WO2021065704A1 - 熱硬化性樹脂組成物、熱硬化性樹脂シート、電子部品、及び電子装置 - Google Patents
熱硬化性樹脂組成物、熱硬化性樹脂シート、電子部品、及び電子装置 Download PDFInfo
- Publication number
- WO2021065704A1 WO2021065704A1 PCT/JP2020/036233 JP2020036233W WO2021065704A1 WO 2021065704 A1 WO2021065704 A1 WO 2021065704A1 JP 2020036233 W JP2020036233 W JP 2020036233W WO 2021065704 A1 WO2021065704 A1 WO 2021065704A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- resin
- resin composition
- polyimide
- formula
- Prior art date
Links
- WKIYXAJSNNZYGF-SZXQPVLSSA-N CCCCCCC1C=CC(CCCCCCCCN)C(CCCCCCCCN)C1/C=C/CCCCCC Chemical compound CCCCCCC1C=CC(CCCCCCCCN)C(CCCCCCCCN)C1/C=C/CCCCCC WKIYXAJSNNZYGF-SZXQPVLSSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1057—Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
- C08G73/106—Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/5406—Silicon-containing compounds containing elements other than oxygen or nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L35/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L35/04—Homopolymers or copolymers of nitriles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
- C08L83/06—Polysiloxanes containing silicon bound to oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/16—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
- C09J7/35—Heat-activated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
- H01L23/296—Organo-silicon compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
- H01Q7/06—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0485—Dielectric resonator antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
- H01Q9/40—Element having extended radiating surface
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/08—Stabilised against heat, light or radiation or oxydation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
- C08L2205/035—Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
Definitions
- the present invention relates to a thermosetting resin composition, a thermosetting resin sheet, an electronic component, and an electronic device.
- thermosetting resins having excellent durability and workability
- polar functional groups for exhibiting intermolecular cohesive force and adhesiveness, so that they have a relatively large dielectric loss tangent and high frequency. It was difficult to deal with the change.
- Patent Document 1 a method of blending a thermosetting resin mainly containing a thermoplastic resin having few polar functional groups
- a thermosetting resin in which no polar functional group remains after the reaction Methods
- Patent Document 2 a method of blending inorganic particles having a low dielectric loss tangent
- Patent Document 3 a method of blending inorganic particles having a low dielectric loss tangent
- the method (1) has problems in heat resistance and adhesive strength as shown by, for example, dynamic viscoelasticity measurement. Further, the methods (2) and (3) have a problem that the film strength before and after curing is low, and the applications and conditions that can be used in flexibility and high elongation are limited. Further, in (3), the fine processability of via holes and the like is also limited by the inorganic particles. That is, in the prior art, no one that satisfies low dielectric loss tangent, heat resistance, flexibility, and easy workability has been found.
- the present invention solves the above-mentioned problems and uses a thermosetting resin composition having excellent low dielectric loss tangent, heat resistance, flexibility, and easy workability, which is used for an organic material suitable for high frequency. It is an object of the present invention to provide a thermosetting resin sheet, an electronic component, and an electronic device.
- thermosetting resin composition having good characteristics at high frequencies
- a polyimide resin having a specific structure a thermosetting resin, and a phenylene ether resin were combined to form a low dielectric adjunct.
- a highly reliable thermosetting resin composition having heat resistance, flexibility, and easy workability can be obtained, and have reached the present invention.
- the first embodiment of the present invention is as follows.
- thermosetting resin composition containing the following (A1), (B), and (C).
- Polyimide resin A polyimide resin containing a diamine residue of the formula (8) and / or the formula (9).
- Phenylene ether resin The number average molecular weight is 500 or more and 5000 or less, and the molecular chain terminal contains at least one crosslinkable functional group selected from the group consisting of a phenolic hydroxyl group, an acrylic group, a vinyl group, and an epoxy group. Phenolic ether resin.
- the second embodiment of the present invention is as follows.
- thermosetting resin composition containing the following (A2), (B), and (C).
- a polyimide resin containing a diamine residue of the formula (1) A polyimide resin containing a diamine residue of the formula (1).
- m represents an integer of 1 to 60.
- R 5 and R 6 may be the same or different, and represent an alkylene group or a phenylene group having 1 to 30 carbon atoms.
- R 1 to R 4 May be the same or different, and indicate an alkyl group, a phenyl group, or a phenoxy group having 1 to 30 carbon atoms.
- (B) Phenylene ether resin: The number average molecular weight is 500 or more and 5000 or less, and the molecular chain terminal contains at least one crosslinkable functional group selected from the group consisting of a phenolic hydroxyl group, an acrylic group, a vinyl group, and an epoxy group. Phenolic ether resin.
- thermosetting resin composition a thermosetting resin sheet, an electronic component, and a thermosetting resin composition having excellent low dielectric loss tangent, heat resistance, flexibility, and easy workability, which are used for an organic material suitable for high frequency, and Electronic devices can be provided.
- FIG. 1 is a schematic view of a coplanarity-fed microstrip antenna, which is a type of planar antenna.
- FIG. 2 is a schematic view of a cross section of a semiconductor package including an IC chip (semiconductor element), rewiring, a sealing resin, and an antenna element.
- thermosetting resin composition of the present invention contains the following (A1), (B), and (C).
- A1 Polyimide resin Polyimide resin containing a diamine residue of formula (8) and / or formula (9)
- Phenylene ether resin Number average molecular weight is 500 or more and 5000 or less, and phenolic at the end of the molecular chain.
- a phenylene ether resin (C) maleimide resin: a maleimide resin containing at least one crosslinkable functional group selected from the group consisting of a hydroxyl group, an acrylic group, a vinyl group, and an epoxy group.
- the polyimide resin (A1) in the present invention is not particularly limited as long as it is a polyimide resin containing a diamine residue of the formula (8) and / or the formula (9), but is mainly a reaction between a tetracarboxylic dianhydride and a diamine. It is preferable to have a residue of tetracarboxylic dianhydride and a residue of diamine.
- the (A1) polyimide resin in the present invention contains the diamine residues of the above formulas (8) and / or formulas (9).
- Formula (8) or formula (9) is a structure having a skeleton of dimer acid, which is a dimer of unsaturated fatty acids such as linoleic acid or oleic acid, and has a double bond from the viewpoint of reliability of the obtained cured film.
- a structure that does not contain the substance is preferable, and the structure represented by the formula (10) is particularly preferable from the viewpoints of economy and the elongation of the obtained cured film.
- diamine having the structure represented by the formula (8) examples include “" Versamine (registered trademark) "551” and “" Versamine (registered trademark) "552 manufactured by BASF Co., Ltd. as commercially available diamine diamines. , “" Priamine (registered trademark) “1073”, “” Priamine (registered trademark) "1074", “” Priamine (registered trademark) "1075" manufactured by Claude Japan Co., Ltd. and the like.
- "" Versamine (registered trademark) "551” and “” Priamine (registered trademark) "1074" are both dimerdiamine compounds containing a compound represented by the formula (11), and “" Versamine (registered trademark) ". ) "552", “Priamine (registered trademark)” 1073 “, and” “Priamine (registered trademark)” 1075 "are all dimerdiamine compounds containing the compound represented by the formula (10).
- trimertriamine and dimerdiamine may be used.
- examples of commercially available products of trimertriamine and dimerdiamine include "" Priamine (registered trademark) "1071” manufactured by Croda Japan Co., Ltd.
- the content of the dimer acid structure is preferably 1 mol% or more and 30 mol% or less, more preferably. It is preferably 1 mol% or more and 15 mol% or less. By setting it to 1 mol% or more, the relative permittivity and the dielectric loss tangent can be lowered. Further, the heat resistance can be increased by setting the content to 30 mol% or less.
- thermosetting resin composition of the present invention contains the following (A2), (B), and (C).
- A2) Polyimide resin Polyimide resin containing a diamine residue of the formula (1)
- B) Phenylene ether resin A number average molecular weight of 500 or more and 5000 or less, and a phenolic hydroxyl group, an acrylic group, or a vinyl group at the end of the molecular chain.
- C) Maleimide resin Maleimide resin.
- the polyimide resin (A2) in the present invention is not particularly limited as long as it is a polyimide resin containing a diamine residue of the formula (1), but is mainly obtained by a reaction between a tetracarboxylic dianhydride and a diamine, and is a tetracarboxylic acid. It preferably has a dianhydride residue and a diamine residue.
- the (A2) polyimide resin in the present invention contains the diamine residue of the above formula (1).
- m represents an integer of 1 to 60.
- R 5 and R 6 may be the same or different, and represent an alkylene group or a phenylene group having 1 to 30 carbon atoms.
- R 1 to R 4 May be the same or different, and indicate an alkyl group, a phenyl group, or a phenoxy group having 1 to 30 carbon atoms.
- the alkyl group having 1 to 30 carbon atoms suitable for R 1 to R 4 is not particularly limited, but a methyl group, an ethyl group, a propyl group and a butyl group are preferable.
- alkylene group having 1 to 30 carbon atoms in R 5 and R 6 a methylene group, an ethylene group, a propylene group, a butylene group are preferable.
- the alkyl group and the alkylene group do not have to have a linear structure.
- the number of bonds of the siloxane structure that is, m in the formula (1) is preferably 1 or more and 60 or less, and more preferably 1 or more and 40 or less.
- the heat resistance can be improved by setting the value to 60 or less.
- diamine having the structure represented by the formula (1) examples include 1,1,3,3-tetramethyl-1,3-bis (4-aminophenyl) disiloxane, 1,1,3,3-. Tetraphenoxy-1,3-bis (4-aminoethyl) disiloxane, 1,1,3,3,5,5-hexamethyl-1,5-bis (4-aminophenyl) trisiloxane, 1,1,3 , 3-Tetraphenyl-1,3-bis (2-aminoethyl) disiloxane, 1,1,3,3-tetraphenyl-1,3-bis (3-aminopropyl) disiloxane, 1,1,5 , 5-Tetraphenyl-3,3-dimethyl-1,5-bis (3-aminopropyl) trisiloxane, 1,1,5,5-tetraphenyl-3,3-dimethoxy-1,5-bis (4) -Aminobutyl) trisiloxane, 1,1,1,3,
- Examples of products corresponding to these diamines include LP7100, PAM-E, KF8010, X-22-161A, X-22-161B, KF8012, and KF8008 manufactured by Shin-Etsu Chemical Co., Ltd.
- the content of the siloxane structure of the formula (1) is preferably 20 mol% or more, 80 mol% or less, more preferably 30 mol% or more. , 70 mol% or less.
- the content is 20 mol% or more, the number of structures having low polarity is increased, and the relative permittivity and dielectric loss tangent can be lowered. Further, by setting the content to 80 mol% or less, the elastic modulus at high temperature can be improved and the heat resistance can be increased.
- the polyimide resin is preferably (A1) polyimide resin and (A2) polyimide resin.
- the (A2) polyimide resin contains the diamine residue of the formula (1) in the range of 20 to 80 mol% in 100 mol% of the total diamine residue of the polyimide, and the total diamine residue 100 of the (A1) polyimide. It is preferable that the total of the diamine residues of the formula (8) and the formula (9) is contained in the range of 1 to 30 mol% in the mol%.
- the imide group equivalent of the (A1) polyimide resin and the (A2) polyimide resin is preferably 350 or more and 1000 or less. More preferably, it is 380 or more and 900 or less. It is preferable that the imide group equivalent after imidization is in the range of 350 or more and 1000 or less.
- the imide group equivalent is the molecular weight per mole of the imide group in the polyimide resin. The imide group equivalent is calculated in units from the molecular weights of tetracarboxylic dianhydride and diamine.
- the imide group equivalent is 342.36.
- the imide group equivalent of the (A1) polyimide resin and the (A2) polyimide resin to 350 or more, the imide group concentration is lowered and the polarity is lowered, so that the dielectric loss tangent can be lowered.
- the imide group equivalent to 1000 or less, the heat resistance can be improved by the molecular aggregation effect of the imide group.
- the (A1) polyimide resin and the (A2) polyimide resin preferably have a diamine residue having a structure represented by the formula (3).
- R 7 and R 8 may be the same or different, and represent an alkyl group having 1 to 30 carbon atoms, an alkoxy group, a fluoroalkyl group, a phenyl group, or a phenoxy group.
- the polyimide resin Since the (A1) polyimide resin and the (A2) polyimide resin contain a diamine residue having a structure represented by the formula (3), the polyimide resin has a highly linear structure and becomes rigid, and the mechanical strength of the resin is increased. From the viewpoint of improving the mechanical strength, the content of the diamine residue having the structure represented by the formula (3) is preferably 30 mol% or more, more preferably 40 mol% or more of the total diamine residues. .. Further, from the viewpoint of improving the adhesiveness and improving the adhesive strength with a metal such as copper, it is preferably 70 mol% or less, and more preferably 60 mol% or less.
- R 7 and R 8 are not particularly limited as long as they are an alkyl group having 1 to 30 carbon atoms, an alkoxy group, a fluoroalkyl group, a phenyl group, or a phenoxy group.
- R 7 and R 8 have a trifluoromethyl group. preferable. Since the trifluoromethyl group has a large atomic radius of fluorine and has an effect of expanding the free volume, the relative permittivity and the dielectric loss tangent can be lowered.
- diamine represented by the formula (3) examples include 2,2'-bis (trifluoromethyl) benzidine, 2,2'-dimethylbiphenyl-4,4'-diamine, and 2,2'-diethylbiphenyl-.
- examples include, but are not limited to, 4,4'-diamine, 2,2'-dimethoxybiphenyl-4,4'-diamine, 2,2'-diethoxybiphenyl-4,4'-diamine, etc. Absent.
- the glass transition temperature (hereinafter sometimes referred to as Tg) of the (A1) polyimide resin and the (A2) polyimide resin is preferably 100 ° C. or higher and 200 ° C. or lower, and more preferably 110 ° C. or higher and 180 ° C. or lower.
- Tg glass transition temperature
- the Tg referred to in the present invention is a dynamic viscoelasticity measuring device in a tensile mode using a test piece obtained by molding a polyimide resin or a thermosetting resin composition to a thickness of about 20 to 100 ⁇ m and thermosetting at a predetermined temperature. It was calculated from the peak value of tan ⁇ when measured under the conditions of a frequency of 1 Hz and a heating rate of 5 ° C./min.
- the (A1) polyimide resin and the (A2) polyimide resin preferably contain an acid dianhydride residue represented by the following formula (4). Since the acid dianhydride residue has a large molecular weight and can reduce the imide group concentration of the polyimide resin and has an alicyclic structure, the polarity can be lowered, so that the relative permittivity and the dielectric loss tangent can be lowered. Further, by having an alicyclic structure, molecular motion can be suppressed and heat resistance can be improved. From the viewpoint of lowering the relative permittivity and the dielectric loss tangent, the acid dianhydride residue represented by the following formula (4) is preferably 50 mol% or more, and 70 mol% or more of the total acid dianhydride residue. More preferably.
- the weight average molecular weight of the (A1) polyimide resin and the (A2) polyimide resin is preferably 5,000 or more and 1,000,000 or less.
- the weight average molecular weight of at least one of them may be in the above range.
- the weight average molecular weight is 5,000 or more, the decrease in mechanical strength is smaller and the decrease in adhesive strength is less. It is preferably 10,000 or more.
- the weight average molecular weight is 1,000,000 or less, the melt viscosity at the time of heating does not increase, and the decrease in adhesive strength becomes smaller. It is preferably 500,000 or less.
- the weight average molecular weight in the present invention is measured by a gel permeation chromatography method (GPC method) and calculated in terms of polystyrene.
- the polyimide resin in the present invention may contain other diamine residues in addition to the above diamine residues to the extent that the effects of the present invention are not impaired.
- diamines and bis (4) containing one benzene ring such as 1,4-diaminobenzene, 1,3-diaminobenzene, 2,4-diaminotoluene, and 1,4-diamino-2,5-dihalogenobenzene.
- -Aminophenyl) ether bis (3-aminophenyl) ether, bis (4-aminophenyl) sulfone, bis (3-aminophenyl) sulfone, bis (4-aminophenyl) methane, bis (3-) Aminophenyl) methane, bis (4-aminophenyl) sulfide, bis (3-aminophenyl) sulfide, 2,2-bis (4-aminophenyl) propane, 2,2-bis (3-aminophenyl) propane, 2 , 2-Bis (4-aminophenyl) hexafluoropropane, o-dianicidin, o-trizine, diamines containing two benzene rings such as trizine sulfonic acids, 1,4-bis (4-aminophenoxy) benzene, 1 , 4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminopheny
- the polyimide resin in the present invention may contain other acid dianhydride residues in addition to the above acid dianhydride residues to the extent that the effects of the present invention are not impaired.
- the acid dianhydride residue contained is not particularly limited, and for example, pyromellitic anhydride (PMDA), oxydiphthalic dianhydride (ODPA), 3,3', 4,4'-benzophenonetetracarboxylic dianhydride dianhydride.
- BTDA 3,3', 4,4'-biphenyltetracarboxylic dianhydride
- BPDA 4,4'-biphenyltetracarboxylic dianhydride
- DSDA 4,4'-diphenylsulfonetetracarboxylic dianhydride
- BSAA 4,4'-Bis [(dicarboxyphenoxy) phenyl] Propane dianhydride
- 6FDA 4,4'-Hexafluoroisopropyridenediphthalic anhydride
- TMEG 1,2-ethylenebis (anhydrotrimeritate)
- acid dianhydride residues are not limited to these.
- the method for producing the (A1) polyimide resin and the (A2) polyimide resin is not particularly limited, but the acid anhydride monomer and the diamine monomer are dissolved in an appropriate solvent by a conventional method by utilizing the good solubility of the dimer acid structure and the siloxane structure. , Mixing, reacting, and then synthesizing by thermal or chemical ring closure is preferable.
- the residues of tetracarboxylic dianhydride and diamine are (1) few benzene rings, (2) large molecular weight and bulky, or (3) polar groups such as aliphatic groups and siloxane groups.
- Low, structure is preferred. By having such a structure, the concentration of highly polar imide groups can be lowered, and since the free volume between molecular chains can be increased, the relative permittivity and the dielectric loss tangent can be lowered.
- the polyimide resin in the present invention may be only one composed of a polyimide structural unit, or may be a copolymer having another structure as a copolymerization component in addition to the polyimide structural unit. Further, a precursor (polyamic acid structure) of a polyimide structural unit may be contained. It may also be a mixture of these. Further, a polyimide resin represented by another structure may be mixed with any of these. When a polyimide resin represented by another structure is mixed, it is preferable that the polyimide resin of the present invention is contained in an amount of 50 mol% or more. The type and amount of the structure used for copolymerization or mixing are preferably selected within a range that does not impair the effects of the present invention.
- the method for synthesizing the (A1) polyimide resin and the (A2) polyimide resin used in the present invention is not particularly limited, and is synthesized by a known method using a diamine and a tetracarboxylic dianhydride.
- a method of reacting a tetracarboxylic acid dianhydride with a diamine compound (part of which may be replaced with an aniline derivative) at a low temperature and (2) a reaction of the tetracarboxylic acid dianhydride with an alcohol
- a polyimide precursor is obtained by using a method such as acid chlorideizing the remaining two carboxyl groups and reacting with a diamine (a part of which may be replaced with an aniline derivative), and imidizing the polyimide precursor. It can be synthesized using the method.
- thermosetting composition When applied to a thermosetting composition, it may be added in the form of a polyamic acid and imidized at the time of thermosetting, or imidized after polyamic acid polymerization and added as a closed ring structure.
- the content of the polyimide resin in the thermosetting composition of the present invention is preferably 30% by weight or more and less than 90% by weight, more preferably 40% by weight or more and 80% by weight or less in 100% by weight of the thermosetting composition. Flexibility can be improved because the amount of the polymer component increases when the content is 30% by weight or more. When the content is 90% by weight or less, the amount of the thermosetting resin component is increased, so that the melt viscosity at the time of heat pressure bonding is lowered, and the adhesive force of the adhesive composition with the laminated body can be improved.
- the thermosetting resin composition of the present invention has a number average molecular weight of 500 or more and 5000 or less, and has at least one crosslinkability selected from the group consisting of a phenolic hydroxyl group, an acrylic group, a vinyl group, and an epoxy group at the terminal of the molecular chain. It contains (B) a phenylene ether resin, which is a phenylene ether resin containing a functional group.
- the phenylene ether resin referred to in the present invention is not particularly limited as long as it is a resin in which the structure described in the formula (5) is repeatedly included in the structure of the resin, but the structure described in the formula (5) is preferably included in the structure of the resin.
- the phenylene ether resin referred to in the present invention may be a copolymer with another structure as long as it is a resin in which the structure described in the formula (5) is included in the structure of the resin.
- R 9 to R 12 may be the same or different, and may contain a hydrogen atom, a halogen atom, or an alkyl group having 1 to 30 carbon atoms, an alkoxy group, a fluoroalkyl group, a phenyl group, or a phenoxy group. Shown.
- the phenylene ether resin alone exhibits a low dielectric loss tangent, and when added to a thermosetting resin composition, it has the effect of reducing the dielectric loss tangent.
- the number average molecular weight of the phenylene ether resin is 500 or more and 5000 or less.
- the number average molecular weight of the phenylene ether resin (B) is more preferably 1000 or more and 4000 or less.
- the phenylene ether resin (B) in the present invention contains at least one crosslinkable functional group selected from the group consisting of a phenolic hydroxyl group, an acrylic group, a vinyl group, and an epoxy group at the end of the molecular chain. These crosslinkable functional groups are preferably attached to both ends of the molecular chain, but may be attached to only one end.
- a crosslinked structure can be formed by thermosetting, and mechanical strength, heat resistance and adhesion can be improved.
- the crosslinkable functional group contained in the (B) phenylene ether resin is preferably a vinyl group among these crosslinkable functional groups. Since the thermosetting resin composition thermally crosslinked with a vinyl group has low polarity, the relative permittivity and the dielectric loss tangent can be lowered. Examples of such a resin include OPE-2st manufactured by Mitsubishi Gas Chemical Company, Inc.
- the content of the phenylene ether resin (B) is not particularly limited, but is preferably 5% by weight or more and 50% by weight or less, and more preferably 10% by weight or more and 40% by weight or less in 100% by weight of the thermosetting resin composition. ..
- the relative permittivity and the dielectric loss tangent can be lowered by setting the weight to 5% by weight or more. Further, by setting the content to 50% by weight or less, the toughness can be improved and the adhesion can be improved.
- the thermosetting resin composition of the present invention contains (C) maleimide resin.
- (C) maleimide resin By containing (C) maleimide resin, heat resistance can be improved and adhesive strength can be improved, and (B) a phenylene ether resin having a vinyl group as a crosslinkable functional group at the end of the molecular chain as a phenylene ether resin.
- the (C) maleimide resin acts with the (B) phenylene ether resin, and the thermosetting reaction temperature can be lowered to 180 ° C. or lower.
- the maleimide resin (C) may be a maleimide resin that is soluble in an organic solvent from the viewpoint of lowering the viscosity of the thermosetting resin composition solution, and is not particularly limited.
- maleimide resin examples include phenylmethanemaleimide, metaphenylene bismaleimide, 4,4'-diphenylmethanebismaleimide, bis (3-ethyl-5-methyl-4-maleimidephenyl) methane, and 2,2'-.
- the content of the maleimide resin (C) is not particularly limited, but is 1% by weight or more and 50% by weight or less, more preferably 3% by weight or more and 40% by weight or less in 100% by weight of the entire thermosetting resin.
- the content is 1% by weight or more, the cross-linking reaction of the phenylene ether resin having a vinyl group at the end of the molecular chain can be promoted, and the heat resistance can be improved. Further, by setting the content to 50% by weight or less, the elastic modulus can be suppressed and the toughness can be improved.
- These (C) maleimide resins can be used alone or in admixture of two or more.
- the maleimide resin (C) is a polymaleimide resin having N maleimide groups (N is an integer and its average value is larger than 2 and smaller than 30).
- N is an integer and its average value is larger than 2 and smaller than 30.
- the polymaleimide resin include a maleimide resin represented by the following formula (6).
- the thermosetting resin composition of the present invention preferably contains (D) epoxy resin.
- the epoxy resin (D) used in the present invention is not particularly limited, but an epoxy resin liquid at room temperature is preferable from the viewpoint of flexibility at the B stage and adhesion strength with the substrate.
- the liquid epoxy resin 25 ° C., shows a viscosity of less than 1.013 ⁇ 10 5 N / m 2 at 150 Pa ⁇ s.
- the liquid epoxy resin suitable as the (D) epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, alkylene oxide-modified epoxy resin, and glycidylamine type epoxy resin.
- Products compatible with such epoxy resins include JER825, JER827, JER828, JER806, JER807, JER801N, JER802, JER604, JER630, JER630LSD manufactured by Mitsubishi Chemical Corporation, and Epicron 840S and Epicron 850S manufactured by DIC Corporation.
- the content of the epoxy resin (D) is not particularly limited, but is 1% by weight or more and 50% by weight or less, more preferably 3% by weight or more and 40% by weight or less in 100% by weight of the entire thermosetting resin composition. By setting the content to 1% by weight or more, the melt viscosity of the B stage sheet during heating can be lowered, and the adhesion to the substrate can be improved.
- These (D) epoxy resins can be used alone or in combination of two or more.
- the thermosetting resin composition of the present invention preferably contains (E) a curing accelerator.
- a curing accelerator By combining the epoxy resin (D) and the curing accelerator (E), the epoxy resin can be cured in a short time by accelerating the curing.
- the curing accelerator is not particularly limited, but imidazoles, polyhydric phenols, acid anhydrides, amines, hydrazides, polyethercaptans, Lewis acid-amine complexes, latent curing agents and the like are used. be able to. Among them, imidazoles, polyhydric phenols, and latent curing accelerators, which are excellent in storage stability and heat resistance of the cured product, are preferably used. These can be used alone or in admixture of two or more.
- imidazoles examples include “Curesol (registered trademark)” 2MZ, “Curesol (registered trademark)” 2PZ, “Curesol (registered trademark)” 2MZ-A, and “Curesol (registered trademark)” 2MZ-OK (trade name, Shikoku Kasei). (Made by Kogyo Co., Ltd.).
- Examples of polyvalent phenols include “Sumilite Resin (registered trademark)” PR-HF3 and “Sumilite Resin (registered trademark)” PR-HF6 (trade name, manufactured by Sumitomo Bakelite Co., Ltd.) "Kayahard (registered trademark)”.
- the latent curing accelerators include dicyandiamide type latent curing agent, amine adduct type latent curing agent, organic acid hydrazide type latent curing agent, aromatic sulfonium salt type latent curing agent, and microcapsule type latent curing agent.
- Examples include agents and photocurable latent curing agents.
- Examples of the dicyandiamide-type latent curing agent include DICY7, DICY15, DICY50 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), "Amicure (registered trademark)” AH-154, and “Amicure (registered trademark)” AH-162 (registered trademark).
- DICY7, DICY15, DICY50 trade name, manufactured by Japan Epoxy Resin Co., Ltd.
- Amicure (registered trademark)” AH-154 trade name, manufactured by Japan Epoxy Resin Co., Ltd.
- AH-162 registered trademark
- Examples of the organic acid hydrazide-type latent curing agent include “Amicure (registered trademark)” VDH and “Amicure (registered trademark)” UDH (trade name, manufactured by Ajinomoto Fine-Techno Co., Ltd.).
- Examples of the aromatic sulfonium salt-type latent curing agent include “Sun Aid (registered trademark)” SI100, “Sun Aid (registered trademark)” SI150, “Sun Aid (registered trademark)” SI180, and “Sun Aid (registered trademark)” SI-B3.
- Examples include “Sun Aid (registered trademark)” SI-B4 (trade name above, manufactured by Sanshin Kagaku Kogyo Co., Ltd.).
- microcapsule type latent curing agent examples include those in which each of the above curing agents is encapsulated with a vinyl compound, a urea compound, and a thermoplastic resin.
- “Novacure (registered trademark)” HX-3941HP, “Novacure (registered trademark)” HXA3922HP, “Novacure (registered trademark)” are examples of microcapsule-type latent curing agents obtained by treating an amine adduct-type latent curing agent with isocyanate. Examples thereof include HXA3932HP and “Novacure (registered trademark)” HXA3042HP (trade name, manufactured by Asahi Kasei Chemicals Co., Ltd.).
- Examples of the photocurable latent curing agent examples include "Optomer (registered trademark)” SP and “Optomer (registered trademark)” CP (manufactured by ADEKA Corporation).
- the content of the (E) curing accelerator is not particularly limited, but is preferably 0.1 part by weight or more and 35 parts by weight or less with respect to 100 parts by weight of the (D) epoxy resin.
- the thermosetting resin composition of the present invention may contain an organic peroxide.
- an organic peroxide By containing an organic peroxide, the curing of the (B) phenylene ether resin having a vinyl group and the (C) maleimide resin can be promoted, and the mechanical strength and heat resistance can be improved.
- organic peroxides include benzoyl peroxide, cumene hydroperoxide, dicumyl peroxide, diisopropylbenzene hydroperoxide, t-butyl hydroperoxide, t-butyl peroxyacetate, t-butyl peroxybenzoate, and t-.
- Butylisopropylcarbonate, di-t-butyl peroxide, t-butyl peroctate, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t-butyl) Peroxy) Cyclohexane, t-butylperoxy-2-ethylhexanoate and the like can be mentioned.
- the content of the organic peroxide is preferably 0.1 parts by weight or more and 35 parts by weight or less with respect to 100 parts by weight of the (B) phenylene ether resin having a vinyl group and the (C) maleimide resin.
- the thermosetting resin composition of the present invention may contain inorganic particles if necessary. By containing the inorganic particles, it is possible to adjust the physical characteristics of the resin composition, such as lowering the coefficient of thermal expansion of heat curing.
- Materials of inorganic particles include silica, hollow silica, alumina, titania, silicon nitride, boron nitride, aluminum nitride, iron oxide, glass and other metal oxides, metal nitrides, metal carbonates, and metal sulfates such as barium sulfate.
- Etc. can be used alone or in combination of two or more.
- silica can be preferably used in terms of low thermal expansion, heat dissipation, and low hygroscopicity.
- hollow silica can be preferably used in terms of low dielectric loss tangent.
- the content thereof is preferably 10% by weight or more and 90% by weight or less with respect to 100% by weight of the entire resin composition containing the inorganic particles.
- the inorganic particles are preferably 10% by weight or more, more preferably 20% by weight or more.
- the inorganic particles are preferably 90% by weight or less, more preferably 80% by weight or less.
- the average particle size of the inorganic particles is preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
- thermosetting resin sheet From the viewpoint of improving the low thermal expansion property and thermal diffusivity of the resin composition, 0.1 ⁇ m or more is preferable, and 0.5 ⁇ m or more is more preferable. Further, from the viewpoint of smoothing the surface of the thermosetting resin sheet, it is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
- thermosetting resin composition of the present invention may contain a surfactant if necessary, and can improve the coatability with a substrate.
- thermosetting resin composition of the present invention preferably contains (F) a silane coupling agent.
- X represents an aliphatic or aromatic divalent hydrocarbon group having 1 to 30 carbon atoms or a single bond
- R 13 may be the same or different, respectively, and halogen and 1 to 30 carbon atoms. It represents an alkyl group of 6 and an alkoxy group having 1 to 6 carbon atoms, a phenyl group, a hydroxyl group or a phenoxy group, and i represents an integer of 1 to 3.
- at least one of the plurality of R 13s is a halogen or an alkoxy group having 1 to 6 carbon atoms.
- silane coupling agent examples include trimethoxyaminopropylsilane, trimethoxycyclohexylepoxyethylsilane, trimethoxyvinylsilane, triethoxyvinylsilane, trimethoxythiolpropylsilane, trimethoxyglycidyloxypropylsilane, and tris (trimethoxysilylpropyl) isocyanurate.
- Triethoxyaminopropylsilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, p-styryltrimethoxysilane, and reactants of trimethoxyaminopropylsilane and acid anhydrides are preferable, and p-styryltrimethoxysilane is more preferable.
- the content of the silane coupling agent (F) is not particularly limited, but is 0.01% by weight or more and 10% by weight or less, more preferably 0.5% by weight or more and 5% by weight in 100% by weight of the entire thermosetting resin composition. % Or less. Adhesion with the substrate can be enhanced by setting the content to 0.01% by weight or more. When the content is 10% by weight or less, the storage stability is improved.
- These (F) silane coupling agents can be used alone or in combination of two or more. Further, a titanium chelating agent or the like may be contained in the resin composition in an amount of 0.5 to 10% by weight.
- thermosetting resin sheet of the present invention in which the thermosetting resin composition of the present invention is layered on a support in an unheat-cured state, will be described.
- a thermosetting resin sheet of the present invention can be used as an adhesive sheet or the like.
- the resin composition is mixed in a solvent to form a varnish on a support film, and the film is dried and processed into a sheet. Can be done.
- a solvent that dissolves the above components may be appropriately selected.
- acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, ether solvent 1,4-dioxane, tetrahydrofuran, etc. may be selected.
- the method for forming the adhesive composition into a varnish is not particularly limited, but a polyimide resin, (B) phenylene ether resin, (C) maleimide resin, and other components contained as necessary are mixed in the above solvent with a propeller. After mixing using a stirrer, a homogenizer, a kneader or the like, it is preferable to mix with a bead mill, a ball mill, a three-roll mill or the like from the viewpoint of improving the dispersibility of the inorganic particles as needed.
- varnish As a method of applying varnish to the support film, rotary coating using a spinner, spray coating, roll coating, screen printing, blade coater, die coater, calendar coater, meniscus coater, bar coater, roll coater, comma roll coater , A coating method using a gravure coater, a screen coater, a slit die coater, or the like.
- thermosetting resin composition that is, the thermosetting resin sheet is not particularly limited, but the range is 10 to 400 ⁇ m from the viewpoint of embedding in uneven wiring boards and insulating properties. preferable.
- the drying temperature and drying time may be any range as long as the organic solvent can be volatilized, and it is preferable to appropriately set the range so that the adhesive sheet is in an uncured or semi-cured state (B stage state). Specifically, it is preferable to hold the product in the range of 40 ° C. to 120 ° C. for 1 minute to several tens of minutes. Further, these temperatures may be combined to raise the temperature stepwise, and for example, heat treatment may be performed at 70 ° C., 80 ° C., and 90 ° C. for 1 minute each.
- the support film is not particularly limited, but various commercially available films such as polyethylene terephthalate (PET) film, polyphenylene sulfide film, and polyimide film can be used.
- PET polyethylene terephthalate
- polyphenylene sulfide film polyphenylene sulfide film
- polyimide film can be used.
- the bonding surface of the support film with the adhesive composition may be surface-treated with silicone, a silane coupling agent, an aluminum chelating agent, polyurea, or the like in order to improve adhesion and peelability.
- the thickness of the support film is not particularly limited, but is preferably in the range of 10 to 100 ⁇ m from the viewpoint of workability.
- thermosetting resin sheet may have a protective film to protect the surface thereof. This makes it possible to protect the surface of the adhesive sheet from pollutants such as dust and dust in the air.
- the protective film examples include polyethylene film, polypropylene (PP) film, polyester film and the like.
- the protective film preferably has a small adhesive force with the adhesive sheet.
- the resin composition is preferably used in the form of a varnish as described above.
- the resin composition varnish is used to form a resin composition coating on a printed circuit board in which wiring is formed on a glass substrate or a glass epoxy substrate.
- the method for applying the resin composition varnish include rotary coating using a spinner, spray coating, roll coating, and screen printing.
- the coating film thickness varies depending on the coating method, the solid content concentration and the viscosity of the resin composition, etc., but it is usually preferable to apply the film so that the film thickness after drying is 10 ⁇ m or more and 400 ⁇ m or less.
- the substrate coated with the resin composition varnish is dried to obtain a resin composition coating.
- An oven, a hot plate, infrared rays, etc. can be used for drying.
- the drying temperature and drying time may be any range as long as the organic solvent can be volatilized, and it is preferable to appropriately set the range so that the resin composition coating is in an uncured or semi-cured state. Specifically, it is preferably carried out in the range of 50 to 150 ° C. for 1 minute to several hours.
- thermosetting resin sheet has a protective film, it is peeled off, and the thermosetting resin sheet and the printed circuit board are opposed to each other and bonded by thermocompression bonding.
- the thermocompression bonding can be performed by a hot press treatment, a hot laminating treatment, a hot vacuum laminating treatment, or the like.
- the sticking temperature is preferably 40 ° C. or higher from the viewpoint of adhesion to the substrate and embedding property. Further, if the temperature rises at the time of sticking, the time for the thermosetting resin sheet to cure becomes faster and the workability is lowered. Therefore, the sticking temperature is preferably 250 ° C. or lower.
- the support film may be peeled off before bonding, or may be peeled off at any time in the thermocompression bonding step or after thermocompression bonding.
- the printed circuit board on which the resin composition film thus obtained is formed is thermocompression bonded to a resin film such as polyimide or liquid crystal polymer, the printed circuit board, or other members.
- the thermocompression bonding temperature may be equal to or higher than the glass transition temperature of the resin, and is preferably in the temperature range of 100 to 400 ° C.
- the pressure at the time of crimping is preferably in the range of 0.01 to 10 MPa. The time is preferably 1 second to several minutes.
- a cured film can be obtained by applying a temperature of 120 ° C to 400 ° C to form a cured product.
- This heat treatment is carried out for 5 minutes to 5 hours while selecting a temperature and gradually raising the temperature, or selecting a certain temperature range and continuously raising the temperature.
- heat treatment is performed at 130 ° C. and 200 ° C. for 30 minutes each.
- a method such as linearly raising the temperature from room temperature to 250 ° C. over 2 hours can be mentioned.
- the heating temperature is preferably 150 ° C. or higher and 300 ° C. or lower, and more preferably 180 ° C. or higher and 250 ° C. or lower.
- the peel strength of the adhesive obtained by thermocompression bonding in this way is preferably 4 N / cm or more from the viewpoint of adhesive reliability. More preferably, it is 6 N / cm or more.
- the glass transition temperature (Tg) of the cured film obtained by thermocompression bonding is preferably 100 ° C. or higher from the viewpoint of being able to withstand the reliability test of the semiconductor device. More preferably, it is 120 ° C. or higher.
- the dielectric constant of the obtained cured film is preferably 3.0 or less at 10 GHz from the viewpoint of reducing the dielectric loss of the electric signal. More preferably, it is 2.8 or less.
- the dielectric loss tangent of the obtained cured film is preferably 0.01 or less at 10 GHz from the viewpoint of reducing the dielectric loss of the electric signal. More preferably, it is 0.008 or less.
- the film thickness of the cured film can be set arbitrarily, but is preferably 10 ⁇ m or more and 400 ⁇ m or less.
- the cured film of the present invention can be obtained by curing a thermosetting resin composition or a thermosetting resin sheet by heat treatment.
- the heat treatment temperature may be 150 ° C. to 350 ° C.
- a certain temperature is selected and the temperature is raised stepwise, or a certain temperature range is selected and the temperature is continuously raised for 5 minutes to 5 hours.
- heat treatment is performed at 130 ° C. and 200 ° C. for 30 minutes each.
- the lower limit of the cure condition in the present invention is preferably 170 ° C. or higher, but more preferably 180 ° C. or higher in order to sufficiently proceed with curing.
- the upper limit of the cure condition is not particularly limited, but is preferably 280 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 230 ° C. or lower, from the viewpoint of suppressing film shrinkage and stress.
- the electronic component of the present invention is an electronic component comprising the thermosetting resin composition of the present invention or a cured product obtained by thermosetting a thermosetting resin sheet. Further, more preferably, it is an electronic component arranged on the adherend.
- FIG. 1 is a schematic view of a coplanarity-fed microstrip antenna, which is a type of planar antenna. 1a is a cross-sectional view and 1b is a top view.
- the thermosetting resin composition of the present invention is applied onto a copper foil, and a prebaked or uncured thermosetting resin sheet is laminated on the copper foil.
- the copper foil is laminated and heat-cured to form a cured film having the copper foil on both sides.
- an antenna element having the antenna pattern of the copper wiring of the microstrip line (MSL) shown in FIG. 1 is obtained.
- MSL microstrip line
- the antenna pattern of FIG. 1 will be described.
- 15 indicates the ground (entire surface)
- 16 indicates the insulating film used as the substrate of the antenna.
- the upper layers 11 to 13 show the cross section of the antenna wiring obtained by the patterning.
- the ground wiring thickness J and the antenna wiring thickness K can have arbitrary thicknesses depending on the impedance design, but are generally 2 to 20 ⁇ m.
- 11 is an antenna unit
- 12 is a matching circuit
- 13 is an MSL feeding line
- 14 is a feeding point.
- the width W and the length L of the antenna portion 11 are designed to have a length of 1 / 2 ⁇ r.
- the antenna portion length L may be 1 / 2 ⁇ r or less depending on the impedance design. Since the cured film of the present invention has a low dielectric constant and a low dielectric loss tangent, it is possible to provide an antenna element having high efficiency and high gain.
- FIG. 2 is a schematic view of a cross section of a semiconductor package including an IC chip (semiconductor element), rewiring, a sealing resin, and an antenna element.
- a rewiring layer (copper 2 layer, insulating film 3 layer) is formed on the electrode pad 202 of the IC chip 201 by the copper wiring 209 and the insulating film 210 formed by the cured film of the present invention.
- Barrier metal 211 and solder bump 212 are formed on the pads of the rewiring layer (copper wiring 209 and insulating film 210).
- a first sealing resin 208 made of the cured film of the present invention is formed, and a copper wiring 209 serving as a ground for an antenna is further formed on the first sealing resin 208.
- the first via wiring 207 connecting the ground 206 and the rewiring layer (copper wiring 209 and the insulating film 210) is formed through the via hole formed in the first sealing resin 208.
- a second sealing resin 205 made of the cured film of the present invention is formed on the first sealing resin 208 and the ground 206, and a flat antenna wiring 204 is formed on the second sealing resin 205.
- a second via wiring that connects the flat antenna wiring 204 and the rewiring layer (copper wiring 209 and insulating film 210) via the via holes formed in the first sealing resin 208 and the second sealing resin 205. 203 is formed.
- the thickness of the insulating film 210 per layer is preferably 10 to 20 ⁇ m, and the first sealing resin and the second sealing resin are preferably 50 to 200 ⁇ m and 100 to 400 ⁇ m, respectively. Since the cured film of the present invention has a low dielectric constant and a low dielectric loss tangent, the semiconductor package provided with the obtained antenna element has high efficiency and high gain, and the transmission loss in the package is small.
- the electronic component of the present invention is an electronic component including an antenna element including at least one antenna wiring and the cured film of the present invention, and the antenna wiring is a meander-shaped loop antenna, a coil-shaped loop antenna, or the like.
- the cured film contains at least one selected from the group consisting of a meander-shaped monopole antenna, a meander-shaped dipole antenna, and a microstrip antenna, and the occupied area per antenna portion in the antenna wiring is 1000 mm 2 or less.
- An insulating film that insulates between the ground and the antenna wiring is preferable.
- the electronic component of the present invention is an electronic component including at least a semiconductor element, a rewiring layer, a sealing resin, and a semiconductor package including an antenna wiring, and the insulating layer and / or the sealing of the rewiring layer. It is preferable that the resin contains the cured film of the present invention, and the sealing resin is between the ground and the antenna wiring.
- the electronic component of the present invention is an electronic component including an antenna element obtained by laminating an antenna wiring and a cured film of the present invention, the height of the antenna wiring is 50 to 200 ⁇ m, and the thickness of the cured film is 50 to 200 ⁇ m. Is preferably 80 to 300 ⁇ m.
- the electronic device of the present invention is an electronic device using the electronic component of the present invention.
- the use of the resin composition in the present invention including this will be described with an example, but the use of the thermosetting resin composition of the present invention is not limited to the following.
- thermosetting resin composition of the present invention can be widely used as an adhesive or an insulating resin for semiconductor devices, but can be used for RF modules used in wireless communication devices such as mobile terminals that process high-speed and large-capacity electric signals. It is suitably used for in-vehicle millimeter-wave radar.
- An RF module is a multi-functional product used in wireless communication equipment, and is a module in which a plurality of ICs and passive components (SAW filters, capacitors, resistors, coils) are mounted on a substrate.
- the substrate on which the passive component is mounted is formed of a multilayer structure of an insulating layer and a copper wiring layer, and the thermosetting resin composition of the present invention can be preferably used for the insulating layer.
- An insulating layer is formed by sticking a thermosetting resin sheet on a printed circuit board or applying a varnish of a resin composition and drying it. After that, a copper wiring is formed on the surface of the insulating layer by electroplating, and a thermosetting resin sheet is further attached thereto, or a varnish of a resin composition is applied to form a multilayer substrate. ..
- the semiconductor device referred to in the present invention refers not only to a device in which semiconductor elements are connected to a substrate, a device in which semiconductor elements are connected to each other or substrates to each other, but also a general device that can function by utilizing the characteristics of the semiconductor element. , Electro-optical devices, semiconductor circuit boards and electronic components including these are all included in semiconductor devices. As described above, the electronic component of the present invention has excellent characteristics at high frequencies, and can be used in the electronic device of the present invention, which requires operation reliability at high frequencies.
- BSAA 2,2'-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride
- TBIS-DMPN 5-isobenzofurancarboxylic acid, 1,3-dihydro, 1,3-dioxo-5 , 5'-[Cyclododecylidenebis (2-methyl-4,1-phenylene)] ester (manufactured by Taoka Chemical Industry Co., Ltd.)
- ODPA 4,4'-oxydiphthalic dianhydride (manufactured by Manac Inc.)
- TFMB 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl (manufactured by Wakayama Seika Kogyo Co., Ltd.)
- mTB 4,4'-diamino-2,2'-dimethylbiphenyl (manufactured by Wakayama Seika Kogyo Co., Ltd.)
- OPE-2st-1200 Oligophenylene ether (molecular chain terminal: vinyl group) (number average molecular weight: 1200) (manufactured by Mitsubishi Gas Chemical Company, Inc.)
- OPE-2st-2200 Oligophenylene ether (molecular chain terminal: vinyl group) (number average molecular weight: 2200) (manufactured by Mitsubishi Gas Chemical Company, Inc.)
- SA-90 Low molecular weight polyphenylene ether (molecular chain terminal: phenolic hydroxyl group) (number average molecular weight: 1700) (SABIC Japan GK).
- JER828 Bisphenol A type liquid epoxy resin (manufactured by Mitsubishi Chemical Corporation)
- E101 Epoxy resin containing a branched alkyl group (manufactured by Nissan Chemical Industries, Ltd.)
- TEPIC-FL Isocyanuric acid-modified epoxy resin (manufactured by Nissan Chemical Industries, Ltd.)
- ⁇ Tg of synthesized polyimide resin A solution of polyimide resin dissolved in ⁇ BL with a solid content concentration of 30% by weight is applied onto a copper foil having a thickness of 18 ⁇ m, and is placed in an oven at 100 ° C. ⁇ 30 minutes, 120 ° C. ⁇ 30 minutes, and 180 ° C. ⁇ 30 minutes. It was dry. The polyimide resin after drying was coated so as to have a thickness of 50 ⁇ m. A copper foil was etched and removed from the laminate thus obtained with an aqueous solution of ferric chloride to obtain a polyimide film.
- a polyimide film is cut into a size of 5 mm ⁇ 30 mm, and measured with a dynamic viscoelasticity measuring device DVA-200 (manufactured by IT Measurement Control Co., Ltd.) at a heating rate of 5 ° C./min and a frequency of 1 Hz. The value was Tg.
- NMP N-methyl-2-pyrrolidone
- Waters2690 manufactured by Waters Corp.
- the converted weight average molecular weight was calculated.
- the GPC measurement conditions were NMP in which LiCl and phosphoric acid were dissolved at a concentration of 0.05 mol / l, respectively, and the developing rate was 0.4 ml / min.
- ⁇ Imidization rate of synthesized polyimide resin First, measuring the infrared absorption spectrum of the polymer, the absorption peak (1780 cm around -1, 1377 cm around -1) of an imide structure caused by a polyimide was confirmed the presence of. Next, the polymer was heat-treated at 350 ° C. for 1 hour, and then the infrared absorption spectrum was measured again, and the peak intensities around 1377 cm -1 before and after the heat treatment were compared. The imidization rate of the polymer before the heat treatment was determined by setting the imidization rate of the polymer after the heat treatment to 100%.
- ⁇ Copper foil adhesive strength> The resin compositions prepared in each Example and Comparative Example were applied to a PET film having a thickness of 38 ⁇ m as a support film using a comma roll coater, dried at 100 ° C. for 30 minutes, and then thickened as a protective film. A 10 ⁇ m PP film was laminated to obtain an adhesive sheet. The coating was performed so that the film thickness of the thermosetting resin sheet in the adhesive sheet was 50 ⁇ m.
- the protective film is peeled off, and the peeled surface is pressed on a copper foil (NA-VLP thickness 15 ⁇ m: manufactured by Mitsui Mining & Smelting Co., Ltd.) at a pressing temperature of 120 ° C., a pressure of 1 MPa, and a pressure using a hot plate press machine. Pressed in 5 minutes.
- a copper foil was further laminated on the resin composition and pressed at a press temperature of 180 ° C., a pressure of 1 MPa, and a pressurization time of 10 minutes. After that, it was heat-cured in a hot air circulation type dryer at 180 ° C. for 1 hour.
- the copper foil of the laminate thus obtained was removed by etching with an aqueous solution of ferric chloride on only one side, and a circuit with a line width of 2 mm was processed. Then, a copper foil having a width of 2 mm was lifted and pulled in the direction of 90 ° C. with respect to the laminate with a push gel gauge, and the adhesive strength was measured.
- a laminated board (copper foil 15 ⁇ m / resin 50 ⁇ m / copper foil 15 ⁇ m) obtained by the same method as described above was cut into a size of 50 mm ⁇ 50 mm and immersed in a solder bath heated to 260 ° C. for 2 minutes. Those in which the copper foil did not peel or foam after immersion and did not change from the initial stage were considered good, and those in which peeling or foaming was observed were considered defective.
- ⁇ Tg> The copper foil of the laminated board obtained by the above method was removed by etching with an aqueous solution of ferric chloride to obtain a cured product. This is cut into a width of 5 mm x 30 mm, and with the dynamic viscoelasticity measuring device DVA-200 of IT Measurement Control Co., Ltd., the gripping distance is 15 mm, the heating rate is 5 ° C / min, and the frequency is 1 Hz from -50 ° C. The temperature was measured up to 300 ° C., and the temperature at which Tan ⁇ showed a peak value was defined as Tg.
- thermosetting resin sheet obtained by the same method as described above was cut into a size of 60 ⁇ 100 mm, and the humidity was adjusted for 24 hours in an atmosphere of 22 ° C./60% RH.
- the relative permittivity and the dielectric loss tangent were measured by the cylindrical cavity resonator method. It was measured with a VECTOR NETWORK ANALYZER HP8510C manufactured by Agilent Technologies, Ltd., and measured in an environment of a frequency of 10 GHz and 22 ° C./60% RH.
- Example 1 A stirrer, a thermometer, a nitrogen introduction tube and a dropping funnel were installed in a 300 ml four-necked flask, and 112.47 g of ⁇ BL and 31.21 g of BSAA were charged under a nitrogen atmosphere and dissolved by stirring at 60 ° C. Then, 9.61 g of TFMB and 7.46 g of LP7100 were added while stirring at 60 ° C., and the mixture was stirred for 1 hour. Then, the temperature was raised to 180 ° C., the mixture was stirred for 3 hours, and then cooled to room temperature to obtain a polyimide solution A (solid content concentration: 30.0% by weight). As a result of measuring the weight average molecular weight of the polyimide, it was 36,400, and as a result of measuring Tg, it was 125 ° C., and as a result of measuring the imidization ratio, it was 100%.
- Example 2 A stirrer, a thermometer, a nitrogen introduction tube and a dropping funnel were installed in a 300 ml four-necked flask, and 141.64 g of ⁇ BL and 43.73 g of TBIS-DMPN were charged under a nitrogen atmosphere and dissolved by stirring at 60 ° C. Then, 9.61 g of TFMB and 7.46 g of LP7100 were added while stirring at 60 ° C., and the mixture was stirred for 1 hour. Then, the temperature was raised to 180 ° C., the mixture was stirred for 3 hours, and then cooled to room temperature to obtain a polyimide solution B (solid content concentration: 30.0% by weight). As a result of measuring the weight average molecular weight of the polyimide, it was 43,210, and as a result of measuring Tg, it was 168 ° C., and as a result of measuring the imidization ratio, it was 100%.
- Example 3 A stirrer, a thermometer, a nitrogen introduction tube and a dropping funnel were installed in a 300 ml four-necked flask, and 82.05 g of ⁇ BL and 18.61 g of ODPA were charged under a nitrogen atmosphere and dissolved by stirring at 60 ° C. Then, 9.61 g of TFMB and 7.46 g of LP7100 were added while stirring at 60 ° C., and the mixture was stirred for 1 hour. Then, the temperature was raised to 180 ° C., the mixture was stirred for 3 hours, and then cooled to room temperature to obtain a polyimide solution B (solid content concentration: 30.0% by weight). As a result of measuring the weight average molecular weight of the polyimide, it was 41,630, and as a result of measuring Tg, it was 178 ° C., and as a result of measuring the imidization ratio, it was 100%.
- Example 4 A stirrer, a thermometer, a nitrogen introduction tube and a dropping funnel were installed in a 500 ml four-necked flask, and 215.43 g of ⁇ BL and 43.73 g of TBIS-DMPN were charged under a nitrogen atmosphere and dissolved by stirring at 60 ° C. Then, 9.61 g of TFMB and 40.20 g of X-22-9409 were added with stirring at 60 ° C., and the mixture was stirred for 1 hour. Then, the temperature was raised to 180 ° C., the mixture was stirred for 3 hours, and then cooled to room temperature to obtain a polyimide solution D (solid content concentration: 30.0% by weight). As a result of measuring the weight average molecular weight of the polyimide, it was 33,400, and as a result of measuring Tg, it was 65 ° C., and as a result of measuring the imidization ratio, it was 100%.
- the polyimide solution D 12.0 g (solid content 3.6 g) thus obtained was mixed with each component shown in Table 2 in the same manner as in Example 1 to obtain a resin composition.
- the obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 5 A stirrer, a thermometer, a nitrogen introduction tube and a dropping funnel were installed in a 500 ml four-necked flask, and under a nitrogen atmosphere, 211.06 g of ⁇ BL and 21.86 g of TBIS-DMPN were charged and dissolved by stirring at 60 ° C. Then, 4.80 g of TFMB and 65.10 g of X-22-1660B-3 were added while stirring at 60 ° C., and the mixture was stirred for 1 hour. Then, the temperature was raised to 180 ° C., the mixture was stirred for 3 hours, and then cooled to room temperature to obtain a polyimide solution E (solid content concentration: 30.0% by weight). As a result of measuring the weight average molecular weight of the polyimide, it was 29,540, and as a result of measuring Tg, it was ⁇ 5 ° C., and as a result of measuring the imidization ratio, it was 100%.
- the polyimide solution E 12.0 g (solid content 3.6 g) thus obtained was mixed with each component shown in Table 2 in the same manner as in Example 1 to obtain a resin composition.
- the obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 6 A stirrer, a thermometer, a nitrogen introduction tube and a dropping funnel were installed in a 500 ml four-necked flask, and 142.99 g of ⁇ BL and 43.73 g of TBIS-DMPN were charged under a nitrogen atmosphere and dissolved by stirring at 60 ° C. Then, while stirring at 60 ° C., 10.99 g of BAHF and 7.46 g of LP7100 were added and stirred for 1 hour. Then, the temperature was raised to 180 ° C., the mixture was stirred for 3 hours, and then cooled to room temperature to obtain a polyimide solution F (solid content concentration: 30.0% by weight). As a result of measuring the weight average molecular weight of the polyimide, it was 28,580, and as a result of measuring Tg, it was 164 ° C., and as a result of measuring the imidization ratio, it was 100%.
- the polyimide solution E 12.0 g (solid content 3.6 g) thus obtained was mixed with each component shown in Table 2 in the same manner as in Example 1 to obtain a resin composition.
- the obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 7 A stirrer, a thermometer, a nitrogen introduction tube and a dropping funnel were installed in a 500 ml four-necked flask, and 198.55 g of ⁇ BL and 65.59 g of TBIS-DMPN were charged under a nitrogen atmosphere and dissolved by stirring at 60 ° C. Then, while stirring at 60 ° C., 9.55 g of mTB and 11.18 g of LP7100 were added and stirred for 1 hour. Then, the temperature was raised to 180 ° C., the mixture was stirred for 3 hours, and then cooled to room temperature to obtain a polyimide solution G (solid content concentration: 30.0% by weight). As a result of measuring the weight average molecular weight of the polyimide, it was 44,590, and as a result of measuring Tg, it was 169 ° C., and as a result of measuring the imidization ratio, it was 100%.
- Example 8 A stirrer, a thermometer, a nitrogen introduction tube and a dropping funnel were installed in a 300 ml four-necked flask, and 141.70 g of ⁇ BL and 31.02 g of ODPA were charged under a nitrogen atmosphere and dissolved by stirring at 60 ° C. Then, 25.62 g of TFMB and 4.97 g of LP7100 were added while stirring at 60 ° C., and the mixture was stirred for 1 hour. Then, the temperature was raised to 180 ° C., the mixture was stirred for 3 hours, and then cooled to room temperature to obtain a polyimide solution H (solid content concentration: 30.0% by weight). As a result of measuring the weight average molecular weight of the polyimide, it was 43,200, and as a result of measuring Tg, it was 208 ° C., and as a result of measuring the imidization ratio, it was 100%.
- the polyimide solution H 12.0 g (solid content 3.6 g) thus obtained was mixed with each component shown in Table 2 in the same manner as in Example 1 to obtain a resin composition.
- the obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 9 A stirrer, a thermometer, a nitrogen introduction tube and a dropping funnel were installed in a 300 ml four-necked flask, and 105.46 g of ⁇ BL and 26.02 g of BSAA were charged under a nitrogen atmosphere and dissolved by stirring at 60 ° C. Then, 11.21 g of TFMB and 7.96 g of Versamine were added with stirring at 60 ° C., and the mixture was stirred for 1 hour. Then, the temperature was raised to 180 ° C., the mixture was stirred for 3 hours, and then cooled to room temperature to obtain a polyimide solution J (solid content concentration: 30.0% by weight). As a result of measuring the weight average molecular weight of the polyimide, it was 32,100, and as a result of measuring Tg, it was 139 ° C., and as a result of measuring the imidization ratio, it was 100%.
- Example 10 A stirrer, a thermometer, a nitrogen introduction tube and a dropping funnel were installed in a 300 ml four-necked flask, and 105.60 g of ⁇ BL and 26.02 g of BSAA were charged under a nitrogen atmosphere and dissolved by stirring at 60 ° C. Then, 11.21 g of TFMB and 8.02 g of Priamine were added while stirring at 60 ° C., and the mixture was stirred for 1 hour. Then, the temperature was raised to 180 ° C., the mixture was stirred for 3 hours, and then cooled to room temperature to obtain a polyimide solution K (solid content concentration: 30.0% by weight). As a result of measuring the weight average molecular weight of the polyimide, it was 31,200, and as a result of measuring Tg, it was 134 ° C., and as a result of measuring the imidization ratio, it was 100%.
- Example 11 A stirrer, a thermometer, a nitrogen introduction tube and a dropping funnel were installed in a 300 ml four-necked flask, and 101.84 g of ⁇ BL and 26.02 g of BSAA were charged under a nitrogen atmosphere and dissolved by stirring at 60 ° C. Then, 13.61 g of TFMB and 4.01 g of Priamine 1075 were added while stirring at 60 ° C., and the mixture was stirred for 1 hour. Then, the temperature was raised to 180 ° C., the mixture was stirred for 3 hours, and then cooled to room temperature to obtain a polyimide solution L (solid content concentration: 30.0% by weight). As a result of measuring the weight average molecular weight of the polyimide, it was 36,800, and as a result of measuring Tg, it was 162 ° C., and as a result of measuring the imidization ratio, it was 100%.
- the polyimide solution L 12.0 g (solid content 3.6 g) thus obtained was mixed with each component shown in Table 2 in the same manner as in Example 1 to obtain a resin composition.
- the obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 12 A stirrer, a thermometer, a nitrogen introduction tube and a dropping funnel were installed in a 300 ml four-necked flask, and 104.76 g of ⁇ BL and 26.02 g of BSAA were charged under a nitrogen atmosphere and dissolved by stirring at 60 ° C. Then, while stirring at 60 ° C., 9.61 g of TFMB, 8.02 g of Priamine 1075 and 1.24 g of LP7100 were added and stirred for 1 hour. Then, the temperature was raised to 180 ° C., the mixture was stirred for 3 hours, and then cooled to room temperature to obtain a polyimide solution M (solid content concentration: 30.0% by weight). As a result of measuring the weight average molecular weight of the polyimide, it was 30,100, and as a result of measuring Tg, it was 124 ° C., and as a result of measuring the imidization ratio, it was 100%.
- the polyimide solution M 12.0 g (solid content 3.6 g) thus obtained was mixed with each component shown in Table 2 in the same manner as in Example 1 to obtain a resin composition.
- the obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 13 A stirrer, a thermometer, a nitrogen introduction tube and a dropping funnel were installed in a 300 ml four-necked flask, and 103.93 g of ⁇ BL and 26.02 g of BSAA were charged under a nitrogen atmosphere and dissolved by stirring at 60 ° C. Then, while stirring at 60 ° C., 8.01 g of TFMB, 8.02 g of Priamine 1075 and 2.49 g of LP7100 were added and stirred for 1 hour. Then, the temperature was raised to 180 ° C., the mixture was stirred for 3 hours, and then cooled to room temperature to obtain a polyimide solution N (solid content concentration: 30.0% by weight). As a result of measuring the weight average molecular weight of the polyimide, it was 28,200, and as a result of measuring Tg, it was 114 ° C., and as a result of measuring the imidization ratio, it was 100%.
- the polyimide solution N 12.0 g (solid content 3.6 g) thus obtained was mixed with each component shown in Table 2 in the same manner as in Example 1 to obtain a resin composition.
- the obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 14 A stirrer, a thermometer, a nitrogen introduction tube and a dropping funnel were installed in a 300 ml four-necked flask, and 100.17 g of ⁇ BL and 26.02 g of BSAA were charged under a nitrogen atmosphere and dissolved by stirring at 60 ° C. Then, while stirring at 60 ° C., 10.41 g of TFMB, 4.01 g of Priamine 1075 and 2.49 g of LP7100 were added and stirred for 1 hour. Then, the temperature was raised to 180 ° C., the mixture was stirred for 3 hours, and then cooled to room temperature to obtain a polyimide solution O (solid content concentration: 30.0% by weight). As a result of measuring the weight average molecular weight of the polyimide, it was 29,800, and as a result of measuring Tg, it was 149 ° C., and as a result of measuring the imidization ratio, it was 100%.
- the polyimide solution O 12.0 g (solid content 3.6 g) thus obtained was mixed with each component shown in Table 2 in the same manner as in Example 1 to obtain a resin composition.
- the obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 15 A stirrer, a thermometer, a nitrogen introduction tube and a dropping funnel were installed in a 300 ml four-necked flask, and 99.33 g of ⁇ BL and 26.02 g of BSAA were charged under a nitrogen atmosphere and dissolved by stirring at 60 ° C. Then, while stirring at 60 ° C., 8.81 g of TFMB, 4.01 g of Priamine 1075 and 3.73 g of LP7100 were added and stirred for 1 hour. Then, the temperature was raised to 180 ° C., the mixture was stirred for 3 hours, and then cooled to room temperature to obtain a polyimide solution P (solid content concentration: 30.0% by weight). As a result of measuring the weight average molecular weight of the polyimide, it was 29,100, and as a result of measuring Tg, it was 131 ° C., and as a result of measuring the imidization ratio, it was 100%.
- the polyimide solution P 12.0 g (solid content 3.6 g) thus obtained was mixed with each component shown in Table 2 in the same manner as in Example 1 to obtain a resin composition.
- the obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 16 To 10.67 g (solid content 3.2 g) of the polyimide solution B obtained in Example 2, 2.15 g (solid content 1.4 g) and BMI 4000 of OPE-2st-1200 (solid content 65% by weight: toluene solution) were added. 0.2 g, 1.2 g of TEPIC-FL, 0.06 g of 2P4MZ were added, and the mixture was mixed and stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 17 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 2.15 g (solid content 1.4 g) and BMI 4000 of OPE-2st-1200 (solid content 65% by weight: toluene solution) were added. 0.4 g, 1.2 g of TEPIC-FL, 0.06 g of 2P4MZ were added, and the mixture was mixed and stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 18 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 2.15 g (solid content 1.4 g) and BMI 4000 of OPE-2st-1200 (solid content 65% by weight: toluene solution) were added. 0.4 g, 1.2 g of TEPIC-FL, 0.06 g of 2P4MZ, and 0.06 g of DCP were added and mixed and stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 19 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 2.15 g (solid content 1.4 g) of OPE-2st-1200 (solid content 65% by weight: toluene solution), MIR- Add 0.59 g (solid content 0.4 g) of 3000-70 MT (solid content 68.2% by weight: toluene solution), 1.2 g of TEPIC-FL, 0.06 g of 2P4MZ, and 0.06 g of DCP and mix. The mixture was stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 20 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 2.15 g (solid content 1.4 g) of OPE-2st-1200 (solid content 65% by weight: toluene solution), MIR- Add 0.59 g (solid content 0.4 g) of 3000-70 MT (solid content 68.2% by weight: toluene solution), 1.2 g of TEPIC-FL, 0.06 g of SI-B4, and 0.06 g of DCP. The mixture was mixed and stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 21 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 2.15 g (solid content 1.4 g) of OPE-2st-1200 (solid content 65% by weight: toluene solution), MIR- Add 1.17 g (solid content 0.8 g) of 3000-70 MT (solid content 68.2% by weight: toluene solution), 0.8 g of TEPIC-FL, 0.06 g of 2P4MZ, and 0.06 g of DCP and mix. The mixture was stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 22 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 2.15 g (solid content 1.4 g) of OPE-2st-1200 (solid content 65% by weight: toluene solution), MIR- Add 1.47 g (solid content 1.0 g) of 3000-70 MT (solid content 68.2 wt%: toluene solution), 0.6 g of TEPIC-FL, 0.06 g of 2P4MZ, and 0.06 g of DCP and mix. The mixture was stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 23 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 2.15 g (solid content 1.4 g) of OPE-2st-1200 (solid content 65% by weight: toluene solution), MIR- 1.47 g (solid content 1.0 g) of 3000-70 MT (solid content 68.2 wt%: toluene solution), 0.6 g of TEPIC-FL, 0.06 g of SI-B4, and 0.06 g of DCP were added. The mixture was mixed and stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 24 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 2.21 g (solid content 1.4 g) of OPE-2st-2200 (solid content 63.4% by weight: toluene solution) was added. Add 1.47 g (solid content 1.0 g) of MIR-3000-70MT (solid content 68.2% by weight: toluene solution), 0.6 g of TEPIC-FL, 0.06 g of 2P4MZ, and 0.06 g of DCP. The mixture was mixed and stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 25 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 1.4 g of SA-90 and 1.47 g of MIR-3000-70MT (solid content 68.2% by weight: toluene solution) were added. (Solid content 1.0 g), 0.6 g of TEPIC-FL, 0.06 g of 2P4MZ, and 0.06 g of DCP were added and mixed and stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 26 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 2.15 g (solid content 1.4 g) of OPE-2st-1200 (solid content 65% by weight: toluene solution), MIR- Add 1.47 g (solid content 1.0 g) of 3000-70 MT (solid content 68.2 wt%: toluene solution), 0.6 g of JER825, 0.06 g of 2P4MZ, and 0.06 g of DCP, and mix and stir. , A resin composition was obtained. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 27 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 2.15 g (solid content 1.4 g) of OPE-2st-1200 (solid content 65% by weight: toluene solution), MIR- Add 1.47 g (solid content 1.0 g) of 3000-70 MT (solid content 68.2 wt%: toluene solution), 0.6 g of E101, 0.06 g of 2P4MZ, and 0.06 g of DCP, and mix and stir. , A resin composition was obtained. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 28 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 2.15 g (solid content 1.4 g) of OPE-2st-1200 (solid content 65% by weight: toluene solution), MIR- 3000-70MT (solid content 68.2% by weight: toluene solution) 1.47 g (solid content 1.0 g), JER825 0.3 g, E101 0.3 g, 2P4MZ 0.06 g, DCP 0.06 g The mixture was added, mixed and stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 29 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 2.15 g (solid content 1.4 g) and BMI 4000 of OPE-2st-1200 (solid content 65% by weight: toluene solution) were added. 0.4 g, 1.2 g of JER825, 0.06 g of 2P4MZ, and 0.06 g of DCP were added, and the mixture was mixed and stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 30 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 2.15 g (solid content 1.4 g) and BMI 4000 of OPE-2st-1200 (solid content 65% by weight: toluene solution) were added. 0.4 g, 1.2 g of E101, 0.06 g of 2P4MZ, and 0.06 g of DCP were added and mixed and stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 31 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 2.15 g (solid content 1.4 g) and BMI 4000 of OPE-2st-1200 (solid content 65% by weight: toluene solution) were added. 0.4 g, 0.6 g of JER825, 0.6 g of E101, 0.06 g of 2P4MZ, and 0.06 g of DCP were added and mixed and stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 32 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 2.62 g (solid content 1.7 g) of OPE-2st-1200 (solid content 65% by weight: toluene solution), MIR- 1.91 g (solid content 1.3 g) and 0.06 g of DCP were added to 3000-70 MT (solid content 68.2% by weight: toluene solution), and the mixture was mixed and stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 33 To 3.33 g (solid content 1.0 g) of the polyimide solution B obtained in Example 2, 5.38 g (solid content 3.5 g) of OPE-2st-1200 (solid content 65% by weight: toluene solution), MIR- Add 1.47 g (solid content 1.0 g) of 3000-70 MT (solid content 68.2 wt%: toluene solution), 0.5 g of TEPIC-FL, 0.06 g of 2P4MZ, and 0.06 g of DCP and mix. The mixture was stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 34 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 0.31 g (solid content 0.2 g) of OPE-2st-1200 (solid content 65% by weight: toluene solution), MIR- 3000-70MT (solid content 68.2% by weight: toluene solution) 0.15 g (solid content 0.1 g), TEPIC-FL 2.7 g, E101 0.3 g, 2P4MZ 0.06 g, DCP 0 .06 g was added and mixed and stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 35 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 2.15 g (solid content 1.4 g) of OPE-2st-1200 (solid content 65% by weight: toluene solution), MIR- 3000-70MT (solid content 68.2% by weight: toluene solution) 1.47 g (solid content 1.0 g), TEPIC-FL 0.6 g, 2P4MZ 0.06 g, DCP 0.06 g, KBM1003 0 .3 g was added and mixed and stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Example 36 To 10.00 g (solid content 3.0 g) of the polyimide solution B obtained in Example 2, 2.15 g (solid content 1.4 g) of OPE-2st-1200 (solid content 65% by weight: toluene solution), MIR- 3000-70MT (solid content 68.2% by weight: toluene solution) 1.47 g (solid content 1.0 g), TEPIC-FL 0.6 g, 2P4MZ 0.06 g, DCP 0.06 g, KBM1403 0 .3 g was added and mixed and stirred to obtain a resin composition. The obtained resin composition was measured for copper foil adhesive strength, solder heat resistance, Tg, relative permittivity, and dielectric loss tangent by the above method.
- Comparative Example 1 A stirrer, a thermometer, a nitrogen introduction tube and a dropping funnel were installed in a 500 ml four-necked flask, and 145.00 g of ⁇ BL and 31.02 g of ODPA were charged under a nitrogen atmosphere and dissolved by stirring at 60 ° C. Then, TFMB32.02 was added while stirring at 60 ° C., and the mixture was stirred for 1 hour. Then, the temperature was raised to 180 ° C., the mixture was stirred for 3 hours, and then cooled to room temperature to obtain a polyimide solution I (solid content concentration: 30.0% by weight). As a result of measuring the weight average molecular weight of the polyimide, it was 47,310, and as a result of measuring Tg, it was 226 ° C., and as a result of measuring the imidization ratio, it was 100%.
- Antenna part 12 Matching circuit 13 MSL power supply line 14 Feeding point 15 Ground 16 Insulation film J Ground wiring thickness K Antenna wiring thickness M Matching circuit length L Antenna part length W Antenna part width 201 IC chip 202 Electrode pad 203 Second via Wiring 204 Flat antenna wiring 205 Second sealing resin 206 Ground 207 First via wiring 208 First sealing resin 209 Copper wiring 210 Insulation film 211 Barrier metal 212 Handa bump
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
Abstract
高周波数化に適した有機材料に用いられる、低誘電正接、耐熱性、可撓性、易加工性に優れた熱硬化性樹脂組成物、熱硬化性樹脂シート、電子部品、電子装置を提供する。下記(A1)~(C)を含有する、熱硬化性樹脂組成物である。 (A1)ポリイミド樹脂:式(8)および/または式(9)のジアミン残基を含有するポリイミド樹脂。(式(8)中、a、b、cおよびdはa+b=6~17、c+d=8~19を満たす1以上の整数であり、破線部は炭素-炭素単結合または炭素-炭素二重結合を意味する。) (式(9)中、e、f、gおよびhはe+f=5~16、g+h=8~19を満たす1以上の整数であり、破線部は炭素-炭素単結合または炭素-炭素二重結合を意味する。) (B)フェニレンエーテル樹脂:数平均分子量が500以上5000以下であり、分子鎖末端にフェノール性水酸基、アクリル基、ビニル基、及びエポキシ基からなる群より選ばれる少なくとも1つの架橋性官能基を含有する、フェニレンエーテル樹脂。 (C)マレイミド樹脂:マレイミド樹脂。
Description
本発明は、熱硬化性樹脂組成物、熱硬化性樹脂シート、電子部品、及び電子装置に関する。
現在、世界中のデータ通信量が年々増加すると共に、AIやビッグデータ活用等の実用化でデータ処理方法の複雑化も進んでいる。そのため、データ通信速度およびデータ処理速度の向上が必須であり、通信周波数および電子機器内における信号の高周波数化が一つの解決策として検討されている。実際にデータを扱う電子機器における高周波数化対応には、素材の電気特性、回路設計、信号処理方法等、種々の方策があるが、特に、絶縁層、保護層として用いられる有機材料の誘電正接を低減することが有効である。
他方、従来の有機材料、特に耐久性、加工性に優れた熱硬化性樹脂は分子間凝集力および接着性を発現するための極性官能基を多く含むため、比較的誘電正接が大きく、高周波数化への対応が難しかった。
これに対し、(1)極性官能基が少ない熱可塑性樹脂を主成分として熱硬化性樹脂を配合する方法(特許文献1)、(2)反応後に極性官能基が残留しない熱硬化性樹脂を用いる方法(特許文献2)、(3)誘電正接の低い無機粒子を配合する方法(特許文献3)、等が提案されている。
しかしながら、(1)の方法では、例えば動的粘弾性測定で示されるような耐熱性および接着力に課題がある。また、(2)および(3)の方法では硬化前後の膜強度が低く、可撓性、強伸度において使用できる用途や条件が制限されるという課題がある。さらに、(3)では無機粒子によりビアホール等の微細加工性も制限される。すなわち、従来技術では低誘電正接、耐熱性、可撓性、易加工性を満たすものは見いだせていない。
そこで本発明は上記の課題を解決し、高周波数化に適した有機材料に用いられる、低誘電正接、耐熱性、可撓性、易加工性に優れた熱硬化性樹脂組成物並びにそれを用いた熱硬化性樹脂シート、電子部品、電子装置を提供することを目的とする。
上記課題を解決するため、高周波数における特性が良好な熱硬化性樹脂組成物について鋭意検討した結果、特定の構造を有するポリイミド樹脂、熱硬化性樹脂、フェニレンエーテル樹脂を組み合わせることにより低誘電正接、耐熱性、可撓性、易加工性を具備した高信頼性の熱硬化性樹脂組成物が得られることを見出し、本発明に至った。
すなわち、本発明の第一の形態は以下である。
下記(A1)、(B)、(C)を含有する、熱硬化性樹脂組成物。
(A1)ポリイミド樹脂:式(8)および/または式(9)のジアミン残基を含有するポリイミド樹脂。
(式(8)中、a、b、cおよびdはa+b=6~17、c+d=8~19を満たす1以上の整数であり、破線部は炭素-炭素単結合または炭素-炭素二重結合を意味する。)
(式(9)中、e、f、gおよびhはe+f=5~16、g+h=8~19を満たす1以上の整数であり、破線部は炭素-炭素単結合または炭素-炭素二重結合を意味する。)
(B)フェニレンエーテル樹脂:数平均分子量が500以上5000以下であり、分子鎖末端にフェノール性水酸基、アクリル基、ビニル基、及びエポキシ基からなる群より選ばれる少なくとも1つの架橋性官能基を含有する、フェニレンエーテル樹脂。
(B)フェニレンエーテル樹脂:数平均分子量が500以上5000以下であり、分子鎖末端にフェノール性水酸基、アクリル基、ビニル基、及びエポキシ基からなる群より選ばれる少なくとも1つの架橋性官能基を含有する、フェニレンエーテル樹脂。
(C)マレイミド樹脂:マレイミド樹脂。
または、本発明の第二の形態は、以下である。
下記(A2)、(B)、(C)を含有する、熱硬化性樹脂組成物。
(A2)ポリイミド樹脂:式(1)のジアミン残基を含有するポリイミド樹脂。
(式(1)中、mは1~60の整数を示す。R5およびR6は同じでも異なっていてもよく、炭素数1~30のアルキレン基またはフェニレン基を示す。R1~R4はそれぞれ同じでも異なっていてもよく、炭素数1~30のアルキル基、フェニル基またはフェノキシ基を示す。)
(B)フェニレンエーテル樹脂:数平均分子量が500以上5000以下であり、分子鎖末端にフェノール性水酸基、アクリル基、ビニル基、及びエポキシ基からなる群より選ばれる少なくとも1つの架橋性官能基を含有する、フェニレンエーテル樹脂。
(B)フェニレンエーテル樹脂:数平均分子量が500以上5000以下であり、分子鎖末端にフェノール性水酸基、アクリル基、ビニル基、及びエポキシ基からなる群より選ばれる少なくとも1つの架橋性官能基を含有する、フェニレンエーテル樹脂。
(C)マレイミド樹脂:マレイミド樹脂。
本発明により、高周波数化に適した有機材料に用いられる、低誘電正接、耐熱性、可撓性、易加工性に優れた熱硬化性樹脂組成物、熱硬化性樹脂シート、電子部品、及び電子装置を提供できる。
本発明の熱硬化性樹脂組成物は、下記(A1)、(B)、(C)を含有する。
(A1)ポリイミド樹脂:式(8)および/または式(9)のジアミン残基を含有するポリイミド樹脂
(B)フェニレンエーテル樹脂:数平均分子量が500以上5000以下であり、分子鎖末端にフェノール性水酸基、アクリル基、ビニル基、及びエポキシ基からなる群より選ばれる少なくとも1つの架橋性官能基を含有する、フェニレンエーテル樹脂
(C)マレイミド樹脂:マレイミド樹脂。
(B)フェニレンエーテル樹脂:数平均分子量が500以上5000以下であり、分子鎖末端にフェノール性水酸基、アクリル基、ビニル基、及びエポキシ基からなる群より選ばれる少なくとも1つの架橋性官能基を含有する、フェニレンエーテル樹脂
(C)マレイミド樹脂:マレイミド樹脂。
本発明における(A1)ポリイミド樹脂は、式(8)および/または式(9)のジアミン残基を含有するポリイミド樹脂であれば特に限定されないが、主としてテトラカルボン酸二無水物とジアミンとの反応により得られ、テトラカルボン酸二無水物の残基とジアミンの残基を有することが好ましい。ここで、本発明における(A1)ポリイミド樹脂は、上記式(8)および/または式(9)のジアミン残基を含む。
(式(8)中、a、b、cおよびdはa+b=6~17、c+d=8~19を満たす1以上の整数であり、破線部は炭素-炭素単結合または炭素-炭素二重結合を意味する。)
(式(9)中、e、f、gおよびhはe+f=5~16、g+h=8~19を満たす1以上の整数であり、破線部は炭素-炭素単結合または炭素-炭素二重結合を意味する。)
式(8)または式(9)はリノール酸またはオレイン酸などの不飽和脂肪酸の二量体であるダイマー酸の骨格を有する構造であり、得られる硬化膜の信頼性の観点から2重結合を含有しない構造が好ましく、式(10)で表される構造が経済性や得られる硬化膜の伸度などの観点から特に好ましい。
式(8)または式(9)はリノール酸またはオレイン酸などの不飽和脂肪酸の二量体であるダイマー酸の骨格を有する構造であり、得られる硬化膜の信頼性の観点から2重結合を含有しない構造が好ましく、式(10)で表される構造が経済性や得られる硬化膜の伸度などの観点から特に好ましい。
式(8)で示される構造を有するジアミンの具体例は、ダイマージアミンの市販品としては、BASF(株)製の「“バーサミン(登録商標)”551」、「“バーサミン(登録商標)”552」、クローダジャパン(株)製の「“プリアミン(登録商標)”1073」、「“プリアミン(登録商標)”1074」、「“プリアミン(登録商標)”1075」などが挙げられる。ここで、「“バーサミン(登録商標)”551」、「“プリアミン(登録商標)”1074」はいずれも式(11)で表される化合物を含むダイマージアミン化合物であり、「“バーサミン(登録商標)”552」、「“プリアミン(登録商標)”1073」、「“プリアミン(登録商標)”1075」はいずれも、式(10)で表される化合物を含むダイマージアミン化合物である。
またトリマートリアミンとダイマージアミンの混合物を用いてもよい。トリマートリアミンとダイマージアミンの市販品としてはクローダジャパン(株)製の「“プリアミン(登録商標)”1071」などが挙げられる。
(A1)ポリイミド樹脂中、ジアミン残基に式(8)および/または式(9)で示される構造を有する場合のダイマー酸構造の含有量は1モル%以上、30モル%以下が好ましく、より好ましくは1モル%以上、15モル%以下である。1モル%以上にすることによって、比誘電率および誘電正接を低くすることができる。また30モル%以下にすることによって、耐熱性を高くすることができる。
または、本発明の熱硬化性樹脂組成物は、下記(A2)、(B)、(C)を含有する。
(A2)ポリイミド樹脂:式(1)のジアミン残基を含有するポリイミド樹脂
(B)フェニレンエーテル樹脂:数平均分子量が500以上5000以下であり、分子鎖末端にフェノール性水酸基、アクリル基、ビニル基、及びエポキシ基からなる群より選ばれる少なくとも1つの架橋性官能基を含有する、フェニレンエーテル樹脂
(C)マレイミド樹脂:マレイミド樹脂。
(A2)ポリイミド樹脂:式(1)のジアミン残基を含有するポリイミド樹脂
(B)フェニレンエーテル樹脂:数平均分子量が500以上5000以下であり、分子鎖末端にフェノール性水酸基、アクリル基、ビニル基、及びエポキシ基からなる群より選ばれる少なくとも1つの架橋性官能基を含有する、フェニレンエーテル樹脂
(C)マレイミド樹脂:マレイミド樹脂。
本発明における(A2)ポリイミド樹脂は、式(1)のジアミン残基を含有するポリイミド樹脂であれば特に限定されないが、主としてテトラカルボン酸二無水物とジアミンとの反応により得られ、テトラカルボン酸二無水物の残基とジアミンの残基を有することが好ましい。ここで、本発明における(A2)ポリイミド樹脂は、上記式(1)のジアミン残基を含む。
(式(1)中、mは1~60の整数を示す。R5およびR6は同じでも異なっていてもよく、炭素数1~30のアルキレン基またはフェニレン基を示す。R1~R4はそれぞれ同じでも異なっていてもよく、炭素数1~30のアルキル基、フェニル基またはフェノキシ基を示す。)
R1~R4に好適な炭素数1~30のアルキル基は特に制限はないが、メチル基、エチル基、プロピル基、ブチル基が好ましい。また、R5やR6に好適な炭素数1~30のアルキレン基は特に制限はないが、メチレン基、エチレン基、プロピレン基、ブチレン基が好ましい。なお、アルキル基およびアルキレン基は直鎖構造である必要はない。
R1~R4に好適な炭素数1~30のアルキル基は特に制限はないが、メチル基、エチル基、プロピル基、ブチル基が好ましい。また、R5やR6に好適な炭素数1~30のアルキレン基は特に制限はないが、メチレン基、エチレン基、プロピレン基、ブチレン基が好ましい。なお、アルキル基およびアルキレン基は直鎖構造である必要はない。
シロキサン構造の結合数、つまり式(1)におけるmは、1以上、60以下が好ましく、より好ましくは1以上、40以下である。60以下にすることによって、耐熱性を向上することができる。
式(1)で示される構造を有するジアミンの具体例としては、1,1,3,3-テトラメチル-1,3-ビス(4-アミノフェニル)ジシロキサン、1,1,3,3-テトラフェノキシ-1,3-ビス(4-アミノエチル)ジシロキサン、1,1,3,3,5,5-ヘキサメチル-1,5-ビス(4-アミノフェニル)トリシロキサン、1,1,3,3-テトラフェニル-1,3-ビス(2-アミノエチル)ジシロキサン、1,1,3,3-テトラフェニル-1,3-ビス(3-アミノプロピル)ジシロキサン、1,1,5,5-テトラフェニル-3,3-ジメチル-1,5-ビス(3-アミノプロピル)トリシロキサン、1,1,5,5-テトラフェニル-3,3-ジメトキシ-1,5-ビス(4-アミノブチル)トリシロキサン、1,1,5,5-テトラフェニル-3,3-ジメトキシ-1,5-ビス(5-アミノペンチル)トリシロキサン、1,1,3,3-テトラメチル-1,3-ビス(2-アミノエチル)ジシロキサン、1,1,3,3-テトラメチル-1,3-ビス(3-アミノプロピル)ジシロキサン、1,1,3,3-テトラメチル-1,3-ビス(4-アミノブチル)ジシロキサン、1,3-ジメチル-1,3-ジメトキシ-1,3-ビス(4-アミノブチル)ジシロキサン、1,1,5,5-テトラメチル-3,3-ジメトキシ-1,5-ビス(2-アミノエチル)トリシロキサン、1,1,5,5-テトラメチル-3,3-ジメトキシ-1,5-ビス(4-アミノブチル)トリシロキサン、1,1,5,5-テトラメチル-3,3-ジメトキシ-1,5-ビス(5-アミノペンチル)トリシロキサン、1,1,3,3,5,5-ヘキサメチル-1,5-ビス(3-アミノプロピル)トリシロキサン、1,1,3,3,5,5-ヘキサエチル-1,5-ビス(3-アミノプロピル)トリシロキサン、1,1,3,3,5,5-ヘキサプロピル-1,5-ビス(3-アミノプロピル)トリシロキサンなどが挙げられるが、これらに限定されるものではない。またこれらのジアミンに対応する製品としては、信越化学(株)製のLP7100、PAM-E、KF8010、X-22-161A、X-22-161B、KF8012、KF8008などが挙げられる。
(A2)ポリイミド樹脂が、式(1)のジアミン残基を含有する場合、式(1)のシロキサン構造の含有量は20モル%以上、80モル%以下が好ましく、より好ましくは30モル%以上、70モル%以下である。20モル%以上にすることによって、極性の低い構造が多くなり比誘電率および誘電正接を低くすることができる。また80モル%以下にすることによって、高温での弾性率を向上し、耐熱性を高くすることができる。
ポリイミド樹脂が、(A1)ポリイミド樹脂、および、(A2)ポリイミド樹脂、であることが好ましい。式(1)ならびに式(8)および/または式(9)のジアミン残基を含有することで、比誘電率および誘電正接をさらに低くすることができる。
(A2)ポリイミド樹脂が、ポリイミドの全ジアミン残基100モル%中、式(1)のジアミン残基を20~80モル%の範囲で含有し、かつ、(A1)ポリイミドの全ジアミン残基100モル%中、式(8)および式(9)のジアミン残基の合計を1~30モル%の範囲で含有することが好ましい。
(A1)ポリイミド樹脂および(A2)ポリイミド樹脂の、イミド基当量は350以上、1000以下が好ましい。より好ましくは380以上、900以下である。イミド化後のイミド基当量が上記350以上1000以下の範囲に入っていることが好ましい。イミド基当量は、ポリイミド樹脂中のイミド基1モルあたりの分子量である。イミド基当量は、テトラカルボン酸二無水物、ジアミンの分子量からユニット単位で計算する。例えば下記式(2)で示されるポリイミド樹脂の場合、1ユニット当たり2モルのイミド基が存在し、ポリイミド樹脂の分子量は684.71であることから、イミド基当量は342.36になる。(A1)ポリイミド樹脂および(A2)ポリイミド樹脂は、イミド基当量を350以上にすることによって、イミド基濃度が低下し、極性が低くなることから誘電正接を低くすることができる。またイミド基当量を1000以下にすることによって、イミド基による分子の凝集効果により、耐熱性を向上することができる。
(A1)ポリイミド樹脂および(A2)ポリイミド樹脂は、式(3)で示される構造を有するジアミン残基を有することが好ましい。式(3)中、R7およびR8は同じでも異なっていても良く、炭素数1~30のアルキル基、アルコキシ基、フルオロアルキル基、フェニル基、またはフェノキシ基を示す。
(A1)ポリイミド樹脂および(A2)ポリイミド樹脂が、式(3)で示される構造を有するジアミン残基を含有することにより、直線性が高い構造で剛直となり、樹脂の機械強度が高くなる。機械強度を向上する観点から、式(3)で示される構造を有するジアミン残基の含有量は、全ジアミン残基中30モル%以上であることが好ましく、40モル%以上であればより好ましい。また、密着性を向上して銅などの金属との接着強度を向上させる観点から70モル%以下であることが好ましく、60モル%以下であればより好ましい。R7およびR8は、炭素数1~30のアルキル基、アルコキシ基、フルオロアルキル基、フェニル基、またはフェノキシ基であれば特に限定されないが、中でもR7およびR8は、トリフルオロメチル基が好ましい。トリフルオロメチル基は、フッ素の原子半径が大きく自由体積を広げる効果があることから比誘電率および誘電正接を低くすることができる。式(3)で表されるジアミンの具体例として、2,2’-ビス(トリフルオロメチル)ベンジジン、2,2’-ジメチルビフェニル-4,4’-ジアミン、2,2’-ジエチルビフェニル-4,4’-ジアミン、2,2’-ジメトキシビフェニル-4,4’-ジアミン、2,2’-ジエトキシビフェニル-4,4’-ジアミンなどが挙げられるが、これらに限定されるものではない。
(A1)ポリイミド樹脂および(A2)ポリイミド樹脂のガラス転移温度(以下Tgと称することがある)は、100℃以上200℃以下が好ましく、より好ましくは110℃以上180℃以下である。100℃以上にすることによって、耐熱性が向上し、半田リフロー工程で剥離を防ぐことができる。(A1)ポリイミド樹脂および(A2)ポリイミド樹脂のTgを200℃以下にすることによって、硬化前の熱硬化性組成物の加熱・加圧流動性が向上し、基材に対する接着性を向上することができる。本発明で言うTgとは、ポリイミド樹脂あるいは熱硬化性樹脂組成物を20~100μm程度の厚みに成形し、所定の温度で熱硬化させた試験片を用い、引張モードの動的粘弾性測定装置にて周波数1Hz、昇温速度5℃/minの条件で測定した際のtanδのピーク値から算出したものである。
(A1)ポリイミド樹脂および(A2)ポリイミド樹脂は、下記式(4)で示される酸二無水物残基を含有することが好ましい。かかる酸二無水物残基は、分子量が大きくポリイミド樹脂のイミド基濃度を低くできること、脂環構造を有する為、極性が低くなることから比誘電率および誘電正接を低くすることができる。また、脂環構造を有することによって分子運動を抑制し、耐熱性を向上することができる。比誘電率および誘電正接を低くする観点から下記式(4)で示される酸二無水物残基は、全酸二無水物残基中50モル%以上であることが好ましく、70モル%以上であることがより好ましい。
本発明において、(A1)ポリイミド樹脂および(A2)ポリイミド樹脂の重量平均分子量は、5,000以上1000,000以下であることが好ましい。ポリイミド樹脂を2種以上含有する場合、そのうちの少なくとも1種の重量平均分子量が上記範囲であればよい。重量平均分子量が5,000以上であれば、機械強度の低下がより少なくなり、接着強度の低下がより少なくなる。好ましくは10,000以上である。一方、重量平均分子量が1000,000以下であれば、加熱時の溶融粘度が高くなることがなくなり、接着強度の低下がより少なくなる。好ましくは500,000以下である。なお、本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC法)によって測定しポリスチレン換算で算出する。
本発明におけるポリイミド樹脂は、上記ジアミン残基の他に、本発明の効果を損なわない程度に他のジアミン残基を含有していてもよい。例えば、1,4-ジアミノベンゼン、1,3-ジアミノベンゼン、2,4-ジアミノトルエン、1,4-ジアミノ-2,5-ジハロゲノベンゼンなどのベンゼン環1個を含むジアミン類、ビス(4-アミノフェニル)エ-テル、ビス(3-アミノフェニル)エ-テル、ビス(4-アミノフェニル)スルホン、ビス(3-アミノフェニル)スルホン、ビス(4-アミノフェニル)メタン、ビス(3-アミノフェニル)メタン、ビス(4-アミノフェニル)スルフィド、ビス(3-アミノフェニル)スルフィド、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、o-ジアニシジン、o-トリジン、トリジンスルホン酸類などのベンゼン環2個を含むジアミン類、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(3-アミノフェニル)ベンゼン、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、α,α’-ビス(4-アミノフェニル)-1,3-ジイソプロピルベンゼンなどのベンゼン環3個を含むジアミン類、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、4,4’-(4-アミノフェノキシ)ビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、5,10-ビス(4-アミノフェニル)アントラセンなどのベンゼン環4個以上を含むジアミン類などのジアミン化合物の残基が挙げられる。なお、他のジアミン残基の例はこれらに限られない。
本発明におけるポリイミド樹脂は、上記酸二無水物残基の他に、本発明の効果を損なわない程度に他の酸二無水物残基を含有していてもよい。含有する酸二無水物残基としては特に限定がなく、例えば、無水ピロメリット酸(PMDA)、オキシジフタル酸二無水物(ODPA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、2,2’-ビス[(ジカルボキシフェノキシ)フェニル]プロパン二無水物(BSAA)、4,4’-ヘキサフルオロイソプロピリデンジフタル酸無水物(6FDA)、1,2-エチレンビス(アンヒドロトリメリテート)(TMEG)などの酸二無水物の残基が挙げられる。なお、酸二無水物残基の例はこれらに限られない。
(A1)ポリイミド樹脂および(A2)ポリイミド樹脂の製造方法は特に限定されないが、ダイマー酸構造およびシロキサン構造の良溶解性を活用し、常法により酸無水物モノマーとジアミンモノマーを適切な溶剤に溶解、混合し、反応させた後に熱閉環または化学閉環により合成する方法が好ましい。
上記の中で、テトラカルボン酸二無水物の残基とジアミンの残基は、(1)ベンゼン環が少ない、(2)分子量が大きく嵩高い、または(3)脂肪族基やシロキサン基など極性の低い、構造が好ましい。このような構造を有することにより極性の高いイミド基の濃度を低くすることができ、また分子鎖間での自由体積を大きできることから比誘電率および誘電正接を低くすることができる。
本発明におけるポリイミド樹脂は、ポリイミド構造単位からなるもののみであってもよいし、ポリイミド構造単位のほかに共重合成分として他の構造も有する共重合体であってもよい。また、ポリイミド構造単位の前駆体(ポリアミック酸構造)が含まれていてもよい。またこれらの混合体であってもよい。さらに、これらのいずれかに他の構造で表されるポリイミド樹脂が混合されていてもよい。他の構造で表されるポリイミド樹脂が混合される場合は、本発明におけるポリイミド樹脂を50モル%以上含有していることが好ましい。共重合あるいは混合に用いられる構造の種類および量は、本発明の効果を損なわない範囲で選択することが好ましい。
本発明に用いられる(A1)ポリイミド樹脂および(A2)ポリイミド樹脂の合成方法は特に限定されず、ジアミンとテトラカルボン酸二無水物を用いて、公知の方法で合成される。例えば、(1)低温中でテトラカルボン酸二無水物とジアミン化合物(一部をアニリン誘導体に置換してもよい)を反応させる方法、(2)テトラカルボン酸二無水物とアルコールとの反応によりジエステルを得、その後ジアミン(一部をアニリン誘導体に置換してもよい)と縮合剤の存在下で反応させる方法、(3)テトラカルボン酸二無水物とアルコールとの反応によりジエステルを得、その後残りの2つのカルボキシル基を酸クロリド化し、ジアミン(一部をアニリン誘導体に置換してもよい)と反応させる方法、などの方法を利用して、ポリイミド前駆体を得、これを公知のイミド化方法を利用して合成することができる。
熱硬化性組成物への適用に際しては、ポリアミック酸の形態で添加し、熱硬化の際にイミド化する方法またはポリアミック酸重合後にイミド化して既閉環構造として添加する方法のいずれでもよい。
本発明の熱硬化性組成物中のポリイミド樹脂の含有量は、熱硬化性組成物100重量%中に30重量%以上90重量%未満が好ましく、40重量%以上80重量%以下がより好ましい。30重量%以上にすることによってポリマー成分の量が増えることから可撓性を向上することができる。90重量%以下にすることによって、熱硬化性樹脂成分の量が増えることから加熱圧着時の溶融粘度が低くなり、接着剤組成物の被積層体との接着力を向上することができる。
本発明の熱硬化性樹脂組成物は、数平均分子量が500以上5000以下であり、分子鎖末端にフェノール性水酸基、アクリル基、ビニル基、及びエポキシ基からなる群より選ばれる少なくとも1つの架橋性官能基を含有するフェニレンエーテル樹脂である、(B)フェニレンエーテル樹脂を含有する。本発明で言うフェニレンエーテル樹脂とは、樹脂の構造中に式(5)記載の構造が繰り返し含まれる樹脂であれば特に制限されないが、好ましくは樹脂の構造中に式(5)記載の構造を複数有する態様であり、特に好ましくは樹脂の構造中の繰り返し単位数として式(5)記載の構造を最も多く含む態様である。なお、本発明で言うフェニレンエーテル樹脂は、樹脂の構造中に式(5)記載の構造が含まれる樹脂でありさえすれば、他の構造との共重合体であってもよい。
式(5)中、R9~R12は同じでも異なっていても良く、水素原子、ハロゲン原子、または炭素数1~30のアルキル基、アルコキシ基、フルオロアルキル基、フェニル基、またはフェノキシ基を示す。
(B)フェニレンエーテル樹脂は、単独で低い誘電正接を示し、熱硬化性樹脂組成物に添加することで、誘電正接を低減する効果がある。(B)フェニレンエーテル樹脂の数平均分子量は500以上5000以下である。(B)フェニレンエーテル樹脂の数平均分子量は、さらに好ましくは1000以上4000以下である。数平均分子量を500以上にすることによって、架橋密度を低減し、熱硬化性樹脂組成物の靭性を向上することができる。5000以下にすることによって、ポリイミド等の他成分との相溶性を向上し、熱硬化性樹脂組成物を均一構造にして、物性を安定させることができる。本発明における(B)フェニレンエーテル樹脂は、分子鎖末端にフェノール性水酸基、アクリル基、ビニル基、及びエポキシ基からなる群より選ばれる少なくとも1つの架橋性官能基を含有する。これらの架橋性官能基は、分子鎖の両末端についているのが好ましいが、片側の末端だけについていてもよい。(B)フェニレンエーテル樹脂がこれらの架橋性官能基を含有することにより、熱硬化で架橋構造を形成して、機械強度、耐熱性および密着性を向上することができる。(B)フェニレンエーテル樹脂が含有する架橋性官能基は、これらの架橋性官能基のなかでもビニル基が好ましい。ビニル基で熱架橋した熱硬化性樹脂組成物は、極性が低い為、比誘電率と誘電正接を低くすることができる。このような樹脂として三菱ガス化学(株)製のOPE-2stなどが挙げられる。
(B)フェニレンエーテル樹脂の含有量は特に限定されないが、好ましくは熱硬化性樹脂組成物100重量%中に5重量%以上50重量%以下、さらに好ましくは10重量%以上40重量%以下である。5重量%以上にすることで比誘電率と誘電正接を低くすることができる。また50重量%以下にすることで、靭性を改善し密着性を向上することができる。
本発明の熱硬化性樹脂組成物は、(C)マレイミド樹脂を含有する。(C)マレイミド樹脂を含有することにより、耐熱性向上して、接着強度を向上することができるとともに、(B)フェニレンエーテル樹脂として分子鎖末端に架橋性官能基としてビニル基を有するフェニレンエーテル樹脂を用いた場合には、(C)マレイミド樹脂が(B)フェニレンエーテル樹脂と作用し、熱硬化反応温度を180℃以下まで低くすることができる。(C)マレイミド樹脂は、熱硬化性樹脂組成物溶液の粘度を低くする観点から、有機溶剤に溶解するマレイミド樹脂でありさえすれば良く、特に制限はない。(C)マレイミド樹脂としては、例えば、フェニルメタンマレイミド、メタフェニレンビスマレイミド、4,4’-ジフェニルメタンビスマレイミド、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、2,2’-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、4-メチル-1,3-フェニレンビスマレイミド、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、4,4-ジフェニルエーテルビスマレイミド、4,4-ジフェニルスルホンビスマレイミド、ポリフェニルメタンマレイミド、ノボラック型マレイミド化合物、ビフェニルアラルキル型マレイミド化合物、及びこれらマレイミド樹脂のプレポリマーなどが挙げられる。
(C)マレイミド樹脂の含有量は特に限定されないが、熱硬化性樹脂全体100重量%中に1重量%以上50重量%以下、さらに好ましくは3重量%以上40重量%以下である。1重量%以上にすることで、分子鎖末端にビニル基を有するフェニレンエーテル樹脂の架橋反応を促進し、耐熱性を向上することができる。また50重量%以下にすることによって弾性率を抑えて、靭性を向上することができる。これらの(C)マレイミド樹脂は、単独または2種類以上を混合して使用することも可能である。
前記(C)マレイミド樹脂が、N個のマレイミド基を有するポリマレイミド樹脂(Nは整数でありその平均値は2より大きく、30より小さい)であることが好ましい。マレイミド基数を2より大きいことで、架橋密度が上がり、接着強度を向上することができる。マレイミド基数を30より小さいことで、他樹脂との相溶性を向上することができる。
ポリマレイミド樹脂の例として下記式(6)で示されるマレイミド樹脂が挙げられる。
ポリマレイミド樹脂の例として下記式(6)で示されるマレイミド樹脂が挙げられる。
本発明の熱硬化性樹脂組成物は、(D)エポキシ樹脂を含有することが好ましい。本発明に用いられる(D)エポキシ樹脂は特に制限されないが、Bステージでの柔軟性や基板との密着強度の観点から、室温で液状のエポキシ樹脂が好ましい。
ここで液状のエポキシ樹脂とは、25℃、1.013×105N/m2で150Pa・s以下の粘度を示すものである。(D)エポキシ樹脂として好適な液状のエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、アルキレンオキサイド変性エポキシ樹脂、グリシジルアミン型エポキシ樹脂などが挙げられる。このようなエポキシ樹脂に対応する製品としては、三菱化学(株)製のJER825、JER827、JER828、JER806、JER807、JER801N、JER802、JER604、JER630、JER630LSDやDIC(株)製のエピクロン840S、エピクロン850S、エピクロン830S、エピクロン705、エピクロン707や新日鐵化学(株)製のYD127、YD128、PG207N、PG202や日産化学(株)製のTEPIC-PAS B22、TEPIC-VL、TEPIC-FL、FOLDI E101、FOLDI E201やクローダ(株)製のA1、A2、A3などが挙げられる。
(D)エポキシ樹脂の含有量は特に制限されないが、熱硬化性樹脂組成物全体100重量%中に1重量%以上50重量%以下、さらに好ましくは3重量%以上40重量%以下である。1重量%以上にすることでBステージシートの加熱時溶融粘度を低くして、基材への密着性を向上することができる。これらの(D)エポキシ樹脂は、単独または2種類以上を混合して使用することも可能である。
本発明の熱硬化性樹脂組成物は、(E)硬化促進剤を含有することが好ましい。(D)エポキシ樹脂と(E)硬化促進剤を組み合わせることにより、エポキシ樹脂の硬化を促進して短時間で硬化させることができる。(E)硬化促進剤としては特に限定されないが、イミダゾール類、多価フェノール類、酸無水物類、アミン類、ヒドラジド類、ポリメルカプタン類、ルイス酸-アミン錯体類、潜在性硬化剤などを用いることができる。その中でも、保存安定性と硬化物の耐熱性が優れるイミダゾール類、多価フェノール類、潜在性硬化促進剤が好ましく用いられる。これらは、単独または2種以上を混合して使用することができる。
イミダゾール類としては“キュアゾール(登録商標)”2MZ、“キュアゾール(登録商標)”2PZ、“キュアゾール(登録商標)”2MZ-A、“キュアゾール(登録商標)”2MZ-OK(以上商品名、四国化成工業(株)製)などがあげられる。多価フェノール類としては、“スミライトレジン(登録商標)”PR-HF3、“スミライトレジン(登録商標)”PR-HF6(以上商品名、住友ベークライト(株)製)“カヤハード(登録商標)”KTG-105、“カヤハード(登録商標)”NHN(以上商品名、日本化薬(株)製)、“フェノライト(登録商標)”TD2131、“フェノライト(登録商標)”TD2090、“フェノライト(登録商標)”VH-4150、“フェノライト(登録商標)”KH-6021、“フェノライト(登録商標)”KA-1160、“フェノライト(登録商標)”KA-1165(以上商品名、DIC(株)製)などがあげられる。また、潜在性硬化促進剤としては、ジシアンジアミド型潜在性硬化剤、アミンアダクト型潜在性硬化剤、有機酸ヒドラジド型潜在性硬化剤、芳香族スルホニウム塩型潜在性硬化剤、マイクロカプセル型潜在性硬化剤、光硬化型潜在性硬化剤が挙げられる。
ジシアンジアミド型潜在性硬化剤としては、DICY7、DICY15、DICY50(以上商品名、ジャパンエポキシレジン(株)製)、“アミキュア(登録商標)”AH-154、“アミキュア(登録商標)”AH-162(以上商品名、味の素ファインテクノ(株)製)などが挙げられる。アミンアダクト型潜在性硬化剤としては、“アミキュア(登録商標)”PN-23、“アミキュア(登録商標)”PN-40、“アミキュア(登録商標)”MY-24、“アミキュア(登録商標)”MY-H(以上商品名、味の素ファインテクノ(株)製)、“フジキュア(登録商標)”FXR-1030(商品名、富士化成(株)製)などが挙げられる。有機酸ヒドラジド型潜在性硬化剤としては、“アミキュア(登録商標)”VDH、“アミキュア(登録商標)”UDH(以上商品名、味の素ファインテクノ(株)製)などが挙げられる。芳香族スルホニウム塩型潜在性硬化剤としては、“サンエイド(登録商標)”SI100、“サンエイド(登録商標)”SI150、“サンエイド(登録商標)”SI180、“サンエイド(登録商標)”SI-B3、“サンエイド(登録商標)”SI-B4(以上商品名、三新化学工業(株)製)などが挙げられる。マイクロカプセル型潜在性硬化剤としては、上記の各硬化剤をビニル化合物、ウレア化合物、熱可塑性樹脂でカプセル化したものが挙げられる。中でも、アミンアダクト型潜在性硬化剤をイソシアネートで処理したマイクロカプセル型潜在性硬化剤としては“ノバキュア(登録商標)”HX-3941HP、“ノバキュア(登録商標)”HXA3922HP、“ノバキュア(登録商標)”HXA3932HP、“ノバキュア(登録商標)”HXA3042HP(以上商品名、旭化成ケミカルズ(株)製)などが挙げられる。また、光硬化型潜在性硬化剤としては、“オプトマー(登録商標)”SP、“オプトマー(登録商標)”CP((株)ADEKA製)などが挙げられる。
(E)硬化促進剤の含有量は特に制限されないが、(D)エポキシ樹脂100重量部に対し、0.1重量部以上35重量部以下であることが好ましい。
本発明の熱硬化性樹脂組成物は、有機過酸化物を含有していてもよい。有機過酸化物を含有することにより、ビニル基を有する(B)フェニレンエーテル樹脂、および(C)マレイミド樹脂の硬化を促進して、機械強度や耐熱性を向上することができる。有機過酸化物としては、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、t-ブチルイソプロピルカルボネート、ジ-t-ブチルパーオキサイド、t-ブチルパーオクテート、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、t-ブチルパーオキシ-2-エチルヘキサノエートなどが挙げられる。有機過酸化物の含有量としては、ビニル基を有する(B)フェニレンエーテル樹脂、および(C)マレイミド樹脂100重量部に対して、0.1重量部以上35重量以下であることが好ましい。
本発明の熱硬化性樹脂組成物は、必要により無機粒子を含有してもよい。無機粒子を含有することにより樹脂組成物を加熱硬化の熱膨張係数を低くするなど物性を調整することができる。無機粒子の材質としては、シリカ、中空シリカ、アルミナ、チタニア、窒化ケイ素、窒化硼素、窒化アルミニウム、酸化鉄、ガラスやその他金属酸化物、金属窒化物、金属炭酸塩、硫酸バリウムなどの金属硫酸塩等を単独でまたは2種以上混合して用いることができる。これらの中でシリカが低熱膨張性、熱放散性、低吸湿率の点で好ましく使用することができる。また中空シリカは低誘電正接の点で好ましく使用することができる。
本発明の熱硬化性樹脂組成物に無機粒子が含まれる場合、その含有量は、無機粒子を含む樹脂組成物全体100重量%に対して、10重量%以上90重量%以下が好ましい。樹脂組成物の低熱膨張性、熱拡散性、低吸湿率、低誘電率、低誘電正接の観点から、無機粒子は10重量%以上が好ましく、20重量%以上がより好ましい。また熱硬化時の基板との熱圧着性を向上することと、熱硬化後の機械強度を向上する観点から、無機粒子は90重量%以下が好ましく、80重量%以下がより好ましい。無機粒子の平均粒子径は0.1μm以上10μm以下が好ましい。樹脂組成物の低熱膨張性、熱拡散性を向上する観点から0.1μm以上が好ましく、0.5μm以上がより好ましい。また熱硬化性樹脂シートの表面を平滑にする観点から10μm以下が好ましく、5μm以下がより好ましい。
本発明の熱硬化性樹脂組成物は必要に応じて界面活性剤を含有してもよく、基板との塗れ性を向上させることができる。
本発明の熱硬化性樹脂組成物は、(F)シランカップリング剤を含有することが好ましい。特に式(12)で表されるシランカップリング剤を含有することが好ましい。
式(12)中、Xは炭素数1~30の脂肪族もしくは芳香族の2価の炭化水素基、または単結合を表し、R13はそれぞれ同じでも異なってもよく、ハロゲン、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、フェニル基、ヒドロキシル基又はフェノキシ基を表し、iは1~3の整数を示す。ただし、複数のR13のうち少なくとも1つはハロゲンまたは炭素数1~6のアルコキシ基である。
シランカップリング剤としては、トリメトキシアミノプロピルシラン、トリメトキシシクロヘキシルエポキシエチルシラン、トリメトキシビニルシラン、トリエトキシビニルシラン、トリメトキシチオールプロピルシラン、トリメトキシグリシジルオキシプロピルシラン、トリス(トリメトキシシリルプロピル)イソシアヌレート、トリエトキシアミノプロピルシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、p―スチリルトリメトキシシランおよび、トリメトキシアミノプロピルシランと酸無水物との反応物が挙げられ、特にトリメトキシビニルシラン、トリエトキシビニルシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、p―スチリルトリメトキシシランが好ましく、p―スチリルトリメトキシシランがより好ましい。
(F)シランカップリング剤の含有量は特に制限されないが、熱硬化性樹脂組成物全体100重量%中に0.01重量%以上10重量%以下、さらに好ましくは0.5重量%以上5重量%以下である。0.01重量%以上にすることで基板との接着性を高めることができる。10重量%以下にすることで、保存安定性が向上する。これらの(F)シランカップリング剤は、単独または2種類以上を混合して使用することも可能である。また、チタンキレート剤などを樹脂組成物中0.5~10重量%含有してもよい。
次に本発明の熱硬化性樹脂組成物を未熱硬化の状態で支持体上に層形成してなる、本発明の熱硬化性樹脂シートについて説明する。このような本発明の熱硬化性樹脂シートは、接着シートなどとして用いることができる。本発明の熱硬化性樹脂組成物をシート状に加工するには、例えば支持フィルム上に樹脂組成物を溶媒中で混合してワニス状としたものを塗布、乾燥してシート状に加工することができる。
ここで用いる溶媒としては前記成分を溶解するものを適宜選択すればよく、たとえばケトン系溶剤のアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、エーテル系溶剤の1,4-ジオキサン、テトラヒドロフラン、ジグライム、グリコールエーテル系溶剤のメチルセロソルブ、エチルセロソルブ、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコールメチルエチルエーテル、その他ベンジルアルコール、プロパノール、N-メチルピロリドン、γ-ブチロラクトン、酢酸エチル、N,N-ジメチルホルムアミド等が挙げられる。特に大気圧下沸点が120℃以下であるものを含むと、低温、短時間で脱溶媒化できるためシート化が容易となる。
接着剤組成物をワニス状にする方法は特に限定されるものではないが、ポリイミド樹脂、(B)フェニレンエーテル樹脂、(C)マレイミド樹脂並びに必要に応じ含まれる他の成分を上記溶媒中でプロペラ攪拌機、ホモジナイザー、混練機などを用いて混合させた後、必要に応じて無機粒子の分散性を向上させる観点から、ビーズミル、ボールミル、3本ロールミル等で混合することが好ましい。
支持フィルムへワニスを塗布する方法としては、スピンナを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷、あるいは、ブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター、バーコーター、ロールコーター、コンマロールコーター、グラビアコーター、スクリーンコーター、スリットダイコーターなどを用いた塗布方法が挙げられる。
塗工機としては、ロールコーター、コンマロールコーター、グラビアコーター、スクリーンコーター、スリットダイコーターなどを用いることができるが、スリットダイコーターがコーティング時の溶媒の揮発が少なく塗布性が安定するため好ましく使用される。シート化した熱硬化性樹脂組成物、つまり熱硬化性樹脂シートの厚みは特に限定されるものではないが、凹凸のある配線基板への埋め込み性や絶縁性などの観点から10~400μmの範囲が好ましい。
乾燥には、オーブン、ホットプレート、赤外線などを使用することができる。乾燥温度および乾燥時間は、有機溶媒を揮発させることが可能な範囲であればよく、接着シートが未硬化または半硬化状態(Bステージ状態)となるような範囲を適宜設定することが好ましい。具体的には、40℃から120℃の範囲で1分間から数十分間保持することが好ましい。また、これらの温度を組み合わせて段階的に昇温してもよく、例えば、70℃、80℃、90℃で各1分間ずつ熱処理してもよい。
支持フィルムは特に限定されないが、ポリエチレンテレフタレート(PET)フィルム、ポリフェニレンサルファイドフィルム、ポリイミドフィルムなど、通常市販されている各種のフィルムが使用可能である。
支持フィルムの接着剤組成物との接合面は、密着性と剥離性を向上させるために、シリコーン、シランカップリング剤、アルミキレート剤、ポリ尿素などの表面処理が施されていてもよい。また、支持フィルムの厚みは特に限定されないが、作業性の観点から、10~100μmの範囲であることが好ましい。
また、熱硬化性樹脂シートは、その表面を保護するために保護フィルムを有してもよい。これにより、大気中のゴミやチリ等の汚染物質から接着シート表面を保護することができる。
保護フィルムとしては、ポリエチレンフィルム、ポリプロピレン(PP)フィルム、ポリエステルフィルム等が挙げられる。保護フィルムは、接着シートとの接着力が小さいものであると好ましい。
次に、本発明の熱硬化性樹脂組成物または熱硬化性樹脂シートを利用して基板や部材を接着する方法について、例を挙げて説明する。樹脂組成物は上記のようなワニス状にして用いることが好ましい。まず、樹脂組成物ワニスを用いて、ガラス基板やガラスエポキシ基板上に配線が形成されたプリント基板上に樹脂組成物被膜を形成する。樹脂組成物ワニスの塗布方法としてはスピンナを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷などの方法が挙げられる。また、塗布膜厚は、塗布手法、樹脂組成物の固形分濃度および粘度などによって異なるが、通常、乾燥後の膜厚が10μm以上400μm以下になるように塗布することが好ましい。次に、樹脂組成物ワニスを塗布した基板を乾燥して、樹脂組成物被膜を得る。乾燥はオーブン、ホットプレート、赤外線などを使用することができる。乾燥温度および乾燥時間は、有機溶媒を揮発させることが可能な範囲であればよく、樹脂組成物被膜が未硬化または半硬化状態となるような範囲を適宜設定することが好ましい。具体的には、50~150℃の範囲で1分間から数時間行うのが好ましい。
一方、熱硬化性樹脂シートは、保護フィルムを有する場合にはこれを剥離し、熱硬化性樹脂シートとプリント基板を対向させて熱圧着により貼り合わせる。熱圧着は、熱プレス処理、熱ラミネート処理、熱真空ラミネート処理等によって行うことができる。貼り付け温度は、基板への密着性、埋め込み性の点から40℃以上が好ましい。また、貼り付け時に温度が高くなると熱硬化性樹脂シートが硬化する時間が早くなり、作業性が低下するため貼り付け温度は250℃以下が好ましい。熱硬化性樹脂シートが支持フィルムを有する場合、支持フィルムは貼り合わせ前に剥離してもよいし、熱圧着工程のいずれかの時点または熱圧着後に剥離してもよい。
このようにして得られた樹脂組成物被膜が形成されたプリント基板をポリイミド、液晶ポリマーなどの樹脂フィルム、プリント基板や他部材に熱圧着する。熱圧着温度は樹脂のガラス転移温度以上であればよく、100~400℃の温度範囲が好ましい。また圧着時の圧力は0.01~10MPaの範囲が好ましい。時間は1秒~数分間が好ましい。
熱圧着後、120℃から400℃の温度を加えて硬化物とすることで硬化膜が得られる。この加熱処理は温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間から5時間実施する。一例としては、130℃、200℃で各30分間ずつ熱処理する。あるいは室温より250℃まで2時間かけて直線的に昇温するなどの方法が挙げられる。この際、加熱温度は150℃以上、300℃以下の温度が好ましく、180℃以上、250℃以下であることがさらに好ましい。このように熱圧着して得られた接着体はその剥離強度が、接着信頼性の観点から4N/cm以上であることが好ましい。より好ましいのは6N/cm以上である。
熱圧着して得られた硬化膜のガラス転移温度(Tg)は、半導体装置の信頼性試験に耐えうる観点から、100℃以上であることが好ましい。より好ましくは120℃以上である。また、得られた硬化膜の誘電率は、電気信号の誘電損失を低減する観点から、10GHzで3.0以下が好ましい。より好ましくは2.8以下である。同様に、得られた硬化膜の誘電正接は、電気信号の誘電損失を低減する観点から、10GHzで、0.01以下が好ましい。より好ましいのは0.008以下である。硬化膜の膜厚は、任意に設定することができるが、10μm以上400μm以下であることが好ましい。
本発明の硬化膜は、熱硬化性樹脂組成物、または熱硬化性樹脂シートを加熱処理することにより硬化して得ることができる。加熱処理温度としては、150℃~350℃であればよい。例えば、ある温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間~5時間実施する。一例としては、130℃、200℃で各30分ずつ熱処理する。本発明においてのキュア条件の下限としては170℃以上が好ましいが、十分に硬化を進行させるために180℃以上であることがより好ましい。また、キュア条件の上限に特に制限はないが、膜収縮や応力を抑える観点から280℃以下が好ましく、250℃以下がより好ましく、230℃以下がさらに好ましい。
本発明の電子部品は、本発明の熱硬化性樹脂組成物、または熱硬化性樹脂シートを熱硬化させた硬化物を具備する電子部品である。また、より好ましくは、被着体に配置された電子部品である。
本発明の熱硬化性樹脂組成物を硬化した硬化膜を用いたアンテナ素子について説明する。図1は平面アンテナの一種である共面給電型のマイクロストリップアンテナの概略図である。1aが断面図、1bが上面図を示す。まず形成方法について説明する。銅箔上に本発明の熱硬化性樹脂組成物を塗布、プリベーク、もしくは未硬化の熱硬化性樹脂シートを銅箔上にラミネートする。次に銅箔をラミネートし、熱硬化させることで、両面に銅箔を具備する硬化膜を形成する。その後、サブストラクト法によるパターニングを経て、図1に示すマイクロストリップ線路(MSL)の銅配線のアンテナパターンを具備するアンテナ素子が得られる。
次に、図1のアンテナパターンについて説明する。1aにおいて、15はグランド(全面)、16はアンテナの基板となる絶縁膜を示す。その上層の11~13は前記パターニングよって得られたアンテナ配線の断面を示す。グランド配線厚みJおよびアンテナ配線厚みKはインピーダンスの設計に応じて任意の厚みを取れるが、2~20μmが一般的である。1bにおいて、11はアンテナ部、12はマッチング回路、13はMSL給電線路、14は給電点を示す。アンテナ部11とMSL給電線路13のインピーダンスの整合を取るために、マッチング回路12の長さMは1/4λrの長さを有する(λr=(伝送電波の波長)/(絶縁材誘電率)1/2)。また、アンテナ部11の幅Wおよび長さLは1/2λrの長さに設計される。アンテナ部長さLはインピーダンスの設計に応じて、1/2λr以下にしてもよい。本発明の硬化膜は、低誘電率、低誘電正接であるため、高効率、高利得のアンテナ素子を提供することができる。また、これらの特性から、本発明における絶縁膜を用いたアンテナ素子は高周波向けアンテナとして適しており、アンテナ部の面積(=L×W)を1000mm2以下のサイズにすることで、小型のアンテナ素子を形成することが出来る。このようにして、高効率、高利得、小型である、高周波向けアンテナ素子が得られる。
次に、ICチップ(半導体素子)、再配線層、封止樹脂およびアンテナ配線を具備する半導体パッケージについて説明する。図2はICチップ(半導体素子)、再配線、封止樹脂およびアンテナ素子を具備する半導体パッケージの断面に関する概略図である。ICチップ201の電極パッド202上に、銅配線209および本発明の硬化膜により形成された絶縁膜210による再配線層(銅2層、絶縁膜3層)が形成されている。再配線層(銅配線209および絶縁膜210)のパッドにはバリアメタル211とハンダバンプ212が形成されている。前記ICチップを封止するため、本発明の硬化膜による第1の封止樹脂208が形成され、さらにその上にアンテナ用のグランドとなる銅配線209を形成されている。第1の封止樹脂208内に形成されたビアホールを介して、グランド206と再配線層(銅配線209および絶縁膜210)を接続する第1のビア配線207が形成されている。第1の封止樹脂208およびグランド206上に、本発明の硬化膜による第2の封止樹脂205が形成され、その上に平面アンテナ配線204が形成されている。第1の封止樹脂208および第2の封止樹脂205内に形成されたビアホールを介して、平面アンテナ配線204と再配線層(銅配線209および絶縁膜210)を接続する第2のビア配線203が形成されている。絶縁膜210の一層あたりの厚みとしては10~20μmが好ましく、第1の封止樹脂および第2の封止樹脂としてはそれぞれ、50~200μmおよび100~400μmが好ましい。本発明の硬化膜は低誘電率、低誘電正接であるため、得られるアンテナ素子を具備する半導体パッケージは、高効率、高利得であり、パッケージ内の伝送損失が小さい。
つまり、本発明の電子部品は、少なくとも、1以上のアンテナ配線、本発明の硬化膜、を具備するアンテナ素子を含む電子部品であって、該アンテナ配線がミアンダ状ループアンテナ、コイル状ループアンテナ、ミアンダ状モノポールアンテナ、ミアンダ状ダイポールアンテナおよびマイクロストリップアンテナからなる群から選ばれる少なくとも一種類以上を含み、該アンテナ配線におけるアンテナ部一つあたりの専有面積が1000mm2以下であり、該硬化膜はグランドとアンテナ配線間を絶縁する絶縁膜であることが好ましい。
さらに、本発明の電子部品は、少なくとも、半導体素子、再配線層、封止樹脂、アンテナ配線を具備する半導体パッケージを含む電子部品であって、該再配線層の絶縁層および/または該封止樹脂が本発明の硬化膜を含み、該封止樹脂はグランドとアンテナ配線間にあることが好ましい。
さらに本発明の電子部品は、アンテナ配線および本発明の硬化膜を積層させて得られるアンテナ素子を具備する電子部品であって、アンテナ配線の高さが50~200μmであり、該硬化膜の厚みが80~300μmであることが好ましい。アンテナ配線および硬化膜を積層し、アンテナ配線の高さおよび硬化膜の厚みを上記範囲にすることで、小型で、広範囲で送受信が可能になり、本発明の硬化膜は、低誘電率、低誘電正接であるため、高効率、高利得のアンテナ素子を提供することができる。
本発明の電子装置は、本発明の電子部品を用いた電子装置である。以下では、これを含む本発明における樹脂組成物の用途について一例を挙げて説明するが、本発明の熱硬化性樹脂組成物の用途は以下に限定されるものではない。
本発明の熱硬化性樹脂組成物は、半導体装置の接着剤や絶縁樹脂として広く使用できるが、高速で大容量の電気信号が処理される携帯端末などの無線通信機器に使用されるRFモジュールや車載用のミリ波レーダーに好適に用いられる。RFモジュールとは、無線通信機器に使用される複合機能製品で、複数のICと受動部品(SAWフィルタ、コンデンサ、抵抗、コイル)を基板に搭載したモジュールである。受動部品を搭載した基板においては、絶縁層と銅配線層の多層構造で形成されるが、絶縁層に本発明の熱硬化性樹脂組成物を好適に使用することができる。プリント基板上に熱硬化性樹脂シートを張り付けるか、または樹脂組成物のワニスを塗布、乾燥することにより、絶縁層を形成する。その後、絶縁層の表面に電気めっきにて銅配線を形成し、更にその上に熱硬化性樹脂シートを張り付けるか、樹脂組成物のワニスを塗布することにより多層の基板を作成することができる。なお、本発明でいう半導体装置とは半導体素子を基板に接続したものや、半導体素子同士または基板同士を接続したものだけでなく、半導体素子の特性を利用することで機能しうる装置全般を指し、電気光学装置、半導体回路基板及びこれらを含む電子部品は全て半導体装置に含まれる。このように、本発明の電子部品は高周波数における特性に優れたものとなり、高周波数における動作信頼性が要求される本発明の電子装置に使用できる。
以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。なお、各実施例において略号で示した原料の詳細を以下に示す。
<ポリイミド樹脂の原料>
BSAA:2,2’-ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物
TBIS-DMPN:5-イソベンゾフランカルボン酸,1,3-ジヒドロ,1,3-ジオキソ-5,5’-[シクロドデシリデンビス(2-メチル-4,1-フェニレン)]エステル(田岡化学工業(株)製)
ODPA:4,4’-オキシジフタル酸二無水物(マナック(株)製)
TFMB:4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(和歌山精化工業(株)製)
mTB:4,4’-ジアミノ-2,2’-ジメチルビフェニル(和歌山精化工業(株)製)
LP7100:ビス(3-アミノプロピル)テトラメチルジシロキサン(信越化学(株)製)
X-22-9409:ジアミノポリシロキサン(アミン当量:670)(信越化学(株)製)
X-22-1660B-3:ジアミノポリシロキサン(アミン当量:2170)(信越化学(株)製)
バーサミン551:式(11)で表される化合物を含むダイマージアミン化合物(商品名、BASF(株)製)(平均アミン価:205)
プリアミン1075:式(10)で表される化合物を含むダイマージアミン化合物(商品名、クローダジャパン(株)製)(平均アミン価:205)。
BSAA:2,2’-ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物
TBIS-DMPN:5-イソベンゾフランカルボン酸,1,3-ジヒドロ,1,3-ジオキソ-5,5’-[シクロドデシリデンビス(2-メチル-4,1-フェニレン)]エステル(田岡化学工業(株)製)
ODPA:4,4’-オキシジフタル酸二無水物(マナック(株)製)
TFMB:4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(和歌山精化工業(株)製)
mTB:4,4’-ジアミノ-2,2’-ジメチルビフェニル(和歌山精化工業(株)製)
LP7100:ビス(3-アミノプロピル)テトラメチルジシロキサン(信越化学(株)製)
X-22-9409:ジアミノポリシロキサン(アミン当量:670)(信越化学(株)製)
X-22-1660B-3:ジアミノポリシロキサン(アミン当量:2170)(信越化学(株)製)
バーサミン551:式(11)で表される化合物を含むダイマージアミン化合物(商品名、BASF(株)製)(平均アミン価:205)
プリアミン1075:式(10)で表される化合物を含むダイマージアミン化合物(商品名、クローダジャパン(株)製)(平均アミン価:205)。
<(B)フェニレンエーテル樹脂>
OPE-2st-1200:オリゴフェニレンエーテル(分子鎖末端:ビニル基)(数平均分子量:1200)(三菱ガス化学(株)製)
OPE-2st-2200:オリゴフェニレンエーテル(分子鎖末端:ビニル基)(数平均分子量:2200)(三菱ガス化学(株)製)
SA-90:低分子量ポリフェニレンエーテル(分子鎖末端:フェノール性水酸基)(数平均分子量:1700)(SABICジャパン合同会社)。
OPE-2st-1200:オリゴフェニレンエーテル(分子鎖末端:ビニル基)(数平均分子量:1200)(三菱ガス化学(株)製)
OPE-2st-2200:オリゴフェニレンエーテル(分子鎖末端:ビニル基)(数平均分子量:2200)(三菱ガス化学(株)製)
SA-90:低分子量ポリフェニレンエーテル(分子鎖末端:フェノール性水酸基)(数平均分子量:1700)(SABICジャパン合同会社)。
<(C)マレイミド樹脂>
BMI-4000:2,2’-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン(大和化成工業(株)製)
MIR-3000-70MT:ビフェニルアラルキル型マレイミド化合物(日本化薬(株)製)
BMI-4000:2,2’-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン(大和化成工業(株)製)
MIR-3000-70MT:ビフェニルアラルキル型マレイミド化合物(日本化薬(株)製)
<(D)エポキシ樹脂>
JER828:ビスフェノールA型液状エポキシ樹脂(三菱化学(株)製)
E101:分岐アルキル基含有エポキシ樹脂(日産化学(株)製)
JER828:ビスフェノールA型液状エポキシ樹脂(三菱化学(株)製)
E101:分岐アルキル基含有エポキシ樹脂(日産化学(株)製)
TEPIC-FL:イソシアヌル酸変性エポキシ樹脂(日産化学(株)製)
<(E)硬化促進剤>
2P4MZ:2-フェニル-4-メチルイミダゾール
SI-150:ジメチル-p-アセトキシフェニルスルホニウム=ヘキサフルオロアンチモナート(三新化学(株)製)。
2P4MZ:2-フェニル-4-メチルイミダゾール
SI-150:ジメチル-p-アセトキシフェニルスルホニウム=ヘキサフルオロアンチモナート(三新化学(株)製)。
<有機過酸化物>
DCP:ジクミルペルオキシド(日油(株)製)
〈密着改良剤〉
KBM1003:ビニルトリメトキシシラン(信越化学(株)製)
KBM1403:p―スチリルトリメトキシシラン(信越化学(株)製)。
DCP:ジクミルペルオキシド(日油(株)製)
〈密着改良剤〉
KBM1003:ビニルトリメトキシシラン(信越化学(株)製)
KBM1403:p―スチリルトリメトキシシラン(信越化学(株)製)。
<溶剤>
γBL:γ-ブチロラクトン
各実施例・比較例における評価方法を次に示す。
γBL:γ-ブチロラクトン
各実施例・比較例における評価方法を次に示す。
<合成したポリイミド樹脂のTg>
ポリイミド樹脂をγBLに溶解した固形分濃度30重量%の溶液を、厚みが18μmの銅箔上に塗工し、100℃×30分、120℃×30分、180℃×30分でオーブンにて乾燥した。乾燥後のポリイミド樹脂の厚みが50μmの厚みになるように塗工した。このようにして得られた積層体を、第二塩化鉄水溶液で銅箔をエッチング除去し、ポリイミドフィルムを得た。ポリイミドフィルムを5mm×30mmのサイズにカットし、動的粘弾性測定装置DVA-200(アイティー計測制御(株)製)により、昇温速度5℃/分、周波数1Hzで測定し、Tanδのピーク値をTgとした。
ポリイミド樹脂をγBLに溶解した固形分濃度30重量%の溶液を、厚みが18μmの銅箔上に塗工し、100℃×30分、120℃×30分、180℃×30分でオーブンにて乾燥した。乾燥後のポリイミド樹脂の厚みが50μmの厚みになるように塗工した。このようにして得られた積層体を、第二塩化鉄水溶液で銅箔をエッチング除去し、ポリイミドフィルムを得た。ポリイミドフィルムを5mm×30mmのサイズにカットし、動的粘弾性測定装置DVA-200(アイティー計測制御(株)製)により、昇温速度5℃/分、周波数1Hzで測定し、Tanδのピーク値をTgとした。
<(B)フェニレンエーテル樹脂の数平均分子量>
(B)フェニレンエーテル樹脂をテトラヒドロフラン(以下、THFとする)に溶解した固形分濃度0.1重量%の溶液を用い、下に示す構成のGPC装置WAters2690(WAters(株)製)によりポリスチレン換算の重量平均分子量を算出した。GPC測定条件は、移動層をTHFとし、展開速度を0.4ml/分とした。
(B)フェニレンエーテル樹脂をテトラヒドロフラン(以下、THFとする)に溶解した固形分濃度0.1重量%の溶液を用い、下に示す構成のGPC装置WAters2690(WAters(株)製)によりポリスチレン換算の重量平均分子量を算出した。GPC測定条件は、移動層をTHFとし、展開速度を0.4ml/分とした。
検出器:WAters996
システムコントローラー:WAters2690
カラムオーブン:WAters HTR-B
サーモコントローラー:WAters TCM
カラム:TOSOH grArd comn
カラム:TOSOH TSK-GEL α-2500H
カラム:TOSOH TSK-GEL α-4000H。
システムコントローラー:WAters2690
カラムオーブン:WAters HTR-B
サーモコントローラー:WAters TCM
カラム:TOSOH grArd comn
カラム:TOSOH TSK-GEL α-2500H
カラム:TOSOH TSK-GEL α-4000H。
<合成したポリイミド樹脂の重量平均分子量>
ポリイミド樹脂をN-メチル-2-ピロリドン(以下、NMPとする)に溶解した固形分濃度0.1重量%の溶液を用い、下に示す構成のGPC装置WAters2690(WAters(株)製)によりポリスチレン換算の重量平均分子量を算出した。GPC測定条件は、移動層をLiClとリン酸をそれぞれ濃度0.05モル/lで溶解したNMPとし、展開速度を0.4ml/分とした。
ポリイミド樹脂をN-メチル-2-ピロリドン(以下、NMPとする)に溶解した固形分濃度0.1重量%の溶液を用い、下に示す構成のGPC装置WAters2690(WAters(株)製)によりポリスチレン換算の重量平均分子量を算出した。GPC測定条件は、移動層をLiClとリン酸をそれぞれ濃度0.05モル/lで溶解したNMPとし、展開速度を0.4ml/分とした。
検出器:WAters996
システムコントローラー:WAters2690
カラムオーブン:WAters HTR-B
サーモコントローラー:WAters TCM
カラム:TOSOH grArd comn
カラム:TOSOH TSK-GEL α-4000
カラム:TOSOH TSK-GEL α-2500。
システムコントローラー:WAters2690
カラムオーブン:WAters HTR-B
サーモコントローラー:WAters TCM
カラム:TOSOH grArd comn
カラム:TOSOH TSK-GEL α-4000
カラム:TOSOH TSK-GEL α-2500。
<合成したポリイミド樹脂のイミド化率>
まず、ポリマーの赤外吸収スペクトルを測定し、ポリイミドに起因するイミド構造の吸収ピーク(1780cm-1付近、1377cm-1付近)の存在を確認した。次に、そのポリマーについて、350℃で1時間熱処理した後、再度、赤外吸収スペクトルを測定し、熱処理前と熱処理後の1377cm-1付近のピーク強度を比較した。熱処理後のポリマーのイミド化率を100%として、熱処理前のポリマーのイミド化率を求めた。
まず、ポリマーの赤外吸収スペクトルを測定し、ポリイミドに起因するイミド構造の吸収ピーク(1780cm-1付近、1377cm-1付近)の存在を確認した。次に、そのポリマーについて、350℃で1時間熱処理した後、再度、赤外吸収スペクトルを測定し、熱処理前と熱処理後の1377cm-1付近のピーク強度を比較した。熱処理後のポリマーのイミド化率を100%として、熱処理前のポリマーのイミド化率を求めた。
<銅箔接着強度>
各実施例および比較例で作製した樹脂組成物をコンマロールコーターを用いて、支持フィルムとして厚さ38μmのPETフィルム上に塗布し、100℃で30分間乾燥を行った後、保護フィルムとして、厚さ10μmのPPフィルムをラミネートし、接着シートを得た。接着シートにおける熱硬化性樹脂シートの膜厚は50μmとなるように塗工を行った。その後、保護フィルムを剥離し、該剥離面を、銅箔(NA-VLP厚み15μm:三井金属(株)製)上に、熱板プレス機を用いて、プレス温度120℃、圧力1MPA、加圧時間5分でプレスした。そして、支持フィルムを剥がした後、樹脂組成物の上に更に銅箔を積層して、プレス温度180℃、圧力1MPA、加圧時間10分でプレスした。その後180℃の熱風循環型乾燥機で1時間かけて熱硬化した。このようにして得られた積層体の銅箔を片側のみ第二塩化鉄水溶液でエッチング除去して線幅2mmの回路加工をおこなった。その後、プッシュゲルゲージで2mm幅の銅箔を積層体に対して90℃の方向に持ち上げて引っ張り、接着強度を測定した。
各実施例および比較例で作製した樹脂組成物をコンマロールコーターを用いて、支持フィルムとして厚さ38μmのPETフィルム上に塗布し、100℃で30分間乾燥を行った後、保護フィルムとして、厚さ10μmのPPフィルムをラミネートし、接着シートを得た。接着シートにおける熱硬化性樹脂シートの膜厚は50μmとなるように塗工を行った。その後、保護フィルムを剥離し、該剥離面を、銅箔(NA-VLP厚み15μm:三井金属(株)製)上に、熱板プレス機を用いて、プレス温度120℃、圧力1MPA、加圧時間5分でプレスした。そして、支持フィルムを剥がした後、樹脂組成物の上に更に銅箔を積層して、プレス温度180℃、圧力1MPA、加圧時間10分でプレスした。その後180℃の熱風循環型乾燥機で1時間かけて熱硬化した。このようにして得られた積層体の銅箔を片側のみ第二塩化鉄水溶液でエッチング除去して線幅2mmの回路加工をおこなった。その後、プッシュゲルゲージで2mm幅の銅箔を積層体に対して90℃の方向に持ち上げて引っ張り、接着強度を測定した。
<はんだ耐熱性>
上記と同様の方法で得られた積層板(銅箔15μm/樹脂50μm/銅箔15μm)を、50mm×50mmのサイズにカットして、260℃に加熱されたはんだ浴に2分間浸漬した。浸漬後銅箔の剥離や発泡がみられず初期と変化ないものを良、剥離や発泡が見られるものを不良とした。
上記と同様の方法で得られた積層板(銅箔15μm/樹脂50μm/銅箔15μm)を、50mm×50mmのサイズにカットして、260℃に加熱されたはんだ浴に2分間浸漬した。浸漬後銅箔の剥離や発泡がみられず初期と変化ないものを良、剥離や発泡が見られるものを不良とした。
<Tg>
上記の方法で得られた積層板の銅箔を第二塩化鉄水溶液でエッチング除去して硬化物を得た。これを幅5mm×30mmにカットし、アイティー計測制御(株)の動的粘弾性測定装置DVA-200でで、つかみ間距離15mm、昇温速度5℃/分、周波数1Hzで-50℃~300℃まで測定し、Tanδがピーク値を示す温度をTgとした。
上記の方法で得られた積層板の銅箔を第二塩化鉄水溶液でエッチング除去して硬化物を得た。これを幅5mm×30mmにカットし、アイティー計測制御(株)の動的粘弾性測定装置DVA-200でで、つかみ間距離15mm、昇温速度5℃/分、周波数1Hzで-50℃~300℃まで測定し、Tanδがピーク値を示す温度をTgとした。
<比誘電率、誘電正接>
上記と同様の方法で得られた熱硬化性樹脂シートの硬化物を、60×100mmにカットし、22℃/60%RHの雰囲気下で24時間調湿した。比誘電率および誘電正接の測定は、円筒空胴共振器法にて測定した。アジレント・テクノロジー(株)製のVECTOR NETWORK ANALYZER HP8510Cで測定し、周波数10GHz、22℃/60%RHの環境下で測定した。
上記と同様の方法で得られた熱硬化性樹脂シートの硬化物を、60×100mmにカットし、22℃/60%RHの雰囲気下で24時間調湿した。比誘電率および誘電正接の測定は、円筒空胴共振器法にて測定した。アジレント・テクノロジー(株)製のVECTOR NETWORK ANALYZER HP8510Cで測定し、周波数10GHz、22℃/60%RHの環境下で測定した。
実施例1
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 112.47g、BSAA 31.21gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB9.61g、LP7100 7.46gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液A(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、36,400であり、Tgを測定した結果、125℃、イミド化率を測定した結果、100%であった。
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 112.47g、BSAA 31.21gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB9.61g、LP7100 7.46gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液A(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、36,400であり、Tgを測定した結果、125℃、イミド化率を測定した結果、100%であった。
上記の方法により得られたポリイミド溶液A12.0g(固形分3.6g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を1.54g(固形分1.0g)、BMI4000を0.2g、TEPIC-FLを1.2g、2P4MZを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 141.64g、TBIS-DMPN 43.73gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB9.61g、LP7100 7.46gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液B(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、43,210であり、Tgを測定した結果、168℃、イミド化率を測定した結果、100%であった。
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 141.64g、TBIS-DMPN 43.73gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB9.61g、LP7100 7.46gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液B(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、43,210であり、Tgを測定した結果、168℃、イミド化率を測定した結果、100%であった。
このようにして得られたポリイミド溶液B12.0g(固形分3.6g)について実施例1と同様の方法で表2に記載の各成分と混合し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例3
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 82.05g、ODPA 18.61gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB9.61g、LP7100 7.46gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液B(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、41,630であり、Tgを測定した結果、178℃、イミド化率を測定した結果、100%であった。
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 82.05g、ODPA 18.61gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB9.61g、LP7100 7.46gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液B(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、41,630であり、Tgを測定した結果、178℃、イミド化率を測定した結果、100%であった。
このようにして得られたポリイミド溶液C12.0g(固形分3.6g)について実施例1と同様の方法で表2に記載の各成分と混合し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例4
500mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 215.43g、TBIS-DMPN 43.73gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB9.61g、X-22-9409 40.20gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液D(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、33,400であり、Tgを測定した結果、65℃、イミド化率を測定した結果、100%であった。
500mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 215.43g、TBIS-DMPN 43.73gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB9.61g、X-22-9409 40.20gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液D(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、33,400であり、Tgを測定した結果、65℃、イミド化率を測定した結果、100%であった。
このようにして得られたポリイミド溶液D12.0g(固形分3.6g)について実施例1と同様の方法で表2に記載の各成分と混合し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例5
500mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 211.06g、TBIS-DMPN 21.86gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB4.80g、X-22-1660B-3 65.10gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液E(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、29,540であり、Tgを測定した結果、-5℃、イミド化率を測定した結果、100%であった。
500mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 211.06g、TBIS-DMPN 21.86gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB4.80g、X-22-1660B-3 65.10gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液E(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、29,540であり、Tgを測定した結果、-5℃、イミド化率を測定した結果、100%であった。
このようにして得られたポリイミド溶液E12.0g(固形分3.6g)について実施例1と同様の方法で表2に記載の各成分と混合し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例6
500mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 142.99g、TBIS-DMPN 43.73gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらBAHF10.99g、LP7100 7.46gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液F(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、28,580であり、Tgを測定した結果、164℃、イミド化率を測定した結果、100%であった。
500mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 142.99g、TBIS-DMPN 43.73gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらBAHF10.99g、LP7100 7.46gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液F(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、28,580であり、Tgを測定した結果、164℃、イミド化率を測定した結果、100%であった。
このようにして得られたポリイミド溶液E12.0g(固形分3.6g)について実施例1と同様の方法で表2に記載の各成分と混合し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例7
500mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 198.55g、TBIS-DMPN 65.59gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらmTB9.55g、LP7100 11.18gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液G(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、44,590であり、Tgを測定した結果、169℃、イミド化率を測定した結果、100%であった。
500mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 198.55g、TBIS-DMPN 65.59gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらmTB9.55g、LP7100 11.18gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液G(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、44,590であり、Tgを測定した結果、169℃、イミド化率を測定した結果、100%であった。
このようにして得られたポリイミド溶液G12.0g(固形分3.6g)について実施例1と同様の方法で表2に記載の各成分と混合し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例8
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 141.70g、ODPA 31.02gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB25.62g、LP7100 4.97gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液H(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、43,200であり、Tgを測定した結果、208℃、イミド化率を測定した結果、100%であった。
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 141.70g、ODPA 31.02gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB25.62g、LP7100 4.97gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液H(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、43,200であり、Tgを測定した結果、208℃、イミド化率を測定した結果、100%であった。
このようにして得られたポリイミド溶液H12.0g(固形分3.6g)について実施例1と同様の方法で表2に記載の各成分と混合し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例9
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 105.46g、BSAA 26.02gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB11.21g、バーサミン551 7.96gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液J(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、32,100であり、Tgを測定した結果、139℃、イミド化率を測定した結果、100%であった。
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 105.46g、BSAA 26.02gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB11.21g、バーサミン551 7.96gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液J(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、32,100であり、Tgを測定した結果、139℃、イミド化率を測定した結果、100%であった。
このようにして得られたポリイミド溶液J12.0g(固形分3.6g)について実施例1と同様の方法で表2に記載の各成分と混合し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例10
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 105.60g、BSAA 26.02gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB11.21g、プリアミン1075 8.02gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液K(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、31,200であり、Tgを測定した結果、134℃、イミド化率を測定した結果、100%であった。
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 105.60g、BSAA 26.02gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB11.21g、プリアミン1075 8.02gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液K(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、31,200であり、Tgを測定した結果、134℃、イミド化率を測定した結果、100%であった。
このようにして得られたポリイミド溶液K12.0g(固形分3.6g)について実施例1と同様の方法で表2に記載の各成分と混合し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例11
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 101.84g、BSAA 26.02gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB13.61g、プリアミン1075 4.01gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液L(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、36,800であり、Tgを測定した結果、162℃、イミド化率を測定した結果、100%であった。
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 101.84g、BSAA 26.02gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB13.61g、プリアミン1075 4.01gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液L(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、36,800であり、Tgを測定した結果、162℃、イミド化率を測定した結果、100%であった。
このようにして得られたポリイミド溶液L12.0g(固形分3.6g)について実施例1と同様の方法で表2に記載の各成分と混合し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例12
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 104.76g、BSAA 26.02gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB9.61g、プリアミン1075 8.02g、LP7100 1.24gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液M(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、30,100であり、Tgを測定した結果、124℃、イミド化率を測定した結果、100%であった。
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 104.76g、BSAA 26.02gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB9.61g、プリアミン1075 8.02g、LP7100 1.24gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液M(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、30,100であり、Tgを測定した結果、124℃、イミド化率を測定した結果、100%であった。
このようにして得られたポリイミド溶液M12.0g(固形分3.6g)について実施例1と同様の方法で表2に記載の各成分と混合し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例13
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 103.93g、BSAA 26.02gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB8.01g、プリアミン1075 8.02g、LP7100 2.49gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液N(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、28,200であり、Tgを測定した結果、114℃、イミド化率を測定した結果、100%であった。
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 103.93g、BSAA 26.02gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB8.01g、プリアミン1075 8.02g、LP7100 2.49gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液N(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、28,200であり、Tgを測定した結果、114℃、イミド化率を測定した結果、100%であった。
このようにして得られたポリイミド溶液N12.0g(固形分3.6g)について実施例1と同様の方法で表2に記載の各成分と混合し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例14
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 100.17g、BSAA 26.02gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB10.41g、プリアミン1075 4.01g、LP7100 2.49gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液O(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、29,800であり、Tgを測定した結果、149℃、イミド化率を測定した結果、100%であった。
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 100.17g、BSAA 26.02gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB10.41g、プリアミン1075 4.01g、LP7100 2.49gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液O(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、29,800であり、Tgを測定した結果、149℃、イミド化率を測定した結果、100%であった。
このようにして得られたポリイミド溶液O12.0g(固形分3.6g)について実施例1と同様の方法で表2に記載の各成分と混合し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例15
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 99.33g、BSAA 26.02gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB8.81g、プリアミン1075 4.01g、LP7100 3.73gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液P(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、29,100であり、Tgを測定した結果、131℃、イミド化率を測定した結果、100%であった。
300mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 99.33g、BSAA 26.02gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB8.81g、プリアミン1075 4.01g、LP7100 3.73gを添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液P(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、29,100であり、Tgを測定した結果、131℃、イミド化率を測定した結果、100%であった。
このようにして得られたポリイミド溶液P12.0g(固形分3.6g)について実施例1と同様の方法で表2に記載の各成分と混合し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例16
実施例2で得られたポリイミド溶液B10.67g(固形分3.2g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、BMI4000を0.2g、TEPIC-FLを1.2g、2P4MZを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.67g(固形分3.2g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、BMI4000を0.2g、TEPIC-FLを1.2g、2P4MZを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例17
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、BMI4000を0.4g、TEPIC-FLを1.2g、2P4MZを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、BMI4000を0.4g、TEPIC-FLを1.2g、2P4MZを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例18
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、BMI4000を0.4g、TEPIC-FLを1.2g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、BMI4000を0.4g、TEPIC-FLを1.2g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例19
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を0.59g(固形分0.4g)、TEPIC-FLを1.2g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を0.59g(固形分0.4g)、TEPIC-FLを1.2g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例20
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を0.59g(固形分0.4g)、TEPIC-FLを1.2g、SI-B4を0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を0.59g(固形分0.4g)、TEPIC-FLを1.2g、SI-B4を0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例21
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.17g(固形分0.8g)、TEPIC-FLを0.8g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.17g(固形分0.8g)、TEPIC-FLを0.8g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例22
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、TEPIC-FLを0.6g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、TEPIC-FLを0.6g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例23
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、TEPIC-FLを0.6g、SI-B4を0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、TEPIC-FLを0.6g、SI-B4を0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例24
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-2200(固形分63.4重量%:トルエン溶液)を2.21g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、TEPIC-FLを0.6g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-2200(固形分63.4重量%:トルエン溶液)を2.21g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、TEPIC-FLを0.6g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例25
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、SA-90を1.4g、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、TEPIC-FLを0.6g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、SA-90を1.4g、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、TEPIC-FLを0.6g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例26
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、JER825を0.6g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、JER825を0.6g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例27
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、E101を0.6g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、E101を0.6g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例28
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、JER825を0.3g、E101を0.3g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、JER825を0.3g、E101を0.3g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例29
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、BMI4000を0.4g、JER825を1.2g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、BMI4000を0.4g、JER825を1.2g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例30
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、BMI4000を0.4g、E101を1.2g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、BMI4000を0.4g、E101を1.2g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例31
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、BMI4000を0.4g、JER825を0.6g、E101を0.6g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、BMI4000を0.4g、JER825を0.6g、E101を0.6g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例32
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.62g(固形分1.7g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.91g(固形分1.3g)、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.62g(固形分1.7g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.91g(固形分1.3g)、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例33
実施例2で得られたポリイミド溶液B3.33g(固形分1.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を5.38g(固形分3.5g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、TEPIC-FLを0.5g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B3.33g(固形分1.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を5.38g(固形分3.5g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、TEPIC-FLを0.5g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例34
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を0.31g(固形分0.2g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を0.15g(固形分0.1g)、TEPIC-FLを2.7g、E101を0.3g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を0.31g(固形分0.2g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を0.15g(固形分0.1g)、TEPIC-FLを2.7g、E101を0.3g、2P4MZを0.06g、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例35
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、TEPIC-FLを0.6g、2P4MZを0.06g、DCPを0.06g、KBM1003を0.3g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、TEPIC-FLを0.6g、2P4MZを0.06g、DCPを0.06g、KBM1003を0.3g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例36
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、TEPIC-FLを0.6g、2P4MZを0.06g、DCPを0.06g、KBM1403を0.3g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を2.15g(固形分1.4g)、MIR-3000-70MT(固形分68.2重量%:トルエン溶液)を1.47g(固形分1.0g)、TEPIC-FLを0.6g、2P4MZを0.06g、DCPを0.06g、KBM1403を0.3g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
比較例1
500mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 145.00g、ODPA 31.02gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB32.02を添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液I(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、47,310であり、Tgを測定した結果、226℃、イミド化率を測定した結果、100%であった。
500mlの4つ口フラスコに撹拌機、温度計、窒素導入管および滴下ロートを設置して、窒素雰囲気下、γBL 145.00g、ODPA 31.02gを仕込み、60℃で撹拌溶解させた。その後、60℃で撹拌しながらTFMB32.02を添加して1時間撹拌した。その後180℃まで昇温させて3時間撹拌した後、室温まで冷却してポリイミド溶液I(固形分濃度30.0重量%)を得た。ポリイミドの重量平均分子量を測定した結果、47,310であり、Tgを測定した結果、226℃、イミド化率を測定した結果、100%であった。
このようにして得られたポリイミド溶液I10.0g(固形分3.0g)について実施例19と同様の方法で表4に記載の各成分と混合し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
比較例2
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を4.62g(固形分3.0g)、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
実施例2で得られたポリイミド溶液B10.00g(固形分3.0g)に、OPE-2st-1200(固形分65重量%:トルエン溶液)を4.62g(固形分3.0g)、DCPを0.06g添加して混合撹拌し、樹脂組成物を得た。得られた樹脂組成物について、上記の方法で、銅箔接着強度、はんだ耐熱性、Tg、比誘電率、誘電正接について測定した。
11 アンテナ部
12 マッチング回路
13 MSL給電線路
14 給電点
15 グランド
16 絶縁膜
J グランド配線厚み
K アンテナ配線厚み
M マッチング回路長さ
L アンテナ部長さ
W アンテナ部幅
201 ICチップ
202 電極パッド
203 第2のビア配線
204 平面アンテナ配線
205 第2の封止樹脂
206 グランド
207 第1のビア配線
208 第1の封止樹脂
209 銅配線
210 絶縁膜
211 バリアメタル
212 ハンダバンプ
12 マッチング回路
13 MSL給電線路
14 給電点
15 グランド
16 絶縁膜
J グランド配線厚み
K アンテナ配線厚み
M マッチング回路長さ
L アンテナ部長さ
W アンテナ部幅
201 ICチップ
202 電極パッド
203 第2のビア配線
204 平面アンテナ配線
205 第2の封止樹脂
206 グランド
207 第1のビア配線
208 第1の封止樹脂
209 銅配線
210 絶縁膜
211 バリアメタル
212 ハンダバンプ
Claims (18)
- 下記(A1)、(B)、(C)を含有する、熱硬化性樹脂組成物。
(A1)ポリイミド樹脂:式(8)および/または式(9)のジアミン残基を含有するポリイミド樹脂。
(B)フェニレンエーテル樹脂:数平均分子量が500以上5000以下であり、分子鎖末端にフェノール性水酸基、アクリル基、ビニル基、及びエポキシ基からなる群より選ばれる少なくとも1つの架橋性官能基を含有する、フェニレンエーテル樹脂。
(C)マレイミド樹脂:マレイミド樹脂。 - 下記(A2)、(B)、(C)を含有する、熱硬化性樹脂組成物。
(A2)ポリイミド樹脂:式(1)のジアミン残基を含有するポリイミド樹脂。
(B)フェニレンエーテル樹脂:数平均分子量が500以上5000以下であり、分子鎖末端にフェノール性水酸基、アクリル基、ビニル基、及びエポキシ基からなる群より選ばれる少なくとも1つの架橋性官能基を含有する、フェニレンエーテル樹脂。
(C)マレイミド樹脂:マレイミド樹脂。 - ポリイミド樹脂が、(A1)ポリイミド樹脂、および、(A2)ポリイミド樹脂、である、請求項1または2記載の熱硬化性樹脂組成物。
- (A2)ポリイミド樹脂が、ポリイミドの全ジアミン残基100モル%中、式(1)のジアミン残基を20~80モル%の範囲で含有し、かつ、(A1)ポリイミド樹脂が、ポリイミドの全ジアミン残基100モル%中、式(8)および式(9)のジアミン残基の合計を1~30モル%の範囲で含有する、請求項3に記載の熱硬化性樹脂組成物。
- さらに(D)エポキシ樹脂および(E)硬化促進剤を含有する、請求項1~4のいずれかに記載の熱硬化性樹脂組成物。
- (A1)ポリイミド樹脂および(A2)ポリイミド樹脂の、イミド基当量が350以上、1000以下である、請求項1~5のいずれかに記載の熱硬化性樹脂組成物。
- (A1)ポリイミド樹脂および(A2)ポリイミド樹脂の、ガラス転移温度(Tg)が100℃以上200℃以下である、請求項1~7のいずれかに記載の熱硬化性樹脂組成物。
- 前記(B)フェニレンエーテル樹脂の含有量が、熱硬化性樹脂組成物100重量%中に5重量%以上50重量%以下である、請求項1~8のいずれかに記載の熱硬化性樹脂組成物。
- 前記(C)マレイミド樹脂が、N個のマレイミド基を有するポリマレイミド樹脂(Nは整数でありその平均値は2より大きく、30より小さい)である、請求項1~10のいずれかに記載の熱硬化性樹脂組成物。
- 請求項1~11のいずれかに記載の熱硬化性樹脂組成物を未熱硬化の状態で支持体上に層形成してなる熱硬化性樹脂シート。
- 請求項1~11のいずれかに記載の熱硬化性樹脂組成物、または、請求項12に記載の熱硬化性樹脂シートを硬化した硬化膜。
- 請求項13に記載の硬化膜を具備する電子部品。
- 少なくとも、1以上のアンテナ配線、請求項13に記載の硬化膜、を具備するアンテナ素子を含む電子部品であって、
該アンテナ配線がミアンダ状ループアンテナ、コイル状ループアンテナ、ミアンダ状モノポールアンテナ、ミアンダ状ダイポールアンテナおよびマイクロストリップアンテナからなる群から選ばれる少なくとも一種類以上を含み、該アンテナ配線におけるアンテナ部一つあたりの専有面積が1000mm2以下であり、該硬化膜はグランドとアンテナ配線間を絶縁する絶縁膜である、請求項14に記載の電子部品。 - 少なくとも、半導体素子、再配線層、封止樹脂、アンテナ配線を具備する半導体パッケージを含む電子部品であって、
該再配線層の絶縁層、および/または、該封止樹脂、が請求項13に記載の硬化膜を含み、該封止樹脂はグランドとアンテナ配線間にある、請求項14または15記載の電子部品。 - アンテナ配線、および、請求項13に記載の硬化膜を積層させて得られるアンテナ素子を具備する電子部品であって、
アンテナ配線の高さが50~200μmであり、該硬化膜の厚みが80~300μmである、請求項14~16のいずれかに記載の電子部品。 - 請求項14~17のいずれかに記載の電子部品を用いた電子装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020554549A JPWO2021065704A1 (ja) | 2019-10-01 | 2020-09-25 | |
CN202080067497.2A CN114450351A (zh) | 2019-10-01 | 2020-09-25 | 热固性树脂组合物、热固性树脂片材、电子部件及电子装置 |
US17/639,626 US20220289976A1 (en) | 2019-10-01 | 2020-09-25 | Thermosetting resin composition, thermosetting resin sheet, electronic component, and electronic device |
KR1020217042027A KR20220079498A (ko) | 2019-10-01 | 2020-09-25 | 열경화성 수지 조성물, 열경화성 수지 시트, 전자 부품, 및 전자 장치 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019181164 | 2019-10-01 | ||
JP2019-181164 | 2019-10-01 | ||
JP2020086007 | 2020-05-15 | ||
JP2020-086007 | 2020-05-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021065704A1 true WO2021065704A1 (ja) | 2021-04-08 |
Family
ID=75338203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/036233 WO2021065704A1 (ja) | 2019-10-01 | 2020-09-25 | 熱硬化性樹脂組成物、熱硬化性樹脂シート、電子部品、及び電子装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220289976A1 (ja) |
JP (1) | JPWO2021065704A1 (ja) |
KR (1) | KR20220079498A (ja) |
CN (1) | CN114450351A (ja) |
TW (1) | TW202122494A (ja) |
WO (1) | WO2021065704A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115926181B (zh) * | 2022-12-05 | 2023-11-17 | 苏州太湖电工新材料股份有限公司 | 一种聚酰亚胺改性环氧树脂及其应用 |
CN118240374A (zh) * | 2022-12-23 | 2024-06-25 | 广东生益科技股份有限公司 | 一种树脂组合物及其应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06340808A (ja) * | 1993-05-31 | 1994-12-13 | Hitachi Chem Co Ltd | 低比誘電率フィルム |
JP2008037915A (ja) * | 2006-08-02 | 2008-02-21 | Sony Chemical & Information Device Corp | ポリイミド組成物、フレキシブル配線板及びフレキシブル配線板の製造方法 |
JP2010229274A (ja) * | 2009-03-27 | 2010-10-14 | Tomoegawa Paper Co Ltd | 樹脂組成物および電子部品用接着剤 |
JP2014011769A (ja) * | 2012-07-03 | 2014-01-20 | Nitto Denko Corp | 無線周波数モジュール用基板およびその製造方法 |
JP2015199328A (ja) * | 2014-03-31 | 2015-11-12 | 新日鉄住金化学株式会社 | 金属張積層体、回路基板及びポリイミド |
WO2016056451A1 (ja) * | 2014-10-06 | 2016-04-14 | 東レ株式会社 | 樹脂組成物、耐熱性樹脂膜の製造方法、および表示装置 |
JP2017101152A (ja) * | 2015-12-02 | 2017-06-08 | 株式会社プリンテック | 変性ポリイミド樹脂組成物およびその製造方法、並びにそれを用いたプリプレグおよび積層板 |
JP2017186551A (ja) * | 2016-03-30 | 2017-10-12 | 荒川化学工業株式会社 | ポリイミド、ポリイミド系接着剤、フィルム状接着材、接着層、接着シート、樹脂付銅箔、銅張積層板及びプリント配線板、並びに多層配線板及びその製造方法 |
JP2019001875A (ja) * | 2017-06-14 | 2019-01-10 | 東レ株式会社 | 仮接着剤、仮接着用支持基板、仮接着テープおよびこれらを用いた電子部品の製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002100238A (ja) | 2000-09-26 | 2002-04-05 | Asahi Glass Co Ltd | シート状成形体および積層体 |
JP4147454B2 (ja) | 2002-02-28 | 2008-09-10 | Dic株式会社 | エポキシ樹脂組成物の予備硬化物、硬化物及びその製造方法 |
JP2004161828A (ja) | 2002-11-11 | 2004-06-10 | Nippon Steel Chem Co Ltd | フィルム形成用樹脂組成物及びフィルム状接着剤 |
-
2020
- 2020-09-25 US US17/639,626 patent/US20220289976A1/en active Pending
- 2020-09-25 KR KR1020217042027A patent/KR20220079498A/ko unknown
- 2020-09-25 WO PCT/JP2020/036233 patent/WO2021065704A1/ja active Application Filing
- 2020-09-25 CN CN202080067497.2A patent/CN114450351A/zh active Pending
- 2020-09-25 JP JP2020554549A patent/JPWO2021065704A1/ja active Pending
- 2020-09-29 TW TW109133791A patent/TW202122494A/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06340808A (ja) * | 1993-05-31 | 1994-12-13 | Hitachi Chem Co Ltd | 低比誘電率フィルム |
JP2008037915A (ja) * | 2006-08-02 | 2008-02-21 | Sony Chemical & Information Device Corp | ポリイミド組成物、フレキシブル配線板及びフレキシブル配線板の製造方法 |
JP2010229274A (ja) * | 2009-03-27 | 2010-10-14 | Tomoegawa Paper Co Ltd | 樹脂組成物および電子部品用接着剤 |
JP2014011769A (ja) * | 2012-07-03 | 2014-01-20 | Nitto Denko Corp | 無線周波数モジュール用基板およびその製造方法 |
JP2015199328A (ja) * | 2014-03-31 | 2015-11-12 | 新日鉄住金化学株式会社 | 金属張積層体、回路基板及びポリイミド |
WO2016056451A1 (ja) * | 2014-10-06 | 2016-04-14 | 東レ株式会社 | 樹脂組成物、耐熱性樹脂膜の製造方法、および表示装置 |
JP2017101152A (ja) * | 2015-12-02 | 2017-06-08 | 株式会社プリンテック | 変性ポリイミド樹脂組成物およびその製造方法、並びにそれを用いたプリプレグおよび積層板 |
JP2017186551A (ja) * | 2016-03-30 | 2017-10-12 | 荒川化学工業株式会社 | ポリイミド、ポリイミド系接着剤、フィルム状接着材、接着層、接着シート、樹脂付銅箔、銅張積層板及びプリント配線板、並びに多層配線板及びその製造方法 |
JP2019001875A (ja) * | 2017-06-14 | 2019-01-10 | 東レ株式会社 | 仮接着剤、仮接着用支持基板、仮接着テープおよびこれらを用いた電子部品の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20220079498A (ko) | 2022-06-13 |
CN114450351A (zh) | 2022-05-06 |
JPWO2021065704A1 (ja) | 2021-04-08 |
US20220289976A1 (en) | 2022-09-15 |
TW202122494A (zh) | 2021-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2949719B1 (en) | Adhesive composition | |
TWI716524B (zh) | 覆銅積層體及印刷線路板 | |
TWI571501B (zh) | 黏著劑組成物、黏著劑片及使用其之半導體裝置 | |
CN106010421B (zh) | 胶粘剂组合物、膜状胶粘材料、胶粘层、胶粘片、覆铜层叠板、布线板和印刷电路板 | |
CN107325285B (zh) | 聚酰亚胺、聚酰亚胺类胶粘剂、胶粘材料、胶粘层、胶粘片、层叠板、布线板及其制造方法 | |
KR101566768B1 (ko) | 프린트 배선판용 수지 조성물 | |
US20030012882A1 (en) | Adhesive polyimide resin and adhesive laminate | |
KR102287542B1 (ko) | 수지 조성물, 그것을 사용한 시트, 적층체, 파워 반도체 장치, 플라스마 처리 장치 및 반도체의 제조 방법 | |
JP7547109B2 (ja) | 樹脂材料及び多層プリント配線板 | |
JP2020072198A (ja) | 金属張積層板、回路基板、多層回路基板及びその製造方法 | |
WO2021065704A1 (ja) | 熱硬化性樹脂組成物、熱硬化性樹脂シート、電子部品、及び電子装置 | |
JP2020105493A (ja) | ポリイミド、ポリイミド樹脂組成物、ポリイミドフィルム、接着剤、フィルム状接着材、接着層、接着シート、樹脂付銅箔、銅張積層板及びプリント配線板、並びに、ポリイミドの製造方法 | |
US20230331915A1 (en) | Isocyanate-Modified Polyimide Resin, Resin Composition and Cured Product of Same | |
JPH10231424A (ja) | 電子材料用樹脂溶液組成物 | |
JP2016186972A (ja) | 電磁波シールドシート、それを硬化させてなる硬化膜、金属箔積層電磁波シールドシートの製造方法、積層体および半導体装置 | |
KR20170038740A (ko) | 수지 조성물, 접착제, 필름형 접착 기재, 접착 시트, 다층 배선판, 수지 부착 동박, 동장 적층판, 프린트 배선판 | |
JP2023039241A (ja) | ポリイミド樹脂、該ポリイミド樹脂含有する樹脂組成物及びその硬化物 | |
JP2022063409A (ja) | 樹脂組成物、樹脂シート、積層体、及び多層回路基板 | |
WO2023112849A1 (ja) | イソシアネート変性ポリイミド樹脂、該イソシアネート変性ポリイミド樹脂を含有する樹脂組成物及びその硬化物 | |
CN113174231B (zh) | 聚酰亚胺树脂组合物、粘接剂组合物及它们的相关制品 | |
KR20240088682A (ko) | 수지 조성물 및 그 경화물 및 그것을 사용한 적층체, 정전 척 및 플라즈마 처리 장치 | |
WO2023013224A1 (ja) | ポリイミド樹脂、該ポリイミド樹脂を含有する樹脂組成物及びその硬化物 | |
JP3872355B2 (ja) | ポリイミド系樹脂溶液、その硬化物及びフレキシブルキャリアパッケージの製造方法 | |
JP7180324B2 (ja) | 樹脂組成物、接着シートおよび多層基板 | |
WO2023090348A1 (ja) | ポリイミド樹脂、該ポリイミド樹脂を含有する樹脂組成物及びその硬化物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020554549 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20871064 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20871064 Country of ref document: EP Kind code of ref document: A1 |