート抵抗は、ゲート電極107単体のシート抵抗未満である。ゲートトレンチ105内のシート抵抗は、n型不純物が添加されたn型ポリシリコンのシート抵抗以下であることが好ましい。ゲートトレンチ105内のシート抵抗は、第1低抵抗層112のシート抵抗に近似される。ゲートトレンチ105内のシート抵抗は、0.01Ω/□以上10Ω/□以下であってもよい。ゲートトレンチ105内のシート抵抗は、10Ω/□未満であることが好ましい。
 第1低抵抗層112は、TiSi、TiSi、NiSi、CoSi、CoSi、MoSiおよびWSiのうちの少なくとも1つを含んでいてもよい。とりわけ、これらの種のうちのNiSi、CoSiおよびTiSiは、比抵抗の値および温度依存性が比較的小さいことから、第1低抵抗層112を形成するポリサイド層として適している。第1低抵抗層112は、他の領域への拡散が少ない性質を有するCoSiからなることが最も好ましい。
 第1低抵抗層112は、ゲート絶縁層106に接する接触部を含む。第1低抵抗層112の接触部は、具体的には、ゲート絶縁層106の第3領域110(膨出部111)に接している。これにより、第1低抵抗層112およびSiCエピタキシャル層7の間の電流パスを抑制できる。特に、第1低抵抗層112の接触部を、ゲート絶縁層106において比較的厚い角部に接続させる設計は、電流パスのリスクを低減する上で有効である。
 n型ポリシリコンとは相異なる仕事関数を有するp型ポリシリコンをゲートトレンチ105に埋め込むことにより、ゲート閾値電圧Vthを1V程度増加させることができる。しかし、p型ポリシリコンは、n型ポリシリコンのシート抵抗よりも数十倍(おおよそ20倍)高いシート抵抗を有している。そのため、p型ポリシリコンをゲート電極107の材料として採用した場合、ゲートトレンチ105内の寄生抵抗(以下、単に「ゲート抵抗」という。)の増加に伴ってエネルギ損失が増大する。
 そこで、半導体装置101では、ゲート電極107(p型ポリシリコン)の上に第1低抵抗層112(p型ポリサイド)を形成している。第1低抵抗層112によれば、ゲート閾値電圧Vthの増加を許容させながら、ゲートトレンチ105内のシート抵抗を低減できる。
 たとえば、第1低抵抗層112を有する構造によれば、第1低抵抗層112を有さない構造と比較してシート抵抗を100分の1以下に低下させることができる。第1低抵抗層112を有する構造によれば、n型ポリシリコンを含むゲート電極107と比較してシート抵抗を5分の1以下に低下させることができる。
 これにより、ゲート抵抗を低減できるから、トレンチゲート構造104に沿って電流を効率的に拡散させることができる。つまり、第1低抵抗層112は、ゲートトレンチ105内に電流を拡散する電流拡散層として形成されている。特に、ミリメートルオーダの長さ(1mm以上の長さ)を有するゲートトレンチ105の場合には電流の伝達に時間を要するが、第1低抵抗層112によればスイッチング遅延を適切に抑制できる。
 第1低抵抗層112を有する構造によれば、ゲート閾値電圧Vthを高める上でSiCエピタキシャル層7内のp型不純物濃度を増加させなくて済む。よって、チャネル抵抗の増加を抑制しながら、ゲート閾値電圧Vthを適切に増加させることができる。
 半導体装置101は、隣り合う複数のトレンチゲート構造104の間の領域にそれぞれ形成された複数のトレンチソース構造121を含む。複数のトレンチソース構造121は、1つのトレンチゲート構造104を挟み込む態様で、第2方向Yに間隔を空けて形成されている。
 複数のトレンチソース構造121は、第1方向Xに沿って延びる帯状にそれぞれ形成されている。複数のトレンチソース構造121は、平面視において第1方向Xに沿って延びるストライプ状に形成されている。
 第2方向Yに隣り合うトレンチソース構造121の中央部間のピッチPSは、1μm以上5μm以下であってもよい。ピッチPSは、1μm以上2μm以下、2μm以上3μm以下、3μm以上4μm以下、または、4μm以上5μm以下であってもよい。ピッチPSは、1.5μm以上3μm以下であることが好ましい。
 各トレンチソース構造121は、ソーストレンチ122、ソース絶縁層123およびソース電極124を含む。図10では、ソース電極124がハッチングによって示されている。
 ソーストレンチ122は、SiCエピタキシャル層7に形成されている。ソーストレンチ122は、側壁および底壁を含む。ソーストレンチ122の長辺を形成する側壁は、SiC単結晶のa面によって形成されている。ソーストレンチ122の短辺を形成する側壁は、SiC単結晶のm面によって形成されている。
 ソーストレンチ122の底壁は、高濃度領域102に位置している。ソーストレンチ122の底壁は、ゲートトレンチ105の底壁に対して第2主面4側の領域に位置している。ソーストレンチ122の底壁は、法線方向Zに関して、ゲートトレンチ105の底壁および低濃度領域103の間の領域に位置している。
 ソーストレンチ122の底壁は、SiC単結晶のc面に面している。ソーストレンチ122の底壁は、SiC単結晶のc面に対してa軸方向に傾斜したオフ角を有している。ソーストレンチ122の底壁は、第1主面3に対して平行に形成されていてもよい。ソーストレンチ122の底壁は、第2主面4に向かう湾曲状に形成されていてもよい。
 ソーストレンチ122は、ゲートトレンチ105の第1深さD1を超える第2深さD2を有している。第1深さD1に対する第2深さD2の比DS/DGは、ソーストレンチ122が高濃度領域102内に位置するという条件において、1.5以上であってもよい。比DS/DGは、2以上であることが好ましい。
 第2深さD2は、0.5μm以上10μm以下であってもよい。第2深さD2は、0.5μm以上1μm以下、1μm以上2μm以下、2μm以上4μm以下、4μm以上6μm以下、6μm以上8μm以下、または、8μm以上10μm以下であってもよい。第1深さD1とほぼ等しい第2深さD2を有するソーストレンチ122が形成されてもよい。
 ソーストレンチ122は、第1トレンチ部125および第2トレンチ部126を含む。第1トレンチ部125は、ソーストレンチ122の開口側に形成されている。第1トレンチ部125は、第2方向Yに関して第1幅W1を有している。第1トレンチ部125は、第1主面3から底壁側に向かって第1幅W1が狭まる先細り形状に形成されていてもよい。
 第1トレンチ部125は、ゲートトレンチ105の底壁に対して第1主面3側の領域に形成されていることが好ましい。つまり、第1トレンチ部125の深さは、ゲートトレンチ105の第1深さD1未満であることが好ましい。ゲートトレンチ105の底壁を横切る第1トレンチ部125が形成されていてもよい。つまり、第1トレンチ部125の深さは、ゲートトレンチ105の第1深さD1を超えていてもよい。
 第1トレンチ部125の深さは、0.1μm以上2μm以下であってもよい。第1トレンチ部125の深さは、0.1μm以上0.5μm以下、0.5μm以上1μm以下、1μm以上1.5μm以下、または、1.5μm以上2μm以下であってもよい。
 第1トレンチ部125の第1幅W1は、ゲートトレンチ105の幅以上であってもよいし、ゲートトレンチ105の幅未満であってもよい。第1幅W1は、ゲートトレンチ105の幅を超えていることが好ましい。第1幅W1は、0.1μm以上2μm以下であってもよい。第1幅W1は、0.1μm以上0.5μm以下、0.5μm以上1μm以下、1μm以上1.5μm以下、または、1.5μm以上2μm以下であってもよい。
 第2トレンチ部126は、ソーストレンチ122の底壁側に形成されている。第2トレンチ部126は、法線方向Zに関して、第1トレンチ部125およびSiCエピタキシャル層7の底部の間の領域に形成され、ゲートトレンチ105の底壁を横切っている。法線方向Zに関して、第1トレンチ部125を基準とした第2トレンチ部126の深さは、ゲートトレンチ105の第1深さD1を超えていることが好ましい。
 第2トレンチ部126は、第2方向Yに関して第1幅W1未満の第2幅W2を有している。第2幅W2は、第1幅W1未満という条件下において、ゲートトレンチ105の幅以上であってもよいし、ゲートトレンチ105の幅未満であってもよい。
 第2幅W2は、0.1μm以上2μm未満であってもよい。第2幅W2は、0.1μm以上2μm未満であってもよい。第2幅W2は、0.1μm以上0.5μm以下、0.5μm以上1μm以下、1μm以上1.5μm以下、または、1.5μm以上2μm未満であってもよい。むろん、第1幅W1とほぼ等しい第2幅W2を有する第2トレンチ部126が形成されてもよい。
 ソーストレンチ122の全体的な開口幅は、ゲートトレンチ105の開口幅と同程度に形成されていることが好ましい。ソーストレンチ122の開口幅がゲートトレンチ105の開口幅と同程度であるとは、ソーストレンチ122の開口幅が、ゲートトレンチ105の開口幅の±20%の範囲内に収まっていることをいう。
 第2トレンチ部126の側壁は、法線方向Zに沿って延びていてもよい。SiCチップ2内において第2トレンチ部126の側壁が第1主面3に対して成す角度は、90°以上95°以下(たとえば91°以上93°以下)であってもよい。第2トレンチ部126の側壁は、第1主面3に対してほぼ垂直に形成されていてもよい。第2トレンチ部126は、第1トレンチ部125から底壁側に向かって第2幅W2が狭まる先細り形状に形成されていてもよい。
 ソース絶縁層123は、酸化シリコン、窒化シリコン、酸化アルミニウム、酸化ジルコニウムまたは酸化タンタルのうちの少なくとも1つを含む。ソース絶縁層123は、酸化シリコン層および窒化シリコン層が任意の順で積層された積層構造を有していてもよい。ソース絶縁層123は、酸化シリコン層または窒化シリコン層からなる単層構造を有していてもよい。ソース絶縁層123は、この形態では、酸化シリコン層からなる単層構造を有している。
 ソース絶縁層123は、ソーストレンチ122の内壁に沿って膜状に形成され、ソーストレンチ122内においてリセス空間を区画している。ソース絶縁層123は、具体的には、第1トレンチ部125を露出させ、第2トレンチ部126を被覆するようにソーストレンチ122の内壁に沿って膜状に形成されている。
 これにより、ソース絶縁層123は、第2トレンチ部126内においてリセス空間を区画している。ソース絶縁層123は、第1トレンチ部125を露出させる側壁窓部127を有している。
 ソース絶縁層123は、第1領域128および第2領域129を含む。第1領域128は、ソーストレンチ122の側壁に沿って形成されている。第2領域129は、ソーストレンチ122の底壁に沿って形成されている。第1領域128の厚さは、第2領域129の厚さ未満である。第1領域128の厚さは、0.01μm以上0.2μm以下であってもよい。第2領域129の厚さは、0.05μm以上0.5μm以下であってもよい。
 第1領域128の厚さは、ゲート絶縁層106の第1領域128の厚さとほぼ等しくてもよい。第2領域129の厚さは、ゲート絶縁層106の第2領域129の厚さとほぼ等しくてもよい。一様な厚さを有するソース絶縁層123が形成されていてもよい。
 ソース電極124は、ソース絶縁層123を挟んでソーストレンチ122に埋設されている。ソース電極124は、具体的には、ソース絶縁層123を挟んで第1トレンチ部125および第2トレンチ部126に埋設されている。
 ソース電極124は、ソーストレンチ122の底壁側において第2トレンチ部126によって区画されたリセス空間に埋設されている。ソース電極124は、ソーストレンチ122の開口側において側壁窓部127から露出する第1トレンチ部125の側壁に接する側壁コンタクト部130を有している。
 ソース電極124は、ソーストレンチ122の開口から露出する電極面を有している。ソース電極124の電極面は、ソーストレンチ122の底壁に向かって窪んだ湾曲状に形成されている。ソース電極124の電極面は、第1主面3に対して平行に形成されていてもよい。
 法線方向Zに関して、ソース電極124の厚さは、0.5μm以上10μm以下であってもよい。ソース電極124の厚さは、0.5μm以上1μm以下、1μm以上2μm以下、2μm以上4μm以下、4μm以上6μm以下、6μm以上8μm以下、または、8μm以上10μm以下であってもよい。
 ソース電極124は、金属材料以外の導電材料からなる。ソース電極124は、導電性ポリシリコンからなることが好ましい。ソース電極124は、この形態では、p型不純物が添加されたp型ポリシリコンを含む。
 ソース電極124のp型不純物濃度は、1.0×1018cm-3以上1.0×1022cm-3以下であってもよい。ソース電極124のp型不純物濃度は、ゲート電極107のp型不純物濃度と等しいことが好ましい。ソース電極124のp型不純物は、ホウ素、アルミニウム、インジウムおよびガリウムのうちの少なくとも1つを含んでいてもよい。
 半導体装置101は、ソース電極124を被覆する第2低抵抗層131を含む。第2低抵抗層131は、ソーストレンチ122内においてソース電極124を被覆している。第2低抵抗層131は、トレンチソース構造121の一部を形成している。第2低抵抗層131は、第1低抵抗層112と同様の構造を有している。第2低抵抗層131の説明については、第1低抵抗層112の説明が準用される。
 半導体装置101は、アクティブ領域8において第1主面3の表層部に形成されたp型のボディ領域141を含む。ボディ領域141は、アクティブ領域8を画定している。ボディ領域141のp型不純物濃度は、ゲート電極107およびソース電極124のp型不純物濃度未満である。ボディ領域141のp型不純物濃度のピーク値は、1.0×1017cm-3以上1.0×1019cm-3以下であってもよい。
 ボディ領域141は、第1主面3の表層部において、ゲートトレンチ105の側壁およびソーストレンチ122の側壁を被覆している。ボディ領域141は、ゲートトレンチ105の底壁に対して第1主面3側の領域に形成されている。ボディ領域141は、ゲート絶縁層106を挟んでゲート電極107に対向している。
 ボディ領域141は、第2トレンチ部126に対して第1トレンチ部125側の領域に形成されている。ボディ領域141は、第1トレンチ部125を被覆している。ボディ領域141は、第1トレンチ部125から露出するソース電極124の側壁コンタクト部130に接続されている。これにより、ボディ領域141は、SiCチップ2内においてソース接地されている。ボディ領域141は、第2トレンチ部126の一部を被覆していてもよい。この場合、ボディ領域141は、ソース絶縁層123の一部を挟んでソース電極124に対向していてもよい。
 半導体装置101は、ボディ領域141の表層部に形成されたn型のソース領域142を含む。ソース領域142は、ゲートトレンチ105に沿って形成されている。ソース領域142のn型不純物濃度のピーク値は、高濃度領域102のn型不純物濃度のピーク値を超えている。ソース領域142のn型不純物濃度のピーク値は、1.0×1018cm-3以上1.0×1021cm-3以下であってもよい。
 ソース領域142は、ボディ領域141の表層部においてゲートトレンチ105の側壁およびソーストレンチ122の側壁を被覆している。ソース領域142は、ゲート絶縁層106を挟んでゲート電極107に対向している。ソース領域142は、ゲート絶縁層106を挟んで第1低抵抗層112に対向していることが好ましい。
 ソース領域142は、さらに、第2トレンチ部126に対して第1トレンチ部125側の領域に形成されている。ソース領域142は、第1トレンチ部125を被覆している。ソース領域142は、第1トレンチ部125から露出するソース電極124の側壁コンタクト部130に接続されている。これにより、ソース領域142は、SiCチップ2内においてソース接地されている。
 ソース領域142は、この形態では、第1主面3においてゲート絶縁層106の第3領域110によって隠蔽された隠蔽部、および、第3領域110から露出した露出部を有している。ソース領域142の全域が第3領域110によって被覆されていてもよい。
 ソース領域142においてゲートトレンチ105の側壁に沿う部分は、ボディ領域141内において高濃度領域102との間でMISFETのチャネルを画定している。チャネルのON/OFFは、ゲート電極107によって制御される。
 半導体装置101は、アクティブ領域8において第1主面3の表層部に形成されたp型の複数のコンタクト領域143を含む。各コンタクト領域143のp型不純物濃度のピーク値は、ボディ領域141のp型不純物濃度のピーク値を超えている。各コンタクト領域143のp型不純物濃度のピーク値は、1.0×1018cm-3以上1.0×1021cm-3以下であってもよい。
 複数のコンタクト領域143は、複数のソーストレンチ122に沿う領域にそれぞれ形成されている。複数のコンタクト領域143は、具体的には、対応する1つのソーストレンチ122に対して1対複数の関係で形成されている。複数のコンタクト領域143は、対応するソーストレンチ122に沿って間隔を空けてそれぞれ形成されている。複数のコンタクト領域143は、ゲートトレンチ105から間隔を空けてそれぞれ形成されている。
 各コンタクト領域143は、対応する第1トレンチ部125を被覆している。各コンタクト領域143は、対応する第1トレンチ部125において、ソース電極124の側壁コンタクト部130およびソース領域142の間に介在している。各コンタクト領域143は、さらに、対応する第1トレンチ部125において、ソース電極124の側壁コンタクト部130およびボディ領域141の間に介在している。
 これにより、各コンタクト領域143は、ソース電極124、ボディ領域141およびソース領域142に電気的に接続されている。各コンタクト領域143は、SiCチップ2内においてソース接地されている。
 各コンタクト領域143において第1トレンチ部125を被覆する部分は、ゲートトレンチ105に向けて引き出されている。各コンタクト領域143において第1トレンチ部125を被覆する部分は、ボディ領域141の底部に対して第1主面3側の領域に形成されている。各コンタクト領域143において第1トレンチ部125を被覆する部分は、ゲートトレンチ105およびソーストレンチ122の間の中間領域まで延びていてもよい。
 各コンタクト領域143は、さらに、対応する第2トレンチ部126を被覆している。各コンタクト領域143は、対応する第2トレンチ部126において、ソース絶縁層123を挟んでソース電極124に対向している。
 各コンタクト領域143は、さらに、対応するソーストレンチ122の底壁を被覆している。各コンタクト領域143は、対応するソーストレンチ122の底壁を挟んでソース電極124に対向している。各コンタクト領域143の底部は、対応するソーストレンチ122の底壁に対して平行に形成されていてもよい。
 半導体装置101は、アクティブ領域8において第1主面3の表層部に形成されたp型の複数のディープウェル領域144を含む。各ディープウェル領域144のp型不純物濃度のピーク値は、コンタクト領域143のp型不純物濃度のピーク値未満である。
 各ディープウェル領域144のp型不純物濃度のピーク値は、ボディ領域141のp型不純物濃度のピーク値以上であってもよいし、ボディ領域141のp型不純物濃度のピーク値未満であってもよい。各ディープウェル領域144のp型不純物濃度のピーク値は、1.0×1017cm-3以上1.0×1019cm-3以下であってもよい。
 複数のディープウェル領域144は、複数のソーストレンチ122に対して1対1対応の関係で形成されている。各ディープウェル領域144は、平面視において対応するソーストレンチ122に沿って延びる帯状に形成されている。各ディープウェル領域144は、高濃度領域102に形成されている。各ディープウェル領域144は、ボディ領域141に対して第2主面4側の領域に形成されている。各ディープウェル領域144は、ボディ領域141に連なっている。
 各ディープウェル領域144は、対応する第2トレンチ部126を被覆する部分を含む。各ディープウェル領域144は、コンタクト領域143を挟んで対応する第2トレンチ部126を被覆する部分を含む。各ディープウェル領域144は、さらに、対応するソーストレンチ122の底壁を被覆する部分を含む。各ディープウェル領域144は、コンタクト領域143を挟んで対応するソーストレンチ122の底壁を被覆する部分を含む。
 各ディープウェル領域144は、ゲートトレンチ105の底壁に対して第2主面4側に位置する底部を有している。各ディープウェル領域144の底部は、各ソーストレンチ122の底壁に対して平行に形成されていてもよい。複数のディープウェル領域144は、一定の深さで形成されていることが好ましい。
 各ディープウェル領域144は、高濃度領域102との間でpn接合部を形成している。このpn接合部からは、ゲートトレンチ105に向けて空乏層が拡がる。空乏層は、ゲートトレンチ105の底壁にオーバラップしてもよい。
 pn接合ダイオードだけを備える半導体装置101では、トレンチを備えていないという構造上、SiCチップ2内における電界集中の問題は少ない。各ディープウェル領域144は、トレンチゲート型のMISFETをpn接合ダイオードの構造に近づける。これにより、トレンチゲート型のMISFETにおいて、SiCチップ2内における電界を緩和できる。
 ゲートトレンチ105の底壁に対して第2主面4側に底部を有するディープウェル領域144によれば、空乏層によって、ゲートトレンチ105に対する電界集中を適切に緩和できる。複数のソーストレンチ122(ディープウェル領域144)の間のピッチPSを狭めることは、電界集中を緩和し、耐圧を向上させる上で有効である。
 複数のディープウェル領域144は、一定の深さで形成されていることが好ましい。これにより、SiCチップ2の耐圧(たとえば破壊耐量)が各ディープウェル領域144によって制限されることを抑制できるから、耐圧の向上を適切に図ることができる。
 ソーストレンチ122を利用することにより、SiCチップ2の比較的深い領域にディープウェル領域144を適切に形成できる。ソーストレンチ122に沿ってディープウェル領域144を形成できるから、複数のディープウェル領域144の深さにバラツキが生じるのを適切に抑制できる。
 この形態では、高濃度領域102の一部が複数のディープウェル領域144の間の領域に介在している。これにより、複数のディープウェル領域144の間の領域においてJFET(Junction Field Effect Transistor)抵抗を低減できる。
 この形態では、各ディープウェル領域144の底部が高濃度領域102に位置している。これにより、高濃度領域102における各ディープウェル領域144の直下の領域において第1主面3に対して平行な横方向に電流経路を形成できる。その結果、電流拡がり抵抗を低減できる。低濃度領域103は、このような構造において、SiCチップ2の耐圧を高める。
 主面絶縁層12は、第1主面3の全域を被覆している。主面絶縁層12は、アクティブ領域8においてソース領域142およびコンタクト領域143を被覆している。主面絶縁層12は、具体的には、アクティブ領域8において第2方向Yに沿う断面視においてソース領域142の全域およびコンタクト領域143の全域を被覆している。主面絶縁層12は、平面視においてソース領域142の全域およびコンタクト領域143の全域を被覆している。
 主面絶縁層12は、さらに具体的には、アクティブ領域8において第1トレンチ部125を横切ってソース電極124を被覆している。主面絶縁層12は、第1主面3の上においてソース電極124の側壁コンタクト部130を被覆している。
 主面絶縁層12は、アクティブ領域8において複数のソース電極124をそれぞれ露出させる複数のコンタクト開口151を有している。複数のコンタクト開口151は、複数のソース電極124に対して1対1対応の関係で形成されている。各コンタクト開口151は、トレンチソース構造121に沿って延びる帯状に形成されていてもよい。各コンタクト開口151は、平面視においてソーストレンチ122(第1トレンチ部125)の側壁によって取り囲まれた領域内に形成されている。
 各コンタクト開口151は、ソーストレンチ122(第1トレンチ部125)の側壁からソーストレンチ122の内方に間隔を空けてソース電極124を露出させている。コンタクト開口151は、ソース電極124のみを露出させている。コンタクト開口151の開口エッジ部は、コンタクト開口151内に向かう湾曲状に形成されている。
 ソース電極124の電極面には、ソーストレンチ122の底壁に向かって窪んだリセス152が形成されている。リセス152は、トレンチソース構造121に沿って延びる帯状に形成されていてもよい。リセス152は、平面視においてソーストレンチ122(第1トレンチ部125)の側壁によって取り囲まれた領域内に形成されている。
 リセス152は、ソーストレンチ122(第1トレンチ部125)の側壁からソーストレンチ122の内方に間隔を空けて形成されている。リセス152は、第2低抵抗層131を露出させている。リセス152は、第2低抵抗層131を貫通していてもよい。コンタクト開口151は、ソース電極124のリセス152に連通している。
 主面絶縁層12の周縁は、側面5A~5Dから露出している。主面絶縁層12の周縁は、この形態では、側面5A~5Dに連なっている。主面絶縁層12の周縁は、側面5A~5Dから内方に間隔を空けて形成されていてもよい。この場合、主面絶縁層12は、第1主面3において外側領域9に位置する部分を露出させる。
 主面絶縁層12の厚さは、0.1μm以上10μm以下であってもよい。主面絶縁層12の厚さは、0.1μm以上1μm以下、1μm以上2μm以下、2μm以上4μm以下、4μm以上6μm以下、6μm以上8μm以下、または、8μm以上10μm以下であってもよい。主面絶縁層12の厚さは、0.5μm以上5μm以下であることが好ましい。
 第1主面電極21は、主面絶縁層12の上に形成されている。第1主面電極21の厚さT1は、1μm以上100μm以下であってもよい。厚さT1は、1μm以上10μm以下、10μm以上20μm以下、20μm以上40μm以下、40μm以上60μm以下、60μm以上80μm以下、または、80μm以上100μm以下であってもよい。厚さT1は、20μm以上60μm以下であることが好ましい。
 第1主面電極21は、ゲート主面電極153、ゲート配線電極154およびソース主面電極155を含む。ゲート主面電極153(ゲート配線電極154)には、ゲート電圧が印加される。ゲート電圧は、10V以上50V以下(たとえば30V程度)であってもよい。ソース主面電極155には、ソース電圧が印加される。ソース電圧は、基準電圧(たとえばGND電圧)であってもよい。
 ゲート主面電極153は、アクティブ領域8に形成されている。ゲート主面電極153は、平面視において第1側面5A側の領域に形成されている。ゲート主面電極153は、具体的には、平面視において第1側面5Aの中央部に形成されている。ゲート主面電極153は、平面視において側面5A~5Dのうちの任意の2つを接続する角部に形成されていてもよい。ゲート主面電極153は、平面視において四角形状に形成されていてもよい。
 ゲート配線電極154は、ゲート主面電極153から引き出されており、アクティブ領域8の周縁に沿って帯状に延びている。ゲート配線電極154は、この形態では、第1側面5A、第3側面5Cおよび第4側面5Dに沿って延び、アクティブ領域8の内方を3方向から区画している。ゲート配線電極154は、主面絶縁層12を介してゲート電極107に電気的に接続されている。ゲート主面電極153からの電気信号は、ゲート配線電極154を介してゲート電極107に伝達される。
 ソース主面電極155は、ゲート主面電極153およびゲート配線電極154から間隔を空けてアクティブ領域8に形成されている。ソース主面電極155は、ゲート主面電極153およびゲート配線電極154によって区画された領域を被覆し、平面視においてC字形状に形成されている。
 ソース主面電極155は、コンタクト開口151を介してソース電極124に電気的に接続されている。つまり、この形態では、金属材料からなるソース主面電極155が導電性ポリシリコンからなるソース電極124に電気的に接続されている。
 第1主面電極21(ゲート主面電極153、ゲート配線電極154およびソース主面電極155)は、SiCチップ2側からこの順に積層されたバリア電極22および主電極23を含む積層構造をそれぞれ有している。
 バリア電極22は、この形態では、Ti層およびTiN層のうちの少なくとも1を含む。バリア電極22は、SiCチップ2側からこの順に積層されたTi層およびTiN層を含む積層構造を有していることが好ましい。バリア電極22は、Ti層またはTiN層からなる単層構造を有していてもよい。
 バリア電極22の厚さは、0.01μm以上1μm以下であってもよい。バリア電極22の厚さは、0.01μm以上0.1μm以下、0.1μm以上0.2μm以下、0.2μm以上0.4μm以下、0.4μm以上0.6μm以下、0.6μm以上0.8μm以下、または、0.8μm以上1μm以下であってもよい。
 主電極23は、バリア電極22の上に膜状に形成されている。主電極23は、バリア電極22の主面の全域を被覆している。主電極23は、バリア電極22の抵抗値未満の抵抗値を有している。主電極23は、Al系金属層からなる。主電極23は、具体的には、純Al層、AlSi合金層、AlCu合金層およびAlSiCu合金層のうちの少なくとも1つを含む。
 主電極23は、純Al層、AlSi合金層、AlCu合金層およびAlSiCu合金層のうちの2つ以上が任意の順序で積層された積層構造を有していてもよい。主電極23は、純Al層、AlSi合金層、AlCu合金層またはAlSiCu合金層からなる単層構造を有していてもよい。主電極23は、AlSi合金層、AlCu合金層またはAlSiCu合金層からなる単層構造を有していることが好ましい。
 主電極23の厚さは、バリア電極22の厚さを超えている。主電極23の厚さは、10μm以上100μm以下であってもよい。主電極23の厚さは、10μm以上20μm以下、20μm以上40μm以下、40μm以上60μm以下、60μm以上80μm以下、または、80μm以上100μm以下であってもよい。主電極23の厚さは、20μm以上60μm以下であることが好ましい。バリア電極22の厚さは主電極23の厚さと比較して極めて小さいため、第1主面電極21の厚さT1は、主電極23の厚さに近似される。
 絶縁層24は、第1主面3の上において第1主面電極21を被覆している。図9では、絶縁層24がハッチングによって示されている。絶縁層24は、具体的には、主面絶縁層12の上に形成されている。絶縁層24の周縁は、側面5A~5Dから内方に間隔を空けて形成されている。これにより、絶縁層24は、主面絶縁層12の周縁部を露出させている。
 絶縁層24の周縁は、側面5A~5Dとの間でダイシングストリート25を区画している。ダイシングストリート25によれば、ウエハから半導体装置101を切り出す際に、絶縁層24を物理的に切断せずに済む。これにより、ウエハから半導体装置101を円滑に切り出すことができると同時に、絶縁層24の剥離や劣化を抑制できる。その結果、絶縁層24によってSiCチップ2や第1主面電極21等の保護対象物を適切に保護できる。
 ダイシングストリート25の幅は、1μm以上25μm以下であってもよい。ダイシングストリート25の幅は、ダイシングストリート25が延びる方向に直交する方向の幅である。ダイシングストリート25の幅は、1μm以上5μm以下、5μm以上10μm以下、10μm以上15μm以下、15μm以上20μm以下、または、20μm以上25μm以下であってもよい。
 絶縁層24は、第1主面電極21を露出させるパッド開口26を有している。パッド開口26は、この形態では、ゲート主面電極153を露出させるゲートパッド開口161、および、ソース主面電極155を露出させるソースパッド開口162を含む。ゲートパッド開口161は、平面視において側面5A~5Dに平行な4辺を有する多角形状に形成されていてもよい。ソースパッド開口162は、平面視において側面5A~5Dに平行な4辺を有する多角形状に形成されていてもよい。ゲートパッド開口161の平面形状およびソースパッド開口162の平面形状は、任意である。
 絶縁層24は、具体的には、SiCチップ2側からこの順に積層された無機絶縁層30および有機絶縁層31を含む積層構造を有している。無機絶縁層30は、主面絶縁層12、ゲート主面電極153およびソース主面電極155に沿って膜状に形成されている。無機絶縁層30は、第1ゲート内壁163、第1ソース内壁164および第1外壁165を含む。以下、第1ゲート内壁163、第1ソース内壁164および第1外壁165を纏めて第1壁面ということがある。
 第1ゲート内壁163は、ゲート主面電極153の一部を露出させる第1ゲート開口166を区画している。第1ゲート開口166は、ゲートパッド開口161の一部を形成している。第1ゲート開口166は、ゲート主面電極153の平面形状に相似する平面形状を有し、ゲート主面電極153の内方部を露出させている。第1ゲート開口166の平面形状は任意である。第1ゲート開口166は、平面視において側面5A~5Dに平行な4辺を有する多角形状に区画されていてもよい。
 第1ソース内壁164は、ソース主面電極155の一部を露出させる第1ソース開口167を区画している。第1ソース開口167は、ソースパッド開口162の一部を形成している。第1ソース開口167は、ソース主面電極155の平面形状に相似する平面形状を有し、ソース主面電極155の内方部を露出させている。第1ソース開口167の平面形状は任意である。第1ソース開口167は、平面視において側面5A~5Dに平行な4辺を有する多角形状に区画されていてもよい。
 無機絶縁層30の第1外壁165は、側面5A~5Dから内方に間隔を空けて形成され、側面5A~5Dとの間でダイシングストリート25の一部を区画している。これにより、無機絶縁層30は、主面絶縁層12の周縁部を露出させている。第1外壁165は、平面視において側面5A~5Dに平行な4辺を有する四角形状に形成されていてもよい。
 無機絶縁層30の第1壁面が、無機絶縁層30内において第1主面電極21の主面との間で成す角度は、30°以上90°以下であってもよい。第1壁面が、無機絶縁層30内において第1主面電極21の主面との間で成す角度は、45°以上90°未満であることが好ましい。第1壁面の角度は、第1壁面の下端部および上端部を結ぶ直線が、第1主面電極21の主面との間で成す角度によって定義される。
 無機絶縁層30は、Niに対する密着性が高い性質を有している。無機絶縁層30は、酸化シリコン層および窒化シリコン層のうちの少なくとも1つを含む。無機絶縁層30は、SiCチップ2側からこの順に積層された酸化シリコン層および窒化シリコン層を含む積層構造を有していてもよい。無機絶縁層30は、酸化シリコン層または窒化シリコン層からなる単層構造を有していてもよい。無機絶縁層30は、主面絶縁層12とは異なる絶縁材料を含むことが好ましい。無機絶縁層30は、この形態では、窒化シリコン層からなる単層構造を有している。
 無機絶縁層30の厚さT2は、第1主面電極21の厚さT1未満(T2<T1)であることが好ましい。厚さT2は、0.1μm以上10μm以下であってもよい。厚さT2は、0.1μm以上1μm以下、1μm以上2μm以下、2μm以上4μm以下、4μm以上6μm以下、6μm以上8μm以下、または、8μm以上10μm以下であってもよい。厚さT2は、1μm以上5μm以下であることが好ましい。厚さT2は、1μm以上2μm以下であることが特に好ましい。
 有機絶縁層31は、無機絶縁層30の上に膜状に形成されている。有機絶縁層31は、第2ゲート内壁168、第2ソース内壁169および第2外壁170を含む。以下、第2ゲート内壁168、第2ソース内壁169および第2外壁170を纏めて第2壁面ということがある。
 図13を参照して、第2ゲート内壁168は、この形態では、無機絶縁層30側に向けて窪んだ湾曲状に形成されている。第2ゲート内壁168は、ゲート主面電極153の一部を露出させる第2ゲート開口171を区画している。第2ゲート開口171は、ゲート主面電極153の平面形状に相似する平面形状を有し、ゲート主面電極153の内方部を露出させている。第2ゲート開口171の平面形状は任意である。第2ゲート開口171は、平面視において側面5A~5Dに平行な4辺を有する多角形状に区画されていてもよい。
 第2ゲート開口171は、無機絶縁層30の第1ゲート開口166に連通し、第1ゲート開口166との間でゲートパッド開口161を形成している。第2ゲート開口171は、第1ゲート開口166から間隔を空けて第1ゲート開口166を取り囲み、無機絶縁層30の一部を露出させている。有機絶縁層31は、具体的には、第1ゲート開口166および第2ゲート開口171の間の領域において無機絶縁層30の主面の一部をゲート内周縁172として露出させている。
 ゲート内周縁172の幅WGは、0μmを超えて10μm以下であってもよい。幅WGは、0μmを超えて1μm以下、1μm以上2μm以下、2μm以上4μm以下、4μm以上6μm以下、6μm以上8μm以下、または、8μm以上10μm以下であってもよい。幅WGは、1μm以上5μm以下であることが好ましい。幅WGは、任意であるが、無機絶縁層30の厚さT2以下(WG≦T2)であることが好ましい。幅WGは、1μm以上2μm以下であることが特に好ましい。
 図14を参照して、第2ソース内壁169は、この形態では、無機絶縁層30側に向けて窪んだ湾曲状に形成されている。第2ソース内壁169は、ソース主面電極155の一部を露出させる第2ソース開口173を区画している。第2ソース開口173は、ソース主面電極155の平面形状に相似する平面形状を有し、ソース主面電極155の内方部を露出させている。第2ソース開口173の平面形状は任意である。第2ソース開口173は、平面視において側面5A~5Dに平行な4辺を有する多角形状に区画されていてもよい。
 第2ソース開口173は、無機絶縁層30の第1ソース開口167に連通し、第1ソース開口167との間でソースパッド開口162を形成している。第2ソース開口173は、第1ソース開口167から間隔を空けて第1ソース開口167を取り囲み、無機絶縁層30の一部を露出させている。有機絶縁層31は、具体的には、第1ソース開口167および第2ソース開口173の間の領域において無機絶縁層30の主面の一部をソース内周縁174として露出させている。
 ソース内周縁174の幅WSは、0μmを超えて10μm以下であってもよい。幅WSは、0μmを超えて1μm以下、1μm以上2μm以下、2μm以上4μm以下、4μm以上6μm以下、6μm以上8μm以下、または、8μm以上10μm以下であってもよい。幅WSは、1μm以上5μm以下であることが好ましい。幅WSは、任意であるが、無機絶縁層30の厚さT2以下(WS≦T2)であることが好ましい。幅WSは、1μm以上2μm以下であることが特に好ましい。
 有機絶縁層31の第2外壁170は、この形態では、無機絶縁層30側に向けて窪んだ湾曲状に形成されている。第2外壁170は、側面5A~5Dから内方に間隔を空けて無機絶縁層30の上に形成され、側面5A~5Dとの間でダイシングストリート25の一部を区画している。これにより、有機絶縁層31は、主面絶縁層12の周縁部を露出させている。第2外壁170は、平面視において側面5A~5Dに平行な4辺を有する四角形状に形成されていてもよい。
 有機絶縁層31の第2外壁170は、無機絶縁層30の第1外壁165を横切って主面絶縁層12の上に形成されていてもよい。この場合、有機絶縁層31の第2外壁170によってダイシングストリート25が区画される。
 有機絶縁層31の第2壁面が有機絶縁層31内において無機絶縁層30の主面との間で成す角度は、30°以上90°以下であってもよい。第2壁面が、有機絶縁層31内において無機絶縁層30の主面との間で成す角度は、45°以上90°未満であることが好ましい。第2壁面の角度は、第2壁面の下端部および上端部を結ぶ直線が、無機絶縁層30の主面との間で成す角度によって定義される。
 有機絶縁層31は、無機絶縁層30と比較してNiに対する密着性が低い性質を有している。有機絶縁層31は、ネガティブタイプまたはポジティブタイプの感光性樹脂を含む。有機絶縁層31は、ポリイミド、ポリアミドおよびポリベンゾオキサゾールのうちの少なくとも1つを含んでいてもよい。有機絶縁層31は、この形態では、ポリイミドを含む。
 有機絶縁層31は、無機絶縁層30の厚さT2を超える厚さT3(T2<T3)を有していることが好ましい。無機絶縁層30の厚さT2に対する有機絶縁層31の厚さT3の比T3/T2は、1を超えて10以下であってもよい。比T3/T2は、1を超えて、2以下、2以上4以下、4以上6以下、6以上8以下、8以上10以下であってもよい。比T3/T2は、2以上6以下であることが好ましい。
 厚さT3は、1μm以上50μm以下であってもよい。厚さT3は、1μm以上10μm以下、10μm以上20μm以下、20μm以上30μm以下、30μm以上40μm以下、または、40μm以上50μm以下であってもよい。厚さT3は、5μm以上30μm以下であることが好ましい。
 第1主面電極21の粗面領域39は、この形態では、ゲート粗面領域175およびソース粗面領域176を含む。ゲート粗面領域175は、ゲート主面電極153においてゲートパッド開口161(無機絶縁層30の第1ゲート開口166)から露出する露出面に形成されている。ゲート粗面領域175は、第1ゲート内壁163の直下の領域に形成された窪みを含む。これにより、第1ゲート内壁163は、ゲート粗面領域175にオーバハングした部分を含む。
 ソース粗面領域176は、ソース主面電極155においてソースパッド開口162(無機絶縁層30の第1ソース開口167)から露出する露出面に形成されている。ソース粗面領域176は、第1ソース内壁164の直下の領域に形成された窪みを含む。これにより、第1ソース内壁164は、ソース粗面領域176にオーバハングした部分を含む。
 パッド電極40は、この形態では、ゲートパッド電極181およびソースパッド電極182を含む。ゲートパッド電極181は、ゲートパッド開口161内においてゲート主面電極153の上に形成された第1Niめっき層183を含む。第1Niめっき層183は、第1実施形態に係るNiめっき層41に対応している。
 第1Niめっき層183は、第1ゲート開口166内においてゲート主面電極153を被覆し、第2ゲート開口171内において無機絶縁層30のゲート内周縁172を被覆している。第1Niめっき層183は、有機絶縁層31(絶縁層24)の主面からゲート主面電極153側に間隔を空けて形成された外面を有している。第1Niめっき層183は、第2ゲート開口171内において有機絶縁層31を被覆している。
 図13を参照して、第1Niめっき層183は、具体的には、ゲート主面電極153を被覆する第1部分183A、および、無機絶縁層30のゲート内周縁172を被覆する第2部分183Bを有している。
 第1Niめっき層183の第1部分183Aは、第1ゲート開口166内においてゲート粗面領域175を埋めてゲート主面電極153を被覆している。第1部分183Aは、無機絶縁層30の第1ゲート内壁163の全域を被覆し、第1ゲート開口166の開口端から第2ゲート開口171の開口端に向かって突出している。第1部分183Aは、無機絶縁層30の第1ゲート内壁163に接続され、無機絶縁層30の厚さ方向に延びる第1接続部を有している。
 第1Niめっき層183の第2部分183Bは、第2ゲート開口171内において第1部分183Aから有機絶縁層31側に向けて引き出されている。第2部分183Bは、第1ゲート開口166の開口端を起点に有機絶縁層31に向かう円弧状に形成されている。
 第2部分183Bは、第2ゲート開口171内において無機絶縁層30のゲート内周縁172を被覆している。これにより、第2部分183Bは、無機絶縁層30のゲート内周縁172を挟んでゲート主面電極153に対向している。第2部分183Bは、無機絶縁層30の主面に接続され、無機絶縁層30の幅方向に延びる第2接続部を有している。
 第2部分183Bは、この形態では、第2ゲート開口171内において有機絶縁層31の第2ゲート内壁168をさらに被覆している。第2部分183Bは、有機絶縁層31の第2ゲート内壁168の中間部に対して無機絶縁層30側の領域を被覆している。換言すると、第2部分183Bは、第2ゲート内壁168(有機絶縁層31)の露出面積が第2ゲート内壁168(有機絶縁層31)の隠蔽面積を超えるように有機絶縁層31を被覆している。このように、第1Niめっき層183は、第1部分183Aおよび第2部分183Bが第1ゲート開口166の開口端に異なる2方向から係合(engage)するように形成されている。
 第1Niめっき層183は、無機絶縁層30の厚さT2を超える厚さT4(T2<T4)を有している。厚さT4は、有機絶縁層31の厚さT3未満(T3<T4)である。厚さT4は、無機絶縁層30の厚さT2にゲート内周縁172の幅WGを加算した値(T2+WG)を超えている(T2+WG<T4)。これは、第1Niめっき層183が有機絶縁層31の第2ゲート内壁168に接する条件である。厚さT4は、ゲート主面電極153の主面を基準とする第1Niめっき層183の厚さによって定義される。
 無機絶縁層30の厚さT2に対する第1Niめっき層183の厚さT4の比T4/T2は、1を超えて5以下であってもよい。比T4/T2は、1を超えて2以下、2以上3以下、3以上4以下、または、4以上5以下であってもよい。
 厚さT4は、0.1μm以上15μm以下であってもよい。厚さT4は、0.1μm以上1μm以下、1μm以上3μm以下、3μm以上6μm以下、6μm以上9μm以下、9μm以上12μm以下、または、12μm以上15μm以下であってもよい。厚さT4は、2μm以上8μm以下であることが好ましい。
 ゲートパッド電極181は、第1Niめっき層183とは異なる金属材料からなり、第2ゲート開口171内において第1Niめっき層183の外面を被覆する第1外面めっき層184を含む。第1外面めっき層184は、第1実施形態に係る外面めっき層42に対応している。
 第1外面めっき層184は、第1Niめっき層183の厚さT4未満の厚さT5(T5<T4)を有している。第1外面めっき層184は、第2ゲート開口171内において有機絶縁層31の第2ゲート内壁168を被覆している。
 第1外面めっき層184は、導電接合材(たとえば半田)を介して外部接続されるゲート端子面185Aを有している。ゲート端子面185Aは、有機絶縁層31の主面(第2ゲート開口171の開口端)に対して第1Niめっき層183側に位置している。これにより、第1外面めっき層184は、有機絶縁層31の第2ゲート内壁168の一部を露出させている。
 第1外面めっき層184は、具体的には、第1Niめっき層183側からこの順に積層された第1Pdめっき層185および第1Auめっき層186を含む積層構造を有している。第1Pdめっき層185および第1Auめっき層186は、第1実施形態に係るPdめっき層43およびAuめっき層44にそれぞれ対応している。
 第1Pdめっき層185は、第1Niめっき層183の外面に沿って膜状に形成されている。第1Pdめっき層185は、第2ゲート開口171の開口端から無機絶縁層30側に間隔を空けて第1Niめっき層183を被覆している。第1Pdめっき層185は、第2ゲート開口171内において有機絶縁層31の第2ゲート内壁168を被覆している。
 第1Pdめっき層185は、第1Niめっき層183の厚さT4未満の厚さを有している。第1Pdめっき層185の厚さは、0.01μm以上1μm以下であってもよい。第1Pdめっき層185の厚さは、0.01μm以上0.1μm以下、0.1μm以上0.2μm以下、0.2μm以上0.4μm以下、0.4μm以上0.6μm以下、0.6μm以上0.8μm以下、または、0.8μm以上1μm以下であってもよい。
 第1Auめっき層186は、第1Pdめっき層185の外面に沿って膜状に形成されている。第1Auめっき層186は、第2ゲート開口171の開口端から無機絶縁層30側に間隔を空けて第1Pdめっき層185を被覆している。第1Auめっき層186は、第2ゲート開口171内において有機絶縁層31の第2ゲート内壁168を被覆している。
 第1Auめっき層186は、第1Niめっき層183の厚さT4未満の厚さを有している。第1Auめっき層186の厚さは、0.01μm以上1μm以下であってもよい。第1Auめっき層186の厚さは、0.01μm以上0.1μm以下、0.1μm以上0.2μm以下、0.2μm以上0.4μm以下、0.4μm以上0.6μm以下、0.6μm以上0.8μm以下、または、0.8μm以上1μm以下であってもよい。
 この形態では、第1外面めっき層184が第1Pdめっき層185および第1Auめっき層186を含む積層構造を有している例について説明した。しかし、前述の図4A~図4Dに示された第2~第4形態例に係る外面めっき層42のうちのいずれか1つと同様の形態を有する第1外面めっき層184が採用されてもよい。
 ソースパッド電極182は、ソースパッド開口162内においてソース主面電極155の上に形成された第2Niめっき層193を含む。第2Niめっき層193は、第1実施形態に係るNiめっき層41に対応している。
 第2Niめっき層193は、第1ソース開口167内においてソース主面電極155を被覆し、第2ソース開口173内において無機絶縁層30のソース内周縁174を被覆している。第2Niめっき層193は、有機絶縁層31(絶縁層24)の主面からソース主面電極155側に間隔を空けて形成された外面を有している。第2Niめっき層193は、第2ソース開口173内において有機絶縁層31を被覆している。
 図14を参照して、第2Niめっき層193は、具体的には、ソース主面電極155を被覆する第1部分193A、および、無機絶縁層30のソース内周縁174を被覆する第2部分193Bを有している。
 第2Niめっき層193の第1部分193Aは、第1ソース開口167内においてソース粗面領域176を埋めてソース主面電極155を被覆している。第1部分193Aは、無機絶縁層30の第1ソース内壁164の全域を被覆し、第1ソース開口167の開口端から第2ソース開口173の開口端に向かって突出している。第1部分193Aは、無機絶縁層30の第1ソース内壁164に接続され、無機絶縁層30の厚さ方向に延びる第1接続部を有している。
 第2Niめっき層193の第2部分193Bは、第2ソース開口173内において第1部分193Aから有機絶縁層31側に向けて引き出されている。第2部分193Bは、第1ソース開口167の開口端を起点に有機絶縁層31に向かう円弧状に形成されている。
 第2部分193Bは、第2ソース開口173内において無機絶縁層30のソース内周縁174を被覆している。これにより、第2部分193Bは、無機絶縁層30のソース内周縁174を挟んでソース主面電極155に対向している。第2部分193Bは、無機絶縁層30の主面に接続され、無機絶縁層30の幅方向に延びる第2接続部を有している。
 第2部分193Bは、この形態では、第2ソース開口173内において有機絶縁層31の第2ソース内壁169をさらに被覆している。第2部分193Bは、有機絶縁層31の第2ソース内壁169の中間部に対して無機絶縁層30側の領域を被覆している。換言すると、第2部分193Bは、第2ソース内壁169(有機絶縁層31)の露出面積が第2ソース内壁169(有機絶縁層31)の隠蔽面積を超えるように有機絶縁層31を被覆している。このように、第2Niめっき層193は、第1部分193Aおよび第2部分193Bが第1ソース開口167の開口端に異なる2方向から係合(engage)するように形成されている。
 第2Niめっき層193は、無機絶縁層30の厚さT2を超える厚さT4(T2<T4)を有している。厚さT4は、有機絶縁層31の厚さT3未満(T3<T4)である。厚さT4は、無機絶縁層30の厚さT2にソース内周縁174の幅WSを加算した値(T2+WS)を超えている(T2+WS<T4)。これは、第2Niめっき層193が有機絶縁層31の第2ソース内壁169に接する条件である。厚さT4は、ソース主面電極155の主面を基準とする第2Niめっき層193の厚さによって定義される。
 無機絶縁層30の厚さT2に対する第2Niめっき層193の厚さT4の比T4/T2は、1を超えて5以下であってもよい。比T4/T2は、1を超えて2以下、2以上3以下、3以上4以下、または、4以上5以下であってもよい。
 厚さT4は、0.1μm以上15μm以下であってもよい。厚さT4は、0.1μm以上1μm以下、1μm以上3μm以下、3μm以上6μm以下、6μm以上9μm以下、9μm以上12μm以下、または、12μm以上15μm以下であってもよい。厚さT4は、2μm以上8μm以下であることが好ましい。
 ソースパッド電極182は、第2Niめっき層193とは異なる金属材料からなり、第2ソース開口173内において第2Niめっき層193の外面を被覆する第2外面めっき層194を含む。第2外面めっき層194は、第1実施形態に係る外面めっき層42に対応している。
 第2外面めっき層194は、第2Niめっき層193の厚さT4未満の厚さT5(T5<T4)を有している。第2外面めっき層194は、第2ソース開口173内において有機絶縁層31の第2ソース内壁169を被覆している。
 第2外面めっき層194は、導電接合材(たとえば半田)を介して外部接続されるソース端子面194Aを有している。ソース端子面194Aは、有機絶縁層31の主面(第2ソース開口173の開口端)に対して第2Niめっき層193側に位置している。これにより、第2外面めっき層194は、有機絶縁層31の第2ソース内壁169の一部を露出させている。
 第2外面めっき層194は、具体的には、第2Niめっき層193側からこの順に積層された第2Pdめっき層195および第2Auめっき層196を含む積層構造を有している。第2Pdめっき層195および第2Auめっき層196は、第1実施形態に係るPdめっき層43およびAuめっき層44にそれぞれ対応している。
 第2Pdめっき層195は、第2Niめっき層193の外面に沿って膜状に形成されている。第2Pdめっき層195は、第2ソース開口173の開口端から無機絶縁層30側に間隔を空けて第2Niめっき層193を被覆している。第2Pdめっき層195は、第2ソース開口173内において有機絶縁層31の第2ソース内壁169を被覆している。
 第2Pdめっき層195は、第2Niめっき層193の厚さT4未満の厚さを有している。第2Pdめっき層195の厚さは、0.01μm以上1μm以下であってもよい。第2Pdめっき層195の厚さは、0.01μm以上0.1μm以下、0.1μm以上0.2μm以下、0.2μm以上0.4μm以下、0.4μm以上0.6μm以下、0.6μm以上0.8μm以下、または、0.8μm以上1μm以下であってもよい。
 第2Auめっき層196は、第2Pdめっき層195の外面に沿って膜状に形成されている。第2Auめっき層196は、第2ソース開口173の開口端から無機絶縁層30側に間隔を空けて第2Pdめっき層195を被覆している。第2Auめっき層196は、第2ソース開口173内において有機絶縁層31の第2ソース内壁169を被覆している。
 第2Auめっき層196は、第2Niめっき層193の厚さT4未満の厚さを有している。第2Auめっき層196の厚さは、0.01μm以上1μm以下であってもよい。第2Auめっき層196の厚さは、0.01μm以上0.1μm以下、0.1μm以上0.2μm以下、0.2μm以上0.4μm以下、0.4μm以上0.6μm以下、0.6μm以上0.8μm以下、または、0.8μm以上1μm以下であってもよい。
 この形態では、第2外面めっき層194が第2Pdめっき層195および第2Auめっき層196を含む積層構造を有している例について説明した。しかし、前述の図4A~図4Dに示された第2~第4形態例に係る外面めっき層42のうちのいずれか1つと同様の形態を有する第2外面めっき層194が採用されてもよい。
 第2主面電極46は、第2主面4の全域を被覆している。第2主面電極46は、第2主面4との間でオーミック接触を形成している。第2主面電極46は、ドレイン電極として形成されている。
 第2主面電極46は、Ti層、Ni層、Pd層、Au層およびAg層のうちの少なくとも1つを含む。第2主面電極46は、Ti層、Ni層、Pd層、Au層およびAg層のうちの少なくとも2つを任意の順序で積層した積層構造を有していてもよい。第2主面電極46は、Ti層、Ni層、Pd層、Au層およびAg層からなる単層構造を有していてもよい。第2主面電極46は、オーミック電極としてのTi層を含むことが好ましい。第2主面電極46は、この形態では、第2主面4側からこの順に積層されたTi層、Ni層、Pd層、Au層およびAg層を含む積層構造を有している。
 以上、SBDに代えてMISFETを含む半導体装置101によっても、半導体装置1に対して述べた効果と同様の効果を奏することができる。
 図15は、図12の対応図であって、本発明の第4実施形態に係る半導体装置201を示す断面図である。図16は、図15に示す領域XVIの拡大図である。図17は、図15に示す領域XVIIの拡大図である。以下では、半導体装置101(図9~図14参照)に対して述べた構造に対応する構造については同一の参照符号を付して説明を省略する。
 図15~図17を参照して、有機絶縁層31は、第1ゲート開口166および第2ゲート開口171の間の領域において無機絶縁層30のゲート内周縁172を露出させている。ゲート内周縁172の幅WGは、無機絶縁層30の厚さT2を超えていることが好ましい(T2<WG)。
 無機絶縁層30の厚さT2に対するゲート内周縁172の幅WGの比WG/T2は、1を超えて10以下であってもよい。比WG/T2は、1を超えて2以下、2以上4以下、4以上6以下、6以上8以下、または、8以上10以下であってもよい。比WG/T2は、2以上5以下であることが好ましい。幅WGは、0μmを超えて10μm以下であってもよい。幅WGは、0μmを超えて2μm以下、2μm以上4μm以下、4μm以上6μm以下、6μm以上8μm以下、または、8μm以上10μm以下であってもよい。
 第1Niめっき層183は、ゲートパッド開口161内においてゲート主面電極153の上に形成されている。第1Niめっき層183は、第1ゲート開口166内においてゲート主面電極153を被覆し、第2ゲート開口171内において無機絶縁層30のゲート内周縁172を被覆している。第1Niめっき層183は、有機絶縁層31(絶縁層24)の主面からゲート主面電極153側に間隔を空けて形成された外面を有している。第1Niめっき層183は、第2ゲート開口171内において有機絶縁層31から間隔を空けて無機絶縁層30のゲート内周縁172を被覆している。
 図16を参照して、第1Niめっき層183は、具体的には、ゲート主面電極153を被覆する第1部分183A、および、無機絶縁層30のゲート内周縁172を被覆する第2部分183Bを有している。
 第1Niめっき層183の第1部分183Aは、第1ゲート開口166内においてゲート粗面領域175を埋めてゲート主面電極153を被覆している。第1部分183Aは、第1ゲート開口166内において無機絶縁層30の第1ゲート内壁163の全域を被覆し、第1ゲート開口166の開口端から第2ゲート開口171の開口端に向かって突出している。第1部分183Aは、無機絶縁層30の第1ゲート内壁163に接続され、無機絶縁層30の厚さ方向に延びる第1接続部を有している。
 第1Niめっき層183の第2部分183Bは、第2ゲート開口171内において第1部分183Aから有機絶縁層31側に向けて引き出されている。第2部分183Bは、第1ゲート開口166の開口端を起点に有機絶縁層31の第2ゲート内壁168に向かう円弧状に形成されている。
 第2部分183Bは、第2ゲート開口171内において無機絶縁層30のゲート内周縁172を被覆している。第2部分183Bは、この形態では、無機絶縁層30の内周縁38の一部が露出するように、第2ゲート開口171内において有機絶縁層31の第2ゲート内壁168から無機絶縁層30の第1ゲート内壁163側に間隔を空けて無機絶縁層30のゲート内周縁172を部分的に被覆している。
 これにより、第1Niめっき層183は、無機絶縁層30のゲート内周縁172の一部および有機絶縁層31の第2ゲート内壁168の全域を露出させている。第2部分183Bは、無機絶縁層30のゲート内周縁172を挟んでゲート主面電極153に対向している。第2部分183Bは、無機絶縁層30の主面に接続され、無機絶縁層30の幅方向に延びる第2接続部を有している。
 第1Niめっき層183は、無機絶縁層30の厚さT2を超える厚さT4(T2<T4)を有している。厚さT4は、無機絶縁層30の厚さT2にゲート内周縁172の幅WGを加算した値(T2+WG)未満(T4<T2+WG)である。これは、第1Niめっき層183が有機絶縁層31の第2ゲート内壁168を露出させる条件である。厚さT4は、ゲート主面電極153の主面を基準とする第1Niめっき層183の厚さによって定義される。
 無機絶縁層30の厚さT2に対する第1Niめっき層183の厚さT4の比T4/T2は、1を超えて5以下であってもよい。比T4/T2は、1を超えて2以下、2以上3以下、3以上4以下、または、4以上5以下であってもよい。厚さT4は、0.1μm以上10μm以下であってもよい。厚さT4は、0.1μm以上1μm以下、1μm以上2μm以下、2μm以上4μm以下、4μm以上6μm以下、6μm以上8μm以下、または、8μm以上10μm以下であってもよい。
 第1外面めっき層184は、第2ゲート開口171内において第1Niめっき層183の外面を被覆している。第1外面めっき層184は、第1Niめっき層183の厚さT4未満の厚さT5(T5<T4)を有している。第1外面めっき層184は、この形態では、無機絶縁層30の内周縁38の一部が露出するように、第2ゲート開口171内において有機絶縁層31の第2ゲート内壁168から無機絶縁層30の第1ゲート内壁163側に間隔を空けて無機絶縁層30のゲート内周縁172を部分的に被覆している。
 第1外面めっき層184は、導電接合材(たとえば半田)を介して外部接続されるゲート端子面184Aを有している。ゲート端子面184Aは、有機絶縁層31の主面(第2ゲート開口171の開口端)に対して第1Niめっき層183側に位置している。これにより、第1外面めっき層184は、第2ゲート開口171内において無機絶縁層30のゲート内周縁172の一部および有機絶縁層31の第2ゲート内壁168の全域を露出させている。
 第1外面めっき層184は、具体的には、第1Niめっき層183側からこの順に積層された第1Pdめっき層185およびPdめっき層186を含む積層構造を有している。第1Pdめっき層185は、第1Niめっき層183の外面に沿って膜状に形成されている。第1Pdめっき層185は、第2ゲート開口171の開口端から無機絶縁層30側に間隔を空けて第1Niめっき層183を被覆している。
 第1Pdめっき層185は、無機絶縁層30の内周縁38の一部が露出するように、第2ゲート開口171内において有機絶縁層31の第2ゲート内壁168から無機絶縁層30の第1ゲート内壁163側に間隔を空けて無機絶縁層30のゲート内周縁172を部分的に被覆している。これにより、第1Pdめっき層185は、第2ゲート開口171内において無機絶縁層30のゲート内周縁172の一部および有機絶縁層31の第2ゲート内壁168の全域を露出させている。
 第1Pdめっき層185は、第1Niめっき層183の厚さT4未満の厚さを有している。第1Pdめっき層185の厚さは、0.01μm以上1μm以下であってもよい。第1Pdめっき層185の厚さは、0.01μm以上0.1μm以下、0.1μm以上0.2μm以下、0.2μm以上0.4μm以下、0.4μm以上0.6μm以下、0.6μm以上0.8μm以下、または、0.8μm以上1μm以下であってもよい。
 Pdめっき層186は、第1Pdめっき層185の外面に沿って膜状に形成されている。Pdめっき層186は、第2ゲート開口171の開口端から無機絶縁層30側に間隔を空けて第1Pdめっき層185を被覆している。
 Pdめっき層186は、無機絶縁層30の内周縁38の一部が露出するように、第2ゲート開口171内において有機絶縁層31の第2ゲート内壁168から無機絶縁層30の第1ゲート内壁163側に間隔を空けて無機絶縁層30のゲート内周縁172を部分的に被覆している。これにより、Pdめっき層186は、第2ゲート開口171内において無機絶縁層30のゲート内周縁172の一部および有機絶縁層31の第2ゲート内壁168の全域を露出させている。
 Pdめっき層186は、第1Niめっき層183の厚さT4未満の厚さを有している。Pdめっき層186の厚さは、0.01μm以上1μm以下であってもよい。Pdめっき層186の厚さは、0.01μm以上0.1μm以下、0.1μm以上0.2μm以下、0.2μm以上0.4μm以下、0.4μm以上0.6μm以下、0.6μm以上0.8μm以下、または、0.8μm以上1μm以下であってもよい。
 この形態では、第1外面めっき層184が第1Pdめっき層185およびPdめっき層186を含む積層構造を有している例について説明した。しかし、前述の図8A~図8Dに示された第2~第4形態例に係る外面めっき層42のうちのいずれか1つと同様の形態を有する第1外面めっき層184が採用されてもよい。
 有機絶縁層31は、第1ソース開口167および第2ソース開口173の間の領域において無機絶縁層30のソース内周縁174を露出させている。ソース内周縁174の幅WSは、この形態では、無機絶縁層30の厚さT2を超えている(T2<WS)。
 無機絶縁層30の厚さT2に対するゲート内周縁172の幅WSの比WS/T2は、1を超えて10以下であってもよい。比WS/T2は、1を超えて2以下、2以上4以下、4以上6以下、6以上8以下、または、8以上10以下であってもよい。比WS/T2は、2以上5以下であることが好ましい。幅WSは、0μmを超えて10μm以下であってもよい。幅WSは、0μmを超えて2μm以下、2μm以上4μm以下、4μm以上6μm以下、6μm以上8μm以下、または、8μm以上10μm以下であってもよい。
 第2Niめっき層193は、ソースパッド開口162内においてソース主面電極155の上に形成されている。第2Niめっき層193は、第2ソース開口173内においてソース主面電極155を被覆し、第2ソース開口173内において無機絶縁層30のソース内周縁174を被覆している。第2Niめっき層193は、有機絶縁層31(絶縁層24)の主面からソース主面電極155側に間隔を空けて形成された外面を有している。第2Niめっき層193は、第2ソース開口173内において有機絶縁層31から間隔を空けて無機絶縁層30のソース内周縁174を被覆している。
 図17を参照して、第2Niめっき層193は、具体的には、ソース主面電極155を被覆する第1部分193A、および、無機絶縁層30のソース内周縁174を被覆する第2部分193Bを有している。
 第2Niめっき層193の第1部分193Aは、第1ソース開口167内においてソース粗面領域176を埋めてソース主面電極155を被覆している。第1部分193Aは、第1ソース開口167内において無機絶縁層30の第1ソース内壁164の全域を被覆し、第1ソース開口167の開口端から第2ソース開口173の開口端に向かって突出している。第1部分193Aは、無機絶縁層30の第1ソース内壁164に接続され、無機絶縁層30の厚さ方向に延びる第1接続部を有している。
 第2Niめっき層193の第2部分193Bは、第2ソース開口173内において第1部分193Aから有機絶縁層31側に向けて引き出されている。第2部分193Bは、第1ソース開口167の開口端を起点に有機絶縁層31の第2ソース内壁169に向かう円弧状に形成されている。
 第2部分193Bは、第2ソース開口173内において無機絶縁層30のソース内周縁174を被覆している。第2部分193Bは、この形態では、無機絶縁層30の内周縁38の一部が露出するように、第2ソース開口173内において有機絶縁層31の第2ソース内壁169から無機絶縁層30の第1ソース内壁164側に間隔を空けて無機絶縁層30のソース内周縁174を部分的に被覆している。
 これにより、第2Niめっき層193は、無機絶縁層30のソース内周縁174の一部および有機絶縁層31の第2ソース内壁169の全域を露出させている。第2部分193Bは、無機絶縁層30のソース内周縁174を挟んでソース主面電極155に対向している。第2部分193Bは、無機絶縁層30の主面に接続され、無機絶縁層30の幅方向に延びる第2接続部を有している。
 第2Niめっき層193は、無機絶縁層30の厚さT2を超える厚さT4(T2<T4)を有している。厚さT4は、有機絶縁層31の厚さT3未満(T3<T4)である。厚さT4は、無機絶縁層30の厚さT2にソース内周縁174の幅WSを加算した値(T2+WS)未満(T4<T2+WS)である。これは、第2Niめっき層193が有機絶縁層31の第2ソース内壁169を露出させる条件である。厚さT4は、ソース主面電極155の主面を基準とする第2Niめっき層193の厚さによって定義される。
 無機絶縁層30の厚さT2に対する第2Niめっき層193の厚さT4の比T4/T2は、1を超えて5以下であってもよい。比T4/T2は、1を超えて2以下、2以上3以下、3以上4以下、または、4以上5以下であってもよい。厚さT4は、0.1μm以上10μm以下であってもよい。厚さT4は、0.1μm以上1μm以下、1μm以上2μm以下、2μm以上4μm以下、4μm以上6μm以下、6μm以上8μm以下、または、8μm以上10μm以下であってもよい。
 第2外面めっき層194は、第2ソース開口173内において第2Niめっき層193の外面を被覆している。第2外面めっき層194は、第2Niめっき層193の厚さT4未満の厚さT5(T5<T4)を有している。第2外面めっき層194は、この形態では、無機絶縁層30の内周縁38の一部が露出するように、第2ソース開口173内において有機絶縁層31の第2ソース内壁169から無機絶縁層30の第1ソース内壁164側に間隔を空けて無機絶縁層30のソース内周縁174を部分的に被覆している。
 第2外面めっき層194は、導電接合材(たとえば半田)を介して外部接続されるソース端子面194Aを有している。ソース端子面194Aは、有機絶縁層31の主面(第2ソース開口173の開口端)に対して第2Niめっき層193側に位置している。これにより、第2外面めっき層194は、第2ソース開口173内において無機絶縁層30のソース内周縁174の一部および有機絶縁層31の第2ソース内壁169の全域を露出させている。
 第2外面めっき層194は、具体的には、第2Niめっき層193側からこの順に積層された第2Pdめっき層195および第2Auめっき層196を含む積層構造を有している。第2Pdめっき層195は、第2Niめっき層193の外面に沿って膜状に形成されている。第2Pdめっき層195は、第2ソース開口173の開口端から無機絶縁層30側に間隔を空けて第2Niめっき層193を被覆している。
 第2Pdめっき層195は、無機絶縁層30の内周縁38の一部が露出するように、第2ソース開口173内において有機絶縁層31の第2ソース内壁169から無機絶縁層30の第1ソース内壁164側に間隔を空けて無機絶縁層30のソース内周縁174を部分的に被覆している。これにより、第2Pdめっき層195は、第2ソース開口173内において無機絶縁層30のソース内周縁174の一部および有機絶縁層31の第2ソース内壁169の全域を露出させている。
 第2Pdめっき層195は、第2Niめっき層193の厚さT4未満の厚さを有している。第2Pdめっき層195の厚さは、0.01μm以上1μm以下であってもよい。第2Pdめっき層195の厚さは、0.01μm以上0.1μm以下、0.1μm以上0.2μm以下、0.2μm以上0.4μm以下、0.4μm以上0.6μm以下、0.6μm以上0.8μm以下、または、0.8μm以上1μm以下であってもよい。
 第2Auめっき層196は、第2Pdめっき層195の外面に沿って膜状に形成されている。第2Auめっき層196は、第2ソース開口173の開口端から無機絶縁層30側に間隔を空けて第2Pdめっき層195を被覆している。
 第2Auめっき層196は、無機絶縁層30の内周縁38の一部が露出するように、第2ソース開口173内において有機絶縁層31の第2ソース内壁169から無機絶縁層30の第1ソース内壁164側に間隔を空けて無機絶縁層30のソース内周縁174を部分的に被覆している。これにより、第2Auめっき層196は、第2ソース開口173内において無機絶縁層30のソース内周縁174の一部および有機絶縁層31の第2ソース内壁169の全域を露出させている。
 第2Auめっき層196は、第2Niめっき層193の厚さT4未満の厚さを有している。第2Auめっき層196の厚さは、0.01μm以上1μm以下であってもよい。第2Auめっき層196の厚さは、0.01μm以上0.1μm以下、0.1μm以上0.2μm以下、0.2μm以上0.4μm以下、0.4μm以上0.6μm以下、0.6μm以上0.8μm以下、または、0.8μm以上1μm以下であってもよい。
 この形態では、第2外面めっき層194が第2Pdめっき層195および第2Auめっき層196を含む積層構造を有している例について説明した。しかし、前述の図8A~図8Dに示された第2~第4形態例に係る外面めっき層42のうちのいずれか1つと同様の形態を有する第2外面めっき層194が採用されてもよい。
 以上、半導体装置201によっても、半導体装置101に対して述べた効果と同様の効果を奏することができる。半導体装置201によれば、半導体装置61に対して述べた効果と同様の効果を奏することができる。
 図18は、第1~第4実施形態に係る半導体装置(符号略)が組み込まれる半導体パッケージ301を一方側から見た平面図である。図19は、図18に示す半導体パッケージ301を他方側から見た平面図である。図20は、図18に示す半導体パッケージ301の斜視図である。図21は、図18に示す半導体パッケージ301の分解斜視図である。図22は、図18に示すXXII-XXII線に沿う断面図である。図23は、図18に示す半導体パッケージ301の回路図である。
 図18~図23を参照して、半導体パッケージ301は、この形態では、パワーガードと称される形態を有している。半導体パッケージ301は、樹脂製のパッケージ本体302を含む。パッケージ本体302は、フィラー(たとえば絶縁フィラー)およびマトリクス樹脂を含むモールド樹脂からなる。マトリクス樹脂は、エポキシ樹脂からなることが好ましい。
 パッケージ本体302は、一方側の第1主面303(第1面)、他方側の第2主面304(第2面)、ならびに、第1主面303および第2主面304を接続する側面305A~305Dを有している。第1主面303および第2主面304は、それらの法線方向Zから見た平面視において四角形状(この形態では長方形状)に形成されている。
 側面305A~305Dは、第1側面305A、第2側面305B、第3側面305Cおよび第4側面305Dを含む。第1側面305Aおよび第2側面305Bは、第1方向Xに沿って延び、第1方向Xに交差する第2方向Yに対向している。第1側面305Aおよび第2側面305Bは、パッケージ本体302の長辺を形成している。第3側面305Cおよび第4側面305Dは、第2方向Yに沿って延び、第1方向Xに対向している。第3側面305Cおよび第4側面305Dは、パッケージ本体302の短辺を形成している。第2方向Yは、具体的には、第1方向Xに直交している。
 半導体パッケージ301は、パッケージ本体302内に配置された第1金属板310を含む。第1金属板310は、パッケージ本体302の第1主面303側に配置され、第1放熱部311および第1端子部312を一体的に含む。第1放熱部311は、第1主面303から露出するようにパッケージ本体302内に配置されている。第1放熱部311は、平面視において第1方向Xに沿って延びる長方形状に形成されている。第1放熱部311は、第1主面303の平面積未満の平面積を有し、側面305A~305Dから内方に間隔を空けて第1主面303から露出している。
 第1端子部312は、第1側面305Aから露出している。第1端子部312は、具体的には、第1放熱部311から第1側面305Aに向けて帯状に延び、第1側面305Aを貫通してパッケージ本体302外に引き出されている。第1放熱部311は、第1側面305A(第2側面305B)の中央部を第2方向Yに横切る中央ラインLCを設定したとき、当該中央ラインLCに対して第4側面305D側に位置している。
 第1端子部312は、第2方向Yに関して第1長さL1を有している。第1端子部312の第1方向Xの幅は、第1放熱部311の第1方向Xの幅未満である。第1端子部312は、パッケージ本体302内において第1主面303側から第2主面304側に折れ曲がった屈曲部313を介して第1放熱部311に接続されている。これにより、第1端子部312は、第1主面303から第2主面304側に間隔を空けて第1側面305Aから露出している。
 半導体パッケージ301は、パッケージ本体302内に配置された第2金属板320を含む。第2金属板320は、第1金属板310から間隔を空けてパッケージ本体302の第2主面304側に配置され、第2放熱部321および第2端子部322を一体的に含む。第2放熱部321は、第2主面304から露出するようにパッケージ本体302内に配置されている。第2放熱部321は、平面視において第1方向Xに沿って延びる長方形状に形成されている。第2放熱部321は、第2主面304の平面積未満の平面積を有し、側面305A~305Dから内方に間隔を空けて第2主面304から露出している。
 第2端子部322は、第1側面305Aから露出している。第2端子部322は、具体的には、第2放熱部321から第1側面305Aに向けて帯状に延び、第1側面305Aを貫通してパッケージ本体302外に引き出されている。第2端子部322は、中央ラインLCに対して第3側面305C側に位置している。
 第2端子部322は、この形態では、第2方向Yに関して第1端子部312の第1長さL1とは異なる第2長さL2を有している。第1端子部312および第2端子部322は、それらの形状(長さ)から識別される。第2端子部322の第2長さL2は、第1長さL1を超えていてもよいし、第1長さL1未満であってもよい。むろん、第1長さL1と等しい第2長さL2を有する第2端子部322が形成されてもよい。
 第2端子部322の第1方向Xの幅は、第2放熱部321の第1方向Xの幅未満である。第2端子部322は、パッケージ本体302内において第2主面304側から第1主面303側に折れ曲がった屈曲部323を介して第2放熱部321に接続されている。これにより、第2端子部322は、第2主面304から第1主面303側に間隔を空けて第2側面305Bから露出している。
 第2端子部322は、法線方向Zに関して、第1端子部312とは異なる厚さ位置から引き出されている。第2端子部322は、この形態では、第1端子部312から第2主面304側に間隔を空けて形成されている。第2端子部322は、第1方向Xに関して第1端子部312と対向していない。
 半導体パッケージ301は、パッケージ本体302内に配置された1つまたは複数(この形態では5つ)の制御端子330を含む。複数の制御端子330は、第1端子部312および第2端子部322が露出した第1側面305Aとは反対側の第2側面305Bから露出している。複数の制御端子330は、中央ラインLCに対して第3側面305C側に位置している。複数の制御端子330は、平面視において第2金属板320の第2端子部322と同一直線状に位置している。複数の制御端子330の配置は任意である。
 複数の制御端子330は、第2方向Yに沿って延びる帯状にそれぞれ形成されている。複数の制御端子330は、具体的には、内部接続部331、外部接続部332および帯状部333をそれぞれ含む。内部接続部331は、パッケージ本体302内に配置されている。外部接続部332は、パッケージ本体302外に配置されている。
 帯状部333は、内部接続部331から第2側面305Bを貫通して外部接続部332に向けて帯状に延びている。帯状部333は、パッケージ本体302外に位置する部分において第2主面304側に向けて窪んだ湾曲部334を有していてもよい。むろん、湾曲部334を有さない帯状部333が形成されてもよい。
 複数の制御端子330は、法線方向Zに関して、第1放熱部311および第2放熱部321とは異なる厚さ位置から引き出されている。複数の制御端子330は、この形態では、第1放熱部311および第2放熱部321から間隔を空けて第1放熱部311および第2放熱部321の間の領域に配置されている。
 半導体パッケージ301は、パッケージ本体302内に配置されたSBDチップ341およびMISFETチップ342を含む。SBDチップ341は、第1~第2実施形態に係る半導体装置(符号略)のいずれか一方からなる。MISFETチップ342は、第3~第4実施形態に係る半導体装置(符号略)のいずれか一方からなる。
 SBDチップ341は、パッケージ本体302内において第1放熱部311および第2放熱部321によって挟まれた空間に配置されている。SBDチップ341は、中央ラインLCに対してパッケージ本体302の第4側面305D側に配置されている。SBDチップ341は、第2主面電極46を第2放熱部321に対向させた姿勢で、第2放熱部321の上に配置されている。
 MISFETチップ342は、SBDチップ341から間隔を空けてパッケージ本体302内において第1放熱部311および第2放熱部321によって挟まれた空間に配置されている。MISFETチップ342は、中央ラインLCに対してパッケージ本体302の第3側面305C側に配置されている。MISFETチップ342は、第2主面電極46を第2放熱部321に対向させた姿勢で、第2放熱部321の上に配置されている。
 半導体パッケージ301は、第1導電接合材343および第2導電接合材344を含む。第1導電接合材343および第2導電接合材344は、半田または金属ペーストをそれぞれ含む。第1導電接合材343は、SBDチップ341の第2主面電極46および第2放熱部321の間に介在し、SBDチップ341および第2放熱部321を熱的、機械的および電気的に接続している。第2導電接合材344は、MISFETチップ342の第2主面電極46および第2放熱部321の間に介在し、MISFETチップ342および第2放熱部321を熱的、機械的および電気的に接続している。
 これにより、SBDチップ341のカソードは、MISFETチップ342のドレインに電気的に接続されている。つまり、第2金属板320(第2放熱部321)は、SBDチップ341およびMISFETチップ342に対するカソード・ドレイン端子として機能する。
 半導体パッケージ301は、第1金属スペーサ351および第2金属スペーサ352を含む。第1金属スペーサ351および第2金属スペーサ352は、この形態では、銅を含む板状部材からそれぞれなる。第2金属スペーサ352は、第1金属スペーサ351の厚さと等しい厚さを有している。
 第1金属スペーサ351は、SBDチップ341および第1放熱部311の間に介在し、SBDチップ341から第1放熱部311を離間させている。第2金属スペーサ352は、MISFETチップ342および第1放熱部311の間に介在し、MISFETチップ342から第1放熱部311を離間させている。この形態では、第1金属スペーサ351および第2金属スペーサ352が別体であるが、第1金属スペーサ351および第2金属スペーサ352は一体的に形成されていてもよい。
 半導体パッケージ301は、第3導電接合材353および第4導電接合材354を含む。第3導電接合材353および第4導電接合材354は、半田または金属ペーストをそれぞれ含む。第3導電接合材353および第4導電接合材354は、それぞれ半田からなることが好ましい。
 第3導電接合材353は、SBDチップ341のパッド電極40および第1金属スペーサ351の間に介在し、SBDチップ341および第1金属スペーサ351を熱的、機械的および電気的に接続している。第4導電接合材354は、MISFETチップ342のソースパッド電極182および第2金属スペーサ352の間に介在し、MISFETチップ342および第2金属スペーサ352を熱的、機械的および電気的に接続している。
 半導体パッケージ301は、第5導電接合材355および第6導電接合材356を含む。第5導電接合材355および第6導電接合材356は、半田または金属ペーストをそれぞれ含む。第5導電接合材355は、第1放熱部311および第1金属スペーサ351の間に介在し、第1放熱部311および第1金属スペーサ351を熱的、機械的および電気的に接続している。第6導電接合材356は、第1放熱部311および第2金属スペーサ352の間に介在し、第1放熱部311および第2金属スペーサ352を熱的、機械的および電気的に接続している。
 これにより、SBDチップ341のアノードは、MISFETチップ342のソースに電気的に接続されている。つまり、第1金属板310(第1放熱部311)は、SBDチップ341およびMISFETチップ342に対するアノード・ソース端子として機能する。
 半導体パッケージ301は、1つまたは複数(この形態では5つ)の導線357を含む。導線357は、ボンディングワイヤとも称される。導線357は、金ワイヤ、銅ワイヤまたはアルミニウムワイヤからなっていてもよい。複数の導線357は、MISFETチップ342のゲートパッド電極181および複数の制御端子330の内部接続部331にそれぞれ接続されている。
 これにより、MISFETチップ342のゲートは、複数の制御端子330に電気的に接続されている。つまり、複数の制御端子330は、MISFETチップ342のゲート端子としてそれぞれ機能する。導線357は、全ての制御端子330およびゲートパッド電極181を接続させる必要はない。任意の制御端子330は、電気的に開放されていてもよい。
 以上、半導体パッケージ301によれば、SBDチップ341のパッド電極40に第1導電接合材343が接続される。SBDチップ341のパッド電極40は、第1~第2実施形態において述べた通り、Niめっき層41および外面めっき層42を含む。これにより、SBDチップ341のパッド電極40に対して第1導電接合材343を適切に接続させることができる。よって、SBDチップ341を第1放熱部311および第2放熱部321に熱的、機械的および電気的に適切に接続させることができる。
 SBDチップ341が有機絶縁層31を備えていない場合、パッケージ本体302に含有されるフィラーに起因してSBDチップ341のパッド電極40等にクラックや剥離等が生じる場合がある。この種の問題はフィラーアタックと称され、パッド電極40等の信頼性低下の一要因になっている。そこで、SBDチップ341では、無機絶縁層30の上に有機絶縁層31が形成されている。これにより、有機絶縁層31がフィラーに対するクッションになるから、フィラーアタックからパッド電極40等を適切に保護できる。
 さらに、SBDチップ341では、第1~第2実施形態において述べた通り、有機絶縁層31を備えた構造において、Niめっき層41が無機絶縁層30の内周縁38に接続された構造を有している。これにより、フィラーアタックに起因するNiめっき層41(外面めっき層42)のクラックや剥離等も適切に抑制できる。
 半導体パッケージ301によれば、MISFETチップ342のソースパッド電極182に第2導電接合材344が接続される。MISFETチップ342のソースパッド電極182は、第3~第4実施形態において述べた通り、第2Niめっき層193および第2外面めっき層194を含む。これにより、MISFETチップ342のソースパッド電極182に対して第2導電接合材344を適切に接続させることができる。よって、MISFETチップ342を第1放熱部311および第2放熱部321に熱的、機械的および電気的に適切に接続させることができる。
 MISFETチップ342が有機絶縁層31を備えていない場合、パッケージ本体302に含有されるフィラーに起因してMISFETチップ342のソースパッド電極182等にクラックや剥離等が生じる場合がある。この種の問題はフィラーアタックと称され、ソースパッド電極182等の信頼性低下の一要因になっている。そこで、MISFETチップ342では、無機絶縁層30の上に有機絶縁層31が形成されている。これにより、有機絶縁層31がフィラーに対するクッションになるから、フィラーアタックからソースパッド電極182等を適切に保護できる。
 さらに、MISFETチップ342では、第3~第4実施形態において述べた通り、有機絶縁層31を備えた構造において、第2Niめっき層193が無機絶縁層30の第1ソース内壁164に接続された構造を有している。これにより、フィラーアタックに起因する第2Niめっき層193(第2外面めっき層194)のクラックや剥離等も適切に抑制できる。MISFETチップ342では、ゲートパッド電極181側においても、ソースパッド電極182側の効果と同様の効果を奏することができる。
 この形態では、半導体パッケージ301がSBDチップ341およびMISFETチップ342を含む例について説明した。しかし、SBDチップ341およびMISFETチップ342のいずれか一方だけを含む半導体パッケージ301が採用されてもよい。複数のSBDチップ341および/または複数のMISFETチップ342を含む半導体パッケージ301が採用されてもよい。
 本発明の実施形態は、さらに他の形態で実施できる。
 前述の第3~第4実施形態において、ゲート閾値電圧Vthの増加を重視しない場合には、ゲート電極107は、p型ポリシリコンに代えて、n型不純物が添加されたn型ポリシリコンを含んでいてもよい。この場合、n型ポリサイドからなる第1低抵抗層112が形成される。このような構造の場合、ゲート抵抗をより一層低減できる。
 前述の第3~第4実施形態において、p型ポリシリコンに代えて、n型不純物が添加されたn型ポリシリコンを含んでいてもよい。前述の第3~第4実施形態において、第1低抵抗層112および第2低抵抗層131のいずれか一方または双方が形成されていない構造が採用されてもよい。
 前述の第3~第4実施形態において、n型のドレイン領域に代えてp型のコレクタ領域が採用されてもよい。この構造によれば、MISFETに代えて、IGBT(Insulated Gate Bipolar Transistor)を提供できる。この場合、前述の第3~第4実施形態において、MISFETの「ソース」がIGBTの「エミッタ」に読み替えられ、MISFETの「ドレイン」がIGBTの「コレクタ」に読み替えられる。
 前述の各実施形態において、SiCチップ2に代えてSi単結晶からなるSiチップが採用されてもよい。つまり、前述の各実施形態に係る半導体装置(符号略)は、Si半導体装置であってもよい。前述の各実施形態において、各半導体部分の導電型が反転された構造が採用されてもよい。つまり、p型の部分がn型とされ、n型の部分がp型とされてもよい。
 以下、この明細書および図面から抽出される特徴の例を示す。以下の[A1]~[A20]は、有機絶縁層の開口から露出する電極の上にNiめっき層が形成される構造において、Niめっき層の信頼性を向上できる半導体装置を提供する。
 [A1]チップと、前記チップの上に形成された電極と、前記電極を被覆し、前記電極を露出させる第1開口を有する無機絶縁層と、前記無機絶縁層を被覆し、前記第1開口から間隔を空けて前記第1開口を取り囲む第2開口を有し、前記第1開口および前記第2開口の間の領域において前記無機絶縁層の内周縁を露出させる有機絶縁層と、前記第1開口内において前記電極を被覆し、前記第2開口内において前記無機絶縁層の前記内周縁を被覆するNiめっき層と、を含む、半導体装置。
 [A2]前記Niめっき層は、前記第2開口内において前記有機絶縁層を被覆している、A1に記載の半導体装置。
 [A3]前記Niめっき層は、前記第2開口の開口端から前記無機絶縁層側に間隔を空けて形成されている、A2に記載の半導体装置。
 [A4]前記Niめっき層は、前記第2開口内において前記有機絶縁層の露出面積が前記有機絶縁層の隠蔽面積を超えるように前記有機絶縁層を被覆している、A2またはA3に記載の半導体装置。
 [A5]前記無機絶縁層の前記内周縁は、前記無機絶縁層の厚さ以下の幅を有している、A2~A4のいずれか一つに記載の半導体装置。
 [A6]前記第2開口内において前記Niめっき層の外面を被覆する外面めっき層をさらに含む、A2~A5のいずれか一つに記載の半導体装置。
 [A7]前記外面めっき層は、前記第2開口内において前記有機絶縁層を被覆している、A6に記載の半導体装置。
 [A8]前記外面めっき層は、前記第2開口の開口端から前記無機絶縁層側に間隔を空けて前記Niめっき層を被覆している、A6またはA7に記載の半導体装置。
 [A9]前記外面めっき層は、前記Niめっき層の厚さ未満の厚さを有している、A6~A8のいずれか一つに記載の半導体装置。
 [A10]前記Niめっき層は、前記第2開口内において前記有機絶縁層から間隔を空けて前記無機絶縁層の前記内周縁を被覆している、A1に記載の半導体装置。
 [A11]前記Niめっき層は、前記第2開口の開口端から前記無機絶縁層側に間隔を空けて形成されている、A10に記載の半導体装置。
 [A12]前記無機絶縁層の前記内周縁は、前記無機絶縁層の厚さを超える幅を有している、A10またはA11に記載の半導体装置。
 [A13]前記第2開口内において前記Niめっき層の外面を被覆する外面めっき層をさらに含む、A10~A12のいずれか一つに記載の半導体装置。
 [A14]前記外面めっき層は、前記無機絶縁層の前記内周縁を被覆している、A13に記載の半導体装置。
 [A15]前記外面めっき層は、前記有機絶縁層から間隔を空けて前記Niめっき層を被覆している、A13またはA14に記載の半導体装置。
 [A16]前記外面めっき層は、前記第2開口の開口端から前記無機絶縁層側に間隔を空けて前記Niめっき層を被覆している、A13~A15のいずれか一つに記載の半導体装置。
 [A17]前記外面めっき層は、前記Niめっき層の厚さ未満の厚さを有している、A13~A16のいずれか一つに記載の半導体装置。
 [A18]前記チップは、SiCチップからなる、A1~A17のいずれか一つに記載の半導体装置。
 [A19]一方側の第1面、他方側の第2面、および、側面を有する樹脂製のパッケージ本体と、前記第1面から露出する第1放熱部、および、前記側面から露出する第1端子部を有し、前記パッケージ本体内に配置された第1金属板と、前記第2面から露出する第2放熱部、および、前記側面から露出する第2端子部を有し、前記第1金属板から前記第2面側に間隔を空けて前記パッケージ本体内に配置された第2金属板と、前記パッケージ本体内において前記第1放熱部および前記第2放熱部によって挟まれた空間に配置されたA1~A18のいずれか一つに記載の半導体装置と、を含む、半導体パッケージ。
 この出願は、2019年9月30日に日本国特許庁に提出された特願2019-180861号に対応しており、この出願の全開示はここに引用により組み込まれる。本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。
1    半導体装置
2    SiCチップ(チップ)
21   第1主面電極(電極)
30   無機絶縁層
31   有機絶縁層
34   第1開口
37   第2開口
38   無機絶縁層の内周縁
41   Niめっき層
42   外面めっき層
61   半導体装置
101  半導体装置
153  ゲート主面電極(電極)
155  ソース主面電極(電極)
166  第1ゲート開口(第1開口)
167  第1ソース開口(第1開口)
171  第2ゲート開口(第2開口)
172  無機絶縁層のゲート内周縁
173  第2ソース開口(第2開口)
174  無機絶縁層のソース内周縁
183  第1Niめっき層
184  第1外面めっき層
193  第2Niめっき層
194  第2外面めっき層
201  半導体装置
301  半導体パッケージ
302  パッケージ本体
303  第1主面(第1面)
304  第2主面(第2面)
305A 側面
305B 側面
305C 側面
305D 側面
310  第1金属板
311  第1放熱部
312  第1端子部
320  第2金属板
321  第2放熱部
322  第2端子部
341  SBDチップ(半導体装置)
342  MISFETチップ(半導体装置)
351  第1金属スペーサ
352  第2金属スペーサ
T2   無機絶縁層の厚さ
T4   Niめっき層の厚さ
T5   外面めっき層の厚さ
W    無機絶縁層の内周縁の幅
WG   無機絶縁層のゲート内周縁の幅
WS   無機絶縁層のソース内周縁の幅

Claims (19)

  1.  チップと、
     前記チップの上に形成された電極と、
     前記電極を被覆し、前記電極を露出させる第1開口を有する無機絶縁層と、
     前記無機絶縁層を被覆し、前記第1開口から間隔を空けて前記第1開口を取り囲む第2開口を有し、前記第1開口および前記第2開口の間の領域において前記無機絶縁層の内周縁を露出させる有機絶縁層と、
     前記第1開口内において前記電極を被覆し、前記第2開口内において前記無機絶縁層の前記内周縁を被覆するNiめっき層と、を含む、半導体装置。
  2.  前記Niめっき層は、前記第2開口内において前記有機絶縁層を被覆している、請求項1に記載の半導体装置。
  3.  前記Niめっき層は、前記第2開口の開口端から前記無機絶縁層側に間隔を空けて形成されている、請求項2に記載の半導体装置。
  4.  前記Niめっき層は、前記第2開口内において前記有機絶縁層の露出面積が前記有機絶縁層の隠蔽面積を超えるように前記有機絶縁層を被覆している、請求項2または3に記載の半導体装置。
  5.  前記無機絶縁層の前記内周縁は、前記無機絶縁層の厚さ以下の幅を有している、請求項2~4のいずれか一項に記載の半導体装置。
  6.  前記第2開口内において前記Niめっき層の外面を被覆する外面めっき層をさらに含む、請求項2~5のいずれか一項に記載の半導体装置。
  7.  前記外面めっき層は、前記第2開口内において前記有機絶縁層を被覆している、請求項6に記載の半導体装置。
  8.  前記外面めっき層は、前記第2開口の開口端から前記無機絶縁層側に間隔を空けて前記Niめっき層を被覆している、請求項6または7に記載の半導体装置。
  9.  前記外面めっき層は、前記Niめっき層の厚さ未満の厚さを有している、請求項6~8のいずれか一項に記載の半導体装置。
  10.  前記Niめっき層は、前記第2開口内において前記有機絶縁層から間隔を空けて前記無機絶縁層の前記内周縁を被覆している、請求項1に記載の半導体装置。
  11.  前記Niめっき層は、前記第2開口の開口端から前記無機絶縁層側に間隔を空けて形成されている、請求項10に記載の半導体装置。
  12.  前記無機絶縁層の前記内周縁は、前記無機絶縁層の厚さを超える幅を有している、請求項10または11に記載の半導体装置。
  13.  前記第2開口内において前記Niめっき層の外面を被覆する外面めっき層をさらに含む、請求項10~12のいずれか一項に記載の半導体装置。
  14.  前記外面めっき層は、前記無機絶縁層の前記内周縁を被覆している、請求項13に記載の半導体装置。
  15.  前記外面めっき層は、前記有機絶縁層から間隔を空けて前記Niめっき層を被覆している、請求項13または14に記載の半導体装置。
  16.  前記外面めっき層は、前記第2開口の開口端から前記無機絶縁層側に間隔を空けて前記Niめっき層を被覆している、請求項13~15のいずれか一項に記載の半導体装置。
  17.  前記外面めっき層は、前記Niめっき層の厚さ未満の厚さを有している、請求項13~16のいずれか一項に記載の半導体装置。
  18.  前記チップは、SiCチップからなる、請求項1~17のいずれか一項に記載の半導体装置。
  19.  一方側の第1面、他方側の第2面、および、側面を有する樹脂製のパッケージ本体と、
     前記第1面から露出する第1放熱部、および、前記側面から露出する第1端子部を有し、前記パッケージ本体内に配置された第1金属板と、
     前記第2面から露出する第2放熱部、および、前記側面から露出する第2端子部を有し、前記第1金属板から前記第2面側に間隔を空けて前記パッケージ本体内に配置された第2金属板と、
     前記パッケージ本体内において前記第1放熱部および前記第2放熱部によって挟まれた空間に配置された請求項1~18のいずれか一項に記載の半導体装置と、を含む、半導体パッケージ。
PCT/JP2020/036289 2019-09-30 2020-09-25 半導体装置 WO2021065722A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE212020000619.9U DE212020000619U1 (de) 2019-09-30 2020-09-25 Halbleiterbauteil
CN202080066090.8A CN114430861A (zh) 2019-09-30 2020-09-25 半导体装置
DE112020003413.5T DE112020003413T5 (de) 2019-09-30 2020-09-25 Halbleiterbauteil
JP2021551185A JPWO2021065722A1 (ja) 2019-09-30 2020-09-25
US17/639,528 US20220336598A1 (en) 2019-09-30 2020-09-25 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-180861 2019-09-30
JP2019180861 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065722A1 true WO2021065722A1 (ja) 2021-04-08

Family

ID=75338262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036289 WO2021065722A1 (ja) 2019-09-30 2020-09-25 半導体装置

Country Status (5)

Country Link
US (1) US20220336598A1 (ja)
JP (1) JPWO2021065722A1 (ja)
CN (1) CN114430861A (ja)
DE (2) DE212020000619U1 (ja)
WO (1) WO2021065722A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023067925A1 (ja) * 2021-10-21 2023-04-27 住友電気工業株式会社 半導体装置及び半導体装置の製造方法
WO2023067926A1 (ja) * 2021-10-21 2023-04-27 住友電気工業株式会社 半導体装置
WO2023080089A1 (ja) * 2021-11-05 2023-05-11 ローム株式会社 半導体装置の製造方法
IT202100029969A1 (it) * 2021-11-26 2023-05-26 St Microelectronics Srl Dispositivo elettronico basato su sic con robustezza migliorata, e metodo di fabbricazione del dispositivo elettronico
WO2023189930A1 (ja) * 2022-03-31 2023-10-05 ローム株式会社 半導体素子および半導体装置
WO2024101130A1 (ja) * 2022-11-08 2024-05-16 ローム株式会社 半導体装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009501A (ja) * 2011-06-24 2013-01-10 Hitachi Automotive Systems Ltd パワー半導体モジュール及びそれを用いた電力変換装置
JP2014187073A (ja) * 2013-03-21 2014-10-02 Renesas Electronics Corp 半導体装置およびその製造方法
JP2017069381A (ja) * 2015-09-30 2017-04-06 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
JP2017191840A (ja) * 2016-04-12 2017-10-19 ローム株式会社 半導体装置および半導体装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383488B (zh) 2017-03-16 2023-08-29 三菱电机株式会社 半导体装置
JP7161306B2 (ja) 2018-04-10 2022-10-26 旭化成株式会社 測定装置、測定方法およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009501A (ja) * 2011-06-24 2013-01-10 Hitachi Automotive Systems Ltd パワー半導体モジュール及びそれを用いた電力変換装置
JP2014187073A (ja) * 2013-03-21 2014-10-02 Renesas Electronics Corp 半導体装置およびその製造方法
JP2017069381A (ja) * 2015-09-30 2017-04-06 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
JP2017191840A (ja) * 2016-04-12 2017-10-19 ローム株式会社 半導体装置および半導体装置の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023067925A1 (ja) * 2021-10-21 2023-04-27 住友電気工業株式会社 半導体装置及び半導体装置の製造方法
WO2023067926A1 (ja) * 2021-10-21 2023-04-27 住友電気工業株式会社 半導体装置
WO2023080089A1 (ja) * 2021-11-05 2023-05-11 ローム株式会社 半導体装置の製造方法
IT202100029969A1 (it) * 2021-11-26 2023-05-26 St Microelectronics Srl Dispositivo elettronico basato su sic con robustezza migliorata, e metodo di fabbricazione del dispositivo elettronico
EP4187621A1 (en) 2021-11-26 2023-05-31 STMicroelectronics S.r.l. Sic-based electronic device with enhanced robustness, and method for manufacturing the electronic device
WO2023189930A1 (ja) * 2022-03-31 2023-10-05 ローム株式会社 半導体素子および半導体装置
WO2024101130A1 (ja) * 2022-11-08 2024-05-16 ローム株式会社 半導体装置

Also Published As

Publication number Publication date
DE112020003413T5 (de) 2022-04-07
CN114430861A (zh) 2022-05-03
US20220336598A1 (en) 2022-10-20
DE212020000619U1 (de) 2022-01-24
JPWO2021065722A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
WO2021065722A1 (ja) 半導体装置
WO2020235629A1 (ja) SiC半導体装置
JPWO2020031971A1 (ja) SiC半導体装置
WO2020213603A1 (ja) SiC半導体装置
JP7129397B2 (ja) SiC半導体装置
JP6795032B2 (ja) 半導体装置
US20240282825A1 (en) SiC SEMICONDUCTOR DEVICE
US20230223433A1 (en) SiC SEMICONDUCTOR DEVICE
US11916112B2 (en) SiC semiconductor device
JP6664445B2 (ja) SiC半導体装置
JP6664446B2 (ja) SiC半導体装置
WO2021261102A1 (ja) 電子部品
JP2020150137A (ja) 半導体装置
JP6630410B1 (ja) SiC半導体装置
JP6647352B1 (ja) SiC半導体装置
US12125882B2 (en) SiC semiconductor device
JP7129437B2 (ja) SiC半導体装置
JP6630411B1 (ja) SiC半導体装置
JP7129436B2 (ja) SiC半導体装置
JP7168544B2 (ja) SiC半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551185

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20871600

Country of ref document: EP

Kind code of ref document: A1