WO2005046248A1 - マルチスペクトル画像撮影装置 - Google Patents

マルチスペクトル画像撮影装置 Download PDF

Info

Publication number
WO2005046248A1
WO2005046248A1 PCT/JP2004/016678 JP2004016678W WO2005046248A1 WO 2005046248 A1 WO2005046248 A1 WO 2005046248A1 JP 2004016678 W JP2004016678 W JP 2004016678W WO 2005046248 A1 WO2005046248 A1 WO 2005046248A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
light
image
spectral
bands
Prior art date
Application number
PCT/JP2004/016678
Other languages
English (en)
French (fr)
Inventor
Takeyuki Ajito
Toru Wada
Yasuhiro Komiya
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to JP2005515360A priority Critical patent/JP4118916B2/ja
Priority to EP04799576A priority patent/EP1686810A4/en
Publication of WO2005046248A1 publication Critical patent/WO2005046248A1/ja
Priority to US11/416,939 priority patent/US7612822B2/en
Priority to US12/556,437 priority patent/US7868936B2/en
Priority to US12/959,074 priority patent/US8134618B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • G01J2003/2826Multispectral imaging, e.g. filter imaging

Definitions

  • the present invention relates to a multis vector image photographing apparatus capable of photographing images of four or more bands with different spectral characteristics.
  • RGB (3-band) camera has been widely used for capturing an image of a subject.
  • a filter having a transmittance characteristic narrower than the RGB wavelength band is arranged in front of the CCD image sensor, so that the spectral information of the subject can be reduced. Has been acquired.
  • the present invention has been made in view of the above points, and can accurately reproduce colors even with a moving subject, and can directly reproduce images using a normal RGB monitor without requiring special changes. It is an object of the present invention to provide a multispectral image capturing device capable of confirming a close-up captured image.
  • the main three bands have standard RGB spectral sensitivity characteristics
  • At least one of the remaining bands excluding the main three bands out of the four or more spectral sensitivity characteristics has a spectral sensitivity characteristic narrower than the RGB.
  • a multispectral imaging device is provided.
  • a half mirror that splits the light of the imaging lens power into two optical paths A half mirror that splits the light of the imaging lens power into two optical paths
  • Imaging means for receiving light modulated by the bandpass filter and imaging an object
  • a color imaging unit that separates the other light split by the half mirror into three colors of red, blue, and green and receives the light, and captures a color image of a subject
  • a dichroic mirror having a comb-shaped spectral transmittance and spectral reflectance characteristic for transmitting light in a plurality of wavelength bands and reflecting light other than the plurality of wavelength bands;
  • a band-pass filter having substantially the same transmission wavelength band as the dichroic mirror A band-pass filter having a spectral transmittance characteristic transmitting a wavelength band substantially the same as the reflection wavelength band of the dichroic mirror;
  • FIG. 1 is a diagram showing a configuration of a multispectral image capturing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing transmittance / reflectance characteristics of a half mirror used in the multispectral image capturing apparatus according to the first embodiment.
  • FIG. 3 is a diagram showing a spectral transmittance characteristic of an infrared light power filter used in the multispectral image photographing apparatus according to the first embodiment and a spectral sensitivity characteristic of RGB3 band of a color CCD image sensor. .
  • FIG. 4 is a diagram showing a pixel structure of a color CCD image sensor used in the multispectral image capturing apparatus according to the first embodiment.
  • FIG. 5 is a diagram showing a spectral transmittance characteristic of a bandpass filter used in the multispectral image capturing apparatus according to the first embodiment and a spectral sensitivity characteristic of three RGB bands of a color CCD image sensor.
  • FIG. 6 is a diagram showing spectral transmittance characteristics of another band-pass filter that can be used instead of the band-pass filter of FIG.
  • FIG. 7 is a diagram showing six-band spectral sensitivity characteristics obtained in the multispectral image capturing apparatus according to the first embodiment.
  • FIG. 8 is a diagram showing a configuration of a multispectral image capturing apparatus which is a first modification of the first embodiment.
  • FIG. 9 is a diagram showing a configuration of a multispectral image photographing apparatus which is a second modification of the first embodiment.
  • FIG. 10 is a diagram showing a four-resolution optical system in which a half mirror and a color separation prism are combined in the device configuration in FIG. 9.
  • FIG. 11 is a diagram showing a configuration of a multispectral image capturing apparatus according to a second embodiment of the present invention.
  • FIG. 12 is a diagram showing a specific configuration of a rotary filter in FIG. 11.
  • FIG. 13 is a diagram showing a correspondence relationship between a state of a rotary filter and a timing of image capturing in a color CCD image sensor.
  • FIG. 14 is a diagram showing a configuration of a multispectral image capturing apparatus according to a third embodiment of the present invention.
  • FIG. 15 is a diagram showing a filter arrangement example of a mosaic filter (part) mounted on the color CCD image sensor in FIG.
  • FIG. 16 is a diagram showing spectral transmittance characteristics of filters of R, G, B, R ′, G ′, and B ′ in FIG.
  • FIG. 17 is a diagram showing another example of a filter arrangement of a mosaic filter (part) mounted on the color CCD image sensor in FIG.
  • FIG. 18 is a diagram showing the spectral transmittance characteristics of the R ′, G ′, Cy, and B ′ filters in FIG.
  • FIG. 19 is a diagram showing a configuration of a multispectral image capturing apparatus according to a fourth embodiment of the present invention.
  • FIG. 20 is a diagram showing a spectral transmittance distribution and a spectral reflectance distribution of the dichroic mirror in FIG. 19, and a spectral characteristic of RGB separated by a color separation prism.
  • FIG. 21 is a diagram showing a spectral transmittance distribution of the bandpass filter 52 in FIG. 19 and a spectral transmittance distribution by the dichroic mirror shown in FIG. 20.
  • FIG. 22 is a diagram showing a spectral transmittance distribution of the bandpass filter 54 in FIG. 19 and a spectral reflectance distribution by the dichroic mirror shown in FIG.
  • FIG. 23 is a diagram showing a configuration of a multispectral image capturing apparatus according to a fifth embodiment of the present invention.
  • FIG. 24 is a diagram showing a spectral characteristic of a light source of a strobe illumination light-emitting unit used in a multispectral image capturing apparatus according to a fifth embodiment and a spectral sensitivity characteristic of a RGB 3 band of a color CCD image sensor.
  • FIG. 25 is a timing chart showing a flow of shooting from shutter control to strobe light emission, and light reception and capture by a color CCD image sensor.
  • FIG. 26 is a diagram showing a configuration of a multispectral image photographing apparatus according to a sixth embodiment of the present invention.
  • the half mirror 12 is used such that the ratio between the transmittance and the reflectance is different, and each ratio is about 3: 1. That is, as shown in FIG. 2, the half mirror 12 has a transmittance 12A constant at 75% regardless of the wavelength and a reflectance 12B similarly constant at 25%.
  • the light with the larger light quantity (transmission side) is passed through an infrared cut filter (IR-CF) 18 as shown in FIG. Outside light is blocked, and an image is formed on one of the color CCD image sensors 14.
  • IR-CF infrared cut filter
  • the light with the smaller amount of light is imaged on the other color CCD imaging device 16 through the band-pass filter 20.
  • the color CCD imaging devices 14 and 16 are single-plate type color CCD imaging devices in which RGB color filters are arranged in a Bayer array in each pixel. You are using The spectral transmittance of each RGB filter has a spectral shape as shown by the broken line in FIG.
  • the band-pass filter 20 has a comb-shaped spectral transmittance as shown by a solid line 20A in FIG. 5, and each band is about half of the RGB wavelength band shown by a broken line in the figure. It is like passing light through.
  • the bandpass filter 20 may have a comb-shaped spectral transmittance as shown by a solid line 20B in FIG.
  • a spectral transmittance characteristic indicated by the solid line 20B is an inversion of the spectral transmittance characteristic indicated by the solid line 20A in FIG. So, like this
  • the bandpass filter 20 having the spectral transmittance characteristic indicated by the solid line 20B can acquire light in the near infrared region.
  • the color CCD image pickup device 14 for the light on the transmission side branched by the half mirror 12 described above acquires a three-band image with the same spectral characteristics as conventional RGB.
  • the color CCD image sensor 16 for the light on the reflection side acquires a three-band image having spectral characteristics narrower than the conventional RGB. Therefore, images of a total of six bands are acquired by the two color CCD image sensors 14 and 16.
  • FIG. 7 shows the spectral sensitivity characteristics of a total of six bands configured as described above. As described above, since the transmission Z-reflectance ratio of the half mirror 12 differs, the peak sensitivity of the latter three bands other than RGB among the six bands in the figure is lower than the former three RGB bands! /
  • the image signal obtained by the transmission side color CCD image sensor 14 is stored in the first image memory 22.
  • the image signal obtained by the color CCD image sensor 16 on the reflection side is stored in the second image memory 24.
  • the three-band images stored in the first image memory 22 and the second image memory 24 are synthesized as a six-band image by the image synthesizing unit 26 and stored in the storage medium and the external PC 28.
  • the RGB three-band image signal is transmitted directly from the color CCD image sensor 14 on the transmission side or separately to the outside via the first image memory 22, and can be input to the RGB connection device 30. This makes it possible to connect to a general RGB monitor or the like and use it as an image view.
  • the two color CCD image sensors 14 and 16 described in this embodiment need not have the same resolution.
  • the color CCD image sensor 16 on the reflection side is replaced with the color CCD image sensor on the transmission side.
  • a resolution lower than 14 is acceptable. Even if the resolution of the auxiliary 3-band image obtained by the color CCD image sensor 16 on the reflection side is low, the color CCD image on the transmission side Utilizing the high-frequency components in the main three-band image obtained by the element 14, it is also possible to obtain a multispectral image having substantially the same resolution as the main three-band image.
  • the sensitivity of the low-resolution CCD image sensor is higher than that of the high-resolution CCD image sensor, so that the reflectance of the half mirror 12 can be further reduced and the transmittance can be increased, so that the total sensitivity can be further increased. It becomes possible.
  • the bandpass filter 20 is used to narrow the band.
  • the present invention is not limited to this.
  • the color filter of the color CCD The band may be narrowed using other means, such as narrowing the transmission spectral characteristic by narrowing the band.
  • This modification uses a three-chip color imaging unit composed of an RGB color separation prism and three CCD imaging elements instead of the single-chip color CCD imaging elements 14 and 16 in FIG. 1 described above. .
  • one of the lights branched by the half mirror 12 at different intensity ratios enters the color image pickup unit 32 through the IR-CF 18, and the color image pickup unit 32 performs RGB 3-band imaging. Done.
  • the light from the subject O is narrowed by the band-pass filter 20 based on the spectral transmittance as shown in FIG. Band photography is performed. As a result, a total of six bands of image signals are obtained.
  • the use of the three-plate type color image pickup units 32 and 34 makes it possible to obtain a multi-resolution image with higher resolution and sensitivity compared to the case where the single-plate type color CCD image pickup devices 14 and 16 are used. Acquisition becomes possible.
  • Such three-plate type color image pickup units 32 and 34 are widely used in conventional image pickup apparatuses such as HDTV cameras that shoot moving images, and are effective when shooting multispectral images of moving images.
  • each of the CCD image pickup devices of the color image pickup units 32 and 34 can perform photographing in an optimal exposure state by individually determining the electronic shutter speed.
  • FIG. 9 is a diagram showing a second modification of the multispectral image photographing apparatus according to the first embodiment. This modification combines the configuration of the first embodiment described above with the configuration of the first modification. Combined configuration.
  • one of the lights branched by the half mirror 12 at different intensity ratios is obtained by cutting off the light in the near-infrared region by the IR-CF 18 and then, similar to the first modification described above.
  • the light enters the color image pickup unit 32.
  • the color image pickup unit 32 the light is separated into RGB light by a color separation prism, formed into an image on each CCD image pickup device, and three-band imaging is performed.
  • the other light is narrowed by the band-pass filter 20 and the optical low-pass filter (LPF) 36, and then imaged on the color CCD image sensor 16 as in the first embodiment described above to form a three-band image.
  • the optical LPF 36 is generally used to reduce false colors and color moiré. Therefore, although not particularly shown, the arrangement is similarly arranged in the configuration of the above-described first embodiment (and other embodiments described later).
  • a high-resolution and high-sensitivity multi-spectral image can be acquired for the main RGB three bands by using the three-plate type color image pickup unit 32. It becomes possible.
  • the auxiliary three primary colors are photographed at the expense of resolution by a single-chip color CCD image sensor 16, but as described above, the conventional three-band image is used by utilizing the high-frequency components in the main three-band image.
  • Multi-spectral images can be captured with the same resolution as a band HDTV camera. As described above, a compact multi-band image capturing apparatus can be realized.
  • the half mirror 12 and the color separation prism are separate elements, and the three bands on the transmission side and the reflection side are formed by separate units.
  • the present invention is not limited to this.
  • one element obtained by combining the half mirror 12 and the color separation prism 38, one color CCD image sensor 16 and three monochrome CCD image sensors 40R, 4OG, 40B By using, one unit can realize 6-band shooting. In this way, a 6-band image capturing device with a smaller device configuration can be realized.
  • the multispectral image capturing apparatus captures one color CCD image from the subject O through the optical lens 10 and the rotary filter 42.
  • An image is formed on the image element 44.
  • the rotary filter 42 has the same force as the transparent glass 42A having a transmittance of almost 100% and the bandpass filter 42B based on the spectral transmittance characteristic shown in FIG. 5 described above.
  • the ratio is configured to be about 3: 1.
  • the light transmitted through the rotary filter 42 is blocked by the near infrared light through the IR-CF 18 and is imaged on the color CCD image sensor 44.
  • the rotary filter 42 is driven by a motor 46 to rotate at a constant rotation speed, and the color CCD image sensor 44 performs two exposures while the rotary filter 42 rotates.
  • FIG. 13 shows a timing chart of the state of the rotary filter 42 and the exposure timing of the color CCD image sensor 44.
  • the first exposure is performed while the rotating filter 42 is in the state of the transparent glass 42A, and the acquired three-band image is stored in the first image memory 22.
  • the rotation filter 42 performs the second exposure while the bandpass filter 20 is in the state, and stores the acquired three-band image in the second image memory 24.
  • the three-band images stored in the first image memory 22 and the second image memory 24 are combined by the image combining unit 26 to obtain a six-band image.
  • the multispectral image capturing apparatus blocks one color C An image is formed on the CD image sensor 44.
  • the color CCD image sensor 44 has a mosaic filter 44A in which R, G, B and R ', G', B 'filters are periodically arranged for each pixel as shown in FIG. It is installed.
  • the spectral transmittance distribution of each filter is as shown in FIG. That is, the R, G, B filters have the same spectral band as the conventional three-band camera, and R ', G', B 'have a narrower spectral band than the conventional RGB.
  • I'm wearing In the mosaic filter 44A as shown in FIG. 15, filters of R, G, B are arranged at a ratio of 1 pixel to 3 pixels of R, G, B, respectively. Lined up with In.
  • the light that has passed through each of the above filters is received by the color CCD image sensor 44 and input to the image interpolation processing unit 48 as six-band dot-sequential image data.
  • the image interpolation processing unit 48 obtains image data corresponding to the position of a defective pixel in each band by also interpolating the neighboring image data, and generates image data with the same number of pixels.
  • the RGB three band image is sent to the first image memory 22 and stored, and the R'G'B 'three band image is sent to the second image memory 24 and stored. Is done.
  • the RGB connection device 30 By inputting the three-band image stored in the first image memory 22 to the RGB connection device 30, a color image of the subject O can be easily confirmed in the same manner as a conventional RGB camera. Further, by combining the three band images stored in the first image memory 22 and the second image memory 24 again in the image combining unit 26, a six-band image can be obtained.
  • the auxiliary band can be handled.
  • the ratio of pixels corresponding to RGB is increased for each pixel to be processed, so that multi-band images can be acquired with resolution and sensitivity almost inferior to conventional RGB 3-band cameras, and color reproduction Performance can be improved.
  • the pixel of G ' is arranged twice as much as the other R' and B '. ing.
  • one of the two pixels G and G may be set to Cy, and a total of 7 bands of multi-spectral imaging may be performed.
  • the filter Cy has a spectral transmittance characteristic different from that of the above-described filter G ′, as shown in FIG.
  • the auxiliary three bands other than the conventional RGB three bands are configured by extracting only the band within a predetermined range of the original RGB band power.
  • the present invention is not limited to this, and for example, it is possible to configure a band out of the wavelength band of the original RGB, such as Cy shown in FIG.
  • FIG. 19 The multispectral image capturing apparatus according to the fourth embodiment of the present invention is shown in FIG. 19 instead of the half mirror 12 used in the previous embodiments to split the light of the subject O into two.
  • a dichroic mirror (DM) 50 that performs transmission Z reflection by selecting a wavelength is used.
  • the spectral transmittance distribution of the DM50 is shown by a thin black line 50A in FIG. 20, and the spectral reflectance distribution is shown by a black dotted line 50B.
  • the thick black line indicates the spectral characteristics of RGB separated by the color separation prism in FIG.
  • each of the DMs 50 has a transmittance Z reflectance distribution based on a comb-shaped spectral shape.
  • the light transmitted and reflected by the DM 50 is reflected by the color image pickup units 32 and 34 to be separated into different narrow bands of RGB 3 bands by the color separation prism and picked up. As a result, images of six bands each having a narrow band are obtained.
  • filters 52 and 54 By inserting filters 52 and 54 to enhance the wavelength selectivity, it is possible to acquire six bands of images with good wavelength separation.
  • wavelength selectivity cannot be expected so much, and as shown in FIG. In many cases, light leakage also exists in the band.
  • band-pass filters 52 and 54 for example, a multilayer interference filter or the like
  • This is a very effective means of realizing a multispectral camera.
  • the loss of light due to the bandpass filter 20 can be minimized, so that a multi-band camera with high light efficiency can be realized.
  • multi-spectral imaging with good wavelength separation can be realized by narrow-band six-band imaging, and a multi-band camera with a high SZN ratio can be realized.
  • At least three of the bands that perform multispectral imaging have the same broadband spectral sensitivity characteristics as conventional RGB, and furthermore, By allocating the subject's light to other auxiliary narrowband bands with a smaller amount of light than the above RGB band, light loss is reduced, and color reproduction is possible even for a moving subject O.
  • An accurate multispectral image capturing device can be provided. Further, it is possible to provide a multispectral image capturing apparatus capable of directly confirming captured images using a normal RGB monitor without requiring special changes. Also, by using a dichroic mirror and a band-pass filter together, it is possible to realize a narrow band of six bands with high wavelength separation, and also to realize a multispectral image capturing apparatus with reduced light loss as described above. .
  • the multispectral image capturing apparatus includes a strobe illumination light-emitting unit 58 having a light source having a narrow-band three-band wavelength characteristic, and a strobe non-emission state (external light).
  • a strobe illumination light-emitting unit 58 having a light source having a narrow-band three-band wavelength characteristic, and a strobe non-emission state (external light).
  • the light source of the strobe illumination light emitting unit 58 includes a white LED having a wavelength characteristic of a comb-shaped spectral distribution having a sharp peak in each wavelength region of the RGB sensitivity of the color CCD image sensor 44, and a fluorescent light.
  • a light source such as a lamp.
  • three types of LEDs having narrow band wavelength characteristics may be used.
  • An example of the light emission spectrum of the light source of the above strobe lighting light emitting section 58 is shown by a solid line in FIG. Note that, in the figure, broken lines indicate the transmittance characteristics of RGB.
  • the multispectral image capturing apparatus includes an image subtracting unit 60 that subtracts the image stored in the first image memory 22 from the image stored in the second image memory 24. .
  • FIG. 25 is a timing chart showing a flow of photographing when the shutter control power strobe light emission and light reception and capture by the color CCD image sensor 44 are performed. That is, according to the present embodiment, In the multi-spectral image capturing apparatus, when the shutter 62 is first pressed, the multi-spectral image capturing apparatus emits an object O as a normal RGB three-band color image with no strobe light, that is, only external light illumination. Is taken, and the obtained image is stored in the first image memory 22. The image is output to the RGB connection device 30 as a conventional RGB image, and is output to the storage medium and the external PC 28 as the main three-band image of the six bands.
  • the subject O is illuminated with a strobe light emission state, that is, external light illumination + strobe illumination, and an image of the subject 0 is photographed as a three-band color image, and stored in the second image memory 24.
  • a strobe light emission state that is, external light illumination + strobe illumination
  • an image of the subject 0 is photographed as a three-band color image, and stored in the second image memory 24.
  • the image stored in the second image memory 24 and the image in the flash non-emission state (only external light illumination) previously stored and stored in the first image memory 22 are reduced.
  • the subtraction is performed by the arithmetic unit 60 to create a narrow-band three-band image using only the strobe component.
  • the created image is output to the storage medium and the external PC 28 as an auxiliary three-band image. In this way, a total of six bands of images, ie, a three-band image based on the external light component and a three-band image based on the strobe component, are
  • the same effect can be realized with a special optical system or an ordinary optical system that is different from a filter structure as in the above-described embodiments. Also, by inputting the three-band image stored in the first image memory 22 to the RGB connection device 30, a color image of the subject O can be easily confirmed in the same manner as a conventional RGB camera.
  • a color image of the subject O is first photographed with a light source using only external light.
  • the subject is first illuminated with a strobe to illuminate the subject O with the external light + strobe light.
  • the color image of the subject O may be captured using only the external light source.
  • the multispectral image capturing apparatus is a multispectral image capturing apparatus using a two-lens lens. Equipped with a bandpass filter with transmission characteristics on the lens and a color imaging unit for narrowband three-band imaging, a main three-band image from the conventional RGB three-band imaging color imaging unit, and a narrowband It obtains a 6-band multi-spectral image from the auxiliary 3-band image from the 3-band color imaging unit for shooting. is there.
  • the image pickup unit on the upper side of FIG. 26 is a conventional color image pickup unit for RGB 3-band imaging, and includes a lens 10, an IR-CF 18, and a color CCD image pickup device 14.
  • the lower imaging section is a color imaging section for three-band imaging in a narrow band, and includes a lens 64 and a narrow-band, three-band comb-shaped band-pass filter disposed in front of the lens 64 and having a comb-shaped spectral transmission characteristic. 20 and a color CCD image pickup device 16.
  • the position of the narrow-band auxiliary 3-band image captured by the lower imaging unit is shifted from that of the conventional 3-band captured image (upper) due to parallax. This shift
  • the correction is performed by the geometric correction unit 66 after the second image memory 24, and the positions of the three band images are matched and output.
  • the same effect can be achieved with a special optical system or a normal optical system that does not use the filter structure as in the first to fourth embodiments. Further, if the three-band image stored in the first image memory 22 is input to the RGB connection device 30, the color image of the subject O can be easily confirmed in the same manner as the conventional RGB camera.
  • the CCD image sensor is used as an example of the image sensor.
  • an XY address type image sensor such as a CMOS image sensor is used. May be.
  • CMOS image sensor When such an image sensor is used, high-speed readout and thinning-out readout become possible, and in the case of a single-chip color image sensor configuration, it becomes possible to selectively read out pixels of the same color filter. . Therefore, it is possible to increase the processing speed and reduce the cost of the multispectral image capturing apparatus.
  • the main three bands have standard RGB spectral sensitivity characteristics, At least one of the remaining bands excluding the main three bands out of the four or more spectral sensitivity characteristics has a spectral sensitivity characteristic narrower than the RGB.
  • a multispectral image photographing apparatus characterized by the above-mentioned.
  • the first to fourth embodiments correspond to the embodiment relating to the multispectral image capturing apparatus described in (1).
  • At least three of the bands that perform multispectral imaging have the same broadband spectral sensitivity characteristics as conventional RGB, and further have other auxiliary narrowbands.
  • the loss of light is reduced, so that even a moving subject can reproduce color accurately.
  • the sensitivity value of the main wavelength in the spectral sensitivity characteristics of the auxiliary band is less than half the sensitivity value of the main wavelength in the spectral sensitivity characteristics of the main three bands (1).
  • Embodiments relating to the multispectral image capturing apparatus described in (2) correspond to the first to fourth embodiments.
  • a multispectral image photographing apparatus comprising:
  • the embodiment relating to the multispectral image capturing apparatus described in (3) corresponds to the first embodiment and the second modification of the first embodiment.
  • one light split by the half mirror is separated into three colors of red, blue, and green, which are the same as RGB, and an image is taken.
  • the light of the subject is allocated to the auxiliary narrow band with a smaller amount of light than the RGB band, thereby reducing light loss, This enables accurate color reproduction even for moving subjects.
  • the embodiment relating to the multispectral image capturing apparatus described in (4) corresponds to the first embodiment and the second modification of the first embodiment.
  • the band-pass filter has a plurality of transmission wavelength bands in a wavelength range of a visible region.
  • a comb-shaped spectral shape having a wavelength range and a plurality of non-transmission wavelength bands
  • the imaging means for receiving light passing through the band-pass filter includes a color imaging means for resolving and receiving light in a plurality of transmission wavelength bands in the band-pass filter.
  • the first embodiment corresponds to the embodiment relating to the multispectral image capturing apparatus described in (5).
  • the total number of pixels of the image pickup device in the image pickup device that receives the light transmitted through the band-pass filter out of the light split by the half mirror is determined by dividing the light split by the half mirror into red.
  • the embodiment relating to the multispectral image capturing apparatus described in (6) corresponds to the first embodiment and the second modification of the first embodiment.
  • the multi-band image having the resolution substantially equal to that of the main three-band image is used by using the high-frequency components in the main three-band image.
  • a spectral image can be obtained.
  • the low-resolution imaging means has higher sensitivity than the high-resolution imaging means, the reflectance of the half mirror can be further reduced and the transmittance can be increased, so that the total sensitivity can be further increased.
  • Multispectral image capturing device having four or more different spectral sensitivity characteristics
  • a multispectral image photographing apparatus comprising:
  • the fourth embodiment corresponds to the embodiment relating to the multispectral image capturing apparatus described in (7).
  • the loss of light by the band-pass filter can be minimized, so that light efficiency is improved.
  • a multi-band camera can be realized.

Abstract

 被写体(O)からの光をハーフミラー(12)で2つの光路に分割し、一方の光は、赤外光カットフィルタ(18)を通して近赤外の光を遮断しカラーCCD撮像素子(14)に結像させることで標準的なRGBの分光感度特性による3バンドの画像を取得する。他方の光は、RGBの波長帯域のそれぞれ約半分の帯域の光を通すバンドパスフィルタ(20)を通してカラーCCD撮像素子(16)に結像させることでRGBよりも狭帯域な分光特性を有する3バンドの画像を取得する。

Description

明 細 書
ベクトル画像撮影装置
技術分野
[0001] 本発明は、各々異なる分光特性による 4バンド以上の画像撮影が可能なマルチス ベクトル画像撮影装置に関する。
背景技術
[0002] 従来より、被写体の画像を撮影するために RGB (3バンド)カメラが広く用いられて いる。
[0003] 近年、画像撮影装置において被写体の忠実な色再現を行なうために、 4バンド以 上の画像撮影が可能なマルチスペクトルカメラを用いて被写体のより詳細な分光情 報を画像として取得 '記録する方法が提案されている。そのような 4バンド以上の画像 撮景装置としては、 f列えば、、 USP5, 864, 364、 USP6, 466, 334、特開 2002— 2 96114号公報、特開 2003— 023643号公報、特開 2003— 087806号公報に開示さ れている方法がある。
[0004] それら文献に開示されている方法では、 RGBの波長帯域よりも狭帯域な透過率特 性を有するフィルタを CCD撮像素子の前面に配置することで、より細カ^、被写体の 分光情報を取得している。
[0005] し力しながら、被写体力も入射される光の大半は、上記狭帯域のフィルタにより不要 な帯域の光としてカットされてしまうため、光の損失が従来の RGBカメラと比べ極端に 大きい。このとき、撮影時間を長くすれば、上記光の損失があっても十分な露光を得 ることは可能であるが、動きのある被写体を撮影する等、ある程度撮影時間に制限が ある場合には、撮影画像の SZNが劣化し、色再現の精度が効果的に上がらないと いった問題がある。
[0006] また、上記マルチスペクトルカメラにより撮影された画像を通常の RGBモニタで観 察'確認したい場合には、 RGBとは異なるバンドで撮影された画像を色変換してモ- タに出力する必要があるため、特殊な変換器が必要であった。
発明の開示 [0007] 本発明は、上記の点に鑑みてなされたもので、動きのある被写体でも精度よく色再 現を行なえ、また、特殊な変 を必要とすることなく通常の RGBモニタを用いて直 接撮影画像の確認が可能なマルチスペクトル画像撮影装置を提供することを目的と する。
[0008] 本発明の第 1の態様によれば、
4バンド以上の異なる分光感度特性を有するマルチスペクトル画像撮影装置にお いて、
上記 4バンド以上の分光感度特性のうち、主要な 3バンドは、標準的な RGBの分光 感度特性を有し、
上記 4バンド以上の分光感度特性のうちの上記主要な 3バンドを除いた残りのバン ドのうち、少なくとも一つの補助的なバンドは、上記 RGBよりも狭帯域な分光感度特 性を有する、
ことを特徴とするマルチスペクトル画像撮影装置が提供される。
[0009] また、本発明の第 2の態様によれば、
撮像レンズ力 の光を 2つの光路に分割するハーフミラーと、
上記ハーフミラーで分割された一方の光の分光特性を変調するバンドパスフィルタ と、
上記バンドパスフィルタによって変調された光を受光して、被写体を撮像する撮像 手段と、
上記ハーフミラーで分割されたもう一方の光を、赤、青、緑の 3色に分解して受光し 、被写体のカラー画像を撮像するカラー撮像手段と、
を具備することを特徴とするマルチスペクトル画像撮影装置が提供される。
[0010] また、本発明の第 3の態様によれば、
4バンド以上の異なる分光感度特性を有するマルチスペクトル画像撮影装置にお いて、
複数の波長帯域の光を透過し且つ上記複数の波長帯域以外の光を反射する櫛形 の分光透過率及び分光反射率特性を有するダイクロイツクミラーと、
上記ダイクロイツクミラーと略同一の透過波長帯域を有するバンドパスフィルタと、 上記ダイクロイツクミラーの反射波長帯域と略同一の波長帯域を透過する分光透過 率特性を有するバンドパスフィルタと、
を具備することを特徴とするマルチスペクトル画像撮影装置が提供される。
図面の簡単な説明
[図 1]図 1は、本発明の第 1実施例に係るマルチスペクトル画像撮影装置の構成を示 す図である。
[図 2]図 2は、第 1実施例に係るマルチスペクトル画像撮影装置に使用するハーフミラ 一の透過率 ·反射率特性を示す図である。
[図 3]図 3は、第 1実施例に係るマルチスぺクトル画像撮影装置に使用する赤外光力 ットフィルタの分光透過率特性及びカラー CCD撮像素子の RGB3バンドの分光感度 特性を示す図である。
[図 4]図 4は、第 1実施例に係るマルチスペクトル画像撮影装置に使用するカラー CC D撮像素子の画素構造を示す図である。
[図 5]図 5は、第 1実施例に係るマルチスペクトル画像撮影装置に使用するバンドパス フィルタの分光透過率特性及びカラー CCD撮像素子の RGB3バンドの分光感度特 性を示す図である。
[図 6]図 6は、図 5のバンドパスフィルタの代わりに使用可能な別のバンドパスフィルタ の分光透過率特性を示す図である。
[図 7]図 7は、第 1実施例に係るマルチスペクトル画像撮影装置において得られる 6バ ンドの分光感度特性を示す図である。
[図 8]図 8は、第 1実施例の第 1の変形例であるマルチスペクトル画像撮影装置の構 成を示す図である。
[図 9]図 9は、第 1実施例の第 2の変形例であるマルチスペクトル画像撮影装置の構 成を示す図である。
[図 10]図 10は、図 9の装置構成におけるハーフミラーと色分解プリズムを合成した 4 分解光学系を示す図である。
[図 11]図 11は、本発明の第 2実施例に係るマルチスペクトル画像撮影装置の構成を 示す図である。 [図 12]図 12は、図 11における回転フィルタの具体的構成を示す図である。
[図 13]図 13は、回転フィルタの状態とカラー CCD撮像素子における画像取り込みの タイミングの対応関係を示す図である。
[図 14]図 14は、本発明の第 3実施例に係るマルチスペクトル画像撮影装置の構成を 示す図である。
[図 15]図 15は、図 14におけるカラー CCD撮像素子に装着されたモザイクフィルタ( 一部)のフィルタ配置例を示す図である。
[図 16]図 16は、図 15における R, G, B, R' , G' , B'のフィルタの分光透過率特性を 示す図である。
[図 17]図 17は、図 14におけるカラー CCD撮像素子に装着されたモザイクフィルタ( 一部)のフィルタ配置の別の例を示す図である。
[図 18]図 18は、図 17における R', G' , Cy, B'のフィルタの分光透過率特性を示す 図である。
[図 19]図 19は、本発明の第 4実施例に係るマルチスペクトル画像撮影装置の構成を 示す図である。
[図 20]図 20は、図 19におけるダイクロイツクミラーの分光透過率分布及び分光反射 率分布、並びに色分解プリズムで各々分離される RGBの分光特性を示す図である。
[図 21]図 21は、図 19におけるバンドパスフィルタ 52の分光透過率分布と図 20で示し たダイクロイツクミラーによる分光透過率分布とを示す図である。
[図 22]図 22は、図 19におけるバンドパスフィルタ 54の分光透過率分布と図 20で示し たダイクロイツクミラーによる分光反射率分布とを示す図である。
[図 23]図 23は、本発明の第 5実施例に係るマルチスペクトル画像撮影装置の構成を 示す図である。
[図 24]図 24は、第 5実施例に係るマルチスペクトル画像撮影装置に使用するストロボ 照明発光部の光源のスペクトル特性及びカラー CCD撮像素子の RGB3バンドの分 光感度特性を示す図である。
[図 25]図 25は、シャツタ制御からストロボ発光、並びにカラー CCD撮像素子の受光、 取込までの撮影の流れを示すタイミングチャートを示す図である。 [図 26]図 26は、本発明の第 6実施例に係るマルチスペクトル画像撮影装置の構成を 示す図である。
発明を実施するための最良の形態
[0012] 以下、本発明を実施するための最良の形態を図面を参照して説明する。
[0013] [第 1実施例]
本発明の第 1実施例に係るマルチスペクトル画像撮影装置においては、図 1に示 すように、被写体 Oからの光がレンズ 10及びハーフミラー(HM) 12を通して 2枚の力 ラー CCD撮像素子 14, 16に結像される。このとき、ハーフミラー 12は、透過率と反 射率の比が異なり、それぞれの比が約 3 : 1となるようなものを使用している。即ち、図 2に示すように、ハーフミラー 12は、透過率 12Aが波長によらずに 75%—定で、反射 率 12Bが同様に 25%—定のものを使用している。
[0014] 上記ハーフミラー 12により分岐された光のうち、光量の大きい方 (透過側)の光は、 図 3に示すような赤外光カットフィルタ (IR— CF) 18を通すことで近赤外の光が遮断さ れて、片方のカラー CCD撮像素子 14に結像される。なお、図 3において、実線 18A 力 R-CF18の分光透過率を示して!/、る。
[0015] 一方、上記ハーフミラー 12により分岐された光のうち、光量の少ない方 (反射側)の 光は、バンドパスフィルタ 20を通して、もう片方のカラー CCD撮像素子 16に結像され る。
[0016] ここで、上記カラー CCD撮像素子 14, 16は、例えば、図 4に示すように、各画素に RGBのカラーフィルタがべィャ配列状に配置された単版式によるカラー CCD撮像素 子を使用している。各々の RGBフィルタにおける分光透過率は、前述した図 3に破線 で示して!/ヽるような分光形状を持つ。
[0017] また、上記バンドパスフィルタ 20は、図 5に実線 20Aで示すような櫛型形状の分光 透過率を有しており、図中に破線で示す RGBの波長帯域のそれぞれ約半分の帯域 の光を通すようなものとなって 、る。
[0018] あるいは、上記バンドパスフィルタ 20は、図 6に実線 20Bで示すような櫛型形状の 分光透過率を有するものでも良!ヽ。このような実線 20Bで示す分光透過率特性は、 図 5に実線 20Aで示した分光透過率特性が反転したものである。従って、このような 実線 20Bで示す分光透過率特性を有するバンドパスフィルタ 20では、近赤外領域の 光ち取得することがでさる。
[0019] 以上により、前述したハーフミラー 12により分岐された透過側の光に対するカラー C CD撮像素子 14においては、従来の RGBと同様な分光特性による 3バンドの画像が 取得される。また、反射側の光に対するカラー CCD撮像素子 16においては、従来の RGBよりも狭帯域な分光特性を有する 3バンドの画像が取得される。よって、合計 6 バンドの画像が二つのカラー CCD撮像素子 14, 16により取得されることになる。図 7 に、以上により構成された計 6バンドの分光感度特性を示している。前述したように、 ハーフミラー 12の透過 Z反射率比が異なるため、図中の 6バンド分光感度のうち、後 者の RGB以外の 3バンドは、前者 RGB3バンドに比べピーク感度が低くなつて!/、る。
[0020] このように、被写体 Oからの入射光の大半を RGB3バンドの取得に使用し、一方、 残りの少量の光をバンドパスフィルタ 20により狭帯域ィ匕して他の 3バンドに割り当てる ようにしている。このようにすることで、バンドパスフィルタ 20による狭帯域ィ匕により生じ る光量の損失をできるだけ少なくし、マルチスペクトル撮影における感度の劣化を防 ぐことにより、色再現性のよい分光感度特性を実現できる。
[0021] 透過側のカラー CCD撮像素子 14により取得された画像信号は、第 1画像メモリ 22 にー且記憶される。また、反射側のカラー CCD撮像素子 16により取得された画像信 号は、第 2画像メモリ 24にー且記憶される。上記第 1画像メモリ 22及び第 2画像メモリ 24にそれぞれ記憶された 3バンド画像は、画像合成部 26にお 、て 6バンド画像とし て合成され、記憶媒体及び外部 PC28に保存される。このとき、上記 RGB3バンドの 画像信号は、透過側のカラー CCD撮像素子 14から直接もしくは第 1画像メモリ 22を 介して別途外部に伝送され、 RGB接続機器 30に入力できるようにもなつている。これ により、一般的な RGBモニタ等に接続して、画像ビューヮ一として使用することが可 能となる。
[0022] なお、本実施例において説明した 2つのカラー CCD撮像素子 14, 16は、同じ解像 度である必要はなぐ例えば反射側のカラー CCD撮像素子 16は、透過側のカラー C CD撮像素子 14よりも低解像度であっても良 、。反射側のカラー CCD撮像素子 16 により得られた補助的な 3バンド画像の解像度が低くても、透過側のカラー CCD撮像 素子 14により得られた主要な 3バンド画像における高周波成分を利用して、上記主 要な 3バンド画像とほぼ同等な解像度のマルチスペクトル画像を得ることも可能であ る。低解像度な CCD撮像素子は高解像度な CCD撮像素子と比べ感度が高 ヽため 、より上記ハーフミラー 12の反射率を落とし、透過率を高めることができるので、トータ ルの感度をさらに高めることが可能となる。
[0023] なお、本実施例では、バンドパスフィルタ 20を用いて狭帯域ィ匕するものとしているが 、本発明はこれに限定されるものではなぐ例えば、カラー CCD撮像素子 16のカラ 一フィルタの透過分光特性を狭帯域化することで狭帯域化する等、他の手段を用い て狭帯域ィ匕しても良い。
[0024] 次に、図 8を参照して、本第 1実施例に係るマルチスペクトル画像撮影装置の第 1 の変形例を説明する。本変形例は、前述した図 1における単板式のカラー CCD撮像 素子 14, 16の代わりに、 RGB色分解プリズムと 3つの CCD撮像素子によって構成し た 3板式のカラー撮像ユニットを用いたものである。
[0025] 即ち、ハーフミラー 12により異なる強度比で分岐された光のうち、一方の光は、 IR- CF18を通してカラー画像撮像ユニット 32に入射され、そのカラー画像撮像ユニット 3 2により RGB3バンド撮影が行なわれる。他方は、前述した図 5に示すような分光透過 率によるバンドパスフィルタ 20により被写体 Oからの光を狭帯域ィ匕してカラー画像撮 像ユニット 34に入射され、そのカラー画像撮像ユニット 34により 3バンド撮影が行な われる。これにより、計 6バンドの画像信号が得られる。
[0026] 以上のように、 3板式のカラー画像撮像ユニット 32, 34を用いることで、単板式の力 ラー CCD撮像素子 14, 16を用いた場合と比べ高解像度且つ高感度なマルチスぺ タトル画像取得が可能となる。このような 3板式のカラー画像撮像ユニット 32, 34は、 従来の HDTVカメラ等の動画撮影を行なう撮像装置で広く用いられており、動画の マルチスペクトル画像を撮影する際に有効である。
[0027] なお、カラー画像撮像ユニット 32, 34の各 CCD撮像素子は、それぞれ個別に電子 シャツタ速度を決めることにより、最適な露出状態で撮影を行うことができる。
[0028] また図 9は、本第 1実施例に係るマルチスペクトル画像撮影装置の第 2の変形例を 示す図である。本変形例は、前述した第 1実施例の構成と第 1の変形例の構成とを組 み合わせた構成となって 、る。
[0029] 即ち、ハーフミラー 12により異なる強度比で分岐された光のうち、一方の光は、 IR- CF18により近赤外領域の光をカットした後、前述した第 1の変形例と同様にカラー 画像撮像ユニット 32に入射される。そして、そのカラー画像撮像ユニット 32において 色分解プリズムにより RGBの光に分離され、各 CCD撮像素子に結像されて、 3バン ド撮影が行なわれる。また、他方の光は、バンドパスフィルタ 20及び光学ローパスフィ ルタ (LPF) 36により狭帯域化された後、前述した第 1の実施例と同様にカラー CCD 撮像素子 16に結像されて、 3バンド撮影が行なわれる。このような撮影を行なうことで 、計 6バンドの画像信号が得られる。なおここで、光学 LPF36は、偽色や色モアレを 低減させるため一般的に使用されているものである。よって、特に図示はしていなか つたが、前述した第 1実施例 (及び後述する他の実施例)の構成においても同様に配 されるちのである。
[0030] 以上のように、本第 2の変形例では、主要となる RGB3バンドに対しては 3板式の力 ラー画像撮像ユニット 32を用いることで高解像度且つ高感度なマルチスペクトル画 像取得が可能となる。一方、補助的な 3原色については、単板式のカラー CCD撮像 素子 16により解像度を犠牲にして撮影を行なうが、先述したように主要な 3バンド画 像における高周波成分を利用することで従来の 3バンド HDTVカメラと同様な解像度 でマルチスペクトル画像の撮影が行なえる。以上により、小型なマルチバンド画像撮 影装置を実現できる。
[0031] なお、図 9では、ハーフミラー 12と色分解プリズムは別素子となっており、透過側及 び反射側の 3バンドはそれぞれ別ユニットにより構成される力 これに限るものではな い。例えば、図 10に示すように、ハーフミラー 12と色分解プリズム 38とを合成した一 つの素子と、 1枚のカラー CCD撮像素子 16と、 3枚のモノクロ CCD撮像素子 40R, 4 OG, 40Bとを用いて、 1ユニットにより 6バンド撮影を実現することもできる。このように すれば、より小型な装置構成による 6バンド画像撮影装置が実現可能である。
[0032] [第 2実施例]
本発明の第 2実施例に係るマルチスペクトル画像撮影装置は、図 11に示すように、 被写体 Oからの光力 レンズ 10及び回転フィルタ 42を通して、 1枚のカラー CCD撮 像素子 44に結像される。回転フィルタ 42は、図 12に示すように、透過率がほぼ 100 %である透明ガラス 42Aと、前述した図 5に示した分光透過率特性によるバンドパス フィルタ 42Bと力もなるもので、各々の面積比が約 3 : 1となるように構成されている。 上記回転フィルタ 42を透過した光は、 IR— CF18を通して近赤外の光が遮断され、力 ラー CCD撮像素子 44に結像される。また、上記回転フィルタ 42は、モータ 46により 回転速度一定で回転するように駆動され、カラー CCD撮像素子 44は、上記回転フィ ルタ 42がー回転する間に 2回の露光を行なう。
[0033] 図 13に、回転フィルタ 42の状態とカラー CCD撮像素子 44の露光タイミングについ てのタイミングチャートを示して 、る。上記回転フィルタ 42が透明ガラス 42Aの状態 の間に第 1の露光を行ない、取得された 3バンド画像を第 1画像メモリ 22に記憶する 。また、上記回転フィルタ 42がバンドパスフィルタ 20の状態の間に第 2の露光を行な い、取得された 3バンド画像を第 2画像メモリ 24に記憶する。上記第 1画像メモリ 22及 び第 2画像メモリ 24に記憶されたそれぞれの 3バンド画像を、画像合成部 26にお ヽ て合成することで 6バンドの画像を得る。
[0034] 以上のような構成により、前述した第 1実施例よりも少ない構成要素で同様な効果 を実現することができる。また、第 1画像メモリ 22に記憶された 3バンド画像を RGB接 続機器 30に入力すれば、従来の RGBカメラと同様に被写体 Oのカラー画像を簡単 に確認することができる。
[0035] [第 3実施例]
本発明の第 3実施例に係るマルチスペクトル画像撮影装置は、図 14に示すように、 被写体 Oからの光を、 IR— CF18を通して近赤外の光を遮断してから、 1枚のカラー C CD撮像素子 44に結像する。このとき、カラー CCD撮像素子 44には、図 15に示すよ うに、 1画素毎に R, G, B、及び R', G' , B'のフィルタが周期的に配置されたモザィ クフィルタ 44Aが装着されている。各フィルタの分光透過率分布は、図 16に示すよう になっている。即ち、 R, G, Bのフィルタは従来の 3バンドカメラと同じ分光帯域を有 するものであり、 R', G' , B'は従来の RGBよりも狭帯域な分光帯域を有するものとな つている。なお、上記モザイクフィルタ 44Aは、図 15に示すように、 R,, G,, B,のフィ ルタが R, G, B各 3画素に対して各 1画素の割合で配置され、これが周期的に並ん でいる。
[0036] 上記各フィルタを通過した光は、カラー CCD撮像素子 44で受光され、 6バンドの点 順次画像データとして画像補間処理部 48に入力される。画像補間処理部 48では、 各々のバンドにおいて欠損している画素位置に対応する画像データを近傍の画像 データ力も補間して求め、それぞれ同じ画素数による画像データを生成する。こうし て生成された各バンドの画像データのうち、 RGB3バンドの画像については第 1画像 メモリ 22に送られ記憶され、 R' G' B' 3バンド画像は第 2画像メモリ 24に送られ記憶 される。この第 1画像メモリ 22に記憶された 3バンド画像を RGB接続機器 30に入力 すれば、従来の RGBカメラと同様に被写体 Oのカラー画像を簡単に確認することが できる。また、上記第 1画像メモリ 22及び第 2画像メモリ 24に記憶されたそれぞれの 3 バンド画像を画像合成部 26にお ヽて再び合成することで、 6バンドの画像を得ること ができる。
[0037] このように、従来と同じ帯域による RGBフィルタにカ卩え、狭帯域なフィルタを補助的 に混合させることで、マルチバンドの点順次画像を取得する際、補助的なバンドに対 応する画素に対して RGBに対応する画素の配分率を高くし、それによつて、従来の RGB3バンドカメラと比べ、ほぼ遜色な 、解像度及び感度でマルチバンドの画像を 取得することができ、色再現性を向上することができる。
[0038] また、上述した図 15に示した図では、補助的に加えた R', G' , B,のうち、 G'の画 素を他の R', B'に比べ 2倍配置している。し力しながら、これに限ることではなぐ例 えば、図 17に示すように、 G,の 2画素のうちの一方を Cyとして、計 7バンドのマルチ スペクトル撮影を行っても良い。このとき、フィルタ Cyは、図 18に示すように、前述し たフィルタ G'とは異なる分光透過率特性を持つ。
[0039] なお、前述した第 1実施例及び第 2実施例においては、従来の RGB3バンド以外の 補助的な 3バンドは、元の各 RGBの帯域力 所定の範囲の帯域のみ取り出したもの で構成されているが、本実施例においては、これに限定されるものでなぐ例えば図 18に示した Cyのように、元の RGBの波長帯域力 外れた帯域で構成することが可 能である。
[0040] [第 4実施例] 本発明の第 4実施例に係るマルチスペクトル画像撮影装置は、これまでの実施例 にお 、て使用して 、た被写体 Oの光を 2分岐させるハーフミラー 12の代わりに、図 1 9に示すように、波長を選択して透過 Z反射を行なうダイクロイツクミラー(DM) 50を 用いたものである。図 20は、上記 DM50の分光透過率分布は、図 20に黒細線 50A で示すようになっており、また、分光反射率分布は黒点線 50Bで示すようになつてい る。なお、図 20において黒太線は、図 19における色分解プリズムで各々分離される RGBの分光特性を示している。この図 20に示すように、上記 DM50はそれぞれ櫛形 の分光形状による透過率 Z反射率分布を有して ヽる。
[0041] 而して、該 DM50によって透過 Z反射された光は、カラー画像撮像ユニット 32, 34 で、色分解プリズムにより各々異なる狭帯域の RGB3バンドに分解され撮像される。 その結果、各々狭帯域の 6バンドの画像が取得されることになる。
[0042] さらにこのとき、 DM50の後に、それぞれ図 21及び図 22に示すような DM50の分 光透過率 50AZ反射率 50Bと同様な櫛形分光形状の分光透過率 52AZ反射率 54 Aを持つバンドパスフィルタ 52, 54を挿入し、波長選択性を際立たせることで、波長 分離性のよい 6バンドの画像取得が可能となる。一般的に、ダイクロイツクミラー 50の みで櫛形の分光形状を持つ透過率 Z反射率分布を実現しょうとすると、波長選択性 があまり望めず、図 20に示すようにある程度非透過帯 Z非反射帯にも漏れ光が存在 してしまう場合が多い。そのため、前述したように DM50の後に波長選択性のよいバ ンドパスフィルタ 52, 54 (例えば多層膜干渉フィルタ等)を用いて各バンドの波長分 離性を良くすることは、色再現性の良いマルチスペクトルカメラを実現するのに非常 に有効な手段である。また、 DM50により被写体 Oの光をある程度波長分離しておく ことで、バンドパスフィルタ 20による光の損失も最小限に抑えることができるので、光 効率の良いマルチバンドカメラが実現できる。
[0043] 以上により、本実施例によれば、狭帯域の 6バンド撮影により波長分離性の良いマ ルチスペクトル撮影が実現できると共に、 SZN比の高 、マルチバンドカメラが実現で きる。但し、本実施例においては、これまでの実施例において述べていたような、従 来の RGB接続機器 30に直接接続して通常の RGB画像と同等なカラー画像を観察 することはできない。そこで、撮影された画像をカラー画像として観察する場合には、 撮像された 6バンド画像を図 19に示したようなマルチバンド画像処理装置 56を通し て色変換することが必要となる。
[0044] 以上、第 1乃至第 4実施例に基づいて説明したように、マルチスペクトル撮影を行な う各バンドのうち、少なくとも 3バンドは従来の RGBと同じ広帯域な分光感度特性とし 、さらに、他の補助的な狭帯域のバンドに対しては、被写体の光を上記 RGBのバンド よりも少ない比率の光量で割り当てることにより、光の損失を軽減し、これにより動きの ある被写体 Oでも色再現精度の良いマルチスペクトル画像撮影装置を提供すること ができる。さらに、特殊な変 を必要とすることなく通常の RGBモニタを用いて直 接撮影画像の確認が可能なマルチスペクトル画像撮影装置が提供できる。また、ダ ィクロイツクミラーとバンドパスフィルタを併用すれば、波長分離性の高 、狭帯域な 6 バンドを実現できると共に、上記と同様、光の損失を軽減したマルチスペクトル画像 撮影装置が実現できる。
[0045] [第 5実施例]
本発明の第 5実施例に係るマルチスペクトル画像撮影装置は、図 23に示すように、 狭帯域の 3バンドの波長特性の光源を有するストロボ照明発光部 58を備え、ストロボ 無発光状態 (外光照明)と、ストロボ発光状態 (外光 +ストロボ)の 2種類の画像 (各々 3バンド)を撮像することにより、 6バンドのマルチスペクトル画像を取得するものである 。ここで、上記ストロボ照明発光部 58の光源には、カラー CCD撮像素子 44の RGB 感度の各々の波長領域で鋭!ヽピークを持つような櫛形分光分布の波長特性を有す る白色 LED、蛍光灯などの光源を使用する。或いは、狭帯減の波長特性を有する 3 種類の LED等が用いられても良い。上記ストロボ照明発光部 58の光源の発光スぺク トルの例は、図 24に実線で示すようになつている。なお、同図において、破線は RGB の透過率特性を示して 、る。
[0046] また、本実施例に係るマルチスペクトル画像撮影装置は、第 1画像メモリ 22に記憶 された画像を第 2画像メモリ 24に記憶された画像から減算する画像減算部 60を有し ている。
[0047] 図 25は、シャツタ制御力 ストロボ発光、並びにカラー CCD撮像素子 44の受光、 取込までの撮影の流れを示すタイミングチャートを示している。即ち、本実施例に係 るマルチスペクトル画像撮影装置においては、まずシャツタ 62が押されると、本マル チスペクトル画像撮影装置は、ストロボ無発光状態、即ち外光照明のみで通常の RG Bの 3バンドのカラー画像として被写体 Oの画像を撮影し、得られた画像を第 1画像メ モリ 22に記憶する。そして従来の RGB画像として、 RGB接続機器 30に出力、及び 6 バンドのうちの主要な 3バンド画像として記憶媒体及び外部 PC28へ出力する。次に 、ストロボ発光状態、即ち外光照明 +ストロボ照明で被写体 Oを照明し、同じく 3バン ドのカラー画像として被写体 0の画像を撮影して、第 2画像メモリ 24に記憶する。撮影 動作が終わると、この第 2画像メモリ 24に記憶した画像から、先に撮影して上記第 1 画像メモリ 22に記憶してあるストロボ無発光状態 (外光照明のみ)の画像を、画像減 算部 60にて減算して、ストロボ成分のみによる狭帯域の 3バンド画像を作成する。そ して、この作成した画像を、補助的な 3バンド画像として、記憶媒体及び外部 PC28 へ出力する。以上により、外光成分による 3バンド画像とストロボ成分による 3バンド画 像の計 6バンドの画像を得る。
[0048] 以上のような構成により、前述の各実施例のような特別な光学系やフィルタ構造で はなぐ通常の光学系で同様な効果を実現することができる。また、第 1画像メモリ 22 に記憶された 3バンド画像を RGB接続機器 30に入力すれば、従来の RGBカメラと同 様に被写体 Oのカラー画像を簡単に確認することができる。
[0049] なお、本実施例では、シャツタ動作の後、最初に外光のみの光源で被写体 Oのカラ 一画像を撮影したが、最初にストロボ発光させて外光 +ストロボ光で被写体 Oを照明 したカラー画像を撮影した後に、外光のみの光源で被写体 Oのカラー画像を撮影す るようにしても良い。
[0050] [第 6実施例]
本発明の第 6実施例に係るマルチスペクトル画像撮影装置は、 2眼レンズによるマ ルチスペクトル画像撮影装置で、従来の RGB3バンド撮影用のカラー撮像部と、狭 帯域の 3バンドの櫛型の分光透過特性を有するバンドパスフィルタをレンズに備えた 、狭帯域の 3バンド撮影用のカラー撮像部とを備え、従来の RGB3バンド撮影用の力 ラー撮像部からの主要な 3バンド画像と、狭帯域の 3バンド撮影用のカラー撮像部か らの補助的な 3バンド画像とから、 6バンドのマルチスペクトル画像を取得するもので ある。
[0051] 図 26の上側の撮像部が従来の RGB3バンド撮影用のカラー撮像部であり、レンズ 10と IR— CF18、カラー CCD撮像素子 14とで構成されている。下側の撮像部が狭帯 域の 3バンド撮影用のカラー撮像部であり、レンズ 64と、レンズ 64の前面に配置され た狭帯域の 3バンドの櫛型の分光透過特性を有するバンドパスフィルタ 20と、カラー CCD撮像素子 16とで構成されて ヽる。下側の撮像部で撮像された狭帯域の補助的 な 3バンド画像は、視差により従来の 3バンド撮影画像 (上側)と画像の位置がずれて いる。このずれを
第 2画像メモリ 24の後の幾何補正部 66で補正し、両者の 3バンド画像の位置を一致 させて出力する。
[0052] 以上のような構成により、前述の第 1乃至第 4実施例のような特別な光学系やフィル タ構造ではなぐ通常の光学系で同様な効果を実現することができる。また、第 1画像 メモリ 22に記憶された 3バンド画像を RGB接続機器 30に入力すれば、従来の RGB カメラと同様に被写体 Oのカラー画像を簡単に確認することができる。
[0053] なお、本発明は上述した実施例に限定されるものではなぐ本発明の要旨の範囲 内で種々の変形や応用が可能なことは勿論である。
[0054] 例えば、上述した各実施例では、撮像素子の例として CCD撮像素子を用いて説明 したが、 CCD撮像素子の代わりに、 CMOS撮像素子等の X— Yアドレス型の撮像素 子を用いても良い。そのような撮像素子を用いた場合には、高速読み出しや間引き 読み出しが可能となり、さらに、単板式のカラー撮像素子構成の場合には同じ色フィ ルタの画素を選択的に読み出すことも可能となる。従って、マルチスペクトル画像撮 影装置における、処理の高速化や、安価な構成も可能となる。
[0055] (付記)
前記の具体的実施例から、以下のような構成の発明を抽出することができる。
[0056] (1) 4バンド以上の異なる分光感度特性を有するマルチスペクトル画像撮影装置 において、
上記 4バンド以上の分光感度特性のうち、主要な 3バンドは、標準的な RGBの分光 感度特性を有し、 上記 4バンド以上の分光感度特性のうちの上記主要な 3バンドを除いた残りのバン ドのうち、少なくとも一つの補助的なバンドは、上記 RGBよりも狭帯域な分光感度特 性を有する、
ことを特徴とするマルチスペクトル画像撮影装置。
[0057] (対応する実施例)
この(1)に記載のマルチスペクトル画像撮影装置に関する実施例は、第 1乃至第 4 実施例が対応する。
[0058] (作用効果)
この(1)に記載の構成によれば、マルチスペクトル撮影を行なう各バンドのうち、少 なくとも 3バンドは従来の RGBと同じ広帯域な分光感度特性とし、さらに、他の補助的 な狭帯域のバンドに対しては、被写体の光を上記 RGBのバンドよりも少な 、比率の 光量で割り当てることにより、光の損失を軽減し、これにより動きのある被写体でも精 度よく色再現を行なえる。さらに、特殊な変 を必要とすることなく通常の RGBモ ニタを用いて直接撮影画像の確認が可能となる。
[0059] (2) 上記補助的なバンドの分光感度特性における主波長の感度値は、上記主要 な 3バンドの分光感度特性における主波長の感度値の半分未満であることを特徴と する(1)に記載のマルチスペクトル画像撮影装置。
[0060] (対応する実施例)
この(2)に記載のマルチスペクトル画像撮影装置に関する実施例は、第 1乃至第 4 実施例が対応する。
[0061] (作用効果)
この(2)に記載の構成によれば、被写体力 の入射光の大半を主要な RGB3バン ドの取得に使用し、一方、残りの少量の光を狭帯域化して補助的なバンドに割り当て ることで、その狭帯域ィ匕により生じる光量の損失をできるだけ少なくし、マルチスぺタト ル撮影における感度の劣化を防ぐことにより、色再現性のよい分光感度特性を実現 できる。
[0062] (3) 撮像レンズ(10)力 の光を 2つの光路に分割するハーフミラー(12)と、
上記ハーフミラーで分割された一方の光の分光特性を変調するバンドパスフィルタ (20)と、
上記バンドパスフィルタによって変調された光を受光して、被写体を撮像する撮像 手段(16)と、
上記ハーフミラーで分割されたもう一方の光を、赤、青、緑の 3色に分解して受光し 、被写体のカラー画像を撮像するカラー撮像手段( 14; 32)と、
を具備することを特徴とするマルチスペクトル画像撮影装置。
[0063] (対応する実施例)
この(3)に記載のマルチスペクトル画像撮影装置に関する実施例は、第 1実施例及 び第 1実施例の第 2の変形例が対応する。
[0064] (作用効果)
この(3)に記載の構成によれば、ハーフミラーで分割された一方の光を、 RGBと同 じ赤、青、緑の 3色に分解して撮像し、さらに、他方の光はバンドパスフィルタで狭帯 域ィ匕して撮影することで、補助的な狭帯域のバンドに対しては被写体の光を RGBの バンドよりも少ない比率の光量で割り当てることにより、光の損失を軽減し、これにより 動きのある被写体でも精度よく色再現を行なえる。さらに、特殊な変 を必要とす ることなく通常の RGBモニタを用いて直接撮影画像の確認が可能となる。
[0065] (4) 上記ハーフミラーは上記撮像レンズからの光を 2 : 1以上の異なる強度比で 2 つの光路に分割することを特徴とする(3)に記載のマルチスペクトル画像撮影装置。
[0066] (対応する実施例)
この(4)に記載のマルチスペクトル画像撮影装置に関する実施例は、第 1実施例及 び第 1実施例の第 2の変形例が対応する。
[0067] (作用効果)
この(4)に記載の構成によれば、被写体力 の入射光の大半を RGB3バンドの取 得に使用し、一方、残りの少量の光をバンドパスフィルタにより狭帯域ィ匕して他のバン ドに割り当てることで、バンドパスフィルタによる狭帯域ィ匕により生じる光量の損失をで きるだけ少なくし、マルチスペクトル撮影における感度の劣化を防ぐことにより、色再 現性のよ!、分光感度特性を実現できる。
[0068] (5) 上記バンドパスフィルタは、可視領域の波長範囲において複数の透過波長帯 域と複数の非透過波長帯域とを有する櫛形の分光形状を持つ
あり、
上記バンドパスフィルタを通過した光を受光する上記撮像手段は、上記バンドパス フィルタにおける複数の透過波長帯域の光を各々分解して受光するカラー撮像手段
(16)であることを特徴とする(3)または (4)に記載のマルチスペクトル画像撮影装置
[0069] (対応する実施例)
この(5)に記載のマルチスペクトル画像撮影装置に関する実施例は、第 1実施例が 対応する。
[0070] (作用効果)
この(5)に記載の構成によれば、補助的な狭帯域のバンドについてもカラー撮像手 段を用いることで、 5バンド以上の多バンド化が可能となり、色再現性の良いマルチス ベクトル画像取得が可能となる。
[0071] (6) 上記ハーフミラーで分岐された光のうち上記バンドパスフィルタを透過した光 を受光する上記撮像手段における撮像素子の総画素数は、上記ハーフミラーで分 割された光を赤、青、緑の 3色に分解して受光する上記カラー撮像手段における撮 像素子の総画素数よりも少な 、ことを特徴とする(3)乃至(5)の何れかに記載のマル チスペクトル画像撮影装置。
[0072] (対応する実施例)
この(6)に記載のマルチスペクトル画像撮影装置に関する実施例は、第 1実施例及 び第 1実施例の第 2の変形例が対応する。
[0073] (作用効果)
この(6)に記載の構成によれば、補助的なバンド画像の解像度が低くても、主要な 3バンド画像における高周波成分を利用して、上記主要な 3バンド画像とほぼ同等な 解像度のマルチスペクトル画像を得ることができる。また、低解像度な撮像手段は高 解像度な撮像手段と比べ感度が高いため、よりハーフミラーの反射率を落とし、透過 率を高めることができるので、トータルの感度をさらに高めることが可能となる。
[0074] (7) 4バンド以上の異なる分光感度特性を有するマルチスペクトル画像撮影装置 において、
複数の波長帯域の光を透過し且つ上記複数の波長帯域以外の光を反射する櫛形 の分光透過率及び分光反射率特性を有するダイクロイツクミラー (50)と、
上記ダイクロイツクミラーと略同一の透過波長帯域を有するバンドパスフィルタ(52) と、
上記ダイクロイツクミラーの反射波長帯域と略同一の波長帯域を透過する分光透過 率特性を有するバンドパスフィルタ(54)と、
を具備することを特徴とするマルチスペクトル画像撮影装置。
[0075] (対応する実施例)
この(7)に記載のマルチスペクトル画像撮影装置に関する実施例は、第 4実施例が 対応する。
[0076] (作用効果)
この(7)に記載の構成によれば、ダイクロイツクミラーにより被写体の光をある程度 波長分離しておくことで、バンドパスフィルタによる光の損失も最小限に抑えることが できるので、光効率の良いマルチバンドカメラが実現できる。

Claims

請求の範囲
[1] 4バンド以上の異なる分光感度特性を有するマルチスペクトル画像撮影装置にお いて、
上記 4バンド以上の分光感度特性のうち、主要な 3バンドは、標準的な RGBの分光 感度特性を有し、
上記 4バンド以上の分光感度特性のうちの上記主要な 3バンドを除いた残りのバン ドのうち、少なくとも一つの補助的なバンドは、上記 RGBよりも狭帯域な分光感度特 性を有する、
ことを特徴とするマルチスペクトル画像撮影装置。
[2] 上記補助的なバンドの分光感度特性における主波長の感度値は、上記主要な 3バ ンドの分光感度特性における主波長の感度値の半分未満であることを特徴とする請 求項 1に記載のマルチスペクトル画像撮影装置。
[3] 撮像レンズ(10)力 の光を 2つの光路に分割するハーフミラー(12)と、
上記ハーフミラーで分割された一方の光の分光特性を変調するバンドパスフィルタ (20)と、
上記バンドパスフィルタによって変調された光を受光して、被写体を撮像する撮像 手段(16)と、
上記ハーフミラーで分割されたもう一方の光を、赤、青、緑の 3色に分解して受光し 、被写体のカラー画像を撮像するカラー撮像手段( 14; 32)と、
を具備することを特徴とするマルチスペクトル画像撮影装置。
[4] 上記ハーフミラーは上記撮像レンズからの光を 2 : 1以上の異なる強度比で 2つの光 路に分割することを特徴とする請求項 3に記載のマルチスペクトル画像撮影装置。
[5] 上記バンドパスフィルタは、可視領域の波長範囲において複数の透過波長帯域と 複数の非透過波長帯域とを有する櫛形の分光形状を持つバンドパスフィルタであり、 上記バンドパスフィルタを通過した光を受光する上記撮像手段は、上記バンドパス フィルタにおける複数の透過波長帯域の光を各々分解して受光するカラー撮像手段 (16)であることを特徴とする請求項 3または 4に記載のマルチスペクトル画像撮影装
[6] 上記ハーフミラーで分岐された光のうち上記バンドパスフィルタを透過した光を受光 する上記撮像手段における撮像素子の総画素数は、上記ハーフミラーで分割された 光を赤、青、緑の 3色に分解して受光する上記カラー撮像手段における撮像素子の 総画素数よりも少ないことを特徴とする請求項 3乃至 5の何れかに記載のマルチスぺ タトル画像撮影装置。
[7] 4バンド以上の異なる分光感度特性を有するマルチスペクトル画像撮影装置にお いて、
複数の波長帯域の光を透過し且つ上記複数の波長帯域以外の光を反射する櫛形 の分光透過率及び分光反射率特性を有するダイクロイツクミラー (50)と、
上記ダイクロイツクミラーと略同一の透過波長帯域を有するバンドパスフィルタ(52) と、
上記ダイクロイツクミラーの反射波長帯域と略同一の波長帯域を透過する分光透過 率特性を有するバンドパスフィルタ(54)と、
を具備することを特徴とするマルチスペクトル画像撮影装置。
PCT/JP2004/016678 2003-11-11 2004-11-10 マルチスペクトル画像撮影装置 WO2005046248A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005515360A JP4118916B2 (ja) 2003-11-11 2004-11-10 マルチスペクトル画像撮影装置
EP04799576A EP1686810A4 (en) 2003-11-11 2004-11-10 DEVICE FOR ENTERING MULTISPECTRAL IMAGES
US11/416,939 US7612822B2 (en) 2003-11-11 2006-05-03 Multispectral image capturing apparatus
US12/556,437 US7868936B2 (en) 2003-11-11 2009-09-09 Multispectral image capturing apparatus
US12/959,074 US8134618B2 (en) 2003-11-11 2010-12-02 Multispectral image capturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-381419 2003-11-11
JP2003381419 2003-11-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/416,939 Continuation US7612822B2 (en) 2003-11-11 2006-05-03 Multispectral image capturing apparatus

Publications (1)

Publication Number Publication Date
WO2005046248A1 true WO2005046248A1 (ja) 2005-05-19

Family

ID=34567278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016678 WO2005046248A1 (ja) 2003-11-11 2004-11-10 マルチスペクトル画像撮影装置

Country Status (5)

Country Link
US (3) US7612822B2 (ja)
EP (1) EP1686810A4 (ja)
JP (2) JP4118916B2 (ja)
CN (1) CN1875638A (ja)
WO (1) WO2005046248A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2005877A2 (en) * 2006-04-12 2008-12-24 Olympus Medical Systems Corp. Endoscope device
JP2009158993A (ja) * 2007-12-25 2009-07-16 Toppan Printing Co Ltd 情報取得装置、情報取得方法および情報取得プログラム
JP2009260411A (ja) * 2008-04-11 2009-11-05 Olympus Corp 撮像装置
WO2013047627A1 (ja) * 2011-09-28 2013-04-04 株式会社 トプコン 画像取得装置
JP2013072772A (ja) * 2011-09-28 2013-04-22 Topcon Corp 画像取得装置
JP2013090230A (ja) * 2011-10-20 2013-05-13 Topcon Corp 画像取得装置
JP2013092884A (ja) * 2011-10-25 2013-05-16 Nippon Telegr & Teleph Corp <Ntt> 画像処理装置、方法、及びプログラム
JP2014179857A (ja) * 2013-03-15 2014-09-25 Toppan Printing Co Ltd 画像取得装置及び画像取得方法及び画像取得プログラム
WO2014203639A1 (ja) * 2013-06-21 2014-12-24 オリンパス株式会社 撮像装置、画像処理装置、撮像方法及び画像処理方法
US9652827B2 (en) 2013-06-24 2017-05-16 Technology Innovation Momentum Fund (Israel) Limited Partnership System and method for color image acquisition
US10827152B2 (en) 2015-07-15 2020-11-03 Technology Innovation Momentum Fund (Israel) Limited Partnership Tunable MEMS etalon
WO2021172055A1 (ja) * 2020-02-26 2021-09-02 ソニーセミコンダクタソリューションズ株式会社 撮像装置、撮像方法、電子機器

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3673845B2 (ja) * 2002-11-19 2005-07-20 コニカミノルタホールディングス株式会社 撮像装置
JP2007103401A (ja) * 2005-09-30 2007-04-19 Matsushita Electric Ind Co Ltd 撮像装置及び画像処理装置
EP2284509B1 (en) * 2005-11-04 2018-01-31 George Themelis System for multispectral imaging
JP5086535B2 (ja) * 2005-11-21 2012-11-28 オリンパスメディカルシステムズ株式会社 2板撮像装置
JP4899149B2 (ja) * 2006-02-13 2012-03-21 株式会社ジェイエイアイコーポレーション 面順次方式カラーカメラシステム
US8242426B2 (en) 2006-12-12 2012-08-14 Dolby Laboratories Licensing Corporation Electronic camera having multiple sensors for capturing high dynamic range images and related methods
US20080174691A1 (en) * 2007-01-19 2008-07-24 Quality Vision International Inc. Strobed image acquisition guided by range sensor
US8253824B2 (en) * 2007-10-12 2012-08-28 Microsoft Corporation Multi-spectral imaging
US8169471B2 (en) * 2007-11-09 2012-05-01 Fujifilm Corporation Image capturing system, image capturing method, and computer readable medium
WO2009120928A2 (en) * 2008-03-28 2009-10-01 The Trustees Of Columbia University In The City Of New York Generalized assorted pixel camera systems and methods
EP3876510A1 (en) 2008-05-20 2021-09-08 FotoNation Limited Capturing and processing of images using monolithic camera array with heterogeneous imagers
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US7924312B2 (en) * 2008-08-22 2011-04-12 Fluke Corporation Infrared and visible-light image registration
US20110200237A1 (en) * 2008-10-15 2011-08-18 Nec Corporation Pattern matching device and pattern matching method
US8587681B2 (en) * 2008-11-21 2013-11-19 Omnivision Technologies, Inc. Extended depth of field for image sensor
JP5087529B2 (ja) * 2008-12-01 2012-12-05 オリンパス株式会社 識別処理装置、識別処理プログラム及び識別処理方法
WO2010089830A1 (ja) * 2009-02-03 2010-08-12 パナソニック株式会社 撮像装置
US8482652B2 (en) * 2009-03-27 2013-07-09 Radiant Imaging, Inc. Imaging devices with components for reflecting optical data and associated methods of use and manufacture
JP5546166B2 (ja) * 2009-06-19 2014-07-09 キヤノン株式会社 撮像装置、信号処理方法、及びプログラム
JP2013509820A (ja) 2009-10-28 2013-03-14 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク 符号化ローリングシャッタの方法およびシステム
US8514491B2 (en) 2009-11-20 2013-08-20 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
JP2011112452A (ja) * 2009-11-25 2011-06-09 Olympus Corp カラーセンサ
JP5482199B2 (ja) * 2009-12-28 2014-04-23 ソニー株式会社 撮像装置
SG185500A1 (en) 2010-05-12 2012-12-28 Pelican Imaging Corp Architectures for imager arrays and array cameras
US20110285895A1 (en) * 2010-05-21 2011-11-24 Chung Shan Institute Of Science And Technology Image Sensing Device and Processing System
LV14207B (lv) * 2010-06-29 2010-11-20 Univ Latvijas Metode un ier&imacr;ce multispektr&amacr;lu att&emacr;lu ieg&umacr;&scaron;anai ar digit&amacr;lo RGB sensoru
JP5675215B2 (ja) * 2010-08-20 2015-02-25 オリンパス株式会社 デジタルカメラ
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
CN102148999A (zh) * 2011-01-10 2011-08-10 南京理工大学 宽波段大跨度调谐滤波单通道彩色微光夜视方法及装置
EP2781899B1 (en) * 2011-03-03 2021-08-11 Enchroma, Inc. Multi-band color vision filters
JP5713816B2 (ja) * 2011-03-16 2015-05-07 株式会社東芝 固体撮像装置及びカメラモジュール
EP2708019B1 (en) 2011-05-11 2019-10-16 FotoNation Limited Systems and methods for transmitting and receiving array camera image data
US20130070060A1 (en) 2011-09-19 2013-03-21 Pelican Imaging Corporation Systems and methods for determining depth from multiple views of a scene that include aliasing using hypothesized fusion
US8600227B2 (en) * 2011-09-22 2013-12-03 Xerox Corporation Multi-filter array for a multi-resolution, multi-spectral camera
US8542933B2 (en) 2011-09-28 2013-09-24 Pelican Imaging Corporation Systems and methods for decoding light field image files
US9110293B2 (en) 2011-10-17 2015-08-18 Manufacturing Techniques, Inc. Prismatic image replication for obtaining color data from a monochrome detector array
WO2013079778A2 (en) * 2011-12-02 2013-06-06 Nokia Corporation Method, apparatus and computer program product for capturing images
US8836814B2 (en) * 2012-01-18 2014-09-16 Nokia Corporation Method and apparatus for ambient light spectrum detection in digital photography
US9258468B2 (en) * 2012-02-15 2016-02-09 Fluxdata, Inc. Method and apparatus for separate spectral imaging and sensing
WO2013126578A1 (en) 2012-02-21 2013-08-29 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
WO2013135311A1 (en) 2012-03-13 2013-09-19 Latvijas Universitate Method and device for imaging of spectral reflectance at several wavelength bands
US9173570B2 (en) 2012-04-12 2015-11-03 Thomas Nathan Millikan Viewing and processing multispectral images
EP2677732B1 (en) 2012-06-22 2019-08-28 Nokia Technologies Oy Method, apparatus and computer program product for capturing video content
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US20140002674A1 (en) 2012-06-30 2014-01-02 Pelican Imaging Corporation Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors
US9547178B2 (en) 2012-08-15 2017-01-17 Semrock. Inc. Dichroic image splitter
EP2888720B1 (en) 2012-08-21 2021-03-17 FotoNation Limited System and method for depth estimation from images captured using array cameras
US20140055632A1 (en) 2012-08-23 2014-02-27 Pelican Imaging Corporation Feature based high resolution motion estimation from low resolution images captured using an array source
EP2901671A4 (en) 2012-09-28 2016-08-24 Pelican Imaging Corp CREATING IMAGES FROM LIGHT FIELDS USING VIRTUAL POINTS OF VIEW
JP6017276B2 (ja) * 2012-11-21 2016-10-26 オリンパス株式会社 撮像装置
US9215433B2 (en) 2014-02-11 2015-12-15 Duelight Llc Systems and methods for digital photography
WO2014130849A1 (en) 2013-02-21 2014-08-28 Pelican Imaging Corporation Generating compressed light field representation data
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
WO2014138697A1 (en) 2013-03-08 2014-09-12 Pelican Imaging Corporation Systems and methods for high dynamic range imaging using array cameras
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
WO2014165244A1 (en) 2013-03-13 2014-10-09 Pelican Imaging Corporation Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US9094567B2 (en) * 2013-03-14 2015-07-28 James Olson Multi-channel camera system
WO2014153098A1 (en) 2013-03-14 2014-09-25 Pelican Imaging Corporation Photmetric normalization in array cameras
WO2014159779A1 (en) 2013-03-14 2014-10-02 Pelican Imaging Corporation Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
JP6086829B2 (ja) 2013-06-26 2017-03-01 オリンパス株式会社 画像処理装置及び画像処理方法
WO2015048694A2 (en) 2013-09-27 2015-04-02 Pelican Imaging Corporation Systems and methods for depth-assisted perspective distortion correction
US9426343B2 (en) 2013-11-07 2016-08-23 Pelican Imaging Corporation Array cameras incorporating independently aligned lens stacks
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
JP6390090B2 (ja) * 2013-11-19 2018-09-19 セイコーエプソン株式会社 光学フィルターデバイス、光学モジュール、及び電子機器
EP3075140B1 (en) 2013-11-26 2018-06-13 FotoNation Cayman Limited Array camera configurations incorporating multiple constituent array cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
EP3201877B1 (en) 2014-09-29 2018-12-19 Fotonation Cayman Limited Systems and methods for dynamic calibration of array cameras
US11304604B2 (en) 2014-10-29 2022-04-19 Spectral Md, Inc. Reflective mode multi-spectral time-resolved optical imaging methods and apparatuses for tissue classification
US9875524B2 (en) * 2015-01-16 2018-01-23 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and computer-readable storage medium
US9696470B2 (en) 2015-03-04 2017-07-04 Microsoft Technology Licensing, Llc Sensing images and light sources via visible light filters
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
EP3286914B1 (en) 2015-04-19 2019-12-25 FotoNation Limited Multi-baseline camera array system architectures for depth augmentation in vr/ar applications
WO2018029544A1 (en) * 2016-08-12 2018-02-15 Spectral Insights Private Limited Spectral imaging system
CN110573066A (zh) 2017-03-02 2019-12-13 光谱Md公司 用于多光谱截肢部位分析的机器学习系统和技术
KR102362447B1 (ko) 2017-05-23 2022-02-14 삼성전자 주식회사 듀얼 이미지 센서를 이용한 이미지 처리 방법 및 장치
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
CN112789495B (zh) * 2018-08-01 2022-05-27 库塞尔专业公司 混合光谱成像仪
JP7211033B2 (ja) * 2018-11-27 2023-01-24 株式会社島津製作所 原子吸光分光光度計
JP7186298B2 (ja) 2018-12-14 2022-12-08 スペクトラル エムディー,インコーポレイテッド 高精度マルチアパーチャスペクトルイメージングのためのシステムおよび方法
US10783632B2 (en) 2018-12-14 2020-09-22 Spectral Md, Inc. Machine learning systems and method for assessment, healing prediction, and treatment of wounds
KR20210101285A (ko) 2018-12-14 2021-08-18 스펙트랄 엠디, 인크. 상처들의 평가, 치유 예측 및 치료를 위한 머신 학습 시스템들 및 방법들
US10740884B2 (en) 2018-12-14 2020-08-11 Spectral Md, Inc. System and method for high precision multi-aperture spectral imaging
CN112087559B (zh) * 2019-06-13 2021-11-30 华为技术有限公司 图像传感器、图像拍摄装置和方法
EP3779554B1 (en) * 2019-08-14 2024-01-17 Leica Instruments (Singapore) Pte. Ltd. Optical beam splitter assembly, camera head, and microscope assembly
WO2021055585A1 (en) 2019-09-17 2021-03-25 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
JPWO2021085014A1 (ja) * 2019-10-28 2021-05-06
CN110913101A (zh) * 2019-11-14 2020-03-24 维沃移动通信有限公司 一种拍摄装置及电子设备
CN110868526A (zh) * 2019-11-14 2020-03-06 维沃移动通信有限公司 一种拍摄模组、拍摄方法及电子设备
KR20230116068A (ko) 2019-11-30 2023-08-03 보스턴 폴라리메트릭스, 인크. 편광 신호를 이용한 투명 물체 분할을 위한 시스템및 방법
CN115176178A (zh) * 2019-12-27 2022-10-11 日本株式会社皆爱公司 棱镜装置的提供方法及棱镜装置
US11195303B2 (en) 2020-01-29 2021-12-07 Boston Polarimetrics, Inc. Systems and methods for characterizing object pose detection and measurement systems
CN115428028A (zh) 2020-01-30 2022-12-02 因思创新有限责任公司 用于合成用于在包括偏振图像的不同成像模态下训练统计模型的数据的系统和方法
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters
JP2022016851A (ja) * 2020-07-13 2022-01-25 キヤノン株式会社 撮像装置、及び撮像システム
US20220295038A1 (en) * 2021-03-10 2022-09-15 Intrinsic Innovation Llc Multi-modal and multi-spectral stereo camera arrays
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174890A (ja) * 1989-06-08 1991-07-30 Fuji Photo Film Co Ltd 固体撮像システム
JP2001016598A (ja) * 1999-04-30 2001-01-19 Olympus Optical Co Ltd カラー撮像素子及び撮像装置
JP2002034908A (ja) * 2000-07-27 2002-02-05 Olympus Optical Co Ltd 内視鏡装置
JP2004172832A (ja) * 2002-11-19 2004-06-17 Minolta Co Ltd 撮像装置
JP2004200357A (ja) * 2002-12-18 2004-07-15 Nikon Corp カラー撮像素子、カラーフィルタアレイ、及びカラー撮像装置
JP2004228662A (ja) * 2003-01-20 2004-08-12 Minolta Co Ltd 撮像装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821989A (ja) 1981-07-31 1983-02-09 Canon Inc カラ−固体撮像装置
US6150930A (en) * 1992-08-14 2000-11-21 Texas Instruments Incorporated Video equipment and method to assist motor vehicle operators
JPH06202250A (ja) * 1992-12-29 1994-07-22 Konica Corp カラー画像情報処理装置
JPH07203318A (ja) * 1993-12-28 1995-08-04 Nippon Telegr & Teleph Corp <Ntt> 撮像装置
US5668597A (en) * 1994-12-30 1997-09-16 Eastman Kodak Company Electronic camera with rapid automatic focus of an image upon a progressive scan image sensor
JP3713321B2 (ja) 1995-12-19 2005-11-09 オリンパス株式会社 カラー画像記録再生システム及び画像カラー画像記録再生方法
US7179222B2 (en) * 1996-11-20 2007-02-20 Olympus Corporation Fluorescent endoscope system enabling simultaneous achievement of normal light observation based on reflected light and fluorescence observation based on light with wavelengths in infrared spectrum
JP4076248B2 (ja) 1997-09-09 2008-04-16 オリンパス株式会社 色再現装置
US5982497A (en) * 1998-07-09 1999-11-09 Optical Insights, Llc Multi-spectral two-dimensional imaging spectrometer
JP3925681B2 (ja) * 1999-05-19 2007-06-06 富士フイルム株式会社 マルチバンド画像出力方法および装置
US6215597B1 (en) * 1999-11-17 2001-04-10 Duncan Technologies, Inc. Apparatus for forming a plurality of subimages having different characteristics
US6515275B1 (en) * 2000-04-24 2003-02-04 Hewlett-Packard Company Method and apparatus for determining the illumination type in a scene
US7892169B2 (en) * 2000-07-21 2011-02-22 Olympus Corporation Endoscope apparatus
JP2002185974A (ja) * 2000-12-12 2002-06-28 Canon Inc 画像処理装置およびその方法
JP2002300589A (ja) 2001-01-29 2002-10-11 Konica Corp 撮影装置
GB2373943A (en) * 2001-03-28 2002-10-02 Hewlett Packard Co Visible and infrared imaging camera
JP2002296114A (ja) 2001-03-30 2002-10-09 Fuji Photo Film Co Ltd 分光反射率画像の取得方法、撮影装置および分光反射率画像取得システム
JP2002296493A (ja) * 2001-03-30 2002-10-09 Fuji Photo Optical Co Ltd ピント状態検出装置
JP2002323375A (ja) * 2001-04-24 2002-11-08 Nippon Hoso Kyokai <Nhk> 撮像装置
US6924841B2 (en) 2001-05-02 2005-08-02 Agilent Technologies, Inc. System and method for capturing color images that extends the dynamic range of an image sensor using first and second groups of pixels
JP2002345733A (ja) * 2001-05-29 2002-12-03 Fuji Photo Film Co Ltd 撮像装置
JP2002365517A (ja) * 2001-06-04 2002-12-18 Fuji Photo Optical Co Ltd 撮影レンズのピント状態検出装置
JP3862582B2 (ja) * 2001-06-29 2006-12-27 富士フイルムホールディングス株式会社 蛍光画像取得方法および装置並びにプログラム
JP3826174B2 (ja) 2001-07-06 2006-09-27 独立行政法人情報通信研究機構 撮像装置
JP2003087806A (ja) 2001-09-12 2003-03-20 Fuji Photo Film Co Ltd マルチバンドカメラ用フィルターとその形成方法並びにこの方法のプログラム及びこれを記録した記録媒体
JP2003134527A (ja) * 2001-10-24 2003-05-09 Telecommunication Advancement Organization Of Japan カラー映像再現システム
JP3975395B2 (ja) * 2002-02-26 2007-09-12 フジノン株式会社 カメラシステム
JP3950715B2 (ja) 2002-03-05 2007-08-01 富士フイルム株式会社 固体撮像素子およびこれを用いた撮像装置
JP4632645B2 (ja) * 2002-12-12 2011-02-16 オリンパス株式会社 イメージング装置およびプロセッサ装置
US7633537B2 (en) * 2002-12-18 2009-12-15 Nikon Corporation Color image sensor, color filter array and color imaging device
JP2005033609A (ja) 2003-07-08 2005-02-03 Fuji Film Microdevices Co Ltd 固体撮像装置及びデジタルカメラ
EP1751495A2 (en) * 2004-01-28 2007-02-14 Canesta, Inc. Single chip red, green, blue, distance (rgb-z) sensor
JP4717363B2 (ja) * 2004-03-10 2011-07-06 オリンパス株式会社 マルチスペクトル画像撮影装置及びアダプタレンズ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174890A (ja) * 1989-06-08 1991-07-30 Fuji Photo Film Co Ltd 固体撮像システム
JP2001016598A (ja) * 1999-04-30 2001-01-19 Olympus Optical Co Ltd カラー撮像素子及び撮像装置
JP2002034908A (ja) * 2000-07-27 2002-02-05 Olympus Optical Co Ltd 内視鏡装置
JP2004172832A (ja) * 2002-11-19 2004-06-17 Minolta Co Ltd 撮像装置
JP2004200357A (ja) * 2002-12-18 2004-07-15 Nikon Corp カラー撮像素子、カラーフィルタアレイ、及びカラー撮像装置
JP2004228662A (ja) * 2003-01-20 2004-08-12 Minolta Co Ltd 撮像装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ISHIMARU H. ET AL.: "Fuksu no RGB camera o mochiita one shot-gata multiple spectra camera no kaihatsu", DAI 62 KAI EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, vol. 3, 3 September 2000 (2000-09-03), pages 887, XP002988185 *
See also references of EP1686810A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8979741B2 (en) 2006-04-12 2015-03-17 Olympus Medical Systems Corp. Endoscopic apparatus
EP2005877A4 (en) * 2006-04-12 2013-03-27 Olympus Medical Systems Corp ENDOSCOPE DEVICE
EP2005877A2 (en) * 2006-04-12 2008-12-24 Olympus Medical Systems Corp. Endoscope device
JP2009158993A (ja) * 2007-12-25 2009-07-16 Toppan Printing Co Ltd 情報取得装置、情報取得方法および情報取得プログラム
JP2009260411A (ja) * 2008-04-11 2009-11-05 Olympus Corp 撮像装置
US9541495B2 (en) 2011-09-28 2017-01-10 Kabushiki Kaisha Topcon Image pickup device
JP2013072772A (ja) * 2011-09-28 2013-04-22 Topcon Corp 画像取得装置
WO2013047627A1 (ja) * 2011-09-28 2013-04-04 株式会社 トプコン 画像取得装置
JP2013090230A (ja) * 2011-10-20 2013-05-13 Topcon Corp 画像取得装置
JP2013092884A (ja) * 2011-10-25 2013-05-16 Nippon Telegr & Teleph Corp <Ntt> 画像処理装置、方法、及びプログラム
JP2014179857A (ja) * 2013-03-15 2014-09-25 Toppan Printing Co Ltd 画像取得装置及び画像取得方法及び画像取得プログラム
WO2014203639A1 (ja) * 2013-06-21 2014-12-24 オリンパス株式会社 撮像装置、画像処理装置、撮像方法及び画像処理方法
JP2015005921A (ja) * 2013-06-21 2015-01-08 オリンパス株式会社 撮像装置、画像処理装置、撮像方法及び画像処理方法
US9652827B2 (en) 2013-06-24 2017-05-16 Technology Innovation Momentum Fund (Israel) Limited Partnership System and method for color image acquisition
US10229476B2 (en) 2013-06-24 2019-03-12 Technology Innovation Momentum Fund (Israel) Limited Partnership System and method for color image acquisition
US10827152B2 (en) 2015-07-15 2020-11-03 Technology Innovation Momentum Fund (Israel) Limited Partnership Tunable MEMS etalon
WO2021172055A1 (ja) * 2020-02-26 2021-09-02 ソニーセミコンダクタソリューションズ株式会社 撮像装置、撮像方法、電子機器

Also Published As

Publication number Publication date
US20060203100A1 (en) 2006-09-14
EP1686810A1 (en) 2006-08-02
JP2011015439A (ja) 2011-01-20
US8134618B2 (en) 2012-03-13
US7868936B2 (en) 2011-01-11
US7612822B2 (en) 2009-11-03
JPWO2005046248A1 (ja) 2007-11-29
EP1686810A4 (en) 2009-06-03
US20100026876A1 (en) 2010-02-04
JP4118916B2 (ja) 2008-07-16
US20110074992A1 (en) 2011-03-31
JP5124003B2 (ja) 2013-01-23
CN1875638A (zh) 2006-12-06

Similar Documents

Publication Publication Date Title
JP4118916B2 (ja) マルチスペクトル画像撮影装置
JP4633129B2 (ja) マルチスペクトル画像撮影装置
US8259203B2 (en) Method and apparatus for achieving panchromatic response from a color-mosaic imager
JP4730082B2 (ja) 画像信号処理装置、撮像装置、および画像信号処理方法、並びにコンピュータ・プログラム
US7855786B2 (en) Single camera multi-spectral imager
US7948551B2 (en) Field sequential color camera system
KR100848763B1 (ko) 멀티 스펙트럼 화상 촬영 장치 및 어댑터 렌즈
JP2018160800A (ja) 撮像装置及び撮像方法
JP2004228662A (ja) 撮像装置
KR20070011429A (ko) 디지털 이미징 시스템을 이용하여 오브젝트로부터 광의대안적 형태의 재생
WO2021041928A1 (en) Systems and methods for creating a full-color image in low light
JP4253943B2 (ja) 固体撮像装置
JP5108013B2 (ja) カラー撮像素子及びこれを用いた撮像装置及びフィルタ
EP0428884A1 (en) Colour filter arrangement for a solid-state imaging apparatus
JP2007315808A (ja) マルチスペクトル撮像装置
JP2010171950A (ja) 撮像装置および撮像装置の色補正方法
CN112335233B (zh) 图像生成装置以及摄像装置
RU2736780C1 (ru) Устройство для формирования цветного изображения (варианты)
WO2022234753A1 (ja) 固体撮像装置及び電子機器
JP4681792B2 (ja) デジタルカメラ
CN114650343A (zh) 一种图像传感器及成像装置
CN108683893A (zh) 利用量子点技术扩展cmos摄像机中传感器色域的方法
JP2003309747A (ja) マルチスペクトル画像撮影方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480032266.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515360

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11416939

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004799576

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004799576

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11416939

Country of ref document: US