WO2022257160A1 - 电化学空气净化消毒装置和电化学空气净化消毒方法 - Google Patents

电化学空气净化消毒装置和电化学空气净化消毒方法 Download PDF

Info

Publication number
WO2022257160A1
WO2022257160A1 PCT/CN2021/100339 CN2021100339W WO2022257160A1 WO 2022257160 A1 WO2022257160 A1 WO 2022257160A1 CN 2021100339 W CN2021100339 W CN 2021100339W WO 2022257160 A1 WO2022257160 A1 WO 2022257160A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrochemical
air purification
phosphate
lithium
Prior art date
Application number
PCT/CN2021/100339
Other languages
English (en)
French (fr)
Inventor
严义清
刘德桃
严方升
Original Assignee
深圳市普瑞美泰环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市普瑞美泰环保科技有限公司 filed Critical 深圳市普瑞美泰环保科技有限公司
Publication of WO2022257160A1 publication Critical patent/WO2022257160A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8637Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8659Removing halogens or halogen compounds
    • B01D53/8662Organic halogen compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/20Method-related aspects
    • A61L2209/21Use of chemical compounds for treating air or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/20Method-related aspects
    • A61L2209/21Use of chemical compounds for treating air or the like
    • A61L2209/211Use of hydrogen peroxide, liquid and vaporous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation

Definitions

  • the present application relates to the technical field of air purification and disinfection, in particular to an electrochemical air purification and disinfection device and an electrochemical air purification and disinfection method applied to the electrochemical air purification and disinfection device.
  • gaseous pollutants such as formaldehyde, benzene series, organic chlorides, organic ketones, alcohols, ethers, petroleum hydrocarbons, sulfur dioxide and nitrogen oxides in the air.
  • gaseous pollutants such as formaldehyde, benzene series, organic chlorides, organic ketones, alcohols, ethers, petroleum hydrocarbons, sulfur dioxide and nitrogen oxides in the air.
  • reaction degradation technology is mainly used for the degradation of the above-mentioned gaseous pollutants.
  • Reactive degradation technology is widely used because it can achieve the degradation of volatile organic compounds, and the catalyst used can be used for a long time.
  • the reaction degradation technology usually adopts low-temperature plasma and catalytic oxidation technology, which has the problems of secondary pollution and catalyst poisoning failure.
  • the main purpose of this application is to provide an electrochemical air purification and disinfection device and an electrochemical air purification and disinfection method applied to the electrochemical air purification and disinfection device, aiming at catalytic decomposition of gaseous pollutants in the air into carbon dioxide and water, while Rapid sterilization and inactivation of viruses.
  • an embodiment of the present application proposes an electrochemical air purification and disinfection device, the electrochemical air purification and disinfection device includes an electrochemical reactor, and the electrochemical reactor includes a first electrode, a second electrode, an ion conductor and a DC power supply;
  • the DC power supply has a positive pole and a negative pole, the first electrode is electrically connected to one of the positive pole and the negative pole, and the second electrode is electrically connected to the other one of the positive pole and the negative pole. connected, the ionic conductor is interposed between the first electrode and the second electrode;
  • One of the first electrode and the second electrode electrically connected to the negative electrode is a conductive material loaded with a transition metal catalyst.
  • the ion conductor is a porous material loaded with electrolyte.
  • the porous material for ion conductors is at least one of ceramics, zeolite, silicon dioxide, aluminum oxide, diatomaceous earth, amorphous activated carbon, and metal-organic framework porous materials;
  • the process of porous material supporting electrolyte includes at least one of impregnation, coating, evaporation, embedded doping process
  • the dry weight ratio of the electrolyte to the porous material is (0.001-4):1.
  • the electrolyte for the ion conductor is sulfate, phosphate, carbonate, fluoride, chloride, bromide, iodide, nitrate, borate, citric acid At least one of salt, silicate, boron oxide, phosphorus oxide.
  • the sulfate includes lithium sulfate, lithium hydrogen sulfate, sodium sulfate, sodium hydrogen sulfate, potassium sulfate, potassium hydrogen sulfate, magnesium sulfate, calcium sulfate, zinc sulfate, ferrous sulfate, copper sulfate, at least one of barium sulfate;
  • the phosphate includes sodium phosphate, sodium dihydrogen phosphate, disodium hydrogen phosphate, potassium phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium hydrogen phosphate, calcium phosphate, calcium hydrogen phosphate, zinc phosphate, hydrogen phosphate At least one of zinc, ferrous phosphate, copper phosphate, lithium phosphate, lithium dihydrogen phosphate, dilithium hydrogen phosphate, and lithium iron phosphate;
  • the fluoride salt includes at least one of sodium fluoride, potassium fluoride, lithium fluoride, calcium fluoride, zinc fluoride, magnesium fluoride, ferrous fluoride, and copper fluoride;
  • Described chloride salt comprises at least one in lithium chloride, sodium chloride, potassium chloride, calcium chloride, zinc chloride, magnesium chloride, ferrous chloride, cupric chloride;
  • the bromide salt includes at least one of lithium bromide, sodium bromide, potassium bromide, calcium bromide, zinc bromide, magnesium bromide, ferrous bromide, copper bromide;
  • the iodized salt includes at least one of lithium iodide, sodium iodide, potassium iodide, calcium iodide, zinc iodide, magnesium iodide, ferrous iodide, copper iodide;
  • the nitrate includes at least one of sodium nitrate, potassium nitrate, lithium nitrate, calcium nitrate, zinc nitrate, magnesium nitrate, ferrous nitrate, copper nitrate;
  • the borate includes at least one of sodium borate, sodium tetraborate, potassium borate, potassium tetraborate, calcium borate, iron borate, magnesium borate, lithium borate, lithium tetraborate;
  • Described carbonate comprises at least one in lithium carbonate, lithium bicarbonate, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate;
  • Described citrate comprises at least one in lithium citrate, sodium citrate, potassium citrate, calcium citrate, zinc citrate, magnesium citrate, ferrous citrate;
  • the silicate includes at least one of sodium silicate, potassium silicate and lithium silicate.
  • the active ingredient of the transition metal catalyst is at least A sort of;
  • the conductive material is at least one of the carbon-based porous conductive materials of graphite, graphite felt, graphene, carbon nanotubes, carbon black, acetylene black, carbon felt, reticulated glassy carbon foam, activated carbon, activated carbon fiber kind;
  • the loading amount of the transition metal catalyst is 0.01% ⁇ 1000% by mass fraction.
  • both the first electrode and the second electrode are conductive materials loaded with a transition metal catalyst, and the first electrode and the second electrode can be connected between the positive electrode and the negative electrode exchange electrical connections.
  • the electrochemical air purification and disinfection device further includes an airflow channel, and the first electrode, the ion conductor and the second electrode are arranged in the airflow channel, and along the airflow direction or The opposite directions are arranged in sequence, so that the air containing gaseous pollutants passes through the first electrode, the ion conductor and the second electrode in sequence, or passes through the second electrode, the ion conductor and the first electrode.
  • the ion conductor has a first surface and a second surface opposite to each other, the first electrode covers the first surface, and the second electrode covers the second surface ;
  • the ion conductor has a number of air flow holes connecting the first surface and the second surface.
  • the diameter of the air flow hole is 0.01mm-30mm.
  • the electrochemical air purification and disinfection device includes a plurality of electrochemical reactors, and the plurality of electrochemical reactors are arranged in parallel or in series.
  • An embodiment of the present application also proposes an electrochemical air purification and disinfection method.
  • the electrochemical air purification and disinfection method is applied to an electrochemical air purification and disinfection device.
  • the electrochemical air purification and disinfection device includes an electrochemical reactor, and the electrochemical air purification and disinfection device includes an electrochemical reactor.
  • the reactor includes a first electrode, a second electrode, an ion conductor and a DC power supply;
  • the DC power supply has a positive pole and a negative pole, the first electrode is electrically connected to one of the positive pole and the negative pole, and the second electrode is electrically connected to the other one of the positive pole and the negative pole. connected, the ionic conductor is interposed between the first electrode and the second electrode;
  • One of the first electrode and the second electrode electrically connected to the negative electrode is a conductive material loaded with a transition metal catalyst
  • the electrochemical air purification and disinfection method comprises the following steps:
  • the air containing gaseous pollutants is introduced from the side where the first electrode is located or the side where the second electrode is located, and flows through the ion conductor, and then flows out after passing through the corresponding other electrode, and the first electrode or the second electrode is activated species to degrade gaseous pollutants while sterilizing and inactivating viruses.
  • the temperature in the process of degrading gaseous pollutants is controlled within the range of -50°C to 90°C;
  • the relative humidity of the air containing gaseous pollutants is 1% ⁇ 100%
  • the DC voltage is 0.1V ⁇ 3000V
  • the DC current adapted to the DC voltage is 0.1 mA ⁇ 100000 mA.
  • the electrical connection relationship between the first electrode and the second electrode and the positive pole and the negative pole of the DC power supply is switched at an interval of a preset time.
  • the one of the first electrode and the second electrode that is electrically connected to the negative pole of the DC power supply uses a conductive material loaded with a transition metal catalyst, it can continuously reduce oxygen and generate hydrogen peroxide, and generate Hydrogen peroxide can continuously generate high-concentration hydroxyl radical active substances through electrochemical reaction under the action of transition metal catalysts, and the generated hydroxyl radical active substances can decompose gaseous pollutants into carbon dioxide, water and other cleaning substances through oxidation. Substances, so as to achieve the degradation of gaseous pollutants, while rapidly sterilizing and inactivating viruses.
  • the technical solution of the present application since the gaseous pollutants are decomposed to obtain clean substances such as carbon dioxide and water, there is no problem of secondary pollution. Moreover, the technical solution of the present application is completely implemented in a gaseous phase environment, and does not need to introduce gaseous pollutants into the electrolyte, so it is well applicable to the degradation of gaseous organic pollutants with poor water solubility.
  • Fig. 1 is the structural representation of the electrochemical reactor of the electrochemical air purification and disinfection device of the present application
  • Fig. 2 is a peak diagram of hydroxyl radicals detected by the electrochemical air purification and disinfection device of the present application.
  • label name label name 1 first electrode 5 power switch 2 second electrode 6 current direction 3 Ionic conductor 7 Import of gaseous pollutants 4 DC power supply 8 Gaseous Pollutant Outlet
  • connection and “fixation” should be interpreted in a broad sense, for example, “fixation” can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • fixing can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • This application proposes an electrochemical air purification and disinfection device, which is based on an electrochemical method and can be used to catalyze the decomposition of gaseous pollutants in the air into carbon dioxide and water, and simultaneously realize sterilization and inactivation of viruses.
  • the electrochemical air purification and disinfection device includes an electrochemical reactor, and the electrochemical reactor includes a first electrode 1, a second electrode 2, an ion Conductor 3 and DC power supply 4;
  • the DC power supply 4 has a positive pole and a negative pole, the first electrode 1 is electrically connected to one of the positive pole and the negative pole, and the second electrode 2 is connected to the other of the positive pole and the negative pole.
  • An electrical connection, the ionic conductor 3 is sandwiched between the first electrode 1 and the second electrode 2;
  • One of the first electrode 1 and the second electrode 2 electrically connected to the negative electrode is a conductive material loaded with a transition metal catalyst.
  • the technical solution of this embodiment adopts a DC power supply.
  • One of the first electrode and the second electrode is electrically connected to the positive pole of the DC power supply to be used as an anode of the electrochemical reaction; the other of the first electrode and the second electrode is electrically connected to the negative pole of the DC power supply to use It is put into use as the cathode of the electrochemical reaction; one of the first electrode and the second electrode as the cathode of the electrochemical reaction adopts a conductive material supporting a transition metal catalyst.
  • the first electrode and the second electrode are respectively arranged on both sides of the ion conductor, and are respectively closely attached to the ion conductor to form an electrochemical reactor with a "sandwich" sandwich structure.
  • the working principle of the electrochemical reactor is as follows:
  • the electrolyte in the ionic conductor forms several interconnected micro-electrolyte environments by absorbing moisture in the air, and the ionization effect drives H + or OH - under the action of the electric field Rapid directed migration.
  • several micro-reaction pools will be formed inside the first electrode and the second electrode, and a continuous and lasting redox reaction will be formed in the micro-reaction pool, and O2 and H + continuously provides raw materials for the oxygen reduction reaction of the corresponding cathode, and provides the key basic conditions for the high-efficiency generation of H 2 O 2 .
  • the O2 generated on the anode provides an oxygen source for the cathode, while the generated H + migrates to the cathode to supply the H + source for the electron-obtaining oxygen reduction reaction.
  • the cathode can continuously reduce O 2 to generate H 2 O 2
  • the generated H 2 O 2 can continuously generate high-concentration hydroxyl radical active species through electrochemical reactions under the action of transition metal catalysts, forming
  • the hydroxyl radical active substance can decompose gaseous pollutants into clean substances such as carbon dioxide and water through oxidation, so as to achieve the degradation of gaseous pollutants, and at the same time quickly sterilize and inactivate viruses.
  • the first electrode is electrically connected to the positive electrode, and the second electrode is electrically connected to the negative electrode; at this time, the first electrode is used as the anode of the electrochemical reaction, and the second electrode is used as the cathode of the electrochemical reaction;
  • the second electrode is a conductive material loaded with a transition metal catalyst.
  • the second electrode since the second electrode uses a conductive material loaded with a transition metal catalyst, it can continuously reduce oxygen and generate hydrogen peroxide, and the generated hydrogen peroxide can electrochemically react under the action of the transition metal catalyst Continuously generate a high concentration of hydroxyl radical active substances, which can decompose gaseous pollutants into clean substances such as carbon dioxide and water through oxidation, so as to achieve the degradation of gaseous pollutants, while sterilizing and inactivating Virus.
  • gaseous pollutants are decomposed to obtain clean substances such as carbon dioxide and water, there is no problem of secondary pollution. And it is completely implemented in a gas phase environment, without the need to introduce gaseous pollutants into the electrolyte, and can be well applied to the degradation of gaseous organic pollutants with poor water solubility.
  • the electrochemical air purification and disinfection device can also be equipped with a low-resistance airflow channel; at this time, the second electrode is arranged in the airflow channel, and the air containing gaseous pollutants is introduced into the airflow channel.
  • Air that is, the second electrode can be used to degrade the gaseous pollutants in the cathode stomata channel, and simultaneously sterilize and inactivate viruses.
  • the first electrode is electrically connected to the negative pole of the DC power supply, and the second electrode is electrically connected to the positive pole of the DC power supply; at this time, the first electrode is used as the cathode of the electrochemical reaction, and the second electrode is used as the anode of the electrochemical reaction
  • the first electrode is a conductive material loaded with a transition metal catalyst.
  • the first electrode since the first electrode uses a conductive material loaded with a transition metal catalyst, it can continuously reduce oxygen and generate hydrogen peroxide, and the generated hydrogen peroxide can electrochemically react under the action of the transition metal catalyst Continuously generate a high concentration of hydroxyl radical active substances, which can decompose gaseous pollutants into clean substances such as carbon dioxide and water through oxidation, so as to achieve the degradation of gaseous pollutants, while sterilizing and inactivating Virus.
  • gaseous pollutants are degraded to obtain clean substances such as carbon dioxide and water, there is no problem of secondary pollution. And it is completely implemented in a gas phase environment, without the need to introduce gaseous pollutants into the electrolyte, and can be well applied to the degradation of gaseous organic pollutants with poor water solubility.
  • the electrochemical air purification and disinfection device can also be equipped with a low-resistance airflow channel; at this time, the first electrode is arranged in the airflow channel, and the air containing gaseous pollutants is introduced into the airflow channel. Air, that is, the first electrode can be used to degrade the gaseous pollutants in the cathode pore channel.
  • the electrochemical air purification and disinfection device proposed in this application may also include a casing, a control system, a delivery device, a delivery pipeline, a flow control device, a detection device, etc., in which one or more electrochemical reaction device.
  • the conveying pipeline communicates with the air inlet and the air outlet on the housing.
  • the conveying pipeline is provided with flow control equipment and conveying equipment.
  • the conveying equipment is a fan or an air pump, and the air outlet is provided with a detection device.
  • Electrochemical reactors, conveying equipment, flow control equipment, and detection devices are all connected to the control system.
  • the active component of the transition metal catalyst is at least one of iron, cobalt, nickel, manganese, and cerium, oxides, hydroxides, oxychlorides, alloys, and ion complexes. Elemental substances, oxides, hydroxides, oxychlorides, alloys, and ion complexes of iron, cobalt, nickel, manganese, and cerium can be used as active components of transition metal catalysts, and one or the other can be selected for loading. Various combinations.
  • the conductive material is at least one of carbon-based porous conductive materials such as graphite, graphite felt, graphene, carbon nanotubes, carbon black, acetylene black, carbon felt, reticulated glassy carbon foam, activated carbon, and activated carbon fibers.
  • Carbon-based porous conductive materials such as graphite, graphite felt, graphene, carbon nanotubes, carbon black, acetylene black, carbon felt, reticulated glassy carbon foam, activated carbon, and activated carbon fibers can be used as conductive materials.
  • the second electrode one or more combinations of them can be selected.
  • the loading amount of the transition metal catalyst is 0.01%-1000% by mass fraction.
  • the loading of the transition metal catalyst can be 0.01%, 0.02%, 0.05%, 0.1%, 0.2%, 0.5%, 1%, 2%, 5%, 10%, 20%, 50%, 100%, 200%, 500%, 600%, 700%, 800%, 900%, or 1000%.
  • the ionic conductor is a porous material loaded with electrolyte. in:
  • the porous material for the ion conductor is at least one of ceramics, zeolite, silicon dioxide, aluminum oxide, diatomaceous earth, amorphous activated carbon, and metal-organic framework porous materials. Ceramic materials, zeolite materials, silica materials, aluminum oxide materials, diatomaceous earth materials, amorphous activated carbon materials, and metal organic framework materials can all be used to prepare porous materials, and one of them can be used in the preparation of ion conductors or multiple combinations.
  • Electrolytes for ionic conductors are sulfate, phosphate, carbonate, fluoride, chloride, bromide, iodide, nitrate, borate, citrate, silicate, boron oxide, at least one of phosphorus oxides.
  • Used as an electrolyte for ion conductors one or more combinations of them can be selected when preparing ion conductors. It can be understood that the electrolyte for ion conductors can be in the form of a single salt or in the form of a double salt.
  • the sulfate includes lithium sulfate, lithium hydrogensulfate, sodium sulfate, sodium hydrogensulfate, potassium sulfate, potassium hydrogensulfate, magnesium sulfate, calcium sulfate, zinc sulfate, ferrous sulfate, copper sulfate, barium sulfate at least one;
  • the phosphate includes sodium phosphate, sodium dihydrogen phosphate, disodium hydrogen phosphate, potassium phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium hydrogen phosphate, calcium phosphate, calcium hydrogen phosphate, zinc phosphate, hydrogen phosphate At least one of zinc, ferrous phosphate, copper phosphate, lithium phosphate, lithium dihydrogen phosphate, dilithium hydrogen phosphate, and lithium iron phosphate;
  • the fluoride salt includes at least one of sodium fluoride, potassium fluoride, lithium fluoride, calcium fluoride, zinc fluoride, magnesium fluoride, ferrous fluoride, and copper fluoride;
  • Described chloride salt comprises at least one in lithium chloride, sodium chloride, potassium chloride, calcium chloride, zinc chloride, magnesium chloride, ferrous chloride, cupric chloride;
  • the bromide salt includes at least one of lithium bromide, sodium bromide, potassium bromide, calcium bromide, zinc bromide, magnesium bromide, ferrous bromide, copper bromide;
  • the iodized salt includes at least one of lithium iodide, sodium iodide, potassium iodide, calcium iodide, zinc iodide, magnesium iodide, ferrous iodide, copper iodide;
  • the nitrate includes at least one of sodium nitrate, potassium nitrate, lithium nitrate, calcium nitrate, zinc nitrate, magnesium nitrate, ferrous nitrate, copper nitrate;
  • the borate includes at least one of sodium borate, sodium tetraborate, potassium borate, potassium tetraborate, calcium borate, iron borate, magnesium borate, lithium borate, lithium tetraborate;
  • Described carbonate comprises at least one in lithium carbonate, lithium bicarbonate, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate;
  • Described citrate comprises at least one in lithium citrate, sodium citrate, potassium citrate, calcium citrate, zinc citrate, magnesium citrate, ferrous citrate;
  • the silicate includes at least one of sodium silicate, potassium silicate and lithium silicate.
  • the process for the porous material to support the electrolyte includes at least one of impregnation, coating, vapor deposition, and embedded doping processes.
  • the dry weight ratio of the electrolyte to the porous material is (0.001-4):1.
  • the dry weight ratio of electrolyte to porous material can be 0.001:1, 0.002:1, 0.005:1, 0.01:1, 0.02:1, 0.05:1, 0.1:1, 0.2:1, 0.5:1, 0.6: 1, 0.7:1, 0.8:1, 0.9:1, 1:1, 2:1, 3:1, or 4:1.
  • the first electrode 1 and the second electrode 2 are all conductive materials loaded with transition metal catalysts, the first electrode 1 and the The second electrode 2 can exchange electrical connections between the positive electrode and the negative electrode.
  • both the first electrode 1 and the second electrode 2 use conductive materials that support transition metal catalysts; and, the first electrode 1 can switch the electrical connection relationship between the positive electrode and the negative electrode, and the second electrode 2 can be connected with the first electrode at the same time. To switch the electrical connection relationship.
  • the first electrode 1 when the first electrode 1 is connected to the positive pole and the second electrode 2 is connected to the negative pole after running for a certain period of time, the first electrode 1 can be switched to be connected to the negative pole; at the same time, the second electrode 2 can be switched to be connected to the positive pole. connect.
  • the first electrode 1 and the second electrode 2 can be alternately used as cathodes for electrochemical reactions.
  • both the first electrode 1 and the second electrode 2 use conductive materials supporting transition metal catalysts, which will not affect the generation of high-concentration hydroxyl radical active substances on the negative electrode. Therefore, after switching, the negative electrode can still decompose gaseous pollutants into clean substances such as carbon dioxide and water through the oxidation of the generated hydroxyl radical active substances, thereby achieving the degradation of gaseous pollutants and simultaneously sterilizing and inactivating viruses.
  • the first electrode and the second electrode will alternately serve as cathodes to generate H 2 O 2 when switching the electrical connection relationship, thereby improving the hydrophilicity of the electrodes and increasing the O 2 reduction activity.
  • Increase the production of H 2 O 2 and generate hydroxyl radical active substances under the action of transition metal catalysts, degrade gaseous pollutants, convert them into non-toxic and harmless water and carbon dioxide, improve air purification efficiency, and simultaneously sterilize and inactivate Viruses have a wide range of applications.
  • the first electrode and the second electrode can exchange the configuration of the electrical connection relationship between the positive electrode and the negative electrode, which can form Fe
  • the continuous cyclic conversion of 2+ and Fe 3+ so that the first electrode and the second electrode can alternately serve as the cathode of the electrochemical reaction during the positive and negative switching of the power supply to continuously generate H 2 O 2
  • the generated H 2 O 2 can React with the supported Fe-containing catalyst to continuously generate a high concentration of hydroxyl radical active substances to mineralize gaseous pollutants and generate clean products such as CO 2 and H 2 O, while sterilizing and inactivating viruses.
  • This configuration has the advantages of long service life, low energy consumption, simple process, and low cost. It has extremely high application potential in the fields of air purification, industrial pollutant control, anti-biological and chemical weapons, and sterilization.
  • the first electrode and the second electrode can be placed in the same air flow channel at the same time; At this time, no matter which end of the gas flow channel the air containing gaseous pollutants enters, it can flow through the two electrodes and be degraded by the negative electrode therein to degrade the gaseous pollutants.
  • the first electrode and the second electrode can also be placed in two different airflow channels; at this time, relying on switching the airflow channel where the cathode is located for air circulation, the degradation of gaseous pollutants can be achieved, while sterilization and inactivation Virus.
  • two DC units 4 and a power switch 5 can be used in the manner shown in FIG.
  • a circuit relationship is bridged between the first electrode 1 and the second electrode 2 (wherein, arrow 6 represents the direction of current, arrow 7 represents the inlet of gaseous pollutants, and arrow 8 represents the outlet of gaseous pollutants).
  • arrow 6 represents the direction of current
  • arrow 7 represents the inlet of gaseous pollutants
  • arrow 8 represents the outlet of gaseous pollutants
  • the electrochemical air purification and disinfection device also includes an air flow channel, the first electrode 1, the ion conductor 3 and the second electrode 2 set in the airflow passage, and sequentially arranged along the airflow direction or the opposite direction, so that the air containing gaseous pollutants passes through the first electrode 1, the ion conductor 3 and the second electrode 2 in sequence, or passing through the second electrode 2 , the ion conductor 3 and the first electrode 1 in sequence.
  • the air containing gaseous pollutants can pass through the first electrode, the ion conductor, and the second electrode in sequence, and be acted on by the cathodes in the first electrode and the second electrode, thereby being purified, sterilizing and inactivating at the same time Viruses; or, the air containing gaseous pollutants can pass through the second electrode, the ion conductor and the first electrode in sequence to be acted on by the cathodes in the first electrode and the second electrode, thereby being purified, and simultaneously sterilizing and inactivating viruses.
  • the overall structure of the electrochemical air purification and disinfection device be more compact; moreover, during the process, since the air containing gaseous pollutants will pass through the cathodes in the first electrode and the second electrode, it can be more fully in contact with the cathode, Therefore, the degradation efficiency of gaseous pollutants can be effectively improved, and the purification efficiency of air containing gaseous pollutants can be improved.
  • the first electrode, the ion conductor, and the second electrode are all gas-permeable structures.
  • the first electrode can use a gas-permeable conductive material (that is, the first electrode uses a gas-permeable electrode, and the gas-permeable electrode can be selected from graphite felt, carbon paper electrode, carbon fiber cloth electrode, foamed nickel electrode, foamed titanium electrode, foamed titanium electrode, etc.
  • the cross-sectional shape of the diversion holes can be circular, square, rhombus, ellipse or irregular shape, such as honeycomb structure; at this time, the gas can pass through the first electrode through several diversion holes ; It is also possible to further add a number of conduction holes on the basis of the air-permeable conductive material.
  • the second electrode can be made of gas-permeable conductive material (that is, the second electrode uses a gas-permeable electrode, and the gas-permeable electrode can choose graphite felt, carbon paper electrode, carbon fiber cloth electrode, foamed nickel electrode, foamed titanium electrode, foamed titanium alloy electrode, titanium foamed electrode, etc.
  • At least one of mesh electrode and titanium alloy mesh electrode it can also be realized by setting some conduction holes on the conductive material to make the surface of the second electrode facing the ion conductor communicate with the surface of the second electrode facing away from the ion conductor (The cross-sectional shape of the conduction holes can be circular, square, rhombus, oval or irregular, such as a honeycomb structure); at this time, the gas can pass through the second electrode through several conduction holes; On the basis of the air-permeable conductive material, a number of conduction holes are further added.
  • the ionic conductor can either adopt a gas-permeable porous material (such as a gas-permeable ceramic); or set a number of conduction holes on the porous material to connect the surface of the ionic conductor facing the first electrode and the surface of the ionic conductor facing the second electrode. Realize (for example, granular structure, honeycomb structure, etc.) so that the gas can pass through the ion conductor through several guide holes; it is also possible to further add a number of guide holes on the basis of the gas-permeable porous material.
  • a gas-permeable porous material such as a gas-permeable ceramic
  • the ion conductor has a first surface and a second surface opposite to each other, and the first electrode covers the first surface.
  • the second electrode covers the second surface;
  • the ion conductor has a number of air flow holes connecting the first surface and the second surface.
  • the use of air flow holes can make the gas flow more smoothly, while ensuring the purification rate of the electrochemical air purification and disinfection device, it can also ensure high flow rate and large air volume to achieve high purification and disinfection efficiency.
  • the cross-sectional shapes of the air flow holes include circles, squares, rectangles, triangles, rhombuses, ovals and irregular shapes.
  • the pore size of the air flow hole will affect the purification rate and purification efficiency at the same time. Good results have been achieved in three aspects: air resistance and purification efficiency.
  • the diameters of the air flow holes are 0.01mm, 0.02mm, 0.05mm, 0.1mm, 0.2mm, 0.5mm, 1mm, 2mm, 5mm, 6mm, 7mm, 8mm, 9mm, 10mm, 15mm, 20mm, 25mm, 30mm.
  • the electrochemical air purification and disinfection device includes a plurality of electrochemical reactors, and the plurality of electrochemical reactors are arranged in parallel or in series. In this way, the degradation efficiency of gaseous pollutants can be effectively improved, and the efficiency of purification and disinfection of air containing gaseous pollutants can be improved.
  • the application also proposes an electrochemical air purification and disinfection method, which is applied to the aforementioned electrochemical air purification and disinfection device; the electrochemical air purification and disinfection method is based on an electrochemical method and can be used to achieve air Catalytic degradation of gaseous pollutants in the medium, while sterilizing and inactivating viruses.
  • the electrochemical air purification and disinfection method includes the following steps:
  • the air containing gaseous pollutants is introduced from the side where the first electrode is located or the side where the second electrode is located, and flows through the ion conductor, and then flows out after passing through the corresponding other electrode, and the first electrode or the second electrode is activated species to degrade gaseous pollutants while sterilizing and inactivating viruses.
  • the first electrode or the second electrode connected to the negative pole of the DC power supply is considered as the cathode, which uses a conductive material supporting a transition metal catalyst, which generates H 2 O 2 in the electron reduction reaction (the other side Oxidation reactions occur at the anode of the anode to generate H + and O 2 );
  • the generated H 2 O 2 can continuously generate high-concentration hydroxyl radical active species through electrochemical reactions under the action of transition metal catalysts, and the generated hydroxyl radicals are active Species can decompose gaseous pollutants into clean substances such as carbon dioxide and water through oxidation, thereby achieving the degradation of gaseous pollutants, while sterilizing and inactivating viruses.
  • the gas-permeable electrochemical reactor since the gas-permeable electrochemical reactor is used, there is no need to configure a separate air intake system for the cathode, and the entire device only needs a set of gas control system to achieve the degradation of gaseous pollutants.
  • the structure of the device is further optimized and the cost is reduced.
  • the purified air can also be directly discharged from the device after passing through the ion conductor and the anode, or directly discharged from the device after passing through the anode, ion conductor, and cathode, and will not interfere with the subsequent input to be purified. Air mixing, which can effectively improve the degradation efficiency at high gas flow rates.
  • the overall structure of the device is more compact.
  • the relative humidity of the air containing gaseous pollutants will affect the degradation rate and degradation efficiency of gaseous pollutants, so it is necessary to control the relative humidity of the air containing gaseous pollutants in the range of 1% to 100%.
  • the relative humidity of air containing gaseous pollutants is 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 80%, or 100%.
  • the voltage and current of the DC power supply must be reasonably controlled, so the voltage of the DC power supply is controlled within the range of 0.1V ⁇ 3000V, and the current of the DC power supply is controlled within 0.1mA ⁇ 100000mA range, so that electrochemical methods can effectively degrade gaseous pollutants.
  • the voltage of the DC power supply is 0.1V, 0.2V, 0.5V, 1V, 2V, 5V, 10V, 20V, 50V, 100V, 200V, 500V, 1000V, 2000V or 3000V;
  • the current of the DC power supply is 0.1mA, 0.2mA , 0.5 mA, 1 mA, 2 mA, 5 mA, 10 mA, 20 mA, 50 mA, 100 mA, 200 mA, 500 mA, 1000 mA, 2000 mA, 5000 mA, 10000 mA, 20000 mA, 50000 mA, or 100000 mA.
  • the voltage range of the DC power supply is preferably 1V ⁇ 50V, and the current range of the DC power supply is preferably 3mA ⁇ 300mA.
  • the temperature in the process of degrading gaseous pollutants should be reasonably controlled. Therefore, the temperature in the process of degrading gaseous pollutants should be controlled within the range of -50 ° C ⁇ 90 ° C to improve gaseous pollution. degradation rate and degradation efficiency.
  • the temperature in the process of degrading gaseous pollutants is -50°C, -45°C, -40°C, -35°C, -30°C, -20°C, -10°C, 0°C, 10°C, 20°C, 30°C , 35°C, 40°C, 45°C, 50°C, 60°C, 65°C, 70°C, 80°C, 85°C or 90°C.
  • the temperature in the process of degrading gaseous pollutants is 0°C to 40°C.
  • the electrical connection relationship between the first electrode and the second electrode and the positive pole and the negative pole of the DC power supply is switched at an interval of a preset time.
  • the first electrode when the first electrode is connected to the positive pole and the second electrode is connected to the negative pole, after a certain period of time, the first electrode can be switched to be connected to the negative pole; at the same time, the second electrode can be switched to be connected to the positive pole.
  • the first electrode and the second electrode can be alternately used as the cathode of the electrochemical reaction. At this time, no matter whether it is the first electrode or the second electrode, since the conductive material supporting the transition metal catalyst is used, it will not affect the generation of high-concentration hydroxyl radical active substances on the cathode.
  • the cathode can still decompose gaseous pollutants into clean substances such as carbon dioxide and water through the oxidation of the generated hydroxyl radical active substances, thereby achieving the degradation of gaseous pollutants and simultaneously sterilizing and inactivating viruses.
  • the first electrode and the second electrode will alternately serve as cathodes to generate H 2 O 2 when switching the electrical connection relationship, thereby improving the hydrophilicity of the electrodes and increasing the O 2 reduction activity.
  • Increase the production of H 2 O 2 and generate hydroxyl radical active substances under the action of transition metal catalysts, degrade gaseous pollutants, convert them into non-toxic and harmless water and carbon dioxide, improve air purification efficiency, and simultaneously sterilize and inactivate Viruses have a wide range of applications.
  • the electrochemical air purification and disinfection device can be prepared by the following steps:
  • the conductive material used in the first electrode or the second electrode can be carbon-based porous conductive materials such as graphite, graphite felt, graphene, carbon nanotubes, carbon black, acetylene black, carbon felt, reticulated glassy carbon foam, activated carbon, activated carbon fiber, etc. materials or modified carbon-based porous conductive materials.
  • carbon-based porous conductive materials such as graphite, graphite felt, graphene, carbon nanotubes, carbon black, acetylene black, carbon felt, reticulated glassy carbon foam, activated carbon, activated carbon fiber, etc. materials or modified carbon-based porous conductive materials.
  • the carbon-based porous conductive material with a thickness of 0.5mm ⁇ 30mm into a suitable size; use 0.01mol/L ⁇ mol/L sodium sulfate solution as the electrolyte, ruthenium iridium titanium electrode as the cathode, and the carbon-based porous conductive material
  • the material is used as an anode, and the carbon-based porous conductive material is oxidized under the conditions of an oxidation voltage of 3V-50V and an oxidation current of 3mA-1000mA, and the oxidation time is controlled to be 1min-60min to prepare a carrier.
  • Fe-containing catalysts such as ferric oxychloride (FeOCl), zero-valent iron, perovskite La 0.4 Sr 0.6 Co 0.4 Fe 0.6 O 3 :
  • perovskite La 0.4 Sr 0.6 Co 0.4 Fe 0.6 O 3 Accurately weigh La(NO 3 ) 3 6H 2 O, Sr(NO 3 ) 2 , Co(NO 3 ) 2 ⁇ 6H 2 O and Fe(NO 3 ) 3 ⁇ 9H 2 O; the stoichiometric amounts of the above metal nitrates were mixed in deionized water, the carrier was soaked in it, and stirred while heating at a temperature of 100°C. Dissolve EDTA completely with ammonia water, and add citric acid at a molar ratio of 1:1 to 1:5 to EDTA.
  • the generated wet gel is placed in an oven at 100°C ⁇ 120°C to dry gel; the obtained dry gel is used as a precursor, and placed in a muffle furnace for pre-sintering at 300°C ⁇ 600°C for 1h ⁇ 5h, and then Sintering at 500-1000° C. for 1-5 hours to prepare the first electrode or the second electrode supporting the perovskite La 0.4 Sr 0.6 Co 0.4 Fe 0.6 O 3 catalyst.
  • ion conductor cut the ion conductor template material (i.e. porous material) into a suitable size, with a thickness of 0.5mm ⁇ 30mm, and configure a through-hole structure with an aperture size of 0.1mm ⁇ 30mm on it.
  • 0.1mol/L ⁇ 1mol/L electrolyte through impregnation, coating, evaporation, embedding and other doping processes, the electrolyte is loaded into the ion conductor template material, and the dry weight ratio of the electrolyte to the porous material is (0.001 ⁇ 4): 1. .
  • the first electrode, the ion conductor, and the second electrode are closely bonded in sequence, that is, the first electrode and the second electrode are distributed on both sides of the ion conductor to form a "sandwich"
  • DC voltage is applied to the first electrode and the second electrode, and the control voltage value is in the range of 0.1V ⁇ 1000V, and the control current value is in the range of 0.1mA ⁇ 100000mA.
  • the air containing gaseous pollutants can be passed through the first electrode or the second electrode of the electrochemical reactor, pass through the ion conductor and pass through the corresponding other electrode, so as to be absorbed by the first electrode and the second electrode.
  • FeCl 3 6H 2 O and the carrier according to the mass ratio of 6:4, dissolve FeCl 3 6H 2 O with an appropriate amount of absolute ethanol, soak the carrier in it, and wait for the absolute alcohol to volatilize naturally or heat it in a water bath to promote its volatilization, It was dried in a vacuum drying oven at 60°C for 24h, then put into a tube furnace to raise the temperature to 220°C at a rate of 10°C/min, and calcined for 2.5h, then ultrasonically washed three times with acetone or absolute ethanol, It was dried in a vacuum oven at 60° C. for 24 h to obtain a FeOCl-loaded graphite felt electrode.
  • Utilize above-mentioned electrochemical reactor to carry out air purification comprise the following steps: pass the gas containing toluene into electrochemical reactor, toluene concentration is 20ppm, take air as balance gas, control its total flow rate by gas mass flow meter to be 20ml/min . Then apply a DC voltage of 10V and a current of 200mA between the first electrode and the second electrode, replace the electrodes after 60min, and detect the gas pollution before and after the electrochemical reactor when the electrodes are replaced each time at the gas outlet of the electrochemical reactor substance concentration.
  • the initial concentration of toluene at the inlet is 20ppm, and after 30 minutes, the concentration of toluene at the outlet decreases to 5.0ppm.
  • the hydroxyl radicals are qualitatively detected as shown in Figure 2 (cathode); 60 minutes after the first electrode switch, The concentration of toluene at the outlet is 5.1ppm, and its hydroxyl radicals are qualitatively detected as shown in Figure 2 (1-cathode).
  • the peak of the initial cathode hydroxyl radicals (the peak of hydroxyl radicals at 400-450nm, The peak at 350-400nm is the peak of the capture agent) decreased; 60 minutes after the second electrode switch, the concentration of toluene at the outlet was 4.5ppm, and the hydroxyl radical was qualitatively detected as shown in Figure 2 (2-cathode)
  • the peak value of the hydroxyl radical is larger than that of the original cathode; 60 minutes after the third electrode switch, the concentration of toluene at the outlet is 4.0ppm, and the hydroxyl radical is qualitatively detected as shown in Figure 2 (3-cathode) , the peak generated by the hydroxyl radical is the largest.
  • FeCl 3 6H 2 O and the carrier according to the mass ratio of 5:5, dissolve FeCl 3 6H 2 O with an appropriate amount of water, soak the carrier in it, and wait for the water to evaporate naturally or to be heated in a water bath to promote its volatilization, then put it in a vacuum Dry it in a drying oven at 60°C for 24h, then put it into a tube furnace to raise the temperature to 220°C at a rate of 10°C/min, and calcinate it for 2.5h, then use acetone or absolute ethanol to ultrasonically wash it three times, and put it in a vacuum Dry at 60° C. for 24 h in a drying oven to obtain a FeOCl-loaded graphite felt electrode.
  • Utilize above-mentioned electrochemical reactor to carry out air purification comprise the following steps: pass the gas containing toluene into electrochemical reactor, toluene concentration is 20ppm, with air as balance gas, its total flow rate is controlled by gas mass flowmeter to be 20ml/min . Then apply a DC voltage of 8V and a current of 100mA between the first electrode and the second electrode, exchange the electrodes after 60min, and detect at the gas outlet of the electrochemical reactor that the electrodes have not passed through the electrochemical reactor and have passed through the electrochemical reactor. The concentration of gaseous pollutants in the reactor.
  • the initial toluene concentration at the inlet was 20ppm, and after 30 minutes, the toluene concentration at the outlet decreased to 3.5ppm; 60 minutes after the first electrode switching, the toluene concentration at the outlet was 3.2ppm, and 60 minutes after the second electrode switching , the toluene concentration at the outlet was 2.5ppm, and 60 minutes after the third electrode switching, the toluene concentration at the outlet decreased to 2.4ppm.
  • Utilize above-mentioned electrochemical reactor to carry out air purification comprise the following steps: pass the gas containing formaldehyde into electrochemical reactor, formaldehyde concentration is 10ppm, take air as balance gas, control its total flow rate by gas mass flow meter to be 20ml/min . Then apply a DC voltage of 6.0V and a current of 80mA between the first electrode and the second electrode, change the electrodes after 30min, and detect at the gas outlet of the electrochemical reactor that the electrodes have not been changed through the electrochemical reactor and have passed through the electrode every time. Concentration of gaseous pollutants in chemical reactors.
  • the initial formaldehyde concentration at the inlet was 10ppm, and after 30 minutes, the concentration at the outlet decreased to 0.6ppm; 60 minutes after the first electrode switching, the formaldehyde concentration at the outlet decreased to 0.8ppm, and 60 minutes after the second electrode switching 60 minutes after the third electrode switch, the formaldehyde concentration at the outlet was 0.2ppm.
  • Utilize above-mentioned electrochemical reactor to carry out air purification comprise the following steps: pass the gas containing toluene into electrochemical reactor, toluene concentration is 10ppm, take air as balance gas, control its total flow rate by gas mass flow meter to be 20ml/min . Then apply a DC voltage of 10V and a current of 200mA between the first electrode and the second electrode of the electrode, exchange the electrodes after 60min, and detect at the gas outlet of the electrochemical reactor that the electrodes have not passed through the electrochemical reactor and passed through the electrode every time. Concentration of gaseous pollutants in chemical reactors.
  • the initial toluene concentration at the inlet was 10ppm, and after 30 minutes the toluene concentration at the outlet was 4.6ppm; 60 minutes after the first electrode switching, the toluene concentration at the outlet was reduced to 4.8ppm, and 60 minutes after the second electrode switching , the concentration of toluene at the outlet decreased to 3.2ppm, and 60 minutes after the third electrode switch, the concentration of toluene at the outlet decreased to 2.8.
  • the generated wet gel was dried in an oven at 110°C until dry; the obtained dry gel was used as a precursor, pre-sintered at 400°C for 4 hours in a muffle furnace, and then sintered at 800°C for 4 hours to prepare Electrode supported perovskite La0.4Sr0.6Co0.4Fe0.6O3 catalyst .
  • Utilize above-mentioned electrochemical reactor to carry out air purification comprise the following steps: pass the gas containing toluene into electrochemical reactor, toluene concentration is 10ppm, take air as balance gas, control its total flow rate by gas mass flow meter to be 20ml/min . Then apply a DC voltage of 10V and a current of 200mA between the first electrode and the second electrode, replace the electrodes after 60 minutes, and detect the gas pollution before and after entering the electrochemical reactor at the gas outlet of the electrochemical reactor every time the electrodes are replaced substance concentration.
  • the initial toluene concentration at the inlet was 10ppm, and after 30 minutes, the toluene concentration at the outlet decreased to 1.5ppm; 60 minutes after the first electrode switching, the toluene concentration at the outlet decreased to 1.9ppm, after the second electrode switching At 60 minutes, the concentration at the outlet decreased to 1.6ppm, and at 60 minutes after the third electrode switch, the concentration at the outlet decreased to 1.2ppm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrochemistry (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

一种电化学空气净化消毒装置和应用于该电化学空气净化消毒装置的电化学空气净化消毒方法,电化学空气净化消毒装置包括电化学反应器,电化学反应器包括第一电极(1)、第二电极(2)、离子导体(3)以及直流电源(4);直流电源(4)具有正极和负极,第一电极(1)与正极和负极的其中之一电性连接,第二电极(2)与正极和负极的其中之另一电性连接,离子导体(3)夹设于第一电极(1)和第二电极(2)之间;第一电极(1)和第二电极(2)中与负极电性连接的一个为负载有过渡金属催化剂的导电材料。

Description

电化学空气净化消毒装置和电化学空气净化消毒方法
本申请要求于2021年6月10日申请的、申请号为202110647570.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空气净化消毒技术领域,特别涉及一种电化学空气净化消毒装置和应用于该电化学空气净化消毒装置的电化学空气净化消毒方法。
背景技术
空气中主要有甲醛、苯系物、有机氯化物、有机酮、醇、醚、石油烃化合物、二氧化硫及氮氧化物等气态污染物,这些气态污染物不仅造成大气环境污染危害,而且还严重威胁着人们的身体健康。
目前,针对上述气态污染物的降解主要采用的是反应降解技术。反应降解技术因可以实现挥发性有机物的降解,且采用的催化剂可以长期使用,故得到广泛的应用。但是,反应降解技术通常采用低温等离子和催化氧化技术,存在二次污染及催化剂中毒失效的问题。
另外,也有在电解液中通过电化学方法降解气态污染物的处理方式。即,将气态污染物通入电解液中,通过电解液中阳极和阴极的氧化还原反应,对气态污染物进行降解。但是,这种处理方式对于气态污染物的降解效率很低,且不适用于水溶性较差的气态有机污染物。
技术问题
本申请的主要目的是提供一种电化学空气净化消毒装置和应用于该电化学空气净化消毒装置的电化学空气净化消毒方法,旨在实现空气中气态污染物的催化分解成二氧化碳和水,同时快速杀菌及灭活病毒。
技术解决方案
为实现上述目的,本申请一实施例提出一种电化学空气净化消毒装置,该电化学空气净化消毒装置包括电化学反应器,所述电化学反应器包括第一电极、第二电极、离子导体以及直流电源;
所述直流电源具有正极和负极,所述第一电极与所述正极和所述负极的其中之一电性连接,所述第二电极与所述正极和所述负极的其中之另一电性连接,所述离子导体夹设于所述第一电极和第二电极之间;
所述第一电极和所述第二电极中与所述负极电性连接的一个为负载有过渡金属催化剂的导电材料。
在本申请一实施例中,所述离子导体为负载有电解质的多孔材料。
在本申请一实施例中,所述离子导体用多孔材料为陶瓷、沸石、二氧化硅、三氧化二铝、硅藻土、无定形活性炭、金属有机骨架的多孔材料中的至少一种;
且/或,多孔材料负载电解质的工艺包括浸渍、涂布、蒸镀、嵌入的掺杂工艺中的至少一种;
且/或,所述离子导体中,电解质与多孔材料的干重比为(0.001~4):1。
在本申请一实施例中,所述离子导体用电解质为硫酸盐、磷酸盐、碳酸盐、氟化盐、氯化盐、溴化盐、碘化盐、硝酸盐、硼酸盐、柠檬酸盐、硅酸盐、硼氧化物、磷氧化物中的至少一种。
在本申请一实施例中,所述硫酸盐包括硫酸锂、硫酸氢锂、硫酸钠、硫酸氢钠、硫酸钾、硫酸氢钾、硫酸镁、硫酸钙、硫酸锌、硫酸亚铁、硫酸铜、硫酸钡中的至少一种;
所述磷酸盐包括磷酸钠、磷酸二氢钠、磷酸氢二钠、磷酸钾、磷酸二氢钾、磷酸氢二钾、磷酸镁、磷酸氢镁、磷酸钙、磷酸氢钙、磷酸锌、磷酸氢锌、磷酸亚铁、磷酸铜、磷酸锂、磷酸二氢锂、磷酸氢二锂、磷酸铁锂中的至少一种;
所述氟化盐包括氟化钠、氟化钾、氟化锂、氟化钙、氟化锌、氟化镁、氟化亚铁、氟化铜中的至少一种;
所述氯化盐包括氯化锂、氯化钠、氯化钾、氯化钙、氯化锌、氯化镁、氯化亚铁、氯化铜中的至少一种;
所述溴化盐包括溴化锂、溴化钠、溴化钾、溴化钙、溴化锌、溴化镁、溴化亚铁、溴化铜中的至少一种;
所述碘化盐包括碘化锂、碘化钠、碘化钾、碘化钙、碘化锌、碘化镁、碘化亚铁、碘化铜中的至少一种;
所述硝酸盐包括硝酸钠、硝酸钾、硝酸锂、硝酸钙、硝酸锌、硝酸镁、硝酸亚铁、硝酸铜中的至少一种;
所述硼酸盐包括硼酸钠、四硼酸钠、硼酸钾、四硼酸钾、硼酸钙、硼酸铁、硼酸镁、硼酸锂、四硼酸锂中的至少一种;
所述碳酸盐包括碳酸锂、碳酸氢锂、碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、碳酸镁中的至少一种;
所述柠檬酸盐包括柠檬酸锂、柠檬酸钠、柠檬酸钾、柠檬酸钙、柠檬酸锌、柠檬酸镁、柠檬酸亚铁中的至少一种;
所述硅酸盐包括硅酸钠、硅酸钾、硅酸锂中的至少一种。
在本申请一实施例中,所述过渡金属催化剂的活性成分为铁、钴、镍、锰、铈的单质、氧化物、氢氧化物、氧基氯化物、合金、离子络合物中的至少一种;
且/或,所述导电材料为石墨、石墨毡、石墨烯、碳纳米管、炭黑、乙炔黑、碳毡、网状玻璃碳泡沫、活性炭、活性炭纤维的碳基多孔导电材料中的至少一种;
且/或,所述过渡金属催化剂的负载量按质量分数计为0.01%~1000%。
在本申请一实施例中,所述第一电极和所述第二电极均为负载有过渡金属催化剂的导电材料,所述第一电极和所述第二电极可在所述正极和所述负极之间交换电性连接关系。
在本申请一实施例中,所述电化学空气净化消毒装置还包括气流通道,所述第一电极、所述离子导体及所述第二电极设于所述气流通道内,并沿气流方向或者反方向依次设置,以使含有气态污染物的空气依次穿过所述第一电极、所述离子导体及所述第二电极,或者依次穿过所述第二电极、所述离子导体及所述第一电极。
在本申请一实施例中,所述离子导体具有背对设置的第一表面和第二表面,所述第一电极覆盖于所述第一表面,所述第二电极覆盖于所述第二表面;
所述离子导体具有若干连通所述第一表面和所述第二表面的气流通孔。
在本申请一实施例中,所述气流通孔的孔径为0.01mm~30mm。
在本申请一实施例中,所述电化学空气净化消毒装置包括多个所述电化学反应器,多个所述电化学反应器并联或串联设置。
本申请一实施例还提出了一种电化学空气净化消毒方法,该电化学空气净化消毒方法应用于电化学空气净化消毒装置,该电化学空气净化消毒装置包括电化学反应器,所述电化学反应器包括第一电极、第二电极、离子导体以及直流电源;
所述直流电源具有正极和负极,所述第一电极与所述正极和所述负极的其中之一电性连接,所述第二电极与所述正极和所述负极的其中之另一电性连接,所述离子导体夹设于所述第一电极和第二电极之间;
所述第一电极和所述第二电极中与所述负极电性连接的一个为负载有过渡金属催化剂的导电材料;
该电化学空气净化消毒方法包括以下步骤:
在第一电极和第二电极之间施加直流电压;
将含有气态污染物的空气由第一电极所在一侧或第二电极所在一侧通入,并流经离子导体,再穿过对应的另一电极后流出,第一电极或第二电极产生活性物种以降解气态污染物,同时杀菌及灭活病毒。
在本申请一实施例中,降解气态污染物过程中的温度控制在-50℃~90℃范围内;
且/或,所述含有气态污染物的空气的相对湿度为1%~100%;
且/或,所述直流电压为0.1V~3000V;
且/或,与所述直流电压适配的直流电流为0.1mA~100000mA。
在本申请一实施例中,所述“在第一电极和第二电极之间施加直流电压”的步骤之后,还包括:
间隔预设时长,将第一电极和第二电极与直流电源的正极和负极的电性连接关系进行切换。
有益效果
本申请的技术方案,由于第一电极和第二电极中与直流电源负极电性连接的一个采用的是负载有过渡金属催化剂的导电材料,其能够持续地将氧气还原并生成过氧化氢,生成的过氧化氢能够在过渡金属催化剂的作用下通过电化学反应持续地生成高浓度的羟基自由基活性物质,生成的羟基自由基活性物质能够通过氧化作用将气态污染物分解为二氧化碳、水等清洁物质,从而实现对气态污染物的降解,同时快速杀菌及灭活病毒。
此外,本申请的技术方案,由于将气态污染物分解后,得到的是二氧化碳、水等清洁物质,不存在二次污染的问题。并且,本申请的技术方案,完全在气相环境中实施,并不需要将气态污染物通入电解液中,能很好地适用于水溶性较差的气态有机污染物的降解。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请电化学空气净化消毒装置的电化学反应器的结构示意图;
图2为本申请电化学空气净化消毒装置检测的羟基自由基的峰值图。
附图标号说明:
标号 名称 标号 名称
1 第一电极 5 电源切换器
2 第二电极 6 电流方向
3 离子导体 7 气态污染物进口
4 直流电源 8 气态污染物出口
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
另外,本申请各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种电化学空气净化消毒装置,该电化学空气净化消毒装置基于电化学方法,可用于实现空气中气态污染物的催化分解成二氧化碳和水,并同时实现杀菌及灭活病毒。
请参阅图1,在本申请电化学空气净化消毒装置一实施例中,该电化学空气净化消毒装置包括电化学反应器,所述电化学反应器包括第一电极1、第二电极2、离子导体3以及直流电源4;
所述直流电源4具有正极和负极,所述第一电极1与所述正极和所述负极的其中之一电性连接,所述第二电极2与所述正极和所述负极的其中之另一电性连接,所述离子导体3夹设于所述第一电极1和第二电极2之间;
所述第一电极1和所述第二电极2中与所述负极电性连接的一个为负载有过渡金属催化剂的导电材料。
需要说明的是,本实施例的技术方案,采用的是直流电源。第一电极和第二电极中的一个与直流电源的正极电性连接,以作为电化学反应的阳极投入使用;第一电极和第二电极中的另一个与直流电源的负极电性连接,以作为电化学反应的阴极投入使用;第一电极和第二电极中作为电化学反应阴极的一个采用的是负载过渡金属催化剂的导电材料。第一电极和第二电极分别设置在离子导体的两侧,且分别与离子导体紧密贴合,以形成具有“三明治”夹层结构的电化学反应器。电化学反应器的作用原理如下:
当直流电源通电时,在外部施加的电场的作用下,离子导体中的电解质通过吸收空气中的水分而形成若干个互相连接的微电解液环境,电离效应驱动H +或OH -在电场作用下快速定向迁移。与此同时,在第一电极和第二电极内部会形成若干个微反应池,在微反应池内形成连续而持久的氧化还原反应,在第一电极和第二电极中的阳极上生成O 2和H +,为对应的阴极的氧还原反应持续提供原材料,为高效率生成H 2O 2提供关键基础条件。即,阳极上生成的O 2为阴极提供氧气源,同时生成的H +迁徙到阴极为得电子氧还原反应供应H +源。与此同时,阴极能够持续地将O 2还原并生成H 2O 2,生成的H 2O 2能够在过渡金属催化剂的作用下通过电化学反应持续地生成高浓度的羟基自由基活性物质,生成的羟基自由基活性物质能够通过氧化作用将气态污染物分解为二氧化碳、水等清洁物质,从而实现对气态污染物的降解,同时快速杀菌及灭活病毒。
因此,可以理解地,本实施例的技术方案实际上包括以下两种情形:
(1)第一电极与正极电性连接,第二电极与负极电性连接;此时,第一电极作为电化学反应的阳极而被使用,第二电极作为电化学反应的阴极而被使用;此时,第二电极为负载有过渡金属催化剂的导电材料。
此种情形下,由于第二电极采用的是负载有过渡金属催化剂的导电材料,其能够持续地将氧气还原并生成过氧化氢,生成的过氧化氢能够在过渡金属催化剂的作用下电化学反应持续地生成高浓度的羟基自由基活性物质,生成的羟基自由基活性物质能够通过氧化作用将气态污染物分解为二氧化碳、水等清洁物质,从而实现对气态污染物的降解,同时杀菌及灭活病毒。
此外,由于将气态污染物分解后,得到的是二氧化碳、水等清洁物质,不存在二次污染的问题。并且完全在气相环境中实施,并不需要将气态污染物通入电解液中,能很好地适用于水溶性较差的气态有机污染物的降解。
与此种情形适配地,电化学空气净化消毒装置内部还可以配置有低风阻的气流通道;此时,将第二电极设置在气流通道内,并向气流通道内通入含有气态污染物的空气,即可利用第二电极对阴极气孔通道内的气态污染物进行降解,同时杀菌及灭活病毒。
(2)第一电极与直流电源负极电性连接,第二电极与直流电源正极电性连接;此时,第一电极作为电化学反应的阴极而被使用,第二电极作为电化学反应的阳极而被使用;此时,第一电极为负载有过渡金属催化剂的导电材料。
此种情形下,由于第一电极采用的是负载有过渡金属催化剂的导电材料,其能够持续地将氧气还原并生成过氧化氢,生成的过氧化氢能够在过渡金属催化剂的作用下电化学反应持续地生成高浓度的羟基自由基活性物质,生成的羟基自由基活性物质能够通过氧化作用将气态污染物分解为二氧化碳、水等清洁物质,从而实现对气态污染物的降解,同时杀菌及灭活病毒。
此外,由于将气态污染物降解后,得到的是二氧化碳、水等清洁物质,不存在二次污染的问题。并且完全在气相环境中实施,并不需要将气态污染物通入电解液中,能很好地适用于水溶性较差的气态有机污染物的降解。
与此种情形适配地,电化学空气净化消毒装置内部还可以配置有低风阻的气流通道;此时,将第一电极设置在气流通道内,并向气流通道内通入含有气态污染物的空气,即可利用第一电极对阴极气孔通道内的气态污染物进行降解。
此外,还需要说明的是,本申请提出的电化学空气净化消毒装置还可以包括外壳、控制系统、输送设备、输送管道、流量控制设备、检测装置等,其中可放置一个或多个电化学反应器。输送管道与外壳上的进气口、出气口连通,输送管道上设置有流量控制设备和输送设备,输送设备为风机或气泵,出气口设有检测装置。电化学反应器、输送设备、流量控制设备、检测装置均与控制系统连接。
可选地,过渡金属催化剂的活性成分为铁、钴、镍、锰、铈的单质、氧化物、氢氧化物、氧基氯化物、合金、离子络合物中的至少一种。铁、钴、镍、锰、铈的单质、氧化物、氢氧化物、氧基氯化物、合金、离子络合物均可作为过渡金属催化剂的活性成分,在负载时可选用其中的一种或多种组合。例如:可选择零价铁、或者氧基氯化铁、或者组成为La 0.4Sr 0.6Co 0.4Fe 0.6O 3的钙钛矿结构类型化合物、磷酸铁锂、或者多聚磷酸与铁离子的络合物。
可选地,导电材料为石墨、石墨毡、石墨烯、碳纳米管、炭黑、乙炔黑、碳毡、网状玻璃碳泡沫、活性炭、活性炭纤维的碳基多孔导电材料中的至少一种。石墨、石墨毡、石墨烯、碳纳米管、炭黑、乙炔黑、碳毡、网状玻璃碳泡沫、活性炭、活性炭纤维的碳基多孔导电材料均可作为导电材料,在制备阴极(第一电极或第二电极)时可选用其中的一种或多种组合。
可选地,过渡金属催化剂的负载量按质量分数计为0.01%~1000%。例如,过渡金属催化剂的负载量按质量分数计可以为0.01%、0.02%、0.05%、0.1%、0.2%、0.5%、1%、2%、5%、10%、20%、50%、100%、200%、500%、600%、700%、800%、900%或1000%。
可选地,离子导体为负载有电解质的多孔材料。其中:
离子导体用多孔材料为陶瓷、沸石、二氧化硅、三氧化二铝、硅藻土、无定形活性炭、金属有机骨架的多孔材料中的至少一种。陶瓷材质、沸石材质、二氧化硅材质、三氧化二铝材质、硅藻土材质、无定形活性炭材质、金属有机骨架材质均可以用于制备多孔材料,在制备离子导体时可选用其中的一种或多种组合。
离子导体用电解质为硫酸盐、磷酸盐、碳酸盐、氟化盐、氯化盐、溴化盐、碘化盐、硝酸盐、硼酸盐、柠檬酸盐、硅酸盐、硼氧化物、磷氧化物中的至少一种。硫酸盐、磷酸盐、碳酸盐、氟化盐、氯化盐、溴化盐、碘化盐、硝酸盐、硼酸盐、柠檬酸盐、硅酸盐、硼氧化物、磷氧化物均可用作离子导体用电解质,在制备离子导体时可选用其中的一种或多种组合。可以理解地,离子导体用电解质既可以选择单盐的形式,也可以选择复盐的形式。
可选地,所述硫酸盐包括硫酸锂、硫酸氢锂、硫酸钠、硫酸氢钠、硫酸钾、硫酸氢钾、硫酸镁、硫酸钙、硫酸锌、硫酸亚铁、硫酸铜、硫酸钡中的至少一种;
所述磷酸盐包括磷酸钠、磷酸二氢钠、磷酸氢二钠、磷酸钾、磷酸二氢钾、磷酸氢二钾、磷酸镁、磷酸氢镁、磷酸钙、磷酸氢钙、磷酸锌、磷酸氢锌、磷酸亚铁、磷酸铜、磷酸锂、磷酸二氢锂、磷酸氢二锂、磷酸铁锂中的至少一种;
所述氟化盐包括氟化钠、氟化钾、氟化锂、氟化钙、氟化锌、氟化镁、氟化亚铁、氟化铜中的至少一种;
所述氯化盐包括氯化锂、氯化钠、氯化钾、氯化钙、氯化锌、氯化镁、氯化亚铁、氯化铜中的至少一种;
所述溴化盐包括溴化锂、溴化钠、溴化钾、溴化钙、溴化锌、溴化镁、溴化亚铁、溴化铜中的至少一种;
所述碘化盐包括碘化锂、碘化钠、碘化钾、碘化钙、碘化锌、碘化镁、碘化亚铁、碘化铜中的至少一种;
所述硝酸盐包括硝酸钠、硝酸钾、硝酸锂、硝酸钙、硝酸锌、硝酸镁、硝酸亚铁、硝酸铜中的至少一种;
所述硼酸盐包括硼酸钠、四硼酸钠、硼酸钾、四硼酸钾、硼酸钙、硼酸铁、硼酸镁、硼酸锂、四硼酸锂中的至少一种;
所述碳酸盐包括碳酸锂、碳酸氢锂、碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、碳酸镁中的至少一种;
所述柠檬酸盐包括柠檬酸锂、柠檬酸钠、柠檬酸钾、柠檬酸钙、柠檬酸锌、柠檬酸镁、柠檬酸亚铁中的至少一种;
所述硅酸盐包括硅酸钠、硅酸钾、硅酸锂中的至少一种。
可选地,多孔材料负载电解质的工艺包括浸渍、涂布、蒸镀、嵌入的掺杂工艺中的至少一种。
可选地,离子导体中,电解质与多孔材料的干重比为(0.001~4):1。例如,电解质与多孔材料的干重比可以为0.001:1、0.002:1、0.005:1、0.01:1、0.02:1、0.05:1、0.1:1、0.2:1、0.5:1、0.6:1、0.7:1、0.8:1、0.9:1、1:1、2:1、3:1或4:1。
请参阅图1,在本申请电化学空气净化消毒装置一实施例中,所述第一电极1和所述第二电极2均为负载有过渡金属催化剂的导电材料,所述第一电极1和所述第二电极2可在所述正极和所述负极之间交换电性连接关系。
即,第一电极1和第二电极2均采用负载过渡金属催化剂的导电材料;并且,第一电极1可在正极和负极之间切换电性连接关系,第二电极2可随第一电极同时进行电性连接关系的切换。
也就是说,当以第一电极1连接正极、第二电极2连接负极的状态运行一定时长后,第一电极1可切换至与负极连接;与此同时,第二电极2可切换至与正极连接。换而言之,第一电极1和第二电极2可以交替地作为电化学反应的阴极而投入使用。此时,不论是第一电极1,还是第二电极2,由于均采用负载过渡金属催化剂的导电材料,并不会影响负极上高浓度的羟基自由基活性物质的生成。所以,切换后,负极仍然能够通过生成的羟基自由基活性物质的氧化作用将气态污染物分解为二氧化碳、水等清洁物质,从而实现对气态污染物的降解,同时杀菌及灭活病毒。
可以理解地,本实施例的技术方案,第一电极和第二电极在切换电性连接关系时会交替地作为阴极产生H 2O 2,从而可以改善电极亲水性,提高O 2还原活性,提高H 2O 2产量,并在过渡金属催化剂的作用下产生羟基自由基活性物质,对气态污染物进行降解,转换为无毒无害的水和二氧化碳,提高空气净化效率,同时杀菌及灭活病毒,应用范围广泛。
具体地,以第一电极和第二电极均负载含Fe催化剂为例,在电场的作用下,第一电极和第二电极可在正极和负极之间交换电性连接关系的配置,可以形成Fe 2+和Fe 3+的持续循环转换,从而使第一电极和第二电极可在电源正极和负极切换中交替作为电化学反应的阴极而持续产生H 2O 2,生成的H 2O 2能够与负载的含Fe催化剂反应而持续地生成高浓度的羟基自由基活性物质,以将气态污染物矿化并生成CO 2和H 2O等清洁产物,同时杀菌及灭活病毒。这样的配置方式,具有使用寿命长、能耗低、工艺简单、成本低等优点,在空气净化、工业污染物控制、防生化武器、杀菌消毒等领域具有极高的应用潜力。
需要说明的是,当采用上述第一电极和第二电极可在正极和负极之间交换电性连接关系的配置时,既可以将第一电极和第二电极同时置于同一条气流通道内;此时,含有气态污染物的空气不论是从气流通道的哪一端通入,都可以流经两个电极,并被其中的负极作用而使气态污染物得到降解。当然,也可以将第一电极和第二电极分别置于两条不同的气流通道内;此时,依靠切换阴极所在气流通道进行空气流通,即可实现气态污染物的降解,同时杀菌及灭活病毒。
此外,为了实现第一电极1和第二电极2在直流电源4的正极和负极之间电性连接关系的交换,可按照图1中方式,利用两个直流单元4和一个电源切换器5在第一电极1和第二电极2之间桥接起电路关系(其中,箭头6代表电流方向,箭头7代表气态污染物进口,箭头8代表气态污染物出口)。这样,通过电源切换器5的切换动作,便可实现第一电极1和第二电极2在直流电源4的正极和负极之间电性连接关系的交换。凡是根据该图构思进行实施的方案或变形方案,均在本申请的保护范围内。
请参阅图1,在本申请电化学空气净化消毒装置一实施例中,该电化学空气净化消毒装置还包括气流通道,所述第一电极1、所述离子导体3及所述第二电极2设于所述气流通道内,并沿气流方向或者反方向依次设置,以使含有气态污染物的空气依次穿过所述第一电极1、所述离子导体3及所述第二电极2,或者依次穿过所述第二电极2、所述离子导体3及所述第一电极1。
本实施例的技术方案,含有气态污染物的空气可以依次穿过第一电极、离子导体及第二电极而被第一电极和第二电极中的阴极作用,从而得到净化,同时杀菌及灭活病毒;或者,含有气态污染物的空气可以依次穿过第二电极、离子导体及第一电极而被第一电极和第二电极中的阴极作用,从而得到净化,同时杀菌及灭活病毒。
这样,不仅可使电化学空气净化消毒装置的整体结构更加紧凑;而且,过程中,由于含有气态污染物的空气会穿过第一电极和第二电极中的阴极,能够与阴极接触更加充分,从而可以有效地提升气态污染物的降解效率,提升含有气态污染物的空气的净化效率。
需要说明的是,为了实现本实施例的技术方案,第一电极、离子导体及第二电极均为透气型结构。
可以理解地,第一电极既可以采用透气型的导电材料(即,第一电极采用透气电极,透气电极可选用石墨毡、碳纸电极、碳纤维布电极、泡沫镍电极、泡沫钛电极、泡沫钛合金电极、钛网电极及钛合金网电极中的至少一种);也可以通过在导电材料上设置若干使第一电极的面向离子导体的表面和第一电极的背向离子导体的表面连通的导流通孔实现(导流通孔的横截面形状可以为圆形、方形、菱形、椭圆形或不规则形状,例如蜂窝状结构);此时,气体可以通过若干导流通孔而穿过第一电极;还可以在透气型的导电材料的基础上,进一步增设若干导流通孔。
第二电极既可以采用透气型的导电材料(即,第二电极采用透气电极,透气电极可选用石墨毡、碳纸电极、碳纤维布电极、泡沫镍电极、泡沫钛电极、泡沫钛合金电极、钛网电极及钛合金网电极中的至少一种);也可以通过在导电材料上设置若干使第二电极的面向离子导体的表面和第二电极的背向离子导体的表面连通的导流通孔实现(导流通孔的横截面形状可以为圆形、方形、菱形、椭圆形或不规则形状,例如蜂窝状结构);此时,气体可以通过若干导流通孔而穿过第二电极;还可以在透气型的导电材料的基础上,进一步增设若干导流通孔。
离子导体既可以采用透气型的多孔材料(例如透气陶瓷);也可以通过在多孔材料上设置若干使离子导体的面向第一电极的表面和离子导体的面向第二电极的表面连通的导流通孔实现(例如,颗粒状结构、蜂窝状结构等),以使气体可以通过若干导流通孔而穿过离子导体;还可以在透气型的多孔材料的基础上,进一步增设若干导流通孔。
请参阅图1,在本申请电化学空气净化消毒装置一实施例中,所述离子导体具有背对设置的第一表面和第二表面,所述第一电极覆盖于所述第一表面,所述第二电极覆盖于所述第二表面;
所述离子导体具有若干连通所述第一表面和所述第二表面的气流通孔。
如此,利用气流通孔可以使气体的流通更加顺畅,在保证电化学空气净化消毒装置净化率的同时,可保证高流速、大风量,实现高净化消毒效率。
具体地,该气流通孔的横截面形状包括圆形、正方形、长方形、三角形、菱形、椭圆形以及不规则形状。
在采用电化学方法降解气态污染物及消毒过程中,气流通孔的孔径将同时影响净化率和净化效率,因此需要将气流通孔的孔径控制在0.01mm~30mm的范围内,以在净化率、空气阻力和净化效率三方面均获得较好的效果。例如,气流通孔的孔径为0.01mm、0.02mm、0.05mm、0.1mm、0.2mm、0.5mm、1mm、2mm、5mm、6mm、7mm、8mm、9mm、10mm、15mm、20mm、25mm、30mm。
在本申请电化学空气净化消毒装置一实施例中,所述电化学空气净化消毒装置包括多个所述电化学反应器,多个所述电化学反应器并联或串联设置。如此,可以有效地提升气态污染物的降解效率,提升含有气态污染物的空气的净化及消毒效率。
本申请还提出一种电化学空气净化消毒方法,该电化学空气净化消毒方法应用于如前所述的电化学空气净化消毒装置;该电化学空气净化消毒方法基于电化学方法,可用于实现空气中气态污染物的催化降解,同时杀菌及灭活病毒。
在本申请电化学空气净化消毒方法一实施例中,该电化学空气净化消毒方法包括以下步骤:
在第一电极和第二电极之间施加直流电压;
将含有气态污染物的空气由第一电极所在一侧或第二电极所在一侧通入,并流经离子导体,再穿过对应的另一电极后流出,第一电极或第二电极产生活性物种以降解气态污染物,同时杀菌及灭活病毒。
可以理解地,与直流电源负极连接的第一电极或第二电极被认为是阴极,其采用的是负载过渡金属催化剂的导电材料,其在得电子还原反应中生成H 2O 2(另一侧的阳极则发生氧化反应生成H +和O 2);生成的H 2O 2能够在过渡金属催化剂的作用下通过电化学反应持续地生成高浓度的羟基自由基活性物种,生成的羟基自由基活性物种能够通过氧化作用将气态污染物分解为二氧化碳、水等清洁物质,从而实现对气态污染物的降解,同时杀菌及灭活病毒。
此外,还可以理解地,由于采用的是气体透过型电化学反应器,并不需要给阴极配置单独的进气系统,整个装置只需要一套气体控制系统即可实现气态污染物的降解,进一步优化了装置结构,降低了成本。并且,在降解气态污染物的过程中,经过净化的空气还可直接透过离子导体和阳极后直接排出装置或者在经过阳极、离子导体、阴极后直接排出装置,不会与后续进入的待净化的空气混合,如此可以有效地提升高气体流速下的降解效率。同时使装置的整体结构更加紧凑。
需要说明的是,含有气态污染物的空气的相对湿度会影响气态污染物的降解率和降解效率,因此需要控制含有气态污染物的空气的相对湿度在1%~100%范围内。比如,含有气态污染物的空气的相对湿度为1%、5%、10%、20%、30%、40%、50%、60%、80%或100%。
在采用电化学方法降解气态污染物的过程中,要合理控制直流电源的电压和电流,因此将直流电源的电压控制在0.1V~3000V的范围内,将直流电源的电流控制在0.1mA~100000mA的范围内,以使得电化学方法能够有效地降解气态污染物。例如,直流电源的电压为0.1V、0.2V、0.5V、1V、2V、5V、10V、20V、50V、100V、200V、500V、1000V、2000V或3000V;直流电源的电流为0.1mA、0.2mA、0.5mA、1mA、2mA、5mA、10mA、20mA、50mA、100mA、200mA、500mA、1000mA、2000mA、5000mA、10000mA、20000mA、50000mA或100000mA。其中,直流电源的电压范围优选地1V~50V,直流电源的电流范围优选地3mA~300mA。
在采用电化学方法降解气态污染物的过程中,要合理控制降解气态污染物过程中的温度,因此将降解气态污染物过程中的温度控制在-50℃~90℃范围内,以提高气态污染物的降解率和降解效率。例如,降解气态污染物过程中的温度为-50℃、-45℃、-40℃、-35℃、-30℃、-20℃、-10℃、0℃、10℃、20℃、30℃、35℃、40℃、45℃、50℃、60℃、65℃、70℃、80℃、85℃或90℃。优选地,降解气态污染物过程中的温度为0℃~40℃。
在本申请电化学空气净化消毒方法一实施例中,所述“在第一电极和第二电极之间施加直流电压”的步骤之后,还包括:
间隔预设时长,将第一电极和第二电极与直流电源的正极和负极的电性连接关系进行切换。
也就是说,当以第一电极连接正极、第二电极连接负极的状态运行一定时长后,第一电极可切换至与负极连接;与此同时,第二电极可切换至与正极连接。换而言之,第一电极和第二电极可以交替地作为电化学反应的阴极而投入使用。此时,不论是第一电极,还是第二电极,由于均采用负载过渡金属催化剂的导电材料,并不会影响阴极上高浓度的羟基自由基活性物质的生成。所以,切换后,阴极仍然能够通过生成的羟基自由基活性物质的氧化作用将气态污染物分解为二氧化碳、水等清洁物质,从而实现对气态污染物的降解,同时杀菌及灭活病毒。
可以理解地,本实施例的技术方案,第一电极和第二电极在切换电性连接关系时会交替地作为阴极产生H 2O 2,从而可以改善电极亲水性,提高O 2还原活性,提高H 2O 2产量,并在过渡金属催化剂的作用下产生羟基自由基活性物质,对气态污染物进行降解,转换为无毒无害的水和二氧化碳,提高空气净化效率,同时杀菌及灭活病毒,应用范围广泛。
需要说明的是,在利用如前所述的电化学空气净化消毒装置、电化学空气净化消毒方法对含有气态污染物的空气进行净化消毒前,可以通过以下步骤制备得到电化学空气净化消毒装置:
(1)载体的制备:
第一电极或第二电极所采用的导电材料可以为石墨、石墨毡、石墨烯、碳纳米管、炭黑、乙炔黑、碳毡、网状玻璃碳泡沫、活性炭、活性炭纤维等碳基多孔导电材料或改性碳基多孔导电材料。因此,先将厚度为0.5mm~30mm的碳基多孔导电材料裁剪成合适的尺寸;使用0.01mol/L~mol/L的硫酸钠溶液作为电解液,钌铱钛电极作为阴极,碳基多孔导电材料作为阳极,在氧化电压为3V~50V、氧化电流为3mA~1000mA条件下氧化碳基多孔导电材料,控制氧化时间为1min~60min,制备得到载体。
(2)氧基氯化铁(FeOCl)、零价铁、钙钛矿La 0.4Sr 0.6Co 0.4Fe 0.6O 3等含Fe催化剂的负载:
负载氧基氯化铁(FeOCl)的情形:按照质量比(4~9):(1~6)分别称取FeCl 3·6H 2O和载体,采用无水乙醇将FeCl 3·6H 2O完全溶解,将载体浸泡于溶解有FeCl 3·6H 2O的无水乙醇中,待无水乙醇自然挥发或水浴加热促使其挥发后,将余料在60℃~120℃的条件下进行干燥,再将其放入高温炉以3℃/min~10℃/min的升温速度升温至150℃~250℃,并锻烧2h~5h,制备得到负载有氯化铁(FeOCl)催化剂的第一电极或第二电极。
负载零价铁的情形:取一定量的FeSO 4·7H 2O溶解于去离子水中,与载体充分浸渍6h~24h;再在N 2气氛、120℃~300℃条件下于真空管式炉中焙烧1h~5h;冷却后用冰无氧水配置的NaBH 4溶液在N 2、冰水浴下还原反应1h~3h;过滤,依次用无氧的无水乙醇和无氧水进行洗涤,循环前述洗涤过程3次;于60℃~100℃真空干燥箱中干燥,保存在N 2气氛中,制备得到负载有零价铁催化剂的第一电极或第二电极。
负载钙钛矿La 0.4Sr 0.6Co 0.4Fe 0.6O 3的情形:按金属离子物质的量配比为0.4:0.6:0.4:0.6的比例分别准确称量La(NO 3) 3·6H 2O、Sr(NO 3) 2、Co(NO 3) 2·6H 2O和Fe(NO 3) 3·9H 2O;将化学计量的上述金属硝酸盐混合在去离子水中,将载体浸泡其中,在搅拌的同时以100°C的温度加热。用氨水完全溶解EDTA,按与EDTA的摩尔比为1:1~1:5加入柠檬酸。然后按照总金属硝酸盐、EDTA、柠檬酸的摩尔比为1:1:1~1:5:5将EDTA氨水溶液和各硝酸盐的溶液混合,搅拌并用氨水调节混合溶液的pH值至9~10。后将所制备的混合溶液经60℃~100℃恒温水浴加热搅拌1h~5h至形成凝胶(得到深红棕色的粘稠胶状物)。生成的湿凝胶放于烘箱中于100℃~120℃烘至干凝胶;将所得干凝胶作为前驱体,放于马弗炉中先于300℃~600℃预烧结1h~5h,后于500~1000℃烧结1~5h,制备得到负载钙钛矿La 0.4Sr 0.6Co 0.4Fe 0.6O 3催化剂的第一电极或第二电极。
(3)离子导体的制备:将离子导体模板材料(即多孔材料)切割成合适的尺寸,厚度为0.5mm~30mm,其上配置孔径尺寸为0.1mm~30mm的通孔结构,将负载用的0.1mol/L~1mol/L电解质,通过浸渍、涂布、蒸镀、嵌入等掺杂工艺,将电解质负载到离子导体模板材料中,电解质与多孔材料的干重比为(0.001~4):1。。
(4)电化学反应器的组装:将第一电极、离子导体、第二电极三层依次紧密贴合,即在离子导体的两侧分布第一电极和第二电极,形成一个具有“三明治”夹层结构的电化学反应器,在第一电极和第二电极施加直流电压,控制电压值在0.1V~1000V的范围内,控制电流值在0.1mA~100000mA。
完成上述操作后,便可将含有气态污染物的空气从电化学反应器的第一电极或第二电极通入,经过离子导体后从对应的另一电极透过,以被第一电极和第二电极中的阴极净化;过程中,在电催化分解1min~120min后可调换第一电极和第二电极在直流电源正极和负极之间的电性连接关系,同时检测流入和流出电化学反应器的气态污染物的浓度变化。
以下通过具体实施例对本申请的电化学空气净化消毒装置和电化学空气净化消毒方法进行详细说明:
实施例1
(1)第一电极或第二电极的制备:先将厚度为5mm的石墨毡裁剪成80mm×80mm的尺寸,使用0.1mol/L的硫酸钠溶液为电解液,钌铱钛电极作为阴极,石墨毡作为阳极,氧化石墨毡(氧化电压为10V,氧化电流为200mA,氧化时间为15min),得到载体;
按照质量比6:4称取FeCl 3·6H 2O和载体,用适量无水乙醇将FeCl 3·6H 2O溶解,将载体浸泡其中,待无水乙醇自然挥发或水浴加热促使其挥发后,将其在真空干燥箱中60℃干燥24h,再将其放入管式炉以10℃/min的升温速度升温至220℃,并锻烧2.5h,随后使用丙酮或无水乙醇超声洗涤三次,将其在真空干燥箱中60℃干燥24h得到负载FeOCl的石墨毡电极。
(2)离子导体的制备:将沸石蜂窝板切割成80mm×80mm×10mm的尺寸,配置1mol/L的硫酸钠溶液,将硫酸钠溶液通过浸渍工艺掺杂进入沸石蜂窝板的多孔结构中(即将沸石蜂窝板浸泡在硫酸钠溶液中30min后,将多余液相电解质溶液除去);其中,硫酸钠电解质负载量为其占离子导体质量的10%。
(3)电化学反应器的组装:将第一电极、离子导体、第二电极三层依次排列,形成一个“三明治”结构的电化学反应器,将其放入固定槽内。
利用上述电化学反应器进行空气净化,包括如下步骤:将含有甲苯的气体通入电化学反应器,甲苯浓度为20ppm,以空气为平衡气,通过气体质量流量计控制其总流量为20ml/min。然后在第一电极和电极第二电极之间施加10V的直流电压和200mA电流,60min后调换电极,并在电化学反应器的出气口检测每次调换电极时通过电化学反应器前后的气体污染物浓度。
经过检测分析,初始进口处甲苯浓度为20ppm,经过30min后出口处甲苯浓度降低为5.0ppm,经定性检测其羟基自由基如图2(阴极)所示;经过第一次电极切换后60min时,出口处甲苯浓度为5.1ppm,经定性检测其羟基自由基如图2(1-阴极)所示,相较于最初的阴极羟基自由基的峰值(在400-450nm处为羟基自由基的峰,在350-400nm处的峰为捕获剂的峰)减小了;经第二次电极切换后60min时,出口处甲苯浓度为4.5ppm,经定性检测其羟基自由基如图2(2-阴极)所示,其羟基自由基峰值比最初的阴极更大;经过第三次电极切换后60min时,出口处甲苯浓度为4.0ppm,经定性检测其羟基自由基如图2(3-阴极)所示,其羟基自由基产生的峰值最大。
实施例2
(1)第一电极或第二电极的制备:先将厚度为5mm的石墨毡裁剪成80mm×80mm的尺寸,使用0.1mol/L的硫酸钠溶液为电解液,钌铱钛电极作为阴极,石墨毡作为阳极,氧化石墨毡(氧化电压为10V,氧化电流为200mA,氧化时间为15min),得到载体;
按照质量比5:5称取FeCl 3·6H 2O和载体,用适量水将FeCl 3·6H 2O溶解,将载体浸泡其中,待水自然挥发或水浴加热促使其挥发后,将其在真空干燥箱中60℃干燥24h,再将其放入管式炉以10℃/min的升温速度升温至220℃,并锻烧2.5h,随后使用丙酮或无水乙醇超声洗涤三次,将其在真空干燥箱中60℃干燥24h得到负载FeOCl的石墨毡电极。
(2)离子导体的制备:将活性炭蜂窝板切割成80mm×80mm×10mm的尺寸,配置2mol/L的磷酸锂溶液,将磷酸锂溶液通过涂布工艺掺杂进入活性炭蜂窝板的多孔结构中;其中,磷酸锂电解质负载量为其占离子导体质量的20%;涂布完后将活性炭蜂窝板室温静置30min,即可使用。
(3)电化学反应器的组装:将第一电极、离子导体、第二电极三层依次排列,形成一个“三明治”结构的电化学反应器,将其放入固定槽内。
利用上述电化学反应器进行空气净化,包括如下步骤:将含有甲苯的气体通入电化学反应器,甲苯浓度为20ppm,以空气为平衡气,通过气体质量流量计控制其总流量为20ml/min。然后在第一电极和第二电极之间施加8V的直流电压和100mA电流,60min后调换电极,并在电化学反应器的出气口检测每次调换电极时未经过电化学反应器以及经过电化学反应器的气体污染物的浓度。
经过检测分析,初始进口处甲苯浓度为20ppm,经过30min后出口处甲苯浓度降低为3.5ppm;经过第一次电极切换后60min时,出口处甲苯浓度为3.2ppm,经第二次电极切换后60min时,出口处甲苯浓度为2.5ppm,经过第三次电极切换后60min时,出口处甲苯浓度降低为2.4ppm。
实施例3
(1)第一电极或第二电极的制备:先将厚度为5mm的石墨毡裁剪成80mm×80mm的尺寸,使用0.1mol/L的硫酸钠溶液为电解液,钌铱钛电极作为阴极,石墨毡作为阳极,氧化石墨毡(氧化电压为10V,氧化电流为200mA,氧化时间为15min),得到载体;
按照质量比7:3称取FeCl 3·6H 2O和载体,用适量无水乙醇将FeCl 3·6H 2O溶解,将载体浸泡其中,待无水乙醇自然挥发或水浴加热促使其挥发后,将其在真空干燥箱中60℃干燥24h,再将其放入管式炉以10℃/min的升温速度升温至220℃,并锻烧2.5h,随后使用丙酮或无水乙醇超声洗涤三次,将其在真空干燥箱中60℃干燥24h得到负载FeOCl的石墨毡电极。
(2)离子导体的制备:配置8mol/L的硝酸镁溶液,将硝酸镁溶液与陶瓷粉末原料进行高速混合,压制成型后进行300℃低温烧结,获得掺杂有硝酸镁的多孔陶瓷离子导体。
(3)电化学反应器的组装:将第一电极、离子导体、第二电极三层依次排列,形成一个“三明治”结构的电化学反应器,将其放入固定槽内。
利用上述电化学反应器进行空气净化,包括如下步骤:将含有甲醛的气体通入电化学反应器,甲醛浓度为10ppm,以空气为平衡气,通过气体质量流量计控制其总流量为20ml/min。然后在第一电极和第二电极之间施加6.0V的直流电压和80mA电流,30min后调换电极,并在电化学反应器的出气口检测每次调换电极时未经过电化学反应器以及经过电化学反应器的气体污染物的浓度。
经过检测分析,初始进口处甲醛浓度为10ppm,经过30min后出口处浓度降低为0.6ppm;经过第一次电极切换后60min时,出口处甲醛浓度降低为0.8ppm,经第二次电极切换后60min时,出口处甲醛浓度降低为0.5ppm,经过第三次电极切换后60min时,出口处甲醛浓度为0.2ppm。
实施例4
(1)第一电极或第二电极的制备:先将厚度为5mm的石墨毡裁剪成80mm×80mm的尺寸,使用0.1mol/L的硫酸钠溶液为电解液,钌铱钛电极作为阴极,石墨毡作为阳极,氧化石墨毡(氧化电压为10V,氧化电流为200mA,氧化时间为15min),得到载体;
按照质量比6:4称取FeSO 4·7H 2O和载体,将FeSO 4·7H 2O溶解于去离子水中,并与载体充分浸渍24h;再在N2气氛、300℃下于真空管式炉中焙烧4h;冷却后用冰无氧水配置的NaBH4溶液在N2、冰水浴下还原反应2h;过滤,依次用无氧的无水乙醇和无氧水进行洗涤,循环前述洗涤过程3次;于75℃真空干燥箱中干燥,保存在N2气氛中,制备得到负载有零价铁催化剂的电极。
(2)离子导体的制备:将三氧化二铝蜂窝板切割成80mm×80mm×10mm的尺寸,配置1mol/L的氯化钠溶液,通过高温蒸镀工艺将氯化钠电解质负载到三氧化二铝蜂窝板的内表面结构中,退火后即可得到离子导体。
(3)电化学反应器的组装:将第一电极、离子导体、电极第二电极三层依次排列,形成一个“三明治”结构的电化学反应器,将其放入固定槽内。
利用上述电化学反应器进行空气净化,包括如下步骤:将含有甲苯的气体通入电化学反应器,甲苯浓度为10ppm,以空气为平衡气,通过气体质量流量计控制其总流量为20ml/min。然后在第一电极和电极第二电极之间施加10V的直流电压和200mA电流,60min后调换电极,并在电化学反应器的出气口检测每次调换电极时未经过电化学反应器以及经过电化学反应器的气体污染物的浓度。
经过检测分析,初始进口处甲苯浓度为10ppm,经过30min后出口处甲苯浓度为4.6ppm;经过第一次电极切换后60min时,出口处甲苯浓度降低为4.8ppm,经第二次电极切换后60min时,出口处甲苯浓度降低为3.2ppm,经过第三次电极切换后60min时,出口处甲苯浓度降低为2.8。
实施例5
(1)第一电极或第二电极的制备:先将厚度为5mm的石墨毡裁剪成80mm×80mm的尺寸,使用0.1mol/L的硫酸钠溶液为电解液,钌铱钛电极作为阴极,石墨毡作为阳极,氧化石墨毡(氧化电压为10V,氧化电流为200mA,氧化时间为15min),得到载体;
按金属离子物质的量配比为0.4:0.6:0.4:0.6的比例准确称量La(NO 3) 3·6H 2O、Sr(NO 3) 2、Co(NO 3) 2·6H 2O和Fe(NO 3) 3·9H 2O;将化学计量的上述金属硝酸盐混合在去离子水中,将载体浸泡于其中,在搅拌的同时以100°C的温度加热。用氨水完全溶解EDTA,按与EDTA的摩尔比为1:2加入柠檬酸。然后按照总金属硝酸盐、EDTA、柠檬酸的摩尔比为1:1:2将EDTA氨水溶液和各硝酸盐溶液混合,搅拌并用氨水调节混合溶液的pH值至9~10。后将所制备的混合溶液经80℃恒温水浴加热搅拌2h至形成凝胶(得到深红棕色的粘稠胶状物)。生成的湿凝胶放于烘箱中于110℃烘至干凝胶;将所得干凝胶作为前驱体,放于马弗炉中先于400℃预烧结4h,后于800℃烧结4h,制备得到负载钙钛矿La 0.4Sr 0.6Co 0.4Fe 0.6O 3催化剂的电极。
(2)离子导体的制备:将沸石蜂窝板切割成80mm×80mm×10mm的尺寸,配置1mol/L的硫酸钠溶液,将沸石蜂窝板浸泡其中30min,将多余液相滤出。
(3)电化学反应器的组装:将第一电极、离子导体、电极第二电极三层依次排列,形成一个“三明治”结构的电化学反应器,将其放入固定槽内。
利用上述电化学反应器进行空气净化,包括如下步骤:将含有甲苯的气体通入电化学反应器,甲苯浓度为10ppm,以空气为平衡气,通过气体质量流量计控制其总流量为20ml/min。然后在第一电极和电极第二电极之间施加10V的直流电压和200mA电流,60min后调换电极,并在电化学反应器的出气口检测每次调换电极时进入电化学反应器前后的气体污染物浓度。
经过检测分析,初始进口处甲苯浓度为10ppm,经过30min后出口处甲苯浓度降低为1.5ppm;经过第一次电极切换后60min时,出口处甲苯浓度降低为1.9ppm,经第二次电极切换后60min时,出口处浓度降低为1.6ppm,经过第三次电极切换后60min时,出口处浓度降低为1.2ppm。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (14)

  1. 一种电化学空气净化消毒装置,其中,包括电化学反应器,所述电化学反应器包括第一电极、第二电极、离子导体以及直流电源;
    所述直流电源具有正极和负极,所述第一电极与所述正极和所述负极的其中之一电性连接,所述第二电极与所述正极和所述负极的其中之另一电性连接,所述离子导体夹设于所述第一电极和第二电极之间;
    所述第一电极和所述第二电极中与所述负极电性连接的一个为负载有过渡金属催化剂的导电材料。
  2. 如权利要求1所述的电化学空气净化消毒装置,其中,所述离子导体为负载有电解质的多孔材料。
  3. 如权利要求2所述的电化学空气净化消毒装置,其中,所述离子导体用多孔材料为陶瓷、沸石、二氧化硅、三氧化二铝、硅藻土、无定形活性炭、金属有机骨架的多孔材料中的至少一种;
    且/或,多孔材料负载电解质的工艺包括浸渍、涂布、蒸镀、嵌入的掺杂工艺中的至少一种;
    且/或,所述离子导体中,电解质与多孔材料的干重比为(0.001~4):1。
  4. 如权利要求2所述的电化学空气净化消毒装置,其中,所述离子导体用电解质为硫酸盐、磷酸盐、碳酸盐、氟化盐、氯化盐、溴化盐、碘化盐、硝酸盐、硼酸盐、柠檬酸盐、硅酸盐、硼氧化物、磷氧化物中的至少一种。
  5. 如权利要求4所述的电化学空气净化消毒装置,其中,所述硫酸盐包括硫酸锂、硫酸氢锂、硫酸钠、硫酸氢钠、硫酸钾、硫酸氢钾、硫酸镁、硫酸钙、硫酸锌、硫酸亚铁、硫酸铜、硫酸钡中的至少一种;
    所述磷酸盐包括磷酸钠、磷酸二氢钠、磷酸氢二钠、磷酸钾、磷酸二氢钾、磷酸氢二钾、磷酸镁、磷酸氢镁、磷酸钙、磷酸氢钙、磷酸锌、磷酸氢锌、磷酸亚铁、磷酸铜、磷酸锂、磷酸二氢锂、磷酸氢二锂、磷酸铁锂中的至少一种;
    所述氟化盐包括氟化钠、氟化钾、氟化锂、氟化钙、氟化锌、氟化镁、氟化亚铁、氟化铜中的至少一种;
    所述氯化盐包括氯化锂、氯化钠、氯化钾、氯化钙、氯化锌、氯化镁、氯化亚铁、氯化铜中的至少一种;
    所述溴化盐包括溴化锂、溴化钠、溴化钾、溴化钙、溴化锌、溴化镁、溴化亚铁、溴化铜中的至少一种;
    所述碘化盐包括碘化锂、碘化钠、碘化钾、碘化钙、碘化锌、碘化镁、碘化亚铁、碘化铜中的至少一种;
    所述硝酸盐包括硝酸钠、硝酸钾、硝酸锂、硝酸钙、硝酸锌、硝酸镁、硝酸亚铁、硝酸铜中的至少一种;
    所述硼酸盐包括硼酸钠、四硼酸钠、硼酸钾、四硼酸钾、硼酸钙、硼酸铁、硼酸镁、硼酸锂、四硼酸锂中的至少一种;
    所述碳酸盐包括碳酸锂、碳酸氢锂、碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、碳酸镁中的至少一种;
    所述柠檬酸盐包括柠檬酸锂、柠檬酸钠、柠檬酸钾、柠檬酸钙、柠檬酸锌、柠檬酸镁、柠檬酸亚铁中的至少一种;
    所述硅酸盐包括硅酸钠、硅酸钾、硅酸锂中的至少一种。
  6. 如权利要求1所述的电化学空气净化消毒装置,其中,所述过渡金属催化剂的活性成分为铁、钴、镍、锰、铈的单质、氧化物、氢氧化物、氧基氯化物、合金、离子络合物中的至少一种;
    且/或,所述导电材料为石墨、石墨毡、石墨烯、碳纳米管、炭黑、乙炔黑、碳毡、网状玻璃碳泡沫、活性炭、活性炭纤维的碳基多孔导电材料中的至少一种;
    且/或,所述过渡金属催化剂的负载量按质量分数计为0.01%~1000%。
  7. 如权利要求1所述的电化学空气净化消毒装置,其中,所述第一电极和所述第二电极均为负载有过渡金属催化剂的导电材料,所述第一电极和所述第二电极可在所述正极和所述负极之间交换电性连接关系。
  8. 如权利要求1所述的电化学空气净化消毒装置,其中,所述电化学空气净化消毒装置还包括气流通道,所述第一电极、所述离子导体及所述第二电极设于所述气流通道内,并沿气流方向或者反方向依次设置,以使含有气态污染物的空气依次穿过所述第一电极、所述离子导体及所述第二电极,或者依次穿过所述第二电极、所述离子导体及所述第一电极。
  9. 如权利要求8所述的电化学空气净化消毒装置,其中,所述离子导体具有背对设置的第一表面和第二表面,所述第一电极覆盖于所述第一表面,所述第二电极覆盖于所述第二表面;
    所述离子导体具有若干连通所述第一表面和所述第二表面的气流通孔。
  10. 如权利要求9所述的电化学空气净化消毒装置,其中,所述气流通孔的孔径为0.01mm~30mm。
  11. 如权利要求1至10中任一项所述的电化学空气净化消毒装置,其中,所述电化学空气净化消毒装置包括多个所述电化学反应器,多个所述电化学反应器并联或串联设置。
  12. 一种电化学空气净化消毒方法,应用于如权利要求1至11中任一项所述的电化学空气净化消毒装置,其中,所述电化学空气净化消毒方法包括以下步骤:
    在第一电极和第二电极之间施加直流电压;
    将含有气态污染物的空气由第一电极所在一侧或第二电极所在一侧通入,并流经离子导体,再穿过对应的另一电极后流出,第一电极或第二电极产生活性物种以降解气态污染物,同时杀菌及灭活病毒。
  13. 如权利要求12所述的电化学空气净化消毒方法,其中,降解气态污染物过程中的温度控制在-50℃~90℃范围内;
    且/或,所述含有气态污染物的空气的相对湿度为1%~100%;
    且/或,所述直流电压为0.1V~3000V;
    且/或,与所述直流电压适配的直流电流为0.1mA~100000mA。
  14. 如权利要求13所述的电化学空气净化消毒方法,其中,在第一电极和第二电极之间施加直流电压的步骤之后,还包括:
    间隔预设时长,将第一电极和第二电极与直流电源的正极和负极的电性连接关系进行切换。
PCT/CN2021/100339 2021-06-10 2021-06-16 电化学空气净化消毒装置和电化学空气净化消毒方法 WO2022257160A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110647570.X 2021-06-10
CN202110647570.XA CN113477075B (zh) 2021-06-10 2021-06-10 电化学空气净化消毒装置和电化学空气净化消毒方法

Publications (1)

Publication Number Publication Date
WO2022257160A1 true WO2022257160A1 (zh) 2022-12-15

Family

ID=77935143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100339 WO2022257160A1 (zh) 2021-06-10 2021-06-16 电化学空气净化消毒装置和电化学空气净化消毒方法

Country Status (2)

Country Link
CN (1) CN113477075B (zh)
WO (1) WO2022257160A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116651194A (zh) * 2023-05-26 2023-08-29 上海沃德鑫丰环保科技有限公司 废气处理方法及装置
CN117531345B (zh) * 2024-01-09 2024-04-19 天津大学 用于除味和消毒清洗的电化学方法及电解池装置、系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020050451A1 (en) * 2000-07-05 2002-05-02 William Ford Electrochemical apparatus and process for purification of fluids
CN104085962A (zh) * 2013-04-01 2014-10-08 中国科学院生态环境研究中心 电化学原位产生羟基自由基的方法和装置
CN109772165A (zh) * 2018-12-14 2019-05-21 深圳大学 一种尾气净化反应器及其制备方法与尾气净化反应电堆
CN110559853A (zh) * 2019-09-30 2019-12-13 华中师范大学 阳极和阴极同步电化学法去除气态污染物的方法及其装置
CN110931867A (zh) * 2019-11-26 2020-03-27 深圳先进技术研究院 一种新型电池及其制备方法
CN111282410A (zh) * 2020-02-19 2020-06-16 华中师范大学 电化学法降解气态污染物的装置及其方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441273C (zh) * 2004-09-30 2008-12-10 广东工业大学 用于降解有机污染物的光电催化反应器及降解方法
CN2732344Y (zh) * 2004-09-30 2005-10-12 广东工业大学 用于降解有机污染物的光电催化反应器
JP5614521B2 (ja) * 2005-01-24 2014-10-29 独立行政法人産業技術総合研究所 固体炭素分解型セラミックス化学反応装置
JP4946819B2 (ja) * 2007-11-20 2012-06-06 株式会社豊田自動織機 電気化学デバイスおよび排気ガスの浄化装置
KR101233146B1 (ko) * 2008-04-09 2013-02-14 스미토모덴키고교가부시키가이샤 가스 분해 소자 및 가스 분해 방법
US20110177407A1 (en) * 2008-09-24 2011-07-21 Sumitomo Electric Industries, Ltd. Electrochemical reactor, method for manufacturing the electrochemical reactor, gas decomposing element, ammonia decomposing element, and power generator
CN101771242B (zh) * 2010-03-11 2012-05-23 马骧彬 一种氧负离子发生器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020050451A1 (en) * 2000-07-05 2002-05-02 William Ford Electrochemical apparatus and process for purification of fluids
CN104085962A (zh) * 2013-04-01 2014-10-08 中国科学院生态环境研究中心 电化学原位产生羟基自由基的方法和装置
CN109772165A (zh) * 2018-12-14 2019-05-21 深圳大学 一种尾气净化反应器及其制备方法与尾气净化反应电堆
CN110559853A (zh) * 2019-09-30 2019-12-13 华中师范大学 阳极和阴极同步电化学法去除气态污染物的方法及其装置
CN110931867A (zh) * 2019-11-26 2020-03-27 深圳先进技术研究院 一种新型电池及其制备方法
CN111282410A (zh) * 2020-02-19 2020-06-16 华中师范大学 电化学法降解气态污染物的装置及其方法

Also Published As

Publication number Publication date
CN113477075A (zh) 2021-10-08
CN113477075B (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2022257160A1 (zh) 电化学空气净化消毒装置和电化学空气净化消毒方法
CN110559853B (zh) 阳极和阴极同步电化学法去除气态污染物的方法及其装置
CN107930381B (zh) 一种光电催化膜耦合微生物燃料电池体系加快voc降解并产电的方法
CN113774416B (zh) 一种气体扩散阴极及原位产过氧化氢的电化学反应器
CN102923826A (zh) 复合催化氧化处理有机废水的装置及催化阳极的制备方法
CN103331082B (zh) 一种粒子群电极吸附耦合电催化氧化处理含苯废气的装置
US20240058749A1 (en) Device and method for degrading gaseous organic pollutant through electrochemical process
CN109595708A (zh) 一种以原位同步调控活性炭纤维为载体的微波增强光催化氧化空气调节系统
US7785451B2 (en) Portable oxygen maintenance and regulation concentrator apparatus
CN109925874B (zh) 一种电化学空气净化膜结构、净化模块、净化器以及净化方法
CN105161730B (zh) 空气阴极以及微生物燃料电池
CN106582701A (zh) 一种催化净化复合材料及其制备方法和应用
CN104716338B (zh) 一种液流电池用电极的处理方法
CN112870939B (zh) 一种用于连续有效去除空气污染物的生物耦合催化反应体系
CN116839146A (zh) 净化装置及多孔绝缘介质的制造方法
CN112807995B (zh) 电化学法降解气态污染物的装置及其方法
CN203408616U (zh) 一种粒子群电极吸附耦合电催化氧化处理含苯废气的装置
CN211394645U (zh) 一种电解水制氧设备
CN113060803A (zh) 一种电催化处理再生水中痕量雌激素的系统及方法
JP2016104468A (ja) NOx浄化装置及びそれを用いたNOx浄化方法
CN110863212A (zh) 电解水制氧系统、密闭空间空气质量控制系统
CN112933897B (zh) 空气净化装置及其制作方法、以及空气净化方法
CN114540842B (zh) 一种电解食盐制备次氯酸钠消毒胶体的装置
JPH02227118A (ja) 悪臭除去装置及び方法
CN107081057B (zh) 用于处理医疗废物焚烧尾气的冷等离子体催化净化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21944666

Country of ref document: EP

Kind code of ref document: A1