WO2021063061A1 - 一种钕铁硼磁体材料及其制备方法和应用 - Google Patents

一种钕铁硼磁体材料及其制备方法和应用 Download PDF

Info

Publication number
WO2021063061A1
WO2021063061A1 PCT/CN2020/100571 CN2020100571W WO2021063061A1 WO 2021063061 A1 WO2021063061 A1 WO 2021063061A1 CN 2020100571 W CN2020100571 W CN 2020100571W WO 2021063061 A1 WO2021063061 A1 WO 2021063061A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
mass
percentage
iron boron
neodymium iron
Prior art date
Application number
PCT/CN2020/100571
Other languages
English (en)
French (fr)
Inventor
牟维国
黄佳莹
Original Assignee
厦门钨业股份有限公司
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司, 福建省长汀金龙稀土有限公司 filed Critical 厦门钨业股份有限公司
Priority to JP2022513458A priority Critical patent/JP7330365B2/ja
Priority to KR1020227006942A priority patent/KR102589815B1/ko
Priority to EP20871375.0A priority patent/EP4016556A4/en
Priority to US17/636,931 priority patent/US20220359107A1/en
Publication of WO2021063061A1 publication Critical patent/WO2021063061A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the invention specifically relates to a neodymium iron boron magnet material and its preparation method and application.
  • the neodymium iron boron (Nd-Fe-B) magnet material with Nd 2 Fe 14 B as the main component has high residual magnetic flux density Br, intrinsic coercivity Hcj and maximum magnetic energy product BHmax, and has excellent comprehensive magnetic properties. It is used in new energy vehicle drive motors, air-conditioning compressors, industrial servo motors, etc. NdFeB materials have a low Curie temperature point and poor temperature stability, which cannot meet the high working temperature (>200°C) requirements of many new applications.
  • the Br of the sintered Nd-Fe-B permanent magnetic material is close to more than 90% of the theoretical value of magnetic properties, while the Hcj of the sintered Nd-Fe-B permanent magnetic material has only the Nd 2 Fe 14 B anisotropy field. 12%, it can be seen that the Hcj of the sintered Nd-Fe-B permanent magnet material has greater potential for improvement. A large number of studies have shown that the Hcj of the Nd-Fe-B permanent magnet material is more sensitive to the microstructure of the magnet. In production, it is common to add heavy rare earth Dy or Tb instead of Nd to increase the anisotropy field of the magnet.
  • Hcj is increased when excessive amounts of heavy metals are added, it will greatly reduce Br. While increasing the degree of Hcj, it also maintains a higher Br.
  • the technical problem to be solved by the present invention is to overcome the defect of low Hcj of the neodymium iron boron magnet material obtained from the neodymium iron boron magnet in the prior art, and to provide a neodymium iron boron magnet material and a preparation method and application thereof.
  • the neodymium iron boron magnet material of the present application has higher Hcj and Br, and has a lower absolute value of the temperature coefficient of Br and the absolute value of the temperature coefficient of Hcj.
  • the present invention solves the above technical problems through the following technical solutions.
  • the present invention provides a neodymium iron boron magnet material, which comprises the following components in terms of mass percentage:
  • the N 0.25 to 0.3 wt.%, the N includes one or more of Zr, Nb, Hf, and Ti;
  • Al 0.46 ⁇ 0.6wt.% or Al ⁇ 0.04wt.% but not 0wt.%;
  • the R is a rare earth element, and the R includes at least Nd and RH; the RH is a heavy rare earth element, and the RH includes Tb;
  • the mass-to-mass ratio of the Tb to the Co is ⁇ 15 but not zero.
  • the content of R is preferably 30.15 to 31 wt.%, such as 30.1 to 30.6 wt.%, more preferably 30.4 to 30.5 wt.%, such as 30.42 wt.% or 30.48 wt.%, as a percentage It refers to the mass percentage in the neodymium iron boron magnet material.
  • the R may also contain light rare earth elements conventional in the art, such as Pr.
  • the Nd content is preferably 27-28 wt.%, such as 27.13 wt.% or 27.44 wt.%, and the percentage refers to the mass percentage in the neodymium iron boron magnet material.
  • the mass percentage of the RH in the R is 9.7-13 wt.%, more preferably 9.7-11 wt.%, and more preferably 9.7 wt.%.
  • the RH content is preferably 2.8-4wt.%, more preferably 2.9-3.4wt.%, for example 2.98wt.% or 3.35wt.%, and the percentage refers to the neodymium iron boron The mass percentage of the magnet material.
  • the content of Cu is preferably 0.05 to 0.16 wt.%, such as 0.05 wt.% or 0.15 wt.%, and the percentage refers to the mass percentage in the neodymium iron boron magnet material.
  • the content of Co is preferably 1.48 to 2.7 wt.%, such as 1.49 wt.%, 1.51 wt.% or 2.6 wt.%, preferably 1.49 to 1.51 wt.%, and the percentage means The mass percentage in the neodymium iron boron magnet material.
  • the content of Ga is preferably 0.2 to 0.26 wt.%, such as 0.2 wt.% or 0.25 wt.%, and the percentage refers to the mass percentage in the neodymium iron boron magnet material.
  • the content of N is preferably 0.26-0.3wt.%, such as 0.26wt.%, 0.27wt.% or 0.3wt.%, and the percentage refers to the mass in the neodymium iron boron magnet material Mass percentage.
  • the type of N is preferably one or more of Zr, Nb, Hf and Ti, such as Zr and/or Ti.
  • the content of Al is preferably 0.46 to 0.5 wt.% or 0.02 to 0.04 wt.%, such as 0.03 wt.%, 0.45 wt.% or 0.46 wt.%, and the percentage refers to the amount in the neodymium The mass percentage of the iron-boron magnet material.
  • the content of B is preferably 0.98 to 0.99 wt.%, more preferably 0.99 wt.%, and the percentage refers to the mass percentage in the neodymium iron boron magnet material.
  • the content of Fe is preferably 64-66wt.%, for example 64.86wt.%, 65.7wt.%, 65.72wt.% or 65.74wt.%, the percentage refers to the neodymium iron boron magnet The mass percentage in the material.
  • the quality of the Tb and the Co is preferably (1-15):1, such as 3.35:1.49 or 2:1, and more preferably (1-3):1.
  • the neodymium iron boron magnet material preferably further includes Mn.
  • the content of Mn is preferably ⁇ 0.035wt.% but not 0wt.%, preferably 0.01 to 0.035wt.%, such as 0.03wt.%, and the percentage refers to the neodymium iron boron magnet material The mass percentage in the mass.
  • the neodymium iron boron magnet material in terms of mass percentage, includes the following components: 27-28wt.% Nd, 2.8-4wt.% Tb, and 0.05-0.16wt.% Cu , 1.48 ⁇ 2.7wt.% Co, 0.2 ⁇ 0.26wt.% Ga, 0.25 ⁇ 0.3wt.% N, 0.46 ⁇ 0.5wt.% or 0.02 ⁇ 0.04wt.% Al, 0.98 ⁇ 0.99wt.% %
  • B 64-66wt.% Fe
  • the percentage refers to the mass percentage in the neodymium iron boron magnet material; where N is Zr and/or Ti; the Tb accounts for the total mass of the Nd and Tb 9.7-13wt.%, the mass ratio of the Tb to the Co is (1-15):1.
  • the neodymium iron boron magnet material in terms of mass content percentage, includes the following components: 27-28wt.% Nd, 2.8-4wt.% Tb, 0.05-0.16wt.% Cu, 1.48 ⁇ 2.7wt.% Co, 0.2 ⁇ 0.26wt.% Ga, 0.25 ⁇ 0.3wt.% N, 0.46 ⁇ 0.5wt.% or 0.02 ⁇ 0.04wt.% Al, 0.98 ⁇ 0.99wt.% B.
  • the percentage refers to the mass percentage in the neodymium iron boron magnet material; where N is Zr and/or Ti; the Tb accounts for all The total mass of Nd and Tb is 9.7-13 wt.%, and the mass ratio of Tb to Co is (1-15):1.
  • the neodymium iron boron magnet material in terms of mass content percentage, includes the following components: 27-28wt.% Nd, 2.9-3.4wt.% Tb, 0.05-0.16wt.% Cu , 1.48 ⁇ 2.7wt.% Co, 0.2 ⁇ 0.26wt.% Ga, 0.26 ⁇ 0.3wt.% N, 0.46 ⁇ 0.5wt.% or 0.02 ⁇ 0.04wt.% Al, 0.98 ⁇ 0.99wt.% %
  • the percentage refers to the mass percentage in the neodymium iron boron magnet material; where N is Zr and/or Ti; the Tb accounts for the total mass of the Nd and Tb 9.7-11wt.%, the mass ratio of the Tb to the Co is (1-3):1.
  • the neodymium iron boron magnet material in terms of mass content percentage, includes the following components: 27-28wt.% Nd, 2.9-3.4wt.% Tb, 0.05-0.16wt.% Cu , 1.48 ⁇ 2.7wt.% Co, 0.2 ⁇ 0.26wt.% Ga, 0.26 ⁇ 0.3wt.% N, 0.46 ⁇ 0.5wt.% or 0.02 ⁇ 0.04wt.% Al, 0.98 ⁇ 0.99wt.% % Of B, 64 to 66wt.% of Fe, 0.01 to 0.035wt.% of Mn, the percentage refers to the mass percentage in the neodymium iron boron magnet material; where N is Zr and/or Ti; the Tb accounts for The total mass of Nd and Tb is 9.7 to 11 wt.%, and the mass ratio of Tb to Co is (1 to 3):1.
  • the neodymium iron boron magnet material in terms of mass content percentage, preferably consists of the following components: 27.44wt.% Nd, 2.98wt.% Tb, 0.15wt.% Cu, 1.49 wt.% Co, 0.25wt.% Ga, 0.27wt.% Zr, 0.46wt.% Al, 0.99wt.% B, 65.72wt.% Fe, the percentages refer to the neodymium iron boron The mass percentage in the magnet material; the balance is unavoidable impurities.
  • the neodymium iron boron magnet material in terms of mass content percentage, preferably consists of the following components: 27.13wt.% Nd, 3.35wt.% Tb, 0.15wt.% Cu, 1.49 wt.% Co, 0.25wt.% Ga, 0.26wt.% Zr, 0.45wt.% Al, 0.99wt.% B, 65.74wt.% Fe, the percentages refer to the neodymium iron boron
  • the mass percentage in the magnet material, the balance is unavoidable impurities.
  • the neodymium iron boron magnet material in terms of mass content percentage, preferably consists of the following components: 27.44wt.% Nd, 2.98wt.% Tb, 0.15wt.% Cu, 1.49 wt.% Co, 0.25wt.% Ga, 0.27wt.% Ti, 0.46wt.% Al, 0.99wt.% B, 65.70wt.% Fe, the percentages refer to the neodymium iron boron The mass percentage in the magnet material; the balance is unavoidable impurities.
  • the neodymium iron boron magnet material in terms of mass content percentage, preferably consists of the following components: 27.44wt.% Nd, 2.98wt.% Tb, 0.15wt.% Cu, 1.49 wt.% Co, 0.25wt.% Ga, 0.27wt.% Zr, 0.46wt.% Al, 0.99wt.% B, 65.72wt.% Fe, 0.03wt.% Mn, the percentages are Refers to the mass percentage in the neodymium iron boron magnet material; the balance is inevitable impurities.
  • the neodymium iron boron magnet material in terms of mass content percentage, preferably consists of the following components: 27.44wt.% Nd, 2.98wt.% Tb, 0.15wt.% Cu, 2.6 wt.% Co, 0.25wt.% Ga, 0.27wt.% Zr, 0.46wt.% Al, 0.99wt.% B, 64.86wt.% Fe, the percentage refers to the neodymium iron boron The mass percentage in the magnet material.
  • the neodymium iron boron magnet material in terms of mass content percentage, preferably consists of the following components: 27.44wt.% Nd, 2.98wt.% Tb, 0.15wt.% Cu, 1.49 wt.% Co, 0.25wt.% Ga, 0.3wt.% Zr, 0.46wt.% Al, 0.99wt.% B, 65.72wt.% Fe, the percentages refer to the neodymium iron boron The mass percentage in the magnet material; the balance is unavoidable impurities.
  • the neodymium iron boron magnet material in terms of mass content percentage, preferably consists of the following components: 27.44wt.% Nd, 2.98wt.% Tb, 0.15wt.% Cu, 1.49 wt.% Co, 0.25wt.% Ga, 0.27wt.% Zr, 0.03wt.% Al, 0.99wt.% B, 65.72wt.% Fe, the percentages refer to the neodymium iron boron The mass percentage in the magnet material; the balance is unavoidable impurities.
  • the neodymium iron boron magnet material is preferably composed of the following components in terms of mass content percentage: 27.44wt.% Nd, 2.98wt.% Tb, 0.05wt.% Cu, 1.49 wt.% Co, 0.25wt.% Ga, 0.27wt.% Zr, 0.46wt.% Al, 0.99wt.% B, 65.72wt.% Fe, the percentages refer to the neodymium iron boron The mass percentage in the magnet material; the balance is unavoidable impurities.
  • the neodymium iron boron magnet material in terms of mass content percentage, preferably consists of the following components: 27.44wt.% Nd, 2.98wt.% Tb, 0.15wt.% Cu, 1.49 wt.% Co, 0.2wt.% Ga, 0.27wt.% Zr, 0.46wt.% Al, 0.99wt.% B, 65.72wt.% Fe, the percentages refer to the neodymium iron boron
  • the mass percentage in the magnet material, the balance is unavoidable impurities.
  • Tb is preferably distributed at the grain boundary and the center part of the crystal grain in the neodymium iron boron magnet material; preferably, the content of Tb distributed at the grain boundary is higher than that in the center of the crystal grain.
  • the content of partially distributed Tb refers to the separation between the two main phases.
  • the N is distributed at the grain boundary.
  • the Co is distributed in the triangular region of the grain boundary.
  • the distribution of the Tb and the distribution of the Co do not overlap.
  • the triangular area of the grain boundary refers to the gap formed between three crystal grains, and the crystal grain refers to the crystal grain of the neodymium iron boron magnet material.
  • Nd is neodymium
  • Fe iron
  • B boron
  • Tb terbium
  • Co cobalt
  • Cu copper
  • Ga gallium
  • Al aluminum
  • Mn manganese
  • Zr zirconium
  • Ti Is titanium
  • Nb is niobium
  • Hf hafnium
  • the present invention also provides a main alloy for preparing neodymium iron boron magnet materials, the composition of the main alloy is Nd a -Fe b -B c -Tb d -Co e -Cu f -Ga g -Al x -Mn y -N h ; where a, b, c, d, e, f, g, h, x and y are the mass fractions of each element in the main alloy, a is 26-30 wt.%, and b is 64 ⁇ 68wt.%, c is 0.96 ⁇ 1.1wt.%, d is 0.5 ⁇ 5wt.%, e is 0.5 ⁇ 2.6wt.%, f is 0.05 ⁇ 0.3wt.%, g is 0.05 ⁇ 0.3wt.%, x is ⁇ 0.04wt.% but not 0wt.% or 0.46 to 0.6wt.%, y is 0 to 0.04wt
  • the a is preferably 28-29 wt.%, for example, 28.46 wt.%, and the percentage refers to the mass percentage in the main alloy.
  • the b is preferably 65.5-67.5wt.%, for example, 65.62wt.%, 66.63wt.%, 66.7wt.%, 66.73wt.%, 66.78wt.%, 66.83wt.% Or 67.16wt.%, the percentage refers to the mass percentage in the main alloy.
  • the c is preferably 0.98 to 1 wt.%, for example, 0.99 wt.%, and the percentage refers to the mass percentage in the main alloy.
  • the d is preferably 1 to 1.5 wt.%, more preferably 1.1 to 1.3 wt.%, for example, 1.2 wt.% or 1.3 wt.%, the percentage refers to the main alloy The mass percentage in.
  • the e is preferably 1.4-2.6 wt.%, for example, 1.49 wt.% or 2.6 wt.%, and the percentage refers to the mass percentage in the main alloy.
  • the f is preferably 0.05 to 0.16 wt.%, such as 0.05 wt.% or 0.15 wt.%, and the percentage refers to the mass percentage in the main alloy.
  • the g is preferably 0.1 to 0.25 wt.%, for example, 0.2 wt.% or 0.25 wt.%, and the percentage refers to the mass percentage in the main alloy.
  • the h is preferably 0.25 to 0.3 wt.%, for example, 0.27 wt.% or 0.3 wt.%, and the percentage refers to the mass percentage in the main alloy.
  • the x is preferably 0.02 to 0.04 wt.% or 0.45 to 0.47 wt.%, for example, 0.03 wt.% or 0.46 wt.%, and the percentage refers to the mass percentage in the main alloy .
  • the y is preferably 0.02 to 0.04 wt.%, such as 0.03 wt.%, and the percentage refers to the mass percentage in the main alloy.
  • the composition of the main alloy is preferably Nd a -Fe b -B c -Tb d -Co e -Cu f -Ga g -Al x -Mn y -N h ; wherein, a, b, c, d, e, f, g, h, x, and y are the mass fractions of each element in the main alloy, a is 28 to 29 wt.%, b is 65.5 to 67.5 wt.%, and c is 0.98 to 1 wt.
  • % d is 1 ⁇ 1.5wt.%, e is 1.4 ⁇ 2.6wt.%, f is 0.05 ⁇ 0.16wt.%, g is 0.1 ⁇ 0.25wt.%, x is 0.02 ⁇ 0.04wt.% or 0.45 ⁇ 0.47 wt.%, y is 0.02-0.04 wt.%, h is 0.25-0.3 wt.%, and the percentage refers to the mass percentage in the main alloy.
  • the composition of the main alloy is preferably Nd 28.46 Fe 66.73 B 0.99 Tb 1.2 Co 1.49 Cu 0.15 Ga 0.25 Zr 0.27 Al 0.46 , wherein the subscript value is the mass percentage of each element in the main alloy .
  • the composition of the main alloy is preferably Nd 28.46 Fe 66.63 B 0.99 Tb 1.3 Co 1.49 Cu 0.15 Ga 0.25 Zr 0.27 Al 0.46 , wherein the subscript value is the mass percentage of each element in the main alloy .
  • the composition of the main alloy is preferably Nd 28.46 Fe 66.73 B 0.99 Tb 1.2 Co 1.49 Cu 0.15 Ga 0.25 Ti 0.27 Al 0.46 , wherein the subscript value is the mass percentage of each element in the main alloy .
  • the composition of the main alloy is preferably Nd 28.46 Fe 66.7 B 0.99 Tb 1.2 Co 1.49 Cu 0.15 Ga 0.25 Zr 0.27 Al 0.46 Mn 0.03 , wherein the subscript values are the percentage of each element in the main alloy The mass percentage.
  • the composition of the main alloy is preferably Nd 28.46 Fe 65.62 B 0.99 Tb 1.2 Co 2.6 Cu 0.15 Ga 0.25 Zr 0.27 Al 0.46 , wherein the subscript value is the mass percentage of each element in the main alloy .
  • the composition of the main alloy is preferably Nd 28.46 Fe 67.16 B 0.99 Tb 1.2 Co 1.49 Cu 0.15 Ga 0.25 Zr 0.27 Al 0.03 , wherein the subscript value is the mass percentage of each element in the main alloy .
  • the composition of the main alloy is preferably Nd 28.46 Fe 66.83 B 0.99 Tb 1.2 Co 1.49 Cu 0.05 Ga 0.25 Zr 0.27 Al 0.46 , wherein the subscript value is the mass percentage of each element in the main alloy .
  • the composition of the main alloy is preferably Nd 28.46 Fe 66.78 B 0.99 Tb 1.2 Co 1.49 Cu 0.15 Ga 0.2 Zr 0.27 Al 0.46 , wherein the subscript value is the mass percentage of each element in the main alloy .
  • the preparation method of the main alloy can be a conventional preparation method in the field, and is usually as follows: (1) preparing a main alloy solution containing the above-mentioned components; (2) passing the main alloy solution through a rotating roller , Cool to form the main alloy cast piece, that's it.
  • step (2) the cooling is generally to 700-900°C.
  • step (2) after the main alloy cast pieces are formed, they are generally collected by a collector and cooled to below 50°C.
  • the present invention also provides an auxiliary alloy for preparing neodymium iron boron magnet materials, the composition of the auxiliary alloy is Nd i -Fe j -B k -Tb l -Co m -Cu n -Ga o -Al r -Mn t -N p ; where i, j, k, l, m, n, o, p, r and t are the mass fractions of each element in the auxiliary alloy, i is 5-30wt.%, j is 59 ⁇ 65wt.%, k is 0.98 ⁇ 1wt.%, l is 5 ⁇ 25wt.%, m is 0.5 ⁇ 2.7wt.%, n is 0.05 ⁇ 0.3wt.%, o is 0.05 ⁇ 0.3, r is ⁇ 0.04 wt.% but not 0 wt.% or 0.46 to 0.6 wt.%, t is 0 to 0.04 wt
  • the i is preferably 15-25 wt.%, more preferably 19-21 wt.%, for example, 20 wt.%, and the percentage refers to the mass percentage in the auxiliary alloy.
  • the j is preferably 59-61wt.%, for example, 59.25wt.%, 60.33wt.%, 60.36wt.%, 60.39wt.%, 60.41wt.%, 60.46wt.% or 60.79wt.%, the percentage refers to the mass percentage in the auxiliary alloy.
  • the k is preferably 0.98 to 0.99 wt.%, for example, 0.99 wt.%, and the percentage refers to the mass percentage in the auxiliary alloy.
  • the l is preferably 15-20 wt.%, for example, 16 wt.%, and the percentage refers to the mass percentage in the auxiliary alloy.
  • the m is preferably 1.45 to 2.6 wt.%, for example, 1.49 wt.% or 2.6 wt.%, and the percentage refers to the mass percentage in the auxiliary alloy.
  • the n is preferably 0.05 to 0.16 wt.%, for example, 0.05 wt.% or 0.15 wt.%, and the percentage refers to the mass percentage in the auxiliary alloy.
  • the o is preferably 0.2 to 0.26 wt.%, for example, 0.2 wt.% or 0.25 wt.%, and the percentage refers to the mass percentage in the auxiliary alloy.
  • the r is preferably 0.02 to 0.04 wt.% or 0.46 to 0.47 wt.%, such as 0.03 wt.% or 0.46 wt.%, and the percentage refers to the mass percentage in the auxiliary alloy.
  • the t is preferably 0.01 to 0.04 wt.%, for example, 0.03 wt.%, and the percentage refers to the mass percentage in the auxiliary alloy.
  • the p is preferably 0.26 to 0.3 wt.%, for example, 0.27 wt.% or 0.3 wt.%, and the percentage refers to the mass percentage in the auxiliary alloy.
  • the composition of the auxiliary alloy is preferably Nd i -Fe j -B k -Tb l -Co m -Cu n -Ga o -Al r -Mn t -N p ; where i, j, k, l, m, n, o, p, r, and t are the mass fractions of each element in the auxiliary alloy, i is 19-21wt.%, j is 59-61wt.%, and k is 0.98-0.99wt.
  • % l is 15-20wt.%, m is 1.45-2.6wt.%, n is 0.05-0.16wt.%, o is 0.2-0.26, r is 0.02-0.04wt.% or 0.46-0.47wt.%, t is 0 to 0.04 wt.%, p is 0.26 to 0.3 wt.%, and the percentage refers to the mass percentage in the auxiliary alloy.
  • the composition of the auxiliary alloy is preferably Nd 20 Fe 60.36 B 0.99 Tb 16 Co 1.49 Cu 0.15 Ga 0.25 Zr 0.3 Al 0.46 , and the subscript value is the mass percentage of each element in the auxiliary alloy.
  • the composition of the auxiliary alloy is preferably Nd 20 Fe 60.39 B 0.99 Tb 16 Co 1.49 Cu 0.15 Ga 0.25 Ti 0.27 Al 0.46 , and the subscript value is the mass percentage of each element in the auxiliary alloy.
  • the composition of the auxiliary alloy is preferably Nd 20 Fe 60.33 B 0.99 Tb 16 Co 1.49 Cu 0.15 Ga 0.25 Zr 0.3 Al 0.46 Mn 0.03 , and the subscript value is the mass percentage of each element in the auxiliary alloy.
  • the composition of the auxiliary alloy is preferably Nd 20 Fe 59.25 B 0.99 Tb 16 Co 2.6 Cu 0.15 Ga 0.25 Zr 0.3 Al 0.46 , and the subscript value is the mass percentage of each element in the auxiliary alloy.
  • the composition of the auxiliary alloy is preferably Nd 20 Fe 60.79 B 0.99 Tb 16 Co 1.49 Cu 0.15 Ga 0.25 Zr 0.3 Al 0.03 , and the subscript value is the mass percentage of each element in the auxiliary alloy.
  • the composition of the auxiliary alloy is preferably Nd 20 Fe 60.46 B 0.99 Tb 16 Co 1.49 Cu 0.05 Ga 0.25 Zr 0.3 Al 0.46 , and the subscript value is the mass percentage of each element in the auxiliary alloy.
  • the composition of the auxiliary alloy is preferably Nd 20 Fe 60.41 B 0.99 Tb 16 Co 1.49 Cu 0.15 Ga 0.2 Zr 0.3 Al 0.46 , and the subscript value is the mass percentage of each element in the auxiliary alloy.
  • the preparation method of the auxiliary alloy can be a conventional preparation method in the field, and is usually as follows: (1) prepare an auxiliary alloy solution containing the above-mentioned components; (2) pass the auxiliary alloy solution through a rotating roller , Cool to form auxiliary alloy cast piece, which is obtained.
  • step (2) the cooling is generally to 700-900°C.
  • step (2) after forming the auxiliary alloy slab, it is generally collected by a collector and cooled to below 50°C.
  • the present invention also provides a method for preparing a neodymium iron boron magnet material.
  • the neodymium iron boron magnet material can be prepared by using the main alloy and auxiliary alloy prepared above by the double alloy method, and the main alloy and the The mass ratio of the auxiliary alloy is (9-30):1.
  • the quality of the main alloy and the auxiliary alloy is preferably (6-15):1, more preferably (6-8):1, such as 88:12 or 86:14.
  • the preparation process of the dual alloy method is usually to obtain mixed alloy powder after mixing the main alloy and the auxiliary alloy, and then subject the mixed alloy powder to sintering and aging treatment in sequence.
  • the mixing can be conventional in the art, usually the main alloy and the auxiliary alloy are mixed and then subjected to hydrogen breaking and jet milling, or the main alloy and auxiliary alloy are respectively subjected to hydrogen breaking and jet milling and then mixed. uniform.
  • the operating conditions of the hydrogen breaking treatment can be conventional in the art, preferably saturated hydrogen absorption under a hydrogen pressure of 0.067 to 0.098 MPa, and dehydrogenation at 480°C to 530°C; more preferably at 510°C to 530°C Dehydrogenation within °C.
  • the mixing time is preferably 3 hours or more, more preferably 3-6 hours.
  • the equipment for the mixing process can be conventional in the art, preferably a three-dimensional mixer.
  • the operation and conditions of the jet milling treatment can be conventional in the art, preferably the particle size of the powder after jet milling treatment is 3.7-4.2 ⁇ m, more preferably 3.7-4 ⁇ m.
  • the operation and conditions of the sintering treatment can be conventional in the art, the sintering temperature is preferably 1050-1085°C, more preferably 1070-1085°C, and the sintering time is 4-7 hours .
  • the aging treatment can be conventional in the field.
  • the temperature of the aging treatment is usually 460 to 520° C., and the time of the aging treatment is usually 4 to 10 hours.
  • the invention also provides a neodymium iron boron magnet material obtained by the above preparation method.
  • the invention also provides an application of the neodymium iron boron magnet material as an electronic component in a motor.
  • the motor is preferably a new energy vehicle drive motor, an air-conditioning compressor or an industrial servo motor.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the positive progress effect of the present invention is that: the Hcj and Br of the magnet material of the present application are both high, and the temperature coefficients of Br and Hcj are low; wherein Hcj can reach 13.39kOe or more, Br can reach 26.8kGs or more; and 20-100
  • can reach below 0.092(Br)%/°C, and the temperature coefficient of Hcj at 20-100°C
  • FIG. 1 is the element distribution in the microstructure of the neodymium iron boron magnet material in Example 7.
  • FIG. 1 is the element distribution in the microstructure of the neodymium iron boron magnet material in Example 7.
  • the raw materials used in the preparation of the NdFeB magnet material in this embodiment are: the main alloy is Nd 28.46 Fe 66.73 B 0.99 Tb 1.2 Co 1.49 Cu 0.15 Ga 0.25 Zr 0.27 Al 0.46 ; the auxiliary alloy is Nd 20 Fe 60.36 B 0.99 Tb 16 Co 1.49 Cu 0.15 Ga 0.25 Zr 0.3 Al 0.46 , where the value of the subscript is the mass percentage of each element in the main alloy or the auxiliary alloy; wherein the mass ratio of the main alloy to the auxiliary alloy is 88:12.
  • the preparation process of the main alloy is as follows: (1) Prepare the main alloy solution from the elements in the main alloy shown in Table 1; (2) Pass the main alloy solution through a rotating roller and cool it to a temperature in the range of 700 to 900°C , The main alloy cast slabs with uniform thickness are formed; (3) The main alloy cast slabs are collected through a collector and cooled to below 50 °C, which is obtained.
  • the preparation process of the auxiliary alloy is as follows: (1) Prepare each element in the auxiliary alloy shown in Table 1 into an auxiliary alloy solution; (2) Pass the auxiliary alloy solution through a rotating roller and cool to a temperature in the range of 700 to 900°C , Forming auxiliary alloy cast slabs with uniform thickness; (3) Collect the auxiliary alloy cast slabs through a collector and cool to below 50°C to obtain.
  • wt.% refers to the mass percentage of each component, and "/" means that the element is not added.
  • Br is the residual magnetic flux density, and "Hcj” is the intrinsic coercivity.
  • Table 1 The raw materials and mass ratios of the main alloy and auxiliary alloy used in each embodiment and comparative example
  • the preparation process of the neodymium-iron-boron magnet material in this embodiment is as follows: It is prepared by the double alloy method. First, the main alloy and the auxiliary alloy shown in Table 1 are mixed in proportions and then subjected to hydrogen cracking, jet milling and mixing The mixed alloy powder is obtained; among them, the hydrogen breakage is the saturated hydrogen absorption under the hydrogen pressure of 0.067MPa, and the dehydrogenation at 510°C. The mixture is processed in a three-dimensional mixer for 3 hours, and the mixed alloy after jet milling The particle size of the powder is 3.7 ⁇ m. Then, the mixed alloy powder is sintered at 1070°C for 5 hours and then aging treatment at 460°C for 4 hours.
  • Example 2 to 12 and Comparative Examples 1 to 6 the main alloy and the auxiliary alloy were prepared according to the raw materials shown in Table 1, respectively, and the preparation process of the main alloy and the auxiliary alloy was the same as in Example 1.
  • the main alloys and auxiliary alloys in Examples 2-12 and Comparative Examples 1-6 were prepared according to the preparation process shown in Table 2 to prepare neodymium iron boron magnet materials, and the parameters not involved in Table 2 were the same as those in Example 1.
  • Magnetic performance evaluation The NIM-10000H BH bulk rare earth permanent magnet non-destructive measurement system of the China Metrology Institute is used for the magnetic performance testing of the neodymium iron boron magnet material. Table 4 below shows the magnetic performance test results.
  • FE-EPMA detection Polish the vertical orientation surface of the neodymium iron boron magnet material, and use the field emission electron probe microanalyzer (FE-EPMA) (JEOL, 8530F) to detect. First, determine the distribution of Tb, Co and other elements in the magnet through FE-EPMA surface scanning, and then determine the content of Tb, Co and other elements in the key phase through FE-EPMA single-point quantitative analysis.
  • the test conditions are acceleration voltage 15kv and probe beam current. 50nA.
  • the microstructure of the NdFeB magnet material of Example 7 has the following characteristics: (1) According to the distribution law of the Tb-rich phase (as marked by a in the figure), it is speculated that the outer layer of the main phase has a Tb-rich shell (2) Zr or other high melting point elements are enriched in the grain boundary, as indicated by the mark b in the figure; (3) Co is enriched in the grain boundary triangle area, and Tb is also enriched in the grain boundary triangle area, but both There is no overlap in the enrichment area of the former: the Co enrichment area is marked as c-Co, and the Tb enrichment area is marked as c-Tb.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

一种钕铁硼磁体材料及其制备方法和应用。该钕铁硼磁体材料,以质量百分比计,包括如下组分:R 29.5~31.5wt.%且RH>1.5wt.%;Cu 0.05~0.25wt.%;Co 0.42~2.6wt.%;Ga 0.20~0.3wt.%;N 0.25~0.3wt.%;Al 0.46~0.6wt.%或Al≤0.04wt.%但不为0;B 0.98~1wt.%;Fe 64~68wt.%;其中:R为稀土元素,R包括Nd和RH;RH为重稀土元素,RH包括Tb;Tb与Co的质量比≤15但不为0。该钕铁硼磁体材料的Hcj和Br均较高,并具有较低的Br温度系数绝对值和Hcj温度系数绝对值。

Description

一种钕铁硼磁体材料及其制备方法和应用 技术领域
本发明具体涉及一种钕铁硼磁体材料及其制备方法和应用。
背景技术
以Nd 2Fe 14B为主要成分的钕铁硼(Nd-Fe-B)磁体材料,具有较高的剩余磁通密度Br、内禀矫顽力Hcj和最大磁能积BHmax,综合磁性能优良,应用在新能源汽车驱动电机、空调压缩机、工业伺服电机等方面。钕铁硼材料的居里温度点低,温度稳定性差,不能满足许多新应用领域高工作温度(>200℃)的要求。
目前,烧结Nd-Fe-B系永磁材料的Br已接近磁性能理论值的90%以上,而烧结Nd-Fe-B系永磁材料的Hcj仅有Nd 2Fe 14B各向异性场的12%,可见烧结Nd-Fe-B系永磁材料的Hcj还有较大的提升潜力。大量研究表明,Nd-Fe-B系永磁材料的Hcj对磁体的微观组织结构较为敏感。在生产中,人们普遍采用添加重稀土Dy或Tb替代Nd以提高磁体的各向异性场。现有技术中添加适量的重稀土金属可以提高Hcj,但提升的程度有限,在添加过多量的重金属时虽然Hcj得到了提升,但是会大大降低Br,还没有一个合适的添加量使得在较大程度提升Hcj的同时,也保持较高的Br。
因此,选择合适的重稀土金属添加量以及添加方式来同时提高磁体的Hcj和Br成为亟需解决的技术问题。
发明内容
本发明所要解决的技术问题在于克服了现有技术中钕铁硼磁体得到的钕铁硼磁体材料的Hcj较低的缺陷,而提供了一种钕铁硼磁体材料及其制备方 法和应用。本申请的钕铁硼磁体材料的Hcj和Br均较高,并具有较低的Br温度系数绝对值和Hcj温度系数绝对值。
本发明通过以下技术方案解决上述技术问题。
本发明提供了一种钕铁硼磁体材料,以质量质量百分比计,其包括如下组分:
R:29.5~31.5wt.%且RH>1.5wt.%;
Cu:0.05~0.25wt.%;
Co:0.42~2.6wt.%;
Ga:0.20~0.3wt.%;
N:0.25~0.3wt.%,所述N包括Zr、Nb、Hf和Ti中的一种或多种;
Al:0.46~0.6wt.%或Al≤0.04wt.%但不为0wt.%;
B:0.98~1wt.%;
Fe:64~68wt.%;
其中:所述R为稀土元素,所述R中至少包括Nd和RH;所述RH为重稀土元素,所述RH中包括Tb;
所述Tb与所述Co的质量质量比为≤15但不为0。
本发明中,所述R的含量较佳地为30.15~31wt.%,例如30.1~30.6wt.%,更佳地为30.4~30.5wt.%,例如30.42wt.%或30.48wt.%,百分比是指在所述钕铁硼磁体材料中的质量质量百分比。
本发明中,所述R中还可包含本领域常规的轻稀土元素,例如Pr。
本发明中,所述Nd的含量较佳地为27~28wt.%,例如27.13wt.%或27.44wt.%,百分比是指在所述钕铁硼磁体材料中的质量质量百分比。
本发明中,所述RH在所述R中的质量质量百分比为9.7~13wt.%,更佳地为9.7~11wt.%,较佳地为9.7wt.%。
本发明中,所述RH的含量较佳地为2.8~4wt.%,更佳地为2.9~3.4wt.%,例如2.98wt.%或3.35wt.%,百分比是指在所述钕铁硼磁体材料中的质量质量百分比。
本发明中,所述Cu的含量较佳地为0.05~0.16wt.%,例如0.05wt.%或0.15wt.%,百分比是指在所述钕铁硼磁体材料中的质量质量百分比。
本发明中,所述Co的含量较佳地为1.48~2.7wt.%,例如1.49wt.%、1.51wt.%或2.6wt.%,较佳地为1.49~1.51wt.%,百分比是指在所述钕铁硼磁体材料中的质量质量百分比。
本发明中,所述Ga的含量较佳地为0.2~0.26wt.%,例如0.2wt.%或0.25wt.%,百分比是指在所述钕铁硼磁体材料中的质量质量百分比。
本发明中,所述N的含量较佳地为0.26~0.3wt.%,例如0.26wt.%、0.27wt.%或0.3wt.%,百分比是指在所述钕铁硼磁体材料中的质量质量百分比。
本发明中,所述的N的种类较佳地为Zr、Nb、Hf和Ti中的一种或多种,例如Zr和/或Ti。
本发明中,所述Al的含量较佳地为0.46~0.5wt.%或0.02~0.04wt.%,例如0.03wt.%、0.45wt.%或0.46wt.%,百分比是指在所述钕铁硼磁体材料中的质量质量百分比。
本发明中,所述B的含量较佳地为0.98~0.99wt.%,更佳地为0.99wt.%,百分比是指在所述钕铁硼磁体材料中的质量质量百分比。
本发明中,所述Fe的含量较佳地为64~66wt.%,例如64.86wt.%、65.7wt.%、65.72wt.%或65.74wt.%,百分比是指在所述钕铁硼磁体材料中的质量质量百分比。
本发明中,所述Tb与所述Co的质量质量比较佳地为(1~15):1,例如3.35:1.49或2:1,更佳地为(1~3):1。
本发明中,所述钕铁硼磁体材料中,较佳地还包括Mn。
其中,所述Mn的含量较佳地≤0.035wt.%但不为0wt.%,较佳地为0.01~0.035wt.%,例如0.03wt.%,百分比是指在所述钕铁硼磁体材料中的质量质量百分比。
本发明中,所述的钕铁硼磁体材料,以质量质量含量百分比计,其包括如下组分:27~28wt.%的Nd、2.8~4wt.%的Tb、0.05~0.16wt.%的Cu、1.48~2.7wt.% 的Co、0.2~0.26wt.%的Ga、0.25~0.3wt.%的N、0.46~0.5wt.%或0.02~0.04wt.%的Al、0.98~0.99wt.%的B、64~66wt.%的Fe,百分比是指在所述钕铁硼磁体材料中的质量百分比;其中N为Zr和/或Ti;所述的Tb占所述Nd和Tb的总质量的9.7~13wt.%,所述Tb与所述Co的质量比为(1~15):1。
本发明中,所述的钕铁硼磁体材料,以质量含量百分比计,其包括如下组分:27~28wt.%的Nd、2.8~4wt.%的Tb、0.05~0.16wt.%的Cu、1.48~2.7wt.%的Co、0.2~0.26wt.%的Ga、0.25~0.3wt.%的N、0.46~0.5wt.%或0.02~0.04wt.%的Al、0.98~0.99wt.%的B、64~66wt.%的Fe、0.01~0.035wt.%的Mn,百分比是指在所述钕铁硼磁体材料中的质量百分比;其中N为Zr和/或Ti;所述的Tb占所述Nd和Tb的总质量的9.7~13wt.%,所述Tb与所述Co的质量比为(1~15):1。
本发明中,所述的钕铁硼磁体材料,以质量含量百分比计,其包括如下组分:27~28wt.%的Nd、2.9~3.4wt.%的Tb、0.05~0.16wt.%的Cu、1.48~2.7wt.%的Co、0.2~0.26wt.%的Ga、0.26~0.3wt.%的N、0.46~0.5wt.%或0.02~0.04wt.%的Al、0.98~0.99wt.%的B、64~66wt.%的Fe,百分比是指在所述钕铁硼磁体材料中的质量百分比;其中N为Zr和/或Ti;所述的Tb占所述Nd和Tb的总质量的9.7~11wt.%,所述Tb与所述Co的质量比为(1~3):1。
本发明中,所述的钕铁硼磁体材料,以质量含量百分比计,其包括如下组分:27~28wt.%的Nd、2.9~3.4wt.%的Tb、0.05~0.16wt.%的Cu、1.48~2.7wt.%的Co、0.2~0.26wt.%的Ga、0.26~0.3wt.%的N、0.46~0.5wt.%或0.02~0.04wt.%的Al、0.98~0.99wt.%的B、64~66wt.%的Fe、0.01~0.035wt.%的Mn,百分比是指在所述钕铁硼磁体材料中的质量百分比;其中N为Zr和/或Ti;所述的Tb占所述Nd和Tb的总质量的9.7~11wt.%,所述Tb与所述Co的质量比为(1~3):1。
本发明中,所述的钕铁硼磁体材料,以质量含量百分比计,较佳地由如下组分组成:27.44wt.%的Nd、2.98wt.%的Tb、0.15wt.%的Cu、1.49wt.%的Co、0.25wt.%的Ga、0.27wt.%的Zr、0.46wt.%的Al、0.99wt.%的B、65.72wt.% 的Fe,百分比是指在所述钕铁硼磁体材料中的质量百分比;余量为不可避免的杂质。
本发明中,所述的钕铁硼磁体材料,以质量含量百分比计,较佳地由如下组分组成:27.13wt.%的Nd、3.35wt.%的Tb、0.15wt.%的Cu、1.49wt.%的Co、0.25wt.%的Ga、0.26wt.%的Zr、0.45wt.%的Al、0.99wt.%的B、65.74wt.%的Fe,百分比是指在所述钕铁硼磁体材料中的质量百分比,余量为不可避免的杂质。
本发明中,所述的钕铁硼磁体材料,以质量含量百分比计,较佳地由如下组分组成:27.44wt.%的Nd、2.98wt.%的Tb、0.15wt.%的Cu、1.49wt.%的Co、0.25wt.%的Ga、0.27wt.%的Ti、0.46wt.%的Al、0.99wt.%的B、65.70wt.%的Fe,百分比是指在所述钕铁硼磁体材料中的质量百分比;余量为不可避免的杂质。
本发明中,所述的钕铁硼磁体材料,以质量含量百分比计,较佳地由如下组分组成:27.44wt.%的Nd、2.98wt.%的Tb、0.15wt.%的Cu、1.49wt.%的Co、0.25wt.%的Ga、0.27wt.%的Zr、0.46wt.%的Al、0.99wt.%的B、65.72wt.%的Fe、0.03wt.%的Mn,百分比是指在所述钕铁硼磁体材料中的质量百分比;余量为不可避免的杂质。
本发明中,所述的钕铁硼磁体材料,以质量含量百分比计,较佳地由如下组分组成:27.44wt.%的Nd、2.98wt.%的Tb、0.15wt.%的Cu、2.6wt.%的Co、0.25wt.%的Ga、0.27wt.%的Zr、0.46wt.%的Al、0.99wt.%的B、64.86wt.%的Fe,百分比是指在所述钕铁硼磁体材料中的质量百分比。
本发明中,所述的钕铁硼磁体材料,以质量含量百分比计,较佳地由如下组分组成:27.44wt.%的Nd、2.98wt.%的Tb、0.15wt.%的Cu、1.49wt.%的Co、0.25wt.%的Ga、0.3wt.%的Zr、0.46wt.%的Al、0.99wt.%的B、65.72wt.%的Fe,百分比是指在所述钕铁硼磁体材料中的质量百分比;余量为不可避免的杂质。
本发明中,所述的钕铁硼磁体材料,以质量含量百分比计,较佳地由如 下组分组成:27.44wt.%的Nd、2.98wt.%的Tb、0.15wt.%的Cu、1.49wt.%的Co、0.25wt.%的Ga、0.27wt.%的Zr、0.03wt.%的Al、0.99wt.%的B、65.72wt.%的Fe,百分比是指在所述钕铁硼磁体材料中的质量百分比;余量为不可避免的杂质。
本发明中,所述的钕铁硼磁体材料,以质量含量百分比计,较佳地由如下组分组成:27.44wt.%的Nd、2.98wt.%的Tb、0.05wt.%的Cu、1.49wt.%的Co、0.25wt.%的Ga、0.27wt.%的Zr、0.46wt.%的Al、0.99wt.%的B、65.72wt.%的Fe,百分比是指在所述钕铁硼磁体材料中的质量百分比;余量为不可避免的杂质。
本发明中,所述的钕铁硼磁体材料,以质量含量百分比计,较佳地由如下组分组成:27.44wt.%的Nd、2.98wt.%的Tb、0.15wt.%的Cu、1.49wt.%的Co、0.2wt.%的Ga、0.27wt.%的Zr、0.46wt.%的Al、0.99wt.%的B、65.72wt.%的Fe,百分比是指在所述钕铁硼磁体材料中的质量百分比,余量为不可避免的杂质。
本发明中,较佳地所述的钕铁硼磁体材料中晶粒的晶界处和中心部分分布Tb;较佳地,所述晶界处分布的Tb的含量高于所述晶粒的中心部分分布的Tb的含量。其中,所述的结晶处指的是两个主相之间的分隔。
本发明中,较佳地,所述的N分布在晶界处。
本发明中,较佳地,所述的Co分布在晶界三角区。
本发明中,较佳地,在钕铁硼磁体材料的晶界三角区处,所述Tb的分布与所述Co的分布不重叠。
本发明中,本领域技术人员知晓,所述的晶界三角区指的是三个晶粒之间形成的缝隙,所述晶粒指的是钕铁硼磁体材料晶粒。
本发明中,本领域技术人员知晓Nd为钕,Fe为铁,B为硼,Tb为铽,Co为钴,Cu为铜,Ga为镓,Al为铝,Mn为锰,Zr为锆,Ti为钛,Nb为铌,Hf为铪。
本发明还提供了一种用于制备钕铁硼磁体材料的主合金,所述的主合金 的组成为Nd a-Fe b-B c-Tb d-Co e-Cu f-Ga g-Al x-Mn y-N h;其中,a、b、c、d、e、f、g、h、x和y为各元素占所述主合金的质量分数,a为26~30wt.%,b为64~68wt.%,c为0.96~1.1wt.%,d为0.5~5wt.%,e为0.5~2.6wt.%,f为0.05~0.3wt.%、g为0.05~0.3wt.%、x为≤0.04wt.%但不为0wt.%或0.46~0.6wt.%,y为0~0.04wt.%,h为0.2~0.5wt.%,百分比是指在所述主合金中的质量百分比。
本发明中,所述的a较佳地为28~29wt.%,例如,28.46wt.%,百分比是指在所述主合金中的质量百分比。
本发明中,所述的b较佳地为65.5~67.5wt.%,例如,65.62wt.%、66.63wt.%、66.7wt.%、66.73wt.%、66.78wt.%、66.83wt.%或67.16wt.%,百分比是指在所述主合金中的质量百分比。
本发明中,所述的c较佳地为0.98~1wt.%,例如,0.99wt.%,百分比是指在所述主合金中的质量百分比。
本发明中,所述的d较佳地为1~1.5wt.%,更佳地为1.1~1.3wt.%,例如,1.2wt.%或1.3wt.%,百分比是指在所述主合金中的质量百分比。
本发明中,所述的e较佳地为1.4~2.6wt.%,例如,1.49wt.%或2.6wt.%,百分比是指在所述主合金中的质量百分比。
本发明中,所述的f较佳地为0.05~0.16wt.%,例如0.05wt.%或0.15wt.%,百分比是指在所述主合金中的质量百分比。
本发明中,所述的g较佳地为0.1~0.25wt.%,例如,0.2wt.%或0.25wt.%,百分比是指在所述主合金中的质量百分比。
本发明中,所述的h较佳地为0.25~0.3wt.%,例如,0.27wt.%或0.3wt.%,百分比是指在所述主合金中的质量百分比。
本发明中,所述的x较佳地为0.02~0.04wt.%或0.45~0.47wt.%,例如,0.03wt.%或0.46wt.%,百分比是指在所述主合金中的质量百分比。
本发明中,所述的y较佳地为0.02~0.04wt.%,例如0.03wt.%,百分比是指在所述主合金中的质量百分比。
本发明中,所述主合金的成分较佳地为 Nd a-Fe b-B c-Tb d-Co e-Cu f-Ga g-Al x-Mn y-N h;其中,a、b、c、d、e、f、g、h、x和y为各元素占所述主合金的质量分数,a为28~29wt.%,b为65.5~67.5wt.%,c为0.98~1wt.%,d为1~1.5wt.%,e为1.4~2.6wt.%,f为0.05~0.16wt.%、g为0.1~0.25wt.%、x为0.02~0.04wt.%或0.45~0.47wt.%,y为0.02~0.04wt.%,h为0.25~0.3wt.%,百分比是指在所述主合金中的质量百分比。
本发明中,所述的主合金的成分较佳地为Nd 28.46Fe 66.73B 0.99Tb 1.2Co 1.49Cu 0.15Ga 0.25Zr 0.27Al 0.46,其中,下标的数值为各元素占所述主合金的质量百分数。
本发明中,所述的主合金的成分较佳地为Nd 28.46Fe 66.63B 0.99Tb 1.3Co 1.49Cu 0.15Ga 0.25Zr 0.27Al 0.46,其中,下标的数值为各元素占所述主合金的质量百分数。
本发明中,所述的主合金的成分较佳地为Nd 28.46Fe 66.73B 0.99Tb 1.2Co 1.49Cu 0.15Ga 0.25Ti 0.27Al 0.46,其中,下标的数值为各元素占所述主合金的质量百分数。
本发明中,所述的主合金的成分较佳地为Nd 28.46Fe 66.7B 0.99Tb 1.2Co 1.49Cu 0.15Ga 0.25Zr 0.27Al 0.46Mn 0.03,其中,下标的数值为各元素占所述主合金的质量百分数。
本发明中,所述的主合金的成分较佳地为Nd 28.46Fe 65.62B 0.99Tb 1.2Co 2.6Cu 0.15Ga 0.25Zr 0.27Al 0.46,其中,下标的数值为各元素占所述主合金的质量百分数。
本发明中,所述的主合金的成分较佳地为Nd 28.46Fe 67.16B 0.99Tb 1.2Co 1.49Cu 0.15Ga 0.25Zr 0.27Al 0.03,其中,下标的数值为各元素占所述主合金的质量百分数。
本发明中,所述的主合金的成分较佳地为Nd 28.46Fe 66.83B 0.99Tb 1.2Co 1.49Cu 0.05Ga 0.25Zr 0.27Al 0.46,其中,下标的数值为各元素占所述主合金的质量百分数。
本发明中,所述的主合金的成分较佳地为 Nd 28.46Fe 66.78B 0.99Tb 1.2Co 1.49Cu 0.15Ga 0.2Zr 0.27Al 0.46,其中,下标的数值为各元素占所述主合金的质量百分数。
本发明中,所述主合金的制备方法可为本领域常规的制备方法,通常如下:(1)制备含有上述组分的主合金溶液;(2)将所述主合金溶液通过旋转的辊轮,冷却,形成主合金铸片,即可。
步骤(2)中,所述冷却一般为冷却至700~900℃。
步骤(2)中,形成所述主合金铸片后,一般通过收集器收集并冷却至50℃以下。
本发明还提供了一种用于制备钕铁硼磁体材料的辅合金,所述的辅合金的组成为Nd i-Fe j-B k-Tb l-Co m-Cu n-Ga o-Al r-Mn t-N p;其中,i、j、k、l、m、n、o、p、r和t为各元素占所述辅合金的质量分数,i为5~30wt.%、j为59~65wt.%、k为0.98~1wt.%、l为5~25wt.%、m为0.5~2.7wt.%、n为0.05~0.3wt.%、o为0.05~0.3、r为≤0.04wt.%但不为0wt.%或0.46~0.6wt.%,t为0~0.04wt.%,p为0~0.5wt.%,百分比是指在所述辅合金中的质量百分比。
本发明中,所述的i较佳地为15~25wt.%,更佳地为19~21wt.%,例如,20wt.%,百分比是指在所述辅合金中的质量百分比。
本发明中,所述的j较佳地为59~61wt.%,例如,59.25wt.%、60.33wt.%、60.36wt.%、60.39wt.%、60.41wt.%、60.46wt.%或60.79wt.%,百分比是指在所述辅合金中的质量百分比。
本发明中,所述的k较佳地为0.98~0.99wt.%,例如,0.99wt.%,百分比是指在所述辅合金中的质量百分比。
本发明中,所述的l较佳地为15~20wt.%,例如,16wt.%,百分比是指在所述辅合金中的质量百分比。
本发明中,所述的m较佳地为1.45~2.6wt.%,例如,1.49wt.%或2.6wt.%,百分比是指在所述辅合金中的质量百分比。
本发明中,所述的n较佳地为0.05~0.16wt.%,例如,0.05wt.%或0.15wt.%,百分比是指在所述辅合金中的质量百分比。
本发明中,所述的o较佳地为0.2~0.26wt.%,例如,0.2wt.%或0.25wt.%,百分比是指在所述辅合金中的质量百分比。
本发明中,所述的r较佳地为0.02~0.04wt.%或0.46~0.47wt.%,例如0.03wt.%或0.46wt.%,百分比是指在所述辅合金中的质量百分比。
本发明中,所述的t较佳地为0.01~0.04wt.%,例如,0.03wt.%,百分比是指在所述辅合金中的质量百分比。
本发明中,所述的p较佳地为0.26~0.3wt.%,例如,0.27wt.%或0.3wt.%,百分比是指在所述辅合金中的质量百分比。
本发明中,所述辅合金的组成较佳地为Nd i-Fe j-B k-Tb l-Co m-Cu n-Ga o-Al r-Mn t-N p;其中,i、j、k、l、m、n、o、p、r和t为各元素占所述辅合金的质量分数,i为19~21wt.%、j为59~61wt.%、k为0.98~0.99wt.%、l为15~20wt.%、m为1.45~2.6wt.%、n为0.05~0.16wt.%、o为0.2~0.26、r为0.02~0.04wt.%或0.46~0.47wt.%,t为0~0.04wt.%,p为0.26~0.3wt.%,百分比是指在所述辅合金中的质量百分比。
本发明中,所述辅合金的成分较佳地为Nd 20Fe 60.36B 0.99Tb 16Co 1.49Cu 0.15Ga 0.25Zr 0.3Al 0.46,下标的数值为各元素占所述辅合金的质量百分数。
本发明中,所述辅合金的成分较佳地为Nd 20Fe 60.39B 0.99Tb 16Co 1.49Cu 0.15Ga 0.25Ti 0.27Al 0.46,下标的数值为各元素占所述辅合金的质量百分数。
本发明中,所述辅合金的成分较佳地为Nd 20Fe 60.33B 0.99Tb 16Co 1.49Cu 0.15Ga 0.25Zr 0.3Al 0.46Mn 0.03,下标的数值为各元素占所述辅合金的质量百分数。
本发明中,所述辅合金的成分较佳地为Nd 20Fe 59.25B 0.99Tb 16Co 2.6Cu 0.15Ga 0.25Zr 0.3Al 0.46,下标的数值为各元素占所述辅合金的质量百分数。
本发明中,所述辅合金的成分较佳地为 Nd 20Fe 60.79B 0.99Tb 16Co 1.49Cu 0.15Ga 0.25Zr 0.3Al 0.03,下标的数值为各元素占所述辅合金的质量百分数。
本发明中,所述辅合金的成分较佳地为Nd 20Fe 60.46B 0.99Tb 16Co 1.49Cu 0.05Ga 0.25Zr 0.3Al 0.46,下标的数值为各元素占所述辅合金的质量百分数。
本发明中,所述辅合金的成分较佳地为Nd 20Fe 60.41B 0.99Tb 16Co 1.49Cu 0.15Ga 0.2Zr 0.3Al 0.46,下标的数值为各元素占所述辅合金的质量百分数。
本发明中,所述辅合金的制备方法可为本领域常规的制备方法,通常如下:(1)制备含上述组分的辅合金溶液;(2)将所述辅合金溶液通过旋转的辊轮,冷却,形成辅合金铸片,即得。
步骤(2)中,所述冷却一般为冷却至700~900℃。
步骤(2)中,形成所述辅合金铸片后,一般通过收集器收集并冷却至50℃以下。
本发明还提供了一种钕铁硼磁体材料的制备方法,将上述制备得到的主合金和辅合金通过双合金法即可制备的所述的钕铁硼磁体材料,所述主合金与所述辅合金的质量比为(9~30):1。
本发明中,所述的主合金与所述的辅合金的质量比较佳地为(6~15):1,更佳地为(6~8):1,例如88:12或86:14。
本发明中,所述的双合金法制备工艺通常是将主合金和辅合金混匀后得混合合金粉,将所述的混合合金粉依次经烧结、时效处理即可。
其中,所述的混匀可为本领域常规,通常将主合金和辅合金混合后经氢破和气流磨处理,或分别将所述的主合金和辅合金经氢破和气流磨处理后混匀。
其中,所述氢破处理的操作条件可为本领域常规,较佳地在0.067~0.098MPa的氢气压力下饱和吸氢,在480℃~530℃内脱氢;更佳地在510℃~530℃内脱氢。
其中,本领域技术人员知晓,经氢破和气流磨处理后还包括混料处理。所述混料的时间较佳地为3小时以上,更佳地为3~6小时。
其中,进行所述混料处理的设备可为本领域常规,较佳地为三维混料机。
其中,所述气流磨处理的操作和条件可为本领域常规,较佳地使得经气流磨处理后的粉体的粒径在3.7~4.2μm之间即可,更佳地为3.7~4μm。
其中,所述的烧结处理的操作和条件可为本领域常规,所述烧结的温度较佳地为1050~1085℃,更佳地为1070~1085℃,所述烧结的时间为4~7小时。
其中,所述的时效处理可为本领域常规。所述时效处理的温度通常为460~520℃,所述时效处理的时间通常为4~10小时。
本发明还提供了一种由上述制备方法得到的钕铁硼磁体材料。
本发明还提供了一种所述钕铁硼磁体材料在电机中作为电子元件的应用。
本发明中,所述的电机较佳地为新能源汽车驱动电机、空调压缩机或工业伺服电机。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:本申请的磁体材料的Hcj和Br均较高,同时Br和Hcj的温度系数较低;其中Hcj可达13.39kOe以上,Br可达26.8kGs以上;且20-100℃Br温度系数|α|可达0.092(Br)%/℃以下,20-100℃Hcj温度系数|β|可达0.46(Hcj)%/℃以下。
附图说明
图1为实施例7中的钕铁硼磁体材料的微观结构中的元素分布。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常 规方法和条件,或按照商品说明书选择。
实施例1
1、本实施例中制备钕铁硼磁体材料所用的原料为:主合金为Nd 28.46Fe 66.73B 0.99Tb 1.2Co 1.49Cu 0.15Ga 0.25Zr 0.27Al 0.46;辅合金为Nd 20Fe 60.36B 0.99Tb 16Co 1.49Cu 0.15Ga 0.25Zr 0.3Al 0.46,其中,下标的数值为各元素占所述主合金或辅合金的质量百分数;其中主合金与辅合金的质量比为88:12。
主合金的制备工艺为:(1)将表1所示主合金中的各元素制备成主合金溶液;(2)将主合金溶液通过旋转的辊轮,冷却至温度在700~900℃的范围,形成厚度均匀的主合金铸片;(3)将主合金铸片通过收集器收集并冷却至50℃以下,即得。
辅合金的制备工艺为:(1)将表1所示辅合金中的各元素制备成辅合金溶液;(2)将辅合金溶液通过旋转的辊轮,冷却至温度在700~900℃的范围,形成厚度均匀的辅合金铸片;(3)将辅合金铸片通过收集器收集并冷却至50℃以下,即得。
在下表中,wt.%是指各组分的质量百分比,“/”表示未添加该元素。“Br”为剩余磁通密度,“Hcj”为内禀矫顽力。
表1各实施例和对比例所用的主合金和辅合金的原料以及质量比
Figure PCTCN2020100571-appb-000001
Figure PCTCN2020100571-appb-000002
注:不足100%的部分为不可避免的杂质。
2、本实施例中钕铁硼磁体材料的制备工艺如下:采用双合金法制备得到,首先将表1所示的主合金和辅合金按比例混合后依次经氢破、气流磨处理和混料得混合合金粉体;其中,氢破是在0.067MPa的氢气压力下饱和吸氢,在510℃下脱氢,混料是在三维混料机中处理3小时,经气流磨处理后的混合合金粉体的粒径为3.7μm。接着将混合合金粉体依次在1070℃温度下烧结5小时、在460℃条件下经4小时的时效处理即得。
表2各实施例和对比例中钕铁硼磁体材料的制备工艺
  脱氢的温度℃ 粉体的粒径μm 烧结的温度℃
实施例1 510 3.7 1070
实施例2 510 3.7 1085
实施例3 530 3.7 1085
实施例4 490 3.7 1085
实施例5 530 4.2 1085
实施例6 530 4.0 1060
实施例7 510 3.7 1070
实施例8 510 3.7 1070
实施例9 510 3.7 1070
实施例10 510 3.7 1070
实施例11 510 3.7 1070
实施例12 510 3.7 1070
对比例1 510 3.7 1070
对比例2 510 3.7 1070
对比例3 510 3.7 1070
对比例4 510 3.7 1070
对比例5 510 3.7 1070
对比例6 510 3.7 1070
实施例2~12和对比例1~6按表1所示原料分别制得主合金和辅合金,其主合金和辅合金的制备工艺同实施例1。
将实施例2~12和对比例1~6中的主合金和辅合金按表2所示的制备工艺制得钕铁硼磁体材料,表2中未涉及的参数与实施例1相同。
3、最终得到的钕铁硼磁体材料中的各组分如下表3所示。
表3各实施例和对比例中磁体材料组分的质量百分含量
Figure PCTCN2020100571-appb-000003
注:不足100%的部分为不可避免的杂质。
效果实施例1
(1)磁性能检测
磁性能评价:钕铁硼磁体材料使用中国计量院的NIM-10000H型BH大块稀土永磁无损测量系统进行磁性能检测。下表4所示为磁性能检测结果。
表4
Figure PCTCN2020100571-appb-000004
(2)钕铁硼磁体材料中各元素的含量以及分布的测试方法
采用FE-EPMA检测:对钕铁硼磁体材料的垂直取向面进行抛光,采用场发射电子探针显微分析仪(FE-EPMA)(日本电子株式会社(JEOL),8530F)检测。首先通过FE-EPMA面扫描确定磁铁中Tb、Co等元素的分布,然后通过FE-EPMA单点定量分析确定关键相中Tb、Co等元素的含量,测试条件为加速电压15kv,探针束流50nA。
根据图1可知,实施例7的钕铁硼磁体材料的微观结构具有以下特征:(1)根据富Tb相的分布规律(如图中a标记所示),推测主相外层具有富Tb壳层;(2)Zr或其他高熔点元素在晶界富集存在,如图中b标记所示;(3)Co在 晶界三角区域富集,Tb也在晶界三角区域富集,但两者的富集区无重叠:Co富集区标记为c-Co,Tb富集区标记为c-Tb。

Claims (10)

  1. 一种钕铁硼磁体材料,其特征在于,以质量百分比计,其包括如下组分:R:29.5~31.5wt.%且RH>1.5wt.%;
    Cu:0.05~0.25wt.%;
    Co:0.42~2.6wt.%;
    Ga:0.20~0.3wt.%;
    N:0.25~0.3wt.%,所述N包括Zr、Nb、Hf和Ti中的一种或多种;
    Al:0.46~0.6wt.%或Al≤0.04wt.%但不为0wt.%;
    B:0.98~1wt.%;
    Fe:64~68wt.%;
    其中:所述R为稀土元素,所述R中至少包括Nd和RH;所述RH为重稀土元素,所述RH中包括Tb;
    所述Tb与所述Co的质量比为≤15但不为0。
  2. 如权利要求1所述的钕铁硼磁体材料,其特征在于,所述R的含量为30.15~31wt.%,较佳地为30.1~30.6wt.%,更佳地为30.42wt.%或30.48wt.%;
    和/或,所述R还包含轻稀土元素,较佳地为Pr;
    和/或,所述Nd的含量为27~28wt.%,更佳地为27.13wt.%或27.44wt.%;
    和/或,所述RH在所述R中的质量百分比为9.7~13wt.%,更佳地为9.7~11wt.%,较佳地为9.7wt.%;
    和/或,所述RH的含量为2.8~4wt.%,更佳地为2.9~3.4wt.%,更佳地为2.98wt.%或3.35wt.%;
    和/或,所述Cu的含量为0.05~0.16wt.%,较佳地为0.05wt.%或0.15wt.%;
    和/或,所述Co的含量为1.48~2.7wt.%,较佳地为1.49wt.%、1.51wt.%或2.6wt.%,较佳地为1.48~1.51wt.%;
    和/或,所述Ga的含量为0.2~0.26wt.%,较佳地为0.2wt.%或0.25wt.%;
    和/或,所述N的含量为0.26~0.3wt.%,较佳地为0.26wt.%、0.27wt.%或0.3wt.%;
    和/或,所述N的种类为Zr、Nb、Hf和Ti中的一种或多种;较佳地为Zr和/或Ti;
    和/或,所述Al的含量为0.46~0.5wt.%或0.02~0.04wt.%,较佳地为0.03wt.%、0.45wt.%或0.46wt.%;
    和/或,所述B的含量为0.98~0.99wt.%,较佳地为0.99wt.%;
    和/或,所述Fe的含量为64~66wt.%,较佳地为64.86wt.%、65.7wt.%、65.72wt.%或65.74wt.%;
    和/或,所述Tb与所述Co的质量比为(1~15):1,较佳地为(1~3):1;更佳地为3.35:1.49或2:1;
    和/或,所述的钕铁硼磁体材料中还包括Mn;
    和/或,所述的钕铁硼磁体材料中晶粒的晶界处和中心部分分布Tb;较佳地,所述晶界处分布的Tb的含量高于所述晶粒的中心部分分布的Tb的含量;
    和/或,所述的N分布在晶界处;
    和/或,所述的Co分布在晶界三角区;
    和/或,在钕铁硼磁体材料的晶界三角区处,所述Tb的分布与所述Co的分布不重叠。
  3. 如权利要求2所述的钕铁硼磁体材料,其特征在于,所述Mn的含量≤0.035wt.%但不为0wt.%,较佳地为0.01~0.035wt.%,更佳地为0.03wt.%。
  4. 如权利要求1所述的钕铁硼磁体材料,其特征在于,以质量含量百分比计,其包括如下组分:27~28wt.%的Nd、2.8~4wt.%的Tb、0.05~0.16wt.%的Cu、1.48~2.7wt.%的Co、0.2~0.26wt.%的Ga、0.25~0.3wt.%的N、0.46~0.5wt.%或0.02~0.04wt.%的Al、0.98~0.99wt.%的B、64~66wt.%的Fe,百分比是指在所述钕铁硼磁体材料中的质量百分比;其中N为Zr和/或Ti;所述的Tb占所述Nd和Tb的总质量的9.7~13wt.%,所述Tb与所述Co的质量比为(1~15):1;
    较佳地,所述的钕铁硼磁体材料,以质量含量百分比计,其包括如下组分:27~28wt.%的Nd、2.8~4wt.%的Tb、0.05~0.16wt.%的Cu、1.48~2.7wt.% 的Co、0.2~0.26wt.%的Ga、0.25~0.3wt.%的N、0.46~0.5wt.%或0.02~0.04wt.%的Al、0.98~0.99wt.%的B、64~66wt.%的Fe、0.01~0.035wt.%的Mn,百分比是指在所述钕铁硼磁体材料中的质量百分比;其中N为Zr和/或Ti;所述的Tb占所述Nd和Tb的总质量的9.7~13wt.%,所述Tb与所述Co的质量比为(1~15):1;
    更佳地,所述的钕铁硼磁体材料,以质量含量百分比计,其包括如下组分:27~28wt.%的Nd、2.9~3.4wt.%的Tb、0.05~0.16wt.%的Cu、1.48~2.7wt.%的Co、0.2~0.26wt.%的Ga、0.26~0.3wt.%的N、0.46~0.5wt.%或0.02~0.04wt.%的Al、0.98~0.99wt.%的B、64~66wt.%的Fe,百分比是指在所述钕铁硼磁体材料中的质量百分比;其中N为Zr和/或Ti;所述的Tb占所述Nd和Tb的总质量的9.7~11wt.%,所述Tb与所述Co的质量比为(1~3):1;较佳地,所述的钕铁硼磁体材料,以质量含量百分比计,其包括如下组分:27~28wt.%的Nd、2.9~3.4wt.%的Tb、0.05~0.16wt.%的Cu、1.48~2.7wt.%的Co、0.2~0.26wt.%的Ga、0.26~0.3wt.%的N、0.46~0.5wt.%或0.02~0.04wt.%的Al、0.98~0.99wt.%的B、64~66wt.%的Fe、0.01~0.035wt.%的Mn,百分比是指在所述钕铁硼磁体材料中的质量百分比;其中N为Zr和/或Ti;所述的Tb占所述Nd和Tb的总质量的9.7~11wt.%,所述Tb与所述Co的质量比为(1~3):1。
  5. 一种用于制备钕铁硼磁体材料的主合金,其特征在于,所述的主合金的组成为Nd a-Fe b-B c-Tb d-Co e-Cu f-Ga g-Al x-Mn y-N h;其中,a、b、c、d、e、f、g、h、x和y为各元素占所述主合金的质量分数,a为26~30wt.%,b为64~68wt.%,c为0.96~1.1wt.%,d为0.5~5wt.%,e为0.5~2.6wt.%,f为0.05~0.3wt.%、g为0.05~0.3wt.%、x为≤0.04wt.%但不为0wt.%或0.46~0.6wt.%,y为0~0.04wt.%,h为0.2~0.5wt.%,百分比是指在所述主合金中的质量百分比;
    较佳地,所述的a为28~29wt.%,更佳地为28.46wt.%;和/或,所述b为65.5~67.5wt.%,较佳地为65.62wt.%、66.63wt.%、66.7wt.%、66.73wt.%、66.78wt.%、66.83wt.%或67.16wt.%;和/或,所述c为0.98~1wt.%,较佳地为0.99wt.%;和/或,所述d为1~1.5wt.%,较佳地为1.1~1.3wt.%,更佳地为1.2wt.% 或1.3wt.%;和/或,所述e为1.4~2.6wt.%,较佳地为1.49wt.%或2.6wt.%;和/或,所述f为0.05~0.16wt.%,较佳地为0.05wt.%或0.15wt.%;和/或,所述g为0.1~0.25wt.%,较佳地为0.2wt.%或0.25wt.%;和/或,所述h为0.25~0.3wt.%,较佳地为0.27wt.%;和/或,所述x为0.02~0.04wt.%或0.45~0.47wt.%,较佳地为0.03wt.%或0.46wt.%;和/或,所述的y为0.02~0.04wt.%,较佳地为0.03wt.%,百分比是指在所述主合金中的质量百分比。
  6. 如权利要求5所述的主合金,其特征在于,所述主合金的成分为Nd a-Fe b-B c-Tb d-Co e-Cu f-Ga g-Al x-Mn y-N h;其中,a、b、c、d、e、f、g、h、x和y为各元素占所述主合金的质量分数,a为28~29wt.%,b为65.5~67.5wt.%,c为0.98~1wt.%,d为1~1.5wt.%,e为1.4~2.6wt.%,f为0.05~0.16wt.%、g为0.1~0.25wt.%、x为0.02~0.04wt.%或0.45~0.47wt.%,y为0.02~0.04wt.%,h为0.25~0.3wt.%,百分比是指在所述主合金中的质量百分比。
  7. 一种用于制备钕铁硼磁体材料的辅合金,其特征在于,所述的辅合金的组成为Nd i-Fe j-B k-Tb l-Co m-Cu n-Ga o-Al r-Mn t-N p;其中,i、j、k、l、m、n、o、p、r和t为各元素占所述辅合金的质量分数,i为5~30wt.%、j为59~65wt.%、k为0.98~1wt.%、l为5~25wt.%、m为0.5~2.7wt.%、n为0.05~0.3wt.%、o为0.05~0.3wt.%、r为≤0.04wt.%但不为0wt.%或0.46~0.6wt,t为0~0.04wt.%,p为0~0.5wt.%,百分比是指在所述辅合金中的质量百分比;
    较佳地,所述i为15~25wt.%,较佳地为19~21wt.%;和/或,所述j为59~61wt.%,较佳地为59.25wt.%、60.33wt.%、60.36wt.%、60.39wt.%、60.41wt.%、60.46wt.%或60.79wt.%;和/或,所述k为0.98~0.99wt.%;和/或,所述l为15~20wt.%,较佳地为16wt.%;和/或,所述m为1.45~2.6wt.%,较佳地为1.49wt.%或2.6wt.%;和/或,所述n为0.05~0.16wt.%,较佳地为0.05wt.%或0.15wt.%;和/或,所述o为0.2~0.26wt.%,较佳地为0.2wt.%或0.25wt.%;和/或,所述r为0.01~0.04wt.%或0.46~0.47wt.%,较佳地为0.03wt.%或0.46wt.%;和/或,所述t为0.01~0.04wt.%,较佳地为0.03wt.%;和/或,所述p为0.26~0.3wt.%,较佳地为0.27wt.%或0.3wt.%;
    更佳地,所述辅合金的组成为Nd i-Fe j-B k-Tb l-Co m-Cu n-Ga o-Al r-Mn t-N p;其中,i、j、k、l、m、n、o、p、r和t为各元素占所述辅合金的质量分数,i为19~21wt.%、j为59~61wt.%、k为0.98~0.99wt.%、l为15~20wt.%、m为1.45~2.6wt.%、n为0.05~0.16wt.%、o为0.2~0.26wt.%、r为0.01~0.04wt.%或0.46~0.47wt.%,t为0~0.04wt.%,p为0.26~0.3wt.%。
  8. 一种钕铁硼磁体材料的制备方法,其特征在于,采用权利要求5或6所述的主合金和权利要求7所述的辅合金通过双合金法制备即可,所述主合金与所述辅合金的质量比为(9~30):1,较佳地为(6~15):1,更佳地为(6~8):1;
    较佳地,所述的双合金法的制备工艺是将主合金和辅合金混匀后得混合合金粉,将所述的混合合金粉依次经烧结、时效处理即可;较佳地,所述的混匀是将主合金和辅合金混合后经氢破和气流磨处理,或分别将所述的主合金和辅合金经氢破和气流磨处理后混匀;
    更佳地,所述的氢破为在0.067~0.098MPa的氢气压力下饱和吸氢,在480℃~530℃内脱氢;更佳地,经气流磨处理后的粉体的粒径在3.7~4.2μm之间;更佳地,所述烧结的温度较佳地为1050~1085℃,更佳地为1070~1085℃,所述烧结的时间为4~7小时;更佳地,所述时效处理的温度为460~520℃,所述时效处理的时间为4~10小时。
  9. 一种钕铁硼磁体材料,其特征在于,其采用权利要求8所述的制备方法制得。
  10. 如权利要求1-4和9中任一项所述的钕铁硼磁体材料在电机中作为电子元件的应用;所述的电机较佳地为新能源汽车驱动电机、空调压缩机或工业伺服电机。
PCT/CN2020/100571 2019-09-30 2020-07-07 一种钕铁硼磁体材料及其制备方法和应用 WO2021063061A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022513458A JP7330365B2 (ja) 2019-09-30 2020-07-07 ネオジム鉄ホウ素磁石材料、製造方法、並びに応用
KR1020227006942A KR102589815B1 (ko) 2019-09-30 2020-07-07 네오디뮴철붕소 자성체재료와 그 제조방법 및응용
EP20871375.0A EP4016556A4 (en) 2019-09-30 2020-07-07 NEODYMIUM-IRON-BORON MAGNETIC MATERIAL, METHOD FOR PREPARATION AND APPLICATION
US17/636,931 US20220359107A1 (en) 2019-09-30 2020-07-07 Neodymium-iron-boron magnetic material, preparation method therefor and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910943538.9A CN110556223B (zh) 2019-09-30 2019-09-30 一种钕铁硼磁体材料及其制备方法和应用
CN201910943538.9 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021063061A1 true WO2021063061A1 (zh) 2021-04-08

Family

ID=68742132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100571 WO2021063061A1 (zh) 2019-09-30 2020-07-07 一种钕铁硼磁体材料及其制备方法和应用

Country Status (6)

Country Link
US (1) US20220359107A1 (zh)
EP (1) EP4016556A4 (zh)
JP (1) JP7330365B2 (zh)
KR (1) KR102589815B1 (zh)
CN (1) CN110556223B (zh)
WO (1) WO2021063061A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556223B (zh) * 2019-09-30 2021-07-02 厦门钨业股份有限公司 一种钕铁硼磁体材料及其制备方法和应用
CN110942878B (zh) * 2019-12-24 2021-03-26 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN110993234B (zh) * 2019-12-24 2021-06-25 厦门钨业股份有限公司 高Cu高Al的钕铁硼磁体及其制备方法
CN111081443B (zh) * 2020-01-07 2023-05-09 福建省长汀金龙稀土有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN111223628B (zh) * 2020-02-26 2022-02-01 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物、制备方法、应用
CN115083707A (zh) * 2021-03-10 2022-09-20 福建省长汀金龙稀土有限公司 主辅合金系钕铁硼磁体材料及其制备方法
CN115083708A (zh) * 2021-03-10 2022-09-20 福建省长汀金龙稀土有限公司 一种钕铁硼磁体及其制备方法
CN114373593B (zh) * 2022-03-18 2022-07-05 宁波科宁达工业有限公司 一种r-t-b磁体及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302318A (ja) * 2008-06-13 2009-12-24 Hitachi Metals Ltd RL−RH−T−Mn−B系焼結磁石
JP2014027268A (ja) * 2012-06-22 2014-02-06 Tdk Corp 焼結磁石
CN103903824A (zh) * 2012-12-27 2014-07-02 比亚迪股份有限公司 一种稀土永磁材料及其制备方法
CN103996524A (zh) * 2014-05-11 2014-08-20 沈阳中北通磁科技股份有限公司 一种含La和Ce的钕铁硼稀土永磁体的制造方法
CN104240886A (zh) * 2014-09-12 2014-12-24 沈阳中北通磁科技股份有限公司 一种含Tb的多主相钕铁硼永磁铁及制造方法
CN105655076A (zh) * 2016-04-06 2016-06-08 湖北汽车工业学院 驱动电机用多主相高矫顽力钕铁硼永磁材料及其制备方法
CN106782974A (zh) * 2016-12-26 2017-05-31 浙江中科磁业有限公司 一种钕铁硼磁体的制备方法
CN107393711A (zh) * 2017-07-12 2017-11-24 浙江中科磁业有限公司 一种高矫顽力磁体的制备方法
CN108831650A (zh) * 2018-06-21 2018-11-16 宁波可可磁业股份有限公司 一种钕铁硼磁体及其制备方法
CN110556223A (zh) * 2019-09-30 2019-12-10 厦门钨业股份有限公司 一种钕铁硼磁体材料及其制备方法和应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4766452B2 (ja) 2005-03-16 2011-09-07 Tdk株式会社 希土類永久磁石
JP5527434B2 (ja) * 2010-12-27 2014-06-18 Tdk株式会社 磁性体
CN103887028B (zh) * 2012-12-24 2017-07-28 北京中科三环高技术股份有限公司 一种烧结钕铁硼磁体及其制造方法
CN103714939B (zh) * 2013-12-13 2016-05-25 钢铁研究总院 La-Fe基双硬磁主相磁体及其制备方法
WO2015129861A1 (ja) * 2014-02-28 2015-09-03 日立金属株式会社 R-t-b系焼結磁石およびその製造方法
CN104269238B (zh) * 2014-09-30 2017-02-22 宁波科田磁业有限公司 一种高性能烧结钕铁硼磁体和制备方法
JP6582940B2 (ja) 2015-03-25 2019-10-02 Tdk株式会社 R−t−b系希土類焼結磁石及びその製造方法
JP6493138B2 (ja) 2015-10-07 2019-04-03 Tdk株式会社 R−t−b系焼結磁石
JP6536816B2 (ja) * 2015-10-14 2019-07-03 Tdk株式会社 R−t−b系焼結磁石およびモータ
EP3179487B1 (en) * 2015-11-18 2021-04-28 Shin-Etsu Chemical Co., Ltd. R-(fe,co)-b sintered magnet and making method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302318A (ja) * 2008-06-13 2009-12-24 Hitachi Metals Ltd RL−RH−T−Mn−B系焼結磁石
JP2014027268A (ja) * 2012-06-22 2014-02-06 Tdk Corp 焼結磁石
CN103903824A (zh) * 2012-12-27 2014-07-02 比亚迪股份有限公司 一种稀土永磁材料及其制备方法
CN103996524A (zh) * 2014-05-11 2014-08-20 沈阳中北通磁科技股份有限公司 一种含La和Ce的钕铁硼稀土永磁体的制造方法
CN104240886A (zh) * 2014-09-12 2014-12-24 沈阳中北通磁科技股份有限公司 一种含Tb的多主相钕铁硼永磁铁及制造方法
CN105655076A (zh) * 2016-04-06 2016-06-08 湖北汽车工业学院 驱动电机用多主相高矫顽力钕铁硼永磁材料及其制备方法
CN106782974A (zh) * 2016-12-26 2017-05-31 浙江中科磁业有限公司 一种钕铁硼磁体的制备方法
CN107393711A (zh) * 2017-07-12 2017-11-24 浙江中科磁业有限公司 一种高矫顽力磁体的制备方法
CN108831650A (zh) * 2018-06-21 2018-11-16 宁波可可磁业股份有限公司 一种钕铁硼磁体及其制备方法
CN110556223A (zh) * 2019-09-30 2019-12-10 厦门钨业股份有限公司 一种钕铁硼磁体材料及其制备方法和应用

Also Published As

Publication number Publication date
CN110556223B (zh) 2021-07-02
JP2022543490A (ja) 2022-10-12
EP4016556A1 (en) 2022-06-22
JP7330365B2 (ja) 2023-08-21
EP4016556A4 (en) 2022-10-12
CN110556223A (zh) 2019-12-10
KR20220041900A (ko) 2022-04-01
KR102589815B1 (ko) 2023-10-16
US20220359107A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
WO2021063061A1 (zh) 一种钕铁硼磁体材料及其制备方法和应用
WO2021098224A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
WO2021098223A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
US11854736B2 (en) Method of preparing a high-coercivity sintered NdFeB magnet
JP7266751B2 (ja) ネオジム鉄ホウ素磁石材料、原料組成物及び製造方法、並びに応用
CN110047636A (zh) 一种高矫顽力富La/Ce烧结磁体的制备方法
WO2013080605A1 (ja) 希土類焼結磁石
JP2023061988A (ja) 希土類永久磁石材料及びその原料組成物、製造方法、並びに応用
CN112233868A (zh) 一种复合金多相钕铁硼磁体及其制备方法
WO2023174430A1 (zh) 一种r-t-b磁体及其制备方法
TWI806462B (zh) 一種r-t-b磁體及其製備方法
JP2017183318A (ja) R−t−b系焼結磁石
WO2022193818A1 (zh) 一种r-t-b磁体及其制备方法
WO2022193819A1 (zh) 一种r-t-b磁体及其制备方法
JP2024513632A (ja) R-t-b磁石及びその製造方法
TWI776781B (zh) 一種雙殼層釹鐵硼磁體及其製備方法
CN105185499B (zh) 一种高性能烧结钕铁硼稀土永磁材料及其制备方法
JP6488743B2 (ja) R−t−b系焼結磁石
JP6488744B2 (ja) R−t−b系焼結磁石
WO2024114167A1 (zh) 一种烧结钕铁硼磁体及其制备方法
CN114388213A (zh) 一种铈铁硼复合磁性材料及其制备方法
CN114520111A (zh) 稀土钕铁硼废料的处理方法
CN117809923A (zh) 一种低成本低温度系数烧结r-t-b永磁材料及其制备方法
CN115424800A (zh) 一种含有Cu-M相的烧结钕铁硼材料及其制备方法
CN115083709A (zh) 复合主相系钕铁硼磁体材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022513458

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20227006942

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020871375

Country of ref document: EP

Effective date: 20220315

NENP Non-entry into the national phase

Ref country code: DE