WO2021062907A1 - 阳极和阴极同步电化学法去除气态污染物的方法及其装置 - Google Patents

阳极和阴极同步电化学法去除气态污染物的方法及其装置 Download PDF

Info

Publication number
WO2021062907A1
WO2021062907A1 PCT/CN2019/113910 CN2019113910W WO2021062907A1 WO 2021062907 A1 WO2021062907 A1 WO 2021062907A1 CN 2019113910 W CN2019113910 W CN 2019113910W WO 2021062907 A1 WO2021062907 A1 WO 2021062907A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
cathode
gaseous pollutants
electrochemical
electrode
Prior art date
Application number
PCT/CN2019/113910
Other languages
English (en)
French (fr)
Inventor
张礼知
贾法龙
严义清
严方升
李普煊
Original Assignee
华中师范大学
深圳市普瑞美泰环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中师范大学, 深圳市普瑞美泰环保科技有限公司 filed Critical 华中师范大学
Publication of WO2021062907A1 publication Critical patent/WO2021062907A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron

Definitions

  • This application relates to the technical field of gaseous pollutant purification, and in particular to a method and device for removing gaseous pollutants by an anode and cathode synchronous electrochemical method.
  • the gaseous pollutants in the air mainly include formaldehyde, benzene series, organic chlorides, organic ketones, alcohols, ethers, petroleum hydrocarbon compounds, sulfur dioxide and nitrogen oxides, etc. These gaseous pollutants not only cause environmental pollution hazards, but also serious threats. To protect people’s health.
  • the removal methods for gaseous pollutants mainly include adsorption method, biological treatment method, catalytic oxidation method and electrochemical method.
  • electrochemical method has compact device structure, environmental friendliness, no secondary pollution, easy control of electrochemical process, etc. It has attracted much attention because of its characteristics.
  • the existing electrochemical methods to remove gaseous pollutants generally pass the gaseous pollutants into the liquid electrolyte, and achieve the removal of the pollutants through the electrochemical process of the liquid electrolyte.
  • the pollutant removal efficiency of the removal method is low, and it is not suitable for the removal of poorly water-soluble organic pollutants.
  • the main purpose of the present application is to provide a method and device for removing gaseous pollutants by an anode and cathode synchronous electrochemical method, which aims to improve the removal efficiency of pollutants and at the same time can effectively remove organic pollutants with poor water solubility.
  • an anode and cathode synchronous electrochemical method for removing gaseous pollutants proposed in this application includes an electrochemical reactor.
  • the electrochemical reactor includes a power source, an anode, a cathode, a proton exchange membrane, and an anode gas flow.
  • the proton exchange membrane is arranged between the anode and the cathode, the anode is arranged in the anode airflow channel, the cathode is arranged in the cathode airflow channel, the anode It is a first porous conductive adsorption material electrode supporting a metal oxide catalyst, and the cathode is a second porous conductive adsorption material electrode supporting an iron-containing catalyst.
  • the iron-containing catalyst is a composite material catalyst of an iron-containing material and a porous adsorption material carrier.
  • the iron-containing material is at least one of nano-iron, ferric oxide, ferroferric oxide, iron oxyhydroxide, lithium iron phosphate, ferrous molybdate, and metal organic framework materials; and/or,
  • the carbon carrier is at least one of nitrogen-doped carbon, carbon nitride, activated carbon, carbon nanotubes and graphene.
  • the metal oxide catalyst is at least one of a tin oxide catalyst, a chromium oxide catalyst, a manganese oxide catalyst, a lead oxide catalyst, a molybdenum oxide catalyst, an indium oxide catalyst, and a titanium oxide catalyst .
  • the loading range of the iron-containing catalyst is 0.1%-50%; and/or, the loading range of the metal oxide catalyst is 0.1%-50%.
  • the first porous conductive adsorption material electrode is one of a carbon paper electrode, a carbon cloth electrode, a carbon fiber cloth electrode, a carbon particle cloth electrode, and an activated carbon cloth electrode; and/or, the second porous electrode
  • the conductive adsorption material electrode is one of a carbon paper electrode, a carbon cloth electrode, a carbon fiber cloth electrode, a carbon particle cloth electrode, and an activated carbon cloth electrode.
  • electrochemical reactors there are multiple electrochemical reactors, and multiple electrochemical reactors are arranged in parallel or in series.
  • electrochemical reactors there are a plurality of electrochemical reactors, a plurality of electrochemical reactors are arranged in parallel, and the opposite electrodes of two adjacent electrochemical reactors are located in the same air flow channel; and/or, There are a plurality of electrochemical reactors, and the electrochemical reactors are arranged in series, and the opposite electrodes of two adjacent electrochemical reactors are located in the same air flow channel.
  • This application also proposes a method for removing gaseous pollutants by the synchronous electrochemical method of anode and cathode, which is applied to the device for removing gaseous pollutants by the synchronous electrochemical method of anode and cathode as described above.
  • the method of removing gaseous pollutants includes the following steps:
  • the step of passing the air containing gaseous pollutants into the anode air flow channel and the cathode air flow channel respectively includes:
  • a DC voltage of 0.5V-36V is applied between the anode and the cathode, and the reaction temperature range during the removal process is controlled to be minus 20°C to 120°C, and the flow velocity range of the air containing gaseous pollutants is 0.001m/s -10m/s, humidity range is 5%-95%.
  • the metal oxide catalyst can oxidize water molecules adsorbed on the surface of the electrode into active oxygen species, active oxygen species and gaseous pollutants Reaction to achieve its effective removal.
  • the cathode adopts a second porous conductive adsorption material electrode that supports an iron-containing catalyst.
  • the iron-containing catalyst can reduce oxygen to hydrogen peroxide.
  • the hydrogen peroxide and the iron-containing catalyst generate active species such as hydroxyl radicals through the Fenton reaction.
  • the hydroxyl group is free Active species such as base react with gaseous pollutants to achieve effective removal.
  • the device for removing gaseous pollutants of the present application can realize the simultaneous removal of gaseous pollutants by the anode and the cathode, which greatly improves the removal rate of pollutants and the utilization rate of electric energy.
  • both the iron-containing catalyst and the metal oxide catalyst have high activity, and both have good stability, which contributes to the improvement of the pollutant removal rate.
  • the catalyst can efficiently catalyze and decompose a variety of gaseous pollutants, and has a wide range of applications.
  • Fig. 1 is a schematic structural diagram of an embodiment of a device for removing gaseous pollutants according to the present application
  • FIG. 2 is a schematic structural diagram of another embodiment of the device for removing gaseous pollutants according to the present application.
  • FIG. 3 is a schematic diagram of the degradation rate of benzene under different applied voltages in the method for removing gaseous pollutants in this application.
  • Attached icon number description Label name Label name 100 Electrochemical reactor 30 Anode gas flow channel 10 anode 40 Cathode airflow channel 20 cathode 50 Proton exchange membrane
  • This application proposes a device for removing gaseous pollutants by an anode and cathode synchronous electrochemical method, which is used to remove gaseous pollutants.
  • the device for removing gaseous pollutants includes an electrochemical reactor 100, which includes a power supply, an anode 10, The cathode 20, the proton exchange membrane 50, the anode gas flow channel 30 and the cathode gas flow channel 40, the proton exchange membrane 50 is arranged between the anode 10 and the cathode 20, the anode 10 is arranged in the anode gas flow channel 30, and the cathode 20 is arranged in the cathode gas flow channel 40
  • the anode 10 is a first porous conductive adsorbent electrode supporting a metal oxide catalyst
  • the cathode 20 is a second porous conductive adsorbent electrode supporting an iron-containing catalyst.
  • the power supply adopts a direct current power supply.
  • the first porous conductive adsorbent electrode supporting the metal oxide catalyst is used as the anode 10
  • the second porous conductive adsorbent electrode supporting iron-containing catalyst is the cathode 20, and the cathode 20 and the anode 10 are placed between the cathode 20 and the anode 10.
  • Proton exchange membrane 50 and clamp the three layers of anode 10, proton exchange membrane 50 and cathode 20, and the anode 10 is provided with an anode air flow channel 30, the cathode 20 is provided with a cathode air flow channel 40, and the anode 10
  • the anode and cathode are connected to the anode and cathode of the DC power supply through wires, respectively, to obtain a device for removing gaseous pollutants from the anode and cathode by synchronous electrochemical method.
  • the cathode 20 adopts an active component supporting an iron-containing catalyst, which can reduce oxygen to hydrogen peroxide.
  • the hydrogen peroxide and the iron-containing catalyst generate active species such as hydroxyl radicals, active species such as hydroxyl radicals, and gaseous pollutants through Fenton reaction. Reaction to achieve its effective removal.
  • the anode 10 adopts the active component of the metal oxide catalyst, which can oxidize the water molecules adsorbed on the surface of the electrode into active oxygen species, and the active oxygen species react with gaseous pollutants to achieve effective removal thereof.
  • porous conductive adsorbent material may be a porous carbon material or other porous conductive adsorbent materials, all of which fall within the protection scope of the present application.
  • the metal oxide catalyst can oxidize the water molecules adsorbed on the surface of the electrode into active oxygen species.
  • the reactive oxygen species react with gaseous pollutants to achieve their effective removal.
  • the cathode 20 adopts a second porous conductive adsorption material electrode that supports an iron-containing catalyst.
  • the iron-containing catalyst can reduce oxygen to hydrogen peroxide.
  • the hydrogen peroxide and the iron-containing catalyst generate active species such as hydroxyl radicals through the Fenton reaction. Active species such as free radicals react with gaseous pollutants to achieve their effective removal.
  • the device for removing gaseous pollutants by the anode and cathode synchronous electrochemical method of the present application can achieve the simultaneous removal of gaseous pollutants by the anode 10 and the cathode 20, which greatly improves the removal rate of pollutants and the utilization rate of electric energy.
  • both the iron-containing catalyst and the metal oxide catalyst have high activity, and both have good stability, which contributes to the improvement of the pollutant removal rate.
  • the catalyst can efficiently catalyze and decompose a variety of gaseous pollutants, and has a wide range of applications.
  • the device for removing gaseous pollutants by the synchronous electrochemical method of anode and cathode also includes air flow conveying equipment and pipes.
  • the conveying pipes are connected to the anode air flow channel 30 and the cathode air flow channel 40 respectively.
  • the equipment, the conveying equipment is a fan or an air pump.
  • the iron-containing catalyst is a composite material catalyst of an iron-containing material and a porous conductive adsorption carrier.
  • the porous conductive adsorbent material is used as the carrier, and the specific surface is higher, and the iron-containing catalyst can be better supported.
  • the resulting composite material has higher catalyst activity and better stability, which helps to improve the pollutant removal rate. improve.
  • the iron-containing material is at least one of nano-iron, ferric oxide, ferric oxide, iron oxyhydroxide, lithium iron phosphate, ferrous molybdate, and metal organic framework materials.
  • the iron-containing catalyst one or more combinations of the above-mentioned iron-containing materials are selected.
  • the porous conductive adsorption material carrier is at least one of nitrogen-doped carbon, carbon nitride, activated carbon, carbon nanotubes, and graphene.
  • the porous conductive adsorbent material carrier is selected from one or more combinations of the above.
  • the loading amount of the iron-containing catalyst ranges from 0.1% to 50%, for example, the loading amount of the iron-containing catalyst is 0.1%, 1%, 10%, 20%, 40%, or 50%.
  • the load is 1%-5%, such as 1%, 2%, 3%, 4% or 5%.
  • the metal oxide catalyst is at least one of a tin oxide catalyst, a chromium oxide catalyst, a manganese oxide catalyst, a lead oxide catalyst, a molybdenum oxide catalyst, an indium oxide catalyst, and a titanium oxide catalyst.
  • a tin oxide catalyst a chromium oxide catalyst, a manganese oxide catalyst, a lead oxide catalyst, a molybdenum oxide catalyst, an indium oxide catalyst, and a titanium oxide catalyst.
  • the supporting amount of the metal oxide catalyst ranges from 0.1% to 50%.
  • the loading amount of the metal oxide catalyst is 0.1%, 1%, 10%, 20%, 40% or 50%.
  • the load is 1%-5%, such as 1%, 2%, 3%, 4% or 5%.
  • the first porous conductive adsorption material electrode is one of a carbon paper electrode, a carbon cloth electrode, a carbon fiber cloth electrode, a carbon particle cloth electrode, and an activated carbon cloth electrode.
  • the second porous conductive adsorption material electrode is one of a carbon paper electrode, a carbon cloth electrode, a carbon fiber cloth electrode, a carbon particle cloth electrode, and an activated carbon cloth electrode.
  • first porous adsorbent material electrode and the second porous adsorbent material electrode can be the same material electrode, or different material electrodes can be used.
  • multiple electrochemical reactors 100 are provided, and multiple electrochemical reactors 100 are provided in parallel. It is understandable that multiple electrochemical reactors 100 are arranged in parallel here, and two adjacent electrochemical reactors 100 are arranged separately, so that multiple electrochemical reactors 100 can be used to degrade gaseous pollutants at the same time. Increase the gas processing volume per unit time and improve its removal efficiency. It should be noted that the polarities of the opposite electrodes of the two adjacent electrochemical reactors 100 can be the same or opposite, which is not limited here. That is, the opposite electrodes of two adjacent electrochemical reactors 100 may be the same as the cathode 20 and the same as the anode 10, or one is the cathode 20 and the other is the anode 10.
  • multiple electrochemical reactors 100 are provided, and multiple electrochemical reactors 100 are provided in series.
  • the multiple electrochemical reactors 100 are arranged in series, so that the pollutant-containing gas sequentially passes through the multiple electrochemical reactors 100, and finally the pollutants are completely removed.
  • the polarities of the opposite electrodes of two adjacent electrochemical reactors 100 can be the same or opposite, which is not limited here.
  • the electrochemical reactors 100 there are multiple electrochemical reactors 100, and multiple electrochemical reactors 100 are arranged in parallel, and the opposite electrodes of two adjacent electrochemical reactors 100 are located in the same gas flow. In the channel.
  • Such an arrangement can relatively reduce the distance between two adjacent electrochemical reactors 100, thereby relatively reducing the occupied size of the overall device, and greatly improving the space utilization rate of the device.
  • the polarities of the two electrodes located in the same air flow channel can be the same or opposite, which is not limited here.
  • the plurality of electrochemical reactors 100 are arranged in series, and the opposite electrodes of two adjacent electrochemical reactors 100 are located in the same air flow channel. Similarly, such an arrangement can also relatively reduce the occupied size of the overall device, and greatly improve the space utilization of the device.
  • This application also proposes a method for removing gaseous pollutants by an anode and cathode synchronous electrochemical method, which is applied to the device for removing gaseous pollutants by an anode and cathode synchronous electrochemical method as described above.
  • the anode and cathode synchronous electrochemical method includes the following steps:
  • the air containing gaseous pollutants is passed into the anode air flow channel 30 and the cathode air flow channel 40 respectively.
  • the air containing gaseous pollutants is continuously passed into the anode air flow channel 30 and the cathode air flow channel 40.
  • an instrument is used to detect the concentration of gaseous pollutants at the gas outlets of the anode gas flow channel 30 and the cathode gas flow channel 40. Of course, it can also detect the concentration of gaseous pollutants in the air treated by the device.
  • the step of passing the air containing gaseous pollutants through the anode air flow channel 30 and the cathode air flow channel 40 respectively includes:
  • a DC voltage of 0.5V-36V is applied between the anode 10 and the cathode 20, and the reaction temperature range during the removal process is controlled to be minus 20°C to 120°C, and the flow rate of the air containing gaseous pollutants ranges from 0.001m/s-10m /s, the humidity range is 5%-95%.
  • the DC voltage range is preferably 2V-5V, for example, the applied voltage is 2V, 3V, 4V or 5V
  • the reaction temperature range is preferably 5°C to 45°C, for example, the reaction temperature is 5°C, 15°C, 25°C, 35°C or 45°C
  • the gas flow rate range is preferably 0.2m/s-3m/s, such as 0.2m/s, 1m/s, 2m/s or 3m/s.
  • the oxygen content of the gaseous pollutants here is 5V%-20V%, preferably 15V%-20V%, for example, the oxygen content is 15V%, 17V%, 18V% or 20V%.
  • the assembly of the electrochemical reactor The cathode prepared in step (1), the anode prepared in step (2) and the proton exchange membrane (such as Nafion 115) Clamping, an anode air flow channel is provided on the surface of the anode, and a cathode air flow channel is provided on the surface of the cathode.
  • the anode and the cathode are respectively connected to the anode and the cathode of the DC power supply through wires to obtain an electrochemical reactor.
  • the method for removing gaseous pollutants using the electrochemical reaction device of step (3) includes the following steps: passing gaseous pollutants containing water vapor and oxygen into the cathode and anode gas flow channels respectively, and the gas flow rate is 20 mL ⁇ min -1 , the gas humidity is 50%, the oxygen content in the gas is 20V%, the concentration of gaseous pollutant benzene is 10ppm, and DC voltages of 2.2V, 2.4V and 2.6V are applied between the cathode and the anode to control the reaction process The temperature is 20°C.
  • the gas chromatograph was used to detect the concentration of pollutants at the outlet during the stable reaction.
  • the catalytic performance is shown in Figure 3.
  • the device for removing gaseous pollutants of the present application can achieve the simultaneous removal of gaseous pollutants by the anode and cathode, and the cathode zone has better removal effect on gaseous pollutants than the anode zone. Removal of gaseous pollutants.
  • gaseous pollutants containing water vapor and oxygen are respectively introduced into the cathode and anode gas flow channels.
  • the gas flow rate is 20 mL ⁇ min -1
  • the gas humidity is 50%
  • the oxygen in the gas The content is 20V%
  • the concentration of gaseous pollutants is 10ppm
  • the gaseous pollutants are toluene, acetone, n-hexane and cyclohexanone.
  • a 2.5 volt DC voltage is applied between the cathode and the anode, and the temperature of the reaction process is controlled to 20°C.
  • the gas chromatograph was used to detect the concentration of pollutants at the outlet during the stable reaction.
  • the catalytic performance is shown in Table 2.
  • the device for removing gaseous pollutants of the present application can achieve the simultaneous removal of different gaseous pollutants by the anode and cathode, and the cathode airflow channel has a slightly better removal effect on gaseous pollutants than the anode airflow channel on gaseous pollutants. Removal.
  • the assembly of the electrochemical reactor The cathode prepared in step (1), the anode prepared in step (2) and the proton exchange membrane (such as Nafion 115) Clamping, an anode air flow channel is provided on the surface of the anode, and a cathode air flow channel is provided on the surface of the cathode.
  • the anode and the cathode are respectively connected to the anode and the cathode of the DC power supply through wires to obtain an electrochemical reactor.
  • the method for removing gaseous pollutants using the electrochemical reaction device of step (3) includes the following steps: Inject gaseous pollutants containing water vapor and oxygen into the cathode and anode gas flow channels respectively, and the gas flow rate is 40 mL ⁇ Min -1 , the gas humidity is 60%, the oxygen content in the gas is 20 V%, the concentration of the gaseous pollutant toluene is 10 ppm, a DC voltage of 2.6 volts is applied between the cathode and the anode, and the temperature of the reaction process is 20 °C. And use gas chromatography to detect the concentration of pollutants at the outlet during the stable reaction.
  • the degradation rate of toluene in the cathode zone was 80%, and the degradation rate of toluene in the anode zone was 92%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Abstract

本申请公开一种阳极和阴极同步电化学法去除气态污染物的方法及其装置。其中,所述去除气态污染物的装置包括电化学反应器,所述电化学反应器包括电源、阳极、阴极、质子交换膜、阳极气流通道及阴极气流通道,所述质子交换膜设于所述阳极和所述阴极之间,所述阳极设于所述阳极气流通道内,所述阴极设于所述阴极气流通道内,所述阳极为负载金属氧化物催化剂的第一多孔导电吸附材料电极,所述阴极为负载含铁催化剂的第二多孔导电吸附材料电极。

Description

阳极和阴极同步电化学法去除气态污染物的方法及其装置
相关申请
本申请要求:2019年09月30日申请的、申请号为201910947665.6、名称为“阳极和阴极同步电化学法去除气态污染物的方法及其装置”的中国专利申请的优先权,在此将其引入作为参考。
技术领域
本申请涉及气态污染物净化技术领域,特别涉及一种阳极和阴极同步电化学法去除气态污染物的方法及其装置。
背景技术
空气中气态污染物主要有甲醛、苯系物、有机氯化物、有机酮、醇、醚、石油烃化合物、二氧化硫及氮氧化物等,这些气态污染物不仅造成大气环境污染危害,而且还严重威胁着人们的身体健康。目前针对气态污染物的去除方法主要有吸附法、生物处理法、催化氧化法及电化学方法,其中,电化学方法因具有装置结构紧凑、环境友好且无二次污染、电化学过程容易控制等特点而备受关注,现有电化学方法去除气态污染物,一般是将气态污染物通入液相电解液中,通过液相电解液的电化学过程来实现其污染物的去除,但是这种去除方法的污染物去除效率较低,且不适合水溶性较差的有机污染物的去除。
发明内容
本申请的主要目的是提供一种阳极和阴极同步电化学法去除气态污染物的方法及其装置,旨在提高污染物的去除效率,同时能够有效地去除水溶性较差的有机污染物。
为实现上述目的,本申请提出的一种阳极和阴极同步电化学法去除气态污染物的装置,包括电化学反应器,所述电化学反应器包括电源、阳极、阴极、质子交换膜、阳极气流通道及阴极气流通道,所述质子交换膜设于所述阳极和所述阴极之间,所述阳极设于所述阳极气流通道内,所述阴极设于所述阴极气流通道内,所述阳极为负载金属氧化物催化剂的第一多孔导电吸附材料电极,所述阴极为负载含铁催化剂的第二多孔导电吸附材料电极。
可选地,所述含铁催化剂为含铁材料和多孔吸附材料载体的复合材料催化剂。
可选地,所述含铁材料为纳米铁、三氧化二铁、四氧化三铁、羟基氧化铁、磷酸铁锂、钼酸亚铁、金属有机骨架材料中的至少一种;和/或,所述碳载体为氮掺杂碳、氮化碳、活性炭、碳纳米管及石墨烯中的至少一种。
可选地,所述金属氧化物催化剂为锡氧化物催化剂、铬氧化物催化剂、锰氧化物催化剂、铅氧化物催化剂、钼氧化物催化剂、铟氧化物催化剂及钛氧化物催化剂中的至少一种。
可选地,所述含铁催化剂的负载量范围为0.1%-50%;和/或,所述金属氧化物催化剂的负载量范围为0.1%-50%。
可选地,所述第一多孔导电吸附材料电极为碳纸电极、碳布电极、碳纤维布电极、碳颗粒布电极及活性炭布电极中的一种;和/或,所述第二多孔导电吸附材料电极为碳纸电极、碳布电极、碳纤维布电极、碳颗粒布电极及活性炭布电极中的一种。
可选地,所述电化学反应器设置有多个,多个所述电化学反应器并联或串联设置。
可选地,所述电化学反应器设置有多个,多个所述电化学反应器并联设置,且相邻两个所述电化学反应器之相对电极位于同一气流通道内;和/或,所述电化学反应器设置有多个,多个所述电化学反应器串联设置,且相邻两个所述电化学反应器之相对电极位于同一气流通道内。
本申请还提出了一种阳极和阴极同步电化学法去除气态污染物的方法,应用于如前所述的阳极和阴极同步电化学法去除气态污染物的装置,所述阳极和阴极同步电化学法去除气态污染物的方法包括以下步骤:
将含气态污染物的空气分别通入阳极气流通道内和阴极气流通道内;
可选地,在将含气态污染物的空气分别通入阳极气流通道内和阴极气流通道内的步骤中,包括:
在所述阳极和所述阴极之间施加0.5V-36V的直流电压,并控制去除过程中的反应温度范围为负20℃至120℃,含气态污染物的空气的流速范围为0.001m/s-10m/s,湿度范围为5%-95%。
本申请的技术方案,由于阳极采用负载金属氧化物催化剂的第一多孔导电吸附材料电极,金属氧化物催化剂能够将吸附于电极表面的水分子氧化成活性氧物种,活性氧物种与气态污染物反应以实现对其有效去除。同时阴极采用负载含铁催化剂的第二多孔导电吸附材料电极,含铁催化剂能够将氧气还原成过氧化氢,过氧化氢与含铁催化剂通过芬顿反应生成羟基自由基等活性物种,羟基自由基等活性物种与气态污染物反应以实现对其有效去除。故,本申请去除气态污染物的装置能够实现阳极和阴极同步对气态污染物去除的效果,极大地提高了污染物的去除率和电能的利用率。且含铁催化剂和金属氧化物催化剂的活性均较高,同时均具有较好的稳定性,有助于污染物去除率的提高。并且该催化剂能够高效催化分解多种气态污染物,应用范围较广。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请去除气态污染物的装置一实施例的结构示意图;
图2为本申请去除气态污染物的装置另一实施例的结构示意图;
图3为本申请去除气态污染物的方法中不同施加电压下苯的降解率示意图。
附图标号说明:
标号 名称 标号 名称
100 电化学反应器 30 阳极气流通道
10 阳极 40 阴极气流通道
20 阴极 50 质子交换膜
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种阳极和阴极同步电化学法去除气态污染物的装置,用于去除气态污染物。
请参阅图1,在本申请阳极和阴极同步电化学法去除气态污染物的装置一实施例中,去除气态污染物的装置包括电化学反应器100,电化学反应器100包括电源、阳极10、阴极20、质子交换膜50、阳极气流通道30及阴极气流通道40,质子交换膜50设于阳极10和阴极20之间,阳极10设于阳极气流通道30内,阴极20设于阴极气流通道40内,阳极10为负载金属氧化物催化剂的第一多孔导电吸附材料电极,阴极20为负载含铁催化剂的第二多孔导电吸附材料电极。
这里电源采用直流电源,以负载金属氧化物催化剂的第一多孔导电吸附材料电极为阳极10,负载含铁催化剂的第二多孔导电吸附材料电极为阴极20,阴极20和阳极10之间放置质子交换膜50,并将阳极10、质子交换膜50及阴极20三层材料夹紧,且阳极10的表面设置有阳极气流通道30,阴极20的表面设置有阴极气流通道40,同时将阳极10和阴极20通过导线分别连接直流电源的正极和负极,便可得到阳极和阴极同步电化学法去除气态污染物的装置。这里阴极20采用负载含铁催化剂的活性成分,能够将氧气还原成过氧化氢,过氧化氢与含铁催化剂通过芬顿反应生成羟基自由基等活性物种,羟基自由基等活性物种与气态污染物反应以实现对其有效去除。阳极10采用金属氧化物催化剂的活性成分,能够将吸附于电极表面的水分子氧化成活性氧物种,活性氧物种与气态污染物反应以实现对其有效去除。
需要说明的是,这里多孔导电吸附材料可以是多孔碳材料或者其他多孔导电吸附材料,均在本申请的保护范围内。
因此,可以理解的,本申请的技术方案,由于阳极10采用负载金属氧化物催化剂的第一多孔导电吸附材料电极,金属氧化物催化剂能够将吸附于电极表面的水分子氧化成活性氧物种,活性氧物种与气态污染物反应以实现对其有效去除。同时阴极20采用负载含铁催化剂的第二多孔导电吸附材料电极,含铁催化剂能够将氧气还原成过氧化氢,过氧化氢与含铁催化剂通过芬顿反应生成羟基自由基等活性物种,羟基自由基等活性物种与气态污染物反应以实现对其有效去除。故,本申请阳极和阴极同步电化学法去除气态污染物的装置能够实现阳极10和阴极20同步对气态污染物去除的效果,极大地提高了污染物的去除率和电能的利用率。且含铁催化剂和金属氧化物催化剂的活性均较高,同时均具有较好的稳定性,有助于污染物去除率的提高。并且该催化剂能够高效催化分解多种气态污染物,应用范围较广。
需要说明的是,阳极和阴极同步电化学法去除气态污染物的装置还包括气流输送设备及管道,其中的输送管道分别与阳极气流通道30连通和阴极气流通道40连通,输送管道上设置有输送设备,输送设备为风机或气泵。
可选地,含铁催化剂为含铁材料和多孔导电吸附载体的复合材料催化剂。这里以多孔导电吸附材料为载体,比表面较高,能够较好的负载含铁催化剂,由此得到的复合材料催化剂活性较高,且具有较好的稳定性,有助于污染物去除率的提高。
可选地,含铁材料为纳米铁、三氧化二铁、四氧化三铁、羟基氧化铁、磷酸铁锂、钼酸亚铁、金属有机骨架材料中的至少一种。在制备含铁催化剂时,含铁材料选用以上的一种或多种组合。
可选地,多孔导电吸附材料载体为氮掺杂碳、氮化碳、活性炭、碳纳米管及石墨烯中的至少一种。在制备含铁催化剂时,多孔导电吸附材料载体选用以上的一种或多种组合。
可选地,含铁催化剂的负载量范围为0.1%-50%,比如含铁催化剂的负载量为0.1%、1%、10%、20%、40%或50%。优选地,负载量为1%-5%,比如为1%、2%、3%、4%或5%。
可选地,金属氧化物催化剂为锡氧化物催化剂、铬氧化物催化剂、锰氧化物催化剂、铅氧化物催化剂、钼氧化物催化剂、铟氧化物催化剂及钛氧化物催化剂中的至少一种。在制备阳极10时,金属氧化物催化剂选用这些中的一种或多种组合。
可选地,金属氧化物催化剂的负载量范围为0.1%-50%。比如金属氧化物催化剂的负载量为0.1%、1%、10%、20%、40%或50%。优选地,负载量为1%-5%,比如为1%、2%、3%、4%或5%。
可选地,第一多孔导电吸附材料电极为碳纸电极、碳布电极、碳纤维布电极、碳颗粒布电极及活性炭布电极中的一种。
可选地,第二多孔导电吸附材料电极为碳纸电极、碳布电极、碳纤维布电极、碳颗粒布电极及活性炭布电极中的一种。
需要说明的是,第一多孔吸附材料电极和第二多孔吸附材料电极可以选用同一材料电极,也可以选用不同材料电极。
在本申请的一实施例中,电化学反应器100设置有多个,多个电化学反应器100并联设置。可以理解的,这里多个电化学反应器100并联设置,且相邻两个电化学反应器100隔开设置,这样可以利用多个电化学反应器100同时对气态污染物进行降解处理,如此可以增大单位时间内气体的处理量,提高其去除效率。需要说明的是,这里相邻两个电化学反应器100之相对电极的极性可以相同,也可以相反,在此不作限制。也即,相邻两个电化学反应器100的相对电极可以同为阴极20、同为阳极10,或者,一个为阴极20,一个为阳极10。
在本申请的一实施例中,电化学反应器100设置有多个,多个电化学反应器100串联设置。多个电化学反应器100串联的设置,使得含有污染物的气体依次通过多个电化学反应器100,最终实现污染物的彻底去除。同样地,这里相邻两个电化学反应器100之相对电极的极性可以相同,也可以相反,在此不作限制。
请参阅图2,在本申请的一实施例中,电化学反应器100设置有多个,多个电化学反应器100并联设置,且相邻两个电化学反应器100之相对电极位于同一气流通道内。如此的设置,可以使得相邻两个电化学反应器100之间的间距相对减小,从而相对减小整体装置的占用尺寸,其装置的空间利用率大大提高。需要说明的是,这里位于同一气流通道内的两个电极极性可以相同,也可以相反,在此不作限制。
在本申请的一实施例中,电化学反应器100设置有多个,多个电化学反应器100串联设置,且相邻两个电化学反应器100之相对电极位于同一气流通道内。同样地,这样的设置也可相对减小整体装置的占用尺寸,大大提高其装置的空间利用率。
本申请还提出了一种阳极和阴极同步电化学法去除气态污染物的方法,应用于如前所述的阳极和阴极同步电化学法去除气态污染物的装置,该阳极和阴极同步电化学法去除气态污染物的方法包括以下步骤:
将含气态污染物的空气分别通入阳极气流通道30内和阴极气流通道40内。
这里是将含气态污染物的空气连续不断地通入阳极气流通道30内和阴极气流通道40内。待气体稳定后,利用仪器检测阳极气流通道30和阴极气流通道40出气口处的气态污染物的浓度。当然地,也可以是检测经该装置处理后的空气中气态污染物的浓度。
可选地,在将含气态污染物的空气分别通过阳极气流通道30内和阴极气流通道40内的步骤中,包括:
在阳极10和阴极20之间施加0.5V-36V的直流电压,并控制去除过程中的反应温度范围为负20℃至120℃,含气态污染物的空气的流速范围为0.001m/s-10m/s,湿度范围为5%-95%。
这里直流电压范围优选2V-5V,比如施加的电压为2V、3V、4V或5V,反应温度范围优选5℃至45℃,比如反应温度为5℃、15℃、25℃、35℃或45℃。气体流速范围优选0.2m/s-3m/s,比如为0.2m/s、1m/s、2m/s或3m/s。需要说明的是,这里含气态污染物的氧气含量为5V%-20V%,优选15V%-20V%,比如氧气含量为15V%、17V%、18V%或20V%。通过调节直流电压、反应温度、气体流量及氧气含量使得气态污染物的去除效率达到最佳。
以下通过具体实施例对本申请阳极和阴极同步电化学法去除气态污染物的方法及其装置进行详细说明。
实施例1
(1)阴极的制备:在100mL的烧杯中,放入0.054g氧化石墨烯,40mL去离子水,0.270gFeCl3·6H2O,超声分散后加入0.528g抗坏血酸并搅拌溶解,接着加入10mL联氨搅拌几分钟就结束。把上述分散液转移到100 mL水热釜中,180℃下反应8h,自然冷却。离心分离沉淀并用去离子及无水乙醇洗涤,得到含铁催化剂。将10mg上述制备的含铁催化剂超声分散到5mL全氟磺酸-聚四氟乙烯共聚物和异丙醇的混合液中,然后将分散液喷涂到16平方厘米的碳布电极表面,便可制备得到阴极。
(2)阳极的制备:将碳布室温下浸泡在含有3.0mol·L-1柠檬酸、0.2mol·L-1五水合四氯化锡和0.03mol·L-1三氯化锑的混合溶液中24小时,随后取出在100度下干燥。接着在450℃空气氛围下煅烧1小时。即可得到负载了锡锑复合氧化物催化剂的阳极。
(3)电化学反应器的组装:将步骤(1)制备的阴极、步骤(2)制备的阳极及质子交换膜(如Nafion 115)夹紧,阳极的表面设置阳极气流通道,阴极的表面设置阴极气流通道。同时将阳极和阴极通过导线分别连接直流电源的正极和负极,便可得到电化学反应器。
(4)利用步骤(3)的电化学反应器件去除气态污染物的方法,包括以下步骤:向阴极和阳极气流通道中分别通入含有水蒸气及氧气的气态污染物,气体的流速为20mL·min-1,气体湿度为50%,气体中氧气含量为20V%,气态污染物苯的浓度为10ppm,阴极和阳极之间分别施加2.2V,2.4V及2.6V的直流电压,控制反应过程的温度为20℃。并利用气相色谱检测稳定反应时出气口污染物的浓度,催化性能参见图3。
由图3中可以看出,在不同的电解电压下,本申请去除气态污染物的装置能够实现阳极和阴极同步对气态污染物去除的效果,且阴极区对气态污染物去除效果优于阳极区对气态污染物去除效果。
实施例2
采用实施例1相同的电化学反应器,向阴极和阳极气流通道中分别通入含有水蒸气及氧气的气态污染物,气体的流速为20mL·min-1,气体湿度为50%,气体中氧气含量为20V%,气态污染物的浓度为10ppm,气态污染物分别为甲苯、丙酮、正己烷和环己酮,阴极和阳极之间施加2.5伏的直流电压,控制反应过程的温度为20℃。并利用气相色谱检测稳定反应时出气口污染物的浓度,催化性能参见表2。
由表2可以看出,本申请去除气态污染物的装置能够实现阳极和阴极同步对不同气态污染物去除的效果,且阴极气流通道对气态污染物去除效果稍微优于阳极气流通道对气态污染物去除效果。
表2 不同有机污染物的降解率(%)
有机污染物的降解率(%)
甲苯 丙酮 正己烷 环己酮
阳极区 92 88 91 89
阴极区 88 87 84 83
实施例3
(1)阴极的制备:将碳布浸泡在0.1mol/L的硝酸亚铁溶液中24小时,取出后在真空下50度干燥。随后放入管式炉中在Ar气条件下500度高温处理,便可得到阴极材料。
(2)阳极的制备:将0.2g碳纳米管超声分散在含有10mmol/L乙酰丙酮钛的甲醇溶液中,经过2小时候取出,将分散液在真空下50度烘干,随后放入管式炉中在Ar气条件下900度高温处理,即得到阳极材料。
(3)电化学反应器的组装:将步骤(1)制备的阴极、步骤(2)制备的阳极及质子交换膜(如Nafion 115)夹紧,阳极的表面设置阳极气流通道,阴极的表面设置阴极气流通道。同时将阳极和阴极通过导线分别连接直流电源的正极和负极,便可得到电化学反应器。
(4)利用步骤(3)的电化学反应器件去除气态污染物的方法,包括以下步骤:向阴极和阳极气流通道中分别通入含有水蒸气及氧气的气态污染物,气体的流速为40 mL·min-1,气体湿度为60%,气体中氧气含量为20 V%,气态污染物甲苯的浓度为10ppm,阴极和阳极之间分别施加2.6伏的直流电压,所述反应过程的温度为20℃。并利用气相色谱检测稳定反应时出气口污染物的浓度。
经检测得到,阴极区甲苯的降解率为80%,阳极区甲苯的降解率为92%。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (17)

  1. 一种阳极和阴极同步电化学法去除气态污染物的装置,其中,所述去除气态污染物的装置包括电化学反应器,所述电化学反应器包括电源、阳极、阴极、质子交换膜、阳极气流通道及阴极气流通道,所述质子交换膜设于所述阳极和所述阴极之间,所述阳极设于所述阳极气流通道内,所述阴极设于所述阴极气流通道内,所述阳极为负载金属氧化物催化剂的第一多孔导电吸附材料电极,所述阴极为负载含铁催化剂的第二多孔导电吸附材料电极。
  2. 如权利要求1所述的阳极和阴极同步电化学法去除气态污染物的装置,其中,所述含铁催化剂为含铁材料和多孔导电吸附材料载体的复合材料催化剂。
  3. 如权利要求2所述的阳极和阴极同步电化学法去除气态污染物的装置,其中,所述含铁材料为纳米铁、三氧化二铁、四氧化三铁、羟基氧化铁、磷酸铁锂、钼酸亚铁、金属有机骨架材料中的至少一种;
    和/或,所述多孔导电吸附材料载体为氮掺杂碳、氮化碳、活性炭、碳纳米管、石墨烯中的至少一种。
  4. 如权利要求1所述的阳极和阴极同步电化学法去除气态污染物的装置,其中,所述金属氧化物催化剂为锡氧化物催化剂、铬氧化物催化剂、锰氧化物催化剂、铅氧化物催化剂、钼氧化物催化剂、铟氧化物催化剂及钛氧化物催化剂中的至少一种。
  5. 如权利要求1所述的阳极和阴极同步电化学法去除气态污染物的装置,其中,所述含铁催化剂的负载量范围为0.1%-50%;
    和/或,所述金属氧化物催化剂的负载量范围为0.1%-50%。
  6. 如权利要求1所述的阳极和阴极同步电化学法去除气态污染物的装置,其中,所述第一多孔导电吸附材料电极为碳纸电极、碳布电极、碳纤维布电极、碳颗粒布电极及活性炭布电极中的一种;
    和/或,所述第二多孔导电吸附材料电极为碳纸电极、碳布电极、碳纤维布电极、碳颗粒布电极、活性炭布电极中的一种。
  7. 如权利要求1所述的阳极和阴极同步电化学法去除气态污染物的装置,其中,所述电化学反应器设置有多个,多个所述电化学反应器并联或串联设置。
  8. 如权利要求1所述的阳极和阴极同步电化学法去除气态污染物的装置,其中,所述电化学反应器设置有多个,多个所述电化学反应器并联设置,且相邻两个所述电化学反应器之相对电极位于同一气流通道内;
    和/或,所述电化学反应器设置有多个,多个所述电化学反应器串联设置,且相邻两个所述电化学反应器之相对电极位于同一气流通道内。
  9. 一种阳极和阴极同步电化学法去除气态污染物的方法,应用于阳极和阴极同步电化学法去除气态污染物的装置,其中,所述去除气态污染物的装置包括电化学反应器,所述电化学反应器包括电源、阳极、阴极、质子交换膜、阳极气流通道及阴极气流通道,所述质子交换膜设于所述阳极和所述阴极之间,所述阳极设于所述阳极气流通道内,所述阴极设于所述阴极气流通道内,所述阳极为负载金属氧化物催化剂的第一多孔导电吸附材料电极,所述阴极为负载含铁催化剂的第二多孔导电吸附材料电极;
    所述去除气态污染物的方法包括以下步骤:
    将含气态污染物的空气分别通入阳极气流通道内和阴极气流通道内。
  10. 如权利要求9所述的阳极和阴极同步电化学法去除气态污染物的方法,其中,在将含气态污染物的空气分别通入阳极气流通道内和阴极气流通道内的步骤中,包括:
    在所述阳极和所述阴极之间施加0.5V-36V的直流电压,并控制去除过程中的反应温度范围为负20℃至120℃,含气态污染物的空气的流速范围为0.001m/s-10m/s,湿度范围为5%-95%。
  11. 如权利要求9所述的阳极和阴极同步电化学法去除气态污染物的方法,其中,所述含铁催化剂为含铁材料和多孔导电吸附材料载体的复合材料催化剂。
  12. 如权利要求11所述的阳极和阴极同步电化学法去除气态污染物的方法,其中,所述含铁材料为纳米铁、三氧化二铁、四氧化三铁、羟基氧化铁、磷酸铁锂、钼酸亚铁、金属有机骨架材料中的至少一种;
    和/或,所述多孔导电吸附材料载体为氮掺杂碳、氮化碳、活性炭、碳纳米管、石墨烯中的至少一种。
  13. 如权利要求9所述的阳极和阴极同步电化学法去除气态污染物的方法,其中,所述金属氧化物催化剂为锡氧化物催化剂、铬氧化物催化剂、锰氧化物催化剂、铅氧化物催化剂、钼氧化物催化剂、铟氧化物催化剂及钛氧化物催化剂中的至少一种。
  14. 如权利要求9所述的阳极和阴极同步电化学法去除气态污染物的方法,其中,所述含铁催化剂的负载量范围为0.1%-50%;
    和/或,所述金属氧化物催化剂的负载量范围为0.1%-50%。
  15. 如权利要求9所述的阳极和阴极同步电化学法去除气态污染物的方法,其中,所述第一多孔导电吸附材料电极为碳纸电极、碳布电极、碳纤维布电极、碳颗粒布电极及活性炭布电极中的一种;
    和/或,所述第二多孔导电吸附材料电极为碳纸电极、碳布电极、碳纤维布电极、碳颗粒布电极、活性炭布电极中的一种。
  16. 如权利要求9所述的阳极和阴极同步电化学法去除气态污染物的方法,其中,所述电化学反应器设置有多个,多个所述电化学反应器并联或串联设置。
  17. 如权利要求9所述的阳极和阴极同步电化学法去除气态污染物的方法,其中,所述电化学反应器设置有多个,多个所述电化学反应器并联设置,且相邻两个所述电化学反应器之相对电极位于同一气流通道内;
    和/或,所述电化学反应器设置有多个,多个所述电化学反应器串联设置,且相邻两个所述电化学反应器之相对电极位于同一气流通道内。
PCT/CN2019/113910 2019-09-30 2019-10-29 阳极和阴极同步电化学法去除气态污染物的方法及其装置 WO2021062907A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910947665.6 2019-09-30
CN201910947665.6A CN110559853B (zh) 2019-09-30 2019-09-30 阳极和阴极同步电化学法去除气态污染物的方法及其装置

Publications (1)

Publication Number Publication Date
WO2021062907A1 true WO2021062907A1 (zh) 2021-04-08

Family

ID=68783929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113910 WO2021062907A1 (zh) 2019-09-30 2019-10-29 阳极和阴极同步电化学法去除气态污染物的方法及其装置

Country Status (2)

Country Link
CN (1) CN110559853B (zh)
WO (1) WO2021062907A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110585916B (zh) * 2019-09-30 2021-01-12 华中师范大学 电芬顿催化氧化去除气态污染物的方法及其装置
CN111282410B (zh) * 2020-02-19 2021-07-06 华中师范大学 电化学法降解气态污染物的装置及其方法
CN112870931A (zh) * 2021-01-11 2021-06-01 深圳市普瑞美泰环保科技有限公司 电化学法降解气态有机污染物的装置及其方法
CN113019082B (zh) * 2021-01-11 2022-10-04 深圳市普瑞美泰环保科技有限公司 电化学法降解气态有机污染物的装置及其方法
CN112807995B (zh) * 2021-01-28 2023-03-31 深圳市普瑞美泰环保科技有限公司 电化学法降解气态污染物的装置及其方法
CN113477075B (zh) * 2021-06-10 2022-05-27 深圳市普瑞美泰环保科技有限公司 电化学空气净化消毒装置和电化学空气净化消毒方法
CN114588755A (zh) * 2022-03-03 2022-06-07 西安科技大学 一种室内污染物室温净化装置及净化的电化学方法和应用
CN114797401B (zh) * 2022-03-10 2023-05-23 华南理工大学 电化学法降解气态和液态污染物的装置及其方法
CN115180705B (zh) * 2022-06-23 2023-09-29 湖南新沃环境科技有限公司 一种有机废水的处理方法和处理系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754615A (zh) * 2004-09-30 2006-04-05 广东工业大学 用于降解有机污染物的光电催化反应器及降解方法
US20080217176A1 (en) * 2007-03-08 2008-09-11 Chang Gung University Portable oxygen maintenance and regulation concentrator apparatus
CN106732238A (zh) * 2016-11-09 2017-05-31 中国科学院生态环境研究中心 用于气‑固相电催化反应的反应器及其消除VOCs的方法
CN107469597A (zh) * 2017-09-21 2017-12-15 马加德 一种基于电化学的废气废水耦合净化系统及其净化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4116949B2 (ja) * 2003-07-29 2008-07-09 ペルメレック電極株式会社 電気化学的殺菌及び制菌方法
CN105417638A (zh) * 2015-11-13 2016-03-23 中国科学院宁波材料技术与工程研究所 非均相电Fenton体系及其制备和应用
CN106731542B (zh) * 2016-12-26 2024-03-26 浙江工商大学 一种磷化氢气体的电化学处理装置及方法
CN109925874B (zh) * 2017-12-19 2021-04-02 中国科学院大连化学物理研究所 一种电化学空气净化膜结构、净化模块、净化器以及净化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754615A (zh) * 2004-09-30 2006-04-05 广东工业大学 用于降解有机污染物的光电催化反应器及降解方法
US20080217176A1 (en) * 2007-03-08 2008-09-11 Chang Gung University Portable oxygen maintenance and regulation concentrator apparatus
CN106732238A (zh) * 2016-11-09 2017-05-31 中国科学院生态环境研究中心 用于气‑固相电催化反应的反应器及其消除VOCs的方法
CN107469597A (zh) * 2017-09-21 2017-12-15 马加德 一种基于电化学的废气废水耦合净化系统及其净化方法

Also Published As

Publication number Publication date
CN110559853A (zh) 2019-12-13
CN110559853B (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
WO2021062907A1 (zh) 阳极和阴极同步电化学法去除气态污染物的方法及其装置
WO2021062908A1 (zh) 电芬顿催化氧化去除气态污染物的方法及其装置
WO2021164073A1 (zh) 电化学法降解气态污染物的装置及其方法
CN108134104B (zh) 一种燃料电池用复合催化剂载体及其制备方法和应用
US9346674B2 (en) Catalyst for a fuel cell, a method of preparing the same, and a fuel cell system comprising the same
US20240058749A1 (en) Device and method for degrading gaseous organic pollutant through electrochemical process
CN105214668A (zh) 一种高效碳纳米纤维基催化剂及其混纺制备方法
CN108565475A (zh) 一种石墨毡电极的改性方法
WO2022257160A1 (zh) 电化学空气净化消毒装置和电化学空气净化消毒方法
CN105879566B (zh) 一种介质阻挡放电诱导还原脱除烟气中NOx的方法与装置
CN104862808B (zh) 一种Fe-N-C纳米纤维网及其制备方法
CN202113752U (zh) 一种非平衡态等离子体净化器
CN116259772A (zh) 一种改性石墨毡电极及其制备方法、应用
WO2019107692A1 (ko) 팔라듐 코어 입자의 제조방법
WO2021075638A1 (ko) 전기화학적 co2 환원용 촉매 구조체 및 그 제조방법
CN112072100B (zh) 一种铁基双阴离子化碳复合材料及其制备方法和应用
JP4201319B2 (ja) 電気化学セル型化学反応システム
US20050167286A1 (en) Chemical reactor for nitrogen oxide removal and method of removing nitrogen oxide
JP2009224181A (ja) 燃料電池用電極触媒、燃料電池用電極触媒の製造方法、膜電極接合体及び固体高分子型燃料電池
CN207271024U (zh) 一种等离子体nox吸附设备
CN114530607B (zh) 一种燃料电池用催化剂及其制备方法和热处理设备
CN115121095B (zh) 一种MRTO磁控中温等离子VOCs消解装置、系统及工艺
CN113041805A (zh) 一种自生热量降解臭氧的等离子体发生技术工艺及装置
WO2023177226A1 (ko) Cnt-이오노머 결합 강화 복합체, 이의 제조방법 및 이를 이용하여 제조된 막-전극 접합체
WO2023101313A1 (ko) 라디칼 스캐빈저 복합체, 이의 제조방법, 및 이를 포함하는 연료전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947475

Country of ref document: EP

Kind code of ref document: A1