WO2021060465A1 - 籾摺装置及び籾摺制御システム - Google Patents

籾摺装置及び籾摺制御システム Download PDF

Info

Publication number
WO2021060465A1
WO2021060465A1 PCT/JP2020/036265 JP2020036265W WO2021060465A1 WO 2021060465 A1 WO2021060465 A1 WO 2021060465A1 JP 2020036265 W JP2020036265 W JP 2020036265W WO 2021060465 A1 WO2021060465 A1 WO 2021060465A1
Authority
WO
WIPO (PCT)
Prior art keywords
paddy
rice
paddy rice
roll
light
Prior art date
Application number
PCT/JP2020/036265
Other languages
English (en)
French (fr)
Inventor
稔 是田
Original Assignee
株式会社サタケ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020068525A external-priority patent/JP7537119B2/ja
Application filed by 株式会社サタケ filed Critical 株式会社サタケ
Priority to US17/763,588 priority Critical patent/US20220331810A1/en
Priority to KR1020227011952A priority patent/KR20220066093A/ko
Priority to CN202080067033.1A priority patent/CN114514072B/zh
Priority to EP20867584.3A priority patent/EP4035777A1/en
Priority to BR112022005746A priority patent/BR112022005746A2/pt
Publication of WO2021060465A1 publication Critical patent/WO2021060465A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02BPREPARING GRAIN FOR MILLING; REFINING GRANULAR FRUIT TO COMMERCIAL PRODUCTS BY WORKING THE SURFACE
    • B02B3/00Hulling; Husking; Decorticating; Polishing; Removing the awns; Degerming
    • B02B3/04Hulling; Husking; Decorticating; Polishing; Removing the awns; Degerming by means of rollers
    • B02B3/045Hulling; Husking; Decorticating; Polishing; Removing the awns; Degerming by means of rollers cooperating rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02BPREPARING GRAIN FOR MILLING; REFINING GRANULAR FRUIT TO COMMERCIAL PRODUCTS BY WORKING THE SURFACE
    • B02B3/00Hulling; Husking; Decorticating; Polishing; Removing the awns; Degerming
    • B02B3/04Hulling; Husking; Decorticating; Polishing; Removing the awns; Degerming by means of rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02BPREPARING GRAIN FOR MILLING; REFINING GRANULAR FRUIT TO COMMERCIAL PRODUCTS BY WORKING THE SURFACE
    • B02B7/00Auxiliary devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8592Grain or other flowing solid samples

Definitions

  • the present invention relates to a paddy device and a paddy control system capable of controlling a paddy machine according to the quality state of paddy rice.
  • a speed change motor is directly connected to each of the main shaft and the sub shaft, and the speed of each speed change motor is changed at regular intervals to switch between the main shaft and the sub shaft. Is.
  • Patent Document 6 The method disclosed in Patent Document 6 is not a structure in which the clutch is slid back and forth in the direction of the rotation axis, but a belt clutch mechanism and an idler pulley are used to switch the rotation speed of each of the main and sub rolls.
  • Patent Documents 1 to 6 switch the rotation speeds of the rolls of the spindle and the sub-spindle after a certain period of time, regardless of the quality status of the rice after padding. Therefore, it may not be possible to maintain the quality of the paddy rice after padding, including the removal rate, in the best condition.
  • an object of the present invention is to provide a paddy device and a paddy control system capable of controlling an appropriate paddy machine according to the quality state of paddy rice after padding.
  • the invention according to claim 1 of the present application is a paddy rice machine in which paddy rice is scraped by a de-roll, a paddy rice discriminator capable of inspecting paddy rice discharged from the paddy rice, and the paddy rice discriminator.
  • the paddy rice control unit has a paddy control unit capable of controlling the paddy rice according to the inspection result of the paddy rice, and the paddy control unit has the paddy rice according to the inspection result of the paddy rice.
  • the paddy rice device is provided with a rotation speed changing means for changing the rotation speed of the removal roll in the machine.
  • the depleting roll comprises a main depleting roll that rotates at a predetermined rotation speed and a sub-depleting roll that rotates at a lower speed than the main depleting roll.
  • the removal rate is included in the inspection item of the paddy rice, and the paddy control unit has the rotation speed when the removal rate is less than a predetermined value.
  • the inspection item of the paddy rice includes at least the rice crushing rate, and the paddy control unit rotates when the increase rate of the rice crushing rate becomes a predetermined value or more.
  • the paddy rice discriminator comprises a flow-down ridge for aligning and flowing down the paddy rice and a light emitting source for irradiating the paddy rice discharged from the down-flow ridge with light.
  • a camera means capable of receiving reflected light and transmitted light from the paddy rice irradiated with light from the light emitting source, and the light emitting source is the camera means side of the paddy rice.
  • a first lighting means that can irradiate the paddy rice with light of a red component, and a side of the paddy rice that is provided on a side away from the camera means and irradiates the paddy rice with light of a green component.
  • the paddy rice to be discharged is brown rice.
  • the paddy rice to be discharged is paddy.
  • the light emitting source is further provided at a position on an extension line connecting the camera means and the paddy rice, and the background of the paddy rice can be irradiated with light of a blue component.
  • the blue component When the amount of light received by the blue component is out of a predetermined range as a result of the light received by the camera means, the rice discharged from the downflow gutter is not the paddy rice.
  • the invention according to claim 8 of the present application is described in any one of claims 5 to 7, wherein the camera means can capture an image of the paddy rice in addition to receiving the reflected light and the transmitted light. It is a paddy device.
  • the flow gutter extends at least to the observation area of the camera means in which the paddy rice is irradiated with light, and can transmit light from the light emitting source.
  • the invention according to claim 10 of the present application includes a paddy rice device in which paddy rice is scraped by a de-roll, a paddy rice determining means capable of determining the quality of paddy rice discharged from the paddy rice, and the paddy rice.
  • a paddy device having a paddy control unit capable of controlling the paddy rice according to a determination result of the paddy rice in the determination means is connected to the paddy device by wire or wirelessly, and the paddy is connected. It has a monitoring device capable of receiving and displaying and outputting the determination result of the rice slide, and the removal of the paddy rice in the paddy rice device according to the determination result of the paddy rice displayed and output to the monitoring device.
  • It is a paddy control system characterized in that it is possible to change the rotation speed of the roll.
  • the paddy device includes an abnormality detecting means capable of detecting an abnormality in the padding device, and the monitoring device has a plurality of types based on detection information from the abnormality detecting means.
  • the paddy control system according to claim 10 further comprising an abnormality determination means capable of determining an abnormality and an abnormality display means capable of displaying and outputting a determination result by the abnormality determination means.
  • the monitoring device includes an abnormality handling instruction display means capable of displaying and outputting check contents according to a priority in response to a determination result by the abnormality determination means. It is a paddy control system described in 1.
  • the paddy rice discharged from the paddy rice is constantly inspected by the paddy rice discriminator, and the rotation speed of the depleting roll is inspected according to the inspection result of the paddy rice. It is possible to stably maintain the quality of the rice after padding in a good condition because the rice is appropriately changed.
  • the depleting roll is composed of a main depleting roll that rotates at a predetermined rotation speed and a sub-depleting roll that rotates at a lower speed than the main depleting roll.
  • the rotation speed can be changed so that the rotation speed of the sub-depletion roll rotates faster than the rotation speed of the main depletion roll.
  • the inspection item of the rice after paddying in the paddy rice discriminator is configured to include at least the removal rate, and when the removal rate becomes less than a predetermined value, the rice is removed.
  • the rotation speed of the roll can be changed. This makes it possible to continuously secure a good and stable removal rate.
  • the inspection item of rice after paddying in the paddy rice discriminator is configured to include at least the rice crushing rate, and is removed when the rate of increase in the rice crushing rate exceeds a predetermined value.
  • the rotation speed of the prowl can be changed. This makes it possible to continuously reduce the rice crushing rate.
  • the paddy has poor light transmission of the green component and high light reflectivity of the red component as compared with brown rice.
  • a first lighting means capable of irradiating the light of the red component and a second lighting means capable of irradiating the light of the green component are installed on the rice after the padding, which is a mixture of paddy and brown rice.
  • the transmitted light is received by the camera means.
  • the light receiving amount of the green component when the light receiving amount of the green component is higher than the threshold value of the predetermined green component as a result of receiving the light of the camera means, it is determined that the discharged rice after padding is brown rice. Will be done.
  • the amount of light received by the green component is lower than the above-mentioned threshold value of the predetermined green component and the amount of light received by the red component is higher than the predetermined threshold value of the red component, after the paddy is discharged from the downspout gutter. Rice is determined to be paddy. As a result, it is possible to quickly discriminate the type of rice after padding without performing a complicated discriminating process.
  • a third lighting means capable of irradiating the background with light of a blue component is provided at a position on an extension line connecting the camera means and the rice after padding.
  • the downspout gutter is extended to the observation area of the camera means, and the downspout gutter is formed of a transparent material such as glass.
  • the paddy device is connected to the paddy device by wire or wirelessly, and a monitoring device capable of receiving and displaying the determination result of rice after padding is used. It is possible to change the rotation speed of the de-roll in the padding machine according to the judgment result of the rice after padding that is displayed and output to the monitoring device. With such a configuration, it is possible to always appropriately control the padding device, and it is possible to appropriately control the quality of rice after padding.
  • the paddy device is provided with an abnormality detecting means capable of detecting an abnormality, and the result of the abnormality determination can be displayed and output to the monitoring device.
  • an abnormality detecting means capable of detecting an abnormality
  • the result of the abnormality determination can be displayed and output to the monitoring device.
  • FIG. 1 It is a side view which shows one Embodiment of the paddy machine in the paddy device of this invention. It is a perspective view which shows one Embodiment of the removal roll drive device in a paddy machine. It is an exploded perspective view which shows the detailed structure of the belt clutch mechanism of the 1st drive system. It is a schematic diagram which shows each operating state of the 1st drive system and the 2nd drive system, and is the schematic diagram when the roll is new. It is a schematic diagram which shows each operating state of the 1st drive system and the 2nd drive system, and is the schematic diagram when a roll is worn. It is a schematic side view which shows the chain sprocket transmission mechanism which rotates a support member. FIG.
  • FIG. 5 is a schematic explanatory view showing a connection between a chain and a sprocket when viewed from the direction of arrow A in FIG. It is schematic cross-sectional view which shows one Embodiment of the paddy rice discriminator in the paddy rice device of this invention. It is a schematic side view which shows the discrimination mode of the paddy rice in the paddy rice discriminator. It is a graph which shows the relationship between the light reflectance of paddy and brown rice, and the wavelength of light. It is a graph which shows the relationship between the light transmittance and the wavelength of light. It is a flow explaining one Embodiment of the discrimination method of discriminating paddy and brown rice in the paddy slide apparatus of this invention.
  • the paddy device of the present invention is mainly composed of a paddy machine 1 and a paddy rice discriminator 70, and the present embodiment will be described below with reference to the drawings.
  • FIG. 1 is a side view showing the entire removal roll drive device of the paddy machine 1
  • FIG. 2 is a perspective view of the removal roll drive device.
  • the paddy machine 1 is provided with a main depleting roll 3 rotatably supported by a roll shaft 5 at the lower part of the machine frame 2 and a perspective adjustment with the main depleting roll 3.
  • the sub-depletion rolls 4 pivotally supported by the roll shaft 6 are arranged so as to rotate inward with respect to each other and at different speeds from each other.
  • a drive motor 7, which will be described later, is provided in the central portion of the machine frame 2, and a drive motor 8 is provided on the side surface of the machine frame 2.
  • the first large-diameter pulley 9 is mounted on the outer side of one roll shaft 5 in the axial direction
  • the first small-diameter pulley 10 is mounted on the outer side of the other roll shaft 6 in the axial direction.
  • the first large-diameter pulley 9, the first small-diameter pulley 10, the drive pulley 11 of the drive motor 7, and the first idler pulley 12 provided at the lower part of the machine frame 2 are connected by an endless belt 13 for first drive. It forms a system.
  • the surface of the belt is hung around the first large diameter pulley 9 so that the first large diameter pulley 9 and the first small diameter pulley 10 rotate inward with each other.
  • the back surface of the belt is hung around the small diameter pulley 10.
  • the endless belt 13 is configured to rotate counterclockwise.
  • the first large-diameter pulley 9 of the first drive system is provided with a V-shaped support member 16 that rotates about a roll shaft 5 on the outer circumference of the first large-diameter pulley 9 so as to draw a rotation locus. It is installed.
  • the rotation of the support member 16 forms a belt clutch mechanism 15 that "enters” and “offs” the power of the endless belt 13 into the first large-diameter pulley 9.
  • Reference numerals 14a and 14b are a pair of tension clutch pulleys attached to the tip of the support member 16.
  • the position of the solid line of the belt clutch mechanism 15 shown in FIGS. 1 and 2 is the position where the endless belt 13 is wound around the first large-diameter pulley 9.
  • the first idler pulley 12 of the first drive system is configured to rotate around the fulcrum 12b to the position of the alternate long and short dash line (reference numeral 12a) by expanding and contracting the movable shaft of the air cylinder 17.
  • the belt clutch mechanism 15 of the first drive system is located at the position of the alternate long and short dash line around the roll shaft 5, that is, the position where the endless belt 13 is prevented from being wound around the large diameter pulley 9 by the rotary actuator 30a shown in FIG. It is configured so that it can rotate up to.
  • the second small diameter pulley 19 is mounted inside the roll shaft 5 in the axial direction close to the first large diameter pulley 9, and the second large diameter pulley 19 is mounted inside the roll shaft 5 close to the first small diameter pulley 10 in the axial direction.
  • the pulley 20 is attached. Then, the second small diameter pulley 19, the second large diameter pulley 20, the drive pulley 21 of the drive motor 8, and the second idler pulley 22 and the third idler pulley 23 provided at the lower part of the machine frame 2 are endless belts.
  • a second drive system is formed by connecting at 24.
  • the back surface of the belt is hung around the second small diameter pulley 19 so that the second small diameter pulley 19 and the second large diameter pulley 20 rotate inward with each other, and the second large diameter pulley 19 is hung.
  • the surface of the belt is hung around the diameter pulley 20.
  • the endless belt 24 is configured to rotate clockwise.
  • the second large-diameter pulley 20 in the second drive system has a V-shaped support member 27 that rotates around the roll shaft 6 so as to draw a rotation locus on the outer circumference of the second large-diameter pulley 20. It is arranged.
  • a belt clutch mechanism 26 is formed by rotating the support member 27 to “on” and “off” the power of the endless belt 24 to the second large-diameter pulley 20.
  • Reference numerals 25a and 25b are a pair of tension clutch pulleys attached to the tip of the support member 27. The position of the solid line of the belt clutch mechanism 26 shown in FIGS. 1 and 2 is a state in which power is not transmitted.
  • the second idler pulley 22 of the second drive system can rotate around the fulcrum 22b to the position of the alternate long and short dash line (reference numeral 22a) by expanding and contracting the movable shaft of the air cylinder 28.
  • the third idler pulley 23 can rotate around the fulcrum to the position of the alternate long and short dash line (reference numeral 23a) by expanding and contracting the movable shaft of the air cylinder 29.
  • the belt clutch mechanism 26 of the second drive system is configured to be rotatable around the roll shaft 6 to the position of the alternate long and short dash line by an air cylinder (not shown) or the rotary actuator 30b shown in FIG. It has become.
  • FIG. 3 is a perspective view showing a detailed structure of the belt clutch mechanism 15 of the first drive system.
  • a first small diameter pulley 10 and a first large diameter pulley 9 are mounted on the roll shaft 5 of the main removal roll 3, and a V-shaped support member member so as to sandwich 9a between the end faces of the boss portions of the first large diameter pulley 9. 16 is provided.
  • the outer diameter of the first large diameter pulley 9 is about 220 mm, and the outer diameter of the first small diameter pulley 10 is about 160 mm.
  • the support member 16 has a base end portion 16a rotatably attached to the roll shaft 5 via a bearing 35.
  • a V-shaped arm portion 16b extending in the outer peripheral direction of the first large-diameter pulley 9 is formed from the base end portion 16a, and the internal angle ( ⁇ ) between one arm portion 16b and the other arm portion 16b is about 60 °. It has become.
  • Rotatable tension clutch pulleys 14a and 14b are attached to the two tip portions 16c and 16c of the support member 16, respectively.
  • the support member 16 has a configuration in which the rotary actuator 30 is attached via the mount 34, and the vanes (blades) in the rotary actuator 30 slide due to the air pressure supplied from the air pipe 31, so that the roll shaft 5
  • the support member 16 is rotated around the center in the circumferential direction.
  • a commercially available model such as the model RAK300 manufactured by Koganei Co., Ltd. can be used.
  • the belt clutch mechanism 26 of the second drive system is also different in the mounting direction of the support member 27, and the configuration is the same as that of FIG.
  • Reference numerals 32 shown in FIGS. 1 and 2 are supply ports provided in the upper part of the machine frame 2 for supplying grains, and a vibration feeder or a pair of vibration feeders capable of adjusting the flow rate of grains directly below the supply ports 32.
  • a chute that supplies grains between the main depleting roll 3 and the sub depleting roll 4 is installed in the machine frame 2.
  • Reference numeral 33 is a pneumatic control device provided on the side of the machine frame 2, and high-pressure air supplied from an air supply source such as a compressor (not shown) is supplied to each air cylinder 17, 28, 29 and a rotary. Solenoid valves, logic relays, circuit breakers, terminal blocks, etc. (none of which are shown) are installed to feed the actuator 30 and the like.
  • Reference numeral 18 is a roll gap adjusting means for adjusting the roll gap so as to have a set removal rate.
  • the position of the belt clutch mechanism 15 and the position of the first idler pulley 12 are adjusted in order to start the demolition work by the first drive system.
  • the endless belt 13 is strained by.
  • the belt clutch mechanism 15 puts the power of the endless belt 13 into the first large-diameter pulley 9 in the “on” state, the rotary actuator 30a is controlled, and the tension clutch pulleys 14a and 14b of the belt clutch mechanism 15 are shown in FIG.
  • the rotation is adjusted so as to be the position of the solid line of 4A.
  • the movable shaft of the air cylinder 17 is extended, the first idler pulley 12 is moved to the position of the solid line in FIG. 4A, and the endless belt 13 is strained.
  • the belt clutch mechanism 26 is not operated, and the power of the endless belt 24 to the second large-diameter pulley 20 is maintained in the "off" state.
  • the driving force of the drive motor 7 is transmitted through the endless belt 13 of the first drive system. It is transmitted to the first large diameter pulley 9 and the first small diameter pulley 10. Then, the main depleting roll 3 rotates at a high speed, the sub depleting roll 4 rotates at a low speed, and the main depleting roll 3 and the sub depleting roll 4 rotate inward with each other.
  • the grain supplied from the supply port 32 is subjected to a depleting action due to the difference in peripheral speed between the main depleting roll 3 and the sub depleting roll 4 and the pressing force thereof.
  • the main removal roll 3 and the secondary removal roll 4 are gradually worn.
  • the main depleting roll 3 rotating at a high speed has a larger cumulative contact area with the paddy than the sub depleting roll 4 rotating at a low speed, and therefore wears earlier.
  • the outer diameter of the main depleting roll 3 becomes small, and the difference in peripheral speed between the main depleting roll 3 and the sub depleting roll 4 decreases.
  • the grain supplied from the supply port 32 becomes less susceptible to the dehulling action due to the difference in peripheral speed, which affects the dehulling rate of rice after paddying and the quality of rice grains. Therefore, in the present embodiment, it is possible to switch the drive means from the first drive system to the second drive system by the control by the paddy control unit (not shown) described later.
  • the drive means When the drive means is switched from the first drive system to the second drive system by the control by the paddy control unit described above, the drive of the first drive motor 7 is first stopped, and then the first idler is operated by operating the air cylinder 17. The position of the pulley is rotated upward to loosen the endless belt 13. Then, in the belt clutch mechanism 15, in order to turn off the power of the endless belt 13 to the first large-diameter pulley 9, the rotary actuator 30a is controlled, and the tension clutch pulleys 14a and 14b of the belt clutch mechanism 15 are shown in FIG. It is rotated about 175 ° counterclockwise so as to be at the position of the broken line of 4B.
  • the position of the belt clutch mechanism 26 is adjusted and the endless belt 24 is tensioned by the second idler pulley 22 and the third idler pulley 23. That is, since the belt clutch mechanism 26 puts the power of the endless belt 24 into the second large-diameter pulley 20 in the “on” state, the rotary actuator 30b is controlled, and the tension clutch pulleys 25a and 25b of the belt clutch mechanism 26 are shown in FIG. It is rotated by about 175 ° counterclockwise so as to be at the position of the solid line of 4B. Next, the movable shafts of the air cylinders 28 and 29 are extended, the second idler pulley 22 and the third idler pulley 23 are moved to the positions of the solid lines in FIG. 4B, and the endless belt 24 is tensioned.
  • the conventional clutch that slides back and forth in the direction of the rotation axis of the de-roll is not used, even if the rotation axis is thermally expanded and deformed, the high-speed side can be easily moved. It is possible to switch the low speed side to the low speed side and the low speed side to the high speed side alternately. In addition, since it does not use minute parts such as "sliding tops" that slide in the direction of the rotation axis, it has excellent durability even if the switching operation of the belt clutch mechanism and the idler pulley is repeated many times. Further, since the drive motor is not directly connected to the rotary shaft of the de-roll as in the conventional case, a large amount of rotary drive force is not required.
  • FIG. 5 is a schematic side view showing a chain / sprocket transmission mechanism that rotates the support members 16 and 27.
  • FIG. 6 is a schematic explanatory view showing the connection between the chain and the sprocket when viewed from the direction of arrow A in FIG.
  • the first sprocket 50 is fixed to the base end portion 16a of the support member 16 of the belt clutch mechanism 15 of the first drive system with bolts, nuts, or the like (not shown), and the second drive is performed.
  • a second sprocket 51 is fixed to the base end portion 27a of the support member 27 of the belt clutch mechanism 26 of the system with bolts, nuts, or the like.
  • a double sprocket 53 for relay is rotatably attached to a rotating shaft 52 pivotally attached to the machine frame 2.
  • a double sprocket 55 for synchronization is rotatably attached to a rotating shaft 54 pivotally attached to the machine frame 2.
  • the machine frame 2 is provided with a plurality of tension sprockets 56, 57 at appropriate positions so as to correspond to the double sprockets 53, 55.
  • the first sprocket 50, the second sprocket 51, and the double sprocket 53 for relay have a diameter of 116 mm and a number of teeth of 27.
  • the synchronous double sprocket 55 has a diameter of 226 mm, a number of teeth of 54, and a speed ratio of 1: 2. That is, when the synchronous double sprocket 55 is rotated by 90 ° in the rotation angle, the first sprocket 50, the second sprocket 51, and the relay double sprocket 53 are rotated by 180 ° in the rotation angle.
  • a rod type air cylinder 61 in which the movable rod expands and contracts on a straight line can be used.
  • the cylinder portion 61a is fixed to the machine frame 2 via the pedestal 62, and the tip portion 61c of the movable rod portion 61b is pivotally attached to the double sprocket 55 for synchronization via the pivot pin 63.
  • the double sprocket 55 for synchronization is rotatable as the movable rod portion 61b slides and moves. For example, when the stroke of the movable rod portion 61b is about 100 mm, the double sprocket 55 for synchronization can be rotated by about 90 °.
  • the positions of the belt clutch mechanisms 15 and 26 are adjusted at the same time in order to start the demolition work by the first drive system. .. That is, when the movable rod portion 61b of the rod type air cylinder 61 is extended (see FIG. 5), the double sprocket 55 for synchronization is rotated by about 90 ° clockwise, and the difference in the first drive system is increased accordingly.
  • the double sprocket 53 for relay, the first sprocket 50, and the base end portion 16a are rotated clockwise by about 180 ° via the moving chain 58 and the transmission chain 60.
  • the tension clutch pulleys 14a and 14b are moved to the position where the endless belt 13 is wound around the first large diameter pulley 9, and the power to the first large diameter pulley 9 is turned on.
  • the base end portion 27a is rotated clockwise by about 180 ° via the differential chain 59.
  • the tension clutch pulleys 25a and 25b are moved to positions that prevent the endless belt 24 from being wound around the second large-diameter pulley 20, and the power to the second large-diameter pulley 20 is turned off (FIG. 4A). , The state of FIG. 1).
  • the driving force of the drive motor 7 is transmitted through the endless belt 13 of the first drive system. Power is transmitted to the first large diameter pulley 9 and the first small diameter pulley 10. Then, the main depleting roll 3 rotates at a high speed, the sub depleting roll 4 rotates at a low speed, and the main depleting roll 3 and the sub depleting roll 4 rotate inward with each other.
  • the grain supplied from the supply port 32 is subjected to a depleting action due to the difference in peripheral speed between the main depleting roll 3 and the sub depleting roll 4 and the pressing force thereof.
  • the drive means can be switched from the first drive system to the second drive system by the control by the slide control unit.
  • FIG. 7 is a schematic cross-sectional view of the paddy rice discriminator 70 attached to the paddy mill 1 described above.
  • the paddy rice discriminator 70 is provided with a paddy rice hopper 71 that receives the paddy rice that is the rice after the paddy discharged from the paddy rice machine 1 at the upper part of the machine body, and is a vibration supply mechanism including a vibration device 72 and a vibration trough 73. And a flow-down supply mechanism including an inclined flow-down gutter 74.
  • an optical inspection unit 75 and an optical inspection unit 75 are arranged so as to face the falling locus of the paddy rice (broken line r in FIG. 7) at the lower end of the downspout. It is provided with an ejector unit 76 that discriminates between brown rice and paddy of paddy rice based on the inspection result of the above and excludes only paddy from paddy rice.
  • a brown rice collecting hopper 77 that collects brown rice below the falling locus and a paddy collecting hopper 78 that collects the paddy excluded from the falling locus are provided. Further, the brown rice collecting hopper 77 is provided with a brown rice discharging unit 79 provided with a transport mechanism for discharging brown rice to the outside of the machine.
  • the paddy collection hopper 78 is provided with a paddy discharge unit 80 capable of transferring the paddy to the paddy shaving machine 1 in order to remove the paddy again.
  • the paddy discharging unit 80 may be provided with a grain raising machine 81 capable of returning the paddy to the de-roll type paddy shaving machine 1.
  • FIG. 8 is a schematic side view showing a mode of discriminating paddy rice in the paddy rice discriminator. Hereinafter, description will be made with reference to FIG.
  • the paddy rice discriminator 70 includes an optical inspection unit 75 arranged below the downspout gutter 74 and an ejector unit 76 below the optical inspection unit 75 as described above.
  • the optical inspection unit 75 is provided with a full-color camera 751 (camera means) on one side (front side) facing the flow locus r of the paddy rice on the downstream side of the flow gutter 74. Further, a background 752 is provided at a position sandwiching the flow locus r of the optical axis k of the full-color camera 751.
  • the first lighting means 753a and 753b for illuminating the paddy rice are on the side of the full-color camera 751 from the flow locus r of the paddy rice, and the paddy slide is on the side away from the full-color camera 751 than the flow locus r of the paddy rice.
  • the optical inspection unit 75 is provided with a second lighting means 754a, 754b for illuminating the rice and a third lighting means 755 for illuminating the background 752.
  • the intersection of the flow locus r and the optical axis k is the observation area o of the full-color camera 751.
  • the first lighting means 753a, 753b, the second lighting means 754a, 754b, and the third lighting means 755, respectively, have a monochromatic light emitting source.
  • a light source composed of a red LED element is adopted for the first lighting means 753a and 753b
  • a light source composed of a green LED element is adopted for the second lighting means 754a and 754b
  • a third A light source composed of a blue LED element is adopted as the lighting means 755 of the above.
  • the LED element used it is possible to use an RGB LED element as well as a monochromatic LED element.
  • the first lighting means 753a and 753b irradiate the paddy rice to be sorted with the light of the red component
  • the reflected light is received by the light receiving element of the red component of the full-color camera 751.
  • the transmitted light is received by the light receiving element of the green component of the full-color camera 751.
  • the background 752 is irradiated with light of a blue component from the third lighting means 755, whether or not the object to be sorted has passed through the observation area o and whether or not foreign matter other than paddy rice has passed through. It is configured to be discriminated by the amount of light received by the blue component of the full-color camera 751.
  • FIG. 9A shows the relationship between the wavelength of light and the reflectance in brown rice and paddy
  • FIG. 9B shows the relationship between the wavelength of light and the transmittance in a graph. Therefore, there is no big difference in the light transmittance between brown rice and red rice in the paddy rice that is the target of the object to be sorted.
  • a light source composed of a red LED element can be adopted as the first lighting means 753a and 753b for the purpose of receiving the reflected light by the full-color camera 751.
  • the second lighting means 754a and 754b and the third lighting means 755 when a white light source such as a fluorescent lamp is used for each of the first lighting means 753a and 753b, the second lighting means 754a and 754b and the third lighting means 755, the reflected light and the transmitted light are generated. Since the information obtained by combining both components is taken into the full-color camera 751, the feature amount (characteristic light receiving amount) may be difficult to detect and the discrimination accuracy may decrease.
  • the first lighting means 753a and 753b are set to be red
  • the second lighting means 754a and 754b are set to green
  • the third lighting means 755 is set to blue
  • the present invention is not necessarily limited to this. It is also possible to use the combinations shown in Table 1 below.
  • brown rice when brown rice passes through the observation region o, as shown in FIGS. 9A and 9B, brown rice has better optical transparency and lower reflectivity than paddy, and therefore the red component (reflection component) of the full-color camera 751.
  • the light receiving amount of the light receiving element of) is low, and the light receiving amount of the green component (transmissive component) of the full-color camera 751 is high.
  • the paddy passes through the observation area o, the paddy has a lower optical transparency and higher reflectivity than brown rice, so that the amount of light received by the light receiving element of the red component (reflection component) of the full-color camera 751 is high. , The amount of light received by the light receiving element of the green component (transmissive component) of the full-color camera 751 becomes low.
  • the amount of light received by the blue component of the full-color camera 751 is a substantially constant value because there is no large difference in size between brown rice and paddy. This is shown in Table 2.
  • FIG. 10 is a flow for executing the above-mentioned determination method.
  • step 1 it is determined whether or not the paddy rice has passed through the observation region o based on the amount of light received by the blue component in the full-color camera 751.
  • step 2 it is confirmed whether the amount of received light of the green component in the full-color camera 751 is higher or lower than the predetermined green component threshold value, and whether this allows highly transparent brown rice to pass through, or whether other paddy or foreign matter has passed through. Is determined.
  • step 3 it is confirmed whether the received amount of the red component in the full-color camera 751 is higher or lower than the predetermined red component threshold value, and thereby it is determined whether the paddy has passed or the other foreign matter has passed. Will be done.
  • the ratio of the light receiving amount of the red component, which is a reflective component, to the light receiving amount of the green component, which is a transmitting component is calculated. If this value is larger than a predetermined threshold value, it may be determined as paddy, and if it is smaller than the predetermined threshold value, it may be determined as brown rice.
  • the optical inspection unit 75 of the present invention has a photographing camera 756 (camera means) as shown in FIG. It is provided so that an image of brown rice that has passed through the observation area o of the optical inspection unit 75 can be taken, and it can be inspected whether the rice is crushed rice, immature rice, or cracked rice by image analysis. Specifically, it is possible to determine whether or not the rice is immature based on the color component of the passed brown rice, and by acquiring the shape and dimensional values together with the color component by image analysis, it is possible to distinguish between crushed rice and cracked rice. Is possible.
  • the paddy control unit capable of controlling the paddy machine 1 and the paddy rice discriminator 70 described above will be described below.
  • the paddy control unit is connected by a signal line to control at least the paddy machine 1 and the paddy rice discriminator 70, and the paddy machine 1 or the paddy rice is connected together with a setting input means (not shown in the present embodiment). It is installed in the discriminator 70.
  • the output signal from the optical inspection unit 75 is input, and analysis or the like is performed to determine the quality state of the paddy rice as described above. Then, the paddy control unit executes control for switching the drive means from the first drive system to the second drive system for the paddy machine 1 by the rotation speed changing means based on the determination result of the quality state. That is, in the main de-pulling roll 3 and the sub-depleting roll 4, the high-speed side is controlled to be switched to the low-speed side and the low-speed side is controlled to be switched to the high-speed side.
  • the paddy thrown into the paddy slide machine 1 is subjected to a dehulling action due to the difference in peripheral speed between the main depulling roll 3 and the sub depulling roll 4 and the pressing force thereof.
  • the main depleting roll 3 rotating at high speed wears earlier because the cumulative contact area with the paddy is larger than that of the sub depleting roll 4 rotating at low speed, and as a result, the main depleting roll 3 The outer diameter of is smaller. In that case, the difference in peripheral speed between the main depleting roll 3 and the sub depleting roll 4 decreases, which leads to a decrease in the depletion rate and an increase in the rate of increase in crushed rice.
  • FIG. 11 shows an example of the experimental results when the rotation speeds of the main depletion roll 3 and the sub depletion roll 4 are controlled by the paddy control unit, and the rice crushing rate is 4.5%, 6
  • the results of investigating the effects of the switching control of the rotation speed at a predetermined elapsed time on the removal rate and the rice crushing increase rate before and after the switching by putting each of the raw materials of% and 7% into the paddy machine 1 are shown. ..
  • the depletion rate and the rice crushing increase rate after the rotation speed switching control were improved by 2.15% for the raw material with the rice crushing rate of 4.5%, and the rice crushing increase rate was 2.23%. It is decreasing. Further, in the raw material having a rice crushing rate of 6%, the depletion rate is improved by 0.34% and the rice crushing rate is decreased by 0.14%. Further, with the raw material having a rice crushing rate of 7%, the removal rate is improved by 0.66% and the rice crushing rate is reduced by 0.67%, which is a good result.
  • the switching timing of the rotation speeds of the main depletion roll 3 and the sub depletion roll 4 can be set by the setting input means of the paddy control unit described above, and a predetermined threshold value is input to the depletion rate and the rice crushing increase rate. It is possible to set and automatically execute the switching control of the rotation speed. With such a configuration, the paddy rice machine 1 can always be controlled in a good state so that the quality of the paddy rice including the removal rate can be continuously maintained in the best condition.
  • FIG. 12 shows an embodiment of the control mode by the paddy control unit.
  • the appropriate removal rate range is approximately 85 to 95%, but the removal rate based on the detection result of the optical inspection unit 75 is 85% or less. If it is determined to be present, (1) as roll rotation speed control, the rotation speeds of the main depletion roll 3 and the sub depletion roll 4 are switched and controlled so that the depletion rate approaches 85 to 95%. To do.
  • the roll gap adjusting means described above is used as (2) roll gap control. Is operated to control the removal rate to approach 85 to 95%.
  • the optical inspection unit 75 is provided with a full-color camera 751 provided with light-receiving elements of each color as camera means and a photographing camera 756.
  • the full-color camera 751 is installed by performing image processing on the image captured by the photographing camera 756 and extracting the color components of each of the red component, the green component, and the blue component. It can be omitted.
  • a full-color camera 751 provided with light receiving elements of each color is provided as a camera means, but it is naturally possible to provide a single color light receiving sensor corresponding to each of red, green, and blue.
  • FIG. 13 is a schematic side view showing another embodiment of the method of discriminating the paddy rice in the paddy rice discriminator, in which the downspout gutter 15 is formed in a long shape and a part of the bottom surface near the observation area o.
  • a transparent material 741 such as glass is provided on the surface.
  • centrifugal type (impeller type) removing machine instead of the roll type paddy machine 1.
  • the range of the appropriate desorption rate is approximately 90 to 95%, but the desorption rate obtained from the detection result of the optical inspection unit 75 is 90% or less.
  • (1) as the rotation speed control the rotation speed of the centrifugal removal machine is controlled so as to approach the above-mentioned appropriate removal rate of 90 to 95%. If the rotation speed control is performed and the removal rate does not fall within the above-mentioned appropriate removal rate range even after a certain period of time has passed, there is a possibility that the grain flow rate may be excessive. Controls to reduce the flow rate of grains. If the removal rate does not fall within the proper range even after the controls (1) and (2) are performed, an abnormality is determined and a warning is notified to the administrator or operator of the device. Good.
  • FIG. 14 shows a schematic diagram of a monitoring control system 200 in which a plurality of padding devices, sorting devices, weighing machines, etc. are connected by a network and collectively managed by a monitoring control PC 100. That is, the weighing machine (paddy) 94 is provided with a weighing device as well as a paddy discriminating device as a raw material. Then, the paddy before the padding device is put in is weighed, and at the same time, quality data such as the weight of each lot, the water content, the mixing rate of immature rice, cracked rice, and crushed rice, and the average length and thickness of the paddy are obtained. It is possible to collect.
  • the weighing machine (paddy) 94 is provided with a weighing device as well as a paddy discriminating device as a raw material. Then, the paddy before the padding device is put in is weighed, and at the same time, quality data such as the weight of each lot, the water content, the mixing rate of immature rice, cracked rice, and crushed rice, and
  • the collected quality data in the weighing machine (paddy) 94 is transmitted to the network server 101 by wire or wirelessly, and in the monitoring control PC 100, as shown in the table of FIG. 15 (1), the field, variety, taste, etc. It is possible to display and monitor the raw material information (for each lot) before the padding device is put in together with the information of.
  • the paddy weighed by the weighing machine (paddy) 94 is put into the padding device, and the paddying work is performed by the paddy mill 1 in the same manner as in the above-described embodiment, and the paddy rice discriminator 70 ejects the ejector portion 76. Paddy that has not been removed is sorted. Further, the discharge port of the paddy device is provided with a depletion image processing sensor 90 capable of photographing the paddy rice discharged from the paddy device and determining the depletion rate, the rice crushing rate, and the like. .. Each quality data of the paddy rice acquired by the de-image processing sensor 90 is configured to be transmitted to the network server 101 by wire or wirelessly.
  • the padding device includes the current value and roll pressure of the paddy machine 1, the number of rotations and the rotation difference ratio of the main depleting roll 3 and the sub depleting roll 4, the flow rate of the paddy, the temperature of the roll shaft, and the paddy.
  • a plurality of sensors for detecting vibrations and the like in the sliding machine 1 are provided, and operation data such as an operating status of the padding device is configured to be transmitted to the network server 101 by wire or wirelessly.
  • the monitoring control PC100 as shown in the table of FIG. 15 (2), the roll usage time, processing amount, current value, roll pressure, and roll rotation speed can be switched in real time.
  • the operating status of the paddy device such as the time, the number of rotations and temperature of the main shaft and the sub-shaft, the diameter of each roll, and the magnitude of vibration, is displayed and can be monitored.
  • each quality data of the paddy rice acquired by the above-mentioned de-image processing sensor 90 can also be monitored by the monitoring control PC 100 via the network server 101.
  • the monitoring control PC 100 it is possible to monitor the quality data after padding in real time, such as the removal rate and rice crushing rate for each lot.
  • the sorting device includes a partition image processing sensor 91 capable of capturing a bird's-eye view image of brown rice, mixed rice of paddy and brown rice, and paddy flowing in the sorting device while being sorted, and moving a movable partition plate at each boundary. is set up. Further, it is provided with a layer thickness sensor 92 capable of measuring the layer thickness of brown rice flowing in the sorting device, mixed rice of paddy and brown rice, and paddy. The layer thickness sensor 92 and the partition image processing sensor 91 are connected to the sorting control unit.
  • operation data and quality data obtained by the sorting control unit are fed back to the paddy control unit of the paddy device (“FB” in FIG. 14) and fed forward to the weighing machine (brown rice) 95 (FIG. 14). "FF").
  • operation data and quality data are configured to be transmitted to the network server 101 by wire or wirelessly.
  • the operation data and quality data transmitted from the sorting control unit to the network server 101 can be monitored by the monitoring control PC 100. For example, as shown in the table of FIG. 15 (4), it is possible to display the processing amount and the paddy mixing rate for each lot in real time. Further, based on the quality data fed back from the sorting control unit to the paddy control unit (in the figure FB), for example, the rotation speed and pressing force of the main depletion roll 3 and the sub depletion roll 4 in the paddy slide device are determined. It is also possible to automatically control the padding device to an appropriate state, and it is also possible to remotely control the paddy device by an operation instruction in the monitoring control PC 100 as needed.
  • the brown rice sorted by the sorting device is then sent to the grade determination sensor 93 to determine the grade, and is weighed and collected by the weighing machine (brown rice) 95.
  • the grade determination sensor 93 and the weighing machine (brown rice) 95 are also connected to the network by wire or wirelessly, and various quality data are collected on the network server 101.
  • the monitoring control PC100 in addition to the total processing amount and yield, has the purchase price of paddy, the sales price of brown rice and immature rice, the operating time, and the amount of power used. It is possible to aggregate data such as labor costs and display the monetary balance for each lot.
  • various controls are optimized while grasping the final balance status. It becomes possible.
  • the failure of each device based on the information obtained from each device and each sensor. For example, when the removal rate of * 1 in the table of FIG. 15 (3) is 90% or more, the processing amount of * 2 is decreased, or the paddy mixing rate of * 3 is increased. If so, an abnormality is determined. Then, an alert is displayed on the monitoring control PC 100, and it is possible to take necessary checks and measures. As described above, in this embodiment, failure prediction is possible based on each quality data and operation data collected in the network server 101, and FIG. 16 shows an abnormality in the rotation speed, an abnormality in the bearing temperature, and an abnormal vibration. , The check configuration of the cause of failure for each abnormality detection item of abnormal removal rate, abnormal rice crushing rate, and abnormal yield is shown.
  • the first factor to be checked is the presence or absence of belt slip in the rotating belts of the main depletion roll 3 and the sub depletion roll 4, and the main depletion. Whether or not there is an abnormality in switching the peripheral speed between the roll 3 and the sub-slip roll 4 can be mentioned. If there are no abnormalities in these, the next factor to be checked (second check) is the presence or absence of abnormalities in the pulley.
  • the amount of paddy input to the paddy machine 1 was too small, and the bearing around the shaft of each de-rolling roll had an abnormality. These may be checked first (first check).
  • the next factor to be checked (second check) is that the peripheral speed difference rate between the main depletion roll 3 and the sub depletion roll 4 is high.
  • the first factor to be checked is the diversification in at least one of the main depleting roll 3 and the sub depleting roll 4, and the axis of each depleting roll. Whether or not an abnormality has occurred in the surrounding bearings can be mentioned. If there is no abnormality in these, the next factor to be checked (second check) is whether or not the gantry for fixing the paddy machine 1 is weak.
  • the first factor to be checked is the presence or absence of belt slip in the rotating belts of the main removal roll 3 and the secondary removal roll 4, and the main removal. Whether or not the peripheral speed difference ratio between the roll 3 and the secondary slip roll 4 is low, whether or not abnormal wear occurs in each slip roll, and confirmation of the replacement time of each slip roll can be mentioned. If there are no abnormalities in these, the next factor to be checked (second check) is that the amount of paddy put into the paddy machine 1 is excessive, the water content of the paddy is high, the amount of immature rice mixed in is large, etc. Can be mentioned.
  • the first factor to be checked is the state of cracking of the raw material and the polygon in at least one of the main depletion roll 3 and the sub depletion roll 4.
  • the presence or absence of diversification and roll streaks can be mentioned. If there are no abnormalities in these, the next factors to be checked (second check) are excessive amount of paddy input to the paddy mill 1 and grain between the main depletion roll 3 and the sub depletion roll 4. In the shoot to be supplied, the shoot position may be inappropriate.
  • the factors that should be checked first are the condition of the cracking of the raw material and whether or not the amount of shiina / immature rice mixed is large. If there is no abnormality in these, the next factor to be checked (second check) is an abnormality in the ejector unit 76 and an abnormality in the air volume and the wind speed discharged from the ejector unit 76.
  • Such abnormality detection information may be displayed as an alert on the monitoring control PC 100 based on the quality data collected on the network server 101 and the operation data of the devices from each device or various sensors provided separately. For example, a pop-up display such as "abnormal vibration detection !" may be displayed. Further, in addition to the alert display according to the type of abnormality occurrence, the abnormality handling instruction display may be displayed on the monitoring control PC 100. For example, it is conceivable to display specific check items and inspections, display repair points, and display operation instructions related to specific operation control. By performing such a display, the operation manager or the like of each device can control the operation of each device by necessary checks, inspections, repairs, and remote control by the monitoring control PC 100.
  • the monitoring control PC 100 and the network server 101 can be arranged in the facility where each device including the paddy device is installed, and can be connected to each device including the paddy device by wire or wirelessly. Further, it is also possible to connect each device including the paddy device to the network server 101 and the network server 101 to the monitoring control PC 100 via a public communication line. This makes it possible to monitor and control the operation data and quality data of each device including the paddy device from a remote location. Further, as a public communication line, it is also possible to use a fifth generation mobile communication system (5G) capable of high-speed and large-capacity communication. For example, as shown in FIG. 14, a tablet-type communication terminal 100a is used. It can be used for monitoring and control.
  • 5G fifth generation mobile communication system

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Adjustment And Processing Of Grains (AREA)

Abstract

脱ぷロールによって籾摺りが行われる籾摺機と、前記籾摺機から排出される籾摺米を検査可能な籾摺米判別機と、前記籾摺米判別機における前記籾摺米の検査結果に応じて前記籾摺機を制御可能な籾摺制御部と、を有し、前記籾摺制御部は、前記籾摺米の検査結果に応じて、前記籾摺機における前記脱ぷロールの回転速度を変更させる回転速度変更手段を備えることを特徴とする。

Description

籾摺装置及び籾摺制御システム
 本発明は、籾摺米の品質状態に応じて籾摺機を制御可能な籾摺装置及び籾摺制御システムに関する。
 従来、主ロールと副ロールとの周速度差により籾摺りを行う形式の籾摺り機にあっては、主ロール及び副ロールの摩耗に偏りが生じるため、通常、手作業で主ロール及び副ロールのゴムロールの入れ替え作業を行っていた。この作業は煩わしいものであり、手作業でのゴムロールの入れ替え作業を省略する種々の方法が提案されていた。
 例えば、特許文献1~3に開示された方法は、主軸、副軸のそれぞれに変速モータを直結し、それぞれの変速モータの速度を一定時間おきに変更して、主軸と副軸とを切り換えるものである。
 特許文献4、5に開示された方法は、主ロール及び副ロールの回転軸それぞれに、大小のプーリを互い違いに設置し、各回転軸における大小のプーリの中間部には、回転軸の前後方向に摺動自在なクラッチを嵌合して、高速・低速の切換がワンタッチで行えるものである。
 特許文献6に開示された方法は、クラッチを回転軸方向に前後に摺動させる構造ではなく、ベルトクラッチ機構やアイドラプーリを使用して主副各ロールの回転数を切り換えるものである。
実公昭62-29064号公報 特開平3-137945号公報 特開2001-38230号公報 特開平3-106452号公報 特開2006-312151号公報 特開2009-72765号公報
 しかしながら、上記特許文献1~6に開示された従来の籾摺り機は、籾摺り後の米の品質状況に関係なく、一定時間が経過することによって主軸・副軸のロールの回転数を切り換えるものであったため、脱ぷ率を含む籾摺り後の籾摺米の品質を、最も良好な状態で維持することができない場合があった。
 本発明は上記問題点に鑑み、籾摺り後の籾摺米の品質状態に応じて適切な籾摺機の制御が可能な籾摺装置及び籾摺制御システムを提供することを目的とする。
 本願請求項1に係る発明は、脱ぷロールによって籾摺りが行われる籾摺機と、前記籾摺機から排出される籾摺米を検査可能な籾摺米判別機と、前記籾摺米判別機における前記籾摺米の検査結果に応じて前記籾摺機を制御可能な籾摺制御部と、を有し、前記籾摺制御部は、前記籾摺米の検査結果に応じて、前記籾摺機における前記脱ぷロールの回転速度を変更させる回転速度変更手段を備えることを特徴とする籾摺装置である。
 本願請求項2に係る発明は、前記脱ぷロールは、所定の回転速度で回転する主脱ぷロールと、該主脱ぷロールよりも低速で回転する副脱ぷロールとから成り、前記回転速度変更手段は、前記副脱ぷロールの回転速度を主脱ぷロールの回転速度よりも高速で回転するように回転速度を変更させる請求項1に記載の籾摺装置である。
 本願請求項3に係る発明は、前記籾摺米の検査項目には少なくとも脱ぷ率が含まれ、前記籾摺制御部は、前記脱ぷ率が所定値未満となった場合に、前記回転速度変更手段によって前記脱ぷロールの回転速度を変更させる請求項1又は請求項2に記載の籾摺装置である。
 本願請求項4に係る発明は、前記籾摺米の検査項目には少なくとも砕米率が含まれ、前記籾摺制御部は、前記砕米率の増加率が所定値以上となった場合に、前記回転速度変更手段によって前記脱ぷロールの回転速度を変更させる請求項1乃至請求項3のいずれかに記載の籾摺装置である。
 本願請求項5に係る発明は、前記籾摺米判別機は、前記籾摺米を整列させて流下させる流下樋と、前記流下樋から吐出される前記籾摺米に光を照射する発光源と、前記発光源から光を照射された前記籾摺米から、反射光及び透過光を受光することが可能なカメラ手段と、を有し、前記発光源は、前記籾摺米の前記カメラ手段側に設けられて該籾摺米に赤色成分の光を照射可能な第1の照明手段と、前記籾摺米の前記カメラ手段から離れる側に設けられて該籾摺米に緑色成分の光を照射可能な第2の照明手段と、が備えられている請求項1乃至請求項4のいずれかに記載の籾摺装置である。
 本願請求項6に係る発明は、前記カメラ手段の受光結果として、前記緑色成分の光の受光量が所定の緑色成分閾値よりも高い場合は吐出される前記籾摺米が玄米であると判別され、前記緑色成分の光の受光量が前記所定の緑色成分閾値よりも低く、且つ、赤色成分の光の受光量が所定の赤色成分閾値よりも高い場合は吐出される前記籾摺米が籾であると判別される請求項5に記載の籾摺装置である。
 本願請求項7に係る発明は、前記発光源は、さらに、前記カメラ手段と前記籾摺米とを結ぶ延長線上の位置に設けられて該籾摺米のバックグラウンドに青色成分の光を照射可能な第3の照明手段を備え、前記カメラ手段の前記受光結果として、前記青色成分の光の受光量が所定の範囲を外れた場合は前記流下樋から吐出されたものが前記籾摺米ではない異物であると判別される請求項5又は請求項6に記載の籾摺装置である。
 本願請求項8に係る発明は、前記カメラ手段は、前記反射光及び前記透過光の受光に加えて、前記籾摺米の映像を撮影可能である請求項5乃至請求項7のいずれかに記載の籾摺装置である。
 本願請求項9に係る発明は、前記流下樋は、少なくとも前記籾摺米に光を照射される前記カメラ手段の観察領域まで延設され、前記発光源からの光を透過可能である請求項5乃至請求項8のいずれかに記載の籾摺装置である。
 本願請求項10に係る発明は、脱ぷロールによって籾摺りが行われる籾摺装置と、前記籾摺装置から排出される籾摺米の品質を判定可能な籾摺米判定手段と、前記籾摺米判定手段における前記籾摺米の判定結果に応じて前記籾摺装置を制御可能な籾摺制御部と、を有する籾摺装置と、前記籾摺装置と有線又は無線によって接続されるとともに、前記籾摺米の判定結果を受信して表示出力することが可能なモニタリング装置と、を有し、前記モニタリング装置に表示出力される前記籾摺米の判定結果に応じて、前記籾摺装置における前記脱ぷロールの回転速度を変更することが可能であることを特徴とする籾摺制御システムである。
 本願請求項11に係る発明は、前記籾摺装置は、該籾摺装置における異常を検知可能な異常検知手段を備え、前記モニタリング装置は、前記異常検知手段からの検知情報に基づいて複数種類の異常を判定することが可能な異常判定手段と、該異常判定手段による判定結果を表示出力可能な異常表示手段と、を備えている請求項10に記載の籾摺制御システムである。
 本願請求項12に係る発明は、前記モニタリング装置は、前記異常判定手段による判定結果に対応して、優先度に応じたチェック内容を表示出力可能な異常対処指示表示手段を備えている請求項11に記載の籾摺制御システムである。
 請求項1に係る発明によれば、籾摺機から排出される籾摺米籾摺り後の米を常に籾摺米判別機によって検査し、籾摺米の検査結果に応じて脱ぷロールの回転速度を適切に変更するので、籾摺り後の米の品質を良好な状態で安定して維持することが可能となる。
 請求項2に係る発明によれば、脱ぷロールを所定の回転速度で回転する主脱ぷロールと、該主脱ぷロールよりも低速で回転する副脱ぷロールとから構成し、籾摺米判別機による籾摺り後の米の検査結果に応じて、副脱ぷロールの回転速度を主脱ぷロールの回転速度よりも高速で回転するように回転速度を変更することができる。これにより、供給された穀物に対して、適切な主脱ぷロールと副脱ぷロールとの周速度差を作用させることが可能となり、継続的に良好で安定した脱ぷ率を確保することが可能となる。
 請求項3に係る発明によれば、籾摺米判別機における籾摺り後の米の検査項目として、少なくとも脱ぷ率を含むように構成し、脱ぷ率が所定値未満となった場合に脱ぷロールの回転速度を変更させることができる。これにより、継続的に良好で安定した脱ぷ率を確保することが可能となる。
 請求項4に係る発明によれば、籾摺米判別機における籾摺り後の米の検査項目として、少なくとも砕米率を含むように構成し、砕米率の増加率が所定値以上となった場合に脱ぷロールの回転速度を変更させることができる。これにより、継続的に砕米率の低減を図ることが可能となる。
 請求項5に係る発明によれば、本発明の検証実験において得られた、籾は玄米に比べて緑色成分の光の透過性が悪く、赤色成分の光の反射性が高いという知見に基づいて、籾及び玄米の混合する籾摺り後の米に赤色成分の光を照射可能な第1の照明手段と、緑色成分の光を照射可能な第2の照明手段とを設置し、それぞれの反射光及び透過光をカメラ手段で受光するようにしている。これにより、従来に比べて大幅に籾及び玄米の判別精度を向上させることが可能となり、籾摺機に対する制御を適切なタイミングで実行することが可能となる。
 請求項6に係る発明によれば、カメラ手段の受光結果として、緑色成分の光の受光量が所定の緑色成分の閾値よりも高い場合は、吐出される籾摺り後の米が玄米であると判別される。緑色成分の光の受光量が上記した所定の緑色成分の閾値よりも低く、且つ、赤色成分の光の受光量が所定の赤色成分閾値よりも高い場合は、流下樋から吐出された籾摺り後の米が籾であると判別される。これにより、複雑な判別処理を行うことなく、速やかに籾摺り後の米の種類を判別することが可能である。
 請求項7に係る発明によれば、カメラ手段と籾摺り後の米とを結ぶ延長線上の位置に、バックグラウンドに対して青色成分の光を照射可能な第3の照明手段を備えたことにより、青色成分の光の受光量が所定の範囲を外れた場合には、籾摺り後の米以外の異物が流下樋から吐出されたことを速やかに判別することが可能となる。
 請求項8に係る発明によれば、反射光及び透過光の受光に加えて、籾摺り後の米の映像を撮影可能なカメラ手段を適用することで、映像を画像解析するなどして、砕米や胴割れ米の判別も可能となる。
 請求項9に係る発明によれば、流下樋をカメラ手段の観察領域まで延設し、さらに、流下樋をガラス等の透明な素材で形成している。これにより、従来のような流下樋下端から籾摺り後の米を吐出させる場合に比べて、籾摺り後の米の粒に空気抵抗が生じにくく、粒の姿勢が安定するので、籾摺り後の米の判別精度を向上させることが可能となる。
 請求項10に係る発明によれば、籾摺装置と、当該籾摺装置と有線又は無線によって接続されて、籾摺り後の米の判定結果を受信して表示出力することが可能なモニタリング装置によって、モニタリング装置に表示出力される籾摺り後の米の判定結果に応じて、籾摺機における脱ぷロールの回転速度を変更することが可能となる。このような構成によって、籾摺装置を常に適切に制御することが可能となり、適切に籾摺り後の米の品質管理を行うことが可能となる。
 請求項11に係る発明によれば、籾摺装置に異常を検知可能な異常検知手段を備え、モニタリング装置に異常判定の結果を表示出力することができる。これにより、籾摺装置における異常の発生を早期に把握して、異常に対する処置を適切に行うことが可能となる。
 請求項12に係る発明によれば、異常判定手段による判定結果に対応して、優先度に応じた具体的なチェック内容をモニタリング装置に表示出力することができる。これにより、異常な状態を早期に調整や修理することが可能となる。
本発明の籾摺装置における籾摺機の一実施形態を示す側面図である。 籾摺機における脱ぷロール駆動装置の一実施形態を示す斜視図である。 第1駆動系統のベルトクラッチ機構の詳細構造を示す分解斜視図である。 第1駆動系統及び第2駆動系統の各作動状態を表す概略図であって、ロールが新品のときの概略図である。 第1駆動系統及び第2駆動系統の各作動状態を表す概略図であって、ロールが摩耗したときの概略図である。 支杆部材を回動させるチェーン・スプロケット伝達機構を示す概略側面図である。 図5の矢視A方向から見たときのチェーンとスプロケットとの連繋を示す概略説明図である。 本発明の籾摺装置における籾摺米判別機の一実施形態を示す概略断面図である。 籾摺米判別機における籾摺米の判別態様を示す概略側面図である。 籾及び玄米の光の反射率と光の波長との関係を示すグラフである。 光の透過率と光の波長との関係を示すグラフである。 本発明の籾摺装置において籾と玄米とを判別する判別方法の一実施形態を説明するフローである。 本発明の籾摺装置における実験結果を示す表である。 本発明の籾摺装置における制御態様の実施例を説明する図である。 籾摺米判別機における籾摺米の判別態様の別実施形態を示す概略側面図である。 本発明の別実施例における、モニタリング制御システムの概要を示す図である。 本発明の別実施例における、モニタリング制御PCの表示態様の例を示す図である。 本発明の別実施例における、故障予知の種類と対応プロセスの例を示す図である。
 本発明の籾摺装置は、主に籾摺機1と籾摺米判別機70とから構成されており、以下に本実施形態について図面を参照して説明する。
(籾摺機)
 図1は籾摺機1の脱ぷロール駆動装置の全体を示す側面図であり、図2は当該脱ぷロール駆動装置の斜視図である。図1及び図2において、籾摺機1には、機枠2内下部のロール軸5に回転可能に軸支された主脱ぷロール3と、当該主脱ぷロール3と遠近調節できるようにロール軸6に軸支された副脱ぷロール4とを、互いに内方向に、且つ、互いに異なる速度で回転するように配置されている。
 機枠2の中央部には、後述する駆動モータ7が設けられ、機枠2の側面には、駆動モータ8が設けられている。一方のロール軸5の軸方向の外側寄りに第1大径プーリ9が装着され、他方のロール軸6の軸方向の外側寄りに第1小径プーリ10が装着されている。第1大径プーリ9と、第1小径プーリ10と、駆動モータ7の駆動プーリ11と、機枠2の下部に設けた第1アイドラプーリ12と、を無端ベルト13で連結して第1駆動系統を形成している。
 第1駆動系統の無端ベルト13は、第1大径プーリ9及び第1小径プーリ10が互いに内向きに回転するように、第1大径プーリ9にはベルトの表面が掛け回され、第1小径プーリ10にはベルトの裏面が掛け回されている。図1では、無端ベルト13が反時計回りに回転するように構成されている。
 第1駆動系統の第1大径プーリ9には、ロール軸5を中心として第1大径プーリ9の外周上に回動軌跡を描くように回動するV字状の支杆部材16が配設されている。支杆部材16の回動により、無端ベルト13の動力を第1大径プーリ9へ「入」、「切」するベルトクラッチ機構15が形成される。符号14a、14bは支杆部材16の先端に取り付けられた一対のテンションクラッチプーリである。図1及び図2に示されたベルトクラッチ機構15の実線の位置は、無端ベルト13を第1大径プーリ9に巻く位置である。
 第1駆動系統の第1アイドラプーリ12は、エアシリンダ17の可動軸の伸縮により支点12bを中心にして一点鎖線の位置(符号12a)まで回動するように構成されている。第1駆動系統のベルトクラッチ機構15は、図3に示すロータリアクチュエータ30aにより、ロール軸5を中心にして一点鎖線の位置、すなわち、無端ベルト13が大径プーリ9へ巻かれることを回避する位置まで回動できる構成となっている。
 ロール軸5及びロール軸6において、第1大径プーリ9に近接した軸方向の内側に第2小径プーリ19を装着し、前記第1小径プーリ10に近接した軸方向の内側に第2大径プーリ20を装着している。そして、第2小径プーリ19と、第2大径プーリ20と、駆動モータ8の駆動プーリ21と、機枠2の下部に設けた第2アイドラプーリ22及び第3アイドラプーリ23と、を無端ベルト24で連結して第2駆動系統を形成している。
 第2駆動系統の無端ベルト24は、第2小径プーリ19及び第2大径プーリ20が互いに内向きに回転するように、第2小径プーリ19にはベルトの裏面が掛け回され、第2大径プーリ20にはベルトの表面が掛け回されている。図1では、無端ベルト24が時計回りに回転するように構成されている。
 第2駆動系統内の第2大径プーリ20には、ロール軸6を中心として第2大径プーリ20の外周上に回動軌跡を描くように回動するV字状の支杆部材27が配設されている。支杆部材27の回動操作により、無端ベルト24の動力を第2大径プーリ20へ「入」、「切」するベルトクラッチ機構26が形成される。符号25a、25bは支杆部材27の先端に取り付けられた一対のテンションクラッチプーリである。図1及び図2に示すベルトクラッチ機構26の実線の位置は、動力が伝達しない状態である。
 第2駆動系統の第2アイドラプーリ22は、エアシリンダ28の可動軸の伸縮により、支点22bを中心にして一点鎖線の位置(符号22a)まで回動することができる。第3アイドラプーリ23は、エアシリンダ29の可動軸の伸縮により、支点を中心にして一点鎖線の位置(符号23a)まで回動することができる。第2駆動系統のベルトクラッチ機構26は、エアシリンダ(図示せず)又は図3に示すロータリアクチュエータ30bにより、ロール軸6を中心にして動力が伝達される一点鎖線の位置まで回動できる構成となっている。
 図3は、第1駆動系統のベルトクラッチ機構15の詳細構造を示す斜視図である。主脱ぷロール3のロール軸5に第1小径プーリ10及び第1大径プーリ9が装着され、第1大径プーリ9のボス部端面間9aを挟むように、V字状の支杆部材16が設けられる。第1大径プーリ9の外径は約220mmであり、第1小径プーリ10の外径は約160mmである。
 支杆部材16は、基端部16aがベアリング35を介し、ロール軸5に対して回動自在に取り付けられている。基端部16aからは第1大径プーリ9外周方向に延びるV字状のアーム部16bが形成され、一方のアーム部16bと他方のアーム部16bの間の内角(α)は約60°となっている。支杆部材16の二つの先端部16c、16cには、それぞれ回転自在なテンションクラッチプーリ14a、14bが取り付けられる。これにより、外径が約220mmといった第1大径プーリ9であっても、ベルトクラッチ機構15が図1の一点鎖線で示される動力を伝達しない状態にあるとき、無端ベルト13の第1大径プーリ9への巻付きを確実に防止し、動力の「入」「切」動作が確実に行われる。
 支杆部材16はマウント34を介してロータリアクチュエータ30が取り付けられる構成となっており、空気配管31から供給される空気圧によってロータリアクチュエータ30内のベーン(羽根)が摺動することにより、ロール軸5を中心に支杆部材16が円周方向に回動される構成である。このロータリアクチュエータ30にあっては、例えば、株式会社コガネイ社製の型式RAK300等の市販されているものを使用することができる。
 第2駆動系統のベルトクラッチ機構26においても、支杆部材27の取り付け方向が異なるだけであり、構成としては図3と同様である。図1及び図2に示す符号32は、機枠2の上部に設けた穀物を供給するための供給口であり、供給口32の直下に穀物の流量を調整可能とした振動フィーダや、一対の主脱ぷロール3、副脱ぷロール4の間に穀物を供給するシュートが機枠2内に内装されている。
 符号33は機枠2の側部に設けられた空圧制御装置であって、コンプレッサー(図示せず)などの空気供給源から供給される高圧空気を、各エアシリンダ17、28、29及びロータリアクチュエータ30等へ送給するために、電磁弁、ロジックリレー、ブレーカ及び端子台など(いずれも図示せず)が内装されている。符号18は、設定された脱ぷ率となるようロール間隙を調節するロール間隙調節手段である。
 以下、図4を参照して本発明の脱ぷロール駆動装置の動作手順を説明する。
 主脱ぷロール3及び副脱ぷロール4に新品のゴムロールが装着されている場合、まず、第1駆動系統により脱ぷ作業を始動するため、ベルトクラッチ機構15の位置調節及び第1アイドラプーリ12によって無端ベルト13が緊張される。
 すなわち、ベルトクラッチ機構15は、無端ベルト13の第1大径プーリ9への動力を「入」状態とするため、ロータリアクチュエータ30aが制御され、ベルトクラッチ機構15のテンションクラッチプーリ14a、14bが図4Aの実線の位置となるように回動調節される。次いで、エアシリンダ17の可動軸が伸張されて第1アイドラプーリ12が図4Aの実線の位置に移動され、無端ベルト13が緊張される。一方、ベルトクラッチ機構26は作動させず、無端ベルト24の第2大径プーリ20への動力を「切」状態のまま維持する。
 この状態で、籾摺機1に電源を入れ、第1の駆動モータ7の駆動を開始すると(駆動モータ8は停止)、駆動モータ7の駆動力は第1駆動系統の無端ベルト13を介して第1大径プーリ9及び第1小径プーリ10へと伝達される。そして、主脱ぷロール3は高速回転し、副脱ぷロール4は低速回転して、主脱ぷロール3と副脱ぷロール4は互いに内向きに回転される。供給口32から供給された穀物は、主脱ぷロール3と副脱ぷロール4との周速度差とその押圧力とにより脱ぷ作用を受ける。
 第1駆動系統を駆動状態にして脱ぷ作業を継続していくと、主脱ぷロール3及び副脱ぷロール4は漸次摩耗する。高速回転する主脱ぷロール3は、低速回転する副脱ぷロール4に比べて、籾との累積接触面積が多いので早期に摩耗することとなる。その結果、主脱ぷロール3の外径が小さくなり、主脱ぷロール3と副脱ぷロール4との周速度差は減少する。周速度差が減少すると、供給口32から供給された穀物は周速度差による脱ぷ作用を受け難くなり、籾摺り後の米の脱ぷ率や米粒の品質に影響を与えてしまう。そこで、本実施形態では後述する籾摺制御部(図示せず)による制御によって、第1駆動系統から第2駆動系統に駆動手段を切り換えることが可能となっている。
 上記した籾摺制御部による制御によって第1駆動系統から第2駆動系統に駆動手段を切り換える場合、まず、第1の駆動モータ7の駆動を停止させ、次いで、エアシリンダ17の操作により第1アイドラプーリの位置を上方に回動させて無端ベルト13を弛緩させる。そして、ベルトクラッチ機構15において、無端ベルト13の第1大径プーリ9への動力を「切」状態とするため、ロータリアクチュエータ30aを制御し、ベルトクラッチ機構15のテンションクラッチプーリ14a、14bが図4Bの破線の位置となるように反時計回りに約175°回動される。
 さらに、第2駆動系統を始動させるため、ベルトクラッチ機構26の位置調節及び第2アイドラプーリ22及び第3アイドラプーリ23による無端ベルト24の緊張が行われる。すなわち、ベルトクラッチ機構26は、無端ベルト24の第2大径プーリ20への動力を「入」状態とするため、ロータリアクチュエータ30bが制御され、ベルトクラッチ機構26のテンションクラッチプーリ25a、25bが図4Bの実線の位置となるように反時計回りに約175°回動される。次いで、エアシリンダ28、29の可動軸が伸張されて第2アイドラプーリ22及び第3アイドラプーリ23が図4Bの実線の位置に移動され、無端ベルト24の緊張が行われる。
 この状態で、第2の駆動モータ8の駆動を開始すると(駆動モータ7は停止)、駆動モータ8の駆動力は第2駆動系統の無端ベルト24を介して第2大径プーリ20及び第2小径プーリ19へと伝達される。そして、上述とは逆に副脱ぷロール4は高速回転し、主脱ぷロール3は低速回転し、副脱ぷロール4と主脱ぷロール3は互いに内向きに回転されて脱ぷ作用を受ける。
 以上のように、モータ、ベルトクラッチ機構及びアイドラプーリの切り替え操作を繰り返すことにより、脱ぷ作業を継続して行うことになる。
 本実施形態においては、従来のような脱ぷロールの回転軸方向に前後に摺動する構成のクラッチを使用していないので、回転軸が熱膨張して変形したとしても、容易に高速側を低速側に、低速側を高速側に交互に切り替えることが可能である。また、回転軸方向に摺動する「摺動コマ」といった微細な部品を使用していないため、ベルトクラッチ機構及びアイドラプーリの切り替え操作を繰り返し何度も行ったとしても耐久性に優れている。また、従来のように脱ぷロールの回転軸に駆動モータを直結するといった構成ではないので、多大な回転駆動力を要すこともない。
 次に、支杆部材16、27を回動させるアクチュエータの別実施形態について図5及び図6を参照して説明する。
 図5は支杆部材16、27を回動させるチェーン・スプロケット伝達機構を示す概略側面図である。図6は図5の矢視A方向から見たときのチェーンとスプロケットとの連繋を示す概略説明図である。
 図5及び図6において、第1駆動系統のベルトクラッチ機構15の支杆部材16には、基端部16aに第1スプロケット50をボルト・ナット等(図示せず)で固定し、第2駆動系統のベルトクラッチ機構26の支杆部材27には、基端部27aに第2スプロケット51をボルトやナット等で固定している。
 第1スプロケット50の下方には、機枠2に枢着した回転軸52に回転自在に中継用のダブルスプロケット53を取り付けている。第2スプロケット51の下方には、機枠2に枢着した回転軸54に回転自在に同期用のダブルスプロケット55を取り付けている。また、機枠2にはダブルスプロケット53、55に対応するように適当な箇所に複数のテンション用スプロケット56、57を設けている。
 第1スプロケット50、第2スプロケット51及び中継用のダブルスプロケット53は、径が116mm、歯数が27である。同期用のダブルスプロケット55は、径が226mm、歯数が54であり、速度比を1:2としている。すなわち、同期用のダブルスプロケット55を回転角で90°回動させると、第1スプロケット50、第2スプロケット51及び中継用のダブルスプロケット53は回転角で180°回動されることになる。
 以上のスプロケットの配置に対して、同期用のダブルスプロケット55の一方側のスプロケット55aと、中継用のダブルスプロケット53の一方側のスプロケット53aと、テンション用のスプロケット57との間には、差動チェーン58が巻かれている。同期用のダブルスプロケット55の他方側のスプロケット55bと、第2スプロケット51と、テンション用のスプロケット56との間には、差動チェーン59が巻かれている。中継用のダブルスプロケット53の他方側のスプロケット53bと、第1スプロケット50との間は速度比1:1の動力を伝える伝動チェーン60が巻かれている。
 同期用のダブルスプロケット55を回動させるアクチュエータとしては、直線上において可動ロッドの伸縮が行われるロッドタイプエアシリンダ61を用いることができる。ロッドタイプエアシリンダ61は、シリンダ部61aが台座62を介して機枠2に固定され、可動ロッド部61bの先端部61cが枢着ピン63を介して同期用のダブルスプロケット55に枢着されている。そして、可動ロッド部61bのスライド移動に伴って同期用のダブルスプロケット55が回動可能とされている。例えば、可動ロッド部61bのストロークが約100mmであった場合、同期用のダブルスプロケット55を約90°回動させることが可能となる。
 上記したチェーン・スプロケット伝達機構について、図4、図5及び図6を参照して以下にその作用を説明する。
 主脱ぷロール3及び副脱ぷロール4に新品のゴムロールが装着されている場合、まず、第1駆動系統により脱ぷ作業を始動させるため、ベルトクラッチ機構15、26の位置調節が同時に行われる。すなわち、ロッドタイプエアシリンダ61の可動ロッド部61bを伸長させると(図5参照)、同期用のダブルスプロケット55が時計方向に約90°回動され、これに伴い、第1駆動系統では、差動チェーン58及び伝動チェーン60を介して、中継用のダブルスプロケット53、第1スプロケット50及び基端部16aが時計方向に約180°回動される。
 すると、第1大径プーリ9に無端ベルト13が巻かれる位置にテンションクラッチプーリ14a、14bが移動されて第1大径プーリ9への動力が「入」状態となる。一方、第2駆動系統では、差動チェーン59を介して基端部27aが時計方向に約180°回動される。すると、第2大径プーリ20に無端ベルト24が巻かれることを回避する位置にテンションクラッチプーリ25a、25bが移動されて第2大径プーリ20への動力が「切」状態となる(図4A、図1の状態)。
 この状態で、籾摺機1に電源を入れ、第1の駆動モータ7の駆動を開始すると(駆動モータ8は停止)、駆動モータ7の駆動力は第1駆動系統の無端ベルト13を介して第1大径プーリ9及び第1小径プーリ10へと動力が伝達される。そして、主脱ぷロール3は高速回転して、副脱ぷロール4は低速回転し、主脱ぷロール3と副脱ぷロール4は互いに内向きに回転される。供給口32から供給された穀物は、主脱ぷロール3と副脱ぷロール4との周速度差とその押圧力とにより脱ぷ作用を受ける。
 第1駆動系統を駆動状態にして脱ぷ作業を継続していくと、主脱ぷロール3及び副脱ぷロール4は徐々に摩耗するので周速度差が減少する。周速度差が減少すると、供給口32から供給された穀物は周速度差による脱ぷ作用を受け難くなり、籾摺り後の米の脱ぷ率や米粒の品質に影響を与えることから、後述する籾摺制御部による制御によって、第1駆動系統から第2駆動系統に駆動手段を切り換えることが可能となっている。
 上記した籾摺制御部による制御によって、第1駆動系統から第2駆動系統に切り換える場合、まず、第1の駆動モータ7の駆動を停止させ、次いで、ロッドタイプエアシリンダ61の可動ロッド部61bを収縮させると(図5参照)、同期用のダブルスプロケット55が反時計方向に約90°回動される。これに伴い、第1駆動系統では、差動チェーン58及び伝動チェーン60を介して、中継用のダブルスプロケット53、第1スプロケット50及び基端部16aが反時計方向に約180°回動されて、無端ベルト13の第1大径プーリ9への動力が「切」状態となる。第2駆動系統では、差動チェーン59を介して基端部27aが反時計方向に約180°回動されて、無端ベルト24の第2大径プーリ20への動力が「入」状態となる(図5、図4Bの状態)。
 この状態で、第2の駆動モータ8の駆動を開始すると(駆動モータ7は停止)、駆動モータ8の駆動力は第2駆動系統の無端ベルト24を介して第2大径プーリ20及び第2小径プーリ19へと伝達される。そして、上述とは逆に副脱ぷロール4は高速回転して、主脱ぷロール3は低速回転し、副脱ぷロール4と主脱ぷロール3は互いに内向きに回転されて脱ぷ作用を受ける。
 以上のように、モータ、ベルトクラッチ機構及びアイドラプーリの切り替え操作を繰り返すことにより、脱ぷ作業を継続して行うことになる。このようなロッドタイプエアシリンダとチェーン・スプロケット伝達機構とを採用することにより、1つのエアシリンダにより第1駆動系統及び第2駆動系統のベルトクラッチ機構を同期させることが可能となる。さらに、複数のロータリアクチュエータを使用する場合に比べて、同期させるための電磁弁及びロジックリレー等が不要となり、簡易な構成で、製造コストを抑えることも可能となる。
(籾摺米判別機)
 籾摺装置において籾摺機1に併設される籾摺米判別機70について以下に説明する。図7には、前述した籾摺機1に併設される籾摺米判別機70の概略断面図が図示されている。籾摺米判別機70は、機体上部に籾摺機1から排出された籾摺り後の米である籾摺米を受け入れる籾摺米ホッパ71を備え、振動装置72及び振動トラフ73からなる振動供給機構と、傾斜状の流下樋74から成る流下供給機構とを備えている。
 籾摺米判別機70の機体下部には、流下樋74の下端の籾摺米の落下軌跡(図7中の破線部r)に対向して配置された光学検査部75と、光学検査部75の検査結果に基づいて籾摺米の玄米と籾との判別を行い、籾のみを籾摺米から排除するエジェクタ部76を備えている。
 エジェクタ部76の下方には、落下軌跡の下方で玄米を集穀する玄米集穀ホッパ77と、落下軌跡から排除された籾を回収する籾回収ホッパ78とが設けられている。さらに、玄米集穀ホッパ77には、機外に玄米を排出する搬送機構を備えた玄米排出部79が設けられている。籾回収ホッパ78には、籾を再脱ぷするために籾を籾摺機1に移送可能な籾排出部80が設けられている。籾排出部80としては、脱ぷロール式の籾摺機1へ籾を返還することのできる揚穀機81を設けてもよい。
 図8は籾摺米判別機における籾摺米の判別態様を示す概略側面図である。以下、図8を参照して説明する。
 籾摺米判別機70は、前述したように流下樋74の下方に配置した光学検査部75と、該光学検査部75の下方にエジェクタ部76を備えている。そして、光学検査部75には、流下樋74の下流側における籾摺米の流下軌跡rに対向する一方側(前方側)に、フルカラーカメラ751(カメラ手段)が設けられている。さらに、フルカラーカメラ751の光軸kの流下軌跡rを挟んだ先には、バックグラウンド752が設けられている。
 籾摺米の流下軌跡rよりもフルカラーカメラ751側には、籾摺米に照明する第1の照明手段753a、753bと、籾摺米の流下軌跡rよりもフルカラーカメラ751から離れる側において籾摺米に照明する第2の照明手段754a、754b及びバックグラウンド752を照明する第3の照明手段755が光学検査部75に設けられている。なお、流下軌跡rと光軸kとの交点はフルカラーカメラ751による観察領域oとなっている。
 上記した第1の照明手段753a、753b、第2の照明手段754a、754b及び第3の照明手段755は、それぞれに単色の発光源を有している。本実施形態では最も好適な例として、第1の照明手段753a、753bに赤色LED素子からなる光源を採用し、第2の照明手段754a、754bに緑色LED素子からなる光源を採用し、第3の照明手段755に青色LED素子からなる光源を採用している。なお、使用されるLED素子は単色のLED素子のほか、RGBLED素子を使用することも可能である。
 より詳細に説明すると、第1の照明手段753a、753bから被選別物である籾摺米に対して赤色成分の光を照射すると、その反射光がフルカラーカメラ751の赤色成分の受光素子で受光されるように構成されている。第2の照明手段754a、754bから被選別物である籾摺米に対して緑色成分の光を照射すると、その透過光がフルカラーカメラ751の緑色成分の受光素子で受光されるように構成されている。さらに、第3の照明手段755からバックグラウンド752に対して青色成分の光を照射すると、その観察領域oに被選別物が通ったか否か、また籾摺米以外の異物が通ったか否かがフルカラーカメラ751の青色成分の受光量によって判別されるように構成されている。
 なお、上記した好適な実施形態は次のような理由に裏付けられたものである。すなわち、本発明の検証実験の結果に基づいて、図9Aには玄米と籾における光の波長と反射率の関係が示され、図9Bには光の波長と透過率の関係がグラフで示されており、被選別物の対象である籾摺米における玄米及び籾ともに、その光の透過率は緑色も赤色も大きな差はない。
 一方、光の反射率を見ると、緑色よりも赤色の方が玄米と籾における反射率の差が大きいことが判る。したがって、上記のような光学的な特性に基づいて、反射光をフルカラーカメラ751に受光させることを目的とした第1の照明手段753a、753bには、赤色LED素子からなる光源を採用することが好ましく、より正確に被選別物である籾摺米の種類を判別することが可能となる。
 また仮に、第1の照明手段753a、753b、第2の照明手段754a、754b及び第3の照明手段755のそれぞれに、蛍光灯のような白色の光源を用いた場合、反射光と透過光との両成分が合わさった情報がフルカラーカメラ751に取り込まれてしまうため、特徴量(特徴的な受光量)が検出されにくくなって判別精度が低下するおそれがある。
 本実施形態では好適な例として、第1の照明手段753a、753bを赤色、第2の照明手段754a、754bを緑色、第3の照明手段755を青色という設定を行ったが、必ずしもこれに限定するものではなく、以下の表1の組み合わせとすることも可能である。
Figure JPOXMLDOC01-appb-T000001
 次に、上記した籾摺米判別機70における籾と玄米との判別方法について説明する。前述したように、第1の照明手段753a、753b、第2の照明手段754a、754b及び第3の照明手段755として、それぞれに単色の光源を用いることで、籾と玄米との判別をより正確に行うことが可能となり、さらに、籾と玄米以外の異物の判別も可能となる。
 すなわち、観察領域oに玄米が通過した場合、図9A、Bに示されるように玄米は籾に比べて光学的に透過性が良く、反射性が低いため、フルカラーカメラ751の赤色成分(反射成分)の受光素子の受光量は低く、フルカラーカメラ751の緑色成分(透過成分)の受光素子の受光量は高くなる。
 一方、観察領域oに籾が通過した場合、籾は玄米に比べて光学的に透過性が悪く、反射性が高いため、フルカラーカメラ751の赤色成分(反射成分)の受光素子の受光量は高く、フルカラーカメラ751の緑色成分(透過成分)の受光素子の受光量は低くなる。
なお、フルカラーカメラ751の青色成分の受光量は、玄米、籾ともに大きさに大きな差がないため、略一定値となる。これを表2に示す。
Figure JPOXMLDOC01-appb-T000002
 図10は前述の判別方法を実行するためのフローである。ステップ1では、フルカラーカメラ751における青色成分の受光量により、籾摺米が観察領域oを通過したか否かの判別が行われる。ステップ2では、フルカラーカメラ751における緑色成分の受光量が所定の緑色成分閾値より高いか又は低いかが確認され、これにより透過性の高い玄米が通過したのか、それ以外の籾や異物が通過したのかが判別される。続いて、ステップ3では、フルカラーカメラ751における赤色成分の受光量が所定の赤色成分閾値より高いか又は低いかが確認され、これにより、籾が通過したのか、それ以外の異物が通過したのかが判別される。
 なお、上記ステップ2及びステップ3では、反射成分である赤色成分の受光量と、透過成分である緑色成分の受光量との割合(例えば、「反射成分/透過成分」の値)を算出し、この値が所定の閾値より大きいものを籾と判別し、当該所定の閾値より小さいものを玄米と判別するように構成してもよい。
 以上、光学検査部75において、籾と玄米とを検査して判別する構成について説明したが、さらに本発明の光学検査部75には、図8に示されるように撮影カメラ756(カメラ手段)が設けられており、光学検査部75の観察領域oを通過した玄米の映像を撮影し、画像解析によって砕米や未熟米、胴割れ米であるのかを検査することができるように構成されている。具体的には通過した玄米の色成分で未熟米であるか否かが判別可能であり、また色成分と併せた形状や寸法値を画像解析で取得することにより、砕米や胴割れ米の判別が可能である。
(籾摺制御部)
 続いて、本発明の籾摺装置において、前述した籾摺機1及び籾摺米判別機70を制御可能な籾摺制御部について以下に説明する。なお、籾摺制御部は少なくとも籾摺機1及び籾摺米判別機70を制御するために信号線で接続されており、本実施形態では図示しない設定入力手段と共に籾摺機1又は籾摺米判別機70に設置されている。
 本実施形態の籾摺制御部では、光学検査部75からの出力信号が入力され、解析などを行って前述したような籾摺米の品質状態の判定を行っている。そして籾摺制御部では、品質状態の判定結果に基づいて、籾摺機1に対し第1駆動系統から第2駆動系統に駆動手段を切り換える制御を回転速度変更手段により実行している。すなわち、主脱ぷロール3及び副脱ぷロール4において、高速側を低速側に、低速側を高速側に切り替え変更するよう制御している。
 前述したように、籾摺機1に投入された籾は、主脱ぷロール3と副脱ぷロール4との周速度差とその押圧力とにより脱ぷ作用を受ける。その一方で、高速回転する主脱ぷロール3は、低速回転する副脱ぷロール4に比べて、籾との累積接触面積が多いので早期に摩耗することとなり、その結果、主脱ぷロール3の外径が小さくなる。そうなると、主脱ぷロール3と副脱ぷロール4との周速度差が減少して脱ぷ率の低下や、砕米の増加率が上昇してしまう事態を招いてしまう。上記した籾摺制御部の制御によって、脱ぷ率の低下や、砕米の増加率の上昇など、籾摺米の品質状態の改善を自動的に行うことが可能となっている。
 図11には、籾摺制御部によって主脱ぷロール3及び副脱ぷロール4の回転速度の制御を行った場合の実験結果の一例が図示されており、砕米率が4.5%、6%、7%の各原料を籾摺機1に投入し、所定の経過時間における回転速度の切替え制御が、切替え前後の脱ぷ率及び砕米増加率に及ぼす影響を調査した結果が示されている。
 実験の結果から、回転速度の切替え制御の後の脱ぷ率及び砕米増加率は、砕米率4.5%の原料では脱ぷ率が2.15%向上し、砕米増加率を2.23%低下させている。また、砕米率6%の原料では脱ぷ率が0.34%向上し、砕米増加率を0.14%低下させている。さらに、砕米率7%の原料では脱ぷ率が0.66%向上し、砕米増加率を0.67%低下させるという良好な結果が得られている。
 主脱ぷロール3及び副脱ぷロール4の回転速度の切替えタイミングについては、前述した籾摺制御部の設定入力手段で設定が可能であり、脱ぷ率や砕米増加率に所定の閾値を入力設定し、回転速度の切替え制御を自動的に実行させることが可能である。このような構成により、脱ぷ率を含む籾摺米の品質を最も良好な状態で継続的に維持できるように、籾摺機1を常に良好な状態で制御することが可能となる。
 図12には、籾摺制御部による制御態様の一実施例が示されている。本実施形態のようなロール式の籾摺機1の場合、適正な脱ぷ率の範囲は概ね85~95%であるが、光学検査部75の検出結果に基づく脱ぷ率が85%以下であると判定された場合は、(1)ロール回転数制御として、主脱ぷロール3及び副脱ぷロール4の回転速度の切替えを実行して脱ぷ率が85~95%に近づくように制御する。
 上記(1)のようなロール回転数制御を実行して一定時間経過しても上記した適正な脱ぷ率の範囲に収まらない場合は、(2)ロール間隙制御として、前述したロール間隙調節手段を動作させて脱ぷ率が85~95%に近づくように制御する。
 上記(2)のようなロール間隙制御を実施して一定時間経過しても上記した適正な脱ぷ率の範囲に収まらない場合、今度は、穀物の流量が過多のおそれがあるので、(3)流量調整制御として、供給口32の直下にある穀物の流量を調整可能な振動フィーダを制御して、穀物の流量を絞る制御を行う。
 なお、上記した(1)~(3)の制御を経ても、適正な脱ぷ率の範囲85~95%に収まらない場合は異常判定を行い、警告を装置の管理者や操作者に対して報知するように制御する。
 また、図12に*図示されるように、上記(1)~(3)の制御に加えて、ロール間の周速度差が所定値(例えば1%)を下回った場合、ロール回転数制御として、主脱ぷロール3及び副脱ぷロール4の回転速度の切替えを実行するように制御することも可能である。このような制御構成を加えることで、さらに籾摺米の品質を良好に維持することが可能となる。
(その他の実施形態)
 以上、本発明の籾摺装置の一実施形態について説明したが、種々の変形が可能である。
例えば、前述の実施形態では、光学検査部75に、カメラ手段として各色の受光素子を備えたフルカラーカメラ751と、撮影カメラ756とを併設した。しかし、必ずしもこのような形態に限られるものではなく、撮影カメラ756に撮影した映像を画像処理し、赤色成分、緑色成分、青色成分それぞれの色成分を抽出するようにしてフルカラーカメラ751の設置を省くことも可能である。
 また、上記実施形態では、カメラ手段として各色の受光素子を備えたフルカラーカメラ751を設けたが、赤、緑、青それぞれに対応した単色の受光センサを設けることも当然ながら可能である。
 また、図13は、籾摺米判別機における籾摺米の判別態様の別実施形態を示す概略側面図であり、流下樋15を長尺状に形成し、観察領域o付近の底面の一部にガラス等の透明材741を設けたものである。これにより、従来のような流下樋74の下端から籾摺米を吐出させ、自由落下(自由飛行)状態で流下されるものと比べて、籾摺米の粒に空気抵抗が生じにくく、粒の姿勢が安定するために、籾摺米の判別精度を向上させることが可能となる。なお、上記した透明材741を設ける代わりに、スリット状の空間を設けるようにしてもよく、さらには、流下樋74をベルトコンベアで構成するようにしてもよい。
 また、図12に示されるように、ロール式の籾摺機1に代えて遠心式(インペラ式)の脱ぷ機を適用することも可能である。遠心式(インペラ式)脱ぷ機の場合、適正な脱ぷ率の範囲は概ね90~95%であるが、光学検査部75の検知結果から求められた脱ぷ率が90%以下であった場合は、(1)回転数制御として、遠心式脱ぷ機の回転数を制御し、上記した適正な脱ぷ率90~95%に近づくように制御する。回転数制御を実施して一定時間経過しても上記した適正な脱ぷ率の範囲に収まらない場合は、今度は、穀物の流量が過多のおそれがあるので、(2)流量調整制御として、穀物の流量を絞る制御を行う。これら、(1)、(2)の制御を経ても、適正な脱ぷ率の範囲に収まらない場合は、異常判定を行い、警告を装置の管理者や操作者に対して報知するようにするとよい。
(モニタリング制御システム200)
 前述した実施形態の説明では、図12のブロック図に示されるような、各籾摺装置内における籾摺制御部の制御態様について詳しく説明したが、さらに複数台の籾摺装置や、籾摺装置から排出された籾摺米を選別する選別装置、計量器などをネットワークで結び、各種装置における処理状況を一括してモニタリングし、必要に応じて各装置を制御するようにすることも可能である。
 例えば、図14には、複数台の籾摺装置や選別装置、計量機などをネットワークで結び、モニタリング制御PC100によって一括管理する、モニタリング制御システム200の概略図が図示されている。すなわち、計量機(籾)94には、計量装置のほか、原料となる籾の判別装置が備えられている。そして、籾摺装置投入前の籾が計量され、併せて、ロット単位の重量、水分量、未熟米や胴割れ米、砕米の混入率、さらに籾の平均的な長さや厚みなどの品質データを収集することが可能となっている。
 収集された計量機(籾)94における品質データは、有線又は無線によってネットワークサーバ101へ送信され、モニタリング制御PC100において、図15の(1)の表に示されるように、圃場、品種、食味などの情報と共に籾摺装置投入前の原料情報(ロット毎)として表示させ、モニタリングすることが可能となっている。
 計量機(籾)94で計量された籾は、籾摺装置に投入され、前述の実施例と同様に、籾摺機1によって籾摺り作業が行われ、籾摺米判別機70のエジェクタ部76によって脱ぷ処理できていない籾が選別される。さらに、籾摺装置の排出口には、籾摺装置から排出された籾摺米を撮影し、脱ぷ率や砕米率などを判定することが可能な脱ぷ画像処理センサ90が設けられている。脱ぷ画像処理センサ90によって取得された籾摺米の各品質データは、有線又は無線によってネットワークサーバ101へ送信されるように構成されている。
 加えて、籾摺装置には、籾摺機1の電流値やロール圧力、主脱ぷロール3及び副脱ぷロール4における各回転数及び回転差率、籾の流量、ロール軸の温度、籾摺機1における振動などを検知する複数のセンサが設けられており、籾摺装置の運転状況などの稼動データが、有線又は無線によってネットワークサーバ101へ送信されるように構成されている。このように構成されることにより、モニタリング制御PC100では、図15の(2)の表に示されるように、リアルタイムでロールの使用時間や処理量、電流値、ロール圧力、ロールの回転数の切替時刻、主軸及び副軸の回転数及び温度、各ロール径、振動の大きさなど、籾摺装置における稼働状況が表示され、モニタリングすることが可能となっている。
 また、前述の脱ぷ画像処理センサ90によって取得された籾摺米の各品質データについても、ネットワークサーバ101を介して、モニタリング制御PC100でモニタリングすることが可能であり、例えば、図15の(3)の表に示されるように、ロット毎の脱ぷ率や砕米率など、リアルタイムで籾摺後の品質データをモニタリングすることが可能である。なお、上記した籾摺装置の稼動データや籾摺後の品質データなどの情報に基づいて、必要に応じてモニタリング制御PC100から籾摺装置に対して稼動制御を行うことも可能となっている。例えば、主脱ぷロール3及び副脱ぷロール4の回転速度や押圧力を適切に遠隔制御することで、脱ぷ率や砕米率などを改善することが可能となる。
 続いて、籾摺装置から排出された籾摺米は、籾摺米選別して玄米を得るため、選別装置へと投入される。選別装置には、選別されながら選別装置内を流れる玄米、籾と玄米の混合米、籾の俯瞰画像を撮影し、それぞれの境目に可動仕切り板を移動させることが可能な仕切り画像処理センサ91が設置されている。さらに、選別装置内を流れる玄米、籾と玄米の混合米、籾、それぞれの層厚を計測可能な層厚センサ92を備えている。層厚センサ92及び仕切り画像処理センサ91は、選別制御部へと接続されている。選別制御部で得られた稼動データや品質データは、籾摺装置の籾摺制御部へとフィードバック(図14の「FB」)されて、計量機(玄米)95へとフィードフォワード(図14の「FF」)される。そして同時に、有線又は無線によってネットワークサーバ101へと稼動データや品質データが送信されるように構成されている。
 選別制御部からネットワークサーバ101へと送信された稼動データや品質データは、モニタリング制御PC100でモニタリングすることが可能である。例えば、図15の(4)の表に示されるように、ロット毎の処理量や籾混入率などをリアルタイムで表示することが可能である。また、選別制御部から籾摺制御部へとフィードバック(図示FB)された品質データなどに基づいて、例えば、籾摺装置における主脱ぷロール3及び副脱ぷロール4の回転速度や押圧力を自動的に適切な状態へと制御することも可能であり、必要に応じてモニタリング制御PC100における操作指示によって籾摺装置を遠隔制御することも可能である。
 選別装置によって選別された玄米は、その後、等級判定センサ93に送られて等級が判定され、計量機(玄米)95に計量されて回収されるように構成されている。等級判定センサ93や計量機(玄米)95も有線又は無線によりネットワークに接続され、ネットワークサーバ101に各種品質データが集められる。このような構成により、モニタリング制御PC100では、籾の投入から、籾摺り、選別、等級判定、玄米の回収までの一連の品質データや各装置の稼動データ、さらに、歩留りの管理や金額収支など、ネットワークを介してモニタリング制御PC100によって一元的に管理して制御することが可能となる。
 例えば、図15の(5)の表に示されるように、モニタリング制御PC100に、トータルの加工量や歩留りに加え、籾の購入金額、玄米及び未熟米の販売金額、稼働時間、使用電力量、人件費などのデータを集計し、金銭的な収支をロット毎に表示することが可能である。上記したような各種情報をモニタリング制御PC100で確認できるように構成することで、籾摺装置の設定や調整、修理のほか、最終的な収支の状況を把握しながら、各種制御の最適化を図ることが可能となる。
 また、本実施例では各装置及び各センサから得られる情報に基づいて、各装置の故障を予知することも可能である。例えば、図15の(3)の表の*1の脱ぷ率が90%以上であるにもかかわらず、*2の処理量が低下している場合や、*3の籾混入率が上昇している場合は異常判定が行われる。そして、モニタリング制御PC100にアラート表示が行われて、必要なチェック、処置を講ずることが可能となっている。このように、本実施例ではネットワークサーバ101に集められる各品質データや稼動データに基づいて、故障予知が可能となっており、図16には、回転数の異常、軸受温度の異常、異常振動、脱ぷ率の異常、砕米率上昇異常、歩留り異常の各異常検知項目に対する不具合要因のチェック構成が示されている。
 図16の1)の回転数異常の要因として、最初にチェック(ファーストチェック)すべき要因は、主脱ぷロール3及び副脱ぷロール4の回転ベルトにおけるベルトスリップの発生有無や、主脱ぷロール3と副脱ぷロール4との周速度の切替異常の発生有無が挙げられる。これらに異常がない場合は、次にチェック(セカンドチェック)すべき要因として、プーリにおける異常発生の有無が挙げられる。
 続いて、図16の2)の軸受温度異常の要因としては、籾摺機1への籾の投入量が過少となっていることや、各脱ぷロールの軸周りのベアリングに異常が発生している場合があり、これらを最初にチェック(ファーストチェック)する必要がある。次にチェック(セカンドチェック)すべき要因としては、主脱ぷロール3と副脱ぷロール4との周速度差率が高い場合が挙げられる。
 図16の3)の異常振動の要因として、最初にチェック(ファーストチェック)すべき要因は、主脱ぷロール3と副脱ぷロール4の少なくともいずれかにおける多角化や、各脱ぷロールの軸周りのベアリングにおける異常の発生有無が挙げられる。これらに異常がない場合は、次にチェック(セカンドチェック)すべき要因として、籾摺機1を固定する架台が弱くなっているか否かが挙げられる。
 図16の4)の脱ぷ率異常の要因として、最初にチェック(ファーストチェック)すべき要因は、主脱ぷロール3及び副脱ぷロール4の回転ベルトにおけるベルトスリップの発生有無や、主脱ぷロール3と副脱ぷロール4との周速度差率が低いか否か、各脱ぷロールにおける異常磨耗の発生有無、各脱ぷロールの交換時期の確認などが挙げられる。これらに異常がない場合は、次にチェック(セカンドチェック)すべき要因として、籾摺機1への籾の投入量過多や、籾の水分値が高い場合、未熟米の混入量が多い場合などが挙げられる。
 図16の5)の砕米上昇異常の要因として、最初にチェック(ファーストチェック)すべき要因は、原料の胴割れの状況や、主脱ぷロール3と副脱ぷロール4の少なくともいずれかにおける多角化やロールスジの発生の有無が挙げられる。これらに異常がない場合は、次にチェック(セカンドチェック)すべき要因として、籾摺機1への籾の投入量過多や、主脱ぷロール3と副脱ぷロール4との間に穀物を供給するシュートにおいて、そのシュートポジションが不適切である場合が挙げられる。
 図16の6)の歩留り異常の要因として、最初にチェック(ファーストチェック)すべき要因は、原料の胴割れの状況や、シイナ・未熟米の混入量が多いか否かが挙げられる。これらに異常がない場合は、次にチェック(セカンドチェック)すべき要因として、エジェクタ部76における異常や、当該エジェクタ部76から吐出される風量や風速の異常が挙げられる。
 以上、図16に例示されている1)~6)の異常検知に対する対処プロセスについて説明した。このような異常検知情報は、各装置や別途設けられる各種センサから、ネットワークサーバ101へと集約された品質データや装置の稼動データに基づいて、モニタリング制御PC100にアラート表示するようにしてもよい。例えば、「異常振動検知!!」などのポップアップ表示することが考えられる。さらに、異常発生の種類に応じたアラート表示に加えて、異常対処指示表示をモニタリング制御PC100に表示するようにしてもよい。例えば、具体的なチェック項目の表示や点検、修理箇所の表示、具体的な運転制御に関わる操作指示などを表示することが考えられる。このような表示を行うことで、各装置の運転管理者等は必要なチェック、点検、修理のほか、モニタリング制御PC100による遠隔操作によって、各装置を運転制御することが可能となる。
 モニタリング制御PC100及びネットワークサーバ101は、籾摺装置を含む各装置が設置されている施設内に配置し、有線又は無線で籾摺装置を含む各装置と接続することが可能である。さらに、籾摺装置を含む各装置とネットワークサーバ101との接続や、ネットワークサーバ101とモニタリング制御PC100との接続を、公衆通信回線を介して行うことも可能である。これにより、遠隔地から籾摺装置を含む各装置における稼動データや品質データをモニタリング制御することが可能となる。さらに、公衆通信回線として、高速で大容量の通信が可能な第5世代移動通信システム(5G)を利用することも可能であり、例えば、図14に示されるように、タブレット型通信端末100aを利用してモニタリング制御することが可能となる。
 以上、本発明のいくつかの実施形態について説明してきたが、上記した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその均等物が含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の組み合わせ、または、省略が可能である。
1 籾摺機
2 機枠
3 主脱ぷロール
4 副脱ぷロール
5 ロール軸
6 ロール軸
7 駆動モータ
8 駆動モータ
9 第1大径プーリ
10 第1小径プーリ
11 駆動プーリ
12 第1アイドラプーリ
13 無端ベルト
14 テンションクラッチプーリ
15 ベルトクラッチ機構
16 支杆部材
17 エアシリンダ
18 ロール間隙調節手段
19 第2小径プーリ
20 第2大径プーリ
21 駆動プーリ
22 第2アイドラプーリ
23 第3アイドラプーリ
24 無端ベルト
25 テンションクラッチプーリ
26 ベルトクラッチ機構
27 支杆部材
28 エアシリンダ
29 エアシリンダ
30 ロータリアクチュエータ
31 空気配管
32 供給口
33 空圧制御装置
34 マウント
35 ベアリング
50 第1スプロケット
51 第2スプロケット
52 回転軸
53 中継用ダブルスプロケット
54 回転軸
55 同期用ダブルスプロケット
56 テンション用スプロケット
57 テンション用スプロケット
58 差動チェーン
59 差動チェーン
60 伝動チェーン
61 ロッドタイプエアシリンダ
62 台座
63 枢着ピン
70 籾摺米判別機
71 籾摺米ホッパ
72 振動装置
73 振動トラフ
74 流下樋
741 透明材
75 光学検査部
751 フルカラーカメラ(カメラ手段)
752 バックグラウンド
753a、753b 第1の照明手段
754a、754b 第2の照明手段
755 第3の照明手段
756 撮影カメラ(カメラ手段)
76 エジェクタ部
77 玄米集穀ホッパ
78 籾回収ホッパ
79 玄米排出部
80 籾排出部
81 揚穀機
90 脱ぷ画像処理センサ
91 仕切り画像処理センサ
92 層厚センサ
93 等級判定センサ
94 計量機(籾)
95 計量機(玄米)
100 モニタリング制御PC
100a タブレット型通信端末
101 ネットワークサーバ
200 モニタリング制御システム

Claims (12)

  1.  脱ぷロールによって籾摺りが行われる籾摺機と、前記籾摺機から排出される籾摺米を検査可能な籾摺米判別機と、前記籾摺米判別機における前記籾摺米の検査結果に応じて前記籾摺機を制御可能な籾摺制御部と、を有し、
     前記籾摺制御部は、前記籾摺米の検査結果に応じて、前記籾摺機における前記脱ぷロールの回転速度を変更させる回転速度変更手段を備える
     ことを特徴とする籾摺装置。
  2.  前記脱ぷロールは、所定の回転速度で回転する主脱ぷロールと、該主脱ぷロールよりも低速で回転する副脱ぷロールとから成り、
     前記回転速度変更手段は、前記副脱ぷロールの回転速度を主脱ぷロールの回転速度よりも高速で回転するように回転速度を変更させる
     請求項1に記載の籾摺装置。
  3.  前記籾摺米の検査項目には少なくとも脱ぷ率が含まれ、
     前記籾摺制御部は、前記脱ぷ率が所定値未満となった場合に、前記回転速度変更手段によって前記脱ぷロールの回転速度を変更させる
     請求項1又は請求項2に記載の籾摺装置。
  4.  前記籾摺米の検査項目には少なくとも砕米率が含まれ、
     前記籾摺制御部は、前記砕米率の増加率が所定値以上となった場合に、前記回転速度変更手段によって前記脱ぷロールの回転速度を変更させる
     請求項1乃至請求項3のいずれかに記載の籾摺装置。
  5.  前記籾摺米判別機は、
     前記籾摺米を整列させて流下させる流下樋と、
     前記流下樋から吐出される前記籾摺米に光を照射する発光源と、
     前記発光源から光を照射された前記籾摺米から、反射光及び透過光を受光することが可能なカメラ手段と、を有し、
     前記発光源は、
     前記籾摺米の前記カメラ手段側に設けられて該籾摺米に赤色成分の光を照射可能な第1の照明手段と、
     前記籾摺米の前記カメラ手段から離れる側に設けられて該籾摺米に緑色成分の光を照射可能な第2の照明手段と、が備えられている
     請求項1乃至請求項4のいずれかに記載の籾摺装置。
  6.  前記カメラ手段の受光結果として、
     前記緑色成分の光の受光量が所定の緑色成分閾値よりも高い場合は吐出される前記籾摺米が玄米であると判別され、
     前記緑色成分の光の受光量が前記所定の緑色成分閾値よりも低く、且つ、赤色成分の光の受光量が所定の赤色成分閾値よりも高い場合は吐出される前記籾摺米が籾であると判別される
     請求項5に記載の籾摺装置。
  7.  前記発光源は、さらに、前記カメラ手段と前記籾摺米とを結ぶ延長線上の位置に設けられて該籾摺米のバックグラウンドに青色成分の光を照射可能な第3の照明手段を備え、
     前記カメラ手段の前記受光結果として、前記青色成分の光の受光量が所定の範囲を外れた場合は前記流下樋から吐出されたものが前記籾摺米ではない異物であると判別される
     請求項5又は請求項6に記載の籾摺装置。
  8.  前記カメラ手段は、前記反射光及び前記透過光の受光に加えて、前記籾摺米の映像を撮影可能である
     請求項5乃至請求項7のいずれかに記載の籾摺装置。
  9.  前記流下樋は、少なくとも前記籾摺米に光を照射される前記カメラ手段の観察領域まで延設され、前記発光源からの光を透過可能である
     請求項5乃至請求項8のいずれかに記載の籾摺装置。
  10.  脱ぷロールによって籾摺りが行われる籾摺装置と、前記籾摺装置から排出される籾摺米の品質を判定可能な籾摺米判定手段と、前記籾摺米判定手段における前記籾摺米の判定結果に応じて前記籾摺装置を制御可能な籾摺制御部と、を有する籾摺装置と、
     前記籾摺装置と有線又は無線によって接続されるとともに、前記籾摺米の判定結果を受信して表示出力することが可能なモニタリング装置と、を有し、
     前記モニタリング装置に表示出力される前記籾摺米の判定結果に応じて、前記籾摺装置における前記脱ぷロールの回転速度を変更することが可能である
     ことを特徴とする籾摺制御システム。
  11.  前記籾摺装置は、該籾摺装置における異常を検知可能な異常検知手段を備え、
     前記モニタリング装置は、前記異常検知手段からの検知情報に基づいて複数種類の異常を判定することが可能な異常判定手段と、該異常判定手段による判定結果を表示出力可能な異常表示手段と、を備えている
     請求項10に記載の籾摺制御システム。
  12.  前記モニタリング装置は、前記異常判定手段による判定結果に対応して、優先度に応じたチェック内容を表示出力可能な異常対処指示表示手段を備えている
     請求項11に記載の籾摺制御システム。
PCT/JP2020/036265 2019-09-27 2020-09-25 籾摺装置及び籾摺制御システム WO2021060465A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/763,588 US20220331810A1 (en) 2019-09-27 2020-09-25 Hulling device and hulling control system
KR1020227011952A KR20220066093A (ko) 2019-09-27 2020-09-25 매조미 장치 및 매조미 제어 시스템
CN202080067033.1A CN114514072B (zh) 2019-09-27 2020-09-25 稻谷脱壳装置以及稻谷脱壳控制系统
EP20867584.3A EP4035777A1 (en) 2019-09-27 2020-09-25 Hulling apparatus and hulling control system
BR112022005746A BR112022005746A2 (pt) 2019-09-27 2020-09-25 Dispositivo de descascamento e sistema de controle de descascamento

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-176740 2019-09-27
JP2019176740 2019-09-27
JP2020-068525 2020-04-06
JP2020068525A JP7537119B2 (ja) 2019-09-27 2020-04-06 籾摺装置及び籾摺制御システム

Publications (1)

Publication Number Publication Date
WO2021060465A1 true WO2021060465A1 (ja) 2021-04-01

Family

ID=75166176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036265 WO2021060465A1 (ja) 2019-09-27 2020-09-25 籾摺装置及び籾摺制御システム

Country Status (6)

Country Link
US (1) US20220331810A1 (ja)
EP (1) EP4035777A1 (ja)
KR (1) KR20220066093A (ja)
CN (1) CN114514072B (ja)
BR (1) BR112022005746A2 (ja)
WO (1) WO2021060465A1 (ja)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172249A (en) * 1981-04-16 1982-10-23 Satake Eng Co Ltd Shell cracked grain detecting device
JPS57192866A (en) * 1981-05-22 1982-11-27 Satake Eng Co Ltd Cracked grain detector
JPS6229064Y2 (ja) 1980-06-27 1987-07-25
JPS6451149A (en) * 1987-08-20 1989-02-27 Yanmar Agricult Equip Dehulling ratio control apparatus of huller
JPH0219747A (ja) * 1988-07-06 1990-01-23 Yanmar Agricult Equip Co Ltd 穀粒の脱ふ率検出装置
JPH03106452A (ja) 1989-09-19 1991-05-07 Junichi Mizuuchi ゴムロール式籾摺機における速度変換装置
JPH03137945A (ja) 1989-10-23 1991-06-12 Junichi Mizuuchi 籾摺用ゴムロール速度変更装置
JPH0716478A (ja) * 1993-06-30 1995-01-20 Iseki & Co Ltd 籾摺ロ−ルの調節装置
JPH07248298A (ja) * 1994-03-11 1995-09-26 Satake Eng Co Ltd 脱ぷ率検出装置
JPH11337495A (ja) * 1998-05-28 1999-12-10 Satake Eng Co Ltd 穀粒色彩選別方法及びその装置
JP2000042433A (ja) * 1998-07-30 2000-02-15 Shinnakano Industry Co Ltd 砕米発生の自動抑制機能付き自動精米装置
JP2001038230A (ja) 1999-07-28 2001-02-13 Iseki & Co Ltd 籾摺装置
JP2006312151A (ja) 2005-05-09 2006-11-16 Satake Corp 脱ぷ機における脱ぷロール駆動装置
JP2009072765A (ja) 2007-08-30 2009-04-09 Satake Corp 籾摺機における脱ぷロール駆動装置
JP2010042326A (ja) * 2008-08-08 2010-02-25 Satake Corp 光学式穀粒選別装置
JP2011180805A (ja) * 2010-03-01 2011-09-15 Nec Corp 運用管理装置、運用管理方法、運用管理プログラム
CN104941926A (zh) * 2015-07-09 2015-09-30 合肥美亚光电技术股份有限公司 一种大米物料的检测分选装置和方法
CN205362009U (zh) * 2016-01-15 2016-07-06 江西鹏辉高科粮业有限公司 一种双向大米色选光谱仪
JP2018020293A (ja) * 2016-08-04 2018-02-08 株式会社サタケ 籾摺機
JP2018060357A (ja) * 2016-10-05 2018-04-12 株式会社東芝 保守端末、保守方法及びプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229064A (ja) 1985-07-30 1987-02-07 Shin Kobe Electric Mach Co Ltd 鉛蓄電池用陽極板の製造法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229064Y2 (ja) 1980-06-27 1987-07-25
JPS57172249A (en) * 1981-04-16 1982-10-23 Satake Eng Co Ltd Shell cracked grain detecting device
JPS57192866A (en) * 1981-05-22 1982-11-27 Satake Eng Co Ltd Cracked grain detector
JPS6451149A (en) * 1987-08-20 1989-02-27 Yanmar Agricult Equip Dehulling ratio control apparatus of huller
JPH0219747A (ja) * 1988-07-06 1990-01-23 Yanmar Agricult Equip Co Ltd 穀粒の脱ふ率検出装置
JPH03106452A (ja) 1989-09-19 1991-05-07 Junichi Mizuuchi ゴムロール式籾摺機における速度変換装置
JPH03137945A (ja) 1989-10-23 1991-06-12 Junichi Mizuuchi 籾摺用ゴムロール速度変更装置
JPH0716478A (ja) * 1993-06-30 1995-01-20 Iseki & Co Ltd 籾摺ロ−ルの調節装置
JPH07248298A (ja) * 1994-03-11 1995-09-26 Satake Eng Co Ltd 脱ぷ率検出装置
JPH11337495A (ja) * 1998-05-28 1999-12-10 Satake Eng Co Ltd 穀粒色彩選別方法及びその装置
JP2000042433A (ja) * 1998-07-30 2000-02-15 Shinnakano Industry Co Ltd 砕米発生の自動抑制機能付き自動精米装置
JP2001038230A (ja) 1999-07-28 2001-02-13 Iseki & Co Ltd 籾摺装置
JP2006312151A (ja) 2005-05-09 2006-11-16 Satake Corp 脱ぷ機における脱ぷロール駆動装置
JP2009072765A (ja) 2007-08-30 2009-04-09 Satake Corp 籾摺機における脱ぷロール駆動装置
JP2010042326A (ja) * 2008-08-08 2010-02-25 Satake Corp 光学式穀粒選別装置
JP2011180805A (ja) * 2010-03-01 2011-09-15 Nec Corp 運用管理装置、運用管理方法、運用管理プログラム
CN104941926A (zh) * 2015-07-09 2015-09-30 合肥美亚光电技术股份有限公司 一种大米物料的检测分选装置和方法
CN205362009U (zh) * 2016-01-15 2016-07-06 江西鹏辉高科粮业有限公司 一种双向大米色选光谱仪
JP2018020293A (ja) * 2016-08-04 2018-02-08 株式会社サタケ 籾摺機
JP2018060357A (ja) * 2016-10-05 2018-04-12 株式会社東芝 保守端末、保守方法及びプログラム

Also Published As

Publication number Publication date
CN114514072B (zh) 2023-05-09
BR112022005746A2 (pt) 2022-06-21
KR20220066093A (ko) 2022-05-23
US20220331810A1 (en) 2022-10-20
EP4035777A1 (en) 2022-08-03
CN114514072A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
JP2021053624A (ja) 籾摺装置及び籾摺制御システム
CN102099677B (zh) 在碾磨设备中鉴别碾磨物料特性的系统和方法
CA2867503C (en) Sorting aggregate material
LT3740B (en) Method for crushing milling grain, roller mills and usig of it
WO2021060465A1 (ja) 籾摺装置及び籾摺制御システム
JP6033002B2 (ja) コンバイン
JP5780642B2 (ja) コンバイン
JP2013027341A (ja) コンバイン
KR100771515B1 (ko) 알터네이터 스풀 검사장치
US11628444B2 (en) Husking roll abnormality determination device of rice husker and rice husker using the same
CN2725887Y (zh) 稻谷品质综合检测仪
CN114245759B (zh) 稻谷判别机
WO2012176734A1 (ja) 乾麺のクラック発生予測装置および分別システム
JP4626195B2 (ja) 石抜装置
JP2007326005A (ja) 穀物調製設備のモード設定制御
JP7278583B2 (ja) 編織物品質管理装置
JP2023179916A (ja) 穀物選別システム
JPH03101850A (ja) 籾摺機等の作動部チェック方式
JP4529440B2 (ja) 脱ぷロール間隙調節装置
Zareiforoush et al. Design and performance evaluation of a singulation device for effective positioning of rice kernels in a machine vision-based quality inspection system
CN117169045A (zh) 一种谷物品质全自动检测设备
JPS6012137A (ja) 籾摺機の脱ふ調節装置
JPS62286549A (ja) 籾摺機の脱ふ制御装置
JPH06343883A (ja) 穀物検査装置
JPS6121743A (ja) 籾摺機の脱ふ率制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022005746

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227011952

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020867584

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020867584

Country of ref document: EP

Effective date: 20220428

ENP Entry into the national phase

Ref document number: 112022005746

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220325