WO2021060434A1 - 光学素子、光学装置、撮像装置、及び光学素子の製造方法 - Google Patents

光学素子、光学装置、撮像装置、及び光学素子の製造方法 Download PDF

Info

Publication number
WO2021060434A1
WO2021060434A1 PCT/JP2020/036172 JP2020036172W WO2021060434A1 WO 2021060434 A1 WO2021060434 A1 WO 2021060434A1 JP 2020036172 W JP2020036172 W JP 2020036172W WO 2021060434 A1 WO2021060434 A1 WO 2021060434A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
pixel
optical element
light
filters
Prior art date
Application number
PCT/JP2020/036172
Other languages
English (en)
French (fr)
Inventor
睦 川中子
西本 直樹
周平 松下
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021549020A priority Critical patent/JP7335969B2/ja
Priority to CN202080066962.0A priority patent/CN114514447A/zh
Publication of WO2021060434A1 publication Critical patent/WO2021060434A1/ja
Priority to US17/688,819 priority patent/US11968437B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/006Filter holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/131Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing infrared wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/135Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • G01J2003/2826Multispectral imaging, e.g. filter imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another

Definitions

  • the present invention relates to an optical element for capturing a multispectral image, an optical device, an imaging device, and a method for manufacturing the optical element.
  • Patent Document 1 describes a polarized color imaging device that enables multispectral imaging by using a polarized sensor and pupil division. Further, Patent Document 2 describes a multi-mode imaging system in which a filter module is moved with respect to the imaging system.
  • One embodiment according to the technique of the present disclosure provides an optical element, an optical device, an imaging device, and a method for manufacturing the optical element, which can easily acquire a multispectral image of good image quality.
  • the optical element according to the first aspect of the present invention is a plurality of optical filters, the plurality of optical filters including two or more optical filters that transmit light having at least a part of wavelength bands different from each other, and an optical axis center. It is a frame body having a slope portion having an apex as the apex, and includes a frame body in which a plurality of optical filters are installed on the slope portion.
  • the optical element according to the second aspect has a plurality of slope portions in the first aspect.
  • the optical element according to the third aspect further includes a fixing member for fixing the optical filter and the frame in the first or second aspect.
  • the fixing member is an adhesive, and the adhesive fixes a plurality of optical filters to the frame and covers the light receiving regions of the plurality of optical filters with the adhesive.
  • the unbroken portion forms a light transmitting region.
  • the optical element according to the fifth aspect is filled with an amount of adhesive corresponding to the area of the light transmitting region determined based on the wavelength bands of the plurality of optical filters in the plurality of windows. ..
  • the optical element according to the sixth aspect further includes an inclination adjusting member for adjusting the inclination of the plurality of optical filters with respect to the slope portion in any one of the first to fifth aspects.
  • the contact surface of the inclination adjusting member with the plurality of optical filters is an inclined surface.
  • the inclination adjusting member is fixed to the frame body.
  • the optical element according to the ninth aspect has, in any one of the first to eighth aspects, the plurality of window portions each having a polarizing portion that polarizes the light transmitted through the plurality of window portions.
  • the optical element according to the tenth aspect has a plurality of types of polarization directions in the ninth aspect.
  • the optical element according to the eleventh aspect is a wire grid or a slit formed in a plurality of window portions according to the direction of polarization in the ninth or tenth aspect.
  • the optical element according to the twelfth aspect has a frame body that is light transmissive in any one of the first to eleventh aspects.
  • the optical element according to the thirteenth aspect has an opening in a portion where a plurality of optical filters are installed, and the optical element has an opening for adjusting the area of the opening. It is equipped with an area adjusting member.
  • the optical element according to the fourteenth aspect has a plurality of optical filters installed on the slope portion at an inclination angle according to the wavelength band of the light transmitted by the respective optical filters. Has been done.
  • the optical device includes an optical element according to any one of the first to fourteenth aspects and a lens for forming an optical image of a subject, and the optical element is the light of the optical element. It is arranged in the optical path of light passing through the lens with the axis and the optical axis of the lens aligned.
  • the image pickup device is composed of the optical device according to the fifteenth aspect, an image pickup element including a plurality of pixel groups that selectively receive light transmitted through any of the plurality of optical filters, and an image pickup device. It includes a signal processing unit that generates a plurality of images corresponding to the wavelength bands of the plurality of optical filters based on the output signal.
  • the image pickup element includes a plurality of types of optical filters having different transmission wavelength bands and a plurality of types of polarizing portions having different polarization directions on the pixel.
  • the method for manufacturing an optical element according to an eighteenth aspect is a plurality of optical filters, the plurality of optical filters including two or more optical filters that transmit light having at least a part of wavelength bands different from each other, and an optical axis center. It is a method of manufacturing an optical element including a frame having a slope portion having an apex and a plurality of optical filters installed on the slope portion, and a plurality of optical filters are applied to a plurality of window portions. It includes an installation step of installing, an inclination adjusting step of adjusting the inclination of the optical filter with respect to the slope portion, and a fixing step of fixing the optical filter to the frame by a fixing member.
  • FIG. 1 is a diagram showing a schematic configuration of an image pickup apparatus according to a first embodiment.
  • FIG. 2 is a perspective view showing the structure of the frame body.
  • FIG. 3 is a diagram showing the configuration of the polarizing portion.
  • FIG. 4 is a diagram showing the arrangement of the bandpass filter and the inclination adjusting member.
  • FIG. 5 is a diagram showing the arrangement of the pupil region.
  • FIG. 6 is a diagram showing a state of adjusting the inclination.
  • FIG. 7 is a diagram showing a state of filling amount of the adhesive.
  • FIG. 8 is another diagram showing the state of the filling amount of the adhesive.
  • FIG. 9 is a diagram showing another configuration of the filter unit.
  • FIG. 10 is a diagram showing an array of pixels of the image sensor.
  • FIG. 10 is a diagram showing an array of pixels of the image sensor.
  • FIG. 11 is a diagram showing a configuration of an image sensor.
  • FIG. 12 is a cross-sectional view showing the configuration of the image sensor.
  • FIG. 13 is a diagram showing an arrangement pattern of the polarizing filter elements.
  • FIG. 14 is a diagram showing an arrangement pattern of the spectroscopic filter elements.
  • FIG. 15 is a diagram showing the transmission wavelength characteristics of the spectroscopic filter element.
  • FIG. 16 is a block diagram showing a schematic configuration of a signal processing unit.
  • FIG. 17 is a conceptual diagram of image generation.
  • FIG. 18 is a conceptual diagram of image generation by an imaging device.
  • FIG. 19 is a diagram showing another aspect of the inclination adjusting member.
  • FIG. 20 is a diagram showing another aspect of the filter unit.
  • FIG. 21 is a diagram showing the adjustment of the inclination by pushing and pulling the rod-shaped member.
  • FIG. 22 is a diagram showing another aspect of the polarizing unit.
  • An embodiment of an optical element, an optical device, an image pickup device, and a method for manufacturing an optical element according to the present invention is as follows. In the description, the accompanying drawings will be referred to as necessary.
  • FIG. 1 is a diagram showing a schematic configuration of an image pickup apparatus according to a first embodiment.
  • the image pickup device 1 (imaging device) according to the first embodiment is an image pickup device that captures a 4-band multispectral image, and mainly includes an imaging optical system 10 (optical device), an image pickup device 100 (imaging device), and an image pickup device 100 (imaging device). It includes a signal processing unit 200 (signal processing unit).
  • the imaging optical system 10 is configured by combining a plurality of lenses 12 (lenses) for forming an optical image of a subject, and has a filter unit 16 (optical element) in the optical path thereof.
  • the filter unit 16 is arranged in the optical path of light passing through the lens 12 in a state where the optical axis L of the lens 12 and the optical axis L2 of the filter unit 16 (see FIG. 2) are aligned (for example, the pupil position or its vicinity). Will be done.
  • the imaging optical system 10 has a focus adjusting mechanism (not shown). The focus adjustment mechanism adjusts the focus by moving the focus lens included in the imaging optical system 10 back and forth along the optical axis L.
  • the filter unit 16 is composed of a frame, a bandpass filter (bandpass filters 50A to 50D, see FIG. 4: optical filter), and a fixing member (adhesive 52; see FIGS. 7 to 8), and is an inclination adjusting member (inclination).
  • Adjusting member 30 Refer to FIGS. 4 to 7) to adjust the inclination of the bandpass filter.
  • FIG. 2 is an external perspective view of the frame body 20.
  • the frame body 20 is light-transmitting and has a plurality of rectangular slope portions 22 (slope portions) (four in the example of FIG. 2).
  • the four slope portions 22 have a polygonal pyramid shape with the optical axis center 21 (optical axis center) as the apex, which is the point where the optical axis L2 intersects.
  • the term "light transmission” means transmitting light in a desired wavelength band (for example, a wavelength band determined within the visible to near infrared range).
  • the slope portion 22 is provided with four window portions 24A, 24B, 24C, 24D (plurality of window portions) on which bandpass filters 50A to 50D (see FIG. 4) are installed, respectively.
  • the window portions 24A to 24D are rectangles in which one corner (vertex) is formed in the vicinity of the center 21 of the optical axis, and the wall portions 26 formed on the side surfaces of the window portions 24A to 24D are bandpassed.
  • the positional deviation of the filters 50A to 50D is regulated.
  • an insertion port 28 is provided at the end of the window portions 24A to 24D (the corner opposite to the center of the optical axis 21), and the inclination adjusting member 30 (see FIGS. 4, 6 to 8) is inserted (described later). .
  • FIG. 2 shows an example in which the frame body 20 has a plurality of slope portions 22, the optical element according to the present invention may have only one slope portion.
  • FIG. 3 is a conceptual diagram of the polarizing film 40.
  • the wire grid is obtained by forming a pattern of wires 42 (for example, a pitch of about 100 nm to 150 nm) on a transparent resin film by imprinting or the like. Light that oscillates in the direction orthogonal to the grid (Wp direction in FIG. 3) is transmitted, and light that oscillates in parallel to the grid (Ws direction in FIG. 3) is reflected.
  • the polarized light portion may be formed by a pattern formed by a plurality of slits (slits) instead of the wire.
  • slits slits
  • the polarization direction can be changed by changing the direction of the slit in the windows 24A to 24D.
  • FIG. 4 is a diagram showing a state in which the bandpass filter 50A and the inclination adjusting member 30 (inclination adjusting member) are arranged on the window portion 24A.
  • the bandpass filters 50A to 50D are a plurality of optical filters including two or more optical filters that transmit light having at least a part of wavelength bands different from each other, and are arranged in the windows 24A to 24D, respectively (installation step).
  • the transmission wavelength bands of the bandpass filters 50A to 50D are ⁇ 1 to ⁇ 4, for example, ⁇ 1 can be a blue wavelength band, ⁇ 2 can be a green wavelength band, ⁇ 3 can be a red wavelength band, and ⁇ 4 can be a near infrared wavelength band. Part of the transmission wavelength band may overlap.
  • the transmission wavelength band is not limited to this combination, and may be a different wavelength band (or a combination thereof) depending on the spectrum to be imaged.
  • the combination of the window portion and the bandpass filter described above forms a plurality of pupil regions Z1 to Z4 having different characteristics.
  • FIG. 6 is a diagram showing a state of tilt adjustment.
  • the contact surface of the inclination adjusting member 30 with the bandpass filter 50A is an inclination 30A (slope), and the inclination adjusting member 30 is inserted into the insertion port 28 and pushed and pulled in the direction of the arrow (left-right direction in the drawing).
  • the inclination of the bandpass filter 50A with respect to the slope portion 22 can be easily adjusted (inclination adjusting step).
  • the inclination angle of the bandpass filters 50A to 50D can be adjusted to any of positive, negative, and zero.
  • the bandpass filters 50A to 50D are adjusted to an inclination angle according to the transmission wavelength band of each filter, and are installed on the slope portion 22.
  • the filter unit 16 optical element
  • the image pickup optical system 10 optical device
  • the aberration of the image pickup optical system 10 is corrected by utilizing the change in the optical path length (described later), and good image quality is obtained. Multispectral images can be obtained.
  • bandpass filter 50A will be described as an example for installing the bandpass filter, adjusting the inclination, and fixing the bandpass filter in FIGS. 6 and 6, the same can be applied to other bandpass filters 50B to 50D.
  • an adhesive is used as a fixing member for fixing the bandpass filters 50A to 50D (optical filters) to the frame body 20.
  • This adhesive fixes the bandpass filters 50A to 50D and the inclination adjusting member 30 to the frame body 20, and the portion of the light receiving region of the bandpass filters 50A to 50D that is not covered with the adhesive opens an opening (light transmission region).
  • the adhesive is preferably non-light transmissive, but may not be completely non-light transmissive.
  • the window portion of the adhesive is filled with an amount corresponding to the area of the light transmission region determined based on the transmission wavelength band of the bandpass filters 50A to 50D.
  • the area of the light transmission region can be determined based on conditions such as the transmittance of the subject, the light source, and the bandpass filter in each wavelength band, the spectral sensitivity characteristics of the image pickup element, and the like (for example, "sensitivity" determined by these conditions. For wavelength bands with a low “", increase the area of the transmission region). Therefore, the filling amount of the adhesive may be different for each bandpass filter (for each window).
  • FIG. 7 is a diagram showing a state of filling the adhesive.
  • the adhesive is filled (fixed) through the gap between the insertion port 28 and the bandpass filter 50A with a syringe, a dropper, or the like. Process).
  • the adhesive reaches, for example, the filling lines 52A when the filling amount is small, and reaches the filling lines 52B and 52C as the filling amount increases.
  • FIG. 8 is another view showing the state of filling the adhesive, and shows the adhesive 52 when viewed from the cross-sectional direction of the frame body 20.
  • the tips of the adhesive 52 (the side closer to the center of the frame body 20; the left side in the figure) in the portions (a) to (c) of FIG. 8 correspond to the filling lines 52A to 52C in FIG. 7, respectively.
  • the opening area can be easily adjusted at the time of assembly by changing the filling amount of the adhesive, and the assembly is easy. Is.
  • the inclination adjusting member 30 may be kept fixed to the frame body 20 as shown in FIG. 8, or the inclination adjusting member 30 may be removed as shown in FIG. You may.
  • bandpass filters 50A to 50D are installed (installation on windows 24A to 24D; installation process), inclination adjustment (pushing and pulling of the inclination adjusting member 30; inclination adjusting process), and fixing (adhesive 52). Injection; fixing step) can be performed using various machines and devices.
  • FIG. 10 is a diagram showing a schematic configuration of a pixel array of an image sensor.
  • the image pickup device 100 has a plurality of types of pixels (pixels P1 to P16) on its light receiving surface. These pixels P1 to P16 are regularly arranged at a constant pitch along the horizontal direction (x-axis direction) and the vertical direction (y-axis direction).
  • one pixel block PB (X, Y) is composed of 16 adjacent (4 ⁇ 4) pixels P1 to P16, and these pixels.
  • the blocks PB are regularly arranged along the horizontal direction (x-axis direction) and the vertical direction (y-axis direction). (X, Y) indicate the positions in the x-axis direction and the y-axis direction, respectively.
  • FIG. 11 is a diagram showing a schematic configuration of the image sensor 100. Further, FIG. 12 is a cross-sectional view showing a schematic configuration of one pixel (broken line portion in FIG. 11).
  • the image pickup device 100 includes a pixel array layer 110, a polarizing filter element array layer 120 (polarizing section), a spectroscopic filter element array layer 130 (optical filter), and a microlens array layer 140. That is, the image sensor 100 includes a plurality of types of optical filters having different transmission wavelength bands and a plurality of types of polarizing portions having different polarization directions on the pixel. Each layer is arranged in the order of the pixel array layer 110, the polarizing filter element array layer 120, the spectroscopic filter element array layer 130, and the microlens array layer 140 from the image plane side to the object side.
  • the pixel array layer 110 is configured by arranging a large number of photodiodes 112 two-dimensionally. One photodiode 112 constitutes one pixel. Each photodiode 112 is regularly arranged along the horizontal direction (x direction) and the vertical direction (y direction).
  • the polarizing filter element array layer 120 is configured by two-dimensionally arranging four types of polarizing filter elements 122A to 122D having different polarization directions of the transmitted light.
  • the polarizing filter elements 122A to 122D are arranged at the same intervals as the photodiode 112, and are provided for each pixel. In each pixel block PB (X, Y), each polarizing filter element 122A to 122D is regularly arranged.
  • FIG. 13 is a diagram showing an example of an arrangement pattern of polarizing filter elements in one pixel block.
  • the pixel P1, the pixel P3, the pixel P9, and the pixel P11 are provided with the polarizing filter element 122A.
  • the pixel P2, the pixel P4, the pixel P10, and the pixel P12 are provided with the polarizing filter element 122B.
  • the pixel P3, the pixel P7, the pixel P13, and the pixel P15 are provided with the polarizing filter element 122C.
  • the pixel P4, the pixel P8, the pixel P14, and the pixel P16 are provided with the polarizing filter element 122D.
  • the spectroscopic filter element array layer 130 is configured by two-dimensionally arranging four types of spectroscopic filter elements 132A to 132D having different transmission wavelength characteristics.
  • the spectroscopic filter elements 132A to 132D are arranged at the same intervals as the photodiode 112, and are provided for each pixel. In each pixel block PB (X, Y), the spectroscopic filter elements 132A to 132D are regularly arranged.
  • FIG. 14 is a diagram showing an example of an arrangement pattern of spectral filter elements in one pixel block.
  • the pixel P1, the pixel P2, the pixel P5, and the pixel P6 are provided with the spectroscopic filter element 132A.
  • the pixel P3, the pixel P4, the pixel P7, and the pixel P8 are provided with the spectroscopic filter element 132B.
  • the pixel P9, the pixel P10, the pixel P13, and the pixel P14 are provided with the spectroscopic filter element 132C.
  • the pixel P11, the pixel P12, the pixel P15, and the pixel P16 are provided with the spectroscopic filter element 132D.
  • FIG. 15 is a graph showing an example of transmission wavelength characteristics of each spectroscopic filter element.
  • A shows the transmission wavelength characteristic of the spectroscopic filter element 132A.
  • B shows the transmission wavelength characteristic of the spectroscopic filter element 132B.
  • C indicates the transmission wavelength characteristic of the spectroscopic filter element 132C.
  • D indicates the transmission wavelength characteristic of the spectroscopic filter element 132D.
  • the spectroscopic filter elements 132A to 132D have different transmission wavelength characteristics.
  • the spectroscopic filter element 132A is composed of a spectroscopic filter element that transmits blue (Blue, B) light
  • the spectroscopic filter element 132B is composed of a spectroscopic filter element that transmits green (Green, G) light.
  • the spectroscopic filter element 132C is composed of a spectroscopic filter element that transmits red (Red, R) light
  • the spectroscopic filter element 132D is composed of a spectroscopic filter element that transmits infrared light (infrared, IR).
  • Red, R red
  • IR infrared
  • the wavelength bands ⁇ 1 to ⁇ 4 of the light transmitted by the bandpass filters 50A to 50D described above are set within the wavelength band transmitted by the spectral filter elements 132A to 132D. That is, the wavelength bands ⁇ 1 to ⁇ 4 of the light transmitted by the bandpass filters 50A to 50D are set in the region where the wavelength bands transmitted by the spectral filter elements 132A to 132D overlap. In other words, the transmission wavelength band of each spectroscopic filter element 132A to 132D is set so as to cover the transmission wavelength band of each bandpass filter 50A to 50D. Therefore, each spectroscopic filter element 132A to 132D uses a filter that transmits light in a wide band.
  • the microlens array layer 140 is configured by arranging a large number of microlenses 142 two-dimensionally. Each microlens 142 is arranged at the same spacing as the photodiode 112 and is provided for each pixel. The microlens 142 is provided for the purpose of efficiently condensing the light from the imaging optical system 10 on the photodiode 112.
  • each pixel P1 to P16 receives light from the image pickup optical system 10 as follows.
  • the pixel P1 receives the light from the imaging optical system 10 via the spectroscopic filter element 132A (transmission wavelength characteristic A) and the polarization filter element 122A (polarization direction ⁇ A). Further, the pixel P2 receives light from the imaging optical system 10 via the spectroscopic filter element 132A (transmission wavelength characteristic A) and the polarization filter element 122B (polarization direction ⁇ B). Further, the pixel P3 receives light from the imaging optical system 10 via the spectroscopic filter element 132B (transmission wavelength characteristic B) and the polarization filter element 122A (polarization direction ⁇ A).
  • the pixel P4 receives light from the imaging optical system 10 via the spectroscopic filter element 132B (transmission wavelength characteristic B) and the polarization filter element 122B (polarization direction ⁇ B).
  • the pixel P5 receives light from the imaging optical system 10 via the spectroscopic filter element 132A (transmission wavelength characteristic A) and the polarization filter element 122C (polarization direction ⁇ C).
  • the pixel P6 receives light from the imaging optical system 10 via the one spectroscopic filter element 132A (transmission wavelength characteristic A) and the polarization filter element 122D (polarization direction ⁇ D).
  • the pixel P7 receives light from the imaging optical system 10 via the spectroscopic filter element 132B (transmission wavelength characteristic B) and the polarization filter element 122C (polarization direction ⁇ C). Further, the pixel P8 receives light from the imaging optical system 10 via the spectroscopic filter element 132B (transmission wavelength characteristic B) and the polarization filter element 122D (polarization direction ⁇ D). Further, the pixel P9 receives light from the imaging optical system 10 via the spectroscopic filter element 132C (transmission wavelength characteristic C) and the polarization filter element 122A (polarization direction ⁇ A).
  • the pixel P10 receives light from the imaging optical system 10 via the spectroscopic filter element 132C (transmission wavelength characteristic C) and the polarization filter element 122B (polarization direction ⁇ B). Further, the pixel P11 receives light from the imaging optical system 10 via the spectroscopic filter element 132D (transmission wavelength characteristic D) and the polarization filter element 122A (polarization direction ⁇ A). Further, the pixel P12 receives light from the imaging optical system 10 via the spectroscopic filter element 132D (transmission wavelength characteristic D) and the polarization filter element 122B (polarization direction ⁇ B).
  • the pixel P13 receives light from the imaging optical system 10 via the spectroscopic filter element 132C (transmission wavelength characteristic C) and the polarization filter element 122C (polarization direction ⁇ C). Further, the pixel P14 receives light from the imaging optical system 10 via the spectroscopic filter element 132C (transmission wavelength characteristic C) and the polarization filter element 122D (polarization direction ⁇ D). Further, the pixel P15 receives light from the imaging optical system 10 via the spectroscopic filter element 132D (transmission wavelength characteristic D) and the polarization filter element 122C (polarization direction ⁇ C). Further, the pixel P16 receives light from the imaging optical system 10 via the spectroscopic filter element 132D (transmission wavelength characteristic D) and the polarization filter element 122D (polarization direction ⁇ D).
  • the pixels P1 to P16 receive light having different characteristics (wavelength band and polarization direction) because they have different optical characteristics. That is, the pixels P1 to P16 form a plurality of pixel groups that selectively receive light transmitted through any of the bandpass filters 50A to 50D (plurality of optical filters) by the spectroscopic filter element and the polarizing filter element.
  • the signal processing unit 200 processes the signal output from the image sensor 100 to generate image data of a 4-band multispectral image. That is, image data of four types of wavelength bands ⁇ 1 to ⁇ 4 (a plurality of images corresponding to the wavelength bands of a plurality of optical filters) that pass through the above-mentioned filter unit 16 are generated.
  • FIG. 16 is a block diagram showing a schematic configuration of a signal processing unit.
  • the signal processing unit 200 includes an analog signal processing unit 200A, an image generation unit 200B, and a coefficient storage unit 200C.
  • the analog signal processing unit 200A takes in the analog pixel signal output from each pixel of the image pickup element 100, performs signal processing (for example, correlation double sampling processing, amplification processing, etc.), and then converts it into a digital signal. Output.
  • the image generation unit 200B performs signal processing on the pixel signal after being converted into a digital signal to generate image data in each wavelength band ( ⁇ 1 to ⁇ 4).
  • FIG. 17 is a conceptual diagram of image generation.
  • each pixel block PB (X, Y) includes 16 pixels P1 to P16. Therefore, 16 image data D1 to D16 are generated by separating and extracting the pixel signals of the pixels P1 to P16 from the pixel blocks PB (X, Y).
  • crosstalk has occurred in the 16 image data D1 to D16. That is, since light in each wavelength band is incident on the pixels P1 to P16, the generated image is a mixture of images in each wavelength band. Therefore, the image generation unit 200B performs the interference removal process to generate image data in each wavelength band ( ⁇ 1 to ⁇ 4).
  • the pixel signal (signal value) obtained from the pixel P1 of each pixel block PB (X, Y) is defined as ⁇ 1, and the pixel signals obtained from the pixels P2 to P16 are similarly referred to as ⁇ 2 to ⁇ 16, respectively.
  • 16 pixel signals ⁇ 1 to ⁇ 16 are obtained from each pixel block PB (X, Y).
  • the image generation unit 200B calculates four pixel signals ⁇ 1 to ⁇ 4 corresponding to light in each wavelength band ⁇ 1 to ⁇ 4 from the 16 pixel signals ⁇ 1 to ⁇ 16, and eliminates interference. Specifically, four pixel signals ⁇ 1 to ⁇ 4 corresponding to light in each wavelength band ⁇ 1 to ⁇ 4 are calculated by Equation 1 using the following matrix A, and interference is eliminated.
  • the pixel signal ⁇ 1 is a pixel signal corresponding to light in the wavelength band ⁇ 1
  • the pixel signal ⁇ 2 is a pixel signal corresponding to light in the wavelength band ⁇ 2
  • the pixel signal ⁇ 3 is a pixel signal corresponding to light in the wavelength band ⁇ 3, and the pixel signal ⁇ 4.
  • the reason why the interference can be eliminated by the above-mentioned equation 1 will be described.
  • b11 is the ratio of light in the wavelength band ⁇ 1 received by the pixel P1
  • b12 is the ratio of light in the wavelength band ⁇ 2 received by the pixel P1
  • b13 is the ratio of light in the wavelength band ⁇ 3 received by the pixel P1.
  • the ratio, b14 is the ratio at which light in the wavelength band ⁇ 4 is received by the pixel P1.
  • This ratio bij (b11 to b164) sets the wavelength bands ⁇ 1 to ⁇ 4 of the light transmitted by the bandpass filters 50A to 50D of the filter unit 16 and the polarization directions ⁇ 1 to ⁇ 4 of the light transmitted by the windows 24A to 24D.
  • Transmission wavelength characteristics A to D (see FIG. 15) of the pixels P1 to P16 of the image pickup element 100
  • polarization directions ⁇ A to ⁇ C (see FIG. 13) of the light received by the pixels P1 to P16 of the image pickup element 100. It is uniquely determined from and can be obtained in advance.
  • the following relationship is between the pixel signals ⁇ 1 to ⁇ 16 obtained from the pixels P1 to P16 of each pixel block PB (X, Y) and the pixel signals ⁇ 1 to ⁇ 4 corresponding to the light in each wavelength band ⁇ 1 to ⁇ 4. Holds.
  • ⁇ 1 to ⁇ 4 which are the solutions of the simultaneous equations of equations 2 to 17, are calculated by multiplying both sides of equation 18 by the inverse matrix B -1 of the matrix B.
  • the light of each wavelength band ⁇ 1 to ⁇ 4 emitted from the imaging optical system 10 is the light of each pixel P1 of the pixel block PB (X, Y). It can be calculated from the signal values (pixel signals ⁇ 1 to ⁇ 16) of each pixel P1 to P16 based on the ratio of light received by ⁇ P16.
  • the coefficient storage unit 200C stores each element aij of the matrix A for performing the interference removal process as a coefficient group.
  • the image generation unit 200B acquires a coefficient group from the coefficient storage unit 200C, and uses the pixel signals ⁇ 1 to ⁇ 16 obtained from the pixels P1 to P16 of each pixel block PB (X, Y) to obtain each wavelength according to the above equation 1. Pixel signals ⁇ 1 to ⁇ 4 corresponding to the bands ⁇ 1 to ⁇ 4 are calculated, and image data of each wavelength band ⁇ 1 to ⁇ 4 is generated.
  • the image data of each wavelength band ⁇ 1 to ⁇ 4 generated by the image generation unit 200B is output to the outside and stored in a storage device (not shown) as needed. In addition, it is displayed on a display (not shown) as needed.
  • FIG. 18 is a conceptual diagram of image generation by the image pickup apparatus 1.
  • the light incident on the image pickup optical system 10 becomes four types of light having different characteristics and is incident on the image pickup element 100. Specifically, light having a polarization direction ⁇ 1 and a wavelength band ⁇ 1 (first light), light having a polarization direction ⁇ 2 and a wavelength band ⁇ 2 (second light), and light having a polarization direction ⁇ 3 and a wavelength band ⁇ 3 (third light). Light) and (fourth light) in the polarization direction ⁇ 4 and the wavelength band ⁇ 4 are incident on the image pickup device 100.
  • each pixel block PB (X, Y) of the image sensor 100 light in each wavelength band emitted from the image pickup optical system 10 is received in each pixel P1 to P16 at the above-mentioned ratio bij. That is, due to the action of the polarizing filter elements 122A to 122D and the spectroscopic filter elements 132A to 132D provided in the pixels P1 to P16, the light in each wavelength band ⁇ 1 to ⁇ 4 is received at a ratio bij.
  • the signal processing unit 200 has pixel signals ⁇ 1 to ⁇ 4 corresponding to light in each wavelength band ⁇ 1 to ⁇ 4 from pixel signals ⁇ 1 to ⁇ 16 obtained from pixels P1 to P16 of each pixel block PB (X, Y) of the image sensor 100. Is calculated, and image data of each wavelength band ⁇ 1 to ⁇ 4 is generated. That is, arithmetic processing (interference removal processing) according to Equation 1 using the matrix A was performed to correspond to light in each wavelength band ⁇ 1 to ⁇ 4 from the pixel signals ⁇ 1 to ⁇ 16 of the pixels P1 to P16 obtained from the image sensor 100. Pixel signals ⁇ 1 to ⁇ 4 are calculated, and image data of each wavelength band ⁇ 1 to ⁇ 4 is generated.
  • one image pickup optical system 10 and one (single plate) image pickup element 100 are used for images of four different wavelength bands (four-band multispectral image). ) Can be imaged.
  • ⁇ Aberration correction of imaging optical system> In a general imaging optical system, aberrations differ depending on the wavelength. Therefore, even if a general imaging optical system is simply divided into pupils and used for imaging, a multispectral image with good image quality cannot be obtained.
  • the "general imaging optical system” here means an imaging optical system in which aberrations for each wavelength are not particularly corrected, that is, an imaging optical system in which aberrations for each wavelength remain.
  • Patent Document 1 described above, multispectral imaging is enabled by using a polarizing sensor and pupil division, but the aberration of the lens is not discussed, and an ideal lens is assumed. .. Therefore, when a general lens having aberration is applied to the system of Patent Document 1, unexpected aberration may occur and the resolution performance may be deteriorated. On the other hand, in order to design a dedicated lens for the system of Patent Document 1 and suppress aberration, there are restrictions on the number of lenses, the size, the type of glass used, and the like.
  • the image pickup apparatus 1 divides the pupil region of the imaging optical system 10 into a plurality of regions (pupil regions Z1 to Z4) (pupil division), and in each region.
  • the bandpass filters 50A to 50D have a function of individually correcting the aberrations in the regions corresponding to the pupil regions Z1 to Z4. Specifically, by individually adjusting the inclination of each bandpass filter 50A to 50D, the optical path length of the light transmitted through each pupil region Z1 to Z4 is individually adjusted to correct the aberration.
  • the imaging position of the light transmitted through the pupil regions Z1 to Z4 is moved back and forth on the optical axis L, thereby correcting the axial chromatic aberration.
  • the imaging optical system 10 has different aberration characteristics in the regions corresponding to the pupil regions Z1 to Z4.
  • the aberrations in the regions corresponding to the pupil regions Z1 to Z4 can be individually controlled, so that the aberrations can be controlled for each wavelength.
  • good resolving power can be obtained even with a general lens having aberration, and a multispectral image with good image quality can be captured.
  • FIG. 19 is a diagram showing a modified example of the inclination adjusting member.
  • the angle is adjusted by pushing and pulling the inclination adjusting member 30 having a single shape, whereas in the example shown in FIG. 19, a plurality of inclination adjusting members having different shapes are prepared and used properly. So, the angle to adjust is limited.
  • the inclination adjusting members 32 and 34 shown in the portions (a) and 19 (b) of FIG. 19 are provided with slopes 32A and 34A, respectively, and these slopes 32A and 34A come into surface contact with the bandpass filter 50A. This stabilizes the posture of the bandpass filter 50A.
  • a plurality of protrusions for example, three points
  • FIG. 20 is a diagram showing a modified example of the frame body and the fixing member (only one side of the frame body is shown).
  • the portion where the bandpass filters 50A to 50D are installed is the opening 39 (opening).
  • the opening area of the opening 39 can be adjusted by preparing and using a plurality of opening area adjusting members (non-light transmitting) having different shapes. Specifically, in the examples shown in the portions (a) and (b) of FIG. 20, opening area adjusting members 36 and 38 having different shapes are used, respectively, and the opening 39 is formed by these opening area adjusting members 36 and 38. The opening area of is changed.
  • opening area adjusting members 36, 38 can be fixed to other members by using a light-transmitting or non-light-transmitting adhesive.
  • the frame body 60 may be light-transmitting or non-light-transmitting.
  • a polarizing filter can be laminated on the bandpass filters 50A to 50D to form a polarizing portion (see FIG. 22).
  • FIG. 21 is a diagram showing another modification of the inclination adjusting member (only one side of the frame is shown).
  • the rod-shaped member 64 inclination adjusting member
  • the portion (a) in the figure, b) As shown in the portion, the inclination of the bandpass filter 50A with respect to the window portion 24A (slope portion 22) can be adjusted.
  • FIG. 22 is a diagram showing a modified example of the polarizing portion (only one side of the frame is shown).
  • the polarizing portion (see FIG. 3 and the like) is formed by using a wire grid or a slit, but in the example shown in FIG. 22, the polarizing filter 54A is laminated on the bandpass filter 50A to form the window portion. It is a polarizing part for 24A. As in the case of using the wire grid or the slit, the direction of polarization is different from that of the bandpass filters 50A to 50D.
  • the filter unit 16 corresponds to four wavelength bands and four polarization directions is described, but the wavelength bands and the polarization directions may be different numbers.
  • the bandpass filters 50A to 50D for example, the bandpass filter 50D
  • the above-mentioned filter unit 16 can correspond to three wavelength bands (bandpass filters 50A to 50A to). Two of 50C may be installed).
  • the filter unit 16 is made to correspond to the three polarization directions. Can be done. Further, three wavelength bands and three polarization directions may be realized by shielding any of the windows 24A to 24D. Further, three windows may be formed on the frame body.
  • the image sensor may be a color image sensor having a spectroscopic filter element array layer as in the first embodiment, or a monochrome image sensor having no spectroscopic filter element array layer.
  • the combination of the number of wavelength bands and the number of polarization directions of the optical filter and the number of spectra and the number of polarization directions of the image sensor depends on "how many wavelengths of an image you want to acquire (the number of spectra of the image to be acquired)". Can be decided.
  • the selective light receiving may be realized by other means.
  • a microlens is provided for each pixel, and a light-shielding mask with a part opened on the light-receiving surface of the image sensor is provided, and this mask receives light transmitted through one of the pupil regions and transmits the other pupil region. It is also possible to block the light.
  • the slope portion 22, the window portions 24A to 24D, and the bandpass filters 50A to 50D are rectangular, but other shapes such as a polygon, a circle, and a fan shape other than the rectangle may be used.
  • the light amount of each wavelength band is adjusted by adjusting the aperture area, but the light amount is adjusted by using a neutral density filter such as an ND filter (ND: Neutral Density). May be good. In this case, the dimming degree of the ND filter may be changed depending on the wavelength band.
  • ND Neutral Density
  • Imaging device 10 Imaging optical system 12 Lens 16 Filter unit 20 Frame 21 Optical axis center 22 Slope 24A Window 24B Window 24C Window 24D Window 26 Wall 28 Insertion port 30 Tilt adjustment member 30A Slope 32 Tilt adjustment member 32A Slope 34 Inclined adjustment member 34A Slope 36 Opening area adjusting member 38 Opening area adjusting member 39 Opening 40 Polarizing film 42 Wire 50A Bandpass filter 50B Bandpass filter 50C Bandpass filter 50D Bandpass filter 52 Adhesive 52A Filling line 52B Filling line 52C Filling line 54A Polarizing filter 62 Frame 64 Rod-shaped member 100 Imaging element 110 Pixel array layer 112 Photo diode 120 Polarizing filter element Array layer 122A Polarizing filter element 122B Polarizing filter element 122C Polarizing filter element 122D Polarizing filter element 130 Spectral filter element Array layer 132A Spectral filter element 132B Spectral filter element 132C Spectral filter element 132D Spectral filter element 140 Microlens array layer 142 Microlens 200 Signal processing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Studio Devices (AREA)
  • Color Television Image Signal Generators (AREA)
  • Endoscopes (AREA)

Abstract

本開示の技術に係る一つの実施形態は、マルチスペクトル画像を撮像するための光学素子、光学装置、撮像装置、及び光学素子の製造方法を提供する。本発明の一つの態様に係る光学素子は、複数の光学フィルタであって、少なくとも一部の波長帯域が異なる光を透過させる2つ以上の光学フィルタを含む複数の光学フィルタと、光軸中心を頂点とした斜面部を有する枠体であって、複数の光学フィルタが斜面部に設置される枠体と、を備える。

Description

光学素子、光学装置、撮像装置、及び光学素子の製造方法
 本発明は、マルチスペクトル画像を撮像するための光学素子、光学装置、撮像装置、及び光学素子の製造方法に関する。
 特許文献1には、偏光センサと瞳分割を用いることでマルチスペクトル撮像を可能とした偏光カラー撮像装置が記載されている。また、特許文献2には、フィルタモジュールが撮像システムに対して動かされるマルチモード撮像システムが記載されている。
国際公開2014/020791号公報 特開2014-132266号公報
 本開示の技術に係る一つの実施形態は、良好な画質のマルチスペクトル画像を容易に取得できる光学素子、光学装置、撮像装置、及び光学素子の製造方法を提供する。
 本発明の第1の態様に係る光学素子は、複数の光学フィルタであって、少なくとも一部の波長帯域が異なる光を透過させる2つ以上の光学フィルタを含む複数の光学フィルタと、光軸中心を頂点とした斜面部を有する枠体であって、複数の光学フィルタが斜面部に設置される枠体と、を備える。
 第2の態様に係る光学素子は第1の態様において、枠体は斜面部を複数有する。
 第3の態様に係る光学素子は第1または第2の態様において、光学フィルタと枠体とを固定する固定部材をさらに備える。
 第4の態様に係る光学素子は第3の態様において、固定部材は接着剤であり、接着剤は複数の光学フィルタを枠体に固定し、複数の光学フィルタの受光領域のうち接着剤に覆われていない部分が光透過領域を形成する。
 第5の態様に係る光学素子は第4の態様において、複数の光学フィルタの波長帯域に基づいて決定された光透過領域の面積に応じた量の接着剤が複数の窓部に充填されている。
 第6の態様に係る光学素子は第1から第5の態様のいずれか1つにおいて、複数の光学フィルタの斜面部に対する傾斜を調整する傾斜調整部材をさらに備える。
 第7の態様に係る光学素子は第6の態様において、傾斜調整部材の複数の光学フィルタとの接触面が斜面である。
 第8の態様に係る光学素子は第6または第7の態様において、傾斜調整部材は枠体に固定される。
 第9の態様に係る光学素子は第1から第8の態様のいずれか1つにおいて、複数の窓部は、複数の窓部を透過する光を偏光させる偏光部をそれぞれ有する。
 第10の態様に係る光学素子は第9の態様において、偏光の方向は複数種類である。
 第11の態様に係る光学素子は第9または第10の態様において、偏光部は偏光の方向に応じて複数の窓部に形成されたワイヤーグリッドまたはスリットである。
 第12の態様に係る光学素子は第1から第11の態様のいずれか1つにおいて、枠体は光透過性である。
 第13の態様に係る光学素子は第1から第12の態様のいずれか1つにおいて、枠体は複数の光学フィルタが設置される部分が開口であり、光学素子は開口の面積を調整する開口面積調整部材を備える。
 第14の態様に係る光学素子は第1から第13の態様のいずれか1つにおいて、複数の光学フィルタが、それぞれの光学フィルタが透過させる光の波長帯域に応じた傾斜角度で斜面部に設置されている。
 第15の態様に係る光学装置は、第1から第14の態様のいずれか1つに係る光学素子と、被写体の光学像を結像させるレンズと、を備え、光学素子は、光学素子の光軸とレンズの光軸とが一致した状態で、レンズを透過する光の光路に配置される。
 第16の態様に係る撮像装置は、第15の態様に係る光学装置と、複数の光学フィルタのいずれかを透過した光を選択的に受光する複数の画素群を含む撮像素子と、撮像素子から出力される信号に基づいて、複数の光学フィルタの波長帯域にそれぞれ対応する複数の画像を生成する信号処理部と、を備える。
 第17の態様に係る撮像装置は第16の態様において、撮像素子は、透過波長帯域の異なる複数種類の光学フィルタと、偏光方向の異なる複数種類の偏光部と、を画素上に備える。
 第18の態様に係る光学素子の製造方法は、複数の光学フィルタであって、少なくとも一部の波長帯域が異なる光を透過させる2つ以上の光学フィルタを含む複数の光学フィルタと、光軸中心を頂点とした斜面部を有する枠体であって、複数の光学フィルタが斜面部に設置される枠体と、を備える光学素子の製造方法であって、複数の光学フィルタを複数の窓部に設置する設置工程と、光学フィルタの斜面部に対する傾斜を調整する傾斜調整工程と、光学フィルタを固定部材により枠体に固定する固定工程と、を有する。
図1は、第1の実施形態に係る撮像装置の概略構成を示す図である。 図2は、枠体の構造を示す斜視図である。 図3は、偏光部の構成を示す図である。 図4は、バンドパスフィルタ及び傾斜調整部材の配置を示す図である。 図5は、瞳領域の配置を示す図である。 図6は、傾斜の調整の様子を示す図である。 図7は、接着剤の充填量の様子を示す図である。 図8は、接着剤の充填量の様子を示す他の図である。 図9は、フィルタユニットの他の構成を示す図である。 図10は、撮像素子の画素の配列を示す図である。 図11は、撮像素子の構成を示す図である。 図12は、撮像素子の構成を示す断面図である。 図13は、偏光フィルタ素子の配列パターンを示す図である。 図14は、分光フィルタ素子の配列パターンを示す図である。 図15は、分光フィルタ素子の透過波長特性を示す図である。 図16は、信号処理部の概略構成を示すブロック図である。 図17は、画像生成の概念図である。 図18は、撮像装置による画像生成の概念図である。 図19は、傾斜調整部材の他の態様を示す図である。 図20は、フィルタユニットの他の態様を示す図である。 図21は、棒状部材の押し引きによる傾斜の調整を示す図である。 図22は、偏光部の他の態様を示す図である。
 本発明に係る光学素子、光学装置、撮像装置、及び光学素子の製造方法の一つの実施形態は以下の通りである。説明においては、必要に応じて添付図面が参照される。
  <第1の実施形態>
  <撮像装置の構成>
 図1は、第1の実施形態に係る撮像装置の概略構成を示す図である。第1の実施形態に係る撮像装置1(撮像装置)は、4バンドのマルチスペクトル画像を撮像する撮像装置であり、主として撮像光学系10(光学装置)と、撮像素子100(撮像素子)と、信号処理部200(信号処理部)と、を備える。
 <撮像光学系>
 撮像光学系10は、被写体の光学像を結像させるレンズ12(レンズ)を複数組み合わせて構成され、その光路中にフィルタユニット16(光学素子)を有する。フィルタユニット16は、レンズ12の光軸Lとフィルタユニット16の光軸L2(図2参照)とが一致した状態で、レンズ12を透過する光の光路に配置(例えば、瞳位置またはその近傍)される。また、撮像光学系10は、図示せぬ焦点調節機構を有する。焦点調節機構は、撮像光学系10に含まれるフォーカスレンズを光軸Lに沿って前後移動させることにより、焦点を調節する。
 <フィルタユニットの構成>
 フィルタユニット16は、枠体、バンドパスフィルタ(バンドパスフィルタ50A~50D、図4参照:光学フィルタ)、及び固定部材(接着剤52;図7~8参照)で構成され、傾斜調整部材(傾斜調整部材30:図4~7参照)によりバンドパスフィルタの傾きを調整する。以下、これらの部材の具体的構成を説明する。
 図2は枠体20の外観斜視図である。枠体20は光透過性で、矩形の斜面部22(斜面部)を複数有する(図2の例では4つ)。4つの斜面部22は、光軸L2と交わる点である光軸中心21(光軸中心)を頂点とした多角錐状である。なお「光透過性」とは、所望の波長帯域(例えば、可視から近赤外の範囲内で決められた波長帯域)の光を透過させることを意味する。斜面部22には、バンドパスフィルタ50A~50D(図4参照)がそれぞれ設置される4つの窓部24A,24B,24C,24D(複数の窓部)が設けられる。窓部24A~24Dは、本実施形態においては光軸中心21の近傍に一つの角(頂点)が形成された矩形であり、窓部24A~24Dの側面に形成された壁部26がバンドパスフィルタ50A~50Dの位置ズレを規制する。また、窓部24A~24Dの端部(光軸中心21と反対側の角)には挿入口28が設けられ、傾斜調整部材30(図4,6~8参照)が挿入される(後述)。なお、図2では枠体20が斜面部22を複数有する例を示しているが、本発明に係る光学素子において斜面部は一つでもよい。
 <偏光部>
 窓部24A~24Dにはワイヤーグリッドが形成された偏光フィルム40が貼り付けられており、これにより窓部24A~24Dが偏光部として機能する。図3は偏光フィルム40の概念図である。ワイヤーグリッドは、透明な樹脂フィルム上にワイヤ42のパターン(例えば、100nm~150nm程度のピッチ)がインプリント等により形成されたものである。グリッドと直交する方向(図3のWp方向)に振動する光は透過し、グリッドと平行(図3のWs方向)に振動する光は反射する。このような偏光フィルム40の方向を変えて窓部24A~24Dに貼り付けることにより、複数の窓部(窓部24A~24D)でそれぞれ異なる偏光方向を実現することができる。具体的には、窓部24A~24Dにおける偏光方向(偏光角度)をそれぞれθ1~θ4とすると、θ1=0deg、θ2=45deg、θ3=90deg、θ4=135degとすることができる。
 なお、ワイヤではなく、複数のスリット(スリット)により形成されるパターンにより偏光部を形成してもよい。スリットを設ける場合、窓部24A~24Dでスリットの方向を変えることにより、偏光方向を変えることができる。
 <フィルタユニットの製造>
 <バンドパスフィルタの配置>
 図4は窓部24Aにバンドパスフィルタ50A及び傾斜調整部材30(傾斜調整部材)を配置した様子を示す図である。バンドパスフィルタ50A~50Dは、少なくとも一部の波長帯域が異なる光を透過させる2つ以上の光学フィルタを含む複数の光学フィルタであり、窓部24A~24Dにそれぞれ配置される(設置工程)。バンドパスフィルタ50A~50Dの透過波長帯域をそれぞれλ1~λ4とすると、例えばλ1は青色波長帯域、λ2は緑色波長帯域、λ3は赤色波長帯域、λ4は近赤外波長帯域とすることができる。透過波長帯域の一部が重なっていてもよい。しかしながら透過波長帯域はこの組み合わせに限らず、撮像したいスペクトルに応じて異なる波長帯域(あるいはその組み合わせ)とすることができる。
 <瞳領域>
 上述した窓部とバンドパスフィルタとの組み合わせは、図5に示すように、それぞれ特性が異なる複数の瞳領域Z1~Z4を形成する。瞳領域Z1はバンドパスフィルタ50A及び窓部24Aにより形成され、偏光方向=θ1、波長帯域=λ1である。瞳領域Z2はバンドパスフィルタ50B及び窓部24Bにより形成され、偏光方向=θ2、波長帯域=λ2である。瞳領域Z3はバンドパスフィルタ50C及び窓部24Cにより形成され、偏光方向=θ3、波長帯域=λ3である。瞳領域Z4はバンドパスフィルタ50D及び窓部24Dにより形成され、偏光方向=θ4、波長帯域=λ4である。
 <傾斜調整部材による傾斜の調整>
 図6は傾斜調整の様子を示す図である。傾斜調整部材30はバンドパスフィルタ50Aとの接触面が斜面30A(斜面)であり、この傾斜調整部材30を挿入口28に挿入し矢印の方向(図中の左右方向)に押し引きすることで、バンドパスフィルタ50Aの斜面部22に対する傾斜を容易に調整することができる(傾斜調整工程)。図6の(a)部分は傾斜角度がマイナスの状態(押し込み量が少ない)を示し、同図の(b)部分は傾斜角度がほぼ0degの状態(押し込み量が多い)を示す(角度の正負は図6の右側を参照)。また、傾斜調整部材30を図6の(b)部分よりさらに押し込むことにより、図6の(c)部分のように傾斜角度をプラスにすることもできる。このように、フィルタユニット16では、バンドパスフィルタ50A~50Dの傾斜角度を正、負、ゼロのいずれに調整することもできる。バンドパスフィルタ50A~50Dは、各フィルタの透過波長帯域に応じた傾斜角度に調整され、斜面部22に設置される。
 上述の調整により傾斜角度が変わると、バンドパスフィルタ50A~50Dに対する光の入射角が変わり、その結果光路長が変化する。第1の実施形態に係るフィルタユニット16(光学素子)及び撮像光学系10(光学装置)では、この光路長の変化を利用して撮像光学系10の収差を補正し(後述)、良好な画質のマルチスペクトル画像を取得することができる。
 なお、図6以降において、バンドパスフィルタの設置や傾斜の調整、及び固定についてバンドパスフィルタ50Aを例として説明するが、他のバンドパスフィルタ50B~50Dについても同様に対応することができる。
 <固定部材によるバンドパスフィルタの固定>
 第1の実施形態では、バンドパスフィルタ50A~50D(光学フィルタ)を枠体20に固定する固定部材として接着剤を用いる。この接着剤はバンドパスフィルタ50A~50D及び傾斜調整部材30を枠体20に固定し、バンドパスフィルタ50A~50Dの受光領域のうち接着剤に覆われていない部分が開口(光透過領域)を形成する。接着剤は非光透過性であることが好ましいが、完全な非光透過性でなくてもよい。なお、接着剤は、バンドパスフィルタ50A~50Dの透過波長帯域に基づいて決定された光透過領域の面積に応じた量が窓部に充填される。なお、光透過領域の面積は被写体、光源、バンドパスフィルタの各波長帯域での透過率、撮像素子の分光感度特性等の条件に基づいて決めることができる(例えば、これらの条件で定まる「感度」が低い波長帯域については、透過領域の面積を広くする)。したがって、接着剤の充填量はバンドパスフィルタごとに(窓部ごとに)異なっていてよい。
 図7は接着剤の充填の様子を示す図である。傾斜調整部材30が挿入口28に押し込まれてバンドパスフィルタ50Aの傾斜が調整された状態で、挿入口28とバンドパスフィルタ50Aとの隙間から、注射器やスポイト等により接着剤を充填する(固定工程)。接着剤は、充填量が少ない状態では例えば充填ライン52Aまで到達し、充填量が多くなるにつれて充填ライン52B,52Cに到達する。図8は接着剤の充填の様子を示す他の図であり、枠体20の断面方向から見たときの接着剤52を示している。図8の(a)部分~(c)部分における接着剤52の先端(枠体20の中心に近い側;図の左側)が図7における充填ライン52A~52Cにそれぞれ対応する。
 以上説明したように、第1の実施形態に係るフィルタユニット16(光学素子)では、接着剤の充填量を変化させることにより開口面積を組立の際に容易に調整することができ、組立が容易である。
 なお、注入した接着剤が硬化した後、図8に示すように傾斜調整部材30が枠体20に固定された状態にしておいてもよいし、図9に示すように傾斜調整部材30を除去してもよい。
 なお、上述したバンドパスフィルタ50A~50Dの設置(窓部24A~24Dへの設置;設置工程)や傾斜の調整(傾斜調整部材30の押し引き;傾斜調整工程)、及び固定(接着剤52の注入;固定工程)は、各種の機械や装置を用いて行うことができる。
 <撮像素子の構成>
 図10は、撮像素子の画素配列の概略構成を示す図である。同図に示すように、撮像素子100は、その受光面に複数種類の画素(画素P1~画素P16)を有する。これらの画素P1~画素P16は、水平方向(x軸方向)及び垂直方向(y軸方向)に沿って、一定ピッチで規則的に配列される。第1の実施形態に係る撮像装置1において、撮像素子100は、隣接する16個(4×4個)の画素P1~画素P16で1つの画素ブロックPB(X,Y)が構成され、この画素ブロックPB(X,Y)が、水平方向(x軸方向)及び垂直方向(y軸方向)に沿って規則的に配列される。(X,Y)はそれぞれx軸方向、y軸方向の位置を示す。
 図11は、撮像素子100の概略構成を示す図である。また、図12は、1つの画素(図11の破線部)の概略構成を示す断面図である。撮像素子100は、ピクセルアレイ層110、偏光フィルタ素子アレイ層120(偏光部)、分光フィルタ素子アレイ層130(光学フィルタ)、及びマイクロレンズアレイ層140を有する。すなわち、撮像素子100は、透過波長帯域の異なる複数種類の光学フィルタと、偏光方向の異なる複数種類の偏光部と、を画素上に備える。各層は、像面側から物体側に向かって、ピクセルアレイ層110、偏光フィルタ素子アレイ層120、分光フィルタ素子アレイ層130、マイクロレンズアレイ層140の順で配置される。
 ピクセルアレイ層110は、多数のフォトダイオード112を二次元的に配列して構成される。1つのフォトダイオード112は、1つの画素を構成する。各フォトダイオード112は、水平方向(x方向)及び垂直方向(y方向)に沿って規則的に配置される。偏光フィルタ素子アレイ層120は、透過させる光の偏光方向が異なる4種類の偏光フィルタ素子122A~122Dを二次元的に配列して構成される。各偏光フィルタ素子122A~122Dは、フォトダイオード112と同じ間隔で配置され、画素ごとに備えられる。各画素ブロックPB(X,Y)において、各偏光フィルタ素子122A~122Dは、規則的に配列される。
 図13は、1つの画素ブロックにおける偏光フィルタ素子の配列パターンの一例を示す図である。同図に示すように、第1の実施形態に係る撮像装置1では、画素P1、画素P3、画素P9、画素P11に偏光フィルタ素子122Aが備えられる。また、画素P2、画素P4、画素P10、画素P12に偏光フィルタ素子122Bが備えられる。また、画素P3、画素P7、画素P13、画素P15に偏光フィルタ素子122Cが備えられる。また、画素P4、画素P8、画素P14、画素P16に偏光フィルタ素子122Dが備えられる。
 各偏光フィルタ素子122A~122Dは、互いに異なる偏光方向の光を透過させる。具体的には、偏光フィルタ素子122Aは、偏光方向θA(たとえば、θA=45°)の光を透過させる。偏光フィルタ素子122Bは、偏光方向θB(たとえば、θB=90°)の光を透過させる。偏光フィルタ素子122Cは、偏光方向θC(たとえば、θA=135°)の光を透過させる。偏光フィルタ素子122Dは、偏光方向θD(たとえば、θD=0°)の光を透過させる。
 分光フィルタ素子アレイ層130は、透過波長特性の異なる4種類の分光フィルタ素子132A~132Dを二次元的に配列して構成される。各分光フィルタ素子132A~132Dは、フォトダイオード112と同じ間隔で配置され、画素ごとに備えられる。各画素ブロックPB(X,Y)において、各分光フィルタ素子132A~132Dは、規則的に配列される。
 図14は、1つの画素ブロックにおける分光フィルタ素子の配列パターンの一例を示す図である。同図に示すように、第1の実施形態に係る撮像装置1では、画素P1、画素P2、画素P5、及び画素P6に分光フィルタ素子132Aが備えられる。また、画素P3、画素P4、画素P7、及び画素P8に分光フィルタ素子132Bが備えられる。また、画素P9、画素P10、画素P13、及び画素P14に分光フィルタ素子132Cが備えられる。また、画素P11、画素P12、画素P15、及び画素P16に分光フィルタ素子132Dが備えられる。
 図15は、各分光フィルタ素子の透過波長特性の一例を示すグラフである。同図において、Aは、分光フィルタ素子132Aの透過波長特性を示している。Bは分光フィルタ素子132Bの透過波長特性を示している。Cは、分光フィルタ素子132Cの透過波長特性を示している。Dは分光フィルタ素子132Dの透過波長特性を示している。各分光フィルタ素子132A~132Dは、互いに異なる透過波長特性を有する。なお、図15は、分光フィルタ素子132Aが青色(Blue,B)の光を透過させる分光フィルタ素子で構成され、分光フィルタ素子132Bが緑色(Green,G)の光を透過させる分光フィルタ素子で構成され、分光フィルタ素子132Cが赤色(Red,R)の光を透過させる分光フィルタ素子で構成され、分光フィルタ素子132Dが赤外光(infrared,IR)を透過させる分光フィルタ素子で構成される場合の例を示している。
 ここで、図15に示すように、上述したバンドパスフィルタ50A~50Dが透過させる光の波長帯域λ1~λ4は、分光フィルタ素子132A~132Dが透過させる波長帯域の範囲内で設定される。すなわち、各バンドパスフィルタ50A~50Dが透過させる光の波長帯域λ1~λ4は、各分光フィルタ素子132A~132Dが透過させる波長帯域が重なり合う領域で設定される。換言すると、各分光フィルタ素子132A~132Dは、各バンドパスフィルタ50A~50Dの透過波長帯域をカバーするように、その透過波長帯域が設定される。このため、各分光フィルタ素子132A~132Dは、広帯域の光を透過させるフィルタが使用される。
 マイクロレンズアレイ層140は、多数のマイクロレンズ142を二次元的に配列して構成される。各マイクロレンズ142は、フォトダイオード112と同じ間隔で配置され、1画素ごとに備えられる。マイクロレンズ142は、撮像光学系10からの光をフォトダイオード112に効率よく集光させる目的で備えられる。
 以上のように構成される撮像素子100は、各画素ブロックPB(X,Y)において、各画素P1~P16が、次のように撮像光学系10からの光を受光する。
 すなわち、画素P1は、分光フィルタ素子132A(透過波長特性A)及び偏光フィルタ素子122A(偏光方向θA)を介して、撮像光学系10からの光を受光する。また、画素P2は、分光フィルタ素子132A(透過波長特性A)及び偏光フィルタ素子122B(偏光方向θB)を介して、撮像光学系10からの光を受光する。また、画素P3は、分光フィルタ素子132B(透過波長特性B)及び偏光フィルタ素子122A(偏光方向θA)を介して、撮像光学系10からの光を受光する。また、画素P4は、分光フィルタ素子132B(透過波長特性B)及び偏光フィルタ素子122B(偏光方向θB)を介して、撮像光学系10からの光を受光する。また、画素P5は、分光フィルタ素子132A(透過波長特性A)及び偏光フィルタ素子122C(偏光方向θC)を介して、撮像光学系10からの光を受光する。また、画素P6は1分光フィルタ素子132A(透過波長特性A)及び偏光フィルタ素子122D(偏光方向θD)を介して、撮像光学系10からの光を受光する。また、画素P7は、分光フィルタ素子132B(透過波長特性B)及び偏光フィルタ素子122C(偏光方向θC)を介して、撮像光学系10からの光を受光する。また、画素P8は、分光フィルタ素子132B(透過波長特性B)及び偏光フィルタ素子122D(偏光方向θD)を介して、撮像光学系10からの光を受光する。また、画素P9は、分光フィルタ素子132C(透過波長特性C)及び偏光フィルタ素子122A(偏光方向θA)を介して、撮像光学系10からの光を受光する。また、画素P10は、分光フィルタ素子132C(透過波長特性C)及び偏光フィルタ素子122B(偏光方向θB)を介して、撮像光学系10からの光を受光する。また、画素P11は、分光フィルタ素子132D(透過波長特性D)及び偏光フィルタ素子122A(偏光方向θA)を介して、撮像光学系10からの光を受光する。また、画素P12は、分光フィルタ素子132D(透過波長特性D)及び偏光フィルタ素子122B(偏光方向θB)を介して、撮像光学系10からの光を受光する。また、画素P13は、分光フィルタ素子132C(透過波長特性C)及び偏光フィルタ素子122C(偏光方向θC)を介して、撮像光学系10からの光を受光する。また、画素P14は、分光フィルタ素子132C(透過波長特性C)及び偏光フィルタ素子122D(偏光方向θD)を介して、撮像光学系10からの光を受光する。また、画素P15は、分光フィルタ素子132D(透過波長特性D)及び偏光フィルタ素子122C(偏光方向θC)を介して、撮像光学系10からの光を受光する。また、画素P16は、分光フィルタ素子132D(透過波長特性D)及び偏光フィルタ素子122D(偏光方向θD)を介して、撮像光学系10からの光を受光する。
 このように、画素P1~P16は、互いに異なる光学特性を有することにより、それぞれ特性(波長帯域及び偏光方向)の異なる光を受光する。すなわち、画素P1~P16は、分光フィルタ素子及び偏光フィルタ素子により、バンドパスフィルタ50A~50D(複数の光学フィルタ)のいずれかを透過した光を選択的に受光する複数の画素群を構成する。
 <信号処理部の構成>
 信号処理部200(信号処理部)は、撮像素子100から出力される信号を処理して、4バンドのマルチスペクトル画像の画像データを生成する。すなわち、上述したフィルタユニット16を透過する4種類の波長帯域λ1~λ4の画像データ(複数の光学フィルタの波長帯域にそれぞれ対応する複数の画像)を生成する。
 図16は、信号処理部の概略構成を示すブロック図である。同図に示すように、信号処理部200は、アナログ信号処理部200A、画像生成部200B及び係数記憶部200Cを含む。アナログ信号処理部200Aは、撮像素子100の各画素から出力されるアナログの画素信号を取り込み、信号処理(たとえば、相関二重サンプリング処理、増幅処理等)を施した後、デジタル信号に変換して出力する。画像生成部200Bは、デジタル信号に変換された後の画素信号に信号処理を施して、各波長帯域(λ1~λ4)の画像データを生成する。
 図17は、画像生成の概念図である。上述のように、各画素ブロックPB(X,Y)には16個の画素P1~P16が含まれる。したがって、各画素ブロックPB(X,Y)から各画素P1~P16の画素信号を分離して抽出することにより、16個の画像データD1~D16が生成される。しかしながら、この16個の画像データD1~D16には、混信(クロストーク)が生じている。すなわち、各画素P1~P16には、各波長帯域の光が入射するため、生成される画像は、各波長帯域の画像が混合した画像となる。このため、画像生成部200Bは、混信除去処理を行って、各波長帯域(λ1~λ4)の画像データを生成する。
 以下、信号処理部200において行われる混信除去処理について説明する。
 各画素ブロックPB(X,Y)の画素P1で得られる画素信号(信号値)をα1とし、以下同様に画素P2~画素P16で得られる画素信号をそれぞれα2~α16とする。すると、各画素ブロックPB(X,Y)からは、16個の画素信号α1~α16が得られる。画像生成部200Bは、この16個の画素信号α1~α16から各波長帯域λ1~λ4の光に対応した4つの画素信号β1~β4を算出し、混信を除去する。具体的には、下記の行列Aを用いた式1によって、各波長帯域λ1~λ4の光に対応した4つの画素信号β1~β4を算出し、混信を除去する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 なお、画素信号β1は波長帯域λ1の光に対応した画素信号、画素信号β2は波長帯域λ2の光に対応した画素信号、画素信号β3は波長帯域λ3の光に対応した画素信号、画素信号β4は波長帯域λ4の光に対応した画素信号である。したがって、画素信号β1からは波長帯域λ1の画像データが生成され、画素信号β2からは波長帯域λ2の画像データが生成され、画素信号β3からは波長帯域λ3の画像データが生成され、画素信号β4からは波長帯域λ4の画像データが生成される。以下、上述の式1によって混信を除去できる理由について説明する。
 混信は、各画素P1~P16に各波長帯域λ1~λ4の光が混入することで発生する。撮像光学系10から出射した各波長帯域λ1~λ4の光が、各画素P1~P16で受光される割合(混信比率)をbij(i=1~16、j=1~4)とする。例えば、b11は波長帯域λ1の光が画素P1で受光される割合、b12は、波長帯域λ2の光が画素P1で受光される割合、b13は、波長帯域λ3の光が画素P1で受光される割合、b14は、波長帯域λ4の光が画素P1で受光される割合である。以下同様に、b21~b164が規定される。この割合bij(b11~b164)は、フィルタユニット16のバンドパスフィルタ50A~50Dが透過させる光の波長帯域λ1~λ4の設定、窓部24A~24Dが透過させる光の偏光方向θ1~θ4の設定、撮像素子100の各画素P1~P16の透過波長特性A~D(図15参照)、及び撮像素子100の各画素P1~P16が受光する光の偏光方向θA~θC(図13参照)の設定から一意に定まり、事前に求めることができる。
 各画素ブロックPB(X,Y)の各画素P1~P16で得られる画素信号α1~α16と、各波長帯域λ1~λ4の光に対応する画素信号β1~β4との間には、次の関係が成り立つ。
 画素P1で得られる画素信号α1に関して、「b11*β1+b12*β2+b13*β3+b14*β4=α1…式2」が成り立つ(「*」は、積算の記号)。
 画素P2で得られる画素信号α2に関して、「b21*β1+b22*β2+b23*β3+b24*β4=α2…式3」が成り立つ。
 画素P3で得られる画素信号α3に関して、「b31*β1+b32*β2+b33*β3+b34*β4=α3…式4」が成り立つ。
 画素P4で得られる画素信号α4に関して、「b41*β1+b42*β2+b43*β3+b44*β4=α4…式5」が成り立つ。
 画素P5で得られる画素信号α5に関して、「b51*β1+b52*β2+b53*β3+b54*β4=α5…式6」が成り立つ。
 画素P6で得られる画素信号α6に関して、「b61*β1+b62*β2+b63*β3+b64*β4=α6…式7」が成り立つ。
 画素P7で得られる画素信号α7に関して、「b71*β1+b72*β2+b73*β3+b74*β4=α7…式8」が成り立つ。
 画素P8で得られる画素信号α8に関して、「b81*β1+b82*β2+b83*β3+b84*β4=α8…式9」が成り立つ。
 画素P9で得られる画素信号α9に関して、「b91*β1+b92*β2+b93*β3+b94*β4=α9…式10」が成り立つ。
 画素P10で得られる画素信号α10に関して、「b101*β1+b102*β2+b103*β3+b104*β4=α10…式11」が成り立つ。
 画素P11で得られる画素信号α11に関して、「b111*β1+b112*β2+b113*β3+b114*β4=α11…式12」が成り立つ。
 画素P12で得られる画素信号α12に関して、「b121*β1+b122*β2+b123*β3+b124*β4=α12…式13」が成り立つ。
 画素P13で得られる画素信号α13に関して、「b131*β1+b132*β2+b133*β3+b134*β4=α13…式14」が成り立つ。
 画素P14で得られる画素信号α14に関して、「b141*β1+b142*β2+b143*β3+b144*β4=α14…式15」が成り立つ。
 画素P15で得られる画素信号α15に関して、「b151*β1+b152*β2+b153*β3+b154*β4=α15…式16」が成り立つ。
 画素P16で得られる画素信号α16に関して、「b161*β1+b162*β2+b163*β3+b164*β4=α16…式17」が成り立つ。
 ここで、上述した式2~17の連立方程式は、行列Bを用いた下記の式18で表わすことができる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 式2~17の連立方程式の解であるβ1~β4は、式18の両辺に行列Bの逆行列B-1をかけることで算出される。
Figure JPOXMLDOC01-appb-M000005
 このように、各波長帯域λ1~λ4に対応した画素信号β1~β4は、撮像光学系10から出射される各波長帯域λ1~λ4の光が、画素ブロックPB(X,Y)の各画素P1~P16で受光される割合に基づいて、各画素P1~P16の信号値(画素信号α1~α16)から算出できる。
 上述の式1は、式19の逆行列B-1をAとしたものである(B-1=A)。したがって、式1における行列Aの各要素aijは、行列Bの逆行列B-1を求めることで取得できる。
 係数記憶部200Cは、混信除去処理を行うための行列Aの各要素aijを係数群として記憶する。
 画像生成部200Bは、係数記憶部200Cから係数群を取得し、各画素ブロックPB(X,Y)の各画素P1~P16から得られる画素信号α1~α16から、上述の式1によって、各波長帯域λ1~λ4に対応した画素信号β1~β4を算出し、各波長帯域λ1~λ4の画像データを生成する。
 画像生成部200Bで生成された各波長帯域λ1~λ4の画像データは、外部に出力され、必要に応じて記憶装置(不図示)に記憶される。また、必要に応じてディスプレイ(不図示)に表示される。
 <画像生成>
 図18は、撮像装置1による画像生成の概念図である。
 撮像光学系10に入射した光は、特性の異なる4種類の光となって、撮像素子100に入射する。具体的には、偏光方向θ1かつ波長帯域λ1の光(第1の光)、偏光方向θ2かつ波長帯域λ2の光(第2の光)、偏光方向θ3かつ波長帯域λ3の光(第3の光)、及び、偏光方向θ4かつ波長帯域λ4の(第4の光)となって撮像素子100に入射する。
 撮像素子100の各画素ブロックPB(X,Y)では、撮像光学系10から出射した各波長帯域の光が、各画素P1~P16において、上述した割合bijで受光される。すなわち、各画素P1~P16に備えられる偏光フィルタ素子122A~122D及び分光フィルタ素子132A~132Dの作用によって、各波長帯域λ1~λ4の光が割合bijで受光される。
 信号処理部200は、撮像素子100の各画素ブロックPB(X,Y)の各画素P1~P16から得られる画素信号α1~α16から各波長帯域λ1~λ4の光に対応した画素信号β1~β4を算出し、各波長帯域λ1~λ4の画像データを生成する。すなわち、行列Aを用いた式1による演算処理(混信除去処理)を行って、撮像素子100から得られる各画素P1~P16の画素信号α1~α16から各波長帯域λ1~λ4の光に対応した画素信号β1~β4を算出し、各波長帯域λ1~λ4の画像データを生成する。
 このように、第1の実施形態に係る撮像装置1によれば、1つの撮像光学系10と1つ(単板)の撮像素子100で4種類の波長帯域の画像(4バンドのマルチスペクトル画像)を撮像することができる。
 <撮像光学系の収差補正>
 一般的な撮像光学系では、波長ごとに収差が異なる。したがって、一般的な撮像光学系を単純に瞳分割して、撮像に用いても、良好な画質のマルチスペクトル画像は得られない。なお、ここでの「一般的な撮像光学系」とは、波長ごとの収差の特に補正していない撮像光学系、すなわち、波長ごとの収差が残存した撮像光学系を意味する。
 また、上述した特許文献1では、偏光センサと瞳分割とを用いることでマルチスペクトル撮像を可能にしているが、レンズの持つ収差については議論されておらず、理想的なレンズを想定している。したがって、収差を有する一般的なレンズを特許文献1のシステムに適用した場合、想定外の収差が発生し、解像性能を劣化させる場合がある。一方、特許文献1のシステムに専用のレンズを設計して収差を抑制するためには、レンズ枚数やサイズ、使用する硝種などに制約が生じる。
 このような従来の技術に対し、第1の実施形態に係る撮像装置1は、撮像光学系10の瞳領域を複数の領域(瞳領域Z1~Z4)に分割(瞳分割)し、各領域で波長域を制限する(特定の波長帯域の光を透過させる)ことにより、マルチスペクトル画像の撮像を可能としている。また、第1の実施形態に係る撮像装置1では、バンドパスフィルタ50A~50Dが、各瞳領域Z1~Z4に対応する領域の収差を個別に補正する機能を有する。具体的には、各バンドパスフィルタ50A~50Dの傾斜が個別に調整されることにより、各瞳領域Z1~Z4を透過する光の光路長を個別に調整して、収差を補正する。例えば、光路長の調整により各瞳領域Z1~Z4を透過する光の結像位置を光軸L上で前後させ、これにより軸上色収差を補正する。この結果、撮像光学系10は、各瞳領域Z1~Z4に対応する領域の収差特性が互いに異なるものとなる。
 第1の実施形態に係る撮像装置1によれば、各瞳領域Z1~Z4に対応する領域の収差を個別に制御できるので、波長ごとに収差を制御できる。これにより、収差を有する一般的なレンズにおいても良好な解像力を取得でき、良好な画質のマルチスペクトル画像を撮像できる。
 <変形例>
 上述した第1の実施形態に係る撮像装置1の変形例について説明する。
 <傾斜調整部材の変形例>
 図19は傾斜調整部材の変形例を示す図である。図4,6~8に示す例では単一の形状の傾斜調整部材30の押し引きで角度を調整するのに対し、図19に示す例では形状の異なる傾斜調整部材を複数準備して使い分けることで、調整する角度を限定している。また、図19の(a)部分、(b)部分に示す傾斜調整部材32,34には斜面32A,34Aがそれぞれ設けられており、これらの斜面32A,34Aがバンドパスフィルタ50Aと面接触することでバンドパスフィルタ50Aの姿勢が安定する。なお、このような面接触に代えて、傾斜調整部材に複数の突起(例えば、3点)を形成してバンドパスフィルタと接触させてもよい。
 <枠体及び固定部材の変形例>
 図20は枠体及び固定部材の変形例を示す図である(枠体の片側のみ図示)。図20に示す例では、枠体60において、バンドパスフィルタ50A~50Dが設置される部分が開口39(開口)となっている。この開口39の開口面積は、形状の異なる開口面積調整部材(非光透過性)を複数準備して使い分けることにより調整することができる。具体的には、図20の(a)部分、(b)部分に示す例では、形状が異なる開口面積調整部材36,38がそれぞれ用いられており、これら開口面積調整部材36,38により開口39の開口面積を変化させている。これら開口面積調整部材36,38は、光透過性の、あるいは非光透過性の接着剤を用いて他の部材に固定することができる。なお、図20に示す例において、枠体60は光透過性でも非光透過性でもよい。また、バンドパスフィルタ50A~50Dに偏光フィルタを積層して偏光部とすることができる(図22を参照)。
 <傾斜調整部材の他の変形例>
 図21は傾斜調整部材の他の変形例を示す図である(枠体の片側のみ図示)。図21に示す例では、枠体62に形成された貫通穴に挿入された棒状部材64(傾斜調整部材)を光軸L2の方向に押し引きすることにより、同図の(a)部分,(b)部分に示すように、バンドパスフィルタ50Aの窓部24A(斜面部22)に対する傾斜を調整することができる。
 <偏光部の変形例>
 図22は偏光部の変形例を示す図である(枠体の片側のみ図示)。第1の実施形態ではワイヤーグリッドまたはスリットを用いて偏光部(図3等を参照)を形成しているが、図22に示す例では、バンドパスフィルタ50Aに偏光フィルタ54Aを積層して窓部24Aについての偏光部としている。なお、ワイヤーグリッドまたはスリットを用いる場合と同様に、偏光の方向はバンドパスフィルタ50A~50Dに対しそれぞれ異なる方向である。
 <波長帯域及び偏光方向の数の変形例>
 第1の実施形態ではフィルタユニット16が4つの波長帯域及び4つの偏光方向に対応する場合について説明しているが、波長帯域及び偏光方向は異なる数でもよい。例えば、バンドパスフィルタ50A~50Dのうちいずれか(例えば、バンドパスフィルタ50D)を遮光または省略することにより、上述のフィルタユニット16を3つの波長帯域に対応させることができる(バンドパスフィルタ50A~50Cのいずれかを2つ設置してもよい)。また、2つの窓部で偏光フィルム40の向きを同じにする(例えば、θ1=0deg、θ2=45deg、θ3=90deg、θ4=90deg)ことにより、フィルタユニット16を3つの偏光方向に対応させることができる。また、窓部24A~24Dのいずれかを遮蔽することにより3つの波長帯域及び3つの偏光方向を実現してもよい。さらに、枠体に3つの窓部を形成してもよい。
 <撮像素子の構成の変形例>
 撮像素子は、第1の実施形態のように分光フィルタ素子アレイ層を有するカラー撮像素子でもよいし、分光フィルタ素子アレイ層を有しないモノクロの撮像素子でもよい。このような、光学フィルタの波長帯域数及び偏光方向数と、撮像素子の分光数及び偏光方向数との組み合わせは、「何波長の画像を取得したいか(取得する画像のスペクトル数)」に応じて決めることができる。
 <選択的受光のための他の構成>
 第1の実施形態のような、偏光フィルタを用いた選択的受光に代えて、他の手段により選択的受光を実現してもよい。例えば、各画素に対しマイクロレンズを設けると共に撮像素子の受光面上に一部が開口した遮光マスクを設け、このマスクによりいずれかの瞳領域を透過した光を受光し、他の瞳領域を透過した光を遮光する態様も可能である。
 <その他の変形例>
 第1の実施形態では、斜面部22、窓部24A~24D、及びバンドパスフィルタ50A~50Dは矩形であるが、矩形以外の多角形、円形、扇形等、他の形状でもよい。また、第1の実施形態及び変形例では各波長帯域の光量調整を開口面積の調整により行っているが、NDフィルタ(ND:Neutral Density)のような減光フィルタを用いて光量調整を行ってもよい。この場合、波長帯域によってNDフィルタの減光度を変えてもよい。
 以上で本発明の実施形態及び他の例に関して説明してきたが、本発明は上述した態様に限定されず、本発明の精神を逸脱しない範囲で種々の変形が可能である。
1    撮像装置
10   撮像光学系
12   レンズ
16   フィルタユニット
20   枠体
21   光軸中心
22   斜面部
24A  窓部
24B  窓部
24C  窓部
24D  窓部
26   壁部
28   挿入口
30   傾斜調整部材
30A  斜面
32   傾斜調整部材
32A  斜面
34   傾斜調整部材
34A  斜面
36   開口面積調整部材
38   開口面積調整部材
39   開口
40   偏光フィルム
42   ワイヤ
50A  バンドパスフィルタ
50B  バンドパスフィルタ
50C  バンドパスフィルタ
50D  バンドパスフィルタ
52   接着剤
52A  充填ライン
52B  充填ライン
52C  充填ライン
54A  偏光フィルタ
62   枠体
64   棒状部材
100  撮像素子
110  ピクセルアレイ層
112  フォトダイオード
120  偏光フィルタ素子アレイ層
122A 偏光フィルタ素子
122B 偏光フィルタ素子
122C 偏光フィルタ素子
122D 偏光フィルタ素子
130  分光フィルタ素子アレイ層
132A 分光フィルタ素子
132B 分光フィルタ素子
132C 分光フィルタ素子
132D 分光フィルタ素子
140  マイクロレンズアレイ層
142  マイクロレンズ
200  信号処理部
200A アナログ信号処理部
200B 画像生成部
200C 係数記憶部
A    透過波長特性
B    透過波長特性
C    透過波長特性
D    透過波長特性
D1   画像データ
D2   画像データ
D3   画像データ
D4   画像データ
D5   画像データ
D6   画像データ
D7   画像データ
D8   画像データ
D9   画像データ
D10  画像データ
D11  画像データ
D12  画像データ
D13  画像データ
D14  画像データ
D15  画像データ
D16  画像データ
L    光軸
L2   光軸
P1   画素
P2   画素
P3   画素
P4   画素
P5   画素
P6   画素
P7   画素
P8   画素
P9   画素
P10  画素
P11  画素
P12  画素
P13  画素
P14  画素
P15  画素
P16  画素
PB   画素ブロック
Z1   瞳領域
Z2   瞳領域
Z3   瞳領域
Z4   瞳領域
α1   画素信号
α2   画素信号
α3   画素信号
α4   画素信号
α5   画素信号
α6   画素信号
α7   画素信号
α8   画素信号
α9   画素信号
α10  画素信号
α11  画素信号
α12  画素信号
α13  画素信号
α14  画素信号
α15  画素信号
α16  画素信号
β1   画素信号
β2   画素信号
β3   画素信号
β4   画素信号
θ1   偏光方向
θ2   偏光方向
θ3   偏光方向
θ4   偏光方向
θA   偏光方向
θB   偏光方向
θC   偏光方向
θD   偏光方向
λ1   波長帯域
λ2   波長帯域
λ3   波長帯域
λ4   波長帯域

Claims (18)

  1.  複数の光学フィルタであって、少なくとも一部の波長帯域が異なる光を透過させる2つ以上の光学フィルタを含む複数の光学フィルタと、
     光軸中心を頂点とした斜面部を有する枠体であって、前記複数の光学フィルタが前記斜面部に設置される枠体と、
     を備える光学素子。
  2.  前記枠体は前記斜面部を複数有する請求項1に記載の光学素子。
  3.  前記光学フィルタと前記枠体とを固定する固定部材をさらに備える請求項1または2に記載の光学素子。
  4.  前記固定部材は接着剤であり、
     前記接着剤は前記複数の光学フィルタを前記枠体に固定し、
     前記複数の光学フィルタの受光領域のうち前記接着剤に覆われていない部分が光透過領域を形成する請求項3に記載の光学素子。
  5.  前記複数の光学フィルタの前記波長帯域に基づいて決定された前記光透過領域の面積に応じた量の前記接着剤が前記複数の窓部に充填されている請求項4に記載の光学素子。
  6.  前記複数の光学フィルタの前記斜面部に対する傾斜を調整する傾斜調整部材をさらに備える請求項1から5のいずれか1項に記載の光学素子。
  7.  前記傾斜調整部材の前記複数の光学フィルタとの接触面が斜面である請求項6に記載の光学素子。
  8.  前記傾斜調整部材は前記枠体に固定される請求項6または7に記載の光学素子。
  9.  前記複数の窓部は、前記複数の窓部を透過する光を偏光させる偏光部をそれぞれ有する請求項1から8のいずれか1項に記載の光学素子。
  10.  前記偏光の方向は複数種類である請求項9に記載の光学素子。
  11.  前記偏光部は前記偏光の方向に応じて前記複数の窓部に形成されたワイヤーグリッドまたはスリットである請求項9または10に記載の光学素子。
  12.  前記枠体は光透過性である請求項1から11のいずれか1項に記載の光学素子。
  13.  前記枠体は前記複数の光学フィルタが設置される部分が開口であり、前記光学素子は前記開口の面積を調整する開口面積調整部材を備える請求項1から12のいずれか1項に記載の光学素子。
  14.  前記複数の光学フィルタが、それぞれの光学フィルタが透過させる光の波長帯域に応じた傾斜角度で前記斜面部に設置された請求項1から13のいずれか1項に記載の光学素子。
  15.  請求項1から14のいずれか1項に記載の光学素子と、
     被写体の光学像を結像させるレンズと、
     を備え、
     前記光学素子は、前記光学素子の光軸と前記レンズの光軸とが一致した状態で、前記レンズを透過する光の光路に配置される光学装置。
  16.  請求項15に記載の光学装置と、
     前記複数の光学フィルタのいずれかを透過した光を選択的に受光する複数の画素群を含む撮像素子と、
     前記撮像素子から出力される信号に基づいて、前記複数の光学フィルタの前記波長帯域にそれぞれ対応する複数の画像を生成する信号処理部と、
     を備える撮像装置。
  17.  前記撮像素子は、透過波長帯域の異なる複数種類の光学フィルタと、偏光方向の異なる複数種類の偏光部と、を画素上に備える請求項16に記載の撮像装置。
  18.  複数の光学フィルタであって、少なくとも一部の波長帯域が異なる光を透過させる2つ以上の光学フィルタを含む複数の光学フィルタと、光軸中心を頂点とした斜面部を有する枠体であって、前記複数の光学フィルタが前記斜面部に設置される枠体と、を備える光学素子の製造方法であって、
     前記複数の光学フィルタを前記複数の窓部に設置する設置工程と、
     前記光学フィルタの前記斜面部に対する傾斜を調整する傾斜調整工程と、
     前記光学フィルタを固定部材により前記枠体に固定する固定工程と、
     を有する製造方法。
PCT/JP2020/036172 2019-09-27 2020-09-25 光学素子、光学装置、撮像装置、及び光学素子の製造方法 WO2021060434A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021549020A JP7335969B2 (ja) 2019-09-27 2020-09-25 光学素子、光学装置、撮像装置、及び光学素子の製造方法
CN202080066962.0A CN114514447A (zh) 2019-09-27 2020-09-25 光学元件、光学装置、摄像装置及光学元件的制造方法
US17/688,819 US11968437B2 (en) 2019-09-27 2022-03-07 Optical element, optical device, imaging apparatus, and manufacturing method of optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-177671 2019-09-27
JP2019177671 2019-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/688,819 Continuation US11968437B2 (en) 2019-09-27 2022-03-07 Optical element, optical device, imaging apparatus, and manufacturing method of optical element

Publications (1)

Publication Number Publication Date
WO2021060434A1 true WO2021060434A1 (ja) 2021-04-01

Family

ID=75166225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036172 WO2021060434A1 (ja) 2019-09-27 2020-09-25 光学素子、光学装置、撮像装置、及び光学素子の製造方法

Country Status (4)

Country Link
US (1) US11968437B2 (ja)
JP (1) JP7335969B2 (ja)
CN (1) CN114514447A (ja)
WO (1) WO2021060434A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024003158A1 (en) * 2022-07-01 2024-01-04 Admesy B.V. Method for manufacturing an optical filter, optical filter system, optical measurement device and use
WO2024003157A1 (en) * 2022-07-01 2024-01-04 Admesy B.V. Method, optical filter system, optical measurement device and use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003195136A (ja) * 2001-12-26 2003-07-09 Alps Electric Co Ltd 光学フィルタ付き枠体及びその製造方法
JP2005260480A (ja) * 2004-03-10 2005-09-22 Olympus Corp マルチスペクトル画像撮影装置及びアダプタレンズ
WO2012169136A1 (ja) * 2011-06-06 2012-12-13 パナソニック株式会社 色分離フィルタアレイ、固体撮像素子、撮像装置、および表示装置
JP2013072771A (ja) * 2011-09-28 2013-04-22 Topcon Corp スペクトル画像取得装置
JP2015017834A (ja) * 2013-07-09 2015-01-29 株式会社リコー 測定装置及び測定方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088157A (ja) * 1994-06-16 1996-01-12 Nikon Corp 投影露光装置
WO2002085000A1 (en) * 2001-04-13 2002-10-24 The Trustees Of Columbia University In The City Of New York Method and apparatus for recording a sequence of images using a moving optical element
JP2003262781A (ja) * 2002-03-08 2003-09-19 Konica Corp 画像記録装置におけるミラー角度調整機構
WO2005046248A1 (ja) * 2003-11-11 2005-05-19 Olympus Corporation マルチスペクトル画像撮影装置
WO2009104394A1 (ja) * 2008-02-18 2009-08-27 パナソニック株式会社 複眼カメラモジュール
JP2010122183A (ja) * 2008-11-21 2010-06-03 Sanyo Electric Co Ltd 物体検出装置および情報取得装置
JP5649990B2 (ja) * 2010-12-09 2015-01-07 シャープ株式会社 カラーフィルタ、固体撮像素子、液晶表示装置および電子情報機器
US9658463B2 (en) * 2012-02-03 2017-05-23 Panasonic Intellectual Property Management Co., Ltd. Imaging device and imaging system
WO2014020791A1 (ja) 2012-08-02 2014-02-06 パナソニック株式会社 偏光カラー撮像装置
US9219866B2 (en) 2013-01-07 2015-12-22 Ricoh Co., Ltd. Dynamic adjustment of multimode lightfield imaging system using exposure condition and filter position
CN105814417B (zh) * 2013-12-13 2018-06-08 柯尼卡美能达株式会社 分光单元以及使用该分光单元的分光装置
CN205374966U (zh) * 2015-12-31 2016-07-06 中国华录集团有限公司 一种投影光学系统及投影仪
CN205563060U (zh) * 2015-12-31 2016-09-07 中国华录集团有限公司 一种反射镜调整结构及投影光学系统
JP2017201652A (ja) * 2016-05-02 2017-11-09 住友電気工業株式会社 光モジュール
JP6332347B2 (ja) * 2016-07-08 2018-05-30 住友電気工業株式会社 光モジュール
US20180195902A1 (en) * 2017-01-09 2018-07-12 Michigan Aerospace Corporation Titled filter imaging spectrometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003195136A (ja) * 2001-12-26 2003-07-09 Alps Electric Co Ltd 光学フィルタ付き枠体及びその製造方法
JP2005260480A (ja) * 2004-03-10 2005-09-22 Olympus Corp マルチスペクトル画像撮影装置及びアダプタレンズ
WO2012169136A1 (ja) * 2011-06-06 2012-12-13 パナソニック株式会社 色分離フィルタアレイ、固体撮像素子、撮像装置、および表示装置
JP2013072771A (ja) * 2011-09-28 2013-04-22 Topcon Corp スペクトル画像取得装置
JP2015017834A (ja) * 2013-07-09 2015-01-29 株式会社リコー 測定装置及び測定方法

Also Published As

Publication number Publication date
JPWO2021060434A1 (ja) 2021-04-01
US20220201172A1 (en) 2022-06-23
CN114514447A (zh) 2022-05-17
JP7335969B2 (ja) 2023-08-30
US11968437B2 (en) 2024-04-23

Similar Documents

Publication Publication Date Title
CN101500086B (zh) 图像拾取装置
CN107004685B (zh) 固体摄像器件和电子装置
US9100639B2 (en) Light field imaging device and image processing device
JP4652634B2 (ja) 撮像装置
US9118796B2 (en) Polarization color image capture device
US20100265381A1 (en) Imaging device
WO2021060434A1 (ja) 光学素子、光学装置、撮像装置、及び光学素子の製造方法
KR101265432B1 (ko) 촬상 소자 및 이것을 사용하는 촬상 장치
WO2020250774A1 (ja) 撮像装置
WO2007123064A1 (ja) 複眼方式のカメラモジュール
US11796722B2 (en) Optical element, optical device, and imaging apparatus for acquiring multispectral images
JP2012212978A (ja) 撮像素子および撮像装置
JPWO2020250774A5 (ja)
US11726389B2 (en) Lens device, imaging apparatus, optical member, imaging method, and imaging program for acquiring multispectral images
US9544570B2 (en) Three-dimensional image pickup apparatus, light-transparent unit, image processing apparatus, and program
US9179127B2 (en) Three-dimensional imaging device, imaging element, light transmissive portion, and image processing device
US20140210952A1 (en) Image sensor and imaging apparatus
JPWO2021060434A5 (ja)
US11930256B2 (en) Imaging device, imaging optical system, and imaging method
JP2013106265A (ja) 画像処理装置、撮像装置、画像処理プログラムおよび撮像装置の制御プログラム
JP6432138B2 (ja) 測定装置、色情報取得装置及び製造方法
US20230319385A1 (en) Optical member, lens device, and imaging apparatus
JP2020178158A (ja) 撮像装置
JP5978735B2 (ja) 画像処理装置、撮像装置および画像処理プログラム
KR20040031639A (ko) 광학식 로우 패스 필터 및 촬상 광학계

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021549020

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869449

Country of ref document: EP

Kind code of ref document: A1